WorldWideScience

Sample records for activator-dependent transcription initiation

  1. The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition

    OpenAIRE

    Bloodgood, Brenda L.; Sharma, Nikhil; Browne, Heidi Adlman; Trepman, Alissa Z.; Greenberg, Michael E.

    2013-01-01

    A heterogeneous population of inhibitory neurons controls the flow of information through a neural circuit1–3. Inhibitory synapses that form on pyramidal neuron dendrites modulate the summation of excitatory synaptic potentials4–6 and prevent the generation of dendritic calcium spikes7,8. Precisely timed somatic inhibition limits both the number of action potentials and the time window during which firing can occur8,9. The activity-dependent transcription factor NPAS4 regulates inhibitory syn...

  2. Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus.

    Science.gov (United States)

    Ch'ng, Toh Hean; Uzgil, Besim; Lin, Peter; Avliyakulov, Nuraly K; O'Dell, Thomas J; Martin, Kelsey C

    2012-07-01

    Long-lasting changes in synaptic efficacy, such as those underlying long-term memory, require transcription. Activity-dependent transport of synaptically localized transcriptional regulators provides a direct means of coupling synaptic stimulation with changes in transcription. The CREB-regulated transcriptional coactivator (CRTC1), which is required for long-term hippocampal plasticity, binds CREB to potently promote transcription. We show that CRTC1 localizes to synapses in silenced hippocampal neurons but translocates to the nucleus in response to localized synaptic stimulation. Regulated nuclear translocation occurs only in excitatory neurons and requires calcium influx and calcineurin activation. CRTC1 is controlled in a dual fashion with activity regulating CRTC1 nuclear translocation and cAMP modulating its persistence in the nucleus. Neuronal activity triggers a complex change in CRTC1 phosphorylation, suggesting that CRTC1 may link specific types of stimuli to specific changes in gene expression. Together, our results indicate that synapse-to-nuclear transport of CRTC1 dynamically informs the nucleus about synaptic activity.

  3. Initiation of HIV Reverse Transcription

    Directory of Open Access Journals (Sweden)

    Roland Marquet

    2010-01-01

    Full Text Available Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.

  4. Calcineurin signaling mediates activity-dependent relocation of the axon initial segment.

    Science.gov (United States)

    Evans, Mark D; Sammons, Rosanna P; Lebron, Sabrina; Dumitrescu, Adna S; Watkins, Thomas B K; Uebele, Victor N; Renger, John J; Grubb, Matthew S

    2013-04-17

    The axon initial segment (AIS) is a specialized neuronal subcompartment located at the beginning of the axon that is crucially involved in both the generation of action potentials and the regulation of neuronal polarity. We recently showed that prolonged neuronal depolarization produces a distal shift of the entire AIS structure away from the cell body, a change associated with a decrease in neuronal excitability. Here, we used dissociated rat hippocampal cultures, with a major focus on the dentate granule cell (DGC) population, to explore the signaling pathways underlying activity-dependent relocation of the AIS. First, a pharmacological screen of voltage-gated calcium channels (VGCCs) showed that AIS relocation is triggered by activation of L-type Cav1 VGCCs with negligible contribution from any other VGCC subtypes. Additional pharmacological analysis revealed that downstream signaling events are mediated by the calcium-sensitive phosphatase calcineurin; inhibition of calcineurin with either FK506 or cyclosporin A totally abolished both depolarization- and optogenetically-induced activity-dependent AIS relocation. Furthermore, calcineurin activation is sufficient for AIS plasticity, because expression of a constitutively active form of the phosphatase resulted in relocation of the AIS of DGCs without a depolarizing stimulus. Finally, we assessed the role of calcineurin in other forms of depolarization-induced plasticity. Neither membrane resistance changes nor spine density changes were affected by FK506 treatment, suggesting that calcineurin acts via a separate pathway to modulate AIS plasticity. Together, these results emphasize calcineurin as a vital player in the regulation of intrinsic plasticity as governed by the AIS. PMID:23595753

  5. TAF7: traffic controller in transcription initiation.

    Science.gov (United States)

    Gegonne, Anne; Devaiah, Ballachanda N; Singer, Dinah S

    2013-01-01

    TAF7, a component of the TFIID complex, controls the first steps of transcription. It interacts with and regulates the enzymatic activities of transcription factors that regulate RNA polymerase II progression. Its diverse functions in transcription initiation are consistent with its essential role in cell proliferation.

  6. Molecular basis of transcription initiation in Archaea

    OpenAIRE

    De Carlo, Sacha; Lin, Shih-Chieh; Taatjes, Dylan J.; Hoenger, Andreas

    2010-01-01

    Compared with eukaryotes, the archaeal transcription initiation machinery—commonly known as the Pre-Initiation Complex—is relatively simple. The archaeal PIC consists of the TFIIB ortholog TFB, TBp and an 11-subunit RNA polymerase (RNAP). The relatively small size of the entire archaeal PIC makes it amenable to structural analysis. Using purified RNAP, TFB and TBP from the thermophile Pyrococcus furiosus, we assembled the biochemically active PIC at 65°C. The intact archaeal PIC was isolated ...

  7. Recent evidence for activity-dependent initiation of sympathetic sprouting and neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    Jun-Ming ZHANG; Judith A. Strong

    2008-01-01

    Traumatic injury or inflammatory irritation of the peripheral nervous system often leads to persistent pathophysiological pain states. It has been well-documented that, after peripheral nerve injury or inflammation, functional and anatomical alterations sweep over the entire peripheral nervous system including the peripheral nerve endings, the injured or inflamed afferent fibers, the dorsal root ganglion (DRG), and the central afferent terminals in the spinal cord. Among all the changes, ectopic discharge or spontaneous activity of primary sensory neurons is of great clinical interest, as such discharges doubtless contribute to the develop-ment of pathological pain states such as neuropathic pain. Two key sources of abnormal spontaneous activity have been identified following peripheral nerve injury: the injured afferent fibers (neuroma) leading to the DRG, and the DRG somata. The purpose of this review is to provide a global account of the abnormal spontaneous activity in various animal models of pain. Particular attention is focused on the consequence of peripheral nerve injury and localized inflammation. Further, mechanisms involved in the generation of spontaneous activity are also reviewed; evidence of spontaneous activity in contributing to abnormal sympathetic sprouting in the axotomized DRG and to the initiation of neuropathic pain based on new findings from our research group are discussed. An improved understanding of the causes of spontaneous activity and the origins of neuropathic pain should facilitate the development of novel strategies for effective treatment of pathological pain.

  8. Transcription initiation complex structures elucidate DNA opening.

    Science.gov (United States)

    Plaschka, C; Hantsche, M; Dienemann, C; Burzinski, C; Plitzko, J; Cramer, P

    2016-05-19

    Transcription of eukaryotic protein-coding genes begins with assembly of the RNA polymerase (Pol) II initiation complex and promoter DNA opening. Here we report cryo-electron microscopy (cryo-EM) structures of yeast initiation complexes containing closed and open DNA at resolutions of 8.8 Å and 3.6 Å, respectively. DNA is positioned and retained over the Pol II cleft by a network of interactions between the TATA-box-binding protein TBP and transcription factors TFIIA, TFIIB, TFIIE, and TFIIF. DNA opening occurs around the tip of the Pol II clamp and the TFIIE 'extended winged helix' domain, and can occur in the absence of TFIIH. Loading of the DNA template strand into the active centre may be facilitated by movements of obstructing protein elements triggered by allosteric binding of the TFIIE 'E-ribbon' domain. The results suggest a unified model for transcription initiation with a key event, the trapping of open promoter DNA by extended protein-protein and protein-DNA contacts.

  9. Molecular basis of transcription initiation in Archaea.

    Science.gov (United States)

    De Carlo, Sacha; Lin, Shih-Chieh; Taatjes, Dylan J; Hoenger, Andreas

    2010-01-01

    Compared with eukaryotes, the archaeal transcription initiation machinery-commonly known as the Pre-Initiation Complex-is relatively simple. The archaeal PIC consists of the TFIIB ortholog TFB, TBP, and an 11-subunit RNA polymerase (RNAP). The relatively small size of the entire archaeal PIC makes it amenable to structural analysis. Using purified RNAP, TFB, and TBP from the thermophile Pyrococcus furiosus, we assembled the biochemically active PIC at 65ºC. The intact archaeal PIC was isolated by implementing a cross-linking technique followed by size-exclusion chromatography, and the structure of this 440 kDa assembly was determined using electron microscopy and single-particle reconstruction techniques. Combining difference maps with crystal structure docking of various sub-domains, TBP and TFB were localized within the macromolecular PIC. TBP/TFB assemble near the large RpoB subunit and the RpoD/L "foot" domain behind the RNAP central cleft. This location mimics that of yeast TBP and TFIIB in complex with yeast RNAP II. Collectively, these results define the structural organization of the archaeal transcription machinery and suggest a conserved core PIC architecture. PMID:21326901

  10. Molecular basis of transcription initiation in Archaea.

    Science.gov (United States)

    De Carlo, Sacha; Lin, Shih-Chieh; Taatjes, Dylan J; Hoenger, Andreas

    2010-01-01

    Compared with eukaryotes, the archaeal transcription initiation machinery-commonly known as the Pre-Initiation Complex-is relatively simple. The archaeal PIC consists of the TFIIB ortholog TFB, TBP, and an 11-subunit RNA polymerase (RNAP). The relatively small size of the entire archaeal PIC makes it amenable to structural analysis. Using purified RNAP, TFB, and TBP from the thermophile Pyrococcus furiosus, we assembled the biochemically active PIC at 65ºC. The intact archaeal PIC was isolated by implementing a cross-linking technique followed by size-exclusion chromatography, and the structure of this 440 kDa assembly was determined using electron microscopy and single-particle reconstruction techniques. Combining difference maps with crystal structure docking of various sub-domains, TBP and TFB were localized within the macromolecular PIC. TBP/TFB assemble near the large RpoB subunit and the RpoD/L "foot" domain behind the RNAP central cleft. This location mimics that of yeast TBP and TFIIB in complex with yeast RNAP II. Collectively, these results define the structural organization of the archaeal transcription machinery and suggest a conserved core PIC architecture.

  11. Transcriptional response of zebrafish embryos exposed to neurotoxic compounds reveals a muscle activity dependent hspb11 expression.

    Directory of Open Access Journals (Sweden)

    Nils Klüver

    Full Text Available Acetylcholinesterase (AChE inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM, in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB and 2,4-dinitrophenol (DNP. A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sop(fixe mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds.

  12. eIF4EBP3L acts as a gatekeeper of TORC1 in activity-dependent muscle growth by specifically regulating Mef2ca translational initiation.

    Directory of Open Access Journals (Sweden)

    Orli Yogev

    2013-10-01

    Full Text Available Muscle fiber size is activity-dependent and clinically important in ageing, bed-rest, and cachexia, where muscle weakening leads to disability, prolonged recovery times, and increased costs. Inactivity causes muscle wasting by triggering protein degradation and may simultaneously prevent protein synthesis. During development, muscle tissue grows by several mechanisms, including hypertrophy of existing fibers. As in other tissues, the TOR pathway plays a key role in promoting muscle protein synthesis by inhibition of eIF4EBPs (eukaryotic Initiation Factor 4E Binding Proteins, regulators of the translational initiation. Here, we tested the role of TOR-eIF4EBP in a novel zebrafish muscle inactivity model. Inactivity triggered up-regulation of eIF4EBP3L (a zebrafish homolog of eIF4EBP3 and diminished myosin and actin content, myofibrilogenesis, and fiber growth. The changes were accompanied by preferential reduction of the muscle transcription factor Mef2c, relative to Myod and Vinculin. Polysomal fractionation showed that Mef2c decrease was due to reduced translation of mef2ca mRNA. Loss of Mef2ca function reduced normal muscle growth and diminished the reduction in growth caused by inactivity. We identify eIF4EBP3L as a key regulator of Mef2c translation and protein level following inactivity; blocking eIF4EBP3L function increased Mef2ca translation. Such blockade also prevented the decline in mef2ca translation and level of Mef2c and slow myosin heavy chain proteins caused by inactivity. Conversely, overexpression of active eIF4EBP3L mimicked inactivity by decreasing the proportion of mef2ca mRNA in polysomes, the levels of Mef2c and slow myosin heavy chain, and myofibril content. Inhibiting the TOR pathway without the increase in eIF4EBP3L had a lesser effect on myofibrilogenesis and muscle size. These findings identify eIF4EBP3L as a key TOR-dependent regulator of muscle fiber size in response to activity. We suggest that by selectively

  13. Organization of the human mitochondrial transcription initiation complex

    OpenAIRE

    Yakubovskaya, Elena; Guja, Kip E.; Eng, Edward T.; Choi, Woo Suk; Mejia, Edison; Beglov, Dmitri; Lukin, Mark; Kozakov, Dima; Garcia-Diaz, Miguel

    2014-01-01

    Initiation of transcription in human mitochondria involves two factors, TFAM and TFB2M, in addition to the mitochondrial RNA polymerase, POLRMT. We have investigated the organization of the human mitochondrial transcription initiation complex on the light-strand promoter (LSP) through solution X-ray scattering, electron microscopy (EM) and biochemical studies. Our EM results demonstrate a compact organization of the initiation complex, suggesting that protein–protein interactions might help m...

  14. CoSMoS unravels mysteries of transcription initiation.

    Science.gov (United States)

    Gourse, Richard L; Landick, Robert

    2012-02-17

    Using a fluorescence method called colocalization single-molecule spectroscopy (CoSMoS), Friedman and Gelles dissect the kinetics of transcription initiation at a bacterial promoter. Ultimately, CoSMoS could greatly aid the study of the effects of DNA sequence and transcription factors on both prokaryotic and eukaryotic promoters.

  15. CoSMoS Unravels Mysteries of Transcription Initiation

    OpenAIRE

    Gourse, Richard L.; Landick, Robert

    2012-01-01

    Using a fluorescence method called colocalization single-molecule spectroscopy (CoSMoS), Friedman and Gelles dissect the kinetics of transcription initiation at a bacterial promoter. Ultimately, CoSMoS could greatly aid the study of the effects of DNA sequence and transcription factors on both prokaryotic and eukaryotic promoters.

  16. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation.

    Science.gov (United States)

    Peters, A; Storb, U

    1996-01-01

    To identify DNA sequences that target the somatic hypermutation process, the immunoglobulin gene promoter located upstream of the variable (V) region was duplicated upstream of the constant (C) region of a kappa transgene. Normally, kappa genes are somatically mutated only in the VJ region, but not in the C region. In B cell hybridomas from mice with this kappa transgene (P5'C), both the VJ region and the C region, but not the region between them, were mutated at similar frequencies, suggesting that the mutation mechanism is related to transcription. The downstream promoter was not occluded by transcripts from the upstream promoter. In fact, the levels of transcripts originating from the two promoters were similar, supporting a mutation model based on initiation of transcripts. Several "hot-spots" of somatic mutation were noted, further demonstrating that this transgene has the hallmarks of somatic mutation of endogenous immunoglobulin genes. A model linking somatic mutation to transcription-coupled DNA repair is proposed.

  17. Initiation and regulation of paramyxovirus transcription and replication.

    Science.gov (United States)

    Noton, Sarah L; Fearns, Rachel

    2015-05-01

    The paramyxovirus family has a genome consisting of a single strand of negative sense RNA. This genome acts as a template for two distinct processes: transcription to generate subgenomic, capped and polyadenylated mRNAs, and genome replication. These viruses only encode one polymerase. Thus, an intriguing question is, how does the viral polymerase initiate and become committed to either transcription or replication? By answering this we can begin to understand how these two processes are regulated. In this review article, we present recent findings from studies on the paramyxovirus, respiratory syncytial virus, which show how its polymerase is able to initiate transcription and replication from a single promoter. We discuss how these findings apply to other paramyxoviruses. Then, we examine how trans-acting proteins and promoter secondary structure might serve to regulate transcription and replication during different phases of the paramyxovirus replication cycle.

  18. A code for transcription initiation in mammalian genomes

    DEFF Research Database (Denmark)

    Frith, Martin C.; Valen, Eivind Dale; Krogh, Anders;

    2007-01-01

    that initiation events are clustered on the chromosomes at multiple scales - clusters within clusters - indicating multiple regulatory processes. Within the smallest of such clusters, which can be interpreted as core promoters, the local DNA sequence predicts the relative transcription start usage of each...... of large- and small-scale effects: the selection of transcription start sites is largely governed by the local DNA sequence, whereas the transcriptional activity of a locus is regulated at a different level; it is affected by distal features or events such as enhancers and chromatin remodeling....

  19. Tat gets the "green" light on transcription initiation

    Directory of Open Access Journals (Sweden)

    Kashanchi Fatah

    2005-11-01

    Full Text Available Abstract Human immunodeficiency virus type 1 (HIV-1 Tat transactivation is an essential step in the viral life cycle. Over the past several years, it has become widely accepted that Tat exerts its transcriptional effect by binding the transactivation-responsive region (TAR and enhancing transcriptional elongation. Consistent with this hypothesis, it has been shown that Tat promotes the binding of P-TEFb, a transcription elongation factor composed of cyclin T1 and cdk9, and the interaction of Tat with P-TEFb and TAR leads to hyperphosphorylation of the C-terminal domain (CTD of RNA Pol II and increased processivity of RNA Pol II. A recent report, however, has generated renewed interest that Tat may also play a critical role in transcription complex (TC assembly at the preinitiation step. Using in vivo chromatin immunoprecipitation assays, the authors reported that the HIV TC contains TBP but not TBP-associated factors. The stimulatory effect involved the direct interaction of Tat and P-TEFb and was evident at the earliest step of TC assembly, the TBP-TATA box interaction. In this article, we will review this data in context of earlier data which also support Tat's involvement in transcriptional complex assembly. Specifically, we will discuss experiments which demonstrated that Tat interacted with TBP and increased transcription initiation complex stability in cell free assays. We will also discuss studies which demonstrated that over expression of TBP alone was sufficient to obtain Tat activated transcription in vitro and in vivo. Finally, studies using self-cleaving ribozymes which suggested that Tat transactivation was not compatible with pausing of the RNA Pol II at the TAR site will be discussed.

  20. Widespread suppression of intragenic transcription initiation by H-NS

    OpenAIRE

    Singh, Shivani S.; Singh, Navjot; Bonocora, Richard P.; Fitzgerald, Devon M.; Wade, Joseph T.; Grainger, David C.

    2014-01-01

    H-NS is a bacterial folding factor that has been implicated in the silencing of horizontally acquired genes. These genes are thought to be toxic by virtue of their A/T content. Here, Singh et al. show that a major, long-overlooked function of H-NS is to prevent widespread initiation of noncoding transcripts within foreign genes. This study provides a molecular rationalization for the toxicity of horizontally acquired DNA and explains how this is counteracted by H-NS.

  1. Assessment of Site Specific Mutational Effect on Transcription Initiation at Escherichia coli Promoter

    Directory of Open Access Journals (Sweden)

    S. Kannan

    2009-01-01

    Full Text Available Problem statement: It is widely accepted thought that the weak promoters control the RNA synthesis and play regulatory role in complex genetic networks in bacterial system. An experiment had been designed to address whether mutations in the -16/-17 region affect the rate of transcription at an activator-independent promoter in E. coli or not? Approach: The aim of this study was to determine whether mutations in the -16/-17 region affect the rate of expression at an activator-dependent promoter in JM109 strain of E. coli. Primers were constructed to amplify the mutant promoter genes through PCR. The amplified PCR product was checked and then inserted into the MCS region of pAA128 plasmid. Further the plasmid vector was transformed into JM109 strain of E. coli and then cloned the selected transformats. Finally, the plasmid from each mutant colony was then sequenced using the protocol supplied with the Amersham Pharmacia Biotech T7 sequencing Kit. The JM109 cultures for which the sequences were determined, then assayed for ß-galactosidase activity to assess the rate of gene expression from the altered promoters. Results: The present investigation revealed that the extended-10 promoter region has a substantial effect on the rate of transcription at weak promoter sequence and also bearing little resemblance to the consensus sequence recognized by RNA. The expression of the genetically engineered plasmid proved that the 2 bps (-16 and -17 base pair found adjacently upstream of the extended-10 promoter have an effect on the level of transcription. This was achieved by site specific base substitutions into the weak promoter of a modified lac operon lacking any activator or repressor binding sites. The results from gene expression assays of several mutants showed a distinct preference for either GG or TT located adjacently upstream of the extended promoter element. Thus the present study emphasized that

  2. A new way to start: nanoRNA-mediated priming of transcription initiation.

    Science.gov (United States)

    Nickels, Bryce E

    2012-01-01

    A recent study provides evidence that RNA polymerase uses 2- to ~4-nt RNAs, species termed "nanoRNAs," to prime transcription initiation in Escherichia coli. Priming of transcription initiation with nanoRNAs represents a previously undocumented component of transcription start site selection and gene expression.

  3. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number.

    Science.gov (United States)

    Campbell, Christopher T; Kolesar, Jill E; Kaufman, Brett A

    2012-01-01

    Mitochondrial transcription factor A (mtTFA, mtTF1, TFAM) is an essential protein that binds mitochondrial DNA (mtDNA) with and without sequence specificity to regulate both mitochondrial transcription initiation and mtDNA copy number. The abundance of mtDNA generally reflects TFAM protein levels; however, the precise mechanism(s) by which this occurs remains a matter of debate. Data suggest that the usage of mitochondrial promoters is regulated by TFAM dosage, allowing TFAM to affect both gene expression and RNA priming for first strand mtDNA replication. Additionally, TFAM has a non-specific DNA binding activity that is both cooperative and high affinity. TFAM can compact plasmid DNA in vitro, suggesting a structural role for the non-specific DNA binding activity in genome packaging. This review summarizes TFAM-mtDNA interactions and describes an emerging view of TFAM as a multipurpose coordinator of mtDNA transactions, with direct consequences for the maintenance of gene expression and genome copy number. This article is part of a Special Issue entitled: Mitochondrial Gene Expression. PMID:22465614

  4. Footprinting of ribosomal RNA genes by transcription initiation factor and RNA polymerase I.

    OpenAIRE

    Bateman, E.; Iida, C T; Kownin, P; Paule, M R

    1985-01-01

    The binding of a species-specific transcription initiation factor (TIF) and purified RNA polymerase I to the promoter region of the 39S ribosomal RNA gene from Acanthamoeba were studied by using DNase I "footprinting." Conditions were chosen such that the footprints obtained could be correlated with the transcriptional activity of the TIF-containing fractions used and that the labeled DNA present would itself serve as a template for transcription. The transcription factor binds upstream from ...

  5. Post-transcriptional regulation of cytokine mRNA controls the initiation and resolution of inflammation.

    OpenAIRE

    Mino, Takashi; Takeuchi, Osamu

    2013-01-01

    Cytokines are critical mediators of inflammation and host defense. Cytokine production is regulated during transcription and post-transcription. Post-transcriptional regulation modifies mRNA stability and translation, allowing for the rapid and flexible control of gene expression, which is important for coordinating the initiation and resolution of inflammation. We review here a variety of post-transcriptional control mechanisms that regulate inflammation and discuss how these mechanisms are ...

  6. Activity Dependent Regulation of Inhibitory Circuitry

    OpenAIRE

    Sharma, Nikhil

    2015-01-01

    Inhibition controls information flow through a neural circuit by modulating synaptic integration, restricting action potentials, and coordinating the activity of ensembles of neurons. These functions are mediated by a diverse array of inhibitory neuron subtypes that synapse on defined domains of a postsynaptic neuron. Activity-dependent transcription controls inhibitory synapse number and function, but how this transcription program affects the inhibitory inputs that form on di...

  7. Events during Initiation of Archaeal Transcription: Open Complex Formation and DNA-Protein Interactions

    OpenAIRE

    Hausner, Winfried; Thomm, Michael

    2001-01-01

    Transcription in Archaea is initiated by association of a TATA box binding protein (TBP) with a TATA box. This interaction is stabilized by the binding of the transcription factor IIB (TFIIB) orthologue TFB. We show here that the RNA polymerase of the archaeon Methanococcus, in contrast to polymerase II, does not require hydrolysis of the β-γ bond of ATP for initiation of transcription and open complex formation on linearized DNA. Permanganate probing revealed that the archaeal open complex s...

  8. The core human mitochondrial transcription initiation complex: It only takes two to tango

    OpenAIRE

    Shutt, Timothy E.; Bestwick, Megan; Shadel, Gerald S.

    2011-01-01

    We recently demonstrated that the core transcription initiation complex in human mitochondria is a two-component system (POLRMT and h-mtTFB2). Human mtTFA/TFAM, previously proposed to be a requisite initiation complex member, is dispensable for promoter-specific initiation in vitro. We propose that it instead regulates relative promoter activity and/or overall nucleoid transcription and replication potential.

  9. Analysis of the transcription initiation mechanism of tomato spotted wilt virus

    NARCIS (Netherlands)

    Duijsings, D.M.J.M.

    2001-01-01

    Genome replication and transcription of Tomato spotted wilt virus (TSWV, genus Tospovirus ) follows in most aspects the general rules for negative strand RNA viruses with segmented genomes. One common feature is the occurrence of "cap snatching" during transcription initiation. During this process,

  10. Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis

    NARCIS (Netherlands)

    C. Nepal (Chirag); Y. Hadzhiev (Yavor); C. Previti (Christopher); V. Haberle (Vanja); N. Li (Nan); H. Takahashi (Hiroyuki); A.M. Suzuki (Ana Maria); Y. Sheng (Ying); R.F. Abdelhamid (Rehab); S. Anand (Santosh); P.A. Gehrig (Paola A.); A. Akalin (Altuna); C. Kockx (Christel); A. Van Der Sloot (Antoine); W.F.J. van IJcken (Wilfred); O. Armant (Olivier); S. Rastegar (Sepand); C. Watson (Craig); U. Strähle (Uwe); E. Stupka (Elia); P. Carninci (Piero); B. Lenhard (Boris); F. Müller (Ferenc)

    2013-01-01

    textabstractSpatiotemporal control of gene expression is central to animal development. Core promoters represent a previously unanticipated regulatory level by interacting with cis-regulatory elements and transcription initiation in different physiological and developmental contexts. Here, we provid

  11. The interaction between bacterial transcription factors and RNA polymerase during the transition from initiation to elongation.

    Science.gov (United States)

    Yang, Xiao; Lewis, Peter J

    2010-01-01

    There are three stages of transcription: initiation, elongation and termination, and traditionally there has been a clear distinction between the stages. The specificity factor sigma is completely released from bacterial RNA polymerase after initiation, and then recycled for another round of transcription. Elongation factors then associate with the polymerase followed by termination factors (where necessary). These factors dissociate prior to initiation of a new round of transcription. However, there is growing evidence suggesting that sigma factors can be retained in the elongation complex. The structure of bacterial RNAP in complex with an essential elongation factor NusA has recently been published, which suggested rather than competing for the major σ binding site, NusA binds to a discrete region on RNAP. A model was proposed to help explain the way in which both factors could be associated with RNAP during the transition from transcription initiation to elongation.

  12. Differentiation driven changes in the dynamic organization of Basal transcription initiation.

    Directory of Open Access Journals (Sweden)

    Giuseppina Giglia-Mari

    2009-10-01

    Full Text Available Studies based on cell-free systems and on in vitro-cultured living cells support the concept that many cellular processes, such as transcription initiation, are highly dynamic: individual proteins stochastically bind to their substrates and disassemble after reaction completion. This dynamic nature allows quick adaptation of transcription to changing conditions. However, it is unknown to what extent this dynamic transcription organization holds for postmitotic cells embedded in mammalian tissue. To allow analysis of transcription initiation dynamics directly into living mammalian tissues, we created a knock-in mouse model expressing fluorescently tagged TFIIH. Surprisingly and in contrast to what has been observed in cultured and proliferating cells, postmitotic murine cells embedded in their tissue exhibit a strong and long-lasting transcription-dependent immobilization of TFIIH. This immobilization is both differentiation driven and development dependent. Furthermore, although very statically bound, TFIIH can be remobilized to respond to new transcriptional needs. This divergent spatiotemporal transcriptional organization in different cells of the soma revisits the generally accepted highly dynamic concept of the kinetic framework of transcription and shows how basic processes, such as transcription, can be organized in a fundamentally different fashion in intact organisms as previously deduced from in vitro studies.

  13. Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters

    DEFF Research Database (Denmark)

    Chen, Yun; Pai, Athma A; Herudek, Jan;

    2016-01-01

    Mammalian transcriptomes are complex and formed by extensive promoter activity. In addition, gene promoters are largely divergent and initiate transcription of reverse-oriented promoter upstream transcripts (PROMPTs). Although PROMPTs are commonly terminated early, influenced by polyadenylation...... sites, promoters often cluster so that the divergent activity of one might impact another. Here we found that the distance between promoters strongly correlates with the expression, stability and length of their associated PROMPTs. Adjacent promoters driving divergent mRNA transcription support PROMPT...... formation, but owing to polyadenylation site constraints, these transcripts tend to spread into the neighboring mRNA on the same strand. This mechanism to derive new alternative mRNA transcription start sites (TSSs) is also evident at closely spaced promoters supporting convergent mRNA transcription. We...

  14. A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Kahns, Søren; Lykke-Andersen, Søren;

    2008-01-01

    promoter docking of transcription initiation factors TFIID, TFIIB, and TFIIH on a gene containing a functional 5′ splice site. In addition to their promoter association, the TFIID and TFIIH components, TBP and p89, are specifically recruited to the 5′ splice site region. Our data suggest a model in which......Transcription and pre-mRNA splicing are interdependent events. Although mechanisms governing the effects of transcription on splicing are becoming increasingly clear, the means by which splicing affects transcription remain elusive. Using cell lines stably expressing HIV-1 or β-globin m......RNAs, harboring wild-type or various 5′ splice site mutations, we demonstrate a strong positive correlation between splicing efficiency and transcription activity. Interestingly, a 5′ splice site can stimulate transcription even in the absence of splicing. Chromatin immunoprecipitation experiments show enhanced...

  15. Large heterogeneity of mitochondrial DNA transcription and initiation of replication exposed by single-cell imaging.

    Science.gov (United States)

    Chatre, Laurent; Ricchetti, Miria

    2013-02-15

    Mitochondrial DNA (mtDNA) replication and transcription are crucial for cell function, but these processes are poorly understood at the single-cell level. We describe a novel fluorescence in situ hybridization protocol, called mTRIP (mitochondrial transcription and replication imaging protocol), that reveals simultaneously mtDNA and RNA, and that can also be coupled to immunofluorescence for in situ protein examination. mTRIP reveals mitochondrial structures engaged in initiation of DNA replication by identification of a specific sequence in the regulatory D-loop, as well as unique transcription profiles in single human cells. We observe and quantify at least three classes of mitochondrial structures: (i) replication initiation active and transcript-positive (Ia-Tp); (ii) replication initiation silent and transcript-positive (Is-Tp); and (iii) replication initiation silent and transcript-negative (Is-Tn). Thus, individual mitochondria are dramatically heterogeneous within the same cell. Moreover, mTRIP exposes a mosaic of distinct nucleic acid patterns in the D-loop, including H-strand versus L-strand transcripts, and uncoupled rRNA transcription and mtDNA initiation of replication, which might have functional consequences in the regulation of the mtDNA. Finally, mTRIP identifies altered mtDNA processing in cells with unbalanced mtDNA content and function, including in human mitochondrial disorders. Thus, mTRIP reveals qualitative and quantitative alterations that provide additional tools for elucidating the dynamics of mtDNA processing in single cells and mitochondrial dysfunction in diseases.

  16. Effects of rate-limiting steps in transcription initiation on genetic filter motifs.

    Science.gov (United States)

    Häkkinen, Antti; Tran, Huy; Yli-Harja, Olli; Ribeiro, Andre S

    2013-01-01

    The behavior of genetic motifs is determined not only by the gene-gene interactions, but also by the expression patterns of the constituent genes. Live single-molecule measurements have provided evidence that transcription initiation is a sequential process, whose kinetics plays a key role in the dynamics of mRNA and protein numbers. The extent to which it affects the behavior of cellular motifs is unknown. Here, we examine how the kinetics of transcription initiation affects the behavior of motifs performing filtering in amplitude and frequency domain. We find that the performance of each filter is degraded as transcript levels are lowered. This effect can be reduced by having a transcription process with more steps. In addition, we show that the kinetics of the stepwise transcription initiation process affects features such as filter cutoffs. These results constitute an assessment of the range of behaviors of genetic motifs as a function of the kinetics of transcription initiation, and thus will aid in tuning of synthetic motifs to attain specific characteristics without affecting their protein products.

  17. Making ends meet: Coordination between RNA 3'end processing and transcription initiation

    DEFF Research Database (Denmark)

    Andersen, Pia Kjølhede; Jensen, Torben Heick; Lykke-Andersen, Søren

    2013-01-01

    RNA polymerase II (RNAPII)-mediated gene transcription initiates at promoters and ends at terminators. Transcription termination is intimately connected to 3'-end processing of the produced RNA and already when loaded at the promoter, RNAPII starts to become configured for this downstream event....... Conversely, RNAPII is 'reset' as part of the 3'-end processing/termination event, thus preparing the enzyme for its next round of transcription--possibly on the same gene. There is both direct and circumstantial evidence for preferential recycling of RNAPII from the gene terminator back to its own promoter...

  18. HTLV-I antisense transcripts initiating in the 3'LTR are alternatively spliced and polyadenylated

    Directory of Open Access Journals (Sweden)

    Marriott Susan J

    2006-03-01

    Full Text Available Abstract Background Antisense transcription in retroviruses has been suggested for both HIV-1 and HTLV-I, although the existence and coding potential of these transcripts remain controversial. Thorough characterization is required to demonstrate the existence of these transcripts and gain insight into their role in retrovirus biology. Results This report provides the first complete characterization of an antisense retroviral transcript that encodes the previously described HTLV-I HBZ protein. In this study, we show that HBZ-encoding transcripts initiate in the 3' long terminal repeat (LTR at several positions and consist of two alternatively spliced variants (SP1 and SP2. Expression of the most abundant HBZ spliced variant (SP1 could be detected in different HTLV-I-infected cell lines and importantly in cellular clones isolated from HTLV-I-infected patients. Polyadenylation of HBZ RNA occurred at a distance of 1450 nucleotides downstream of the HBZ stop codon in close proximity of a typical polyA signal. We have also determined that translation mostly initiates from the first exon located in the 3' LTR and that the HBZ isoform produced from the SP1 spliced variant demonstrated inhibition of Tax and c-Jun-dependent transcriptional activation. Conclusion These results conclusively demonstrate the existence of antisense transcription in retroviruses, which likely plays a role in HTLV-I-associated pathogenesis through HBZ protein synthesis.

  19. Regulation of axillary meristem initiation by transcription factors and plant hormones

    Directory of Open Access Journals (Sweden)

    Minglei eYang

    2016-02-01

    Full Text Available One distinctive feature of plant post-embryonic development is that plants can undergo reiterative growth and continuous organogenesis throughout their lifetimes. Axillary meristems in leaf axils play a central role in this growth and differences in meristem initiation and development produce the diversity of plant architecture. Studies in the past fifteen years have shown that several transcription factors and phytohormones affect axillary meristem initiation. In this review, we highlight recent research using systems biology approaches to examine the regulatory hierarchies underlying axillary meristem initiation and the role of auxins and cytokinins in axillary meristem initiation and development. This research revealed a developmental mechanism in which phytohormone signals act with a gene regulatory network containing multiple transcription factors to contribute to the initiation of axillary meristems.

  20. Regulation of Axillary Meristem Initiation by Transcription Factors and Plant Hormones

    OpenAIRE

    Yang, Minglei; Jiao, Yuling

    2016-01-01

    One distinctive feature of plant post-embryonic development is that plants can undergo reiterative growth and continuous organogenesis throughout their lifetimes. Axillary meristems (AMs) in leaf axils play a central role in this growth and differences in meristem initiation and development produce the diversity of plant architecture. Studies in the past 15 years have shown that several transcription factors (TFs) and phytohormones affect AM initiation. In this review, we highlight recent res...

  1. Preferential use of RNA leader sequences during influenza A transcription initiation in vivo

    NARCIS (Netherlands)

    Geerts-Dimitriadou, C.; Goldbach, R.W.; Kormelink, R.J.M.

    2011-01-01

    In vitro transcription initiation studies revealed a preference of influenza A virus for capped RNA leader sequences with base complementarity to the viral RNA template. Here, these results were verified during an influenza infection in MDCK cells. Alfalfa mosaic virus RNA3 leader sequences mutated

  2. TBP binding and the rate of transcription initiation from the human β-globin gene.

    NARCIS (Netherlands)

    M. Antoniou (Michael); E. Spanopoulou; F.G. Grosveld (Frank); E. de Boer (Ernie)

    1995-01-01

    textabstractDNA-protein interaction studies in vitro revealed several factors binding over the TATA box and the region of transcription initiation (cap) site of the human beta-globin promoter; TATA binding protein TBP at -30, Sp1 at -19, GATA-1 at -12 and +5, YY1 at -9 and a novel factor C1 over the

  3. Mechanisms of triplex DNA-mediated inhibition of transcription initiation in cells.

    Science.gov (United States)

    Jain, Aklank; Magistri, Marco; Napoli, Sara; Carbone, Giuseppina M; Catapano, Carlo V

    2010-03-01

    Triplex-forming oligonucleotides (TFOs) are attractive tools to control gene expression at the transcriptional level. This anti-gene approach has proven to be successful in various experimental settings. However, the mechanisms leading to transcriptional repression in cells have not been fully investigated yet. Here, we examined the consequence of triplex DNA formation on the binding of transcriptional activators, co-activators and RNA Polymerase II to the ets2 gene promoter using chromatin immunoprecipitation assays. The triplex target sequence was located approximately 40-bp upstream of the transcription start site (TSS) and overlapped an Sp1 binding site relevant for ets2 transcription. We found that the ets2-TFO prevented binding of Sp1, TAF(II)130 and TAF(II)250 to the ets2 promoter, while binding of RNA polymerase II and TBP were not affected. The effects were both sequence and target specific, since the TFO had no effect on the c-myc promoter and a mutated ets2 promoter construct. Thus, triplex DNA formation near a TSS leads to formation of a non-functional pre-initiation complex (PIC) by blocking binding of transcriptional activators and co-activator molecules. This is the first direct demonstration of interference with PIC assembly at the TSS by oligonucleotide-triplex DNA formation in cells. PMID:20045441

  4. X-ray Crystal Structures Elucidate the Nucleotidyl Transfer Reaction of Transcript Initiation Using Two Nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    M Gleghorn; E Davydova; R Basu; L Rothman-Denes; K Murakami

    2011-12-31

    We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groups of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.

  5. Internal translation initiation from HIV-1 transcripts is conferred by a common RNA structure.

    Science.gov (United States)

    Plank, Terra-Dawn M; Whitehurst, James T; Cencic, Regina; Pelletier, Jerry; Kieft, Jeffrey S

    2014-01-01

    Alternative splicing of the human immunodeficiency virus 1 (HIV-1) RNA transcripts produces mRNAs encoding nine different viral proteins. The leader of each contains a common non-coding exon at the 5' end. Previous studies showed that the leaders from the common exon-containing transcripts gag, nef, vif, vpr and vpu can direct protein synthesis through internal ribosome entry sites (IRESs) with varying efficiencies. Here we explored whether the common exon acts as an IRES element in the context of all the 5' leaders or if each harbors a distinct IRES. We also explored the relationship between the IRESs and initiation codon selection. We find that the common exon adopts a similar conformation in every leader we explored and that the sequence and structure is required for IRES activity. We also find that each leader uses a scanning mechanism for start codon identification. Together, our data point to a model in which the common exon on HIV-1 transcripts acts as the ribosome landing pad, recruiting preinitiation complexes upstream of the initiation codon, followed by scanning to each transcript's initiator AUG. PMID:26779399

  6. Assessment of the Role of MAP Kinase in Mediating Activity-Dependent Transcriptional Activation of the Immediate Early Gene "Arc/Arg3.1" in the Dentate Gyrus in Vivo

    Science.gov (United States)

    Chotiner, Jennifer K.; Nielson, Jessica; Farris, Shannon; Lewandowski, Gail; Huang, Fen; Banos, Karla; de Leon, Ray; Steward, Oswald

    2010-01-01

    Different physiological and behavioral events activate transcription of "Arc/Arg3.1" in neurons in vivo, but the signal transduction pathways that mediate induction in particular situations remain to be defined. Here, we explore the relationships between induction of "Arc/Arg3.1" transcription in dentate granule cells in vivo and activation of…

  7. Tfb6, a previously unidentified subunit of the general transcription factor TFIIH, facilitates dissociation of Ssl2 helicase after transcription initiation

    OpenAIRE

    Murakami, Kenji; Gibbons, Brian J.; Ralph E Davis; Nagai, Shigeki; Liu, Xin; Robinson, Philip J. J.; Wu, Tinghe; Kaplan, Craig D; Kornberg, Roger D.

    2012-01-01

    General transcription factor TFIIH, previously described as a 10-subunit complex, is essential for transcription and DNA repair. An eleventh subunit now identified, termed Tfb6, exhibits 45% sequence similarity to human nuclear mRNA export factor 5. Tfb6 dissociates from TFIIH as a heterodimer with the Ssl2 subunit, a DNA helicase that drives promoter melting for the initiation of transcription. Tfb6 does not, however, dissociate Ssl2 from TFIIH in the context of a fully assembled transcripti...

  8. A Region of Bdp1 Necessary for Transcription Initiation That Is Located within the RNA Polymerase III Active Site Cleft

    OpenAIRE

    Hu, Hui-Lan; Wu, Chih-Chien; Lee, Jin-Cheng; Chen, Hung-Ta

    2015-01-01

    The RNA polymerase III (Pol III)-specific transcription factor Bdp1 is crucial to Pol III recruitment and promoter opening in transcription initiation, yet structural information is sparse. To examine its protein-binding targets within the preinitiation complex at the residue level, photoreactive amino acids were introduced into Saccharomyces cerevisiae Bdp1. Mutations within the highly conserved SANT domain cross-linked to the transcription factor IIB (TFIIB)-related transcription factor Brf...

  9. Regulation of Axillary Meristem Initiation by Transcription Factors and Plant Hormones.

    Science.gov (United States)

    Yang, Minglei; Jiao, Yuling

    2016-01-01

    One distinctive feature of plant post-embryonic development is that plants can undergo reiterative growth and continuous organogenesis throughout their lifetimes. Axillary meristems (AMs) in leaf axils play a central role in this growth and differences in meristem initiation and development produce the diversity of plant architecture. Studies in the past 15 years have shown that several transcription factors (TFs) and phytohormones affect AM initiation. In this review, we highlight recent research using systems biology approaches to examine the regulatory hierarchies underlying AM initiation and the role of auxins and cytokinins in AM initiation and development. This research revealed a developmental mechanism in which phytohormone signals act with a gene regulatory network containing multiple TFs to contribute to the initiation of AMs. PMID:26925087

  10. Functional and Structural Organization of Brf, the TFIIB-Related Component of the RNA Polymerase III Transcription Initiation Complex

    OpenAIRE

    Kassavetis, George A.; Kumar, Ashok; Ramirez, Enrique; Geiduschek, E.Peter

    1998-01-01

    Brf is the TFIIB-related component of Saccharomyces cerevisiae RNA polymerase III transcription initiation factor IIIB (TFIIIB). An extensive set of Brf fragments has been examined for the abilities to assemble the TFIIIB-DNA complex and recruit RNA polymerase III to accurately initiate transcription. The principal TFIIIB-assembly function of Brf was found to be contributed by a C-proximal segment spanning amino acids 435 to 545, while the principal transcription-directing function was contri...

  11. Structure of the initiation-competent RNA polymerase I and its implication for transcription

    Science.gov (United States)

    Pilsl, Michael; Crucifix, Corinne; Papai, Gabor; Krupp, Ferdinand; Steinbauer, Robert; Griesenbeck, Joachim; Milkereit, Philipp; Tschochner, Herbert; Schultz, Patrick

    2016-07-01

    Eukaryotic RNA polymerase I (Pol I) is specialized in rRNA gene transcription synthesizing up to 60% of cellular RNA. High level rRNA production relies on efficient binding of initiation factors to the rRNA gene promoter and recruitment of Pol I complexes containing initiation factor Rrn3. Here, we determine the cryo-EM structure of the Pol I-Rrn3 complex at 7.5 Å resolution, and compare it with Rrn3-free monomeric and dimeric Pol I. We observe that Rrn3 contacts the Pol I A43/A14 stalk and subunits A190 and AC40, that association re-organizes the Rrn3 interaction interface, thereby preventing Pol I dimerization; and Rrn3-bound and monomeric Pol I differ from the dimeric enzyme in cleft opening, and localization of the A12.2 C-terminus in the active centre. Our findings thus support a dual role for Rrn3 in transcription initiation to stabilize a monomeric initiation competent Pol I and to drive pre-initiation complex formation.

  12. Structure of the initiation-competent RNA polymerase I and its implication for transcription

    Science.gov (United States)

    Pilsl, Michael; Crucifix, Corinne; Papai, Gabor; Krupp, Ferdinand; Steinbauer, Robert; Griesenbeck, Joachim; Milkereit, Philipp; Tschochner, Herbert; Schultz, Patrick

    2016-01-01

    Eukaryotic RNA polymerase I (Pol I) is specialized in rRNA gene transcription synthesizing up to 60% of cellular RNA. High level rRNA production relies on efficient binding of initiation factors to the rRNA gene promoter and recruitment of Pol I complexes containing initiation factor Rrn3. Here, we determine the cryo-EM structure of the Pol I-Rrn3 complex at 7.5 Å resolution, and compare it with Rrn3-free monomeric and dimeric Pol I. We observe that Rrn3 contacts the Pol I A43/A14 stalk and subunits A190 and AC40, that association re-organizes the Rrn3 interaction interface, thereby preventing Pol I dimerization; and Rrn3-bound and monomeric Pol I differ from the dimeric enzyme in cleft opening, and localization of the A12.2 C-terminus in the active centre. Our findings thus support a dual role for Rrn3 in transcription initiation to stabilize a monomeric initiation competent Pol I and to drive pre-initiation complex formation. PMID:27418187

  13. Dynamic competition between transcription initiation and repression: Role of nonequilibrium steps in cell-to-cell heterogeneity.

    Science.gov (United States)

    Mitarai, Namiko; Semsey, Szabolcs; Sneppen, Kim

    2015-08-01

    Transcriptional repression may cause transcriptional noise by a competition between repressor and RNA polymerase binding. Although promoter activity is often governed by a single limiting step, we argue here that the size of the noise strongly depends on whether this step is the initial equilibrium binding or one of the subsequent unidirectional steps. Overall, we show that nonequilibrium steps of transcription initiation systematically increase the cell-to-cell heterogeneity in bacterial populations. In particular, this allows also weak promoters to give substantial transcriptional noise. PMID:26382435

  14. The relationship between transcription initiation RNAs and CCCTC-binding factor (CTCF localization

    Directory of Open Access Journals (Sweden)

    Taft Ryan J

    2011-08-01

    Full Text Available Abstract Background Transcription initiation RNAs (tiRNAs are nuclear localized 18 nucleotide RNAs derived from sequences immediately downstream of RNA polymerase II (RNAPII transcription start sites. Previous reports have shown that tiRNAs are intimately correlated with gene expression, RNA polymerase II binding and behaviors, and epigenetic marks associated with transcription initiation, but not elongation. Results In the present work, we show that tiRNAs are commonly found at genomic CCCTC-binding factor (CTCF binding sites in human and mouse, and that CTCF sites that colocalize with RNAPII are highly enriched for tiRNAs. To directly investigate the relationship between tiRNAs and CTCF we examined tiRNAs originating near the intronic CTCF binding site in the human tumor suppressor gene, p21 (cyclin-dependent kinase inhibitor 1A gene, also known as CDKN1A. Inhibition of CTCF-proximal tiRNAs resulted in increased CTCF localization and increased p21 expression, while overexpression of CTCF-proximal tiRNA mimics decreased CTCF localization and p21 expression. We also found that tiRNA-regulated CTCF binding influences the levels of trimethylated H3K27 at the alternate upstream p21 promoter, and affects the levels of alternate p21 (p21alt transcripts. Extending these studies to another randomly selected locus with conserved CTCF binding we found that depletion of tiRNA alters nucleosome density proximal to sites of tiRNA biogenesis. Conclusions Taken together, these data suggest that tiRNAs modulate local epigenetic structure, which in turn regulates CTCF localization.

  15. Fate of HIV-1 cDNA intermediates during reverse transcription is dictated by transcription initiation site of virus genomic RNA

    Science.gov (United States)

    Masuda, Takao; Sato, Yoko; Huang, Yu-Lun; Koi, Satoshi; Takahata, Tatsuro; Hasegawa, Atsuhiko; Kawai, Gota; Kannagi, Mari

    2015-01-01

    Retroviral reverse transcription is accomplished by sequential strand-transfers of partial cDNA intermediates copied from viral genomic RNA. Here, we revealed an unprecedented role of 5′-end guanosine (G) of HIV-1 genomic RNA for reverse transcription. Based on current consensus for HIV-1 transcription initiation site, HIV-1 transcripts possess a single G at 5′-ends (G1-form). However, we found that HIV-1 transcripts with additional Gs at 5′-ends (G2- and G3-forms) were abundantly expressed in infected cells by using alternative transcription initiation sites. The G2- and G3-forms were also detected in the virus particle, although the G1-form predominated. To address biological impact of the 5′-G number, we generated HIV clone DNA to express the G1-form exclusively by deleting the alternative initiation sites. Virus produced from the clone showed significantly higher strand-transfer of minus strong-stop cDNA (-sscDNA). The in vitro assay using synthetic HIV-1 RNAs revealed that the abortive forms of -sscDNA were abundantly generated from the G3-form RNA, but dramatically reduced from the G1-form. Moreover, the strand-transfer of -sscDNA from the G1-form was prominently stimulated by HIV-1 nucleocapsid. Taken together, our results demonstrated that the 5′-G number that corresponds to HIV-1 transcription initiation site was critical for successful strand-transfer of -sscDNA during reverse transcription. PMID:26631448

  16. Molecular cloning of cDNA encoding the small subunit of Drosophila transcription initiation factor TFIIF.

    OpenAIRE

    Gong, D W; Mortin, M A; Horikoshi, M; Nakatani, Y

    1995-01-01

    Transcription initiation factor TFIIF is a tetramer consisting of two large subunits (TFIIF alpha or RAP74) and two small subunits (TFIIF beta or RAP30). We report here the molecular cloning of a Drosophila cDNA encoding TFIIF beta. The cDNA clone contains an open-reading frame encoding a 277 amino acid polypeptide having a calculated molecular mass of 32,107 Da. Comparison of the deduced amino acid sequence with the corresponding sequences from vertebrates showed only 50% identity, with four...

  17. Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Rach

    Full Text Available The application of deep sequencing to map 5' capped transcripts has confirmed the existence of at least two distinct promoter classes in metazoans: "focused" promoters with transcription start sites (TSSs that occur in a narrowly defined genomic span and "dispersed" promoters with TSSs that are spread over a larger window. Previous studies have explored the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II. These differences extend to histone variants (H2A.Z and marks (H3K4 methylation, as well as insulator binding (such as CTCF, independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies, and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from 5' capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of divergent transcriptional programs established within gene-proximal nucleosome organization.

  18. A structural model of the E. coli PhoB Dimer in the transcription initiation complex

    Directory of Open Access Journals (Sweden)

    Tung Chang-Shung

    2012-03-01

    Full Text Available Abstract Background There exist > 78,000 proteins and/or nucleic acids structures that were determined experimentally. Only a small portion of these structures corresponds to those of protein complexes. While homology modeling is able to exploit knowledge-based potentials of side-chain rotomers and backbone motifs to infer structures for new proteins, no such general method exists to extend our understanding of protein interaction motifs to novel protein complexes. Results We use a Motif Binding Geometries (MBG approach, to infer the structure of a protein complex from the database of complexes of homologous proteins taken from other contexts (such as the helix-turn-helix motif binding double stranded DNA, and demonstrate its utility on one of the more important regulatory complexes in biology, that of the RNA polymerase initiating transcription under conditions of phosphate starvation. The modeled PhoB/RNAP/σ-factor/DNA complex is stereo-chemically reasonable, has sufficient interfacial Solvent Excluded Surface Areas (SESAs to provide adequate binding strength, is physically meaningful for transcription regulation, and is consistent with a variety of known experimental constraints. Conclusions Based on a straightforward and easy to comprehend concept, "proteins and protein domains that fold similarly could interact similarly", a structural model of the PhoB dimer in the transcription initiation complex has been developed. This approach could be extended to enable structural modeling and prediction of other bio-molecular complexes. Just as models of individual proteins provide insight into molecular recognition, catalytic mechanism, and substrate specificity, models of protein complexes will provide understanding into the combinatorial rules of cellular regulation and signaling.

  19. Effects of single-base substitutions within the acanthamoeba castellanii rRNA promoter on transcription and on binding of transcription initiation factor and RNA polymerase I

    Energy Technology Data Exchange (ETDEWEB)

    Kownin, P.; Bateman, E.; Paule, M.R.

    1988-02-01

    Single-point mutations were introduced into the promoter region of the Acanthamoeba castellanii rRNA gene by chemical mutagen treatment of a single-stranded clone in vitro, followed by reverse transcription and cloning of the altered fragment. The promoter mutants were tested for transcription initiation factor (TIF) binding by a template commitment assay plus DNase I footprinting and for transcription by an in vitro runoff assay. Point mutations within the previously identified TIF interaction region (between -20 and -47, motifs A and B) indicated that TIF interacts most strongly with a sequence centered at -29 and less tightly with sequences upstream and downstream. Some alterations of the base sequence closer to the transcription start site (and outside the TIF-protected site) also significantly decrease specific RNA synthesis in vitro. These were within the region which is protected from DNAse I digestion by polymerase I, but these mutations did not detectably affect the binding of polymerase to the promoter.

  20. The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation.

    Science.gov (United States)

    Grohmann, Dina; Nagy, Julia; Chakraborty, Anirban; Klose, Daniel; Fielden, Daniel; Ebright, Richard H; Michaelis, Jens; Werner, Finn

    2011-07-22

    TFIIE and the archaeal homolog TFE enhance DNA strand separation of eukaryotic RNAPII and the archaeal RNAP during transcription initiation by an unknown mechanism. We have developed a fluorescently labeled recombinant M. jannaschii RNAP system to probe the archaeal transcription initiation complex, consisting of promoter DNA, TBP, TFB, TFE, and RNAP. We have localized the position of the TFE winged helix (WH) and Zinc ribbon (ZR) domains on the RNAP using single-molecule FRET. The interaction sites of the TFE WH domain and the transcription elongation factor Spt4/5 overlap, and both factors compete for RNAP binding. Binding of Spt4/5 to RNAP represses promoter-directed transcription in the absence of TFE, which alleviates this effect by displacing Spt4/5 from RNAP. During elongation, Spt4/5 can displace TFE from the RNAP elongation complex and stimulate processivity. Our results identify the RNAP "clamp" region as a regulatory hot spot for both transcription initiation and transcription elongation. PMID:21777815

  1. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    Science.gov (United States)

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  2. Preferential use of RNA leader sequences during influenza A transcription initiation in vivo.

    Science.gov (United States)

    Geerts-Dimitriadou, Christina; Goldbach, Rob; Kormelink, Richard

    2011-01-01

    In vitro transcription initiation studies revealed a preference of influenza A virus for capped RNA leader sequences with base complementarity to the viral RNA template. Here, these results were verified during an influenza infection in MDCK cells. Alfalfa mosaic virus RNA3 leader sequences mutated in their base complementarity to the viral template, or the nucleotides 5' of potential base-pairing residues, were tested for their use either singly or in competition. These analyses revealed that influenza transcriptase is able to use leaders from an exogenous mRNA source with a preference for leaders harboring base complementarity to the 3'-ultimate residues of the viral template, as previously observed during in vitro studies. Internal priming at the 3'-penultimate residue, as well as "prime-and-realign" was observed. The finding that multiple base-pairing promotes cap donor selection in vivo, and the earlier observed competitiveness of such molecules in vitro, offers new possibilities for antiviral drug design. PMID:21030059

  3. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage

    Science.gov (United States)

    Rice yield is most sensitive to salinity imposed during panicle initiation stage. In this study, we have focused on physiological and transcriptional responses of four rice genotypes exposed to salinity stress during panicle initiation. The genotypes selected included a pair of indicas (IR63731 and ...

  4. [SWI/SNF Protein Complexes Participate in the Initiation and Elongation Stages of Drosophila hsp70 Gene Transcription].

    Science.gov (United States)

    Mazina, M Yu; Nikolenko, Yu V; Krasnov, A N; Vorobyeva, N E

    2016-02-01

    The participation of the SWI/SNF chromatin remodeling complex in the stimulation of the RNA polymerase II binding to gene promotors was demonstrated in all model eukaryotic organisms. It was shown eight years ago that the SWI/SNF complex influence on transcription is not limited to its role in initiation but also includes participation in elongation and alternative splicing. In the current work, we describe the subunit composition of the SWI/SNF complexes participating in initiation, preparing for the elongation and elongation of hsp70 gene transcription in Drosophila melanogaster. The data reveal the high mobility of the SWI/SNF complex composition during the hsp 70 gene transcription process. We suggest a model describing the process of sequential SWI/SNF complex formation during heat-shock induced transcription of the hsp 70 gene.

  5. Promoter binding, initiation, and elongation by bacteriophage T7 RNA polymerase. A single-molecule view of the transcription cycle.

    Science.gov (United States)

    Skinner, Gary M; Baumann, Christoph G; Quinn, Diana M; Molloy, Justin E; Hoggett, James G

    2004-01-30

    A single-molecule transcription assay has been developed that allows, for the first time, the direct observation of promoter binding, initiation, and elongation by a single RNA polymerase (RNAP) molecule in real-time. To promote DNA binding and transcription initiation, a DNA molecule tethered between two optically trapped beads was held near a third immobile surface bead sparsely coated with RNAP. By driving the optical trap holding the upstream bead with a triangular oscillation while measuring the position of both trapped beads, we observed the onset of promoter binding, promoter escape (productive initiation), and processive elongation by individual RNAP molecules. After DNA template release, transcription re-initiation on the same DNA template is possible; thus, multiple enzymatic turnovers by an individual RNAP molecule can be observed. Using bacteriophage T7 RNAP, a commonly used RNAP paradigm, we observed the association and dissociation (k(off)= 2.9 s(-1)) of T7 RNAP and promoter DNA, the transition to the elongation mode (k(for) = 0.36 s(-1)), and the processive synthesis (k(pol) = 43 nt s(-1)) and release of a gene-length RNA transcript ( approximately 1200 nt). The transition from initiation to elongation is much longer than the mean lifetime of the binary T7 RNAP-promoter DNA complex (k(off) > k(for)), identifying a rate-limiting step between promoter DNA binding and promoter escape. PMID:14597619

  6. Transcription initiation by human RNA polymerase II visualized at single-molecule resolution

    OpenAIRE

    Revyakin, Andrey; Zhang, Zhengjian; Coleman, Robert A.; Li, Yan; Inouye, Carla; Lucas, Julian K.; Park, Sang-Ryul; Chu, Steven; Tjian, Robert

    2012-01-01

    RNA polymerase II (Pol II) transcription is an immensely complex process that involves a myriad of regulatory factors and elements. In a technical tour de force, Tjian and colleagues now define an in vitro reconstituted Pol II system to detect and quantify Pol II transcription at single-molecule resolution using fluorescence video-microscopy. The study provides valuable insight into transcription reinitiation and, significantly, paves the way for a new era of opportunities in investigating th...

  7. The archaeal TFIIE homologue facilitates transcription initiation by enhancing TATA-box recognition

    NARCIS (Netherlands)

    Bell, S.D.; Brinkman, A.B.; Oost, van der J.; Jackson, S.P.

    2001-01-01

    Transcription from many archaeal promoters can be reconstituted in vitro using recombinant TATA-box binding protein (TBP) and transcription factor B (TFB)—homologues of eukaryal TBP and TFIIB—together with purified RNA polymerase (RNAP). However, all archaeal genomes sequenced to date reveal the pre

  8. Structural and functional aspects of winged-helix domains at the core of transcription initiation complexes.

    Science.gov (United States)

    Teichmann, Martin; Dumay-Odelot, Hélène; Fribourg, Sébastien

    2012-01-01

    The winged helix (WH) domain is found in core components of transcription systems in eukaryotes and prokaryotes. It represents a sub-class of the helix-turn-helix motif. The WH domain participates in establishing protein-DNA and protein-protein-interactions. Here, we discuss possible explanations for the enrichment of this motif in transcription systems.

  9. Genome-wide Analysis Reveals Extensive Functional Interaction between DNA Replication Initiation and Transcription in the Genome of Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Calvin Tiengwe

    2012-07-01

    Full Text Available Identification of replication initiation sites, termed origins, is a crucial step in understanding genome transmission in any organism. Transcription of the Trypanosoma brucei genome is highly unusual, with each chromosome comprising a few discrete transcription units. To understand how DNA replication occurs in the context of such organization, we have performed genome-wide mapping of the binding sites of the replication initiator ORC1/CDC6 and have identified replication origins, revealing that both localize to the boundaries of the transcription units. A remarkably small number of active origins is seen, whose spacing is greater than in any other eukaryote. We show that replication and transcription in T. brucei have a profound functional overlap, as reducing ORC1/CDC6 levels leads to genome-wide increases in mRNA levels arising from the boundaries of the transcription units. In addition, ORC1/CDC6 loss causes derepression of silent Variant Surface Glycoprotein genes, which are critical for host immune evasion.

  10. DNA repair deficiencies associated with mutations in genes encoding subunits of transcription initiation factor TFIIH in yeast.

    OpenAIRE

    Sweder, K S; Chun, R; Mori, T; Hanawalt, P C

    1996-01-01

    Several proteins, including Rad3 and Rad25(Ssl2), are essential for nucleotide excision repair (NER) and function in the RNA polymerase II transcription initiation complex TFIIH. Mutations in genes encoding two other subunits of TFIIH, TFB1 and SSL1, result in UV sensitivity and have been shown to take part in NER in an in vitro system. However, a deficiency in global NER does not exclude the possibility that such repair-deficient mutants can perform transcription-coupled repair (TCR), as sho...

  11. Nuclear respiratory factor 1 mediates the transcription initiation of insulin-degrading enzyme in a TATA box-binding protein-independent manner.

    Directory of Open Access Journals (Sweden)

    Lang Zhang

    Full Text Available CpG island promoters often lack canonical core promoter elements such as the TATA box, and have dispersed transcription initiation sites. Despite the prevalence of CpG islands associated with mammalian genes, the mechanism of transcription initiation from CpG island promoters remains to be clarified. Here we investigate the mechanism of transcription initiation of the CpG island-associated gene, insulin-degrading enzyme (IDE. IDE is ubiquitously expressed, and has dispersed transcription initiation sites. The IDE core promoter locates within a 32-bp region, which contains three CGGCG repeats and a nuclear respiratory factor 1 (NRF-1 binding motif. Sequential mutation analysis indicates that the NRF-1 binding motif is critical for IDE transcription initiation. The NRF-1 binding motif is functional, because NRF-1 binds to this motif in vivo and this motif is required for the regulation of IDE promoter activity by NRF-1. Furthermore, the NRF-1 binding site in the IDE promoter is conserved among different species, and dominant negative NRF-1 represses endogenous IDE expression. Finally, TATA-box binding protein (TBP is not associated with the IDE promoter, and inactivation of TBP does not abolish IDE transcription, suggesting that TBP is not essential for IDE transcription initiation. Our studies indicate that NRF-1 mediates IDE transcription initiation in a TBP-independent manner, and provide insights into the potential mechanism of transcription initiation for other CpG island-associated genes.

  12. A membrane-tethered transcription factor ANAC089 negatively regulates floral initiation in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The plant-specific NAC (NAM, ATAF1/2,and CUC2) transcription factors have a regulatory function in developmental processes and stress responses. Notably a group of NAC members named NTLs (NTM1-Like) are membrane-tethered, ensuring plants rapidly respond to developmental changes and environmental stimuli. Our results indicated that ANAC089 was a membrane-tethered transcription factor and its truncated form was responsible for the physiological function in flowering time control.

  13. Characterization of S1 nuclease sensitive site at transcription initiation region of Attacus ricini rDNA

    Institute of Scientific and Technical Information of China (English)

    何明亮; 赵慕钧; 靳嘉瑞; 李载平

    1997-01-01

    A single-stranded S1 nuclease hypersensitive site which contains a d(AT)18 sequence structure locat-ed in the 5 -non transcription spacer of silkworm A . ricini ribosomal RNA gene has been reported[1] Using starved-refed silkworms, another S1 nuclease sensitive site was found existing in the rDNA chromatin, while under merely starving, this S1 sensitive site disappeared[2] . Recently this inducible S1 sensitive site has been further determined. It consists of a d(GT)10-d(AT)10 special DNA sequence at the transcription initiation region, and shows a behavior of ease in DNA-unwinding, indicating that S1 nuclease sensitive sites may have an important function in the regulation of rDNA transcription and replication.

  14. High-density transcriptional initiation signals underline genomic islands in bacteria.

    Directory of Open Access Journals (Sweden)

    Qianli Huang

    Full Text Available Genomic islands (GIs, frequently associated with the pathogenicity of bacteria and having a substantial influence on bacterial evolution, are groups of "alien" elements which probably undergo special temporal-spatial regulation in the host genome. Are there particular hallmark transcriptional signals for these "exotic" regions? We here explore the potential transcriptional signals that underline the GIs beyond the conventional views on basic sequence composition, such as codon usage and GC property bias. It showed that there is a significant enrichment of the transcription start positions (TSPs in the GI regions compared to the whole genome of Salmonella enterica and Escherichia coli. There was up to a four-fold increase for the 70% GIs, implying high-density TSPs profile can potentially differentiate the GI regions. Based on this feature, we developed a new sliding window method GIST, Genomic-island Identification by Signals of Transcription, to identify these regions. Subsequently, we compared the known GI-associated features of the GIs detected by GIST and by the existing method Islandviewer to those of the whole genome. Our method demonstrates high sensitivity in detecting GIs harboring genes with biased GI-like function, preferred subcellular localization, skewed GC property, shorter gene length and biased "non-optimal" codon usage. The special transcriptional signals discovered here may contribute to the coordinate expression regulation of foreign genes. Finally, by using GIST, we detected many interesting GIs in the 2011 German E. coli O104:H4 outbreak strain TY-2482, including the microcin H47 system and gene cluster ycgXEFZ-ymgABC that activates the production of biofilm matrix. The aforesaid findings highlight the power of GIST to predict GIs with distinct intrinsic features to the genome. The heterogeneity of cumulative TSPs profiles may not only be a better identity for "alien" regions, but also provide hints to the special

  15. A transcript finishing initiative for closing gaps in the human transcriptome

    DEFF Research Database (Denmark)

    Sogayar, Mari Cleide; Camargo, Anamaria A; Bettoni, Fabiana;

    2004-01-01

    for experimental validation was designated a transcript finishing unit (TFU). A total of 489 TFUs were selected for validation, and an overall efficiency of 43.1% was achieved. We generated a total of 59,975 bp of transcribed sequences organized into 432 exons, contributing to the definition of the structure...... databases, and the structure of 69.2% of these TFUs was not correctly predicted by computer programs. The TF strategy provides a significant contribution to the definition of the complete catalog of human genes and transcripts, because it appears to be particularly useful for identification of low abundance...

  16. Transcription of ribosomal RNA genes is initiated in the third cell cycle of bovine embryos

    DEFF Research Database (Denmark)

    Jakobsen, Anne Sørig; Avery, Birthe; Dieleman, Steph J.;

    2006-01-01

    of the embryonic genome. In the present study, ribosomal RNA (rRNA) transcription was investigated by visualization of the rRNA by fluorescent in situ hybridization, and subsequent visualization of the argyrophilic nucleolar proteins by silver staining. A total of 145 in vivo developed and 200 in vitro produced...

  17. Activity Dependent Signal Transduction in Skeletal Muscle

    Science.gov (United States)

    Hamilton, Susan L.

    1999-01-01

    The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.

  18. Transcriptional profiling of the murine cutaneous response during initial and subsequent infestations with Ixodes scapularis nymphs

    Directory of Open Access Journals (Sweden)

    Heinze Dar M

    2012-02-01

    Full Text Available Abstract Background Ixodes scapularis ticks are hematophagous arthropods capable of transmitting many infectious agents to humans. The process of blood feeding is an extended and continuous interplay between tick and host responses. While this process has been studied extensively in vitro, no global understanding of the host response to ticks has emerged. Methods To address this issue, we used PCR-arrays to measure skin-specific expression of 233 discrete genes at 8 time points during primary and secondary infestations of mice with pathogen-free I. scapularis nymphs. Selected results were then validated at the mRNA and protein levels by additional real-time PCR and bioplex assay. Results Primary infestation was characterized by the late induction of an innate immune response. Lectin pattern recognition receptors, cytokines, and chemokines were upregulated consistent with increased neutrophil and macrophage migration. Gene ontology and pathway analyses of downregulated genes suggested inhibition of gene transcription and Th17 immunity. During the secondary infestation, additional genes were modulated suggesting a broader involvement of immune cells including CD8 and CD4 positive T lymphocytes. The cytokine response showed a mixed Th1/Th2 profile with a potential for T regulatory cell activity. Key gene ontology clusters observed during the secondary infestation were cell migration and activation. Matrix metalloproteinases were upregulated, apoptosis-related genes were differentially modulated, and immunoreceptor signaling molecules were upregulated. In contrast, transcripts related to mitogenic, WNT, Hedgehog, and stress pathways were downregulated. Conclusions Our results support a model of tick feeding where lectin pattern recognition receptors orchestrate an innate inflammatory response during primary infestation that primes a mixed Th1/Th2 response upon secondary exposure. Tick feeding inhibits gene transcription and Th17 immunity. Salivary

  19. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA

    OpenAIRE

    Smith, Janet L.; Grossman, Alan D.

    2015-01-01

    DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep ...

  20. Determining physical constraints in transcriptional initiation complexes using DNA sequence analysis.

    Directory of Open Access Journals (Sweden)

    Ryan K Shultzaberger

    Full Text Available Eukaryotic gene expression is often under the control of cooperatively acting transcription factors whose binding is limited by structural constraints. By determining these structural constraints, we can understand the "rules" that define functional cooperativity. Conversely, by understanding the rules of binding, we can infer structural characteristics. We have developed an information theory based method for approximating the physical limitations of cooperative interactions by comparing sequence analysis to microarray expression data. When applied to the coordinated binding of the sulfur amino acid regulatory protein Met4 by Cbf1 and Met31, we were able to create a combinatorial model that can correctly identify Met4 regulated genes. Interestingly, we found that the major determinant of Met4 regulation was the sum of the strength of the Cbf1 and Met31 binding sites and that the energetic costs associated with spacing appeared to be minimal.

  1. The Calmodulin-Binding Transcription Activator CAMTA1 Is Required for Long-Term Memory Formation in Mice

    Science.gov (United States)

    Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M. M.; Bengtson, C. Peter; Bading, Hilmar

    2016-01-01

    The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by…

  2. Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities!

    Directory of Open Access Journals (Sweden)

    Christopher E Pearson

    2011-03-01

    Full Text Available Diseases associated with unstable repetitive elements in the DNA, RNA, and amino acids have consistently revealed scientific surprises. Most diseases are caused by expansions of trinucleotide repeats, which ultimately lead to diseases like Huntington's disease, myotonic dystrophy, fragile X syndrome, and a series of spinocerebellar ataxias. These repeat mutations are dynamic, changing through generations and within an individual, and the repeats can be bi-directionally transcribed. Unsuspected modes of pathogenesis involve aberrant loss of protein expression; aberrant over-expression of non-mutant proteins; toxic-gain-of-protein function through expanded polyglutamine tracts that are encoded by expanded CAG tracts; and RNA-toxic-gain-of-function caused by transcripts harboring expanded CUG, CAG, or CGG tracts. A recent advance reveals that RNA transcripts with expanded CAG repeats can be translated in the complete absence of a starting ATG, and this Repeat Associated Non-ATG translation (RAN-translation occurs across expanded CAG repeats in all reading frames (CAG, AGC, and GCA to produce homopolymeric proteins of long polyglutamine, polyserine, and polyalanine tracts. Expanded CTG tracts expressing CUG transcripts also show RAN-translation occurring in all three frames (CUG, UGC, and GCU, to produce polyleucine, polycysteine, and polyalanine. These RAN-translation products can be toxic. Thus, one unstable (CAG•(CTG DNA can produce two expanded repeat transcripts and homopolymeric proteins with reading frames (the AUG-directed polyGln and six RAN-translation proteins, yielding a total of potentially nine toxic entities. The occurrence of RAN-translation in patient tissues expands our horizons of modes of disease pathogenesis. Moreover, since RAN-translation counters the canonical requirements of translation initiation, many new questions are now posed that must be addressed. This review covers RAN-translation and some of the pertinent

  3. Transcription Factors and Medium Suitable for Initiating the Differentiation of Human-Induced Pluripotent Stem Cells to the Hepatocyte Lineage.

    Science.gov (United States)

    Tomizawa, Minoru; Shinozaki, Fuminobu; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2016-09-01

    Transcription factors and culture media were investigated to determine the condition to initiate the differentiation of human-induced pluripotent stem (iPS) cells most efficiently. The expression of genes in human adult liver was compared with that in 201B7 cells (iPS cells) using cDNA microarray analysis. Episomal plasmids expressing transcription factors were constructed. 201B7 cells were transfected with the episomal plasmids and cultured in ReproFF (feeder-free media maintaining pluripotency), Leibovitz-15 (L15), William's E (WE), or Dulbecco's modified Eagle medium/Nutrient F-12 Ham (DF12) for 7 days. RNA was isolated and subjected to real-time quantitative PCR to analyze the expression of alpha-feto protein (AFP) and albumin. cDNA microarray analysis revealed 16 transcription factors that were upregulated in human adult liver relative to that in 201B7 cells. Episomal plasmids expressing these 16 genes were transfected into 201B7 cells. CCAAT/enhancer-binding protein alpha (CEBPA), CCAAT/enhancer-binding protein beta (CEBPB), forkhead box A1 (FOXA1), and forkhead box A3 (FOXA3) up-regulated AFP and down-regulated Nanog. These four genes were further analyzed. The expression of AFP and albumin was the highest in 201B7 cells transfected with the combination of CEBPA, CEBPB, FOXA1, and FOXA3 and cultured in WE. The combination of CEBPA, CEBPB, FOXA1, and FOXA3 was suitable for 201B7 cells to initiate differentiation to the hepatocyte lineage and WE was the most suitable medium for culture after transfection. J. Cell. Biochem. 117: 2001-2009, 2016. © 2016 Wiley Periodicals, Inc. PMID:26773721

  4. Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor.

    Science.gov (United States)

    Goh, Tatsuaki; Toyokura, Koichi; Wells, Darren M; Swarup, Kamal; Yamamoto, Mayuko; Mimura, Tetsuro; Weijers, Dolf; Fukaki, Hidehiro; Laplaze, Laurent; Bennett, Malcolm J; Guyomarc'h, Soazig

    2016-09-15

    Lateral root formation is an important determinant of root system architecture. In Arabidopsis, lateral roots originate from pericycle cells, which undergo a program of morphogenesis to generate a new lateral root meristem. Despite its importance for root meristem organization, the onset of quiescent center (QC) formation during lateral root morphogenesis remains unclear. Here, we used live 3D confocal imaging to monitor cell organization and identity acquisition during lateral root development. Our dynamic observations revealed an early morphogenesis phase and a late meristem formation phase as proposed in the bi-phasic growth model. Establishment of lateral root QCs coincided with this developmental phase transition. QC precursor cells originated from the outer layer of stage II lateral root primordia, within which the SCARECROW (SCR) transcription factor was specifically expressed. Disrupting SCR function abolished periclinal divisions in this lateral root primordia cell layer and perturbed the formation of QC precursor cells. We conclude that de novo QC establishment in lateral root primordia operates via SCR-mediated formative cell division and coincides with the developmental phase transition. PMID:27510971

  5. Cell Biological Mechanisms of Activity-Dependent Synapse to Nucleus Translocation of CRTC1 in Neurons

    Directory of Open Access Journals (Sweden)

    Toh Hean eCh'ng

    2015-09-01

    Full Text Available Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1 in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of synaptic glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation.

  6. Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons

    Science.gov (United States)

    Ch'ng, Toh Hean; DeSalvo, Martina; Lin, Peter; Vashisht, Ajay; Wohlschlegel, James A.; Martin, Kelsey C.

    2015-01-01

    Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1) in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation. PMID:26388727

  7. The DEG/ENaC cation channel protein UNC-8 drives activity-dependent synapse removal in remodeling GABAergic neurons

    Science.gov (United States)

    Miller-Fleming, Tyne W; Petersen, Sarah C; Manning, Laura; Matthewman, Cristina; Gornet, Megan; Beers, Allison; Hori, Sayaka; Mitani, Shohei; Bianchi, Laura; Richmond, Janet; Miller, David M

    2016-01-01

    Genetic programming and neural activity drive synaptic remodeling in developing neural circuits, but the molecular components that link these pathways are poorly understood. Here we show that the C. elegans Degenerin/Epithelial Sodium Channel (DEG/ENaC) protein, UNC-8, is transcriptionally controlled to function as a trigger in an activity-dependent mechanism that removes synapses in remodeling GABAergic neurons. UNC-8 cation channel activity promotes disassembly of presynaptic domains in DD type GABA neurons, but not in VD class GABA neurons where unc-8 expression is blocked by the COUP/TF transcription factor, UNC-55. We propose that the depolarizing effect of UNC-8-dependent sodium import elevates intracellular calcium in a positive feedback loop involving the voltage-gated calcium channel UNC-2 and the calcium-activated phosphatase TAX-6/calcineurin to initiate a caspase-dependent mechanism that disassembles the presynaptic apparatus. Thus, UNC-8 serves as a link between genetic and activity-dependent pathways that function together to promote the elimination of GABA synapses in remodeling neurons. DOI: http://dx.doi.org/10.7554/eLife.14599.001 PMID:27403890

  8. Definition of a Bidirectional Activity-Dependent Pathway Involving BDNF and Narp

    Directory of Open Access Journals (Sweden)

    Abigail Mariga

    2015-12-01

    Full Text Available One of the cardinal features of neural development and adult plasticity is the contribution of activity-dependent signaling pathways. However, the interrelationships between different activity-dependent genes are not well understood. The immediate early gene neuronal-activity-regulated pentraxin (NPTX2 or Narp encodes a protein that has been associated with excitatory synaptogenesis, AMPA receptor aggregation, and the onset of critical periods. Here, we show that Narp is a direct transcriptional target of brain-derived neurotrophic factor (BDNF, another highly regulated activity-dependent gene involved in synaptic plasticity. Unexpectedly, Narp is bidirectionally regulated by BDNF. Acute BDNF withdrawal results in downregulation of Narp, whereas transcription of Narp is greatly enhanced by BDNF. Furthermore, our results show that BDNF directly regulates Narp to mediate glutamatergic transmission and mossy fiber plasticity. Hence, Narp serves as a significant epistatic target of BDNF to regulate synaptic plasticity during periods of dynamic activity.

  9. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation

    Directory of Open Access Journals (Sweden)

    Miller Eric S

    2010-12-01

    Full Text Available Abstract Over 50 years of biological research with bacteriophage T4 includes notable discoveries in post-transcriptional control, including the genetic code, mRNA, and tRNA; the very foundations of molecular biology. In this review we compile the past 10 - 15 year literature on RNA-protein interactions with T4 and some of its related phages, with particular focus on advances in mRNA decay and processing, and on translational repression. Binding of T4 proteins RegB, RegA, gp32 and gp43 to their cognate target RNAs has been characterized. For several of these, further study is needed for an atomic-level perspective, where resolved structures of RNA-protein complexes are awaiting investigation. Other features of post-transcriptional control are also summarized. These include: RNA structure at translation initiation regions that either inhibit or promote translation initiation; programmed translational bypassing, where T4 orchestrates ribosome bypass of a 50 nucleotide mRNA sequence; phage exclusion systems that involve T4-mediated activation of a latent endoribonuclease (PrrC and cofactor-assisted activation of EF-Tu proteolysis (Gol-Lit; and potentially important findings on ADP-ribosylation (by Alt and Mod enzymes of ribosome-associated proteins that might broadly impact protein synthesis in the infected cell. Many of these problems can continue to be addressed with T4, whereas the growing database of T4-related phage genome sequences provides new resources and potentially new phage-host systems to extend the work into a broader biological, evolutionary context.

  10. YabA of Bacillus subtilis controls DnaA-mediated replication initiation but not the transcriptional response to replication stress

    OpenAIRE

    Goranov, Alexi I.; Breier, Adam M.; Merrikh, Houra; Grossman, Alan D.

    2009-01-01

    yabA encodes a negative regulator of replication initiation in Bacillus subtilis and homologues are found in many other Gram-positive species. YabA interacts with the β-processivity clamp (DnaN) of DNA polymerase and with the replication initiator and transcription factor DnaA. Because of these interactions, YabA has been proposed to modulate the activity of DnaA. We investigated the role of YabA in regulating replication initiation and the activity of DnaA as a transcription factor. We foun...

  11. Post-transcriptional Boolean computation by combining aptazymes controlling mRNA translation initiation and tRNA activation.

    Science.gov (United States)

    Klauser, Benedikt; Saragliadis, Athanasios; Ausländer, Simon; Wieland, Markus; Berthold, Michael R; Hartig, Jörg S

    2012-09-01

    In cellular systems environmental and metabolic signals are integrated for the conditional control of gene expression. On the other hand, artificial manipulation of gene expression is of high interest for metabolic and genetic engineering. Especially the reprogramming of gene expression patterns to orchestrate cellular responses in a predictable fashion is considered to be of great importance. Here we introduce a highly modular RNA-based system for performing Boolean logic computation at a post-transcriptional level in Escherichia coli. We have previously shown that artificial riboswitches can be constructed by utilizing ligand-dependent Hammerhead ribozymes (aptazymes). Employing RNA self-cleavage as the expression platform-mechanism of an artificial riboswitch has the advantage that it can be applied to control several classes of RNAs such as mRNAs, tRNAs, and rRNAs. Due to the highly modular and orthogonal nature of these switches it is possible to combine aptazyme regulation of activating a suppressor tRNA with the regulation of mRNA translation initiation. The different RNA classes can be controlled individually by using distinct aptamers for individual RNA switches. Boolean logic devices are assembled by combining such switches in order to act on the expression of a single mRNA. In order to demonstrate the high modularity, a series of two-input Boolean logic operators were constructed. For this purpose, we expanded our aptazyme toolbox with switches comprising novel behaviours with respect to the small molecule triggers thiamine pyrophosphate (TPP) and theophylline. Then, individual switches were combined to yield AND, NOR, and ANDNOT gates. This study demonstrates that post-transcriptional aptazyme-based switches represent versatile tools for engineering advanced genetic devices and circuits without the need for regulatory protein cofactors. PMID:22777205

  12. GlnR negatively regulates the transcription of the alanine dehydrogenase encoding gene ald in Amycolatopsis mediterranei U32 under nitrogen limited conditions via specific binding to its major transcription initiation site.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Ammonium assimilation is catalyzed by two enzymatic pathways, i.e., glutamine synthetase/glutamate synthase (GS/GOGAT and alanine dehydrogenase (AlaDH in Amycolatopsis mediterranei U32. Under nitrogen-rich conditions, the AlaDH pathway is the major route for ammonium assimilation, while the GS/GOGAT pathway takes over when the extracellular nitrogen supply is limited. The global nitrogen regulator GlnR was previously characterized to activate the transcription of the GS encoding gene glnA in response to nitrogen limitation and is demonstrated in this study as a repressor for the transcription of the AlaDH encoding gene ald, whose regulation is consistent with the switch of the ammonium assimilation pathways from AlaDH to GS/GOGAT responding to nitrogen limitation. Three transcription initiation sites (TISs of ald were determined with primer extension assay, among which transcription from aldP2 contributed the major transcripts under nitrogen-rich conditions but was repressed to an undetectable level in response to nitrogen limitation. Through DNase I footprinting assay, two separate regions were found to be protected by GlnR within ald promoter, within which three GlnR binding sites (a1, b1 sites in region I and a2 site in region II were defined. Interestingly, the major TIS aldP2 is located in the middle of a2 site within region II. Therefore, one may easily conclude that GlnR represses the transcription of ald via specific binding to the GlnR binding sites, which obviously blocks the transcription initiation from aldP2 and therefore reduces ald transcripts.

  13. An MSC2 Promoter-lacZ Fusion Gene Reveals Zinc-Responsive Changes in Sites of Transcription Initiation That Occur across the Yeast Genome

    Science.gov (United States)

    Wu, Yi-Hsuan; Taggart, Janet; Song, Pamela Xiyao; MacDiarmid, Colin; Eide, David J.

    2016-01-01

    The Msc2 and Zrg17 proteins of Saccharomyces cerevisiae form a complex to transport zinc into the endoplasmic reticulum. ZRG17 is transcriptionally induced in zinc-limited cells by the Zap1 transcription factor. In this report, we show that MSC2 mRNA also increases (~1.5 fold) in zinc-limited cells. The MSC2 gene has two in-frame ATG codons at its 5’ end, ATG1 and ATG2; ATG2 is the predicted initiation codon. When the MSC2 promoter was fused at ATG2 to the lacZ gene, we found that unlike the chromosomal gene this reporter showed a 4-fold decrease in lacZ mRNA in zinc-limited cells. Surprisingly, β-galactosidase activity generated by this fusion gene increased ~7 fold during zinc deficiency suggesting the influence of post-transcriptional factors. Transcription of MSC2ATG2-lacZ was found to start upstream of ATG1 in zinc-replete cells. In zinc-limited cells, transcription initiation shifted to sites just upstream of ATG2. From the results of mutational and polysome profile analyses, we propose the following explanation for these effects. In zinc-replete cells, MSC2ATG2-lacZ mRNA with long 5’ UTRs fold into secondary structures that inhibit translation. In zinc-limited cells, transcripts with shorter unstructured 5’ UTRs are generated that are more efficiently translated. Surprisingly, chromosomal MSC2 did not show start site shifts in response to zinc status and only shorter 5’ UTRs were observed. However, the shifts that occur in the MSC2ATG2-lacZ construct led us to identify significant transcription start site changes affecting the expression of ~3% of all genes. Therefore, zinc status can profoundly alter transcription initiation across the yeast genome. PMID:27657924

  14. Eaf1p Is Required for Recruitment of NuA4 in Targeting TFIID to the Promoters of the Ribosomal Protein Genes for Transcriptional Initiation In Vivo.

    Science.gov (United States)

    Uprety, Bhawana; Sen, Rwik; Bhaumik, Sukesh R

    2015-09-01

    NuA4 (nucleosome acetyltransferase of H4) promotes transcriptional initiation of TFIID (a complex of TBP and TBP-associated factors [TAFs])-dependent ribosomal protein genes involved in ribosome biogenesis. However, it is not clearly understood how NuA4 regulates the transcription of ribosomal protein genes. Here, we show that NuA4 is recruited to the promoters of ribosomal protein genes, such as RPS5, RPL2B, and RPS11B, for TFIID recruitment to initiate transcription, and the recruitment of NuA4 to these promoters is impaired in the absence of its Eaf1p component. Intriguingly, impaired NuA4 recruitment in a Δeaf1 strain depletes recruitment of TFIID (a TAF-dependent form of TBP) but not the TAF-independent form of TBP to the promoters of ribosomal protein genes. However, in the absence of NuA4, SAGA (Spt-Ada-Gcn5-acetyltransferase) is involved in targeting the TAF-independent form of TBP to the promoters of ribosomal protein genes for transcriptional initiation. Thus, NuA4 plays an important role in targeting TFIID to the promoters of ribosomal protein genes for transcriptional initiation in vivo. Such a function is mediated via its targeted histone acetyltransferase activity. In the absence of NuA4, ribosomal protein genes lose TFIID dependency and become SAGA dependent for transcriptional initiation. Collectively, these results provide significant insights into the regulation of ribosomal protein gene expression and, hence, ribosome biogenesis and functions.

  15. Identification of EhTIF-IA: The putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA.

    Science.gov (United States)

    Srivastava, Ankita; Bhattacharya, Alok; Bhattacharya, Sudha; Jhingan, Gagan Deep

    2016-03-01

    Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica. PMID:26949087

  16. Identification of EhTIF-IA: The putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA.

    Science.gov (United States)

    Srivastava, Ankita; Bhattacharya, Alok; Bhattacharya, Sudha; Jhingan, Gagan Deep

    2016-03-01

    Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica.

  17. Identification of EhTIF-IA: The putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA

    Indian Academy of Sciences (India)

    Ankita Srivastava; Alok Bhattacharya; Sudha Bhattacharya; Gagan Deep Jhingan

    2016-03-01

    Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica.

  18. Events during eucaryotic rRNA transcription initiation and elongation: Conversion from the closed to the open promoter complex requires nucleotide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, E.; Paule, M.R.

    1988-05-01

    Chemical footprinting and topological analysis were carried out on the Acanthamoeba castellanii rRNA transcription initiation factor (TIF) and RNA polymerase I complexes with DNA during transcription initiation and elongation. The results show that the binding of TIF and polymerase to the promoter does not alter the supercoiling of the DNA template and the template does not become sensitive to modification by diethylpyro-carbonate, which can identify melted DNA regions. Thus, in contrast to bacterial RNA polymerase, the eucaryotic RNA polymerase I-promoter complex is in a closed configuration preceding addition of nucleotides in vitro. Initiation and 3'-O-methyl CTP-limited translocation by RNA polymerase I results in separation of the polymerase-TIF footprints, leaving the TIF footprint unaltered. In contrast, initiation and translocation result in a significant change in the conformation of the polymerase-DNA complex, culminating in an unwound DNA region of at least 10 base pairs.

  19. Activity-dependent neuroprotective protein (ADNP) exhibits striking sexual dichotomy impacting on autistic and Alzheimer's pathologies.

    Science.gov (United States)

    Malishkevich, A; Amram, N; Hacohen-Kleiman, G; Magen, I; Giladi, E; Gozes, I

    2015-01-01

    Activity-dependent neuroprotective protein (ADNP) is a most frequent autism spectrum disorder (ASD)-associated gene and the only protein significantly decreasing in the serum of Alzheimer's disease (AD) patients. Is ADNP associated with ASD being more prevalent in boys and AD more prevalent in women? Our results revealed sex-related learning/memory differences in mice, reflecting hippocampal expression changes in ADNP and ADNP-controlled AD/ASD risk genes. Hippocampal ADNP transcript content was doubled in male vs female mice, with females showing equal expression to ADNP haploinsufficient (ADNP(+/)(-)) males and no significant genotype-associated reduction. Increased male ADNP expression was replicated in human postmortem hippocampal samples. The hippocampal transcript for apolipoprotein E (the major risk gene for AD) was doubled in female mice compared with males, and further doubled in the ADNP(+/-) females, contrasting a decrease in ADNP(+/-) males. Previously, overexpression of the eukaryotic translation initiation factor 4E (eIF4E) led to ASD-like phenotype in mice. Here, we identified binding sites on ADNP for eIF4E and co-immunoprecipitation. Furthermore, hippocampal eIF4E expression was specifically increased in young ADNP(+/-) male mice. Behaviorally, ADNP(+/-) male mice exhibited deficiencies in object recognition and social memory compared with ADNP(+/+) mice, while ADNP(+/-) females were partially spared. Contrasting males, which preferred novel over familiar mice, ADNP(+/+) females showed no preference to novel mice and ADNP(+/-) females did not prefer mice over object. ADNP expression, positioned as a master regulator of key ASD and AD risk genes, introduces a novel concept of hippocampal gene-regulated sexual dimorphism and an ADNP(+/-) animal model for translational psychiatry. PMID:25646590

  20. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA.

    Directory of Open Access Journals (Sweden)

    Janet L Smith

    2015-05-01

    Full Text Available DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq. We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.

  1. Structure of the transcription initiation and termination sequences of seven early genes in the vaccinia virus HindIII D fragment.

    Science.gov (United States)

    Lee-Chen, G J; Bourgeois, N; Davidson, K; Condit, R C; Niles, E G

    1988-03-01

    The vaccinia virus HindIII D fragment is 16,060 bp in length and encodes 13 complete genes [E.G. Niles et al. (1986). Virology 153, 96-112; S. L. Weinrich and D. E. Hruby (1986). Nucleic Acids Res. 14, 3003-3016]. Six of these genes are expressed only at early times after infection and one gene is expressed at both early and late times [G. -J. Lee-Chen and E. G. Niles (1988). Virology 163, 52-63]. Transcript mapping by S1 nuclease protection studies was carried out and compared to the results of primer extension analyses, in order to locate map positions of the 5' termini of each early mRNA. The lengths of the products of in vitro transcription, from DNA templates which possess the transcription start regions of each of the early genes, were determined and compared to the lengths of DNA products generated by S1 nuclease protection and primer extension, in order to demonstrate that the 5' termini identified by S1 mapping and primer extension are due to transcription initiation and not to mRNA processing. For each of the early genes in the HindIII D fragment, transcription starts within 25 nucleotides of the translation initiation codon. The precise location of the 3' termini of each early transcript was identified by S1 nuclease mapping. In all but one case, the 3' ends map within 75 nucleotides of the putative transcription termination signal TTTTTNT [G. Rohrmann, L. Yuen, and B. Moss (1986).

  2. Dynamic Association of the Replication Initiator and Transcription Factor DnaA with the Bacillus subtilis Chromosome during Replication Stress ▿

    OpenAIRE

    Breier, Adam M.; Grossman, Alan D.

    2008-01-01

    DnaA functions as both a transcription factor and the replication initiator in bacteria. We characterized the DNA binding dynamics of DnaA on a genomic level. Based on cross-linking and chromatin immunoprecipitation data, DnaA binds at least 17 loci, 15 of which are regulated transcriptionally in response to inhibition of replication (replication stress). Six loci, each of which has a cluster of at least nine potential DnaA binding sites, had significant increases in binding by DnaA when repl...

  3. Regulation of transcription attenuation and translation initiation by allosteric control of an RNA-binding protein: the Bacillus subtilis TRAP protein.

    Science.gov (United States)

    Babitzke, Paul

    2004-04-01

    Tryptophan allosterically controls the 11-subunit trp RNA-binding attenuation protein (TRAP) of Bacillus subtilis. When activated by tryptophan, TRAP binds to multiple trinucleotide repeats in target transcripts. TRAP is responsible for the decision to terminate transcription in the leader region of the trpEDCFBA operon or to allow transcription to proceed into the structural genes. TRAP also regulates translation of trpE by promoting formation of an RNA structure that prevents ribosome binding. In addition, bound TRAP regulates translation initiation of pabA, trpP and ycbK by directly blocking ribosome binding. The anti-TRAP protein inhibits TRAP activity by competing with RNA for the RNA binding surface of TRAP. PMID:15063849

  4. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages.

    Science.gov (United States)

    Witham, James; Ouboussad, Lylia; Lefevre, Pascal F

    2013-01-01

    The transcriptional activation of the chicken lysozyme gene (cLys) by lipopolysaccharide (LPS) in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR) triggering eviction of the CCCTC-binding factor (CTCF) from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE). In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3' end of the gene.

  5. ppGpp Binding to a Site at the RNAP-DksA Interface Accounts for Its Dramatic Effects on Transcription Initiation during the Stringent Response.

    Science.gov (United States)

    Ross, Wilma; Sanchez-Vazquez, Patricia; Chen, Albert Y; Lee, Jeong-Hyun; Burgos, Hector L; Gourse, Richard L

    2016-06-16

    Throughout the bacterial domain, the alarmone ppGpp dramatically reprograms transcription following nutrient limitation. This "stringent response" is critical for survival and antibiotic tolerance and is a model for transcriptional regulation by small ligands. We report that ppGpp binds to two distinct sites 60 Å apart on E. coli RNA polymerase (RNAP), one characterized previously (site 1) and a second identified here at an interface of RNAP and the transcription factor DksA (site 2). The location and unusual tripartite nature of site 2 account for the DksA-ppGpp synergism and suggest mechanisms for ppGpp enhancement of DksA's effects on RNAP. Site 2 binding results in the majority of ppGpp's effects on transcription initiation in vitro and in vivo, and strains lacking site 2 are severely impaired for growth following nutritional shifts. Filling of the two sites at different ppGpp concentrations would expand the dynamic range of cellular responses to changes in ppGpp levels. PMID:27237053

  6. Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor-activated transcription.

    Science.gov (United States)

    Xu, Muyu; Gonzalez-Hurtado, Elsie; Martinez, Ernest

    2016-04-01

    Gene-specific activation by enhancers involves their communication with the basal RNA polymerase II transcription machinery at the core promoter. Core promoters are diverse and may contain a variety of sequence elements such as the TATA box, the Initiator (INR), and the downstream promoter element (DPE) recognized, respectively, by the TATA-binding protein (TBP) and TBP-associated factors of the TFIID complex. Core promoter elements contribute to the gene selectivity of enhancers, and INR/DPE-specific enhancers and activators have been identified. Here, we identify a TATA box-selective activating sequence upstream of the human β-actin (ACTB) gene that mediates serum response factor (SRF)-induced transcription from TATA-dependent but not INR-dependent promoters and requires the TATA-binding/bending activity of TBP, which is otherwise dispensable for transcription from a TATA-less promoter. The SRF-dependent ACTB sequence is stereospecific on TATA promoters but activates in an orientation-independent manner a composite TATA/INR-containing promoter. More generally, we show that SRF-regulated genes of the actin/cytoskeleton/contractile family tend to have a TATA box. These results suggest distinct TATA-dependent and INR-dependent mechanisms of TFIID-mediated transcription in mammalian cells that are compatible with only certain stereospecific combinations of activators, and that a TBP-TATA binding mechanism is important for SRF activation of the actin/cytoskeleton-related gene family.

  7. Myeloidcell—lineage and premylocytic—stage—specific—expression of the mouse myeloperoxidase gene is controlled at initiation as well as elongation levels of transcription

    Institute of Scientific and Technical Information of China (English)

    ZHUJINGDE

    1999-01-01

    The myeloperoxidase (MPO) is an important microbicidal protein present at high concentration in the primary granule of mature granulocyte and its expression is regulated in both myeloidcell-lineage and premyelocytic-stagespecific manners.A better understanding of the underlying control mechanisms should provide insights into the temporal and co-ordinate regulation of the gene expression during granulopoiesis.We have identified its promoter by mapping the start(s) of transcription using various molecular approaches together with demonstrating the promoter function of the relevant DNA segment in a transient transfection reporter assay.Besides the major start of transcription mapped at G residue,11 nucleotide upstream of the 3' end of exon 0,the usage of that is specific to the MPO expressing cell lines,we have shown that irrespective of the MPO-expression status of the hematopoietic cells,transcription occurs broadly within a two kb region upstream of the 5' proximity of the gene,and is largely terminated in intron 2.These data support a model of the premyelocytic-stage-specific MPO expression,the control of which is operated at initiation as well as elongation levels of transcription.

  8. ppGpp Binding to a Site at the RNAP-DksA Interface Accounts for Its Dramatic Effects on Transcription Initiation during the Stringent Response.

    Science.gov (United States)

    Ross, Wilma; Sanchez-Vazquez, Patricia; Chen, Albert Y; Lee, Jeong-Hyun; Burgos, Hector L; Gourse, Richard L

    2016-06-16

    Throughout the bacterial domain, the alarmone ppGpp dramatically reprograms transcription following nutrient limitation. This "stringent response" is critical for survival and antibiotic tolerance and is a model for transcriptional regulation by small ligands. We report that ppGpp binds to two distinct sites 60 Å apart on E. coli RNA polymerase (RNAP), one characterized previously (site 1) and a second identified here at an interface of RNAP and the transcription factor DksA (site 2). The location and unusual tripartite nature of site 2 account for the DksA-ppGpp synergism and suggest mechanisms for ppGpp enhancement of DksA's effects on RNAP. Site 2 binding results in the majority of ppGpp's effects on transcription initiation in vitro and in vivo, and strains lacking site 2 are severely impaired for growth following nutritional shifts. Filling of the two sites at different ppGpp concentrations would expand the dynamic range of cellular responses to changes in ppGpp levels.

  9. Low probability of initiating nirS transcription explains observed gas kinetics and growth of bacteria switching from aerobic respiration to denitrification.

    Directory of Open Access Journals (Sweden)

    Junaid Hassan

    2014-11-01

    Full Text Available In response to impending anoxic conditions, denitrifying bacteria sustain respiratory metabolism by producing enzymes for reducing nitrogen oxyanions/-oxides (NOx to N2 (denitrification. Since denitrifying bacteria are non-fermentative, the initial production of denitrification proteome depends on energy from aerobic respiration. Thus, if a cell fails to synthesise a minimum of denitrification proteome before O2 is completely exhausted, it will be unable to produce it later due to energy-limitation. Such entrapment in anoxia is recently claimed to be a major phenomenon in batch cultures of the model organism Paracoccus denitrificans on the basis of measured e(--flow rates to O2 and NOx. Here we constructed a dynamic model and explicitly simulated actual kinetics of recruitment of the cells to denitrification to directly and more accurately estimate the recruited fraction (Fden. Transcription of nirS is pivotal for denitrification, for it triggers a cascade of events leading to the synthesis of a full-fledged denitrification proteome. The model is based on the hypothesis that nirS has a low probability (rden, h(-1 of initial transcription, but once initiated, the transcription is greatly enhanced through positive feedback by NO, resulting in the recruitment of the transcribing cell to denitrification. We assume that the recruitment is initiated as [O2] falls below a critical threshold and terminates (assuming energy-limitation as [O2] exhausts. With rden = 0.005 h(-1, the model robustly simulates observed denitrification kinetics for a range of culture conditions. The resulting Fden (fraction of the cells recruited to denitrification falls within 0.038-0.161. In contrast, if the recruitment of the entire population is assumed, the simulated denitrification kinetics deviate grossly from those observed. The phenomenon can be understood as a 'bet-hedging strategy': switching to denitrification is a gain if anoxic spell lasts long but is a waste

  10. Isolation of novel single-chain Cro proteins targeted for binding to the bcl-2 transcription initiation site by repertoire selection and subunit combinatorics.

    Science.gov (United States)

    Jonas, Kristina; Van Der Vries, Erhard; Nilsson, Mikael T I; Widersten, Mikael

    2005-11-01

    New designed DNA-binding proteins may be recruited to act as transcriptional regulators and could provide new therapeutic agents in the treatment of genetic disorders such as cancer. We have isolated tailored DNA-binding proteins selected for affinity to a region spanning the transcription initiation site of the human bcl-2 gene. The proteins were derived from a single-chain derivative of the lambda Cro protein (scCro), randomly mutated in its recognition helices to construct libraries of protein variants of distinct DNA-binding properties. By phage display-afforded affinity selections combined with recombination of shuffled subunits, protein variants were isolated, which displayed high affinity for the target bcl-2 sequence, as determined by electrophoretic mobility shift and biosensor assays. The proteins analyzed were moderately sequence-specific but provide a starting point for further maturation of desired function.

  11. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration.

    Directory of Open Access Journals (Sweden)

    Nils Rudqvist

    Full Text Available 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland.BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value 1.5, and p-value <0.05, respectively.In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy.

  12. A new era for functional labeling of neurons: activity-dependent promoters have come of age

    Directory of Open Access Journals (Sweden)

    Takashi eKawashima

    2014-04-01

    Full Text Available Genetic labeling of neurons with a specific response feature is an emerging technology for precise dissection of brain circuits that are functionally heterogeneous at the single-cell level. While immediate early gene mapping has been widely used for decades to identify brain regions which are activated by external stimuli, recent characterization of the promoter and enhancer elements responsible for neuronal activity-dependent transcription have opened new avenues for live imaging of active neurons. Indeed, these advancements provided the basis for a growing repertoire of novel experiments to address the role of active neuronal networks in cognitive behaviors. In this review, we summarize the current literature on the usage and development of activity-dependent promoters and discuss the future directions of this expanding new field.

  13. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation.

    Science.gov (United States)

    Ross, Wilma; Vrentas, Catherine E; Sanchez-Vazquez, Patricia; Gaal, Tamas; Gourse, Richard L

    2013-05-01

    The global regulatory nucleotide ppGpp ("magic spot") regulates transcription from a large subset of Escherichia coli promoters, illustrating how small molecules can control gene expression promoter-specifically by interacting with RNA polymerase (RNAP) without binding to DNA. However, ppGpp's target site on RNAP, and therefore its mechanism of action, has remained unclear. We report here a binding site for ppGpp on E. coli RNAP, identified by crosslinking, protease mapping, and analysis of mutant RNAPs that fail to respond to ppGpp. A strain with a mutant ppGpp binding site displays properties characteristic of cells defective for ppGpp synthesis. The binding site is at an interface of two RNAP subunits, ω and β', and its position suggests an allosteric mechanism of action involving restriction of motion between two mobile RNAP modules. Identification of the binding site allows prediction of bacterial species in which ppGpp exerts its effects by targeting RNAP.

  14. A downstream CpG island controls transcript initiation and elongation and the methylation state of the imprinted Airn macro ncRNA promoter.

    Directory of Open Access Journals (Sweden)

    Martha V Koerner

    Full Text Available A CpG island (CGI lies at the 5' end of the Airn macro non-protein-coding (nc RNA that represses the flanking Igf2r promoter in cis on paternally inherited chromosomes. In addition to being modified on maternally inherited chromosomes by a DNA methylation imprint, the Airn CGI shows two unusual organization features: its position immediately downstream of the Airn promoter and transcription start site and a series of tandem direct repeats (TDRs occupying its second half. The physical separation of the Airn promoter from the CGI provides a model to investigate if the CGI plays distinct transcriptional and epigenetic roles. We used homologous recombination to generate embryonic stem cells carrying deletions at the endogenous locus of the entire CGI or just the TDRs. The deleted Airn alleles were analyzed by using an ES cell imprinting model that recapitulates the onset of Igf2r imprinted expression in embryonic development or by using knock-out mice. The results show that the CGI is required for efficient Airn initiation and to maintain the unmethylated state of the Airn promoter, which are both necessary for Igf2r repression on the paternal chromosome. The TDRs occupying the second half of the CGI play a minor role in Airn transcriptional elongation or processivity, but are essential for methylation on the maternal Airn promoter that is necessary for Igf2r to be expressed from this chromosome. Together the data indicate the existence of a class of regulatory CGIs in the mammalian genome that act downstream of the promoter and transcription start.

  15. Resistance to Streptomyces turgidiscabies in potato involves an early and sustained transcriptional reprogramming at initial stages of tuber formation.

    Science.gov (United States)

    Dees, Merete Wiken; Lysøe, Erik; Alsheikh, Muath; Davik, Jahn; Brurberg, May Bente

    2016-06-01

    Common scab, caused by species from the bacterial genus Streptomyces, is an important disease of potato (Solanum tuberosum) crops worldwide. Early tuberization is a critical period for pathogen infection; hence, studies of host gene expression responses during this developmental stage can be important to expand our understanding of the infection process and to identify putative resistance genes. In an infection experiment with the highly susceptible potato cultivar Saturna and the relatively resistant cultivar Beate, transcription profiles were obtained by RNA sequencing at two developmental stages: the early hook stage and the early tuber formation stage. Our results indicate that 'Beate' mounts an early and sustained response to infection by S. turgidiscabies, whereas the defence response by 'Saturna' ceases before the early tuber formation stage. Most pronounced were the putative candidate defence-associated genes uniquely expressed in 'Beate'. We observed an increase in alternative splicing on pathogen infection at the early hook stage for both cultivars. A significant down-regulation of genes involved in the highly energy-demanding process of ribosome biogenesis was observed for the infected 'Beate' plants at the early hook stage, which may indicate an allocation of resources that favours the expression of defence-related genes. PMID:26416294

  16. Recruitment of the transcriptional coactivator HCF-1 to viral immediate-early promoters during initiation of reactivation from latency of herpes simplex virus type 1.

    Science.gov (United States)

    Whitlow, Zackary; Kristie, Thomas M

    2009-09-01

    The transcriptional coactivator host cell factor 1 (HCF-1) is critical for the expression of immediate-early (IE) genes of the alphaherpesviruses herpes simplex virus type 1 (HSV-1) and varicella-zoster virus. HCF-1 may also be involved in the reactivation of these viruses from latency as it is sequestered in the cytoplasm of sensory neurons but is rapidly relocalized to the nucleus upon stimulation that results in reactivation. Here, chromatin immunoprecipitation assays demonstrate that HCF-1 is recruited to IE promoters of viral genomes during the initiation of reactivation, correlating with RNA polymerase II occupancy and IE expression. The data support the model whereby HCF-1 plays a pivotal role in the reactivation of HSV-1 from latency.

  17. Activity-dependent plasticity of hippocampal place maps.

    Science.gov (United States)

    Schoenenberger, Philipp; O'Neill, Joseph; Csicsvari, Jozsef

    2016-01-01

    Hippocampal neurons encode a cognitive map of space. These maps are thought to be updated during learning and in response to changes in the environment through activity-dependent synaptic plasticity. Here we examine how changes in activity influence spatial coding in rats using halorhodopsin-mediated, spatially selective optogenetic silencing. Halorhoposin stimulation leads to light-induced suppression in many place cells and interneurons; some place cells increase their firing through disinhibition, whereas some show no effect. We find that place fields of the unaffected subpopulation remain stable. On the other hand, place fields of suppressed place cells were unstable, showing remapping across sessions before and after optogenetic inhibition. Disinhibited place cells had stable maps but sustained an elevated firing rate. These findings suggest that place representation in the hippocampus is constantly governed by activity-dependent processes, and that disinhibition may provide a mechanism for rate remapping. PMID:27282121

  18. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  19. Activity-dependent modulation of neural circuit synaptic connectivity

    OpenAIRE

    Tessier, Charles R.; Kendal Broadie

    2009-01-01

    In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1) early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2) subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circ...

  20. A memristor SPICE model accounting for synaptic activity dependence.

    Directory of Open Access Journals (Sweden)

    Qingjiang Li

    Full Text Available In this work, we propose a new memristor SPICE model that accounts for the typical synaptic characteristics that have been previously demonstrated with practical memristive devices. We show that this model could account for both volatile and non-volatile memristance changes under distinct stimuli. We then demonstrate that our model is capable of supporting typical STDP with simple non-overlapping digital pulse pairs. Finally, we investigate the capability of our model to simulate the activity dependence dynamics of synaptic modification and present simulated results that are in excellent agreement with biological results.

  1. Transcription and translation of human F11R gene are required for an initial step of atherogenesis induced by inflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Kornecki Elizabeth

    2011-06-01

    Full Text Available Abstract Background - The F11 Receptor (F11R; aka JAM-A, JAM-1 is a cell adhesion protein present constitutively on the membrane surface of circulating platelets and within tight junctions of endothelial cells (ECs. Previous reports demonstrated that exposure of ECs to pro-inflammatory cytokines causes insertion of F11R molecules into the luminal surface of ECs, ensuing with homologous interactions between F11R molecules of platelets and ECs, and a resultant adhesion of platelets to the inflamed ECs. The main new finding of the present report is that the first step in this chain of events is the de-novo transcription and translation of F11R molecules, induced in ECs by exposure to inflammatory cytokines. Methods - The experimental approach utilized isolated, washed human platelet suspensions and cultured human venous endothelial cells (HUVEC and human arterial endothelial cells (HAEC exposed to the proinflammatory cytokines TNF-alpha and/or IFN-gamma, for examination of the ability of human platelets to adhere to the inflamed ECs thru the F11R. Our strategy was based on testing the effects of the following inhibitors on this activity: general mRNA synthesis inhibitors, inhibitors of the NF-kappaB and JAK/STAT pathways, and small interfering F11R-mRNA (siRNAs to specifically silence the F11R gene. Results - Treatment of inflamed ECs with the inhibitors actinomycin, parthenolide or with AG-480 resulted in complete blockade of F11R- mRNA expression, indicating the involvement of NF-kappaB and JAK/STAT pathways in this induction. Transfection of ECs with F11R siRNAs caused complete inhibition of the cytokine-induced upregulation of F11R mRNA and inhibition of detection of the newly- translated F11R molecules in cytokine-inflamed ECs. The functional consequence of the inhibition of F11R transcription and translation was the significant blockade of the adhesion of human platelets to inflamed ECs. Conclusion - These results prove that de novo synthesis

  2. A novel embryological theory of autism causation involving endogenous biochemicals capable of initiating cellular gene transcription: a possible link between twelve autism risk factors and the autism 'epidemic'.

    Science.gov (United States)

    King, Chiara R

    2011-05-01

    Human alpha-fetoprotein is a pregnancy-associated protein with an undetermined physiological role. As human alpha-fetoprotein binds retinoids and inhibits estrogen-dependent cancer cell proliferation, and because retinoic acid (a retinol metabolite) and estradiol (an estrogen) can both initiate cellular gene transcription, it is hypothesized here that alpha-fetoprotein functions during critical gestational periods to prevent retinoic acid and maternal estradiol from inappropriately stimulating gene expression in developing brain regions which are sensitive to these chemicals. Prenatal/maternal factors linked to increased autism risk include valproic acid, thalidomide, alcohol, rubella, cytomegalovirus, depression, schizophrenia, obsessive-compulsive disorder, autoimmune disease, stress, allergic reaction, and hypothyroidism. It will be shown how each of these risk factors may initiate expression of genes which are sensitive to retinoic acid and/or estradiol - whether by direct promotion or by reducing production of alpha-fetoprotein. It is thus hypothesized here that autism is not a genetic disorder, but is rather an epigenetic disruption in brain development caused by gestational exposure to chemicals and/or conditions which either inhibit alpha-fetoprotein production or directly promote retinoic acid-sensitive or estradiol-sensitive gene expression. This causation model leads to potential chemical explanations for autistic brain morphology, the distinct symptomatology of Asperger's syndrome, and the differences between high-functioning and low-functioning autism with regard to mental retardation, physical malformation, and sex ratio. It will be discussed how folic acid may cause autism under the retinoic acid/estradiol model, and the history of prenatal folic acid supplementation will be shown to coincide with the history of what is popularly known as the autism epidemic. It is thus hypothesized here that prenatal folic acid supplementation has contributed to the

  3. Activity-dependent expression of RNA binding protein HuD and its association with mRNAs in neurons.

    Science.gov (United States)

    Tiruchinapalli, Dhanrajan M; Ehlers, Michael D; Keene, Jack D

    2008-01-01

    The dendritic trafficking of RNA binding proteins (RBPs) is an important posttranscriptional process involved in the regulation of synaptic plasticity. For example, HuD RBP binds to AU-rich elements (AREs) in the 3' untranslated regions (3'UTR) of immediate-early gene (IEG) transcripts, whose protein products directly affect synaptic plasticity. However, the subcellular localization of HuD RBPs and associated mRNAs has not been investigated following neuronal stimulation. Immunofluorescence analysis revealed activity-dependent dendritic localization of HuD RBPs following KCl stimulation in hippocampal neurons, while immunoprecipitation demonstrated the association of HuD RBP with neuronal mRNAs encoding neuritin, Homer1a, GAP-43, Neuroligins, Verge and CAMKIIalpha. Activity-dependent expression of HuD involves activation of NMDAR as NMDA receptor 1 knockout mice (Nr1(neo-/-)) exhibited decreased expression of HuD. Moreover, translational regulation of HuD-associated transcripts was suggested by its co-localization with poly-A-binding protein (PABP) as well as the cap-binding protein (eIF4E). We propose that post-transcriptional regulation of neuronal mRNAs by HuD RBPs mediates protein synthesis-dependent changes in synaptic plasticity. PMID:18769135

  4. Activity-dependent subcellular localization of NAC1.

    Science.gov (United States)

    Korutla, Laxman; Champtiaux, Nicholas; Shen, Hao-Wei; Klugmann, Matthias; Klugman, Matthias; Kalivas, Peter W; Mackler, Scott A

    2005-07-01

    The expression of the transcriptional regulator NAC1 is increased in the nucleus accumbens of rats withdrawn from cocaine self-administration, and in vivo studies indicate that the up-regulation is a compensatory mechanism opposing the acute effects of cocaine. Both mammalian two-hybrid assay and punctate localization largely in the nucleus suggest NAC1 is a transcriptional regulator. However, in this report it is shown that in differentiated PC12 and Neuro2A cells, as well as in primary cortical neurons, NAC1 is diffusely expressed not only in the cell nucleus but also in cytoplasm. Blockade of spontaneous electrical activity by tetrodotoxin prevented the diffuse expression of NAC1, and depolarization with high potassium concentrations induced diffuse cellular localization in non-differentiating cells. The use of protein kinase C (PKC) inhibitors and activator, as well as the systematic mutation of potential PKC phosphorylation sites in NAC1, demonstrated that phosphorylation of residue S245 by PKC is a necessary event inducing diffuse NAC1 expression outside of the nucleus. These observations indicate a potential non-transcriptional role for NAC1 in the brain.

  5. Solar activity dependence of nightside aurora in winter conditions

    Science.gov (United States)

    Zhou, Su; Luan, Xiaoli; Dou, Xiankang

    2016-02-01

    The dependence of the nightside (21:00-03:00 MLT; magnetic local time) auroral energy flux on solar activity was quantitatively studied for winter/dark and geomagnetically quiet conditions. Using data combined from Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager and Defense Meteorological Satellite Program/Special Sensor Ultraviolet Spectrographic Imager observations, we separated the effects of geomagnetic activity from those of solar flux on the nightside auroral precipitation. The results showed that the nightside auroral power was reduced by ~42% in solar maximum (F10.7 = 200 sfu; solar flux unit 1 sfu = 10-22 W m-2 Hz-1) with respect to that under solar minimum (F10.7 = 70 sfu) for the Kp = 1 condition, and this change rate became less (~21%) for the Kp = 3 condition. In addition, the solar cycle dependence of nightside auroral power was similar with that from both the premidnight (21:00-23:00 MLT) and postmidnight (01:00-03:00 MLT) sectors. These results indicated that as the ionospheric ionization increases with the enhanced auroral and geomagnetic activities, the solar activity dependences of nightside auroral power become weaker, at least under geomagnetically quiet conditions.

  6. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Geetaram; Farley, Kalamo [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); El-Hage, Nazira [Virginia Commonwealth University, Richmond, VA (United States); Aiamkitsumrit, Benjamas; Fassnacht, Ryan [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Kashanchi, Fatah [George Mason University, Manassas, VA (United States); Ochem, Alex [ICGEB, Wernher and Beit Building, Anzio Road, Observatory, 7925 Cape Town (South Africa); Simon, Gary L. [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Karn, Jonathan [Case Western Reserve University, Cleveland, OH (United States); Hauser, Kurt F. [Virginia Commonwealth University, Richmond, VA (United States); Tyagi, Mudit, E-mail: tmudit@email.gwu.edu [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037 (United States)

    2015-09-15

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR.

  7. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    International Nuclear Information System (INIS)

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR

  8. Role of cAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3) in the initiation of mitochondrial biogenesis and stress response in liver cells.

    Science.gov (United States)

    Than, Tin Aung; Lou, Huan; Ji, Cheng; Win, Sanda; Kaplowitz, Neil

    2011-06-24

    Peroxisome proliferator-activated receptor α, coactivator 1α (PGC-1α) is the master regulator of mitochondrial biogenesis. PGC-1α expression is under the control of the transcription factor, cAMP-responsive element-binding protein (CREB). In searching for candidate transcription factors that mediate mitochondrial stress-initiated mitochondria-to-nucleus signaling in the regulation of mitochondrial biogenesis, we assessed the effect of silencing CREB-regulated transcription co-activators (CRTC). CRTC isoforms are co-activators of CREB-regulated transcription by a CREB phosphorylation-independent pathway. Using cultured HepG2 cells and primary mouse hepatocytes, we determined that mitochondrial stress imposed by the complex I inhibitor rotenone elicited mitochondrial biogenesis, which was dependent on an induction of PGC-1α, which was inhibited by silencing PGC-1α. PGC-1α induction in response to rotenone was inhibited by silencing the expression of CRTC3, which blocked downstream mitochondria biogenesis. In contrast, silencing CRTC2 did not affect the induction of this pathway in response to rotenone. Thus, CRTC3 plays a selective role in mitochondrial biogenesis in response to rotenone.

  9. Identification and initial characterization of the 3' end of gene transcripts encoding putative members of the pheromone receptor subfamily in Lepidoptera

    Institute of Scientific and Technical Information of China (English)

    Stephen F. Garczynski; Kevin W. Wanner; Thomas R. Unruh

    2012-01-01

    Semiochemicals,including pheromones and kairomones,used in pest management programs reduce the need for chemical insecticides,and understanding their interactions with their membrane receptors may help make them more effective in the field.Identification of odorant receptors in the Lepidoptera has mainly been achieved using bioinformatics to search DNA sequences generated by genome or expressed sequence tag (EST) sequencing projects.This study reports a rapid method to identify members of the pheromone receptor subfamily in Lepidoptera.Degenerate oligonucleotide primers were designed against a conserved amino acid sequence in the carboxyl terminus of known lepidopteran pheromone receptors,and the primers were used in a 3' rapid amplification of complementary DNA (cDNA) ends procedure.Polymerase chain reaction products generated from seven different lepidopteran species were TA cloned and sequenced.The eDNA sequences of 25 transcripts were determined to encode potential members of the pheromone receptor subfamily.These cDNAs ranged from 238 to 642 bp and encoded 49-54 amino acids of the carboxyl terminus.Analysis of the 3' untranslated region reveals that most of the transcripts contain multiple polyadenylation signal sequences,and in the case ofManduca sexta,an alternate polyadenylation signal appears to be used in transcript processing.The 3' untranslated region was also useful in determining unique receptors encoded by transcripts having highly similar nucleotide and amino acid sequences.Overall,this technique provides a complementary method of pheromone receptor identification in EST sequencing projects,or can be used as a stand-alone method in conjunction with 5' rapid amplification of cDNA ends procedures.

  10. Transcription Dynamics in Living Cells.

    Science.gov (United States)

    Lenstra, Tineke L; Rodriguez, Joseph; Chen, Huimin; Larson, Daniel R

    2016-07-01

    The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that (a) transcription is heterogeneous between cells and (b) transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle. We present the techniques allowing for single-cell transcription measurements, review evidence from different organisms, and discuss how these experiments have broadened our mechanistic understanding of transcription regulation.

  11. Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the HindIII H genome fragment.

    Science.gov (United States)

    Rosel, J L; Earl, P L; Weir, J P; Moss, B

    1986-11-01

    The sequence of the 8,600-base-pair HindIII H fragment, located at the center of the vaccinia virus genome, was determined to analyze several late genes. Seven major complete open reading frames (ORFs) and two that started from or continued into adjacent DNA segments were identified. ORFs were closely spaced and present on both DNA strands. Some adjacent ORFs had oppositely oriented overlapping termination codons or contiguous stop and start codons. Nucleotide compositional analysis indicated that the A-T frequency was consistently lowest in the first codon position. The sizes of the polypeptides predicted from the DNA sequence were compared with those determined by polyacrylamide gel electrophoresis of cell-free translation products of mRNAs selected by hybridization to cloned single-stranded DNA segments or synthesized in vitro by bacteriophage T7 RNA polymerase. Six transcripts that initiated within the HindIII H DNA fragment were detected, and of these, four were synthesized only at late times, one was synthesized only early, and one was synthesized early and late. The sites on the genome corresponding to the 5' ends of the transcripts were located by high-resolution nuclease S1 analysis. For late genes, the transcriptional and translational initiation sites mapped within a few nucleotides of each other, and in each case the sequence TAAATGG occurred at the start of the ORF. The extremely short leader and the absence of A or G in the -3 position, relative to the first nucleotide of the initiation codon, distinguishes the majority of vaccinia virus late genes from eucaryotic and vaccinia virus early genes.

  12. Novel activity-dependent approaches to therapeutic hypnosis and psychotherapy: the general waking trance.

    Science.gov (United States)

    Rossi, Ernest; Erickson-Klein, Roxanna; Rossi, Kathryn

    2008-10-01

    This paper presents a highly edited version of a videotape made in 1980 by Marion Moore, M.D., showing Milton H. Erickson and Moore demonstrating novel, activity-dependent approaches to hand-levitation and therapeutic hypnosis on their subject, Ernest Rossi. Erickson's naturalistic and utilization approach is described in his very direct and surprising induction in a trance challenged patient. These novel, and surprising inductions are examples of how Erickson was prescient in developing activity-dependent approaches to therapeutic hypnosis and psychotherapy several generations before modern neuroscience documented the activity-dependent molecular-genomic mechanisms of memory, learning, and behavior change. Erickson describes a case where he utilized what he called, "The General Waking Trance" when he "dared" not use an obvious hypnotic induction. It is proposed that the states of intense mental absorption and response attentiveness that are facilitated by the general waking trance are functionally related to the three conditions neuroscientists have identified as novelty, enrichment, and exercise (both mental and physical), which can turn on activity-dependent gene expression and activity-dependent brain plasticity, that are the molecular-genomic and neural basis ofmemory, learning, consciousness, and behavior change. We recommend that the next step in investigating the efficacy of therapeutic hypnosis will be in partnering with neuroscientists to explore the possibilities and limitations of utilizing the activity-dependent approaches to hypnotic induction and the general waking trance in facilitating activity-dependent gene expression and brain plasticity.

  13. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models

    OpenAIRE

    Caleb Andrew Doll; Kendal eBroadie

    2014-01-01

    Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent developmental processes are specifically impaired in autism spectrum disorders (ASDs). ASD genetic models in both mouse and Drosophila have pioneered our insights into normal activity-dependent neural circuit assembly and consolidation, and how these developmental mechanism...

  14. Ubiquitin and proteasomes in transcription.

    Science.gov (United States)

    Geng, Fuqiang; Wenzel, Sabine; Tansey, William P

    2012-01-01

    Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription-from transcription initiation through to export of mRNA from the nucleus-is influenced by the UPS and that all major arms of the system--from the first step in ubiquitin (Ub) conjugation through to the proteasome-are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power. PMID:22404630

  15. Pervasive transcription: detecting functional RNAs in bacteria.

    Science.gov (United States)

    Lybecker, Meghan; Bilusic, Ivana; Raghavan, Rahul

    2014-01-01

    Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.

  16. Activity-dependent brain-derived neurotrophic factor expression regulates cortistatin-interneurons and sleep behavior

    Directory of Open Access Journals (Sweden)

    Martinowich Keri

    2011-03-01

    Full Text Available Abstract Background Sleep homeostasis is characterized by a positive correlation between sleep length and intensity with the duration of the prior waking period. A causal role for brain-derived neurotrophic factor (BDNF in sleep homeostasis has been suggested, but the underlying mechanisms remain unclear. Cortistatin, a neuropeptide expressed primarily in a subset of cortical GABAergic interneurons, is another molecule implicated in sleep homeostasis. Results We confirmed that sleep deprivation leads to an increase in cortical cortistatin mRNA expression. Disruption of activity-dependent BDNF expression in a genetically modified mouse line impairs both baseline levels of cortistatin mRNA as well as its levels following sleep deprivation. Disruption of activity-dependent BDNF also leads to a decrease in sleep time during the active (dark phase. Conclusion Our studies suggest that regulation of cortistatin-expressing interneurons by activity-dependent BDNF expression may contribute to regulation of sleep behavior.

  17. Evolution and diversification of the basal transcription machinery.

    Science.gov (United States)

    Duttke, Sascha H C

    2015-03-01

    Transcription initiation was once thought to be regulated primarily by sequence-specific transcription factors with the basal transcription machinery being largely invariant. Gradually it became apparent that the basal transcription machinery greatly diversified during evolution and new studies now demonstrate that diversification of the TATA-binding protein (TBP) family yielded specialized and largely independent transcription systems.

  18. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models

    Directory of Open Access Journals (Sweden)

    Caleb Andrew Doll

    2014-02-01

    Full Text Available Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent developmental processes are specifically impaired in autism spectrum disorders (ASDs. ASD genetic models in both mouse and Drosophila have pioneered our insights into normal activity-dependent neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic Fragile X syndrome (FXS, a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in activity-dependent critical period processes. The Fragile X Mental Retardation Protein (FMRP is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the activity-dependent remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor activity-dependent processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of activity-dependent mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model.

  19. Structural basis of transcription activation.

    Science.gov (United States)

    Feng, Yu; Zhang, Yu; Ebright, Richard H

    2016-06-10

    Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme. PMID:27284196

  20. The down-stream effects of mannan-induced lectin complement pathway activation depend quantitatively on alternative pathway amplification

    DEFF Research Database (Denmark)

    Harboe, Morten; Garred, Peter; Karlstrøm, Ellen;

    2009-01-01

    was not observed even at high mannan concentrations since addition of the inhibiting anti-MBL mAb 3F8 completely abolished generation of the terminal C5b-9 complex (TCC). However, selective blockade of AP by anti-factor D inhibited more than 80% of TCC release into the fluid phase after LP activation showing...... that AP amplification is quantitatively responsible for the final effect of initial specific LP activation. TCC generation on the solid phase was distinctly but less inhibited by anti-fD. C2 bypass of the LP pathway could be demonstrated, and AP amplification was also essential during C2 bypass in LP...... as shown by complete inhibition of TCC generation in C2-deficient serum by anti-fD and anti-properdin antibodies. In conclusion, the down-stream effect of LP activation depends strongly on AP amplification in normal human serum and in the C2 bypass pathway....

  1. Archaeal Transcription: Function of an Alternative Transcription Factor B from Pyrococcus furiosus▿

    OpenAIRE

    Micorescu, Michael; Grünberg, Sebastian; Franke, Andreas; Cramer, Patrick; Thomm, Michael; Bartlett, Michael

    2007-01-01

    The genome of the hyperthermophile archaeon Pyrococcus furiosus encodes two transcription factor B (TFB) paralogs, one of which (TFB1) was previously characterized in transcription initiation. The second TFB (TFB2) is unusual in that it lacks recognizable homology to the archaeal TFB/eukaryotic TFIIB B-finger motif. TFB2 functions poorly in promoter-dependent transcription initiation, but photochemical cross-linking experiments indicated that the orientation and occupancy of transcription com...

  2. Activity-Dependent NPAS4 Expression and the Regulation of Gene Programs Underlying Plasticity in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    José Fernando Maya-Vetencourt

    2013-01-01

    Full Text Available The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable.

  3. The emerging regulatory potential of SCFMet30 -mediated polyubiquitination and proteolysis of the Met4 transcriptional activator

    Directory of Open Access Journals (Sweden)

    Chandrasekaran Srikripa

    2008-07-01

    Full Text Available Abstract The yeast SCFMet30 ubiquitin ligase plays a critical role in cell division by regulating the Met4 transcriptional activator of genes that control the uptake and assimilation of sulfur into methionine and S-adenosyl-methionine. The initial view on how SCFMet30 performs its function has been driven by the assumption that SCFMet30 acts exclusively as Met4 inhibitor when high levels of methionine drive an accumulation of cysteine. We revisit this model in light of the growing evidence that SCFMet30 can also activate Met4. The notion that Met4 can be inhibited or activated depending on the sulfur metabolite context is not new, but for the first time both aspects have been linked to SCFMet30, creating an interesting regulatory paradigm in which polyubiquitination and proteolysis of a single transcriptional activator can play different roles depending on context. We discuss the emerging molecular basis and the implications of this new regulatory phenomenon.

  4. Robustness and Enhancement of Neural Synchronization by Activity-Dependent Coupling

    OpenAIRE

    Zhigulin, Valentin P.; Mikhail I. Rabinovich; Huerta, Ramon; Abarbanel, Henry D. I.

    2002-01-01

    We study the synchronization of two model neurons coupled through a synapse having an activity-dependent strength. Our synapse follows the rules of Spike-Timing Dependent Plasticity (STDP). We show that this plasticity of the coupling between neurons produces enlarged frequency locking zones and results in synchronization that is more rapid and much more robust against noise than classical synchronization arising from connections with constant strength. We also present a simple discrete map m...

  5. Robustness and Enhancement of Neural Synchronization by Activity-Dependent Coupling

    CERN Document Server

    Zhigulin, V P; Huerta, R; Abarbanel, Henry D I; Zhigulin, Valentin P.; Rabinovich, Mikhail I.; Huerta, Ramon; Abarbanel, Henry D I

    2003-01-01

    We study the synchronization of two model neurons coupled through a synapse having an activity-dependent strength. Our synapse follows the rules of Spike-Timing Dependent Plasticity (STDP). We show that this plasticity of the coupling between neurons produces enlarged frequency locking zones and results in synchronization that is more rapid and much more robust against noise than classical synchronization arising from connections with constant strength. We also present a simple discrete map model that demonstrates the generality of the phenomenon.

  6. Activity-Dependent Callosal Axon Projections in Neonatal Mouse Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Yoshiaki Tagawa

    2012-01-01

    Full Text Available Callosal axon projections are among the major long-range axonal projections in the mammalian brain. They are formed during the prenatal and early postnatal periods in the mouse, and their development relies on both activity-independent and -dependent mechanisms. In this paper, we review recent findings about the roles of neuronal activity in callosal axon projections. In addition to the well-documented role of sensory-driven neuronal activity, recent studies using in utero electroporation demonstrated an essential role of spontaneous neuronal activity generated in neonatal cortical circuits. Both presynaptic and postsynaptic neuronal activities are critically involved in the axon development. Studies have begun to reveal intracellular signaling pathway which works downstream of neuronal activity. We also review several distinct patterns of neuronal activity observed in the developing cerebral cortex, which might play roles in activity-dependent circuit construction. Such neuronal activity during the neonatal period can be disrupted by genetic factors, such as mutations in ion channels. It has been speculated that abnormal activity caused by such factors may affect activity-dependent circuit construction, leading to some developmental disorders. We discuss a possibility that genetic mutation in ion channels may impair callosal axon projections through an activity-dependent mechanism.

  7. Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors.

    Science.gov (United States)

    Palmer, Adam C; Egan, J Barry; Shearwin, Keith E

    2011-01-01

    Transcriptional interference is the in cis suppression of one transcriptional process by another. Mathematical modeling shows that promoter occlusion by elongating RNA polymerases cannot produce strong interference. Interference may instead be generated by (1) dislodgement of slow-to-assemble pre-initiation complexes and transcription factors and (2) prolonged occlusion by paused RNA polymerases.

  8. Early survival factor deprivation in the olfactory epithelium enhances activity-dependent survival

    Directory of Open Access Journals (Sweden)

    Adrien eFrançois

    2013-12-01

    Full Text Available The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs. However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226. We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population towards detection of environmental odorants.

  9. Structural insights into transcription complexes

    NARCIS (Netherlands)

    Berger, I.; Blanco, A.G.; Boelens, R.; Cavarelli, J.; Coll, M.; Folkers, G.E.; Nie, Y.; Pogenberg, V.; Schultz, P.; Wilmanns, M.; Moras, D.; Poterszman, A.

    2011-01-01

    Control of transcription allows the regulation of cell activity in response to external stimuli and research in the field has greatly benefited from efforts in structural biology. In this review, based on specific examples from the European SPINE2-COMPLEXES initiative, we illustrate the impact of st

  10. Activity-dependent regulation of calcium and ribosomes in the chick cochlear nucleus.

    Science.gov (United States)

    Call, C L; Hyson, R L

    2016-03-01

    Cochlea removal results in the death of 20-30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM). Two potentially cytotoxic events, a dramatic rise in intracellular calcium concentration ([Ca(2+)]i) and a decline in the integrity of ribosomes are observed within 1h of deafferentation. Glutamatergic input from the auditory nerve has been shown to preserve NM neuron health by activating metabotropic glutamate receptors (mGluRs), maintaining both normal [Ca(2+)]i and ribosomal integrity. One interpretation of these results is that a common mGluR-activated signaling cascade is required for the maintenance of both [Ca(2+)]i and ribosomal integrity. This could happen if both responses are influenced directly by a common messenger, or if the loss of mGluR activation causes changes in one component that secondarily causes changes in the other. The present studies tested this common-mediator hypothesis in slice preparations by examining activity-dependent regulation of [Ca(2+)]i and ribosomes in the same tissue after selectively blocking group I mGluRs (1-Aminoindan-1,5-dicarboxylic acid (AIDA)) or group II mGluRs (LY 341495) during unilateral auditory nerve stimulation. Changes in [Ca(2+)]i of NM neurons were measured using fura-2 ratiometric calcium imaging and the tissue was subsequently processed for Y10B immunoreactivity (Y10B-ir), an antibody that recognizes a ribosomal epitope. The group I mGluR antagonist blocked the activity-dependent regulation of both [Ca(2+)]i and Y10B-ir, but the group II antagonist blocked only the activity-dependent regulation of Y10B-ir. That is, even when group II receptors were blocked, stimulation continued to maintain low [Ca(2+)]i, but it did not maintain Y10B-ir. These results suggest a dissociation in how calcium and ribosomes are regulated in NM neurons and that ribosomes can be regulated through a mechanism that is independent of calcium regulation. PMID:26739326

  11. VAMP4 Is an Essential Cargo Molecule for Activity-Dependent Bulk Endocytosis.

    Science.gov (United States)

    Nicholson-Fish, Jessica C; Kokotos, Alexandros C; Gillingwater, Thomas H; Smillie, Karen J; Cousin, Michael A

    2015-12-01

    The accurate formation of synaptic vesicles (SVs) and incorporation of their protein cargo during endocytosis is critical for the maintenance of neurotransmission. During intense neuronal activity, a transient and acute accumulation of SV cargo occurs at the plasma membrane. Activity-dependent bulk endocytosis (ADBE) is the dominant SV endocytosis mode under these conditions; however, it is currently unknown how ADBE mediates cargo retrieval. We examined the retrieval of different SV cargo molecules during intense stimulation using a series of genetically encoded pH-sensitive reporters in neuronal cultures. The retrieval of only one reporter, VAMP4-pHluorin, was perturbed by inhibiting ADBE. This selective recovery was confirmed by the enrichment of endogenous VAMP4 in purified bulk endosomes formed by ADBE. VAMP4 was also essential for ADBE, with a cytoplasmic di-leucine motif being critical for this role. Therefore, VAMP4 is the first identified ADBE cargo and is essential for this endocytosis mode to proceed.

  12. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A).

    Science.gov (United States)

    Choi, Won-Il; Kim, Youngsoo; Kim, Yuri; Yu, Mi-young; Park, Jungeun; Lee, Choong-Eun; Jeon, Bu-Nam; Koh, Dong-In; Hur, Man-Wook

    2009-01-01

    FBI-1, a member of the POK (POZ and Kruppel) family of transcription factors, plays a role in differentiation, oncogenesis, and adipogenesis. eEF1A is a eukaryotic translation elongation factor involved in several cellular processes including embryogenesis, oncogenic transformation, cell proliferation, and cytoskeletal organization. CCS-3, a potential cervical cancer suppressor, is an isoform of eEF1A. We found that eEF1A forms a complex with FBI-1 by co-immunoprecipitation, SDS-PAGE, and MALDI-TOF Mass analysis of the immunoprecipitate. GST fusion protein pull-downs showed that FBI-1 directly interacts with eEF1A and CCS-3 via the zinc finger and POZ-domain of FBI-1. FBI-1 co-localizes with either eEF1A or CCS-3 at the nuclear periplasm. CCS-3 enhances transcriptional repression of the p21CIP1 gene (hereafter referred to as p21) by FBI-1. The POZ-domain of FBI-1 interacts with the co-repressors, SMRT and BCoR. We found that CCS-3 also interacts with the co-repressors independently. The molecular interaction between the co-repressors and CCS-3 at the POZ-domain of FBI-1 appears to enhance FBI-1 mediated transcriptional repression. Our data suggest that CCS-3 may be important in cell differentiation, tumorigenesis, and oncogenesis by interacting with the proto-oncogene FBI-1 and transcriptional co-repressors. PMID:19471103

  13. Human Mitochondrial Transcription Revisited: ONLY TFAM AND TFB2M ARE REQUIRED FOR TRANSCRIPTION OF THE MITOCHONDRIAL GENES IN VITRO*

    OpenAIRE

    Litonin, Dmitry; Sologub, Marina; Shi, Yonghong; Savkina, Maria; Anikin, Michael; Falkenberg, Maria; Gustafsson, Claes M.; Temiakov, Dmitry

    2010-01-01

    Human mitochondrial transcription is driven by a single subunit RNA polymerase and a set of basal transcription factors. The development of a recombinant in vitro transcription system has allowed for a detailed molecular characterization of the individual components and their contribution to transcription initiation. We found that TFAM and TFB2M act synergistically and increase transcription efficiency 100–200-fold as compared with RNA polymerase alone. Both the light-strand promoter (LSP) an...

  14. Activity-dependent development of cortical axon terminations in the spinal cord and brain stem.

    Science.gov (United States)

    Martin, J H; Kably, B; Hacking, A

    1999-03-01

    corticocuneate terminations also is activity-dependent but that development of corticorubral terminations is not. Activity-dependent CS development is a plausible mechanism by which early motor experiences could shape the anatomical and functional organization of the motor systems during a critical postnatal period. PMID:10204771

  15. SCN10A Mutation in a Patient with Erythromelalgia Enhances C-Fiber Activity Dependent Slowing.

    Science.gov (United States)

    Kist, Andreas M; Sagafos, Dagrun; Rush, Anthony M; Neacsu, Cristian; Eberhardt, Esther; Schmidt, Roland; Lunden, Lars Kristian; Ørstavik, Kristin; Kaluza, Luisa; Meents, Jannis; Zhang, Zhiping; Carr, Thomas Hedley; Salter, Hugh; Malinowsky, David; Wollberg, Patrik; Krupp, Johannes; Kleggetveit, Inge Petter; Schmelz, Martin; Jørum, Ellen; Lampert, Angelika; Namer, Barbara

    2016-01-01

    Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by microneurography and patch-clamp techniques. Recordings of the patient's peripheral nerve fibers showed increased activity dependent slowing (ADS) in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations. To evaluate the impact of the p.M650K mutation on neuronal firing and channel gating, we performed current and voltage-clamp recordings on transfected sensory neurons (DRGs) and neuroblastoma cells. The p.M650K mutation shifted steady-state fast inactivation of Nav1.8 to more hyperpolarized potentials and did not significantly alter any other tested gating behaviors. The AP half-width was significantly broader and the stimulated action potential firing rate was reduced for M650K transfected DRGs compared to WT. We discuss the potential link between enhanced steady state fast inactivation, broader action potential width and the potential physiological consequences.

  16. The Molecular Physiology of Activity-Dependent Bulk Endocytosis of Synaptic Vesicles

    Science.gov (United States)

    Clayton, Emma L.; Cousin, Michael A.

    2010-01-01

    Central nerve terminals release neurotransmitter in response to a wide variety of stimuli. Since maintenance of neurotransmitter release is dependent on the continual supply of synaptic vesicles (SVs), nerve terminals possess an array of endocytosis modes to retrieve and recycle SV membrane and proteins. During mild stimulation conditions single SV retrieval modes such as clathrin-mediated endocytosis (CME) predominate. However during increased neuronal activity additional SV retrieval capacity is required, which is provided by activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mechanism during elevated neuronal activity. It is a high capacity SV retrieval mode that is immediately triggered during such stimulation conditions. This review will summarise the current knowledge regarding the molecular mechanism of ADBE, including molecules required for its triggering and subsequent steps, including SV budding from bulk endosomes. The molecular relationship between ADBE and the SV reserve pool will also be discussed. It is becoming clear that an understanding of the molecular physiology of ADBE will be of critical importance in attempts to modulate both normal and abnormal synaptic function during intense neuronal activity. PMID:19765184

  17. Activity-dependent synaptic plasticity modulates the critical phase of brain development.

    Science.gov (United States)

    Chaudhury, Sraboni; Sharma, Vikram; Kumar, Vivek; Nag, Tapas C; Wadhwa, Shashi

    2016-04-01

    Plasticity or neuronal plasticity is a unique and adaptive feature of nervous system which allows neurons to reorganize their interactions in response to an intrinsic or extrinsic stimulation and shapes the formation and maintenance of a functional neuronal circuit. Synaptic plasticity is the most important form of neural plasticity and plays critical role during the development allowing the formation of precise neural connectivity via the process of pruning. In the sensory systems-auditory and visual, this process is heavily dependent on the external cues perceived during the development. Environmental enrichment paradigms in an activity-dependent manner result in early maturation of the synapses and more efficient trans-synaptic signaling or communication flow. This has been extensively observed in the avian auditory system. On the other hand, stimuli results in negative effect can cause alterations in the synaptic connectivity and strength resulting in various developmental brain disorders including autism, fragile X syndrome and rett syndrome. In this review we discuss the role of different forms of activity (spontaneous or environmental) during the development of the nervous system in modifying synaptic plasticity necessary for shaping the adult brain. Also, we try to explore various factors (molecular, genetic and epigenetic) involved in altering the synaptic plasticity in positive and negative way. PMID:26515724

  18. Activity-Dependent Neurorehabilitation Beyond Physical Trainings: "Mental Exercise" Through Mirror Neuron Activation.

    Science.gov (United States)

    Yuan, Ti-Fei; Chen, Wei; Shan, Chunlei; Rocha, Nuno; Arias-Carrión, Oscar; Paes, Flávia; de Sá, Alberto Souza; Machado, Sergio

    2015-01-01

    The activity dependent brain repair mechanism has been widely adopted in many types of neurorehabilitation. The activity leads to target specific and non-specific beneficial effects in different brain regions, such as the releasing of neurotrophic factors, modulation of the cytokines and generation of new neurons in adult hood. However physical exercise program clinically are limited to some of the patients with preserved motor functions; while many patients suffered from paralysis cannot make such efforts. Here the authors proposed the employment of mirror neurons system in promoting brain rehabilitation by "observation based stimulation". Mirror neuron system has been considered as an important basis for action understanding and learning by mimicking others. During the action observation, mirror neuron system mediated the direct activation of the same group of motor neurons that are responsible for the observed action. The effect is clear, direct, specific and evolutionarily conserved. Moreover, recent evidences hinted for the beneficial effects on stroke patients after mirror neuron system activation therapy. Finally some music-relevant therapies were proposed to be related with mirror neuron system.

  19. Key physiological parameters dictate triggering of activity-dependent bulk endocytosis in hippocampal synapses.

    Directory of Open Access Journals (Sweden)

    Eva M Wenzel

    Full Text Available To maintain neurotransmission in central neurons, several mechanisms are employed to retrieve synaptically exocytosed membrane. The two major modes of synaptic vesicle (SV retrieval are clathrin-mediated endocytosis and activity-dependent bulk endocytosis (ADBE. ADBE is the dominant SV retrieval mode during intense stimulation, however the precise physiological conditions that trigger this mode are not resolved. To determine these parameters we manipulated rat hippocampal neurons using a wide spectrum of stimuli by varying both the pattern and duration of stimulation. Using live-cell fluorescence imaging and electron microscopy approaches, we established that stimulation frequency, rather than the stimulation load, was critical in the triggering of ADBE. Thus two hundred action potentials, when delivered at high frequency, were sufficient to induce near maximal bulk formation. Furthermore we observed a strong correlation between SV pool size and ability to perform ADBE. We also identified that inhibitory nerve terminals were more likely to utilize ADBE and had a larger SV recycling pool. Thus ADBE in hippocampal synaptic terminals is tightly coupled to stimulation frequency and is more likely to occur in terminals with large SV pools. These results implicate ADBE as a key modulator of both hippocampal neurotransmission and plasticity.

  20. Long lasting protein synthesis- and activity-dependent spine shrinkage and elimination after synaptic depression.

    Directory of Open Access Journals (Sweden)

    Yazmín Ramiro-Cortés

    Full Text Available Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that spines can undergo bidirectional physical modifications. However, it is unclear whether protein synthesis dependent synaptic depression leads to long lasting structural changes. Here, we investigate the structural correlates of protein synthesis dependent long-term depression (LTD mediated by metabotropic glutamate receptors (mGluRs through two-photon imaging of dendritic spines on hippocampal pyramidal neurons. We find that induction of mGluR-LTD leads to robust and long lasting spine shrinkage and elimination that lasts for up to 24 hours. These effects depend on signaling through group I mGluRs, require protein synthesis, and activity. These data reveal a mechanism for long lasting remodeling of synaptic inputs, and offer potential insights into mental retardation.

  1. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems.

    Science.gov (United States)

    Li, Yi; Zhong, Yingpeng; Zhang, Jinjian; Xu, Lei; Wang, Qing; Sun, Huajun; Tong, Hao; Cheng, Xiaoming; Miao, Xiangshui

    2014-01-01

    Nanoscale inorganic electronic synapses or synaptic devices, which are capable of emulating the functions of biological synapses of brain neuronal systems, are regarded as the basic building blocks for beyond-Von Neumann computing architecture, combining information storage and processing. Here, we demonstrate a Ag/AgInSbTe/Ag structure for chalcogenide memristor-based electronic synapses. The memristive characteristics with reproducible gradual resistance tuning are utilised to mimic the activity-dependent synaptic plasticity that serves as the basis of memory and learning. Bidirectional long-term Hebbian plasticity modulation is implemented by the coactivity of pre- and postsynaptic spikes, and the sign and degree are affected by assorted factors including the temporal difference, spike rate and voltage. Moreover, synaptic saturation is observed to be an adjustment of Hebbian rules to stabilise the growth of synaptic weights. Our results may contribute to the development of highly functional plastic electronic synapses and the further construction of next-generation parallel neuromorphic computing architecture. PMID:24809396

  2. Full transcription of the chloroplast genome in photosynthetic eukaryotes.

    Science.gov (United States)

    Shi, Chao; Wang, Shuo; Xia, En-Hua; Jiang, Jian-Jun; Zeng, Fan-Chun; Gao, Li-Zhi

    2016-01-01

    Prokaryotes possess a simple genome transcription system that is different from that of eukaryotes. In chloroplasts (plastids), it is believed that the prokaryotic gene transcription features govern genome transcription. However, the polycistronic operon transcription model cannot account for all the chloroplast genome (plastome) transcription products at whole-genome level, especially regarding various RNA isoforms. By systematically analyzing transcriptomes of plastids of algae and higher plants, and cyanobacteria, we find that the entire plastome is transcribed in photosynthetic green plants, and that this pattern originated from prokaryotic cyanobacteria - ancestor of the chloroplast genomes that diverged about 1 billion years ago. We propose a multiple arrangement transcription model that multiple transcription initiations and terminations combine haphazardly to accomplish the genome transcription followed by subsequent RNA processing events, which explains the full chloroplast genome transcription phenomenon and numerous functional and/or aberrant pre-RNAs. Our findings indicate a complex prokaryotic genome regulation when processing primary transcripts. PMID:27456469

  3. Transcription Termination: Variations on Common Themes.

    Science.gov (United States)

    Porrua, Odil; Boudvillain, Marc; Libri, Domenico

    2016-08-01

    Transcription initiates pervasively in all organisms, which challenges the notion that the information to be expressed is selected mainly based on mechanisms defining where and when transcription is started. Together with post-transcriptional events, termination of transcription is essential for sorting out the functional RNAs from a plethora of transcriptional products that seemingly have no use in the cell. But terminating transcription is not that easy, given the high robustness of the elongation process. We review here many of the strategies that prokaryotic and eukaryotic cells have adopted to dismantle the elongation complex in a timely and efficient manner. We highlight similarities and diversity, underlying the existence of common principles in a diverse set of functionally convergent solutions. PMID:27371117

  4. Stochastically gating ion channels enable patterned spike firing through activity-dependent modulation of spike probability.

    Directory of Open Access Journals (Sweden)

    Joshua T Dudman

    2009-02-01

    Full Text Available The transformation of synaptic input into patterns of spike output is a fundamental operation that is determined by the particular complement of ion channels that a neuron expresses. Although it is well established that individual ion channel proteins make stochastic transitions between conducting and non-conducting states, most models of synaptic integration are deterministic, and relatively little is known about the functional consequences of interactions between stochastically gating ion channels. Here, we show that a model of stellate neurons from layer II of the medial entorhinal cortex implemented with either stochastic or deterministically gating ion channels can reproduce the resting membrane properties of stellate neurons, but only the stochastic version of the model can fully account for perithreshold membrane potential fluctuations and clustered patterns of spike output that are recorded from stellate neurons during depolarized states. We demonstrate that the stochastic model implements an example of a general mechanism for patterning of neuronal output through activity-dependent changes in the probability of spike firing. Unlike deterministic mechanisms that generate spike patterns through slow changes in the state of model parameters, this general stochastic mechanism does not require retention of information beyond the duration of a single spike and its associated afterhyperpolarization. Instead, clustered patterns of spikes emerge in the stochastic model of stellate neurons as a result of a transient increase in firing probability driven by activation of HCN channels during recovery from the spike afterhyperpolarization. Using this model, we infer conditions in which stochastic ion channel gating may influence firing patterns in vivo and predict consequences of modifications of HCN channel function for in vivo firing patterns.

  5. Activity-dependent survival of developing neocortical neurons depends on PI3K signalling.

    Science.gov (United States)

    Wagner-Golbs, Antje; Luhmann, Heiko J

    2012-02-01

    Spontaneous electrical network activity plays a major role in the control of cell survival in the developing brain. Several intracellular pathways are implicated in transducing electrical activity into gene expression dependent and independent survival signals. These include activation of phosphatidylinositol 3-kinase (PI3K) and its downstream effector Akt, activation of Ras and subsequently MAPK/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase and signalling via calcium/calmodulin-dependent protein kinase (CaMK). In the present study, we analyzed the role of these pathways for the control of neuronal survival in different extracellular potassium concentrations ([K(+) ](ex) ). Organotypic neocortical slice cultures prepared from newborn mice were kept in 5.3, 8.0 and 25.0mM [K(+) ](ex) and treated with specific inhibitors of PI3K, MEK1, CaMKK and a broad spectrum CaMK inhibitor. After 6h of incubation, slices were immunostained for activated caspase 3 (a-caspase 3) and the number of apoptotic cells was quantified by computer based analysis. We found that in 5.3 and 8.0mM [K(+) ](ex) only PI3K was important for neuronal survival. When [K(+) ](ex) was raised to 25.0mM, a concentration above the depolarization block, we found no influence of PI3K on neuronal survival. Our data demonstrate that only the PI3K pathway, and not the MEK1, CaMKK or CaMKs pathway, plays a central role in the regulation of activity-dependent neuronal survival in the developing cerebral cortex.

  6. Transcription by Methanothermobacter thermautotrophicus RNA Polymerase In Vitro Releases Archaeal Transcription Factor B but Not TATA-Box Binding Protein from the Template DNA

    OpenAIRE

    Xie, Yunwei; Reeve, John N.

    2004-01-01

    Transcription initiation in Archaea requires the assembly of a preinitiation complex containing the TATA- box binding protein (TBP), transcription factor B (TFB), and RNA polymerase (RNAP). The results reported establish the fate of Methanothermobacter thermautotrophicus TBP and TFB following transcription initiation by M. thermautotrophicus RNAP in vitro. TFB is released after initiation, during extension of the transcript from 4 to 24 nucleotides, but TBP remains bound to the template DNA. ...

  7. Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis Shows that WhiB Is a Transcription Factor That Cocontrols Its Regulon with WhiA To Initiate Developmental Cell Division in Streptomyces

    Directory of Open Access Journals (Sweden)

    Matthew J. Bush

    2016-04-01

    Full Text Available WhiB is the founding member of a family of proteins (the WhiB-like [Wbl] family that carry a [4Fe-4S] iron-sulfur cluster and play key roles in diverse aspects of the biology of actinomycetes, including pathogenesis, antibiotic resistance, and the control of development. In Streptomyces, WhiB is essential for the process of developmentally controlled cell division that leads to sporulation. The biochemical function of Wbl proteins has been controversial; here, we set out to determine unambiguously if WhiB functions as a transcription factor using chromatin immunoprecipitation sequencing (ChIP-seq in Streptomyces venezuelae. In the first demonstration of in vivo genome-wide Wbl binding, we showed that WhiB regulates the expression of key genes required for sporulation by binding upstream of ~240 transcription units. Strikingly, the WhiB regulon is identical to the previously characterized WhiA regulon, providing an explanation for the identical phenotypes of whiA and whiB mutants. Using ChIP-seq, we demonstrated that in vivo DNA binding by WhiA depends on WhiB and vice versa, showing that WhiA and WhiB function cooperatively to control expression of a common set of WhiAB target genes. Finally, we show that mutation of the cysteine residues that coordinate the [4Fe-4S] cluster in WhiB prevents DNA binding by both WhiB and WhiA in vivo.

  8. Geomagnetic and solar activity dependence of ionospheric upflowing O+: FAST observations

    Science.gov (United States)

    Zhao, K.; Jiang, Y.; Chen, K. W.; Huang, L. F.

    2016-09-01

    This paper investigates the dependence of the occurrence frequency of ionospheric upflowing oxygen (O+) ions on the sunspot cycle and geomagnetic activity. We examine the upflows response to the geomagnetic disturbances as well as the influence of the ion energy factor in controlling the magnitude of the occurrence frequency and the net energy flux. We discuss the spatial distribution of the upflow occurrence frequency and construct a regression model as a function of the magnetic latitude. The results show an overall enhancement of the upflow occurrence frequency during magnetically disturbed periods and indicate that the high-occurrence area spreads out from the source regions during magnetically quiet periods. The high-occurrence areas are located at 70° magnetic latitude (mLat) in the dayside auroral oval zone and between 76-80° mLat in the dayside polar cusp region. In the nightside auroral oval zone, these areas are near 60° mLat, penetrating further equatorward to 55° mLat during magnetically disturbed periods. High energy (≥1 keV) upflowing ions are common in the nightside auroral oval zone while low energy (ions are found escaping from the high latitude dayside cusp region. A Gaussian function is shown to be a good fit to the occurrence frequency over the magnetic latitude. For high energy upflowing O+ ions, the occurrence frequency exhibits a single peak located at about 60° mLat in the nightside auroral oval zone while for low energy upflowing O+ ions, it exhibits two peaks, one near 60° mLat in the auroral oval zone and the other near 78° mLat in the cusp region. We study the solar activity dependence by analyzing the relationship between the upflow occurrence frequency and the sunspot number (RZ). The statistical result shows that the frequency decreases with declining solar activity level, from ˜30 % at solar maximum to ˜5 % at solar minimum. In addition, the correlation coefficient between the occurrence frequency and RZ is 0.9.

  9. Geomagnetic and solar activity dependence of ionospheric upflowing O+: FAST observations

    Science.gov (United States)

    Zhao, K.; Jiang, Y.; Chen, K. W.; Huang, L. F.

    2016-09-01

    This paper investigates the dependence of the occurrence frequency of ionospheric upflowing oxygen (O+) ions on the sunspot cycle and geomagnetic activity. We examine the upflows response to the geomagnetic disturbances as well as the influence of the ion energy factor in controlling the magnitude of the occurrence frequency and the net energy flux. We discuss the spatial distribution of the upflow occurrence frequency and construct a regression model as a function of the magnetic latitude. The results show an overall enhancement of the upflow occurrence frequency during magnetically disturbed periods and indicate that the high-occurrence area spreads out from the source regions during magnetically quiet periods. The high-occurrence areas are located at 70° magnetic latitude (mLat) in the dayside auroral oval zone and between 76-80° mLat in the dayside polar cusp region. In the nightside auroral oval zone, these areas are near 60° mLat, penetrating further equatorward to 55° mLat during magnetically disturbed periods. High energy (≥1 keV) upflowing ions are common in the nightside auroral oval zone while low energy (<1 keV) upflowing ions are found escaping from the high latitude dayside cusp region. A Gaussian function is shown to be a good fit to the occurrence frequency over the magnetic latitude. For high energy upflowing O+ ions, the occurrence frequency exhibits a single peak located at about 60° mLat in the nightside auroral oval zone while for low energy upflowing O+ ions, it exhibits two peaks, one near 60° mLat in the auroral oval zone and the other near 78° mLat in the cusp region. We study the solar activity dependence by analyzing the relationship between the upflow occurrence frequency and the sunspot number (RZ). The statistical result shows that the frequency decreases with declining solar activity level, from ˜30 % at solar maximum to ˜5 % at solar minimum. In addition, the correlation coefficient between the occurrence frequency and RZ

  10. In Vitro Transcription Assays and Their Application in Drug Discovery.

    Science.gov (United States)

    Yang, Xiao; Ma, Cong

    2016-09-20

    In vitro transcription assays have been developed and widely used for many years to study the molecular mechanisms involved in transcription. This process requires multi-subunit DNA-dependent RNA polymerase (RNAP) and a series of transcription factors that act to modulate the activity of RNAP during gene expression. Sequencing gel electrophoresis of radiolabeled transcripts is used to provide detailed mechanistic information on how transcription proceeds and what parameters can affect it. In this paper we describe the protocol to study how the essential elongation factor NusA regulates transcriptional pausing, as well as a method to identify an antibacterial agent targeting transcription initiation through inhibition of RNAP holoenzyme formation. These methods can be used a as platform for the development of additional approaches to explore the mechanism of action of the transcription factors which still remain unclear, as well as new antibacterial agents targeting transcription which is an underutilized drug target in antibiotic research and development.

  11. Activity-dependent increases in local oxygen consumption correlate with post-synaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Joan;

    2011-01-01

    Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow. Activity-dependent rises in CMRO2 fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca2+ stimulate oxidative metabolism via...

  12. Activity-dependent increases in local oxygen consumption correlate with postsynaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Engelund;

    2011-01-01

    Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF). Activity-dependent rises in CMRO(2) fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca(2+) stimulate oxidative...

  13. Methanobacterium thermoautotrophicum RNA Polymerase and Transcription In Vitro

    OpenAIRE

    Darcy, Trevor J.; Hausner, Winfried; Awery, Donald E.; Edwards, Aled M.; Thomm, Michael; Reeve, John N.

    1999-01-01

    RNA polymerase (RNAP) purified from Methanobacterium thermoautotrophicum ΔH has been shown to initiate transcription accurately in vitro from the hmtB archaeal histone promoter with either native or recombinant forms of the M. thermoautotrophicum TATA-binding protein and transcription factor TFB. Efforts to obtain transcription initiation from hydrogen-regulated methane gene promoters were, however, unsuccessful. Two previously unrecognized archaeal RNAP subunits have been identified, and com...

  14. Nucleic Acid Analogue Induced Transcription of Double Stranded DNA

    DEFF Research Database (Denmark)

    1998-01-01

    RNA is transcribed from a double stranded DNA template by forming a complex by hybridizing to the template at a desired transcription initiation site one or more oligonucleic acid analogues of the PNA type capable of forming a transcription initiation site with the DNA and exposing the complex to...... displacement of one strand of the DNA locally by the PNA hybridization....

  15. Activity-dependent gene expression in honey bee mushroom bodies in response to orientation flight.

    Science.gov (United States)

    Lutz, Claudia C; Robinson, Gene E

    2013-06-01

    The natural history of adult worker honey bees (Apis mellifera) provides an opportunity to study the molecular basis of learning in an ecological context. Foragers must learn to navigate between the hive and floral locations that may be up to miles away. Young pre-foragers prepare for this task by performing orientation flights near the hive, during which they begin to learn navigational cues such as the appearance of the hive, the position of landmarks, and the movement of the sun. Despite well-described spatial learning and navigation behavior, there is currently limited information on the neural basis of insect spatial learning. We found that Egr, an insect homolog of Egr-1, is rapidly and transiently upregulated in the mushroom bodies in response to orientation. This result is the first example of an Egr-1 homolog acting as a learning-related immediate-early gene in an insect and also demonstrates that honey bee orientation uses a molecular mechanism that is known to be involved in many other forms of learning. This transcriptional response occurred both in naïve bees and in foragers induced to re-orient. Further experiments suggest that visual environmental novelty, rather than exercise or memorization of specific visual cues, acts as the stimulus for Egr upregulation. Our results implicate the mushroom bodies in spatial learning and emphasize the deep conservation of Egr-related pathways in experience-dependent plasticity.

  16. Our evolving knowledge of the transcriptional landscape.

    Science.gov (United States)

    Hume, David A

    2008-01-01

    The development of a genome-scale approach to identification of the 5' ends of capped mRNAs (CAGE) has given new insights into many aspects of mammalian RNApolII transcription control. They include the identification of the minimal initiator motif, the different types of proximal promoter architecture, the promoters of noncoding RNAs, the transcription of retrotransposons, and the extensive impact of alternative promoters on the proteome. CAGE also offers applications as a form of expression profiling that measures promoter use, allowing more precise development of transcriptional network models.

  17. CHD chromatin remodelers and the transcription cycle.

    Science.gov (United States)

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  18. Rethinking transcription coupled DNA repair.

    Science.gov (United States)

    Kamarthapu, Venu; Nudler, Evgeny

    2015-04-01

    Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a subpathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, plays a major role in initiating the repair process. We discuss the tradeoff between the new and conventional models of TCR, how and when each pathway operates to repair DNA damage, and the necessity of pervasive transcription in maintaining genome integrity. PMID:25596348

  19. Theoretical analysis of transcription process with polymerase stalling

    CERN Document Server

    Li, Jingwei

    2015-01-01

    Experimental evidences show that in gene transcription, RNA polymerase has the possibility to be stalled at certain position of the transcription template. This may be due to the template damage, or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, or simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the {\\it effective} transcription rate (the rate to synthesize correct product mRNA) and the transcription {\\it effectiveness} (the ratio of the {\\it effective} transcription rate to the {\\it effective} transcription initiation rate) are both influenced by polymerase stalling events. This study shows that, Without backtracking, detachment of stalled polymerase can also help to increase the {\\it effective} transcription rate and transcription {\\it effectiveness}. Generally, the increase of bypass rate of the stalled polymeras...

  20. [The Effect of Transcription on Enhancer Activity in Drosophila melanogaster].

    Science.gov (United States)

    Erokhin, M M; Davydova, A I; Lomaev, D V; Georgiev, P G; Chetverina, D A

    2016-01-01

    In higher eukaryotes, the level of gene transcription is under the control of DNA regulatory elements, such as promoter, from which transcription is initiated with the participation of RNA polymerase II and general transcription factors, as well as the enhancer, which increase the rate of transcription with the involvement of activator proteins and cofactors. It was demonstrated that enhancers are often located in the transcribed regions of the genome. We showed earlier that transcription negatively affected the activity of enhancers in Drosophila in model transgenic systems. In this study, we tested the effect of the distance between the leading promoter, enhancer, and target promoter on the inhibitory effect of transcriptions of different strengths. It was demonstrated that the negative effect of transcription remained, but weakened with increased distance between the leading promoter and enhancer and with decreased distance between the enhancer and target promoter. Thus, transcription can modulate the activity of enhancers by controlling its maximum level.

  1. CPG2 Recruits Endophilin B2 to the Cytoskeleton for Activity-Dependent Endocytosis of Synaptic Glutamate Receptors.

    Science.gov (United States)

    Loebrich, Sven; Benoit, Marc Robert; Konopka, Jaclyn Aleksandra; Cottrell, Jeffrey Richard; Gibson, Joanne; Nedivi, Elly

    2016-02-01

    Internalization of glutamate receptors at the postsynaptic membrane via clathrin-mediated endocytosis (CME) is a key mechanism for regulating synaptic strength. A role for the F-actin cytoskeleton in CME is well established, and recently, PKA-dependent association of candidate plasticity gene 2 (CPG2) with the spine-cytoskeleton has been shown to mediate synaptic glutamate receptor internalization. Yet, how the endocytic machinery is physically coupled to the actin cytoskeleton to facilitate glutamate receptor internalization has not been demonstrated. Moreover, there has been no distinction of endocytic-machinery components that are specific to activity-dependent versus constitutive glutamate receptor internalization. Here, we show that CPG2, through a direct physical interaction, recruits endophilin B2 (EndoB2) to F-actin, thus anchoring the endocytic machinery to the spine cytoskeleton and facilitating glutamate receptor internalization. Regulation of CPG2 binding to the actin cytoskeleton by protein kinase A directly impacts recruitment of EndoB2 and clathrin. Specific disruption of EndoB2 or the CPG2-EndoB2 interaction impairs activity-dependent, but not constitutive, internalization of both NMDA- and AMPA-type glutamate receptors. These results demonstrate that, through direct interactions with F-actin and EndoB2, CPG2 physically bridges the spine cytoskeleton and the endocytic machinery, and this tripartite association is critical specifically for activity-dependent CME of synaptic glutamate receptors. PMID:26776730

  2. Morphology of nuclear transcription.

    Science.gov (United States)

    Weipoltshammer, Klara; Schöfer, Christian

    2016-04-01

    Gene expression control is a fundamental determinant of cellular life with transcription being the most important step. The spatial nuclear arrangement of the transcription process driven by RNA polymerases II and III is nonrandomly organized in foci, which is believed to add another regulatory layer on gene expression control. RNA polymerase I transcription takes place within a specialized organelle, the nucleolus. Transcription of ribosomal RNA directly responds to metabolic requirements, which in turn is reflected in the architecture of nucleoli. It differs from that of the other polymerases with respect to the gene template organization, transcription rate, and epigenetic expression control, whereas other features are shared like the formation of DNA loops bringing genes and components of the transcription machinery in close proximity. In recent years, significant advances have been made in the understanding of the structural prerequisites of nuclear transcription, of the arrangement in the nuclear volume, and of the dynamics of these entities. Here, we compare ribosomal RNA and mRNA transcription side by side and review the current understanding focusing on structural aspects of transcription foci, of their constituents, and of the dynamical behavior of these components with respect to foci formation, disassembly, and cell cycle. PMID:26847177

  3. A Nonnatural Transcriptional Coactivator

    Science.gov (United States)

    Nyanguile, Origene; Uesugi, Motonari; Austin, David J.; Verdine, Gregory L.

    1997-12-01

    In eukaryotes, sequence-specific DNA-binding proteins activate gene expression by recruiting the transcriptional apparatus and chromatin remodeling proteins to the promoter through protein-protein contacts. In many instances, the connection between DNA-binding proteins and the transcriptional apparatus is established through the intermediacy of adapter proteins known as coactivators. Here we describe synthetic molecules with low molecular weight that act as transcriptional coactivators. We demonstrate that a completely nonnatural activation domain in one such molecule is capable of stimulating transcription in vitro and in vivo. The present strategy provides a means of gaining external control over gene activation through intervention using small molecules.

  4. Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA.

    Science.gov (United States)

    Chen, Dongfeng; Zuo, Duo; Luan, Cheng; Liu, Min; Na, Manli; Ran, Liang; Sun, Yingyu; Persson, Annette; Englund, Elisabet; Salford, Leif G; Renström, Erik; Fan, Xiaolong; Zhang, Enming

    2014-01-01

    Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation. These findings

  5. Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA.

    Directory of Open Access Journals (Sweden)

    Dongfeng Chen

    Full Text Available Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation

  6. Transcription factors as targets of anticancer drugs.

    Science.gov (United States)

    Gniazdowski, M; Czyz, M

    1999-01-01

    Several general and gene- and cell-selective transcription factors are required for specific transcription to occur. Many of them exert their functions through specific contacts either in the promoter region or at distant sequences regulating the initiation. These contacts may be altered by anticancer drugs which form non-covalent complexes with DNA. Covalent modifications of DNA by alkylating agents may prevent transcription factors from recognizing their specific sequences or may constitute multiple "unnatural" binding sites in DNA which attract the factors thus decreasing their availability in the cell. The anticancer drug-transcription factor interplay which is based on specific interactions with DNA may contribute to pharmacological properties of the former and provide a basis for the search for new drugs. PMID:10547027

  7. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters

    Science.gov (United States)

    Lavender, Christopher A.; Hoffman, Jackson A.; Trotter, Kevin W.; Gilchrist, Daniel A.; Bennett, Brian D.; Burkholder, Adam B.; Fargo, David C.; Archer, Trevor K.

    2016-01-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment. PMID:27487356

  8. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    Science.gov (United States)

    Lavender, Christopher A; Cannady, Kimberly R; Hoffman, Jackson A; Trotter, Kevin W; Gilchrist, Daniel A; Bennett, Brian D; Burkholder, Adam B; Burd, Craig J; Fargo, David C; Archer, Trevor K

    2016-08-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment. PMID:27487356

  9. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein codi...

  10. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I;

    2012-01-01

    ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...

  11. Biophysical models of transcription in cells

    Science.gov (United States)

    Choubey, Sandeep

    Cells constantly face environmental challenges and deal with them by changing their gene expression patterns. They make decisions regarding which genes to express and which genes not to express based on intra-cellular and environmental cues. These decisions are often made by regulating the process of transcription. While the identities of the different molecules that take part in regulating transcription have been determined for a number of different genes, their dynamics inside the cell are still poorly understood. One key feature of these regulatory dynamics is that the numbers of the bio-molecules involved is typically small, resulting in large temporal fluctuations in transcriptional outputs (mRNA and protein). In this thesis I show that measurements of the cell-to-cell variability of the distribution of transcribing RNA polymerases along a gene provide a previously unexplored method for deciphering the mechanism of its transcription in vivo. First, I propose a simple kinetic model of transcription initiation and elongation from which I calculate transcribing RNA polymerase copy-number fluctuations. I test my theory against published data obtained for yeast genes and propose a novel mechanism of transcription. Rather than transcription being initiated through a single rate-limiting step, as was previously proposed, my single-cell analysis reveals the presence of at least two rate limiting steps. Second, I compute the distribution of inter-polymerase distance distribution along a gene and propose a method for analyzing inter-polymerase distance distributions acquired in experiments. By applying this method to images of polymerases transcribing ribosomal genes in E.coli I show that one model of regulation of these genes is consistent with inter-polymerase distance data while a number of other models are not. The analytical framework described in this thesis can be used to extract quantitative information about the dynamics of transcription from single

  12. Human cytomegalovirus IE2 protein interacts with transcription activating factors

    Institute of Scientific and Technical Information of China (English)

    徐进平; 叶林柏

    2002-01-01

    The human cytomegalovirus (HCMV) IE86 Cdna was cloned into Pgex-2T and fusion protein GST-IE86 was expressed in E. Coli. SDS-PAGE and Western blot assay indicated that fusion protein GST-IE86 with molecular weight of 92 ku is soluble in the supernatant of cell lysate. Protein GST and fusion protein GST-IE86 were purified by affinity chromatography. The technology of co-separation and specific affinity chromatography was used to study the interactions of HCMV IE86 protein with some transcriptional regulatory proteins and transcriptional factors. The results indicated that IE86 interacts separately with transcriptional factor TFIIB and promoter DNA binding transcription trans-activating factors SP1, AP1 and AP2 to form a heterogenous protein complex. These transcriptional trans-activating factors, transcriptional factor and IE86 protein were adsorbed and retained in the affinity chromatography simultaneously. But IE86 protein could not interact with NF-Кb, suggesting that the function of IE86 protein that can interact with transcriptional factor and transcriptional trans-activating factors has no relevance to protein glycosylation. IE86 protein probably has two domains responsible for binding transcriptional trans-activating regulatory proteins and transcriptional factors respectively, thus activating the transcription of many genes. The interactions accelerated the assembly of the transcriptional initiation complexes.

  13. Activity-dependent plasticity of electrical synapses: increasing evidence for its presence and functional roles in the mammalian brain.

    Science.gov (United States)

    Haas, Julie S; Greenwald, Corey M; Pereda, Alberto E

    2016-01-01

    Gap junctions mediate electrical synaptic transmission between neurons. While the actions of neurotransmitter modulators on the conductance of gap junctions have been extensively documented, increasing evidence indicates they can also be influenced by the ongoing activity of neural networks, in most cases via local interactions with nearby glutamatergic synapses. We review here early evidence for the existence of activity-dependent regulatory mechanisms as well recent examples reported in mammalian brain. The ubiquitous distribution of both neuronal connexins and the molecules involved suggest this phenomenon is widespread and represents a property of electrical transmission in general. PMID:27230776

  14. Transcription regulatory elements are punctuation marks for DNA replication.

    Science.gov (United States)

    Mirkin, Ekaterina V; Castro Roa, Daniel; Nudler, Evgeny; Mirkin, Sergei M

    2006-05-01

    Collisions between DNA replication and transcription significantly affect genome organization, regulation, and stability. Previous studies have described collisions between replication forks and elongating RNA polymerases. Although replication collisions with the transcription-initiation or -termination complexes are potentially even more important because most genes are not actively transcribed during DNA replication, their existence and mechanisms remained unproven. To address this matter, we have designed a bacterial promoter that binds RNA polymerase and maintains it in the initiating mode by precluding the transition into the elongation mode. By using electrophoretic analysis of replication intermediates, we have found that this steadfast transcription-initiation complex inhibits replication fork progression in an orientation-dependent manner during head-on collisions. Transcription terminators also appeared to attenuate DNA replication, but in the opposite, codirectional orientation. Thus, transcription regulatory signals may serve as "punctuation marks" for DNA replication in vivo. PMID:16670199

  15. Systematic clustering of transcription start site landscapes

    DEFF Research Database (Denmark)

    Zhao, Xiaobei; Valen, Eivind; Parker, Brian J;

    2011-01-01

    Genome-wide, high-throughput methods for transcription start site (TSS) detection have shown that most promoters have an array of neighboring TSSs where some are used more than others, forming a distribution of initiation propensities. TSS distributions (TSSDs) vary widely between promoters...

  16. Nuclear stability and transcriptional directionality separate functionally distinct RNA species

    DEFF Research Database (Denmark)

    Andersson, Robin; Refsing Andersen, Peter; Valen, Eivind;

    2014-01-01

    by their sensitivity to the ribonucleolytic RNA exosome complex and by the nature of their transcription initiation. These measures are surprisingly effective at correctly classifying annotated transcripts, including lncRNAs of known function. The approach also identifies uncharacterized stable lncRNAs, hidden among...

  17. Divergent RNA transcription: a role in promoter unwinding?

    Science.gov (United States)

    Naughton, Catherine; Corless, Samuel; Gilbert, Nick

    2013-01-01

    New approaches using biotinylated-psoralen as a probe for investigating DNA structure have revealed new insights into the relationship between DNA supercoiling, transcription and chromatin compaction. We explore a hypothesis that divergent RNA transcription generates negative supercoiling at promoters facilitating initiation complex formation and subsequent promoter clearance.

  18. The Transcription Bubble of the RNA Polymerase-Promoter Open Complex Exhibits Conformational Heterogeneity and Millisecond-Scale Dynamics : Implications for Transcription Start-Site Selection

    NARCIS (Netherlands)

    Robb, Nicole C.; Cordes, Thorben; Hwang, Ling Chin; Gryte, Kristofer; Duchi, Diego; Craggs, Timothy D.; Santoso, Yusdi; Weiss, Shimon; Ebright, Richard H.; Kapanidis, Achillefs N.

    2013-01-01

    Bacterial transcription is initiated after RNA polymerase (RNAP) binds to promoter DNA, melts similar to 14 bp around the transcription start site and forms a single-stranded "transcription bubble" within a catalytically active RNAP-DNA open complex (RPo). There is significant flexibility in the tra

  19. Transcription reactions of yeast RNA polymerase II in vitro

    Institute of Scientific and Technical Information of China (English)

    赵宇; 敖世洲

    1995-01-01

    The transcription reactions in vitro of yeast ADHl and PHO5 gene promoters are investigated by means of a yeast crude nuclear extract. Using specific RNA probes, the transcription products of these 2 promoters have been first obtained. A low concentration of α-amanitin is highly inhibitory. The transcription of the PHO5 gene was initiated in vitro at or near the sites used in vim. The transcription products increase with the amount of the template and reach the maximum at certain concentrations of the template. The deletion of the yeast promoter sequences abolishes the reaction.

  20. Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID.

    Science.gov (United States)

    Bhaumik, Sukesh R

    2011-02-01

    A growing number of human diseases are linked to abnormal gene expression which is largely controlled at the level of transcriptional initiation. The gene-specific activator promotes the initiation of transcription through its interaction with one or more components of the transcriptional initiation machinery, hence leading to stimulated transcriptional initiation or activation. However, all activator proteins do not target the same component(s) of the transcriptional initiation machinery. Rather, they can have different target specificities, and thus, can lead to distinct mechanisms of transcriptional activation. Two such distinct mechanisms of transcriptional activation in yeast are mediated by the SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (Transcription factor IID) complexes, and are termed as "SAGA-dependent" and "TFIID-dependent" transcriptional activation, respectively. SAGA is the target of the activator in case of SAGA-dependent transcriptional activation, while the targeting of TFIID by the activator leads to TFIID-dependent transcriptional activation. Both the SAGA and TFIID complexes are highly conserved from yeast to human, and play crucial roles in gene activation among eukaryotes. The regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID are discussed here. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!

  1. Three promoters regulate the transcriptional activity of the human holocarboxylase synthetase gene.

    Science.gov (United States)

    Xia, Mengna; Malkaram, Sridhar A; Zempleni, Janos

    2013-11-01

    Holocarboxylase synthetase (HLCS) is the only protein biotin ligase in the human proteome. HLCS-dependent biotinylation of carboxylases plays crucial roles in macronutrient metabolism. HLCS appears to be an essential part of multiprotein complexes in the chromatin that cause gene repression and contribute toward genome stability. Consistent with these essential functions, HLCS knockdown causes strong phenotypes including shortened life span and low stress resistance in Drosophila melanogaster, and de-repression of long-terminal repeats in humans, other mammalian cell lines and Drosophila. Despite previous observations that the expression of HLCS depends on biotin status in rats and in human cell lines, little is known about the regulation of HLCS expression. The goal of this study was to identify promoters that regulate the expression of the human HLCS gene. Initially, the human HLCS locus was interrogated in silico using predictors of promoters including sequences of HLCS mRNA and expressed sequence tags, CpG islands, histone marks denoting transcriptionally poised chromatin, transcription factor binding sites and DNaseI hypersensitive regions. Our predictions revealed three putative HLCS promoters, denoted P1, P2 and P3. Promoters lacked a TATA box, which is typical for housekeeping genes. When the three promoters were cloned into a luciferase reporter plasmid, reporter gene activity was at least three times background noise in human breast, colon and kidney cell lines; activities consistently followed the pattern P1>P3>P2. Promoter activity depended on the concentration of biotin in culture media, but the effect was moderate. We conclude that we have identified promoters in the human HLCS gene.

  2. Epigenetic modulation of Homer1a transcription regulation in amygdala and hippocampus with pavlovian fear conditioning.

    Science.gov (United States)

    Mahan, Amy L; Mou, Liping; Shah, Nirali; Hu, Jia-Hua; Worley, Paul F; Ressler, Kerry J

    2012-03-28

    The consolidation of conditioned fear involves upregulation of genes necessary for long-term memory formation. An important question remains as to whether this results in part from epigenetic regulation and chromatin modulation. We examined whether Homer1a, which is required for memory formation, is necessary for Pavlovian cued fear conditioning, whether it is downstream of BDNF-TrkB activation, and whether this pathway utilizes histone modifications for activity-dependent transcriptional regulation. We initially found that Homer1a knock-out mice exhibited deficits in cued fear conditioning (5 tone-shock presentations with 70 dB, 6 kHz tones and 0.5 s, 0.6 mA footshocks). We then demonstrated that: (1) Homer1a mRNA increases after fear conditioning in vivo within both amygdala and hippocampus of wild-type mice; (2) it increases after BDNF application to primary hippocampal and amygdala cultures in vitro; and (3) these increases are dependent on transcription and MAPK signaling. Furthermore, using chromatin immunoprecipitation we found that both in vitro and in vivo manipulations result in decreases in Homer1 promoter H3K9 methylation in amygdala cells but increases in Homer1 promoter H3 acetylation in hippocampal cells. However, no changes were observed in H4 acetylation or H3K27 dimethylation. Inhibition of histone deacetylation by sodium butyrate enhanced contextual but not cued fear conditioning and enhanced Homer1 H3 acetylation in the hippocampus. These data provide evidence for dynamic epigenetic regulation of Homer1a following BDNF-induced plasticity and during a BDNF-dependent learning process. Furthermore, upregulation of this gene may be regulated through distinct epigenetic modifications in the hippocampus and amygdala.

  3. The transcription factor encyclopedia.

    Science.gov (United States)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  4. DNA Topoisomerases in Transcription

    DEFF Research Database (Denmark)

    Rødgaard, Morten Terpager

    2015-01-01

    This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most of the ex......This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most...

  5. Initial Study

    DEFF Research Database (Denmark)

    Torp, Kristian

    2009-01-01

    Congestion is a major problem in most cities and the problem is growing (Quiroga, 2000) (Faghri & Hamad, 2002). When the congestion level is increased the drivers notice this as delays in the traffic (Taylor, Woolley, & Zito, 2000), i.e., the travel time for the individual driver is simply...... increased. In the initial study presented here, the time it takes to pass an intersection is studied in details. Two major signal-controlled four-way intersections in the center of the city Aalborg are studied in details to estimate the congestion levels in these intersections, based on the time it takes...

  6. Rill Initiation

    OpenAIRE

    Ottosen, Thor-Bjørn

    2008-01-01

    This project is about rill erosion. The aim is to test whether rill initiation can be predicted from the shear strength of the soil as measured with a torvane on saturated soil. This approach was set forward by Rauws and Govers 1988. Rainfall simulation experiments are conducted at a plot size 2x1m, performed in May on the Marbjerg experimental field. The results are evaluated using a chain set to measure alterations of the surface roughness as a result of the erosion, visual evaluation of ph...

  7. Bayesian Music Transcription

    NARCIS (Netherlands)

    Cemgil, A.T.

    2004-01-01

    Music transcription refers to extraction of a human readable and interpretable description from a recording of a music performance. The final goal is to implement a program that can automatically infer a musical notation that lists the pitch levels of notes and corresponding score positions in any a

  8. Automatic Music Transcription

    Science.gov (United States)

    Klapuri, Anssi; Virtanen, Tuomas

    Written musical notation describes music in a symbolic form that is suitable for performing a piece using the available musical instruments. Traditionally, musical notation indicates the pitch, target instrument, timing, and duration of each sound to be played. The aim of music transcription either by humans or by a machine is to infer these musical parameters, given only the acoustic recording of a performance.

  9. Methylation of an intragenic alternative promoter regulates transcription of GARP.

    Science.gov (United States)

    Haupt, Sonja; Söntgerath, Viktoria Sophie Apollonia; Leipe, Jan; Schulze-Koops, Hendrik; Skapenko, Alla

    2016-02-01

    Alternative promoter usage has been proposed as a mechanism regulating transcriptional and translational diversity in highly elaborated systems like the immune system in humans. Here, we report that transcription of human glycoprotein A repetitions predominant (GARP) in regulatory CD4 T cells (Tregs) is tightly regulated by two alternative promoters. An intragenic promoter contains several CpGs and acts as a weak promoter that is demethylated and initiates transcription Treg-specifically. The strong up-stream promoter containing a CpG-island is, in contrast, fully demethylated throughout tissues. Transcriptional activity of the strong promoter was surprisingly down-regulated upon demethylation of the weak promoter. This demethylation-induced transcriptional attenuation regulated the magnitude of GARP expression and correlated with disease activity in rheumatoid arthritis. Treg-specific GARP transcription was initiated by synergistic interaction of forkhead box protein 3 (Foxp3) with nuclear factor of activated T cells (NFAT) and was underpinned by permissive chromatin remodeling caused by release of the H3K4 demethylase, PLU-1. Our findings describe a novel function of alternative promoters in regulating the extent of transcription. Moreover, since GARP functions as a transporter of transforming growth factor β (TGFβ), a cytokine with broad pleiotropic traits, GARP transcriptional attenuation by alternative promoters might provide a mechanism regulating peripheral TGFβ to avoid unwanted harmful effects.

  10. Activity-dependent branching ratios in stocks, solar x-ray flux, and the Bak-Tang-Wiesenfeld sandpile model

    Science.gov (United States)

    Martin, Elliot; Shreim, Amer; Paczuski, Maya

    2010-01-01

    We define an activity-dependent branching ratio that allows comparison of different time series Xt . The branching ratio bx is defined as bx=E[ξx/x] . The random variable ξx is the value of the next signal given that the previous one is equal to x , so ξx={Xt+1∣Xt=x} . If bx>1 , the process is on average supercritical when the signal is equal to x , while if bxefficient market hypothesis.” For stock volumes, solar x-ray flux intensities, and the Bak-Tang-Wiesenfeld (BTW) sandpile model, bx is supercritical for small values of activity and subcritical for the largest ones, indicating a tendency to return to a typical value. For stock volumes this tendency has an approximate power-law behavior. For solar x-ray flux and the BTW model, there is a broad regime of activity where bx≃1 , which we interpret as an indicator of critical behavior. This is true despite different underlying probability distributions for Xt and for ξx . For the BTW model the distribution of ξx is Gaussian, for x sufficiently larger than 1, and its variance grows linearly with x . Hence, the activity in the BTW model obeys a central limit theorem when sampling over past histories. The broad region of activity where bx is close to one disappears once bulk dissipation is introduced in the BTW model—supporting our hypothesis that it is an indicator of criticality.

  11. Two-Photon Correlation Spectroscopy in Single Dendritic Spines Reveals Fast Actin Filament Reorganization during Activity-Dependent Growth.

    Directory of Open Access Journals (Sweden)

    Jian-Hua Chen

    Full Text Available Two-photon fluorescence correlation spectroscopy (2P-FCS within single dendritic spines of living hippocampal pyramidal neurons was used to resolve various subpopulations of mobile F-actin during activity-dependent structural changes such as potentiation induced spine head growth. Two major classes of mobile F-actin were discovered: very dynamic and about a hundred times less dynamic F-actin. Spine head enlargement upon application of Tetraethylammonium (TEA, a protocol previously used for the chemical induction of long-term potentiation (cLTP strictly correlated to changes in the dynamics and filament numbers in the different actin filament fractions. Our observations suggest that spine enlargement is governed by a mechanism in which longer filaments are first cut into smaller filaments that cooperate with the second, increasingly dynamic shorter actin filament population to quickly reorganize and expand the actin cytoskeleton within the spine head. This process would allow a fast and efficient spine head enlargement using a major fraction of the actin filament population that was already present before spine head growth.

  12. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins

    Science.gov (United States)

    Mitchell, Pamela J.; Tjian, Robert

    1989-07-01

    The cloning of genes encoding mammalian DNA binding transcription factors for RNA polymerase II has provided the opportunity to analyze the structure and function of these proteins. This review summarizes recent studies that define structural domains for DNA binding and transcriptional activation functions in sequence-specific transcription factors. The mechanisms by which these factors may activate transcriptional initiation and by which they may be regulated to achieve differential gene expression are also discussed.

  13. Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts.

    Science.gov (United States)

    Turowski, Tomasz W; Leśniewska, Ewa; Delan-Forino, Clementine; Sayou, Camille; Boguta, Magdalena; Tollervey, David

    2016-07-01

    RNA polymerase III (RNAPIII) synthesizes a range of highly abundant small stable RNAs, principally pre-tRNAs. Here we report the genome-wide analysis of nascent transcripts attached to RNAPIII under permissive and restrictive growth conditions. This revealed strikingly uneven polymerase distributions across transcription units, generally with a predominant 5' peak. This peak was higher for more heavily transcribed genes, suggesting that initiation site clearance is rate-limiting during RNAPIII transcription. Down-regulation of RNAPIII transcription under stress conditions was found to be uneven; a subset of tRNA genes showed low response to nutrient shift or loss of the major transcription regulator Maf1, suggesting potential "housekeeping" roles. Many tRNA genes were found to generate long, 3'-extended forms due to read-through of the canonical poly(U) terminators. The degree of read-through was anti-correlated with the density of U-residues in the nascent tRNA, and multiple, functional terminators can be located far downstream. The steady-state levels of 3'-extended pre-tRNA transcripts are low, apparently due to targeting by the nuclear surveillance machinery, especially the RNA binding protein Nab2, cofactors for the nuclear exosome, and the 5'-exonuclease Rat1. PMID:27206856

  14. The nature of mutations induced by replication–transcription collisions.

    Science.gov (United States)

    Sankar, T Sabari; Wastuwidyaningtyas, Brigitta D; Dong, Yuexin; Lewis, Sarah A; Wang, Jue D

    2016-07-01

    The DNA replication and transcription machineries share a common DNA template and thus can collide with each other co-directionally or head-on. Replication–transcription collisions can cause replication fork arrest, premature transcription termination, DNA breaks, and recombination intermediates threatening genome integrity. Collisions may also trigger mutations, which are major contributors to genetic disease and evolution. However, the nature and mechanisms of collision-induced mutagenesis remain poorly understood. Here we reveal the genetic consequences of replication–transcription collisions in actively dividing bacteria to be two classes of mutations: duplications/deletions and base substitutions in promoters. Both signatures are highly deleterious but are distinct from the previously well-characterized base substitutions in the coding sequence. Duplications/deletions are probably caused by replication stalling events that are triggered by collisions; their distribution patterns are consistent with where the fork first encounters a transcription complex upon entering a transcription unit. Promoter substitutions result mostly from head-on collisions and frequently occur at a nucleotide that is conserved in promoters recognized by the major σ factor in bacteria. This substitution is generated via adenine deamination on the template strand in the promoter open complex, as a consequence of head-on replication perturbing transcription initiation. We conclude that replication–transcription collisions induce distinct mutation signatures by antagonizing replication and transcription, not only in coding sequences but also in gene regulatory elements.

  15. Openness initiative

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, S.S. [Los Alamos National Lab., NM (United States)

    1995-12-31

    Although antinuclear campaigns seem to be effective, public communication and education efforts on low-level radioactive waste have mixed results. Attempts at public information programs on low-level radioactive waste still focus on influencing public opinion. A question then is: {open_quotes}Is it preferable to have a program focus on public education that will empower individuals to make informed decisions rather than trying to influence them in their decisions?{close_quotes} To address this question, a case study with both quantitative and qualitative data will be used. The Ohio Low-Level Radioactive Waste Education Program has a goal to provide people with information they want/need to make their own decisions. The program initiated its efforts by conducting a statewide survey to determine information needed by people and where they turned for that information. This presentation reports data from the survey and then explores the program development process in which programs were designed and presented using the information. Pre and post data from the programs reveal attitude and knowledge shifts.

  16. Crystal structure of the transcription factor sc-mtTFB offers insights into mitochondrial transcription

    OpenAIRE

    Schubot, Florian D; Chen, Chun-Jung; Rose, John P.; Dailey, Tamara A.; Dailey, Harry A.; Wang, Bi-Cheng

    2001-01-01

    Although it is commonly accepted that binding of mitochondrial transcription factor sc-mtTFB to the mitochondrial RNA polymerase is required for specific transcription initiation in Saccharomyces cerevisiae, its precise role has remained undefined. In the present work, the crystal structure of sc-mtTFB has been determined to 2.6 Å resolution. The protein consists of two domains, an N-terminal α/β-domain and a smaller domain made up of four α-helices. Contrary to previous predictions, sc-mtTFB...

  17. SNFing HIV transcription

    Directory of Open Access Journals (Sweden)

    Bukrinsky Michael

    2006-08-01

    Full Text Available Abstract The SWI/SNF chromatin remodeling complex is an essential regulator of transcription of cellular genes. HIV-1 infection induces exit of a core component of SWI/SNF, Ini1, into the cytoplasm and its association with the viral pre-integration complex. Several recent papers published in EMBO Journal, Journal of Biological Chemistry, and Retrovirology provide new information regarding possible functions of Ini1 and SWI/SNF in HIV life cycle. It appears that Ini1 has an inhibitory effect on pre-integration steps of HIV replication, but also contributes to stimulation of Tat-mediated transcription. This stimulation involves displacement of the nucleosome positioned at the HIV promoter.

  18. The YEATS family member GAS41 interacts with the general transcription factor TFIIF

    OpenAIRE

    Ruggieri Alessia; Schuetz Nicole; Habel Nunja C; Heisel Sabrina; Meese Eckart

    2010-01-01

    Abstract Background In eukaryotes the transcription initiation by RNA polymerase II requires numerous general and regulatory factors including general transcription factors. The general transcription factor TFIIF controls the activity of the RNA polymerase II both at the initiation and elongation stages. The glioma amplified sequence 41 (GAS41) has been associated with TFIIF via its YEATS domain. Results Using GST pull-down assays, we demonstrated that GAS41 binds to both, the small subunit (...

  19. Genome transcription/translation of segmented, negative-strand RNA viruses

    NARCIS (Netherlands)

    Geerts-Dimitriadou, C.

    2011-01-01

    The requirements for alignment of capped RNA leader sequences along the viral genome during influenza transcription initiation (“cap-snatching”) have long been an enigma. Previous work on Tomato spotted wilt virus (TSWV) transcription initiation has revealed that this virus displays a pr

  20. Activity-dependent regulation of the K/Cl transporter KCC2 membrane diffusion, clustering, and function in hippocampal neurons.

    Science.gov (United States)

    Chamma, Ingrid; Heubl, Martin; Chevy, Quentin; Renner, Marianne; Moutkine, Imane; Eugène, Emmanuel; Poncer, Jean Christophe; Lévi, Sabine

    2013-09-25

    The neuronal K/Cl transporter KCC2 exports chloride ions and thereby influences the efficacy and polarity of GABA signaling in the brain. KCC2 is also critical for dendritic spine morphogenesis and the maintenance of glutamatergic transmission in cortical neurons. Because KCC2 plays a pivotal role in the function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. Here, we studied the impact of membrane diffusion and clustering on KCC2 function. KCC2 forms clusters in the vicinity of both excitatory and inhibitory synapses. Using quantum-dot-based single-particle tracking on rat primary hippocampal neurons, we show that KCC2 is slowed down and confined at excitatory and inhibitory synapses compared with extrasynaptic regions. However, KCC2 escapes inhibitory synapses faster than excitatory synapses, reflecting stronger molecular constraints at the latter. Interfering with KCC2-actin interactions or inhibiting F-actin polymerization releases diffusion constraints on KCC2 at excitatory but not inhibitory synapses. Thus, F-actin constrains KCC2 diffusion at excitatory synapses, whereas KCC2 is confined at inhibitory synapses by a distinct mechanism. Finally, increased neuronal activity rapidly increases the diffusion coefficient and decreases the dwell time of KCC2 at excitatory synapses. This effect involves NMDAR activation, Ca(2+) influx, KCC2 S940 dephosphorylation and calpain protease cleavage of KCC2 and is accompanied by reduced KCC2 clustering and ion transport function. Thus, activity-dependent regulation of KCC2 lateral diffusion and clustering allows for a rapid regulation of chloride homeostasis in neurons.

  1. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    KAUST Repository

    Jolivet, Renaud

    2015-02-26

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

  2. Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats

    Directory of Open Access Journals (Sweden)

    Taizhe eQian

    2014-02-01

    Full Text Available In the developing cerebral cortex, the marginal zone (MZ, consisting of early-generated neurons such as Cajal-Retzius cells, plays an important role in cell migration and lamination. There is accumulating evidence of widespread excitatory neurotransmission mediated by γ-aminobutyric acid (GABA in the MZ. Cajal-Retzius cells express not only GABAA receptors but also α2/β subunits of glycine receptors, and exhibit glycine receptor-mediated depolarization due to high [Cl−]i. However, the physiological roles of glycine receptors and their endogenous agonists during neurotransmission in the MZ are yet to be elucidated. To address this question, we performed optical imaging from the MZ using the voltage-sensitive dye JPW1114 on tangential neocortical slices of neonatal rats. A single electrical stimulus evoked an action-potential-dependent optical signal that spread radially over the MZ. The amplitude of the signal was not affected by glutamate receptor blockers, but was suppressed by either GABAA or glycine receptor antagonists. Combined application of both antagonists nearly abolished the signal. Inhibition of Na+, K+-2Cl− cotransporter by 20 µM bumetanide reduced the signal, indicating that this transporter contributes to excitation. Analysis of the interstitial fluid obtained by microdialysis from tangential neocortical slices with high-performance liquid chromatography revealed that GABA and taurine, but not glycine or glutamate, were released in the MZ in response to the electrical stimulation. The ambient release of taurine was reduced by the addition of a voltage-sensitive Na+ channel blocker. Immunohistochemistry and immunoelectron microscopy indicated that taurine was stored both in Cajal-Retzius and non-Cajal-Retzius cells in the MZ, but was not localized in presynaptic structures. Our results suggest that activity-dependent non-synaptic release of endogenous taurine facilitates excitatory neurotransmission through activation of

  3. Transcription and processing of mitochondrial RNA in the human pathogen Acanthamoeba castellanii.

    Science.gov (United States)

    Accari, Jessica; Barth, Christian

    2015-07-01

    The size, structure, gene content and organisation of mitochondrial genomes can be highly diverse especially amongst the protists. We investigated the transcription and processing of the mitochondrial genome of the opportunistic pathogen Acanthamoeba castellanii and here we present a detailed transcription map of the 41.6 kb genome that encodes 33 proteins, 16 tRNAs and 2 rRNAs. Northern hybridisation studies identified six major polycistronic transcripts, most of which are co-transcriptionally processed into smaller mono-, di- and tricistronic RNAs. The maturation of the polycistronic transcripts is likely to involve endonucleolytic cleavage where tRNAs serve as processing signals. Reverse transcription polymerase chain reactions across the intervening regions between the six major polycistronic transcripts suggest that these transcripts were once part of an even larger transcript. Our findings indicate that the mitochondrial genome of A. castellanii is transcribed from only one or two promoters, very similar to the mode of transcription in the mitochondria of its close relative Dictyostelium discoideum, where transcription is known to occur from only a single transcription initiation site. Transcription initiation from a minimal number of promoters despite a large genome size may be an emerging trend in the mitochondria of protists.

  4. The post-transcriptional operon

    DEFF Research Database (Denmark)

    Tenenbaum, Scott A.; Christiansen, Jan; Nielsen, Henrik

    2011-01-01

    A post-transcriptional operon is a set of monocistronic mRNAs encoding functionally related proteins that are co-regulated by a group of RNA-binding proteins and/or small non-coding RNAs so that protein expression is coordinated at the post-transcriptional level. The post-transcriptional operon m...

  5. Transcription regulation by distal enhancers: who's in the loop?

    Science.gov (United States)

    Stadhouders, Ralph; van den Heuvel, Anita; Kolovos, Petros; Jorna, Ruud; Leslie, Kris; Grosveld, Frank; Soler, Eric

    2012-01-01

    Genome-wide chromatin profiling efforts have shown that enhancers are often located at large distances from gene promoters within the noncoding genome. Whereas enhancers can stimulate transcription initiation by communicating with promoters via chromatin looping mechanisms, we propose that enhancers may also stimulate transcription elongation by physical interactions with intronic elements. We review here recent findings derived from the study of the hematopoietic system.

  6. Characterization of a novel radiation-inducible transcript, uscA, and analysis of its transcriptional regulation

    International Nuclear Information System (INIS)

    The transcriptional expression of the uscA promote (PuscA) only occurred under aerobic conditions and a dose of 2Gy maximally activated transcription of PuscA. However, various environmental stress including physical shocks (pH, temperature, osmotic shock), DNA damaging agents (UV and MMC) or oxidative stressagents (paraquat, menadione, and H2O2) didn't cause the transcriptional activationof PuscA. The transcription of uscA was initiated at 170 bp upstream of the cyoA start codon, and ended around the ampG stop codon. The size of uscA was determined through reverse transcription assay, approximately 250 bp. The deletion analysis of uscA promoter demonstrates that radiation inducibility of PuscA is mediated by sequences present between -20 and +111 relativeto +1 of PuscA and radiation causes PuscA activation thorough permitting the expression that is repressed under non-irradiated conditions

  7. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  8. Interaction of Restin with transcription factors

    Institute of Scientific and Technical Information of China (English)

    WU; Yousheng; LU; Fan; QI; Yinxin; WANG; Ruihua; ZHANG; Jia

    2005-01-01

    Restin, a member of melanoma-associated antigen superfamily gene, was first cloned from differentiated leukemia cell induced by all trans-retinoic acid, and was able to inhibit cell proliferation, but the molecular mechanism was not clear. Since Restin was localized in cell nucleus, and its homolog member, Necdin (neuronal growth suppressor factor), could interact with transcription factors p53 and E2F1, we proposed that Restin might also function as Necdin through interacting with some transcription factors. In this study, transcription factors p53, AP1,ATFs and E2Fs were cloned and used in the mammalian two-hybrid system to identify their interaction with Restin. The results showed that only ATF3 had a strong interaction with Restin. It is interesting to know that ATF3 was an important transcription factor for G1 cell cycle initiation in physiological stress response. It was possible that the inhibition of cell proliferation by Restin might be related with the inhibition of ATF3 activity.

  9. Transcriptional Activation of the Zygotic Genome in Drosophila.

    Science.gov (United States)

    Harrison, Melissa M; Eisen, Michael B

    2015-01-01

    During the first stages of metazoan development, the genomes of the highly specified sperm and egg must unite and be reprogrammed to allow for the generation of a new organism. This process is controlled by maternally deposited products. Initially, the zygotic genome is largely transcriptionally quiescent, and it is not until hours later that the zygotic genome takes control of development. The transcriptional activation of the zygotic genome is tightly coordinated with the degradation of the maternal products. Here, we review the current understanding of the processes that mediate the reprogramming of the early embryonic genome and facilitate transcriptional activation during the early stages of Drosophila development.

  10. Developmental and activity-dependent expression of LanCL1 confers antioxidant activity required for neuronal survival.

    Science.gov (United States)

    Huang, Chao; Chen, Mina; Pang, Dejiang; Bi, Dandan; Zou, Yi; Xia, Xiaoqiang; Yang, Weiwei; Luo, Liping; Deng, Rongkang; Tan, Honglin; Zhou, Liang; Yu, Shouyang; Guo, Liheng; Du, XiaoXia; Cui, Yiyuan; Hu, Jiahua; Mao, Qing; Worley, Paul F; Xiao, Bo

    2014-08-25

    Production of reactive oxygen species (ROS) increases with neuronal activity that accompanies synaptic development and function. Transcription-related factors and metabolic enzymes that are expressed in all tissues have been described to counteract neuronal ROS to prevent oxidative damage. Here, we describe the antioxidant gene LanCL1 that is prominently enriched in brain neurons. Its expression is developmentally regulated and induced by neuronal activity, neurotrophic factors implicated in neuronal plasticity and survival, and oxidative stress. Genetic deletion of LanCL1 causes enhanced accumulation of ROS in brain, as well as development-related lipid, protein, and DNA damage; mitochondrial dysfunction; and apoptotic neurodegeneration. LanCL1 transgene protects neurons from ROS. LanCL1 protein purified from eukaryotic cells catalyzes the formation of thioether products similar to glutathione S-transferase. These studies reveal a neuron-specific glutathione defense mechanism that is essential for neuronal function and survival. PMID:25158856

  11. Deciphering Transcriptional Regulation

    DEFF Research Database (Denmark)

    Valen, Eivind

    in different cell types. This thesis presents several methods for analysis and description of promoters. We focus particularly the binding sites of TFs and computational methods for locating these. We contribute to the ¿eld by compiling a database of binding preferences for TFs which can be used for site...... published providing an unbiased overview of the transcription start site (TSS) usage in a tissue. We have paired this method with high-throughput sequencing technology to produce a library of unprecedented depth (DeepCAGE) for the mouse hippocampus. We investigated this in detail and focused particularly...

  12. Nascent transcription affected by RNA polymerase IV in Zea mays.

    Science.gov (United States)

    Erhard, Karl F; Talbot, Joy-El R B; Deans, Natalie C; McClish, Allison E; Hollick, Jay B

    2015-04-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3'-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance. PMID:25653306

  13. Bipartite functions of the CREB co-activators selectively direct alternative splicing or transcriptional activation.

    Science.gov (United States)

    Amelio, Antonio L; Caputi, Massimo; Conkright, Michael D

    2009-09-16

    The CREB regulated transcription co-activators (CRTCs) regulate many biological processes by integrating and converting environmental inputs into transcriptional responses. Although the mechanisms by which CRTCs sense cellular signals are characterized, little is known regarding how CRTCs contribute to the regulation of cAMP inducible genes. Here we show that these dynamic regulators, unlike other co-activators, independently direct either pre-mRNA splice-site selection or transcriptional activation depending on the cell type or promoter context. Moreover, in other scenarios, the CRTC co-activators coordinately regulate transcription and splicing. Mutational analyses showed that CRTCs possess distinct functional domains responsible for regulating either pre-mRNA splicing or transcriptional activation. Interestingly, the CRTC1-MAML2 oncoprotein lacks the splicing domain and is incapable of altering splice-site selection despite robustly activating transcription. The differential usage of these distinct domains allows CRTCs to selectively mediate multiple facets of gene regulation, indicating that co-activators are not solely restricted to coordinating alternative splicing with increase in transcriptional activity.

  14. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... of the transcriptional response is essential for cells to progress through the cell cycle in a normal manner. The involvement of cytoplasmic and nuclear accessory molecules, and the general nuclear membrane transport components, are essential for this process. Although nuclear import and export for different...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...

  15. Transcriptional Silencing of Retroviral Vectors

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M.; Pedersen, F.S.

    1996-01-01

    . Extinction of long-term vector expression has been observed after implantation of transduced hematopoietic cells as well as fibroblasts, myoblasts and hepatocytes. Here we review the influence of vector structure, integration site and cell type on transcriptional silencing. While down-regulation of proviral...... transcription is known from a number of cellular and animal models, major insight has been gained from studies in the germ line and embryonal cells of the mouse. Key elements for the transfer and expression of retroviral vectors, such as the viral transcriptional enhancer and the binding site for the t......RNA primer for reverse transcription may have a major influence on transcriptional silencing. Alterations of these elements of the vector backbone as well as the use of internal promoter elements from housekeeping genes may contribute to reduce transcriptional silencing. The use of cell culture and animal...

  16. TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins

    KAUST Repository

    Schaefer, Ulf

    2010-10-21

    The initiation and regulation of transcription in eukaryotes is complex and involves a large number of transcription factors (TFs), which are known to bind to the regulatory regions of eukaryotic DNA. Apart from TF-DNA binding, protein-protein interaction involving TFs is an essential component of the machinery facilitating transcriptional regulation. Proteins that interact with TFs in the context of transcription regulation but do not bind to the DNA themselves, we consider transcription co-factors (TcoFs). The influence of TcoFs on transcriptional regulation and initiation, although indirect, has been shown to be significant with the functionality of TFs strongly influenced by the presence of TcoFs. While the role of TFs and their interaction with regulatory DNA regions has been well-studied, the association between TFs and TcoFs has so far been given less attention. Here, we present a resource that is comprised of a collection of human TFs and the TcoFs with which they interact. Other proteins that have a proven interaction with a TF, but are not considered TcoFs are also included. Our database contains 157 high-confidence TcoFs and additionally 379 hypothetical TcoFs. These have been identified and classified according to the type of available evidence for their involvement in transcriptional regulation and their presence in the cell nucleus. We have divided TcoFs into four groups, one of which contains high-confidence TcoFs and three others contain TcoFs which are hypothetical to different extents. We have developed the Dragon Database for Human Transcription Co-Factors and Transcription Factor Interacting Proteins (TcoF-DB). A web-based interface for this resource can be freely accessed at http://cbrc.kaust.edu.sa/tcof/ and http://apps.sanbi.ac.za/tcof/. © The Author(s) 2010.

  17. Human mediator subunit MED15 promotes transcriptional activation.

    Science.gov (United States)

    Nakatsubo, Takuya; Nishitani, Saori; Kikuchi, Yuko; Iida, Satoshi; Yamada, Kana; Tanaka, Aki; Ohkuma, Yoshiaki

    2014-10-01

    In eukaryotes, the Mediator complex is an essential transcriptional cofactor of RNA polymerase II (Pol II). In humans, it contains up to 30 subunits and consists of four modules: head, middle, tail, and CDK/Cyclin. One of the subunits, MED15, is located in the tail module, and was initially identified as Gal11 in budding yeast, where it plays an essential role in the transcriptional regulation of galactose metabolism with the potent transcriptional activator Gal4. For this reason, we investigated the function of the human MED15 subunit (hMED15) in transcriptional activation. First, we measured the effect of hMED15 knockdown on cell growth in HeLa cells. The growth rate was greatly reduced. By immunostaining, we observed the colocalization of hMED15 with the general transcription factors TFIIE and TFIIH in the nucleus. We measured the effects of siRNA-mediated knockdown of hMED15 on transcriptional activation using two different transcriptional activators, VP16 and SREBP1a. Treatment with siRNAs reduced transcriptional activation, and this reduction could be rescued by overexpression of HA/Flag-tagged, wild-type hMED15. To investigate hMED15 localization, we treated human MCF-7 cells with the MDM2 inhibitor Nutlin-3, thus inducing p21 transcription. We found that hMED15 localized to both the p53 binding site and the p21 promoter region, along with TFIIE and TFIIH. These results indicate that hMED15 promotes transcriptional activation.

  18. Activity-dependent regulation of MHC class I expression in the developing primary visual cortex of the common marmoset monkey

    Directory of Open Access Journals (Sweden)

    Schlumbohm Christina

    2011-01-01

    Full Text Available Abstract Background Several recent studies have highlighted the important role of immunity-related molecules in synaptic plasticity processes in the developing and adult mammalian brains. It has been suggested that neuronal MHCI (major histocompatibility complex class I genes play a role in the refinement and pruning of synapses in the developing visual system. As a fast evolutionary rate may generate distinct properties of molecules in different mammalian species, we studied the expression of MHCI molecules in a nonhuman primate, the common marmoset monkey (Callithrix jacchus. Methods and results Analysis of expression levels of MHCI molecules in the developing visual cortex of the common marmoset monkeys revealed a distinct spatio-temporal pattern. High levels of expression were detected very early in postnatal development, at a stage when synaptogenesis takes place and ocular dominance columns are formed. To determine whether the expression of MHCI molecules is regulated by retinal activity, animals were subjected to monocular enucleation. Levels of MHCI heavy chain subunit transcripts in the visual cortex were found to be elevated in response to monocular enucleation. Furthermore, MHCI heavy chain immunoreactivity revealed a banded pattern in layer IV of the visual cortex in enucleated animals, which was not observed in control animals. This pattern of immunoreactivity indicated that higher expression levels were associated with retinal activity coming from the intact eye. Conclusions These data demonstrate that, in the nonhuman primate brain, expression of MHCI molecules is regulated by neuronal activity. Moreover, this study extends previous findings by suggesting a role for neuronal MHCI molecules during synaptogenesis in the visual cortex.

  19. First Exon Length Controls Active Chromatin Signatures and Transcription

    Directory of Open Access Journals (Sweden)

    Nicole I. Bieberstein

    2012-07-01

    Full Text Available Here, we explore the role of splicing in transcription, employing both genome-wide analysis of human ChIP-seq data and experimental manipulation of exon-intron organization in transgenic cell lines. We show that the activating histone modifications H3K4me3 and H3K9ac map specifically to first exon-intron boundaries. This is surprising, because these marks help recruit general transcription factors (GTFs to promoters. In genes with long first exons, promoter-proximal levels of H3K4me3 and H3K9ac are greatly reduced; consequently, GTFs and RNA polymerase II are low at transcription start sites (TSSs and exhibit a second, promoter-distal peak from which transcription also initiates. In contrast, short first exons lead to increased H3K4me3 and H3K9ac at promoters, higher expression levels, accuracy in TSS usage, and a lower frequency of antisense transcription. Therefore, first exon length is predictive for gene activity. Finally, splicing inhibition and intron deletion reduce H3K4me3 levels and transcriptional output. Thus, gene architecture and splicing determines transcription quantity and quality as well as chromatin signatures.

  20. Heterogeneity of Calcium Channel/cAMP-Dependent Transcriptional Activation.

    Science.gov (United States)

    Kobrinsky, Evgeny

    2015-01-01

    The major function of the voltage-gated calcium channels is to provide the Ca(2+) flux into the cell. L-type voltage-gated calcium channels (Cav1) serve as voltage sensors that couple membrane depolarization to many intracellular processes. Electrical activity in excitable cells affects gene expression through signaling pathways involved in the excitation-transcription (E-T) coupling. E-T coupling starts with activation of the Cav1 channel and results in initiation of the cAMP-response element binding protein (CREB)-dependent transcription. In this review we discuss the new quantitative approaches to measuring E-T signaling events. We describe the use of wavelet transform to detect heterogeneity of transcriptional activation in nuclei. Furthermore, we discuss the properties of discovered microdomains of nuclear signaling associated with the E-T coupling and the basis of the frequency-dependent transcriptional regulation.

  1. Dynamic usage of transcription start sites within core promoters

    DEFF Research Database (Denmark)

    Kawaji, Hideya; Frith, Martin C; Katayama, Shintaro;

    2006-01-01

    BACKGROUND: Mammalian promoters do not initiate transcription at single, well defined base pairs, but rather at multiple, alternative start sites spread across a region. We previously characterized the static structures of transcription start site usage within promoters at the base pair level......, based on large-scale sequencing of transcript 5' ends. RESULTS: In the present study we begin to explore the internal dynamics of mammalian promoters, and demonstrate that start site selection within many mouse core promoters varies among tissues. We also show that this dynamic usage of start sites...... is associated with CpG islands, broad and multimodal promoter structures, and imprinting. CONCLUSION: Our results reveal a new level of biologic complexity within promoters--fine-scale regulation of transcription starting events at the base pair level. These events are likely to be related to epigenetic...

  2. A model for genesis of transcription systems.

    Science.gov (United States)

    Burton, Zachary F; Opron, Kristopher; Wei, Guowei; Geiger, James H

    2016-01-01

    Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ-β-barrel (DPBB) type RNA polymerases (RNAPs), general transcription factors (GTFs), and promoters. A general rule that emerges is that biological complexity that arises through generation of repeats is often bounded by solubility and closure (i.e., to form a pseudo-dimer or a barrel). Because the first DNA genomes were replicated by DNA template-dependent RNA synthesis followed by RNA template-dependent DNA synthesis via reverse transcriptase, the first DNA replication origins were initially 2-DPBB type RNAP promoters. A simplifying model for evolution of promoters/replication origins via repetition of core promoter elements is proposed. The model can explain why Pribnow boxes in bacterial transcription (i.e., (-12)TATAATG(-6)) so closely resemble TATA boxes (i.e., (-31)TATAAAAG(-24)) in archaeal/eukaryotic transcription. The evolution of anchor DNA sequences in bacterial (i.e., (-35)TTGACA(-30)) and archaeal (BRE(up); BRE for TFB recognition element) promoters is potentially explained. The evolution of BRE(down) elements of archaeal promoters is potentially explained. PMID:26735411

  3. Stochastic Proofreading Mechanism Alleviates Crosstalk in Transcriptional Regulation.

    Science.gov (United States)

    Cepeda-Humerez, Sarah A; Rieckh, Georg; Tkačik, Gašper

    2015-12-11

    Gene expression is controlled primarily by interactions between transcription factor proteins (TFs) and the regulatory DNA sequence, a process that can be captured well by thermodynamic models of regulation. These models, however, neglect regulatory crosstalk: the possibility that noncognate TFs could initiate transcription, with potentially disastrous effects for the cell. Here, we estimate the importance of crosstalk, suggest that its avoidance strongly constrains equilibrium models of TF binding, and propose an alternative nonequilibrium scheme that implements kinetic proofreading to suppress erroneous initiation. This proposal is consistent with the observed covalent modifications of the transcriptional apparatus and predicts increased noise in gene expression as a trade-off for improved specificity. Using information theory, we quantify this trade-off to find when optimal proofreading architectures are favored over their equilibrium counterparts. Such architectures exhibit significant super-Poisson noise at low expression in steady state. PMID:26705657

  4. Cloned yeast and mammalian transcription factor TFIID gene products support basal but not activated metallothionein gene transcription

    International Nuclear Information System (INIS)

    Transcription factor IID (TFIID), the TATA binding factor, is thought to play a key role in the regulation of eukaryotic transcriptional initiation. The authors studied the role of TFIID in the transcription of the yeast metallothionein gene, which is regulated by the copper-dependent activator protein ACE1. Both basal and induced transcription of the metallothionein gene require TFIID and a functional TATA binding site. Crude human and mouse TFIID fractions, prepared from mammalian cells, respond to stimulation by ACE1, In contrast, human and yeast TFIID proteins expressed from the cloned genes do not respond to ACE1, except in the presence of what germ or yeast total cell extracts. These results indicate that the cloned TFIID gene products lack a component(s) or modifications(s) that is required for regulated as compared to basal transription

  5. DksA involvement in transcription fidelity buffers stochastic epigenetic change.

    Science.gov (United States)

    Satory, Dominik; Gordon, Alasdair J E; Wang, Mengyu; Halliday, Jennifer A; Golding, Ido; Herman, Christophe

    2015-12-01

    DksA is an auxiliary transcription factor that interacts with RNA polymerase and influences gene expression. Depending on the promoter, DksA can be a positive or negative regulator of transcription initiation. Moreover, DksA has a substantial effect on transcription elongation where it prevents the collision of transcription and replication machineries, plays a key role in maintaining transcription elongation when translation and transcription are uncoupled and has been shown to be involved in transcription fidelity. Here, we assessed the role of DksA in transcription fidelity by monitoring stochastic epigenetic switching in the lac operon (with and without an error-prone transcription slippage sequence), partial phenotypic suppression of a lacZ nonsense allele, as well as monitoring the number of lacI mRNA transcripts produced in the presence and absence of DksA via an operon fusion and single molecule fluorescent in situ hybridization studies. We present data showing that DksA acts to maintain transcription fidelity in vivo and the role of DksA seems to be distinct from that of the GreA and GreB transcription fidelity factors.

  6. Direct Modulation of RNA Polymerase Core Functions by Basal Transcription Factors

    OpenAIRE

    Werner, Finn; Weinzierl, Robert O. J.

    2005-01-01

    Archaeal RNA polymerases (RNAPs) are recruited to promoters through the joint action of three basal transcription factors: TATA-binding protein, TFB (archaeal homolog of TFIIB), and TFE (archaeal homolog of TFIIE). Our results demonstrate several new insights into the mechanisms of TFB and TFE during the transcription cycle. (i) The N-terminal Zn ribbon of TFB displays a surprising degree of redundancy for the recruitment of RNAP during transcription initiation in the archaeal system. (ii) Th...

  7. Immediate-early transcription over covalently joined genome ends of bovine herpesvirus 1: the circ gene.

    OpenAIRE

    Fraefel, C.; Wirth, U V; Vogt, B; Schwyzer, M

    1993-01-01

    Herpesvirus genomes are linear molecules in virions. Prior to replication in host cells, they form circular templates by unknown mechanisms. Examining lytic infection with bovine herpesvirus 1, we observed immediate-early transcription over joined genome ends, which suggested that circles are present at the initial stage of infection. Among the transcripts was a spliced immediate-early RNA (1.5 kb) sharing exon 1 with previously described major immediate-early transcripts from the right genom...

  8. The generation of promoter-mediated transcriptional noise in bacteria.

    Science.gov (United States)

    Mitarai, Namiko; Dodd, Ian B; Crooks, Michael T; Sneppen, Kim

    2008-01-01

    Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005) can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP) or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise. PMID:18617999

  9. The generation of promoter-mediated transcriptional noise in bacteria.

    Directory of Open Access Journals (Sweden)

    Namiko Mitarai

    Full Text Available Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005 can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise.

  10. Transcription regulation by distal enhancers: Who's in the loop?

    NARCIS (Netherlands)

    R. Stadhouders (Ralph); A. van den Heuvel (Anita); P. Kolovos (Petros); R.J.J. Jorna (Ruud); K. Leslie (Kris); F.G. Grosveld (Frank); E. Soler (Eric)

    2012-01-01

    textabstractGenome-wide chromatin profiling efforts have shown that enhancers are often located at large distances from gene promoters within the noncoding genome. Whereas enhancers can stimulate transcription initiation by communicating with promoters via chromatin looping mechanisms, we propose th

  11. Mfd as a central partner of transcription coupled repair.

    Science.gov (United States)

    Monnet, Jordan; Grange, Wilfried; Strick, Terence R; Joly, Nicolas

    2013-01-01

    Transcription-coupled repair (TCR) is one of the key of the nucleotide excision repair (NER) pathways required to preserve genome integrity. Although understanding TCR is still a major challenge, recent single-molecule experiments have brought new insights into the initial steps of TCR leading to new perspectives.

  12. LPS-induced microglial secretion of TNFα increases activity-dependent neuronal apoptosis in the neonatal cerebral cortex.

    Science.gov (United States)

    Nimmervoll, Birgit; White, Robin; Yang, Jenq-Wei; An, Shuming; Henn, Christopher; Sun, Jyh-Jang; Luhmann, Heiko J

    2013-07-01

    During the pre- and neonatal period, the cerebral cortex reveals distinct patterns of spontaneous synchronized activity, which is critically involved in the formation of early networks and in the regulation of neuronal survival and programmed cell death (apoptosis). During this period, the cortex is also highly vulnerable to inflammation and in humans prenatal infection may have a profound impact on neurodevelopment causing long-term neurological deficits. Using in vitro and in vivo multi-electrode array recordings and quantification of caspase-3 (casp-3)-dependent apoptosis, we demonstrate that lipopolysaccharide-induced inflammation causes rapid alterations in the pattern of spontaneous burst activities, which subsequently leads to an increase in apoptosis. We show that these inflammatory effects are specifically initiated by the microglia-derived pro-inflammatory cytokine tumor necrosis factor α and the chemokine macrophage inflammatory protein 2. Our data demonstrate that inflammation-induced modifications in spontaneous network activities influence casp-3-dependent cell death in the developing cerebral cortex.

  13. TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro

    OpenAIRE

    Santangelo, Thomas J.; Čuboňová, L’ubomíra; James, Cindy L.; Reeve, John N.

    2006-01-01

    Archaeal RNA polymerases (RNAPs) are most similar to eukaryotic RNAP II (Pol II) but require the support of only two archaeal general transcription factors, TBP (TATA-box binding protein) and TFB (archaeal homologue of the eukaryotic general transcription factors TFIIB) to initiate basal transcription. However, many archaeal genomes encode more than one TFB and/or TBP leading to the hypothesis that different TFB/TBP combinations may be employed to direct initiation from different promoters in...

  14. AthaMap, integrating transcriptional and post-transcriptional data.

    Science.gov (United States)

    Bülow, Lorenz; Engelmann, Stefan; Schindler, Martin; Hehl, Reinhard

    2009-01-01

    The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) for the whole Arabidopsis thaliana genome. AthaMap has now been extended to include data on post-transcriptional regulation. A total of 403,173 genomic positions of small RNAs have been mapped in the A. thaliana genome. These identify 5772 putative post-transcriptionally regulated target genes. AthaMap tools have been modified to improve the identification of common TFBS in co-regulated genes by subtracting post-transcriptionally regulated genes from such analyses. Furthermore, AthaMap was updated to the TAIR7 genome annotation, a graphic display of gene analysis results was implemented, and the TFBS data content was increased. AthaMap is freely available at http://www.athamap.de/. PMID:18842622

  15. Probing the transcription mechanisms of reovirus cores with molecules that alter RNA duplex stability.

    Science.gov (United States)

    Demidenko, Alexander A; Nibert, Max L

    2009-06-01

    The mammalian reovirus (MRV) genome comprises 10 double-stranded RNA (dsRNA) segments, packaged along with transcriptase complexes inside each core particle. Effects of four small molecules on transcription by MRV cores were studied for this report, chosen for their known capacities to alter RNA duplex stability. Spermidine and spermine, which enhance duplex stability, inhibited transcription, whereas dimethyl sulfoxide and trimethylglycine, which attenuate duplex stability, stimulated transcription. Different mechanisms were identified for inhibition or activation by these molecules. With spermidine, one round of transcription occurred normally, but subsequent rounds were inhibited. Thus, inhibition occurred at the transition between the end of elongation in one round and initiation in the next round of transcription. Dimethyl sulfoxide or trimethylglycine, on the other hand, had no effect on transcription by a constitutively active fraction of cores in each preparation but activated transcription in another fraction that was otherwise silent for the production of elongated transcripts. Activation of this other fraction occurred at the transition between transcript initiation and elongation, i.e., at promoter escape. These results suggest that the relative stability of RNA duplexes is most important for certain steps in the particle-associated transcription cycles of dsRNA viruses and that small molecules are useful tools for probing these and probably other steps. PMID:19297468

  16. Involvement of GATA transcription factors in the regulation of endogenous bovine interferon-tau gene transcription.

    Science.gov (United States)

    Bai, Hanako; Sakurai, Toshihiro; Kim, Min-Su; Muroi, Yoshikage; Ideta, Atsushi; Aoyagi, Yoshito; Nakajima, Hiromi; Takahashi, Masashi; Nagaoka, Kentaro; Imakawa, Kazuhiko

    2009-12-01

    Expression of interferon-tau (IFNT), necessary for pregnancy establishment in ruminant ungulates, is regulated in a temporal and spatial manner. However, molecular mechanisms by which IFNT gene transcription is regulated in this manner have not been firmly established. In this study, DNA microarray/RT-PCR analysis between bovine trophoblast CT-1 and Mardin-Darby bovine kidney (MDBK) cells was initially performed, finding that transcription factors GATA2, GATA3, and GATA6 mRNAs were specific to CT-1 cells. These mRNAs were also found in Days 17, 20, and 22 (Day 0 = day of estrus) bovine conceptuses. In examining other bovine cell lines, ovary cumulus granulosa (oCG) and ear fibroblast (EF) cells, GATA2 and GATA3, but not GATA6, were found specific to the bovine trophoblast cells. In transient transfection analyses using the upstream region (-631 to +59 bp) of bovine IFNT gene (bIFNT, IFN-tau-c1), over-expression of GATA2/GATA3 did not affect the transcription of bIFNT-reporter construct in human choriocarcinoma JEG3 cells. Transfection of GATA2, GATA3, ETS2, and/or CDX2, however, was effective in the up-regulation of the bIFNT construct transfected into bovine oCG and EF cells. One Point mutation studies revealed that among six potential GATA binding sites located on the upstream region of the bIFNT gene, the one next to ETS2 site exhibited reduced luciferase activity. In CT-1 cells, endogenous bIFNT gene transcription was up-regulated by over-expression of GATA2 or GATA3, but down-regulated by siRNA specific to GATA2 mRNA. These data suggest that GATA2/3 is involved in trophoblast-specific regulation of bIFNT gene transcription. PMID:19598245

  17. The grammar of transcriptional regulation.

    Science.gov (United States)

    Weingarten-Gabbay, Shira; Segal, Eran

    2014-06-01

    Eukaryotes employ combinatorial strategies to generate a variety of expression patterns from a relatively small set of regulatory DNA elements. As in any other language, deciphering the mapping between DNA and expression requires an understanding of the set of rules that govern basic principles in transcriptional regulation, the functional elements involved, and the ways in which they combine to orchestrate a transcriptional output. Here, we review the current understanding of various grammatical rules, including the effect on expression of the number of transcription factor binding sites, their location, orientation, affinity and activity; co-association with different factors; and intrinsic nucleosome organization. We review different methods that are used to study the grammar of transcription regulation, highlight gaps in current understanding, and discuss how recent technological advances may be utilized to bridge them. PMID:24390306

  18. RNA-guided transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  19. Modular construction of mammalian gene circuits using TALE transcriptional repressors.

    Science.gov (United States)

    Li, Yinqing; Jiang, Yun; Chen, He; Liao, Weixi; Li, Zhihua; Weiss, Ron; Xie, Zhen

    2015-03-01

    An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardized and interchangeable parts. However, engineering of complex circuits in mammalian cells is currently limited by the availability of well-characterized and orthogonal transcriptional repressors. Here, we introduce a library of 26 reversible transcription activator-like effector repressors (TALERs) that bind newly designed hybrid promoters and exert transcriptional repression through steric hindrance of key transcriptional initiation elements. We demonstrate that using the input-output transfer curves of our TALERs enables accurate prediction of the behavior of modularly assembled TALER cascade and switch circuits. We also show that TALER switches using feedback regulation exhibit improved accuracy for microRNA-based HeLa cancer cell classification versus HEK293 cells. Our TALER library is a valuable toolkit for modular engineering of synthetic circuits, enabling programmable manipulation of mammalian cells and helping elucidate design principles of coupled transcriptional and microRNA-mediated post-transcriptional regulation.

  20. Functional evidence of post-transcriptional regulation by pseudogenes.

    Science.gov (United States)

    Muro, Enrique M; Mah, Nancy; Andrade-Navarro, Miguel A

    2011-11-01

    Pseudogenes have been mainly considered as functionless evolutionary relics since their discovery in 1977. However, multiple mechanisms of pseudogene functionality have been proposed both at the transcriptional and post-transcriptional level. This review focuses on the role of pseudogenes as post-transcriptional regulators. Two lines of research have recently presented strong evidence of their potential function as post-transcriptional regulators of the corresponding parental genes from which they originate. First, pseudogene genomic sequences can encode siRNAs. Second, pseudogene transcripts can act as indirect post-transcriptional regulators decoying ncRNA, in particular miRNAs that target the parental gene. This has been demonstrated for PTEN and KRAS, two genes involved in tumorigenesis. The role of pseudogenes in disease has not been proven and seems to be the next research landmark. In this review, we chronicle the events following the initial discovery of the 'useless' pseudogene to its breakthrough as a functional molecule with hitherto unbeknownst potential to influence human disease. PMID:21816204

  1. Transcriptional control of DNA replication licensing by Myc

    Science.gov (United States)

    Valovka, Taras; Schönfeld, Manuela; Raffeiner, Philipp; Breuker, Kathrin; Dunzendorfer-Matt, Theresia; Hartl, Markus; Bister, Klaus

    2013-12-01

    The c-myc protooncogene encodes the Myc transcription factor, a global regulator of fundamental cellular processes. Deregulation of c-myc leads to tumorigenesis, and c-myc is an important driver in human cancer. Myc and its dimerization partner Max are bHLH-Zip DNA binding proteins involved in transcriptional regulation of target genes. Non-transcriptional functions have also been attributed to the Myc protein, notably direct interaction with the pre-replicative complex (pre-RC) controlling the initiation of DNA replication. A key component of the pre-RC is the Cdt1 protein, an essential factor in origin licensing. Here we present data suggesting that the CDT1 gene is a transcriptional target of the Myc-Max complex. Expression of the CDT1 gene in v-myc-transformed cells directly correlates with myc expression. Also, human tumor cells with elevated c-myc expression display increased CDT1 expression. Occupation of the CDT1 promoter by Myc-Max is demonstrated by chromatin immunoprecipitation, and transactivation by Myc-Max is shown in reporter assays. Ectopic expression of CDT1 leads to cell transformation. Our results provide a possible direct mechanistic link of Myc's canonical function as a transcription factor to DNA replication. Furthermore, we suggest that aberrant transcriptional activation of CDT1 by deregulated myc alleles contributes to the genomic instabilities observed in tumor cells.

  2. The ROS Wheel: Refining ROS Transcriptional Footprints1[OPEN

    Science.gov (United States)

    Noctor, Graham

    2016-01-01

    In the last decade, microarray studies have delivered extensive inventories of transcriptome-wide changes in messenger RNA levels provoked by various types of oxidative stress in Arabidopsis (Arabidopsis thaliana). Previous cross-study comparisons indicated how different types of reactive oxygen species (ROS) and their subcellular accumulation sites are able to reshape the transcriptome in specific manners. However, these analyses often employed simplistic statistical frameworks that are not compatible with large-scale analyses. Here, we reanalyzed a total of 79 Affymetrix ATH1 microarray studies of redox homeostasis perturbation experiments. To create hierarchy in such a high number of transcriptomic data sets, all transcriptional profiles were clustered on the overlap extent of their differentially expressed transcripts. Subsequently, meta-analysis determined a single magnitude of differential expression across studies and identified common transcriptional footprints per cluster. The resulting transcriptional footprints revealed the regulation of various metabolic pathways and gene families. The RESPIRATORY BURST OXIDASE HOMOLOG F-mediated respiratory burst had a major impact and was a converging point among several studies. Conversely, the timing of the oxidative stress response was a determining factor in shaping different transcriptome footprints. Our study emphasizes the need to interpret transcriptomic data sets in a systematic context, where initial, specific stress triggers can converge to common, aspecific transcriptional changes. We believe that these refined transcriptional footprints provide a valuable resource for assessing the involvement of ROS in biological processes in plants. PMID:27246095

  3. Transcriptional Mechanisms of Drug Addiction

    OpenAIRE

    Nestler, Eric J.

    2012-01-01

    Regulation of gene expression is considered a plausible mechanism of drug addiction given the stability of behavioral abnormalities that define an addicted state. Numerous transcription factors, proteins that bind to regulatory regions of specific genes and thereby control levels of their expression, have been implicated in the addiction process over the past decade or two. Here we review the growing evidence for the role played by several prominent transcription factors, including a Fos fami...

  4. National Capital Planning Commission Meeting Transcripts

    Data.gov (United States)

    National Capital Planning Commission — Transcripts of the monthly (with the exception of August) National Capital Planning Commission meeting transcripts are provided for research to confirm actions...

  5. Sequential changes in chromatin structure during transcriptional activation in the beta globin LCR and its target gene.

    Science.gov (United States)

    Kim, Kihoon; Kim, AeRi

    2010-09-01

    Chromatin structure is modulated during transcriptional activation. The changes include the association of transcriptional activators, formation of hypersensitive sites and covalent modifications of histones. To understand the order of the various changes accompanying transcriptional activation, we analyzed the mouse beta globin gene, which is transcriptionally inducible in erythroid MEL cells over a time course of HMBA treatment. Transcription of the globin genes requires the locus control region (LCR) consisting of several hypersensitive sites (HSs). Erythroid specific transcriptional activators such as NF-E2, GATA-1, TAL1 and EKLF were associated with the LCR in the uninduced state before transcriptional activation. The HSs of the LCR were formed in this state as revealed by high sensitivity to DNase I and MNase attack. However the binding of transcriptional activators and the depletion of histones were observed in the promoter of the beta globin gene only after transcriptional activation. In addition, various covalent histone modifications were sequentially detected in lysine residues of histone H3 during the activation. Acetylation of K9, K36 and K27 was notable in both LCR HSs and gene after induction but before transcriptional initiation. Inactive histone marks such as K9me2, K36me2 and K27me2 were removed coincident with transcriptional initiation in the gene region. Taken together, these results indicate that LCR has a substantially active structure in the uninduced state while transcriptional activation serially adds active marks, including histone modifications, and removes inactive marks in the target gene of the LCR.

  6. Gene Transcription Profile of the Detached Retina (An AOS Thesis)

    Science.gov (United States)

    Zacks, David N.

    2009-01-01

    Purpose: Separation of the neurosensory retina from the retinal pigment epithelium (RPE) yields many morphologic and functional consequences, including death of the photoreceptor cells, Müller cell hypertrophy, and inner retinal rewiring. Many of these changes are due to the separation-induced activation of specific genes. In this work, we define the gene transcription profile within the retina as a function of time after detachment. We also define the early activation of kinases that might be responsible for the detachment-induced changes in gene transcription. Methods: Separation of the retina from the RPE was induced in Brown-Norway rats by the injection of 1% hyaluronic acid into the subretinal space. Retinas were harvested at 1, 7, and 28 days after separation. Gene transcription profiles for each time point were determined using the Affymetrix Rat 230A gene microarray chip. Transcription levels in detached retinas were compared to those of nondetached retinas with the BRB-ArrayTools Version 3.6.0 using a random variance analysis of variance (ANOVA) model. Confirmation of the significant transcriptional changes for a subset of the genes was performed using microfluidic quantitative real-time polymerase chain reaction (qRT-PCR) assays. Kinase activation was explored using Western blot analysis to look for early phosphorylation of any of the 3 main families of mitogen-activated protein kinases (MAPK): the p38 family, the Janus kinase family, and the p42/p44 family. Results: Retinas separated from the RPE showed extensive alterations in their gene transcription profile. Many of these changes were initiated as early as 1 day after separation, with significant increases by 7 days. ANOVA analysis defined 144 genes that had significantly altered transcription levels as a function of time after separation when setting a false discovery rate at ≤0.1. Confirmatory RT-PCR was performed on 51 of these 144 genes. Differential transcription detected on the microarray

  7. DNA-recognition by a σ54 transcriptional activator from Aquifex aeolicus

    OpenAIRE

    Vidangos, Natasha K.; Heideker, Johanna; Lyubimov, Artem; Lamers, Meindert; Huo, Yixin; Pelton, Jeffrey G.; Ton, Jimmy; Gralla, Jay; Berger, James; Wemmer, David E.

    2014-01-01

    Transcription initiation by bacterial σ54-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain. The structurally characterized DNA-binding domains from activators all belong to the Factor for Inversion Stimulation (Fis) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DNA-binding domain of NtrC4 (4DBD) f...

  8. Sense transcription through the S region is essential for immunoglobulin class switch recombination.

    Science.gov (United States)

    Haddad, Dania; Oruc, Zéliha; Puget, Nadine; Laviolette-Malirat, Nathalie; Philippe, Magali; Carrion, Claire; Le Bert, Marc; Khamlichi, Ahmed Amine

    2011-04-20

    Class switch recombination (CSR) occurs between highly repetitive sequences called switch (S) regions and is initiated by activation-induced cytidine deaminase (AID). CSR is preceded by a bidirectional transcription of S regions but the relative importance of sense and antisense transcription for CSR in vivo is unknown. We generated three mouse lines in which we attempted a premature termination of transcriptional elongation by inserting bidirectional transcription terminators upstream of Sμ, upstream of Sγ3 or downstream of Sγ3 sequences. The data show, at least for Sγ3, that sense transcriptional elongation across S region is absolutely required for CSR whereas its antisense counterpart is largely dispensable, strongly suggesting that sense transcription is sufficient for AID targeting to both DNA strands. PMID:21378751

  9. Analyses of in vivo interactions between transcription factors and the archaeal RNA polymerase.

    Science.gov (United States)

    Walker, Julie E; Santangelo, Thomas J

    2015-09-15

    Transcription factors regulate the activities of RNA polymerase (RNAP) at each stage of the transcription cycle. Many basal transcription factors with common ancestry are employed in eukaryotic and archaeal systems that directly bind to RNAP and influence intramolecular movements of RNAP and modulate DNA or RNA interactions. We describe and employ a flexible methodology to directly probe and quantify the binding of transcription factors to RNAP in vivo. We demonstrate that binding of the conserved and essential archaeal transcription factor TFE to the archaeal RNAP is directed, in part, by interactions with the RpoE subunit of RNAP. As the surfaces involved are conserved in many eukaryotic and archaeal systems, the identified TFE-RNAP interactions are likely conserved in archaeal-eukaryal systems and represent an important point of contact that can influence the efficiency of transcription initiation.

  10. Transcriptional, post-transcriptional and post-translational regulations of gene expression during leaf polarity formation

    Institute of Scientific and Technical Information of China (English)

    Lin Xu; Li Yang; Hai Huang

    2007-01-01

    Leaf morphogenesis requires the establishment of adaxial-abaxial polarity after primordium initiation from the shoot apical meristem (SAM). Several families of transcription factors are known to play critical roles in promoting adaxial or abaxial leaf fate. Recently, post-transcriptional gene silencing pathways have been shown to regulate the establishment of leaf polarity, providing novel and exciting insights into leaf development. For example, microRNAs (miR165/166)and a trans-acting siRNA (TAS3-derived tasiR-ARF) have been shown to repress the expression of several key transcription factor genes. In addition, yet another level of regulation, post-translational regulation, has been revealed recently by studies on the role of the 26S proteasome in leaf polarity. Although our understanding regarding the molecular mechanisms underlying establishment of adaxial-abaxial polarity has greatly improved, there is still much that remains elusive.This review aims to discuss recent progress, as well as the remaining questions, regarding the molecular mechanisms underlying leaf polarity formation.

  11. Circadian Control of Global Transcription

    Science.gov (United States)

    Li, Shujing; Zhang, Luoying

    2015-01-01

    Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions. PMID:26682214

  12. Circadian Control of Global Transcription

    Directory of Open Access Journals (Sweden)

    Shujing Li

    2015-01-01

    Full Text Available Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs. CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions.

  13. Transcriptional Landscape of Cardiomyocyte Maturation

    Directory of Open Access Journals (Sweden)

    Hideki Uosaki

    2015-11-01

    Full Text Available Decades of progress in developmental cardiology has advanced our understanding of the early aspects of heart development, including cardiomyocyte (CM differentiation. However, control of the CM maturation that is subsequently required to generate adult myocytes remains elusive. Here, we analyzed over 200 microarray datasets from early embryonic to adult hearts and identified a large number of genes whose expression shifts gradually and continuously during maturation. We generated an atlas of integrated gene expression, biological pathways, transcriptional regulators, and gene regulatory networks (GRNs, which show discrete sets of key transcriptional regulators and pathways activated or suppressed during CM maturation. We developed a GRN-based program named MatStatCM that indexes CM maturation status. MatStatCM reveals that pluripotent-stem-cell-derived CMs mature early in culture but are arrested at the late embryonic stage with aberrant regulation of key transcription factors. Our study provides a foundation for understanding CM maturation.

  14. Initialized Fractional Calculus

    Science.gov (United States)

    Lorenzo, Carl F.; Hartley, Tom T.

    2000-01-01

    This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.

  15. Intrinsic transcript cleavage activity of RNA polymerase.

    OpenAIRE

    Orlova, M; Newlands, J; Das, A; Goldfarb, A; Borukhov, S

    1995-01-01

    The GreA and GreB transcript cleavage factors of Escherichia coli suppress elongation arrest and may have a proofreading role in transcription. With the use of E. coli greA-greB- mutant, RNA polymerase is demonstrated to possess substantial intrinsic transcript cleavage activity. Mildly alkaline pH mimics the effect of the Gre proteins by inducing transcript cleavage in ternary complexes and antagonizing elongation arrest through a cleavage-and-restart reaction. Thus, transcript cleavage cons...

  16. NAC transcription factors in senescence

    DEFF Research Database (Denmark)

    Podzimska-Sroka, Dagmara; O'Shea, Charlotte; Gregersen, Per L.;

    2015-01-01

    Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes...... as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics...

  17. Elucidating the germination transcriptional program using small molecules.

    Science.gov (United States)

    Bassel, George W; Fung, Pauline; Chow, Tsz-fung Freeman; Foong, Justin A; Provart, Nicholas J; Cutler, Sean R

    2008-05-01

    The transition from seed to seedling is mediated by germination, a complex process that starts with imbibition and completes with radicle emergence. To gain insight into the transcriptional program mediating germination, previous studies have compared the transcript profiles of dry, dormant, and germinating after-ripened Arabidopsis (Arabidopsis thaliana) seeds. While informative, these approaches did not distinguish the transcriptional responses due to imbibition, shifts in metabolism, or breaking of dormancy from those triggered by the initiation of germination. In this study, three mechanistically distinct small molecules that inhibit Arabidopsis seed germination (methotrexate, 2, 4-dinitrophenol, and cycloheximide) were identified using a small-molecule screen and used to probe the germination transcriptome. Germination-responsive transcripts were defined as those with significantly altered transcript abundance across all inhibitory treatments with respect to control germinating seeds, using data from ATH1 microarrays. This analysis identified numerous germination regulators as germination responsive, including the DELLA proteins GAI, RGA, and RGL3, the abscisic acid-insensitive proteins ABI4, ABI5, ABI8, and FRY1, and the gibberellin receptor GID1A. To help visualize these and other publicly available seed microarray data, we designed a seed mRNA expression browser using the electronic Fluorescent Pictograph platform. An overall decrease in gene expression and a 5-fold greater number of transcripts identified as statistically down-regulated in drug-inhibited seeds point to a role for mRNA degradation or turnover during seed germination. The genes identified in our study as responsive to germination define potential uncharacterized regulators of this process and provide a refined transcriptional signature for germinating Arabidopsis seeds.

  18. Transcriptional regulation by nonclassical action of thyroid hormone

    Directory of Open Access Journals (Sweden)

    Moeller Lars C

    2011-08-01

    Full Text Available Abstract Thyroid hormone (TH is essential for normal development, growth and metabolism. Its effects were thought to be principally mediated through triiodothyronine (T3, acting as a ligand for the nuclear TH receptors (TRs α and β residing on thyroid hormone response elements (TREs in the promoter of TH target genes. In this classical model of TH action, T3 binding to TRs leads to recruitment of basal transcription factors and increased transcription of TH responsive genes. Recently, the concept of TH action on gene expression has become more diverse and now includes nonclassical actions of T3 and T4: T3 has been shown to activate PI3K via the TRs, which ultimately increases transcription of certain genes, e.g. HIF-1α. Additionally, both T3 and thyroxine (T4 can bind to a membrane integrin, αvβ3, which leads to activation of the PI3K and MAPK signal transduction pathways and finally also increases gene transcription, e.g. of the FGF2 gene. Therefore, these initially nongenomic, nonclassical actions seem to serve as additional interfaces for transcriptional regulation by TH. Aim of this perspective is to summarize the genes that are currently known to be induced by nonclassical TH action and the mechanisms involved.

  19. The functionalized amino acid (S-Lacosamide subverts CRMP2-mediated tubulin polymerization to prevent constitutive and activity-dependent increase in neurite outgrowth

    Directory of Open Access Journals (Sweden)

    Sarah M Wilson

    2014-07-01

    Full Text Available Activity-dependent neurite outgrowth is a highly complex, regulated process with important implications for neuronal circuit remodeling in development as well as in seizure-induced sprouting in epilepsy. Recent work has linked outgrowth to collapsin response mediator protein 2 (CRMP2, an intracellular phosphoprotein originally identified as axon guidance and growth cone collapse protein. The neurite outgrowth promoting function of CRMP2 is regulated by its phosphorylation state. In this study, depolarization (potassium chloride-driven activity increased the level of active CRMP2 by decreasing its phosphorylation by GSK3β via a reduction in priming by Cdk5. To determine the contribution of CRMP2 in activity-driven neurite outgrowth, we screened a limited set of compounds for their ability to reduce neurite outgrowth but not modify voltage-gated sodium channel (VGSC biophysical properties. This led to the identification of (S-lacosamide ((S-LCM, a stereoisomer of the clinically used antiepileptic drug (R-LCM (Vimpat®, as a novel tool for preferentially targeting CRMP2-mediated neurite outgrowth. Whereas (S-LCM was ineffective in targeting VGSCs, the presumptive pharmacological targets of (R-LCM, (S-LCM was more efficient than (R-LCM in subverting neurite outgrowth. Biomolecular interaction analyses revealed that (S-LCM bound to wildtype CRMP2 with low micromolar affinity, similar to (R-LCM. Through the use of this novel tool, the activity-dependent increase in neurite outgrowth observed following depolarization was characterized to be reliant on CRMP2 function. Knockdown of CRMP2 by siRNA in cortical neurons resulted in reduced CRMP2-dependent neurite outgrowth; incubation with (S-LCM phenocopied this effect. Other CRMP2-mediated processes were unaffected. (S-LCM subverted neurite outgrowth not by affecting the canonical CRMP2-tubulin association but rather by impairing the ability of CRMP2 to promote tubulin polymerization, events that are

  20. Transcription factor-based biosensor

    Science.gov (United States)

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  1. Transcription of minute virus of mice, an autonomous parvovirus, may be regulated by attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Asher, E.; Aloni, Y.

    1984-10-01

    To characterize the transcriptional organization and regulation of minute virus of mice, an autonomous parvovirus, viral transcriptional complexes were isolated and cleaved with restriction enzymes. The in vivo preinitiated nascent RNA was elongated in vitro in the presence of (alpha-/sup 32/P)UTP to generate runoff transcripts. The lengths of the runoff transcripts were analyzed by gel electrophoresis under denaturing conditions. On the basis of the map locations of the restriction sites and the lengths of the runoff transcripts, the in vivo initiation sites were determined. Two major initiation sites having similar activities were thus identified at residues 201 +/- 5 and 2005 +/- 5; both of them were preceded by a TATAA sequence. When uncleaved viral transcriptional complexes or isolated nuclei were incubated in vitro in the presence of (alpha-/sup 32/P)UTP or (alpha-/sup 32/P)CTP, they synthesized labeled RNA that, as determined by polyacrylamide gel electrophoresis, contained a major band of 142 nucleotides. The RNA of the major band was mapped between the initiation site at residue 201 +/- 5 and residue 342. We noticed the potential of forming two mutually exclusive stem-and-loop structures in the 142-nucleotide RNA; one of them is followed by a string of uridylic acid residues typical of a procaryotic transcription termination signal. We propose that, as in the transcription of simian virus 40, RNA transcription in minute virus of mice may be regulated by attenuation and may involve eucaryotic polymerase B, which can respond to a transcription termination signal similar to that of the procaryotic polymerase.

  2. Evidence that Transcript Cleavage Is Essential for RNA Polymerase II Transcription and Cell Viability

    OpenAIRE

    Sigurdsson, Stefan; Dirac-Svejstrup, A. Barbara; Svejstrup, Jesper Q.

    2010-01-01

    Summary During transcript elongation in vitro, backtracking of RNA polymerase II (RNAPII) is a frequent occurrence that can lead to transcriptional arrest. The polymerase active site can cleave the transcript during such backtracking, allowing transcription to resume. Transcript cleavage is either stimulated by elongation factor TFIIS or occurs much more slowly in its absence. However, whether backtracking actually occurs in vivo, and whether transcript cleavage is important to escape it, has...

  3. Investigating transcription reinitiation through in vitro approaches.

    Science.gov (United States)

    Dieci, Giorgio; Fermi, Beatrice; Bosio, Maria Cristina

    2014-01-01

    By influencing the number of RNA molecules repeatedly synthesized from the same gene, the control of transcription reinitiation has the potential to shape the transcriptome. Transcription reinitiation mechanisms have been mainly addressed in vitro, through approaches based on both crude and reconstituted systems. These studies support the notion that transcription reinitiation and its regulation rely on dedicated networks of molecular interactions within transcription machineries. At the same time, comparison with in vivo transcription rates suggests that additional mechanisms, factors and conditions must exist in the nucleus, whose biochemical elucidation is a fascinating challenge for future in vitro transcription studies.

  4. Control of Mitochondrial Transcription Specificity Factors (TFB1M and TFB2M) by Nuclear Respiratory Factors (NRF-1 and NRF-2) and PGC-1 Family Coactivators

    OpenAIRE

    Gleyzer, Natalie; Vercauteren, Kristel; Scarpulla, Richard C.

    2005-01-01

    In vertebrates, mitochondrial DNA (mtDNA) transcription is initiated bidirectionally from closely spaced promoters, HSP and LSP, within the D-loop regulatory region. Early studies demonstrated that mtDNA transcription requires mitochondrial RNA polymerase and Tfam, a DNA binding stimulatory factor that is required for mtDNA maintenance. Recently, mitochondrial transcription specificity factors (TFB1M and TFB2M), which markedly enhance mtDNA transcription in the presence of Tfam and mitochondr...

  5. Polymerase (Pol) III TATA Box-Binding Protein (TBP)-Associated Factor Brf Binds to a Surface on TBP Also Required for Activated Pol II Transcription

    OpenAIRE

    Shen, Yuhong; Kassavetis, George A.; Bryant, Gene O.; Berk, Arnold J.

    1998-01-01

    The TATA box-binding protein (TBP) plays an essential role in transcription by all three eukaryotic nuclear RNA polymerases, polymerases (Pol) I, II, and III. In each case, TBP interacts with class-specific TBP-associated factors (TAFs) to form class-specific transcription initiation factors. For yeast Pol III transcription, TBP associates with Brf (from TFIIB-related factor) and B", two Pol III TAFs, to form Pol III transcription factor TFIIIB. Here, we identify TBP surface residues that are...

  6. Asymmetric bidirectional transcription from the FSHD-causing D4Z4 array modulates DUX4 production.

    Directory of Open Access Journals (Sweden)

    Gregory J Block

    Full Text Available Facioscapulohumeral Disease (FSHD is a dominantly inherited progressive myopathy associated with aberrant production of the transcription factor, Double Homeobox Protein 4 (DUX4. The expression of DUX4 depends on an open chromatin conformation of the D4Z4 macrosatellite array and a specific haplotype on chromosome 4. Even when these requirements are met, DUX4 transcripts and protein are only detectable in a subset of cells indicating that additional constraints govern DUX4 production. Since the direction of transcription, along with the production of non-coding antisense transcripts is an important regulatory feature of other macrosatellite repeats, we developed constructs that contain the non-coding region of a single D4Z4 unit flanked by genes that report transcriptional activity in the sense and antisense directions. We found that D4Z4 contains two promoters that initiate sense and antisense transcription within the array, and that antisense transcription predominates. Transcriptional start sites for the antisense transcripts, as well as D4Z4 regions that regulate the balance of sense and antisense transcripts were identified. We show that the choice of transcriptional direction is reversible but not mutually exclusive, since sense and antisense reporter activity was often present in the same cell and simultaneously upregulated during myotube formation. Similarly, levels of endogenous sense and antisense D4Z4 transcripts were upregulated in FSHD myotubes. These studies offer insight into the autonomous distribution of muscle weakness that is characteristic of FSHD.

  7. Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors

    Directory of Open Access Journals (Sweden)

    Estruch Francisco

    2012-09-01

    Full Text Available Abstract Background The various steps of mRNP biogenesis (transcription, processing and export are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. Results We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show that growth and mRNA export defects of dbp5 and mex67 mutant strains can be suppressed by mutation of specific transcription initiation components, but suppression was not observed for mutants acting in the very first steps of the pre-initiation complex (PIC formation. Conclusions Our results indicate that mere reduction in the amount of mRNP produced is not sufficient to suppress the defects caused by a defective mRNA export factor. Suppression occurs only with mutants affecting events within a narrow window of the mRNP biogenesis process. We propose that reducing the speed with which transcription converts from initiation and promoter clearance to elongation may have a positive effect on mRNP formation by permitting more effective recruitment of partially-functional mRNP proteins to the nascent mRNP.

  8. Overlapping transcription structure of human cytomegalovirus UL140 and UL141 genes

    Indian Academy of Sciences (India)

    Yanping Ma; Mali Li; Bo Zheng; Ning Wang; Shuang Gao; Lin Wang; Qi Ying; Zhengrong Sun; Qiang Ruan

    2013-03-01

    Transcription of human cytomegalovirus UL/b′ region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b′ genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR. At least three transcripts with length of 2800, 2400 and 1700 nt, as well as a group of transcripts of about 1000–1300 nt, were found in this gene region with an accordant 3′ ends. Among the transcripts, two initiated upstream of the start code of the UL140 gene and contained the UL140 and UL141 open reading frame (ORF), one initiated in the middle of the UL140 gene, and could encode short ORFs upstream of the UL141 ORF. A group of transcripts initiated upstream or downstream of the start code of the UL141 gene, and could encode `nested’ ORFs, including the UL141 ORF. These `nested’ ORFs possess different initiation sites but the same termination site as that of the UL141 ORF.

  9. Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription.

    OpenAIRE

    Gouilleux, F; Wakao, H; Mundt, M; Groner, B.

    1994-01-01

    Mammary gland factor (MGF) is a transcription factor discovered initially in the mammary epithelial cells of lactating animals. It confers the lactogenic hormone response to the milk protein genes. We reported recently the isolation of the cDNA encoding MGF. MGF is a novel member of the cytokine-regulated transcription factor gene family. Members of this gene family mediate interferon alpha/beta and interferon gamma induction of gene transcription, as well as the response to epidermal growth ...

  10. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors.

    OpenAIRE

    Hong, H; Kohli, K; Garabedian, M J; Stallcup, M R

    1997-01-01

    After binding to enhancer elements, transcription factors require transcriptional coactivator proteins to mediate their stimulation of transcription initiation. A search for possible coactivators for steroid hormone receptors resulted in identification of glucocorticoid receptor interacting protein 1 (GRIP1). The complete coding sequence for GRIP1, isolated from a mouse brain cDNA library, contains an open reading frame of 1,462 codons. GRIP1 is the probable ortholog of the subsequently ident...

  11. Cooperative activation of transcription by bovine papillomavirus type 1 E2 can occur over a large distance.

    OpenAIRE

    Thierry, F; Dostatni, N; Arnos, F; Yaniv, M

    1990-01-01

    The viral transcriptional factors encoded by the E2 open reading frame bind to the specific DNA sequence elements ACCGNNNNCGGT, allowing activation or repression of transcription. We have analyzed bovine papillomavirus type 1 E2 transactivation using recombinant genes containing E2-binding sites inserted at either 3' or 5' positions relative to the heterologous transcriptional initiation site of the herpes simplex virus thymidine kinase gene. In these hybrid plasmids, strong transactivation r...

  12. NACK is an integral component of the Notch transcriptional activation complex and is critical for development and tumorigenesis.

    Science.gov (United States)

    Weaver, Kelly L; Alves-Guerra, Marie-Clotilde; Jin, Ke; Wang, Zhiqiang; Han, Xiaoqing; Ranganathan, Prathibha; Zhu, Xiaoxia; DaSilva, Thiago; Liu, Wei; Ratti, Francesca; Demarest, Renee M; Tzimas, Cristos; Rice, Meghan; Vasquez-Del Carpio, Rodrigo; Dahmane, Nadia; Robbins, David J; Capobianco, Anthony J

    2014-09-01

    The Notch signaling pathway governs many distinct cellular processes by regulating transcriptional programs. The transcriptional response initiated by Notch is highly cell context dependent, indicating that multiple factors influence Notch target gene selection and activity. However, the mechanism by which Notch drives target gene transcription is not well understood. Herein, we identify and characterize a novel Notch-interacting protein, Notch activation complex kinase (NACK), which acts as a Notch transcriptional coactivator. We show that NACK associates with the Notch transcriptional activation complex on DNA, mediates Notch transcriptional activity, and is required for Notch-mediated tumorigenesis. We demonstrate that Notch1 and NACK are coexpressed during mouse development and that homozygous loss of NACK is embryonic lethal. Finally, we show that NACK is also a Notch target gene, establishing a feed-forward loop. Thus, our data indicate that NACK is a key component of the Notch transcriptional complex and is an essential regulator of Notch-mediated tumorigenesis and development.

  13. Identification and characterization of a cluster of transcription start sites located in the E6 ORF of human papillomavirus type 16

    DEFF Research Database (Denmark)

    Rosenstierne, Maiken W; Vinther, Jeppe; Hansen, Christina N;

    2003-01-01

    around nt 480. A transcription start site has been identified previously at nt 480 but has never been characterized further. The region responsible for transcription activity was mapped to nt 272-448. Mutational analysis showed that initiation of transcription is independent of a TATA-box element, which...... cluster of transcription start sites located in the E6 ORF of HPV-16 is presented. Transcripts from this region contain the E7 ORF as the first reading frame. The cluster consists of multiple transcription start sites located around nt 441. Additional transcription start sites were identified in a cluster...... is consistent with the finding of multiple transcription start sites. Furthermore, it is shown that proteins from HeLa and SiHa nuclear cell extracts bind to the two regions at nt 291-314 and 388-411, and that these two regions influence transcription activity in a cell type-dependent manner....

  14. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity.

    Science.gov (United States)

    Ahmed, Afsar U; Williams, Bryan R G; Hannigan, Gregory E

    2015-11-11

    Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding.

  15. Functionality of intergenic transcription: an evolutionary comparison.

    Directory of Open Access Journals (Sweden)

    Philipp Khaitovich

    2006-10-01

    Full Text Available Although a large proportion of human transcription occurs outside the boundaries of known genes, the functional significance of this transcription remains unknown. We have compared the expression patterns of known genes as well as intergenic transcripts within the ENCODE regions between humans and chimpanzees in brain, heart, testis, and lymphoblastoid cell lines. We find that intergenic transcripts show patterns of tissue-specific conservation of their expression, which are comparable to exonic transcripts of known genes. This suggests that intergenic transcripts are subject to functional constraints that restrict their rate of evolutionary change as well as putative positive selection to an extent comparable to that of classical protein-coding genes. In brain and testis, we find that part of this intergenic transcription is caused by widespread use of alternative promoters. Further, we find that about half of the expression differences between humans and chimpanzees are due to intergenic transcripts.

  16. Functionality of Intergenic Transcription: An Evolutionary Comparison

    Science.gov (United States)

    Visagie, Johann; Giger, Thomas; Joerchel, Sabrina; Petzold, Ekkehard; Green, Richard E; Lachmann, Michael; Pääbo, Svante

    2006-01-01

    Although a large proportion of human transcription occurs outside the boundaries of known genes, the functional significance of this transcription remains unknown. We have compared the expression patterns of known genes as well as intergenic transcripts within the ENCODE regions between humans and chimpanzees in brain, heart, testis, and lymphoblastoid cell lines. We find that intergenic transcripts show patterns of tissue-specific conservation of their expression, which are comparable to exonic transcripts of known genes. This suggests that intergenic transcripts are subject to functional constraints that restrict their rate of evolutionary change as well as putative positive selection to an extent comparable to that of classical protein-coding genes. In brain and testis, we find that part of this intergenic transcription is caused by widespread use of alternative promoters. Further, we find that about half of the expression differences between humans and chimpanzees are due to intergenic transcripts. PMID:17040132

  17. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    Plants have developed astonishing networks regulating their metabolism to adapt to their environment. The complexity of these networks is illustrated by the expansion of families of regulators such as transcription factors in the plant kingdom. Transcription factors specifically impact...... transcriptional networks by integrating exogenous and endogenous stimuli and regulating gene expression accordingly. Regulation of transcription factors and their activation is thus highly important to modulate the transcriptional programs and increase fitness of the plant in a given environment. Plant metabolism...... MYBs to activate transcription of GLS biosynthetic genes. A lot is known about transcriptional regulation of these nine GLS regulators. This thesis aimed at identifying regulatory mechanisms at the protein level, allowing rapid and specific regulation of transcription factors using GLS as a model...

  18. Chromatin Dynamics of Circadian Transcription

    OpenAIRE

    Aguilar-Arnal, Lorena; Sassone-Corsi, Paolo

    2015-01-01

    The molecular circadian clock orchestrates the daily cyclical expression of thousands of genes. Disruption of this transcriptional program leads to a variety of pathologies, including insomnia, depression and metabolic disorders. Circadian rhythms in gene expression rely on specific chromatin transitions which are ultimately coordinated by the molecular clock. As a consequence, a highly plastic and dynamic circadian epigenome can be delineated across different tissues and cell types. Intrigui...

  19. Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation

    Science.gov (United States)

    E. coli DksA is in a class of transcription factors that modify RNA polymerase (RNAP) in all three kingdoms of life. DksA potentiates the effects of the global regulator ppGpp and the initiating NTP, controlling transcription initiation without binding to DNA. Incorporating benzoyl-phenylalanine (Bp...

  20. Transcriptional Mechanisms of Drug Addiction

    Science.gov (United States)

    2012-01-01

    Regulation of gene expression is considered a plausible mechanism of drug addiction given the stability of behavioral abnormalities that define an addicted state. Numerous transcription factors, proteins that bind to regulatory regions of specific genes and thereby control levels of their expression, have been implicated in the addiction process over the past decade or two. Here we review the growing evidence for the role played by several prominent transcription factors, including a Fos family protein (ΔFosB), cAMP response element binding protein (CREB), and nuclear factor kappa B (NFκB), among several others, in drug addiction. As will be seen, each factor displays very different regulation by drugs of abuse within the brain's reward circuitry, and in turn mediates distinct aspects of the addiction phenotype. Current efforts are geared toward understanding the range of target genes through which these transcription factors produce their functional effects and the underlying molecular mechanisms involved. This work promises to reveal fundamentally new insight into the molecular basis of addiction, which will contribute to improved diagnostic tests and therapeutics for addictive disorders. PMID:23430970

  1. Regulation of Transcription Elongation and Termination

    Directory of Open Access Journals (Sweden)

    Robert S. Washburn

    2015-05-01

    Full Text Available This article will review our current understanding of transcription elongation and termination in E. coli. We discuss why transcription elongation complexes pause at certain template sites and how auxiliary host and phage transcription factors affect elongation and termination. The connection between translation and transcription elongation is described. Finally we present an overview indicating where progress has been made and where it has not.

  2. A Biclustering Approach to Combinatorial Transcription Control

    OpenAIRE

    Srinivasan, Venkataraghavan

    2005-01-01

    Combinatorial control of transcription is a well established phenomenon in the cell. Multiple transcription factors often bind to the same transcriptional control region of a gene and interact with each other to control the expression of the gene. It is thus necessary to consider the joint conservation of sequence pairs in order to identify combinations of binding sites to which the transcription factors bind. Conventional motif finding algorithms fail to address this issue. We propose a nove...

  3. Mutual interdependence of splicing and transcription elongation.

    Science.gov (United States)

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  4. Bidirectional transcription of lipooligosaccharide synthesis genes from Campylobacter jejuni.

    Science.gov (United States)

    Phongsisay, Vongsavanh; Fry, Benjamin N

    2007-10-01

    The lipooligosaccharide (LOS) molecules of Campylobacter jejuni are involved in virulence and induction of the Guillain-Barré syndrome (GBS). This study analysed the transcription of the LOS synthesis genes from the GBS-inducing C. jejuni strain HB 93-13 under microaerobic conditions. Fourteen consecutive genes Cj1132c, waaC, htrB, wlaNC, wlaND, cgtA, cgtB, cstII, neuB, neuC, neuA, wlaVA, wlaQA, and waaF were included. The results of rapid amplification of cDNA ends and single-stranded ligation of complementary ends showed initiation sites with potential promoter regions on both DNA strands in the Cj1132c/waaC, cgtB/cstII, and wlaQA/waaF strand-switch regions. Other termini without recognisable promoter region were also found throughout the LOS gene cluster, suggesting a low specificity of the polymerase during transcription. In addition, all gene junction regions were cloned into the shuttle vector pMW10 carrying the promoterless lacZ gene to identify functional promoter sites. Bidirectional active promoters were found in the strand-switch regions. The results of RT-PCR and cDNA blotting indicated that transcriptional linkage occurred between different operons, indicating a lack of transcription termination within the LOS gene cluster. Moreover, the results of semi-quantitative RT-PCR and real-time RT-PCR showed that both DNA strands were transcribed but transcription of the coding strand was at a higher rate. The results presented here provide an insight into transcription of the LOS synthesis gene cluster of C. jejuni.

  5. Tonic 5nM DA stabilizes neuronal output by enabling bidirectional activity-dependent regulation of the hyperpolarization activated current via PKA and calcineurin.

    Directory of Open Access Journals (Sweden)

    Wulf-Dieter C Krenz

    Full Text Available Volume transmission results in phasic and tonic modulatory signals. The actions of tonic dopamine (DA at type 1 DA receptors (D1Rs are largely undefined. Here we show that tonic 5nM DA acts at D1Rs to stabilize neuronal output over minutes by enabling activity-dependent regulation of the hyperpolarization activated current (I h. In the presence but not absence of 5nM DA, I h maximal conductance (G max was adjusted according to changes in slow wave activity in order to maintain spike timing. Our study on the lateral pyloric neuron (LP, which undergoes rhythmic oscillations in membrane potential with depolarized plateaus, demonstrated that incremental, bi-directional changes in plateau duration produced corresponding alterations in LP I hG max when preparations were superfused with saline containing 5nM DA. However, when preparations were superfused with saline alone there was no linear correlation between LP I hGmax and duty cycle. Thus, tonic nM DA modulated the capacity for activity to modulate LP I h G max; this exemplifies metamodulation (modulation of modulation. Pretreatment with the Ca2+-chelator, BAPTA, or the specific PKA inhibitor, PKI, prevented all changes in LP I h in 5nM DA. Calcineurin inhibitors blocked activity-dependent changes enabled by DA and revealed a PKA-mediated, activity-independent enhancement of LP I hG max. These data suggested that tonic 5nM DA produced two simultaneous, PKA-dependent effects: a direct increase in LP I h G max and a priming event that permitted calcineurin regulation of LP I h. The latter produced graded reductions in LP I hG max with increasing duty cycles. We also demonstrated that this metamodulation preserved the timing of LP's first spike when network output was perturbed with bath-applied 4AP. In sum, 5nM DA permits slow wave activity to provide feedback that maintains spike timing, suggesting that one function of low-level, tonic modulation is to stabilize specific features of a dynamic output.

  6. Tonic 5nM DA stabilizes neuronal output by enabling bidirectional activity-dependent regulation of the hyperpolarization activated current via PKA and calcineurin.

    Science.gov (United States)

    Krenz, Wulf-Dieter C; Rodgers, Edmund W; Baro, Deborah J

    2015-01-01

    Volume transmission results in phasic and tonic modulatory signals. The actions of tonic dopamine (DA) at type 1 DA receptors (D1Rs) are largely undefined. Here we show that tonic 5nM DA acts at D1Rs to stabilize neuronal output over minutes by enabling activity-dependent regulation of the hyperpolarization activated current (I h). In the presence but not absence of 5nM DA, I h maximal conductance (G max) was adjusted according to changes in slow wave activity in order to maintain spike timing. Our study on the lateral pyloric neuron (LP), which undergoes rhythmic oscillations in membrane potential with depolarized plateaus, demonstrated that incremental, bi-directional changes in plateau duration produced corresponding alterations in LP I hG max when preparations were superfused with saline containing 5nM DA. However, when preparations were superfused with saline alone there was no linear correlation between LP I hGmax and duty cycle. Thus, tonic nM DA modulated the capacity for activity to modulate LP I h G max; this exemplifies metamodulation (modulation of modulation). Pretreatment with the Ca2+-chelator, BAPTA, or the specific PKA inhibitor, PKI, prevented all changes in LP I h in 5nM DA. Calcineurin inhibitors blocked activity-dependent changes enabled by DA and revealed a PKA-mediated, activity-independent enhancement of LP I hG max. These data suggested that tonic 5nM DA produced two simultaneous, PKA-dependent effects: a direct increase in LP I h G max and a priming event that permitted calcineurin regulation of LP I h. The latter produced graded reductions in LP I hG max with increasing duty cycles. We also demonstrated that this metamodulation preserved the timing of LP's first spike when network output was perturbed with bath-applied 4AP. In sum, 5nM DA permits slow wave activity to provide feedback that maintains spike timing, suggesting that one function of low-level, tonic modulation is to stabilize specific features of a dynamic output.

  7. The great repression: chromatin and cryptic transcription.

    Science.gov (United States)

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  8. Interplay between DNA supercoiling and transcription elongation.

    Science.gov (United States)

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  9. Role of hippocampal activity-induced transcription in memory consolidation.

    Science.gov (United States)

    Eagle, Andrew L; Gajewski, Paula A; Robison, Alfred J

    2016-08-01

    Experience-dependent changes in the strength of connections between neurons in the hippocampus (HPC) are critical for normal learning and memory consolidation, and disruption of this process drives a variety of neurological and psychiatric diseases. Proper HPC function relies upon discrete changes in gene expression driven by transcription factors (TFs) induced by neuronal activity. Here, we describe the induction and function of many of the most well-studied HPC TFs, including cyclic-AMP response element binding protein, serum-response factor, AP-1, and others, and describe their role in the learning process. We also discuss the known target genes of many of these TFs and the purported mechanisms by which they regulate long-term changes in HPC synaptic strength. Moreover, we propose that future research in this field will depend upon unbiased identification of additional gene targets for these activity-dependent TFs and subsequent meta-analyses that identify common genes or pathways regulated by multiple TFs in the HPC during learning or disease. PMID:27180338

  10. Transcriptional properties and splicing of the flamenco piRNA cluster.

    Science.gov (United States)

    Goriaux, Coline; Desset, Sophie; Renaud, Yoan; Vaury, Chantal; Brasset, Emilie

    2014-04-01

    In Drosophila, the piRNA cluster, flamenco, produces most of the piRNAs (PIWI-interacting RNAs) that silence transposable elements in the somatic follicle cells during oogenesis. These piRNAs are thought to be processed from a long single-stranded precursor transcript. Here, we demonstrate that flamenco transcription is initiated from an RNA polymerase II promoter containing an initiator motif (Inr) and downstream promoter element (DPE) and requires the transcription factor, Cubitus interruptus. We show that the flamenco precursor transcript undergoes differential alternative splicing to generate diverse RNA precursors that are processed to piRNAs. Our data reveal dynamic processing steps giving rise to piRNA cluster precursors. PMID:24562610

  11. Endosome-mediated endocytic mechanism replenishes the majority of synaptic vesicles at mature CNS synapses in an activity-dependent manner.

    Science.gov (United States)

    Park, Joohyun; Cho, Oh Yeon; Kim, Jung Ah; Chang, Sunghoe

    2016-01-01

    Whether synaptic vesicles (SVs) are recovered via endosome-mediated pathways is a matter of debate; however, recent evidence suggests that clathrin-independent bulk endocytosis (CIE) via endosomes is functional and preferentially replenishes SV pools during strong stimulation. Here, using brefeldin-A (BFA) to block CIE, we found that CIE retrieved a minority of SVs at developing CNS synapses during strong stimulation, but its contribution increased up to 61% at mature CNS synapses. Contrary to previous views, BFA not only blocked SV formation from the endosome but also blocked the endosome formation at the plasma membrane. Adaptor protein 1 and 3 (AP-1/3) have key roles in SV reformation from endosomes during CIE, and AP-1 also affects bulk endosome formation from the plasma membrane. Finally, temporary blocking of chronic or acute neuronal activity with tetrodotoxin in mature neurons redirected most SV retrieval to endosome-independent pathways. These results show that during high neuronal activity, CIE becomes the major endocytic pathway at mature CNS synapses. Moreover, mature neurons use clathrin-mediated endocytosis and the CIE pathway to different extents depending on their previous activity; this may result in activity-dependent alterations of the SV composition which ultimately influence transmitter release and contribute to synaptic plasticity. PMID:27534442

  12. Rapid activity-dependent delivery of the neurotrophic protein CPG15 to the axon surface of neurons in intact Xenopus tadpoles.

    Science.gov (United States)

    Cantallops, Isabel; Cline, Hollis T

    2008-05-01

    CPG15 (aka neuritin) is an activity-induced GPI-anchored axonal protein that promotes dendritic and axonal growth, and accelerates synaptic maturation in vivo. Here we show that CPG15 is distributed inside axons and on the axon surface. CPG15 is trafficked to and from the axonal surface by membrane depolarization. To assess CPG15 trafficking in vivo, we expressed an ecliptic pHluorin (EP)-CPG15 fusion protein in optic tectal explants and in retinal ganglion cells of intact Xenopus tadpoles. Depolarization by KCl increased EP-CPG15 fluorescence on axons. Intraocular kainic acid (KA) injection rapidly increased cell-surface EP-CPG15 in retinotectal axons, but coinjection of TTX and KA did not. Consistent with this, we find that intracellular CPG15 is localized to vesicles and endosomes in presynaptic terminals and colocalizes with synaptic vesicle proteins. The results indicate that the delivery of the neurotrophic protein CPG15 to the axon surface can be regulated on a rapid time scale by activity-dependent mechanisms in vivo. PMID:18383547

  13. Sustainable Agricultural Marketing Initiatives

    OpenAIRE

    Hakan Adanacıoğlu

    2015-01-01

    Sustainable marketing is a holistic approach that puts equal emphasis on environmental, social equity, and economic concerns in the development of marketing strategies. The purpose of the study is to examine and discuss the sustainable agricultural marketing initiatives practiced throughout the World and Turkey, and to put forth suggestions to further improve the performance of agricultural marketing initiatives in Turkey. Some of the sustainable agricultural marketing initiatives practiced a...

  14. Transcriptional and post-transcriptional regulation of a NAC1 transcription factor in Medicago truncatula roots.

    Science.gov (United States)

    D'haeseleer, Katrien; Den Herder, Griet; Laffont, Carole; Plet, Julie; Mortier, Virginie; Lelandais-Brière, Christine; De Bodt, Stefanie; De Keyser, Annick; Crespi, Martin; Holsters, Marcelle; Frugier, Florian; Goormachtig, Sofie

    2011-08-01

    • Legume roots develop two types of lateral organs, lateral roots and nodules. Nodules develop as a result of a symbiotic interaction with rhizobia and provide a niche for the bacteria to fix atmospheric nitrogen for the plant. • The Arabidopsis NAC1 transcription factor is involved in lateral root formation, and is regulated post-transcriptionally by miRNA164 and by SINAT5-dependent ubiquitination. We analyzed in Medicago truncatula the role of the closest NAC1 homolog in lateral root formation and in nodulation. • MtNAC1 shows a different expression pattern in response to auxin than its Arabidopsis homolog and no changes in lateral root number or nodulation were observed in plants affected in MtNAC1 expression. In addition, no interaction was found with SINA E3 ligases, suggesting that post-translational regulation of MtNAC1 does not occur in M. truncatula. Similar to what was found in Arabidopsis, a conserved miR164 target site was retrieved in MtNAC1, which reduced protein accumulation of a GFP-miR164 sensor. Furthermore, miR164 and MtNAC1 show an overlapping expression pattern in symbiotic nodules, and overexpression of this miRNA led to a reduction in nodule number. • This work suggests that regulatory pathways controlling a conserved transcription factor are complex and divergent between M. truncatula and Arabidopsis.

  15. Emerging Pathogens Initiative (EPI)

    Data.gov (United States)

    Department of Veterans Affairs — The Emerging Pathogens Initiative (EPI) database contains emerging pathogens information from the local Veterans Affairs Medical Centers (VAMCs). The EPI software...

  16. A Human Mitochondrial Transcription Factor Is Related to RNA Adenine Methyltransferases and Binds S-Adenosylmethionine

    OpenAIRE

    McCulloch, Vicki; Seidel-Rogol, Bonnie L.; Shadel, Gerald S.

    2002-01-01

    A critical step toward understanding mitochondrial genetics and its impact on human disease is to identify and characterize the full complement of nucleus-encoded factors required for mitochondrial gene expression and mitochondrial DNA (mtDNA) replication. Two factors required for transcription initiation from a human mitochondrial promoter are h-mtRNA polymerase and the DNA binding transcription factor, h-mtTFA. However, based on studies in model systems, the existence of a second human mito...

  17. Transcriptional Control during Quorum Sensing by LuxR and LuxR Homologues

    OpenAIRE

    Faini, Marie Annette

    2003-01-01

    Quorum sensing is a mechanism used by many proteobacteria to regulate expression of target genes in a population-dependent manner. The quorum sensing system of Vibrio fischeri activates the luminescence (lux) operon when the autoinducer signaling molecule (N-3-oxohexanoyl homoserine lactone) is recognized and bound by the activator protein LuxR. LuxR subsequently binds to the lux box centered at à 42.5 bp upstream of the transcription initiation site and activates transcription from the lux...

  18. Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor.

    Science.gov (United States)

    Park, Sunchung; Ek-Ramos, Maria Julissa; Oh, Sookyung; van Nocker, Steven

    2011-08-01

    Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function.

  19. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription.

    Science.gov (United States)

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin

    2014-01-01

    Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.

  20. Transcriptional Regulation of Heart Development in Zebrafish

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2016-04-01

    Full Text Available Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis.

  1. Transcriptional Regulation of Heart Development in Zebrafish

    Science.gov (United States)

    Lu, Fei; Langenbacher, Adam D.; Chen, Jau-Nian

    2016-01-01

    Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis. PMID:27148546

  2. Contribution of transcription to animal early development.

    Science.gov (United States)

    Wang, Jianbin; Davis, Richard E

    2014-01-01

    In mature gametes and during the oocyte-to-embryo transition, transcription is generally silenced and gene expression is post-transcriptionally regulated. However, we recently discovered that major transcription can occur immediately after fertilization, prior to pronuclear fusion, and in the first cell division of the oocyte-to-embryo transition in the nematode Ascaris suum. We postulate that the balance between transcriptional and post-transcriptional regulation during the oocyte-to-embryo transition may largely be determined by cell cycle length and thus the time available for the genome to be transcribed.

  3. Transfection of mouse ribosomal DNA into rat cells: faithful transcription and processing.

    OpenAIRE

    Vance, V B; Thompson, E A; Bowman, L H

    1985-01-01

    Truncated mouse ribosomal DNA (rDNA) genes were stably incorporated into rat HTC-5 cells by DNA-mediated cell transfection techniques. The mouse rDNA genes were accurately transcribed in these rat cells indicating that there is no absolute species specificity of rDNA transcription between mouse and rat. No more than 170 nucleotides of the 5' nontranscribed spacer was required for the accurate initiation of mouse rDNA transcription in rat cells. Further, the mouse transcripts were accurately c...

  4. Transcription-independent functions of MYC: regulation of translation and DNA replication

    Science.gov (United States)

    Cole, Michael D.; Cowling, Victoria H.

    2013-01-01

    MYC is a potent oncogene that drives unrestrained cell growth and proliferation. Shortly after its discovery as an oncogene, the MYC protein was recognized as a sequence-specific transcription factor. Since that time, MYC oncogene research has focused on the mechanism of MYC-induced transcription and on the identification of MYC transcriptional target genes. Recently, MYC was shown to control protein expression through mRNA translation and to directly regulate DNA replication, thus initiating exciting new areas of oncogene research. PMID:18698328

  5. A common site on TBP for transcription by RNA polymerases II and III

    OpenAIRE

    Schröder, Oliver; Bryant, Gene O.; Geiduschek, E.Peter; Berk, Arnold J.; Kassavetis, George A.

    2003-01-01

    The TATA-binding protein (TBP) is involved in all nuclear transcription. We show that a common site on TBP is used for transcription initiation complex formation by RNA polymerases (pols) II and III. TBP, the transcription factor IIB (TFIIB)-related factor Brf1 and the pol III-specific factor Bdp1 constitute TFIIIB. A photochemical cross-linking approach was used to survey a collection of human TBP surface residue mutants for their ability to form TFIIIB–DNA complexes reliant on only the TFII...

  6. Mediator directs co-transcriptional heterochromatin assembly by RNA interference-dependent and -independent pathways.

    Directory of Open Access Journals (Sweden)

    Eriko Oya

    Full Text Available Heterochromatin at the pericentromeric repeats in fission yeast is assembled and spread by an RNAi-dependent mechanism, which is coupled with the transcription of non-coding RNA from the repeats by RNA polymerase II. In addition, Rrp6, a component of the nuclear exosome, also contributes to heterochromatin assembly and is coupled with non-coding RNA transcription. The multi-subunit complex Mediator, which directs initiation of RNA polymerase II-dependent transcription, has recently been suggested to function after initiation in processes such as elongation of transcription and splicing. However, the role of Mediator in the regulation of chromatin structure is not well understood. We investigated the role of Mediator in pericentromeric heterochromatin formation and found that deletion of specific subunits of the head domain of Mediator compromised heterochromatin structure. The Mediator head domain was required for Rrp6-dependent heterochromatin nucleation at the pericentromere and for RNAi-dependent spreading of heterochromatin into the neighboring region. In the latter process, Mediator appeared to contribute to efficient processing of siRNA from transcribed non-coding RNA, which was required for efficient spreading of heterochromatin. Furthermore, the head domain directed efficient transcription in heterochromatin. These results reveal a pivotal role for Mediator in multiple steps of transcription-coupled formation of pericentromeric heterochromatin. This observation further extends the role of Mediator to co-transcriptional chromatin regulation.

  7. Interaction of the transcription start site core region and transcription factor YY1 determine ascorbate transporter SVCT2 exon 1a promoter activity.

    Directory of Open Access Journals (Sweden)

    Huan Qiao

    Full Text Available Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a "bridge" mechanism with upstream sequences.

  8. Transcription from the P1 promoters of Micromonospora echinospora in the absence of native upstream DNA sequences.

    OpenAIRE

    Baum, E Z; Buttner, M J; Lin, L S; Rothstein, D. M.

    1989-01-01

    We demonstrated previously that the 0.4-kilobase DNA fragment from Micromonospora echinospora contains multiple tandem promoters, P1a, P1b, P1c, and P2, which are also functional when cloned into Streptomyces lividans. We now show by in vitro transcription with Streptomyces RNA polymerase that each of these promoters is an authentic initiation site, rather than a processing site for transcripts which initiate further upstream. The DNA sequence requirements for the closely spaced promoters P1a...

  9. Human Maf1 negatively regulates RNA Polymerase III transcription via the TFIIB family members Brf1 and Brf2

    OpenAIRE

    Rollins, Janet; Veras, Ingrid; Cabarcas, Stephanie; Willis, Ian; Schramm, Laura

    2007-01-01

    RNA polymerase III (RNA pol III) transcribes many of the small structural RNA molecules involved in processing and translation, thereby regulating the growth rate of a cell. Initiation of pol III transcription requires the evolutionarily conserved pol III initiation factor TFIIIB. TFIIIB is the molecular target of regulation by tumor suppressors, including p53, RB and the RB-related pocket proteins. However, our understanding of negative regulation of human TFIIIB-mediated transcription by ot...

  10. Rethinking Transcription Coupled DNA Repair

    OpenAIRE

    Kamarthapu, Venu; Nudler, Evgeny

    2015-01-01

    Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a sub-pathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, pla...

  11. Automatic transcription of polyphonic singing

    OpenAIRE

    Paščinski, Uroš

    2015-01-01

    In this work we focus on automatic transcription of polyphonic singing. In particular we do the multiple fundamental frequency (F0) estimation. From the terrain recordings a test set of Slovenian folk songs with polyphonic singing is extracted and manually transcribed. On the test set we try the general algorithm for multiple F0 detection. An interactive visualization of the main parts of the algorithm is made to analyse how it works and try to detect possible issues. As the data set is ne...

  12. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, transcript fidelity and mitochondrial transcription factor binding.

    Science.gov (United States)

    Velazquez, Gilberto; Sousa, Rui; Brieba, Luis G

    2015-01-01

    Single subunit RNA polymerases have evolved 2 mechanisms to synthesize long transcripts without falling off a DNA template: binding of nascent RNA and interactions with an RNA:DNA hybrid. Mitochondrial RNA polymerases share a common ancestor with T-odd bacteriophage single subunit RNA polymerases. Herein we characterized the role of the thumb subdomain of the yeast mtRNA polymerase gene (RPO41) in complex stability, processivity, and fidelity. We found that deletion and point mutants of the thumb subdomain of yeast mtRNA polymerase increase the synthesis of abortive transcripts and the probability that the polymerase will disengage from the template during the formation of the late initial transcription and elongation complexes. Mutations in the thumb subdomain increase the amount of slippage products from a homopolymeric template and, unexpectedly, thumb subdomain deletions decrease the binding affinity for mitochondrial transcription factor (Mtf1). The latter suggests that the thumb subdomain is part of an extended binding surface area involved in binding Mtf1.

  13. Experimental characterization of Cis-acting elements important for translation and transcription in halophilic archaea.

    Directory of Open Access Journals (Sweden)

    Mariam Brenneis

    2007-12-01

    Full Text Available The basal transcription apparatus of archaea is well characterized. However, much less is known about the mechanisms of transcription termination and translation initation. Recently, experimental determination of the 5'-ends of ten transcripts from Pyrobaculum aerophilum revealed that these are devoid of a 5'-UTR. Bioinformatic analysis indicated that many transcripts of other archaeal species might also be leaderless. The 5'-ends and 3'-ends of 40 transcripts of two haloarchaeal species, Halobacterium salinarum and Haloferax volcanii, have been determined. They were used to characterize the lengths of 5'-UTRs and 3'-UTRs and to deduce consensus sequence-elements for transcription and translation. The experimental approach was complemented with a bioinformatics analysis of the H. salinarum genome sequence. Furthermore, the influence of selected 5'-UTRs and 3'-UTRs on transcript stability and translational efficiency in vivo was characterized using a newly established reporter gene system, gene fusions, and real-time PCR. Consensus sequences for basal promoter elements could be refined and a novel element was discovered. A consensus motif probably important for transcriptional termination was established. All 40 haloarchaeal transcripts analyzed had a 3'-UTR (average size 57 nt, and their 3'-ends were not posttranscriptionally modified. Experimental data and genome analyses revealed that the majority of haloarchaeal transcripts are leaderless, indicating that this is the predominant mode for translation initiation in haloarchaea. Surprisingly, the 5'-UTRs of most leadered transcripts did not contain a Shine-Dalgarno (SD sequence. A genome analysis indicated that less than 10% of all genes are preceded by a SD sequence and even most proximal genes in operons lack a SD sequence. Seven different leadered transcripts devoid of a SD sequence were efficiently translated in vivo, including artificial 5'-UTRs of random sequences. Thus, an interaction of

  14. Specific initiation by RNA polymerase I in a whole-cell extract from yeast.

    OpenAIRE

    Schultz, M C; Choe, S Y; Reeder, R H

    1991-01-01

    A protocol is described for making a soluble whole-cell extract from yeast (Saccharomyces cerevisiae) that supports active and specific transcription initiation by RNA polymerases I, II, and III. Specific initiation by polymerase I decreases in high-density cultures, paralleling the decrease in abundance of the endogenous 35S rRNA precursor. This extract should be useful for studying the molecular mechanisms that regulate rRNA transcription in yeast.

  15. Sustainable Agricultural Marketing Initiatives

    Directory of Open Access Journals (Sweden)

    Hakan Adanacıoğlu

    2015-07-01

    Full Text Available Sustainable marketing is a holistic approach that puts equal emphasis on environmental, social equity, and economic concerns in the development of marketing strategies. The purpose of the study is to examine and discuss the sustainable agricultural marketing initiatives practiced throughout the World and Turkey, and to put forth suggestions to further improve the performance of agricultural marketing initiatives in Turkey. Some of the sustainable agricultural marketing initiatives practiced around the world are carried out through civil organizations. Furthermore; some of these initiatives have also launched by farmers, consumers, food processors and retailers. The long-term strategies to increase these initiatives should be determined due to the fact that examples of successful sustainable agricultural marketing initiatives are inadequate and cannot be spread in Turkey. In this context, first of all, the supports provided by the government to improve agricultural marketing systems, such as EU funds for rural development should be compatible with the goals of sustainable marketing. For this purpose, it should be examined whether all proposed projects related to agricultural marketing meet the social, economic, and environmental principles of sustainable marketing. It is important that supporting organizations, especially civil society organisations, should take an active role for faster dissemination and adoption of sustainable agricultural marketing practices in Turkey. These organizations may provide technical assistance in preparing successful project proposals and training to farm groups. In addition, the other organizations, such as local administrations, producers' associations, cooperatives, can contribute to the success of sustainable agricultural marketing initiatives. The use of direct marketing strategies and vertical integration attempts in sustainable agricultural marketing initiatives that will likely be implemented in Turkey is

  16. Expression liver-directed genes by employing synthetic transcriptional control units

    Institute of Scientific and Technical Information of China (English)

    Marie-Luise Lemken; Wolfgang A. Wybranietz; Ulrike Schmidt; Florian Graepler; Sorin Armeanu; Michael Bitzer; Ulrich M. Lauer

    2005-01-01

    AIM: To generate and characterize the synthetic transcriptional control units for transcriptional targeting of the liver,thereby compensating for the lack of specificity of currently available gene therapeutic vector systems.METHODS: Synthetic transcriptional control unit constructs were generated and analyzed for transcriptional activities in different cell types by FACS quantification, semi-quantitative RT-PCR, and Western blotting. RESULTS: A new bifunctionally-enhanced green fluorescent protein (EGFP)/neor fusion gene cassette was generated,and could flexibly be used both for transcript quantification and for selection of stable cell clones. Then, numerous synthetic transcriptional control units consisting of a minimal promoter linked to "naturally" derived composite enhancer elements from liver-specific expressed genes or binding sites of liver-specific transcription factors were inserted upstream of this reporter cassette. Following liposome-mediated transfection, EGFP reporter protein quantification by FACS analysis identified constructs encoding multimerized composite elements of the apolipoprotein B100 (ApoB) promoter or the ornithin transcarbamoylase (OTC) enhancer to exhibit maximum transcriptional activities in liver originating cell lines, but only background levels in non-liver originating cell lines. In contrast, constructs encoding only singular binding sites of liver-specific transcription factors, namely hepatocyte nuclear factor (HNF)1, HNF3, HNF4, HNF5, or CAAT/enhancer binding protein (C/EBP) only achieved background levels of EGFP expression. Finally, both semi-quantitative RT-PCR and Western blotting analysis of Hep3B cells demonstrated maximum transcriptional activities for a multimeric 4xApoB cassette construct, which fully complied with the data obtained by initial FACS analysis.CONCLUSION: Synthetic transcriptional control unit constructs not only exhibit a superb degree of structural compactness, but also provide new means for liver

  17. RNA Pol II promotes transcription of centromeric satellite DNA in beetles.

    Directory of Open Access Journals (Sweden)

    Zeljka Pezer

    Full Text Available Transcripts of centromeric satellite DNAs are known to play a role in heterochromatin formation as well as in establishment of the kinetochore. However, little is known about basic mechanisms of satellite DNA expression within constitutive heterochromatin and its regulation. Here we present comprehensive analysis of transcription of abundant centromeric satellite DNA, PRAT from beetle Palorus ratzeburgii (Coleoptera. This satellite is characterized by preservation and extreme sequence conservation among evolutionarily distant insect species. PRAT is expressed in all three developmental stages: larvae, pupae and adults at similar level. Transcripts are abundant comprising 0.033% of total RNA and are heterogeneous in size ranging from 0.5 kb up to more than 5 kb. Transcription proceeds from both strands but with 10 fold different expression intensity and transcripts are not processed into siRNAs. Most of the transcripts (80% are not polyadenylated and remain in the nucleus while a small portion is exported to the cytoplasm. Multiple, irregularly distributed transcription initiation sites as well as termination sites have been mapped within the PRAT sequence using primer extension and RLM-RACE. The presence of cap structure as well as poly(A tails in a portion of the transcripts indicate RNA polymerase II-dependent transcription and a putative polymerase II promoter site overlaps the most conserved part of the PRAT sequence. The treatment of larvae with alpha-amanitin decreases the level of PRAT transcripts at concentrations that selectively inhibit pol II activity. In conclusion, stable, RNA polymerase II dependant transcripts of abundant centromeric satellite DNA, not regulated by RNAi, have been identified and characterized. This study offers a basic understanding of expression of highly abundant heterochromatic DNA which in beetle species constitutes up to 50% of the genome.

  18. Transcription variants of SLA-7, a swine non classical MHC class I gene.

    Science.gov (United States)

    Hu, Rui; Lemonnier, Gaëtan; Bourneuf, Emmanuelle; Vincent-Naulleau, Silvia; Rogel-Gaillard, Claire

    2011-06-03

    In pig, very little information is available on the non classical class I (Ib) genes of the Major Histocompatibility Complex (MHC) i.e. SLA-6, -7 and -8. Our aim was to focus on the transcription pattern of the SLA-7 gene. RT-PCR experiments were carried out with SLA-7 specific primers targeting either the full coding sequence (CDS) from exon 1 to the 3 prime untranslated region (3UTR) or a partial CDS from exon 4 to the 3UTR. We show that the SLA-7 gene expresses a full length transcript not yet identified that refines annotation of the gene with eight exons instead of seven as initially described from the existing RefSeq RNA. These two RNAs encode molecules that differ in cytoplasmic tail length. In this study, another SLA-7 transcript variant was characterized, which encodes a protein with a shorter alpha 3 domain, as a consequence of a splicing site within exon 4. Surprisingly, a cryptic non canonical GA-AG splicing site is used to generate this transcript variant. An additional SLA-7 variant was also identified in the 3UTR with a splicing site occurring 31 nucleotides downstream to the stop codon. In conclusion, the pig SLA-7 MHC class Ib gene presents a complex transcription pattern with two transcripts encoding various molecules and transcripts that do not alter the CDS and may be subject to post-transcriptional regulation.

  19. Evaluation of alternative RNA labeling protocols for transcript profiling with Arabidopsis AGRONOMICS1 tiling arrays

    Directory of Open Access Journals (Sweden)

    Müller Marlen

    2012-06-01

    Full Text Available Abstract Microarrays are routine tools for transcript profiling, and genomic tiling arrays such as the Arabidopsis AGRONOMICS1 arrays have been found to be highly suitable for such experiments because changes in genome annotation can be easily integrated at the data analysis level. In a transcript profiling experiment, RNA labeling is a critical step, most often initiated by oligo-dT-primed reverse transcription. Although this has been found to be a robust and reliable method, very long transcripts or non-polyadenylated transcripts might be labeled inefficiently. In this study, we first provide data handling methods to analyze AGRONOMICS1 tiling microarrays based on the TAIR10 genome annotation. Second, we describe methods to easily quantify antisense transcripts on such tiling arrays. Third, we test a random-primed RNA labeling method, and find that on AGRONOMICS1 arrays this method has similar general performance as the conventional oligo-dT-primed method. In contrast to the latter, however, the former works considerably better for long transcripts and for non-polyadenylated transcripts such as found in mitochondria and plastids. We propose that researchers interested in organelle function use the random-primed method to unleash the full potential of genomic tiling arrays.

  20. The transcriptional regulation of pluripotency

    Institute of Scientific and Technical Information of China (English)

    Jia-Chi Yeo; Huck-Hui Ng

    2013-01-01

    The defining features of embryonic stem cells (ESCs) are their self-renewing and pluripotent capacities.Indeed,the ability to give rise into all cell types within the organism not only allows ESCs to function as an ideal in vitro tool to study embryonic development,but also offers great therapeutic potential within the field of regenerative medicine.However,it is also this same remarkable developmental plasticity that makes the efficient control of ESC differentiation into the desired cell type very difficult.Therefore,in order to harness ESCs for clinical applications,a detailed understanding of the molecular and cellular mechanisms controlling ESC pluripotency and lineage commitment is necessary.In this respect,through a variety of transcriptomic approaches,ESC pluripotency has been found to be regulated by a system of ESC-associated transcription factors; and the external signalling environment also acts as a key factor in modulating the ESC transcriptome.Here in this review,we summarize our current understanding of the transcriptional regulatory network in ESCs,discuss how the control of various signalling pathways could influence pluripotency,and provide a future outlook of ESC research.

  1. The Yekaterinburg headache initiative

    DEFF Research Database (Denmark)

    Lebedeva, Elena R; Olesen, Jes; Osipova, Vera V;

    2013-01-01

    for a demonstrational interventional project in Russia, undertaken within the Global Campaign against Headache. The initiative proposes three actions: 1) raise awareness of need for improvement; 2) design and implement a three-tier model (from primary care to a single highly specialized centre with academic affiliation...... of a health-care needs assessment, and as a model for all Russia. We present and discuss early progress of the initiative, justify the investment of resources required for implementation and call for the political support that full implementation requires. The more that the Yekaterinburg headache initiative...

  2. A coding-independent function of an alternative Ube3a transcript during neuronal development.

    Science.gov (United States)

    Valluy, Jeremy; Bicker, Silvia; Aksoy-Aksel, Ayla; Lackinger, Martin; Sumer, Simon; Fiore, Roberto; Wüst, Tatjana; Seffer, Dominik; Metge, Franziska; Dieterich, Christoph; Wöhr, Markus; Schwarting, Rainer; Schratt, Gerhard

    2015-05-01

    The E3 ubiquitin ligase Ube3a is an important regulator of activity-dependent synapse development and plasticity. Ube3a mutations cause Angelman syndrome and have been associated with autism spectrum disorders (ASD). However, the biological significance of alternative Ube3a transcripts generated in mammalian neurons remains unknown. We report here that Ube3a1 RNA, a transcript that encodes a truncated Ube3a protein lacking catalytic activity, prevents exuberant dendrite growth and promotes spine maturation in rat hippocampal neurons. Surprisingly, Ube3a1 RNA function was independent of its coding sequence but instead required a unique 3' untranslated region and an intact microRNA pathway. Ube3a1 RNA knockdown increased activity of the plasticity-regulating miR-134, suggesting that Ube3a1 RNA acts as a dendritic competing endogenous RNA. Accordingly, the dendrite-growth-promoting effect of Ube3a1 RNA knockdown in vivo is abolished in mice lacking miR-134. Taken together, our results define a noncoding function of an alternative Ube3a transcript in dendritic protein synthesis, with potential implications for Angelman syndrome and ASD. PMID:25867122

  3. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-01

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.

  4. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor.

    NARCIS (Netherlands)

    G. Weeda (Geert); M. Rossignol; R.A. Fraser; G.S. Winkler (Sebastiaan); W. Vermeulen (Wim); L.J. van 't Veer (Laura); L. Ma (Libin); J.H.J. Hoeijmakers (Jan); J-M. Egly (Jean-Marc)

    1997-01-01

    textabstractMutations in the basal transcription initiation/DNA repair factor TFIIH are responsible for three human disorders: xeroderma pigmentosum (XP), cockayne syndrome (CS) and trichothiodystrophy (TTD). The non-repair features of CS and TTD are thought to be due to a partial inactivation of th

  5. Interaction with general transcription factor IIF (TFIIF) is required for the suppression of activated transcription by RPB5-mediating protein(RMP)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    RMP was reported to regulate transcription via competing with HBx to bind the general transcription factor IIB (TFIIB) and interacting with RPB5 subunit of RNA polymerase Ⅱ as a corepressor of transcription regulator. However, our present research uncovered that RMP also regulates the transcription through interaction with the general transcription factors IIF (TFIIF), which assemble in the preinitiation complex and function in both transcription initiation and elongation. With in vitro pull-down assay and Far-Western analysis, we demonstrated that RMP could bind with bacterially expressed recombinant RAP30 and RAP74of TFIIF subunits. In the immunoprecipitation assay in COS 1 cells cotransfected with FLAG-tagged RMP or its mutants, GST-fused RAP30 and RAP74 were co-immunoprecipitated with RMP in approximately equal molar ratio, which suggests that RAP30 and RAP74 interact with RMP as a TFIIF complex. Interestingly both RAP30 and RAP74 interact with the same domain (D5) of the C-terminal RMP of 118-amino-acid residuals which overlaps with its TFIIB-binding domain. Internal deletion of D5 region of RMP abolished its binding ability with both subunits of TFIIF, while D5 domain alone was sufficient to interact with TFIIF subunits. The result of luciferase assay showed that overexpression of RMP, but not the mutant RMP lacking D5 region, suppressed the transcription activated by Gal-VP16, suggesting that interaction with TFIIF is required for RMP to suppress the activated transcription. The interaction between RMP and TFIIF may be an additional passway for RMP to regulate the transcription, or alternatively TFIIF may cooperate with RPB5 and TFIIB for the corepressor function of RMP.

  6. TAF1B is a TFIIB-like component of the basal transcription machinery for RNA polymerase I.

    Science.gov (United States)

    Naidu, Srivatsava; Friedrich, J Karsten; Russell, Jackie; Zomerdijk, Joost C B M

    2011-09-16

    Transcription by eukaryotic RNA polymerases (Pols) II and III and archaeal Pol requires structurally related general transcription factors TFIIB, Brf1, and TFB, respectively, which are essential for polymerase recruitment and initiation events. A TFIIB-like protein was not evident in the Pol I basal transcription machinery. We report that TAF1B, a subunit of human Pol I basal transcription factor SL1, is structurally related to TFIIB/TFIIB-like proteins, through predicted amino-terminal zinc ribbon and cyclin-like fold domains. SL1, essential for Pol I recruitment to the ribosomal RNA gene promoter, also has an essential postpolymerase recruitment role, operating through TAF1B. Therefore, a TFIIB-related protein is implicated in preinitiation complex assembly and postpolymerase recruitment events in Pol I transcription, underscoring the parallels between eukaryotic Pol I, II, and III and archaeal transcription machineries. PMID:21921199

  7. Quality Initiatives - General Information

    Data.gov (United States)

    U.S. Department of Health & Human Services — CMS has developed a standardized approach for the development of quality measures that it uses in its quality initiatives. Known as the Measures Management System...

  8. Prairie Reconstruction Initiative

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Prairie Reconstruction Initiative Advisory Team (PRIAT) is to identify and take steps to resolve uncertainties in the process of prairie...

  9. The RAS Initiative

    Science.gov (United States)

    NCI established the RAS Initiative to explore innovative approaches for attacking the proteins encoded by mutant forms of RAS genes and to ultimately create effective, new therapies for RAS-related cancers.

  10. RAS Initiative - Events

    Science.gov (United States)

    The NCI RAS Initiative has organized multiple events with outside experts to discuss how the latest scientific and technological breakthroughs can be applied to discover vulnerabilities in RAS-driven cancers.

  11. Nursing Home Quality Initiative

    Data.gov (United States)

    U.S. Department of Health & Human Services — This Nursing Home Quality Initiative (NHQI) website provides consumer and provider information regarding the quality of care in nursing homes. NHQI discusses...

  12. Surgical Critical Care Initiative

    Data.gov (United States)

    Federal Laboratory Consortium — The Surgical Critical Care Initiative (SC2i) is a USU research program established in October 2013 to develop, translate, and validate biology-driven critical care....

  13. The MTE, a new core promoter element for transcription by RNA polymerase II

    OpenAIRE

    LIM, CHIN YAN; Santoso, Buyung; Boulay, Thomas; Dong, Emily; Ohler, Uwe; Kadonaga, James T.

    2004-01-01

    The core promoter is the ultimate target of the vast network of regulatory factors that contribute to the initiation of transcription by RNA polymerase II. Here we describe the MTE (motif ten element), a new core promoter element that appears to be conserved from Drosophila to humans. The MTE promotes transcription by RNA polymerase II when it is located precisely at positions +18 to +27 relative to A+1 in the initiator (Inr) element. MTE sequences from +18 to +22 relative to A+1 are importan...

  14. Multiple Roles of the τ131 Subunit of Yeast Transcription Factor IIIC (TFIIIC) in TFIIIB Assembly

    OpenAIRE

    Dumay-Odelot, Hélène; Acker, Joël; Arrebola, Rosalia; Sentenac, André; Marck, Christian

    2002-01-01

    Yeast transcription factor IIIC (TFIIIC) plays a key role in assembling the transcription initiation factor TFIIIB on class III genes after TFIIIC-DNA binding. The second largest subunit of TFIIIC, τ131, is thought to initiate TFIIIB assembly by interacting with Brf1/TFIIIB70. In this work, we have analyzed a TFIIIC mutant (τ131-ΔTPR2) harboring a deletion in τ131 removing the second of its 11 tetratricopeptide repeats. Remarkably, this thermosensitive mutation was selectively suppressed in v...

  15. Decreasing transcription elongation rate in Escherichia coli exposed to amino acid starvation

    DEFF Research Database (Denmark)

    Vogel, U.; Sørensen, M.A.; Pedersen, Steen;

    1992-01-01

    concentrations of guanosine tetraphosphate (ppGpp) accumulated in the cells. The starvation condition did not affect initiation of transcription at the lec-promoter, but a substantial fraction of the initiated lacZ mRNA chains was never completed. For the rel+ strain the polarity was moderate, since c. 25...... the cells starved for isoleucine. In combination, these results suggest that ppGpp plays a major role in maintaining the coupling between transcription and translation during the downshift by inhibiting mRNA chain elongation. The implications of this result for the control of stable RNA synthesis during...

  16. Supply Chain Initiatives Database

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-11-01

    The Supply Chain Initiatives Database (SCID) presents innovative approaches to engaging industrial suppliers in efforts to save energy, increase productivity and improve environmental performance. This comprehensive and freely-accessible database was developed by the Institute for Industrial Productivity (IIP). IIP acknowledges Ecofys for their valuable contributions. The database contains case studies searchable according to the types of activities buyers are undertaking to motivate suppliers, target sector, organization leading the initiative, and program or partnership linkages.

  17. Systematic genetic analysis of transcription factors to map the fission yeast transcription-regulatory network.

    Science.gov (United States)

    Chua, Gordon

    2013-12-01

    Mapping transcriptional-regulatory networks requires the identification of target genes, binding specificities and signalling pathways of transcription factors. However, the characterization of each transcription factor sufficiently for deciphering such networks remains laborious. The recent availability of overexpression and deletion strains for almost all of the transcription factor genes in the fission yeast Schizosaccharomyces pombe provides a valuable resource to better investigate transcription factors using systematic genetics. In the present paper, I review and discuss the utility of these strain collections combined with transcriptome profiling and genome-wide chromatin immunoprecipitation to identify the target genes of transcription factors.

  18. Transcription in Archaea: in vitro transcription assays for mjRNAP.

    Science.gov (United States)

    Smollett, Katherine; Blombach, Fabian; Werner, Finn

    2015-01-01

    The fully recombinant Methanocaldococcus jannaschii RNA polymerase allows for a detailed dissection of the different stages of the transcription. In the previous chapter, we discussed how to purify the different components of the M. jannaschii transcription system, the RNA polymerase subunits, and general transcription factors and how to assemble a functional M. jannaschii enzyme. Standard in vitro transcription assays can be used to examine the different stages of transcription. In this chapter, we describe how some of these assays have been optimized for M. jannaschii RNA polymerase, which transcribes at much higher temperatures than many other transcription complexes.

  19. Choice of initial therapy

    Directory of Open Access Journals (Sweden)

    Manuel Battegay

    2014-11-01

    Full Text Available Current international and national treatment guidelines such as EACS, BHIVA, DHHS or IAS update regularly recommendations on the choice of initial combination antiretroviral treatment (cART regimens. Preferred cART regimens include a backbone with two nucleoside (nucleotide reverse transcriptase inhibitors combined either with one non-nucleoside reverse transcriptase inhibitor or one ritonavir boosted protease inhibitor or more recently one integrase inhibitor. Response rates according to viral load measurements increased in recent years, in particular due to better tolerability. The choice of initial therapy is flexible and influenced by several factors such as height of viral load, genotypic resistance testing, CD4 cell count, co-morbidities, interactions, potential adverse events, (potential for pregnancy, convenience, adherence, costs as well as physician's and patient's preferences. Diverse highly potent initial cART regimens exist. Following the many possibilities, the choice of a regimen is based on a mixture of evidence-informed data and individualized concepts, some of the latter only partly supported by strong evidence. For example, different perceptions and personal experiences exist about boosted protease inhibitors compared to non-nucleoside reverse transcriptase inhibitors or integrase inhibitors and vice versa which may influence the initial choice. This lecture will discuss choices of initial cART in view of international guidelines and the evidence for individualization of initial HIV therapy.

  20. Catching transcriptional regulation by thermostatistical modeling

    Science.gov (United States)

    Frank, Till D.; Cheong, Alex; Okada-Hatakeyama, Mariko; Kholodenko, Boris N.

    2012-08-01

    Gene expression is frequently regulated by multiple transcription factors (TFs). Thermostatistical methods allow for a quantitative description of interactions between TFs, RNA polymerase and DNA, and their impact on the transcription rates. We illustrate three different scales of the thermostatistical approach: the microscale of TF molecules, the mesoscale of promoter energy levels and the macroscale of transcriptionally active and inactive cells in a cell population. We demonstrate versatility of combinatorial transcriptional activation by exemplifying logic functions, such as AND and OR gates. We discuss a metric for cell-to-cell transcriptional activation variability known as Fermi entropy. Suitability of thermostatistical modeling is illustrated by describing the experimental data on transcriptional induction of NFκB and the c-Fos protein.

  1. RNA polymerase II collision interrupts convergent transcription

    DEFF Research Database (Denmark)

    Hobson, David J; Wei, Wu; Steinmetz, Lars M;

    2012-01-01

    Antisense noncoding transcripts, genes-within-genes, and convergent gene pairs are prevalent among eukaryotes. The existence of such transcription units raises the question of what happens when RNA polymerase II (RNAPII) molecules collide head-to-head. Here we use a combination of biochemical...... genes. These results provide insight into fundamental mechanisms of gene traffic control and point to an unexplored effect of antisense transcription on gene regulation via polymerase collision....

  2. Balanced Branching in Transcription Termination

    CERN Document Server

    Harrington, K J; Liang, S

    2000-01-01

    The theory of stochastic transcription termination based on free-energy competition requires two or more reaction rates to be delicately balanced over a wide range of physical conditions. A large body of work on glasses and large molecules suggests that this should be impossible in such a large system in the absence of a new organizing principle of matter. We review the experimental literature of termination and find no evidence for such a principle but many troubling inconsistencies, most notably anomalous memory effects. These suggest that termination has a deterministic component and may conceivably be not stochastic at all. We find that a key experiment by Wilson and von Hippel allegedly refuting deterministic termination was an incorrectly analyzed regulatory effect of Mg2+ binding.

  3. Transcriptional networks and chromatin remodeling controlling adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2012-01-01

    Adipocyte differentiation is tightly controlled by a transcriptional cascade, which directs the extensive reprogramming of gene expression required to convert fibroblast-like precursor cells into mature lipid-laden adipocytes. Recent global analyses of transcription factor binding and chromatin...... remodeling have revealed 'snapshots' of this cascade and the chromatin landscape at specific time-points of differentiation. These studies demonstrate that multiple adipogenic transcription factors co-occupy hotspots characterized by an open chromatin structure and specific epigenetic modifications....... Such transcription factor hotspots are likely to represent key signaling nodes which integrate multiple adipogenic signals at specific chromatin sites, thereby facilitating coordinated action on gene expression....

  4. Heritable change caused by transient transcription errors.

    Directory of Open Access Journals (Sweden)

    Alasdair J E Gordon

    2013-06-01

    Full Text Available Transmission of cellular identity relies on the faithful transfer of information from the mother to the daughter cell. This process includes accurate replication of the DNA, but also the correct propagation of regulatory programs responsible for cellular identity. Errors in DNA replication (mutations and protein conformation (prions can trigger stable phenotypic changes and cause human disease, yet the ability of transient transcriptional errors to produce heritable phenotypic change ('epimutations' remains an open question. Here, we demonstrate that transcriptional errors made specifically in the mRNA encoding a transcription factor can promote heritable phenotypic change by reprogramming a transcriptional network, without altering DNA. We have harnessed the classical bistable switch in the lac operon, a memory-module, to capture the consequences of transient transcription errors in living Escherichia coli cells. We engineered an error-prone transcription sequence (A9 run in the gene encoding the lac repressor and show that this 'slippery' sequence directly increases epigenetic switching, not mutation in the cell population. Therefore, one altered transcript within a multi-generational series of many error-free transcripts can cause long-term phenotypic consequences. Thus, like DNA mutations, transcriptional epimutations can instigate heritable changes that increase phenotypic diversity, which drives both evolution and disease.

  5. Soluble ICAM-5, a product of activity dependent proteolysis, increases mEPSC frequency and dendritic expression of GluA1.

    Directory of Open Access Journals (Sweden)

    Irina Lonskaya

    Full Text Available Matrix metalloproteinases (MMPs are zinc dependent endopeptidases that can be released from neurons in an activity dependent manner to play a role in varied forms of learning and memory. MMP inhibitors impair hippocampal long term potentiation (LTP, spatial memory, and behavioral correlates of drug addiction. Since MMPs are thought to influence LTP through a β1 integrin dependent mechanism, it has been suggested that these enzymes cleave specific substrates to generate integrin binding ligands. In previously published work, we have shown that neuronal activity stimulates rapid MMP dependent shedding of intercellular adhesion molecule-5 (ICAM-5, a synaptic adhesion molecule expressed on dendrites of the telencephalon. We have also shown that the ICAM-5 ectodomain can interact with β1 integrins to stimulate integrin dependent phosphorylation of cofilin, an event that occurs with dendritic spine maturation and LTP. In the current study, we investigate the potential for the ICAM-5 ectodomain to stimulate changes in α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR dependent glutamatergic transmission. Single cell recordings show that the ICAM-5 ectodomain stimulates an increase in the frequency, but not the amplitude, of AMPA mini excitatory post synaptic currents (mEPSCs. With biotinylation and precipitation assays, we also show that the ICAM-5 ectodomain stimulates an increase in membrane levels of GluA1, but not GluA2, AMPAR subunits. In addition, we observe an ICAM-5 associated increase in GluA1 phosphorylation at serine 845. Concomitantly, ICAM-5 affects an increase in GluA1 surface staining along dendrites without affecting an increase in dendritic spine number. Together these data are consistent with the possibility that soluble ICAM-5 increases glutamatergic transmission and that post-synaptic changes, including increased phosphorylation and dendritic insertion of GluA1, could contribute. We suggest that future studies

  6. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi, E-mail: wangyi2004a@126.com [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China); Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China)

    2011-08-05

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the

  7. Quantification of co-transcriptional splicing from RNA-Seq data.

    Science.gov (United States)

    Herzel, Lydia; Neugebauer, Karla M

    2015-09-01

    During gene expression, protein-coding transcripts are shaped by multiple processing events: 5' end capping, pre-mRNA splicing, RNA editing, and 3' end cleavage and polyadenylation. These events are required to produce mature mRNA, which can be subsequently translated. Nearly all of these RNA processing steps occur during transcription, while the nascent RNA is still attached to the DNA template by RNA polymerase II (i.e. co-transcriptionally). Polyadenylation occurs after 3' end cleavage or post-transcriptionally. Pre-mRNA splicing - the removal of introns and ligation of exons - can be initiated and concluded co-transcriptionally, although this is not strictly required. Recently, a number of studies using global methods have shown that the majority of splicing is co-transcriptional, yet not all published studies agree in their conclusions. Short read sequencing of RNA (RNA-Seq) is the prevailing approach to measuring splicing levels in nascent RNA, mRNA or total RNA. Here, we compare four different strategies for analyzing and quantifying co-transcriptional splicing. To do so, we reanalyze two nascent RNA-Seq datasets of the same species, but different cell type and RNA isolation procedure. Average co-transcriptional splicing values calculated on a per intron basis are similar, independent of the strategy used. We emphasize the technical requirements for identifying co-transcriptional splicing events with high confidence, e.g. how to calculate co-transcriptional splicing from nascent RNA- versus mRNA-Seq data, the number of biological replicates needed, depletion of polyA+RNA, and appropriate normalization. Finally, we present guidelines for planning a nascent RNA-Seq experiment.

  8. Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA.

    Science.gov (United States)

    Hubin, Elizabeth A; Tabib-Salazar, Aline; Humphrey, Laurence J; Flack, Joshua E; Olinares, Paul Dominic B; Darst, Seth A; Campbell, Elizabeth A; Paget, Mark S

    2015-06-01

    Gene expression is highly regulated at the step of transcription initiation, and transcription activators play a critical role in this process. RbpA, an actinobacterial transcription activator that is essential in Mycobacterium tuberculosis (Mtb), binds selectively to group 1 and certain group 2 σ-factors. To delineate the molecular mechanism of RbpA, we show that the Mtb RbpA σ-interacting domain (SID) and basic linker are sufficient for transcription activation. We also present the crystal structure of the Mtb RbpA-SID in complex with domain 2 of the housekeeping σ-factor, σ(A). The structure explains the basis of σ-selectivity by RbpA, showing that RbpA interacts with conserved regions of σ(A) as well as the nonconserved region (NCR), which is present only in housekeeping σ-factors. Thus, the structure is the first, to our knowledge, to show a protein interacting with the NCR of a σ-factor. We confirm the basis of selectivity and the observed interactions using mutagenesis and functional studies. In addition, the structure allows for a model of the RbpA-SID in the context of a transcription initiation complex. Unexpectedly, the structural modeling suggests that RbpA contacts the promoter DNA, and we present in vivo and in vitro studies supporting this finding. Our combined data lead to a better understanding of the mechanism of RbpA function as a transcription activator.

  9. Initial conditions for inflation

    CERN Document Server

    Dimopoulos, Konstantinos

    2016-01-01

    A novel proposal is presented, which manages to overcome the initial conditions problem of inflation with a plateau. An earlier period of proto-inflation, beginning at Planck scale, accounts for the Universe expansion and arranges the required initial conditions for inflation on the plateu to commence. We show that, if proto-inflation is power-law, it does not suffer from any eternal inflationary stage. A simple model realisation is constructed in the context of $\\alpha$-attractors, which can both generate the inflationary plateau and the exponential slopes around it, necessary for the two inflation stages. Our mechanism allows to assume chaotic initial conditions at the Planck scale for proto-inflation, it is generic and it is shown to work without fine-tunings.

  10. International EUREKA: Initialization Segment

    International Nuclear Information System (INIS)

    The Initialization Segment creates the starting description of the uranium market. The starting description includes the international boundaries of trade, the geologic provinces, resources, reserves, production, uranium demand forecasts, and existing market transactions. The Initialization Segment is designed to accept information of various degrees of detail, depending on what is known about each region. It must transform this information into a specific data structure required by the Market Segment of the model, filling in gaps in the information through a predetermined sequence of defaults and built in assumptions. A principal function of the Initialization Segment is to create diagnostic messages indicating any inconsistencies in data and explaining which assumptions were used to organize the data base. This permits the user to manipulate the data base until such time the user is satisfied that all the assumptions used are reasonable and that any inconsistencies are resolved in a satisfactory manner

  11. Win-win initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Specter, Herschel

    1999-03-01

    This paper explores the use of win-win initiatives as a means of making safety improvements while simultaneously reducing plant operating costs. A two-phased process for implementing these initiatives is provided. Near-term progress is emphasized in the first phase by using presently available information. The second phase addresses complex issues such as closure in the regulatory process, modernizing the role of determinism in decisionmaking, closer coupling of performance-based regulation and risk-informed regulation, modernizing the testing of important plant equipment, and the treatment of uncertainties.

  12. Bivalent-like chromatin markers are predictive for transcription start site distribution in human.

    Directory of Open Access Journals (Sweden)

    Zhihua Zhang

    Full Text Available Deep sequencing of 5' capped transcripts has revealed a variety of transcription initiation patterns, from narrow, focused promoters to wide, broad promoters. Attempts have already been made to model empirically classified patterns, but virtually no quantitative models for transcription initiation have been reported. Even though both genetic and epigenetic elements have been associated with such patterns, the organization of regulatory elements is largely unknown. Here, linear regression models were derived from a pool of regulatory elements, including genomic DNA features, nucleosome organization, and histone modifications, to predict the distribution of transcription start sites (TSS. Importantly, models including both active and repressive histone modification markers, e.g. H3K4me3 and H4K20me1, were consistently found to be much more predictive than models with only single-type histone modification markers, indicating the possibility of "bivalent-like" epigenetic control of transcription initiation. The nucleosome positions are proposed to be coded in the active component of such bivalent-like histone modification markers. Finally, we demonstrated that models trained on one cell type could successfully predict TSS distribution in other cell types, suggesting that these models may have a broader application range.

  13. Investigation of RNA Polymerase I Transcription under Force-Free Condition by Single Molecule Technique

    Science.gov (United States)

    Ucuncuoglu, Suleyman; Schneider, David A.; Dunlap, David; Finzi, Laura

    2014-03-01

    RNA Polymerase I (Pol I) conducts more than 60% of all the transcriptional activity in cells and also is responsible for synthesizing the RNA structure of the ribosome in eukaryotic cells. It is evident in many studies that Pol I transcription is affected by tumor suppressors and oncogenes which makes Pol I as a target for the anticancer therapeutics. The mechanistic pathways and kinetics of the Pol I transcription needs to be understood more precisely. Even though previous bulk studies measured the kinetics of the Pol I transcription, the results may hinder the intermediate states such as processivity and pausing during elongation. Here we used the single molecule approach to show that Pol I pauses more than Pol II during elongation step by using a novel single molecule instrument, multiplexed tethered particle motion microscopy (TPM). Our in-house developed TPM equipment is able to concurrently observe hundreds of single molecules. TPM technique has a major advantage to observe pausing under force-free condition unlike other single molecule techniques such as magnetic tweezers and optical tweezers. We also report that the processivity of Pol I is very low where only one out of fifteen transcription event reached the run-off site. We anticipate that our single molecule assays paved the way for observing more sophisticated aspects of Pol I transcription and it's relation with initiation and transcriptional factors.

  14. Transcriptional coactivator CIITA, a functional homolog of TAF1, has kinase activity.

    Science.gov (United States)

    Soe, Katherine C; Devaiah, Ballachanda N; Singer, Dinah S

    2013-11-01

    The Major Histocompatibility Complex (MHC) class II transactivator (CIITA) mediates activated immune responses and its deficiency results in the Type II Bare Lymphocyte Syndrome. CIITA is a transcriptional co-activator that regulates γ-interferon-activated transcription of MHC class I and class II genes. It is also a functional homolog of TAF1, a component of the general transcription factor complex TFIID. TAF1 and CIITA both possess intrinsic acetyltransferase (AT) activity that is required for transcription initiation. In response to induction by γ-interferon, CIITA and it's AT activity bypass the requirement for TAF1 AT activity. TAF1 also has kinase activity that is essential for its function. However, no similar activity has been identified for CIITA thus far. Here we report that CIITA, like TAF1, is a serine-threonine kinase. Its substrate specificity parallels, but does not duplicate, that of TAF1 in phosphorylating the TFIID component TAF7, the RAP74 subunit of the general transcription factor TFIIF and histone H2B. Like TAF1, CIITA autophosphorylates, affecting its interaction with TAF7. Additionally, CIITA phosphorylates histone H2B at Ser36, a target of TAF1 that is required for transcription during cell cycle progression and stress response. However, unlike TAF1, CIITA also phosphorylates all the other histones. The identification of this novel kinase activity of CIITA further clarifies its role as a functional homolog of TAF1 which may operate during stress and γ-IFN activated MHC gene transcription.

  15. Synthetic Transcription Amplifier System for Orthogonal Control of Gene Expression in Saccharomyces cerevisiae

    Science.gov (United States)

    Rantasalo, Anssi; Czeizler, Elena; Virtanen, Riitta; Rousu, Juho; Lähdesmäki, Harri; Penttilä, Merja

    2016-01-01

    This work describes the development and characterization of a modular synthetic expression system that provides a broad range of adjustable and predictable expression levels in S. cerevisiae. The system works as a fixed-gain transcription amplifier, where the input signal is transferred via a synthetic transcription factor (sTF) onto a synthetic promoter, containing a defined core promoter, generating a transcription output signal. The system activation is based on the bacterial LexA-DNA-binding domain, a set of modified, modular LexA-binding sites and a selection of transcription activation domains. We show both experimentally and computationally that the tuning of the system is achieved through the selection of three separate modules, each of which enables an adjustable output signal: 1) the transcription-activation domain of the sTF, 2) the binding-site modules in the output promoter, and 3) the core promoter modules which define the transcription initiation site in the output promoter. The system has a novel bidirectional architecture that enables generation of compact, yet versatile expression modules for multiple genes with highly diversified expression levels ranging from negligible to very strong using one synthetic transcription factor. In contrast to most existing modular gene expression regulation systems, the present system is independent from externally added compounds. Furthermore, the established system was minimally affected by the several tested growth conditions. These features suggest that it can be highly useful in large scale biotechnology applications. PMID:26901642

  16. TEFM is a potent stimulator of mitochondrial transcription elongation in vitro.

    Science.gov (United States)

    Posse, Viktor; Shahzad, Saba; Falkenberg, Maria; Hällberg, B Martin; Gustafsson, Claes M

    2015-03-11

    A single-subunit RNA polymerase, POLRMT, transcribes the mitochondrial genome in human cells. Recently, a factor termed as the mitochondrial transcription elongation factor, TEFM, was shown to stimulate transcription elongation in vivo, but its effect in vitro was relatively modest. In the current work, we have isolated active TEFM in recombinant form and used a reconstituted in vitro transcription system to characterize its activities. We show that TEFM strongly promotes POLRMT processivity as it dramatically stimulates the formation of longer transcripts. TEFM also abolishes premature transcription termination at conserved sequence block II, an event that has been linked to primer formation during initiation of mtDNA synthesis. We show that POLRMT pauses at a wide range of sites in a given DNA sequence. In the absence of TEFM, this leads to termination; however, the presence of TEFM abolishes this effect and aids POLRMT in continuation of transcription. Further, we show that TEFM substantially increases the POLRMT affinity to an elongation-like DNA:RNA template. In combination with previously published in vivo observations, our data establish TEFM as an essential component of the mitochondrial transcription machinery.

  17. Regulation of cell proliferation by the E2F transcription factors

    DEFF Research Database (Denmark)

    Helin, K

    1998-01-01

    Experimental data generated in the past year have further emphasized the essential role for the E2F transcription factors in the regulation of cell proliferation. Genetic studies have shown that E2F activity is required for normal development in fruitflies, and the generation of E2F-1(-/-) mice has...... demonstrated that individual members of the E2F transcription factor family are likely to have distinct roles in mammalian development and homeostasis. Additional mechanisms regulating the activity of the E2F transcription factors have been reported, including subcellular localization and proteolysis of the E2......Fs in the proteasomes. Novel target genes for the E2F transcription factors have been identified that link the E2Fs directly to the initiation of DNA replication....

  18. Highly asynchronous and asymmetric cleavage divisions accompany early transcriptional activity in pre-blastula medaka embryos.

    Directory of Open Access Journals (Sweden)

    Michael Kraeussling

    Full Text Available In the initial phase of development of fish embryos, a prominent and critical event is the midblastula transition (MBT. Before MBT cell cycle is rapid, highly synchronous and zygotic gene transcription is turned off. Only during MBT the cell cycle desynchronizes and transcription is activated. Multiple mechanisms, primarily the nucleocytoplasmic ratio, are supposed to control MBT activation. Unexpectedly, we find in the small teleost fish medaka (Oryzias latipes that at very early stages, well before midblastula, cell division becomes asynchronous and cell volumes diverge. Furthermore, zygotic transcription is extensively activated already after the 64-cell stage. Thus, at least in medaka, the transition from maternal to zygotic transcription is uncoupled from the midblastula stage and not solely controlled by the nucleocytoplasmic ratio.

  19. Global transcriptional start site mapping in Geobacter sulfurreducens during growth with two different electron acceptors.

    Science.gov (United States)

    González, Getzabeth; Labastida, Aurora; Jímenez-Jacinto, Verónica; Vega-Alvarado, Leticia; Olvera, Maricela; Morett, Enrique; Juárez, Katy

    2016-09-01

    Geobacter sulfurreducens is an anaerobic soil bacterium that is involved in biogeochemical cycles of elements such as Fe and Mn. Although significant progress has been made in the understanding of the electron transfer processes in G. sulfurreducens, little is known about the regulatory mechanisms involved in their control. To expand the study of gene regulation in G. sulfurreducens, we carried out a genome-wide identification of transcription start sites (TSS) by 5'RACE and by deep RNA sequencing of primary mRNAs in two growth conditions. TSSs were identified along G. sulfurreducens genome and over 50% of them were located in the upstream region of the associated gene, and in some cases we detected genes with more than one TSS. Our global mapping of TSSs contributes with valuable information, which is needed for the study of transcript structure and transcription regulation signals and can ultimately contribute to the understanding of transcription initiation phenomena in G. sulfurreducens. PMID:27488344

  20. Promoter proximal polyadenylation sites reduce transcription activity

    DEFF Research Database (Denmark)

    Andersen, Pia Kjølhede; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site...

  1. Transcription of Byzantine Chant - Problems, Possibilities, Formats

    DEFF Research Database (Denmark)

    Troelsgård, Christian

    2007-01-01

    Discusses the problems and possibilities for transsription of Byzantine chant on the basis of medieval musical manuscripts. A relatively 'neutral' style of transcription is suggested for musicological purposes.......Discusses the problems and possibilities for transsription of Byzantine chant on the basis of medieval musical manuscripts. A relatively 'neutral' style of transcription is suggested for musicological purposes....

  2. The NAC transcription factors of barley

    DEFF Research Database (Denmark)

    Wagner, Michael; Holm, Preben Bach; Gregersen, Per L.

    2011-01-01

    It is now 15 years ago the first NAC transcription factor was described in the literature (Souer et al. 1996), since then a number of plant species have been fully sequenced revealing the NAC gene family to be one of the largest families of transcription factors in plants (Shen et al 2009). The NAC...

  3. Transcription and the aspect ratio of DNA

    DEFF Research Database (Denmark)

    Olsen, Kasper Wibeck; Bohr, Jakob

    2013-01-01

    analysis of transcription. It is shown that under certain reasonable assumptions transcription is only possible if the aspect ratio is in the regime corresponding to further twisting. We find this constraint to be in agreement with long-established crystallographic studies of DNA....

  4. The Drosophila Helicase MLE Targets Hairpin Structures in Genomic Transcripts.

    Directory of Open Access Journals (Sweden)

    Simona Cugusi

    2016-01-01

    Full Text Available RNA hairpins are a common type of secondary structures that play a role in every aspect of RNA biochemistry including RNA editing, mRNA stability, localization and translation of transcripts, and in the activation of the RNA interference (RNAi and microRNA (miRNA pathways. Participation in these functions often requires restructuring the RNA molecules by the association of single-strand (ss RNA-binding proteins or by the action of helicases. The Drosophila MLE helicase has long been identified as a member of the MSL complex responsible for dosage compensation. The complex includes one of two long non-coding RNAs and MLE was shown to remodel the roX RNA hairpin structures in order to initiate assembly of the complex. Here we report that this function of MLE may apply to the hairpins present in the primary RNA transcripts that generate the small molecules responsible for RNA interference. Using stocks from the Transgenic RNAi Project and the Vienna Drosophila Research Center, we show that MLE specifically targets hairpin RNAs at their site of transcription. The association of MLE at these sites is independent of sequence and chromosome location. We use two functional assays to test the biological relevance of this association and determine that MLE participates in the RNAi pathway.

  5. Transcriptional Regulatory Network for the Development of Innate Lymphoid Cells

    Directory of Open Access Journals (Sweden)

    Chao Zhong

    2015-01-01

    Full Text Available Recent studies on innate lymphoid cells (ILCs have expanded our knowledge about the innate arm of the immune system. Helper-like ILCs share both the “innate” feature of conventional natural killer (cNK cells and the “helper” feature of CD4+ T helper (Th cells. With this combination, helper-like ILCs are capable of initiating early immune responses similar to cNK cells, but via secretion of a set of effector cytokines similar to those produced by Th cells. Although many studies have revealed the functional similarity between helper-like ILCs and Th cells, some aspects of ILCs including the development of this lineage remain elusive. It is intriguing that the majority of transcription factors involved in multiple stages of T cell development, differentiation, and function also play critical roles during ILC development. Regulators such as Id2, GATA-3, Nfil3, TOX, and TCF-1 are expressed and function at various stages of ILC development. In this review, we will summarize the expression and functions of these transcription factors shared by ILCs and Th cells. We will also propose a complex transcriptional regulatory network for the lineage commitment of ILCs.

  6. [Immunoglobulin genes in lymphoid cells and regulation of their transcription].

    Science.gov (United States)

    Stepchenko, A G; Urakov, D N; Luchina, N N; Deev, S M; Polianovskiĭ, O L

    1990-01-01

    The hybridoma genomes contain polyploid sets of immunoglobulin genes. We have shown, that the hybridoma PTF-02 genome contains three genes of heavy chains and two genes of light chains. The genes responsible for antibody synthesis were cloned and their structure were determined. Investigation of the kappa gene transcription and its fragments which contain regulatory sequences revealed a nuclear factor. The latter interacts with the octanucleotide localized at the promoter region of the kappa gene. The purified factor activates the transcription of the kappa gene in a heterologous cell-free system. Together with the tissue-specific factor there is also an universal factor interacting with the octanucleotide sequence. We have shown an additional factor in lymphoid cells interact with the protein which binds to the octanucleotide sequence. We have shown an additional factor in lymphoid cells interacting with the protein which binds to the octanucleotide sequence. As a result, there is a family of factors which interact with ATTTGCAT sequence. One major factor (m.w. 60 +/- 2 kDa) is an obligatory component for the initiation of immunoglobulin genes transcription.

  7. Transcriptional profile of a myotube starvation model of atrophy

    Science.gov (United States)

    Stevenson, Eric J.; Koncarevic, Alan; Giresi, Paul G.; Jackman, Robert W.; Kandarian, Susan C.

    2005-01-01

    Skeletal muscle wasting is a pervasive phenomenon that can result from a wide range of pathological conditions as well as from habitual muscular inactivity. The present work describes a cell-culture condition that induces significant atrophy in skeletal muscle C2C12 myotubes. The failure to replenish differentiation media in mature myotubes leads to rapid atrophy (53% in diameter), which is referred to here as starvation. Affymetrix microarrays were used to develop a transcriptional profile of control (fed) vs. atrophied (nonfed) myotubes. Myotube starvation was characterized by an upregulation of genes involved in translational inhibition, amino acid biosynthesis and transport, and cell cycle arrest/apoptosis, among others. Downregulated genes included several structural and regulatory elements of the extracellular matrix as well as several elements of Wnt/frizzled and TGF-beta signaling pathways. Interestingly, the characteristic transcriptional upregulation of the ubiquitin-proteasome system, calpains, and cathepsins known to occur in multiple in vivo models of atrophy were not seen during myotube starvation. With the exception of the downregulation of extracellular matrix genes, serine protease inhibitor genes, and the upregulation of the translation initiation factor PHAS-I, this model of atrophy in cell culture has a transcriptional profile quite distinct from any study published to date with atrophy in whole muscle. These data show that, although the gross morphology of atrophied muscle fibers may be similar in whole muscle vs. myotube culture, the processes by which this phenotype is achieved differ markedly.

  8. Open Archives Initiative

    OpenAIRE

    McMillan, Gail

    2004-01-01

    This presentation, which was given at the annual meeting of the Society of Scholarly Publishing on June 1, 2000, describes the Open Archives Initiative (OAI), a protocol for exchanging content between digital repositories. The presentation outlines OAI's history, core components, key stakeholders, and ongoing developments. Presented at the Society for Scholarly Publishing: June 1, 2000

  9. Best Practices & Outstanding Initiatives

    Science.gov (United States)

    Training, 2011

    2011-01-01

    In this article, "Training" editors recognize innovative and successful learning and development programs and practices. They share best practices from Automatic Data Processing, Inc., Farmers Insurance Group, FedEx Express, InterContinental Hotels Group, and Oakwood Temporary Housing. They also present the outstanding initiatives of EMD Serono,…

  10. Self-initiated expatriates

    DEFF Research Database (Denmark)

    Selmer, Jan; Lauring, Jakob

    2014-01-01

    Purpose – As it has been suggested that adult third-culture kids may be more culturally adaptable than others, they have been labelled “the ideal” expatriates. In this article, we explore the adjustment of self-initiated expatriate academics in Hong Kong, comparing adult third-culture kids with a...

  11. Initial Market Assessment

    OpenAIRE

    World Bank, (WB)

    2013-01-01

    Responding appropriately to the country’s high exposure and vulnerability to natural disasters, and capitalizing on a well-functioning insurance industry, Vietnam has embraced insurance mechanisms in disaster risk management and agriculture more vigorously than most developing countries. But some initiatives like the disaster risk reduction (DRR) strategy’s mandate to implement disaster ri...

  12. Clean Energy Manufacturing Initiative

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  13. The SEED Initiative

    Science.gov (United States)

    Teich, Carolyn R.

    2011-01-01

    Committed to fulfilling the promise of the green economy, the American Association of Community Colleges (AACC) launched the Sustainability Education and Economic Development (SEED) initiative (www.theseedcenter.org) in October 2010. The project advances sustainability and clean energy workforce development practices at community colleges by…

  14. Sustaining Participatory Design Initiatives

    DEFF Research Database (Denmark)

    Iversen, Ole Sejer; Dindler, Christian

    2014-01-01

    While many participatory design (PD) projects succeed in establishing new organisational initiatives or creating technology that is attuned to the people affected, the issue of how such results are sustained after the project ends remains an important challenge. We explore the challenge...

  15. Depression of nuclear transcription and extension of mRNA half-life under anoxia in Artemia franciscana embryos.

    Science.gov (United States)

    van Breukelen, F; Maier, R; Hand, S C

    2000-04-01

    Transcriptional activity, as assessed by nuclear run-on assays, was constant during 10 h of normoxic development for embryos of the brine shrimp Artemia franciscana. Exposure of embryos to only 4 h of anoxia resulted in a 79.3+/-1 % decrease in levels of in-vivo-initiated transcripts, and transcription was depressed by 88. 2+/-0.7 % compared with normoxic controls after 24 h of anoxia (means +/- s.e.m., N=3). Initiation of transcription was fully restored after 1 h of normoxic recovery. Artificially lowering the intracellular pH of aerobic embryos to the value reflective of anoxia (pH 6.7) showed that acidification alone explained over half the transcriptional arrest. Initiation of transcription was not rescued by application of 80 % carbon monoxide under anoxia, which suggests that heme-based oxygen sensing is not involved in this global arrest. When these transcriptional data are combined with the finding that mRNA levels are unchanged for at least 6 h of anoxia, it is clear that the half-life of mRNA is extended at least 8.5-fold compared with that in aerobic embryos. In contrast to the activation of compensatory mechanisms to cope with anoxia that occurs in mammalian cells, A. franciscana embryos enter a metabolically depressed state in which gene expression and mRNA turnover are cellular costs apparently not compatible with survival and in which extended tolerance supercedes the requirement for continued metabolic function. PMID:10708633

  16. Transcriptional Regulation of Plant Secondary Metabolism

    Institute of Scientific and Technical Information of China (English)

    Chang-Qing Yang; Xin Fang; Xiu-Ming Wu; Ying-Bo Mao; Ling-Jian Wang; Xiao-Ya Chen

    2012-01-01

    Plant secondary metabolites play critical roles in plant-environment interactions.They are synthesized in different organs or tissues at particular developmental stages,and in response to various environmental stimuli,both biotic and abiotic.Accordingly,corresponding genes are regulated at the transcriptional level by multiple transcription factors.Several families of transcription factors have been identified to participate in controlling the biosynthesis and accumulation of secondary metabolites.These regulators integrate internal (often developmental) and external signals,bind to corresponding cis-elements — which are often in the promoter regions — to activate or repress the expression of enzyme-coding genes,and some of them interact with other transcription factors to form a complex.In this review,we summarize recent research in these areas,with an emphasis on newly-identified transcription factors and their functions in metabolism regulation.

  17. Transcriptional factors, Mafs and their biological roles

    Institute of Scientific and Technical Information of China (English)

    Mariko Tsuchiya; Ryoichi Misaka; Kosaku Nitta; Ken Tsuchiya

    2015-01-01

    The Maf family of transcription factors is characterizedby a typical bZip structure; these transcription factorsact as important regulators of the development anddifferentiation of many organs and tissues, includingthe kidney. The Maf family consists of two subgroupsthat are characterized according to their structure largeMaf transcription factors and small Maf transcriptionfactors. The large Maf subgroup consists of fourproteins, designated as MAFA, MAFB, c-MAF and neuralretina-specific leucine zipper. In particular, MAFA is adistinct molecule that has been attracting the attentionof researchers because it acts as a strong transactivatorof insulin, suggesting that Maf transcription factors arelikely to be involved in systemic energy homeostasis. Inthis review, we focused on the regulation of glucose/energy balance by Maf transcription factors in variousorgans.

  18. Automatic Phonetic Transcription for Danish Speech Recognition

    DEFF Research Database (Denmark)

    Kirkedal, Andreas Søeborg

    to acquire and expensive to create. For languages with productive compounding or agglutinative languages like German and Finnish, respectively, phonetic dictionaries are also hard to maintain. For this reason, automatic phonetic transcription tools have been produced for many languages. The quality...... of automatic phonetic transcriptions vary greatly with respect to language and transcription strategy. For some languages where the difference between the graphemic and phonetic representations are small, graphemic transcriptions can be used to create ASR systems with acceptable performance. In other languages...... representations, e.g. morphological analysis, decompounding, letter-to-sound rules, etc. Two different phonetic transcribers for Danish will be compared in this study: eSpeak (Duddington, 2010) and Phonix (Henrichsen, 2014). Both transcribers produce a richer transcription than ASR can utilise such as stress...

  19. Simplified Method for Predicting a Functional Class of Proteins in Transcription Factor Complexes

    KAUST Repository

    Piatek, Marek J.

    2013-07-12

    Background:Initiation of transcription is essential for most of the cellular responses to environmental conditions and for cell and tissue specificity. This process is regulated through numerous proteins, their ligands and mutual interactions, as well as interactions with DNA. The key such regulatory proteins are transcription factors (TFs) and transcription co-factors (TcoFs). TcoFs are important since they modulate the transcription initiation process through interaction with TFs. In eukaryotes, transcription requires that TFs form different protein complexes with various nuclear proteins. To better understand transcription regulation, it is important to know the functional class of proteins interacting with TFs during transcription initiation. Such information is not fully available, since not all proteins that act as TFs or TcoFs are yet annotated as such, due to generally partial functional annotation of proteins. In this study we have developed a method to predict, using only sequence composition of the interacting proteins, the functional class of human TF binding partners to be (i) TF, (ii) TcoF, or (iii) other nuclear protein. This allows for complementing the annotation of the currently known pool of nuclear proteins. Since only the knowledge of protein sequences is required in addition to protein interaction, the method should be easily applicable to many species.Results:Based on experimentally validated interactions between human TFs with different TFs, TcoFs and other nuclear proteins, our two classification systems (implemented as a web-based application) achieve high accuracies in distinguishing TFs and TcoFs from other nuclear proteins, and TFs from TcoFs respectively.Conclusion:As demonstrated, given the fact that two proteins are capable of forming direct physical interactions and using only information about their sequence composition, we have developed a completely new method for predicting a functional class of TF interacting protein partners

  20. Multiplexed protein-DNA cross-linking: Scrunching in transcription start site selection.

    Science.gov (United States)

    Winkelman, Jared T; Vvedenskaya, Irina O; Zhang, Yuanchao; Zhang, Yu; Bird, Jeremy G; Taylor, Deanne M; Gourse, Richard L; Ebright, Richard H; Nickels, Bryce E

    2016-03-01

    In bacterial transcription initiation, RNA polymerase (RNAP) selects a transcription start site (TSS) at variable distances downstream of core promoter elements. Using next-generation sequencing and unnatural amino acid-mediated protein-DNA cross-linking, we have determined, for a library of 4(10) promoter sequences, the TSS, the RNAP leading-edge position, and the RNAP trailing-edge position. We find that a promoter element upstream of the TSS, the "discriminator," participates in TSS selection, and that, as the TSS changes, the RNAP leading-edge position changes, but the RNAP trailing-edge position does not change. Changes in the RNAP leading-edge position, but not the RNAP trailing-edge position, are a defining hallmark of the "DNA scrunching" that occurs concurrent with RNA synthesis in initial transcription. We propose that TSS selection involves DNA scrunching prior to RNA synthesis. PMID:26941320

  1. Steering tumor progression through the transcriptional response to growth factors and stroma.

    Science.gov (United States)

    Feldman, Morris E; Yarden, Yosef

    2014-08-01

    Tumor progression can be understood as a collaborative effort of mutations and growth factors, which propels cell proliferation and matrix invasion, and also enables evasion of drug-induced apoptosis. Concentrating on EGFR, we discuss downstream signaling and the initiation of transcriptional events in response to growth factors. Specifically, we portray a wave-like program, which initiates by rapid disappearance of two-dozen microRNAs, followed by an abrupt rise of immediate early genes (IEGs), relatively short transcripts encoding transcriptional regulators. Concurrent with the fall of IEGs, some 30-60 min after stimulation, a larger group, the delayed early genes, is up-regulated and its own fall overlaps the rise of the final wave of late response genes. This late wave persists and determines long-term phenotype acquisition, such as invasiveness. Key regulatory steps in the orderly response to growth factors provide a trove of potential oncogenes and tumor suppressors. PMID:24873881

  2. Pervasive initiation and 3'-end formation of poxvirus postreplicative RNAs.

    Science.gov (United States)

    Yang, Zhilong; Martens, Craig A; Bruno, Daniel P; Porcella, Stephen F; Moss, Bernard

    2012-09-01

    Poxviruses are large DNA viruses that replicate within the cytoplasm and encode a complete transcription system, including a multisubunit RNA polymerase, stage-specific transcription factors, capping and methylating enzymes, and a poly(A) polymerase. Expression of the more than 200 open reading frames by vaccinia virus, the prototype poxvirus, is temporally regulated: early mRNAs are synthesized immediately after infection, whereas intermediate and late mRNAs are synthesized following genome replication. The postreplicative transcripts are heterogeneous in length and overlap the entire genome, which pose obstacles for high resolution mapping. We used tag-based methods in conjunction with high throughput cDNA sequencing to determine the precise 5'-capped and 3'-polyadenylated ends of postreplicative RNAs. Polymerase slippage during initiation of intermediate and late RNA synthesis results in a 5'-poly(A) leader that allowed the unambiguous identification of true transcription start sites. Ninety RNA start sites were located just upstream of intermediate and late open reading frames, but many more appeared anomalous, occurring within coding and non-coding regions, indicating pervasive transcription initiation. We confirmed the presence of functional promoter sequences upstream of representative anomalous start sites and demonstrated that alternative start sites within open reading frames could generate truncated isoforms of proteins. In an analogous manner, poly(A) sequences allowed accurate mapping of the numerous 3'-ends of postreplicative RNAs, which were preceded by a pyrimidine-rich sequence in the DNA coding strand. The distribution of postreplicative promoter sequences throughout the genome provides enormous transcriptional complexity, and the large number of previously unmapped RNAs may have novel functions.

  3. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of

  4. Effects of DNA strand breaks on transcription by RNA polymerase III: insights into the role of TFIIIB and the polarity of promoter opening

    OpenAIRE

    Kassavetis, George A.; Grove, Anne; Geiduschek, E.Peter

    2002-01-01

    Certain deletion mutants of the Brf1 and Bdp1 subunits of transcription factor (TF) IIIB retain the ability to recruit RNA polymerase (pol) III to its promoters, but fail to support promoter opening: deletions within an internal Bdp1 segment interfere with initiation of DNA strand separation, and an N-terminal Brf1 deletion blocks propagation of promoter opening past the transcriptional start site. The ability of DNA strand breaks to restore pol III transcription activity to these defective T...

  5. The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts.

    Directory of Open Access Journals (Sweden)

    Clément Monot

    2013-05-01

    Full Text Available L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP first uses its endonuclease (EN to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A tail, a process known as target-primed reverse transcription (TPRT. Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5'-TTTT/A-3' sites and frequently preceded by imperfect T-tracts. However, it is currently unclear whether--and to which degree--the liberated 3'-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3' end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3' overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3' end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome.

  6. Cumulus Cell Transcripts Transit to the Bovine Oocyte in Preparation for Maturation

    DEFF Research Database (Denmark)

    Macaulay, Angus D; Gilbert, Isabelle; Scantland, Sara;

    2016-01-01

    the initiation of meiosis resumption under a timetable fitting with the acquisition of developmental competence. A comparison of the identity of the nascent transcripts trafficking in the TZPs, with those in the oocyte increasing in abundance during maturation, and that are present on the oocyte's polyribosomes...

  7. Correction of xeroderma pigmentosum repair defect by basal transcription factor BTF2/TFIIH.

    NARCIS (Netherlands)

    A.J. van Vuuren (Hanneke); W. Vermeulen (Wim); L. Ma (Libin); G. Weeda (Geert); E. Appeldoorn (Esther); N.G.J. Jaspers (Nicolaas); A.J. van der Eb; J.H.J. Hoeijmakers (Jan); S. Humbert; L. Schaeffer; J-M. Egly (Jean-Marc)

    1994-01-01

    textabstractERCC3 was initially identified as a gene correcting the nucleotide excision repair (NER) defect of xeroderma pigmentosum complementation group B (XP-B). The recent finding that its gene product is identical to the p89 subunit of basal transcription factor BTF2(TFIIH), opened the possibil

  8. Diverse functions of KNOX transcription factors in the diploid body plan of plants

    Science.gov (United States)

    KNOX genes were initially found as shoot meristem regulators in angiosperms. Recent studies in diverse plant lineages however, have revealed the divergence of KNOX gene function during the evolution of diploid body plans. Using genomic approaches, class I KNOX transcription factors have been shown t...

  9. The origin recognition complex links replication, sister chromatid cohesion and transcriptional silencing in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Suter, Bernhard; Tong, Amy; Chang, Michael; Yu, Lisa; Brown, Grant W; Boone, Charles; Rine, Jasper

    2004-01-01

    Mutations in genes encoding the origin recognition complex (ORC) of Saccharomyces cerevisiae affect initiation of DNA replication and transcriptional repression at the silent mating-type loci. To explore the function of ORC in more detail, a screen for genetic interactions was undertaken using large

  10. Intermittent Transcription Dynamics for the Rapid Production of Long Transcripts of High Fidelity

    Directory of Open Access Journals (Sweden)

    Martin Depken

    2013-10-01

    Full Text Available Normal cellular function relies on the efficient and accurate readout of the genetic code. Single-molecule experiments show that transcription and replication are highly intermittent processes that are frequently interrupted by polymerases pausing and reversing directions. Although intermittent dynamics in replication are known to result from proofreading, their origin and significance during transcription remain controversial. Here, we theoretically investigate transcriptional fidelity and show that the kinetic scheme provided by the RNA-polymerase backtracking and transcript-cleavage pathway can account for measured error rates. Importantly, we find that intermittent dynamics provide an enormous increase in the rate of producing long transcripts of high fidelity. Our results imply that intermittent dynamics during transcription may have evolved as a way to mitigate the competing demands of speed and fidelity in the transcription of extended sequences.

  11. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  12. The role of vaccinia termination factor and cis-acting elements in vaccinia virus early gene transcription termination.

    Science.gov (United States)

    Tate, Jessica; Gollnick, Paul

    2015-11-01

    Vaccinia virus early gene transcription termination requires the virion form of the viral RNA polymerase (vRNAP), Nucleoside Triphosphate Phosphohydrolase I (NPHI), ATP, the vaccinia termination factor (VTF), and a U5NU termination signal in the nascent transcript. VTF, also the viral mRNA capping enzyme, binds U5NU, and NPHI hydrolyzes ATP to release the transcript. NPHI can release transcripts independent of VTF and U5NU if vRNAP is not actively elongating. However, VTF and U5NU are required for transcript release from an elongating vRNAP, suggesting that the function of VTF and U5NU may be to stall the polymerase. Here we demonstrate that VTF inhibits transcription elongation by enhancing vRNAP pausing. Hence VTF provides the connection between the termination signal in the RNA transcript and viral RNA polymerase to initiate transcription termination. We also provide evidence that a second cis-acting element downstream of U5NU influences the location and efficiency of early gene transcription termination.

  13. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles

    Directory of Open Access Journals (Sweden)

    Katie L Lannan

    2015-02-01

    Full Text Available Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cell and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as cellular fragments is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryoctes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and nongenomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB family of proteins and peroxisome proliferator activated receptor gamma (PPARγ. In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the nongenomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and

  14. INITIAL TRAINING OF RESEARCHERS

    Directory of Open Access Journals (Sweden)

    Karina Alejandra Cruz-Pallares

    2015-07-01

    Full Text Available The document presents results of a research that used as strategy a complementary training project with thirty-three students of a Bachelors Degree in Primary School 1997(DPS,1997 of an Education Faculty for the initial training of investigators, applied by four teachers members of the academic research group in Mexico; that develops through process of action research methodology. Highlighted in results is the strengthening of the competition of reading, understanding and writing scientific texts, which is analogous to the first feature of the graduate profile called intellectual skills. Among the conclusions it is emphasized that the initial training of teachers in a task that is quite interesting, challenging and complex, as is the educational complex phenomenon.

  15. Laser Initiated Actuator study

    Energy Technology Data Exchange (ETDEWEB)

    Watson, B.

    1991-06-27

    The program task was to design and study a laser initiated actuator. The design of the actuator is described, it being comprised of the fiber and body subassemblies. The energy source for all experiments was a Spectra Diode 2200-H2 laser diode. The diode is directly coupled to a 100 micron core, 0.3 numerical aperture fiber optic terminated with an SMA connector. The successful testing results are described and recommendations are made.

  16. Initiation Train Experiments

    Science.gov (United States)

    Francois, Elizabeth; Johnson, Carl; Liechty, Gary; Whitley, Von

    2015-06-01

    In an effort to evaluate and qualify a new detonator diagnostic, booster selection and main charge configuration, a variety of small-scale tests have been conducted. This paper will describe the needs, testing approach and model validation. Because of the limited size available some novel approaches were made to understand the observed phenomenon. Function time and time of arrival at various locations in the initiation train are desirable data points. Knowing when each segment initiates the next segment and the time to run up to detonation is critical. Results of our experiments were modeled for timing accuracy, wave shape and pressure. Agreement between the experiments and models will be discussed. The testing that will be discussed is time of arrival wires, PDV, and fiber optic arrays. The time of arrival wire measures the detonator cup breakout time. When correlated to bridge burst, an absolute time is collected. This data point also gives time zero for the booster initiation. Many models actually start at the booster, rather than the detonator, so the inclusion of this data point will improve modeling efforts.

  17. Prunus transcription factors: Breeding perspectives

    Directory of Open Access Journals (Sweden)

    Valmor João Bianchi

    2015-06-01

    Full Text Available Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs. In peach, 1,533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq and RNA sequencing (RNA-Seq. New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome.

  18. Transcriptional control of spermatogonial maintenance and differentiation.

    Science.gov (United States)

    Song, Hye-Won; Wilkinson, Miles F

    2014-06-01

    Spermatogenesis is a multistep process that generates millions of spermatozoa per day in mammals. A key to this process is the spermatogonial stem cell (SSC), which has the dual property of continually renewing and undergoing differentiation into a spermatogonial progenitor that expands and further differentiates. In this review, we will focus on how these proliferative and early differentiation steps in mammalian male germ cells are controlled by transcription factors. Most of the transcription factors that have so far been identified as promoting SSC self-renewal (BCL6B, BRACHYURY, ETV5, ID4, LHX1, and POU3F1) are upregulated by glial cell line-derived neurotrophic factor (GDNF). Since GDNF is crucial for promoting SSC self-renewal, this suggests that these transcription factors are responsible for coordinating the action of GDNF in SSCs. Other transcription factors that promote SSC self-renewal are expressed independently of GDNF (FOXO1, PLZF, POU5F1, and TAF4B) and thus may act in non-GDNF pathways to promote SSC cell growth or survival. Several transcription factors have been identified that promote spermatogonial differentiation (DMRT1, NGN3, SOHLH1, SOHLH2, SOX3, and STAT3); some of these may influence the decision of an SSC to commit to differentiate while others may promote later spermatogonial differentiation steps. Many of these transcription factors regulate each other and act on common targets, suggesting they integrate to form complex transcriptional networks in self-renewing and differentiating spermatogonia.

  19. Notation systems for transcription: an empirical investigation.

    Science.gov (United States)

    Romero, Catherine; O'Connell, Daniel C; Kowal, Sabine

    2002-11-01

    A 21-syllable question posed by Bernard Shaw in a CNN television interview with Margaret Thatcher was presented to 90 participants, either as an audio recording or as a typed transcript or as both. Participants were asked to speak it, as closely as possible, as Shaw had (or, in conditions without the audio recording, as he might have). The typed version was either an ordinary transcript or a transcript in one of three transcription systems used currently in research on spoken discourse, all of which incorporate notations for prosody. Hence, there were nine conditions in all, with five women and five men in each. Contrary to the experimental hypothesis, approximations to Shaw's original temporal measures of performance were not degraded but were instead improved significantly by the addition of a prosodically notated transcript to the audio recording and significantly more in the absence of the audio recording. Presentation of the ordinary transcript alone produced the worst approximation to Shaw's temporal measures. The usefulness, accuracy, and readability of transcripts prepared according to detailed notation systems are discussed.

  20. APOBEC3G inhibits elongation of HIV-1 reverse transcripts.

    Directory of Open Access Journals (Sweden)

    Kate N Bishop

    2008-12-01

    Full Text Available APOBEC3G (A3G is a host cytidine deaminase that, in the absence of Vif, restricts HIV-1 replication and reduces the amount of viral DNA that accumulates in cells. Initial studies determined that A3G induces extensive mutation of nascent HIV-1 cDNA during reverse transcription. It has been proposed that this triggers the degradation of the viral DNA, but there is now mounting evidence that this mechanism may not be correct. Here, we use a natural endogenous reverse transcriptase assay to show that, in cell-free virus particles, A3G is able to inhibit HIV-1 cDNA accumulation not only in the absence of hypermutation but also without the apparent need for any target cell factors. We find that although reverse transcription initiates in the presence of A3G, elongation of the cDNA product is impeded. These data support the model that A3G reduces HIV-1 cDNA levels by inhibiting synthesis rather than by inducing degradation.

  1. Gene transcription and electromagnetic fields. Final progress report

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, A.S.

    1992-12-31

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  2. NAC transcription factors: structurally distinct, functionally diverse

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi A; Leggio, Leila Lo;

    2005-01-01

    NAC proteins constitute one of the largest families of plant-specific transcription factors, and the family is present in a wide range of land plants. Here, we summarize the biological and molecular functions of the NAC family, paying particular attention to the intricate regulation of NAC protein...... level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has...

  3. Optogenetic control of transcription in zebrafish.

    Directory of Open Access Journals (Sweden)

    Hongtao Liu

    Full Text Available Light inducible protein-protein interactions are powerful tools to manipulate biological processes. Genetically encoded light-gated proteins for controlling precise cellular behavior are a new and promising technology, called optogenetics. Here we exploited the blue light-induced transcription system in yeast and zebrafish, based on the blue light dependent interaction between two plant proteins, blue light photoreceptor Cryptochrome 2 (CRY2 and the bHLH transcription factor CIB1 (CRY-interacting bHLH 1. We demonstrate the utility of this system by inducing rapid transcription suppression and activation in zebrafish.

  4. p44 and p34 subunits of the BTF2/TFIIH transcription factor have homologies with SSL1, a yeast protein involved in DNA repair.

    NARCIS (Netherlands)

    S. Humbert; H. van Vuuren; Y. Lutz; J.H.J. Hoeijmakers (Jan); J-M. Egly (Jean-Marc); V. Moncollin

    1994-01-01

    textabstractThe human BTF2 (TFIIH) transcription factor is a multisubunit protein involved in transcription initiation by RNA polymerase II (B) as well as in DNA repair. In addition to the previously characterized p62 and p89/ERCC3 subunits, we have cloned two other subunits of BTF2, p44 and p34. Th

  5. [Symptom portrayal and initial therapeutic relationship of female and male patients in the initial psychoanalytic interview].

    Science.gov (United States)

    Grande, T; Wilke, S; Nübling, R

    1992-01-01

    The transcripts of psychoanalytic initial interviews are analyzed in using the "Structural Analysis of Social Behavior" (SASB) by L. S. Benjamin. This instrument was chosen to detect how male and female patients talk about their symptoms, and about previous treatments. The immediate interaction with the interviewer during the dialogue was also described by using SASB. On the basis of only the first patients' utterances after the initial request of the therapists (like "What brings you here?") we can distinguish female and male patients by the quality of the relations described (to the symptoms, the previous physicians, and to the therapist). The sex-specific readiness to establish relationships which becomes apparent in these descriptions can be related to the interview situation itself. In our further argumentation we interpret them as subtle messages to the interviewer. Finally we discuss their inherent potentials and risks for the psychotherapeutic cooperation. PMID:1561845

  6. The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation.

    Science.gov (United States)

    Iwafuchi-Doi, Makiko; Donahue, Greg; Kakumanu, Akshay; Watts, Jason A; Mahony, Shaun; Pugh, B Franklin; Lee, Dolim; Kaestner, Klaus H; Zaret, Kenneth S

    2016-04-01

    Nuclear DNA wraps around core histones to form nucleosomes, which restricts the binding of transcription factors to gene regulatory sequences. Pioneer transcription factors can bind DNA sites on nucleosomes and initiate gene regulatory events, often leading to the local opening of chromatin. However, the nucleosomal configuration of open chromatin and the basis for its regulation is unclear. We combined low and high levels of micrococcal nuclease (MNase) digestion along with core histone mapping to assess the nucleosomal configuration at enhancers and promoters in mouse liver. We find that MNase-accessible nucleosomes, bound by transcription factors, are retained more at liver-specific enhancers than at promoters and ubiquitous enhancers. The pioneer factor FoxA displaces linker histone H1, thereby keeping enhancer nucleosomes accessible in chromatin and allowing other liver-specific transcription factors to bind and stimulate transcription. Thus, nucleosomes are not exclusively repressive to gene regulation when they are retained with, and exposed by, pioneer factors.

  7. Through bulkhead initiator studies

    Energy Technology Data Exchange (ETDEWEB)

    Begeal, D.R. [Sandia National Labs., Albuquerque, NM (United States). Explosive Subsystems and Materials Dept.

    1997-03-01

    This report describes recent work done to demonstrate feasibility of a fail-safe Through Bulkhead Initiator with minimum dimensions and suitable for use in cyclical thermal environments. Much of the ground work for a fail-safe TBI was previously done by A.C. Schwartz. This study is an expansion of Schwartz`s work to evaluate devices with bulkheads of 304 stainless steel and Inconel 718; explosive donors of PETN, BNCP, and a 0.005 inch thick steel flying plate donor traveling at 2.6 mm/{micro}s; and explosive acceptors of PETN and BNCP. Bulkhead thickness were evaluated in the range of 0.040 to 0.180 inch. The explosive acceptors initiated a small HMX pellet to drive a 0.005 inch thick steel flying plate, and VISAR histories of the HMX-driven flying plates were the measure of acceptable performance. A companion set of samples used a PMMA acceptor to measure the particle velocities at the bulkhead/PMMA interface with VISAR. These data were used to compute the input pressure to the acceptor explosives in an attempt to measure initiation threshold. Unfortunately, the range of bulkhead thicknesses tested did not give any failures, thus the threshold was not determined. It was found that either explosive or the flying plate would perform as a TBI in the bulkhead thickness range tested. The optimum TBI is about 0.060 inches thick, and steel bulkheads seem to be more structurally sound than those made of Inconel. That is, cross section views of the Inconel bulkheads showed it to be more prone to stress cracking than was the 304 stainless steel. Both PETN and BNCP showed good performance when tested at {minus}65 F following thermal cycling of {minus}65 F to +165 F. Analysis of the TBI function times showed that BNCP acceptor explosives were undergoing the classical deflagration to detonation process. The PETN acceptors were undergoing prompt detonation.

  8. Stirling to Flight Initiative

    Science.gov (United States)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    Flight (S2F) initiative with the objective of developing a 100-500 We Stirling generator system. Additionally, a different approach is being devised for this initiative to avoid pitfalls of the past, and apply lessons learned from the recent ASRG experience. Two key aspects of this initiative are a Stirling System Technology Maturation Effort, and a Surrogate Mission Team (SMT) intended to provide clear mission pull and requirements context. The S2F project seeks to lead directly into a DOE flight system development of a new SRG. This paper will detail the proposed S2F initiative, and provide specifics on the key efforts designed to pave a forward path for bringing Stirling technology to flight.

  9. Initial Cooling Experiment (ICE)

    CERN Multimedia

    Photographic Service

    1978-01-01

    In 1977, in a record-time of 9 months, the magnets of the g-2 experiment were modified and used to build a proton/antiproton storage ring: the "Initial Cooling Experiment" (ICE). It served for the verification of the cooling methods to be used for the "Antiproton Project". Stochastic cooling was proven the same year, electron cooling followed later. Also, with ICE the experimental lower limit for the antiproton lifetime was raised by 9 orders of magnitude: from 2 microseconds to 32 hours. For its previous life as g-2 storage ring, see 7405430. More on ICE: 7711282, 7809081, 7908242.

  10. Hanford tanks initiative plan

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  11. UNLV Nuclear Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hechanova, Anthony E.; Johnson, Allen; O' Toole, Brendan; Trabia, Mohamed; Peterson, Per

    2012-10-25

    Evaluation of the Crack growth rate (CGR) of Alloy 617 and Alloy 276 under constant K at ambient temperature has been completed. Creep deformation of Alloy 230 at different temperature range and load level has been completed and heat to heat variation has been noticed. Creep deformation study of Alloy 276 has been completed under an applied initial stress level of 10% of yield stress at 950ºC. The grain size evaluation of the tested creep specimens of Alloy 276 has been completed.

  12. Hanford tanks initiative plan

    International Nuclear Information System (INIS)

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy's Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System's tank waste retrieval Program

  13. Initiation of slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Hanratty, T.J.; Woods, B.D. [Univ. of Illinois, Urbana, IL (United States)

    1995-12-31

    The initiation of slug flow in a horizontal pipe can be predicted either by considering the stability of a slug or by considering the stability of a stratified flow. Measurements of the shedding rate of slugs are used to define necessary conditions for the existence of a slug. Recent results show that slugs develop from an unstable stratified flow through the evolution of small wavelength waves into large wavelength waves that have the possibility of growing to form a slug. The mechanism appears to be quite different for fluids with viscosities close to water than for fluids with large viscosities (20 centipoise).

  14. EFFECTIVE DIVERSITY MANAGEMENT INITIATIVES

    Directory of Open Access Journals (Sweden)

    Suat Begec

    2013-01-01

    Full Text Available Diversity characteristics defines into four areas; personality, internal and external characteristics, and organizational characteristics. Today it is hard to find individuals, organizational and management styles all similar to each other. Twenty-first century leaders face diversity challenges in many arenas and it is a fact that leaders have to live with these diversities. Values affects on the management and organization systems. The global values gain importance and remove the sources of diversities. The leaders believe that the values should be mostly protected. This article focuses on effective diversity management initiatives.

  15. Feedback stabilization initiative

    International Nuclear Information System (INIS)

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes

  16. Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination.

    Science.gov (United States)

    Austenaa, Liv M I; Barozzi, Iros; Simonatto, Marta; Masella, Silvia; Della Chiara, Giulia; Ghisletti, Serena; Curina, Alessia; de Wit, Elzo; Bouwman, Britta A M; de Pretis, Stefano; Piccolo, Viviana; Termanini, Alberto; Prosperini, Elena; Pelizzola, Mattia; de Laat, Wouter; Natoli, Gioacchino

    2015-11-01

    Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adaptor protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1 H3K4 methyltransferases and the nuclear protein phosphatase 1 (PP1) complexes to the initiating Pol II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1, or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes and active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs. PMID:26593720

  17. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  18. Molecular biology Mediating transcription and RNA export

    Science.gov (United States)

    Rubin, Jonathan D.; Taatjes, Dylan J.

    2016-01-01

    The finding that the Mediator protein complex contributes to messenger RNA export from the nucleus in yeast adds to a growing list of roles for the complex in regulating transcriptional processes. PMID:26450052

  19. Dynamics of transcription-translation networks

    Science.gov (United States)

    Hudson, D.; Edwards, R.

    2016-09-01

    A theory for qualitative models of gene regulatory networks has been developed over several decades, generally considering transcription factors to regulate directly the expression of other transcription factors, without any intermediate variables. Here we explore a class of models that explicitly includes both transcription and translation, keeping track of both mRNA and protein concentrations. We mainly deal with transcription regulation functions that are steep sigmoids or step functions, as is often done in protein-only models, though translation is governed by a linear term. We extend many aspects of the protein-only theory to this new context, including properties of fixed points, description of trajectories by mappings between switching points, qualitative analysis via a state-transition diagram, and a result on periodic orbits for negative feedback loops. We find that while singular behaviour in switching domains is largely avoided, non-uniqueness of solutions can still occur in the step-function limit.

  20. High throughput assays for analyzing transcription factors.

    Science.gov (United States)

    Li, Xianqiang; Jiang, Xin; Yaoi, Takuro

    2006-06-01

    Transcription factors are a group of proteins that modulate the expression of genes involved in many biological processes, such as cell growth and differentiation. Alterations in transcription factor function are associated with many human diseases, and therefore these proteins are attractive potential drug targets. A key issue in the development of such therapeutics is the generation of effective tools that can be used for high throughput discovery of the critical transcription factors involved in human diseases, and the measurement of their activities in a variety of disease or compound-treated samples. Here, a number of innovative arrays and 96-well format assays for profiling and measuring the activities of transcription factors will be discussed. PMID:16834538

  1. The elongation complex components BRD4 and MLLT3/AF9 are transcriptional coactivators of nuclear retinoid receptors.

    OpenAIRE

    Sébastien Flajollet; Christophe Rachez; Maheul Ploton; Céline Schulz; Rozenn Gallais; Raphaël Métivier; Michal Pawlak; Aymeric Leray; Al Amine Issulahi; Laurent Héliot; Bart Staels; Gilles Salbert; Philippe Lefebvre

    2013-01-01

    International audience Nuclear all-trans retinoic acid receptors (RARs) initiate early transcriptional events which engage pluripotent cells to differentiate into specific lineages. RAR-controlled transactivation depends mostly on agonist-induced structural transitions in RAR C-terminus (AF-2), thus bridging coactivators or corepressors to chromatin, hence controlling preinitiation complex assembly. However, the contribution of other domains of RAR to its overall transcriptional activity r...

  2. Different human TFIIIB activities direct RNA polymerase III transcription from TATA-containing and TATA-less promoters

    OpenAIRE

    Schramm, Laura; Pendergrast, P. Shannon; Sun, Yuling; Hernandez, Nouria

    2000-01-01

    Transcription initiation at RNA polymerase III promoters requires transcription factor IIIB (TFIIIB), an activity that binds to RNA polymerase III promoters, generally through protein–protein contacts with DNA binding factors, and directly recruits RNA polymerase III. Saccharomyces cerevisiae TFIIIB is a complex of three subunits, TBP, the TFIIB-related factor BRF, and the more loosely associated polypeptide β″. Although human homologs for two of the TFIIIB subunits, the TATA box–binding prot...

  3. Initiatives for proliferation prevention

    International Nuclear Information System (INIS)

    Preventing the proliferation of weapons of mass destruction is a central part of US national security policy. A principal instrument of the Department of Energy's (DOE's) program for securing weapons of mass destruction technology and expertise and removing incentives for scientists, engineers and technicians in the newly independent states (NIS) of the former Soviet Union to go to rogue countries or assist terrorist groups is the Initiatives for Proliferation Prevention (IPP). IPP was initiated pursuant to the 1994 Foreign Operations Appropriations Act. IPP is a nonproliferation program with a commercialization strategy. IPP seeks to enhance US national security and to achieve nonproliferation objectives by engaging scientists, engineers and technicians from former NIS weapons institutes; redirecting their activities in cooperatively-developed, commercially viable non-weapons related projects. These projects lead to commercial and economic benefits for both the NIS and the US IPP projects are funded in Russian, Ukraine, Kazakhstan and Belarus. This booklet offers an overview of the IPP program as well as a sampling of some of the projects which are currently underway

  4. Global cancer research initiative

    Directory of Open Access Journals (Sweden)

    Richard R Love

    2010-05-01

    Full Text Available Richard R LoveThe Ohio State University Comprehensive Cancer Center, Columbus, OH, USAAbstract: Cancer is an increasing problem for low- and middle-income countries undergoing an epidemiologic transition from dominantly acute communicable disease to more frequent chronic disease with increased public health successes in the former domain. Progress against cancer in high-income countries has been modest and has come at enormous expense. There are several well-conceived global policy and planning initiatives which, with adequate political will, can favorably impact the growing global cancer challenges. Most financial resources for cancer, however, are spent on diagnosis and management of patients with disease in circumstances where specific knowledge about effective approaches is significantly limited, and the majority of interventions, other than surgery, are not cost-effective in resource-limited countries by global standards. In summary, how to intervene effectively on a global scale for the majority of citizens who develop cancer is poorly defined. In contrast to technology-transfer approaches, markedly increased clinical research activities are more likely to benefit cancer sufferers. In these contexts, a global cancer research initiative is proposed, and mechanisms for realizing such an effort are suggested.Keywords: breast cancer, research, global, international, low-income, middle-income

  5. Initiatives for proliferation prevention

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Preventing the proliferation of weapons of mass destruction is a central part of US national security policy. A principal instrument of the Department of Energy`s (DOE`s) program for securing weapons of mass destruction technology and expertise and removing incentives for scientists, engineers and technicians in the newly independent states (NIS) of the former Soviet Union to go to rogue countries or assist terrorist groups is the Initiatives for Proliferation Prevention (IPP). IPP was initiated pursuant to the 1994 Foreign Operations Appropriations Act. IPP is a nonproliferation program with a commercialization strategy. IPP seeks to enhance US national security and to achieve nonproliferation objectives by engaging scientists, engineers and technicians from former NIS weapons institutes; redirecting their activities in cooperatively-developed, commercially viable non-weapons related projects. These projects lead to commercial and economic benefits for both the NIS and the US IPP projects are funded in Russian, Ukraine, Kazakhstan and Belarus. This booklet offers an overview of the IPP program as well as a sampling of some of the projects which are currently underway.

  6. Transcription Factors Mediate the Enzymatic Disassembly of Promoter-Bound 7SK snRNP to Locally Recruit P-TEFb for Transcription Elongation

    Directory of Open Access Journals (Sweden)

    Ryan P. McNamara

    2013-12-01

    Full Text Available The transition from transcription initiation into elongation is controlled by transcription factors, which recruit positive transcription elongation factor b (P-TEFb to promoters to phosphorylate RNA polymerase II. A fraction of P-TEFb is recruited as part of the inhibitory 7SK small nuclear ribonucleoprotein particle (snRNP, which inactivates the kinase and prevents elongation. However, it is unclear how P-TEFb is captured from the promoter-bound 7SK snRNP to activate elongation. Here, we describe a mechanism by which transcription factors mediate the enzymatic release of P-TEFb from the 7SK snRNP at promoters to trigger activation in a gene-specific manner. We demonstrate that Tat recruits PPM1G/PP2Cγ to locally disassemble P-TEFb from the 7SK snRNP at the HIV promoter via dephosphorylation of the kinase T loop. Similar to Tat, nuclear factor (NF-κB recruits PPM1G in a stimulus-dependent manner to activate elongation at inflammatory-responsive genes. Recruitment of PPM1G to promoter-assembled 7SK snRNP provides a paradigm for rapid gene activation through transcriptional pause release.

  7. DNA Topoisomerases maintain promoters in a state competent for transcriptional activation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jakob Madsen Pedersen

    Full Text Available To investigate the role of DNA topoisomerases in transcription, we have studied global gene expression in Saccharomyces cerevisiae cells deficient for topoisomerases I and II and performed single-gene analyses to support our findings. The genome-wide studies show a general transcriptional down-regulation upon lack of the enzymes, which correlates with gene activity but not gene length. Furthermore, our data reveal a distinct subclass of genes with a strong requirement for topoisomerases. These genes are characterized by high transcriptional plasticity, chromatin regulation, TATA box presence, and enrichment of a nucleosome at a critical position in the promoter region, in line with a repressible/inducible mode of regulation. Single-gene studies with a range of genes belonging to this group demonstrate that topoisomerases play an important role during activation of these genes. Subsequent in-depth analysis of the inducible PHO5 gene reveals that topoisomerases are essential for binding of the Pho4p transcription factor to the PHO5 promoter, which is required for promoter nucleosome removal during activation. In contrast, topoisomerases are dispensable for constitutive transcription initiation and elongation of PHO5, as well as the nuclear entrance of Pho4p. Finally, we provide evidence that topoisomerases are required to maintain the PHO5 promoter in a superhelical state, which is competent for proper activation. In conclusion, our results reveal a hitherto unknown function of topoisomerases during transcriptional activation of genes with a repressible/inducible mode of regulation.

  8. A transcript cleavage factor of Mycobacterium tuberculosis important for its survival.

    Directory of Open Access Journals (Sweden)

    Arnab China

    Full Text Available After initiation of transcription, a number of proteins participate during elongation and termination modifying the properties of the RNA polymerase (RNAP. Gre factors are one such group conserved across bacteria. They regulate transcription by projecting their N-terminal coiled-coil domain into the active center of RNAP through the secondary channel and stimulating hydrolysis of the newly synthesized RNA in backtracked elongation complexes. Rv1080c is a putative gre factor (MtbGre in the genome of Mycobacterium tuberculosis. The protein enhanced the efficiency of promoter clearance by lowering abortive transcription and also rescued arrested and paused elongation complexes on the GC rich mycobacterial template. Although MtbGre is similar in domain organization and shares key residues for catalysis and RNAP interaction with the Gre factors of Escherichia coli, it could not complement an E. coli gre deficient strain. Moreover, MtbGre failed to rescue E. coli RNAP stalled elongation complexes, indicating the importance of specific protein-protein interactions for transcript cleavage. Decrease in the level of MtbGre reduced the bacterial survival by several fold indicating its essential role in mycobacteria. Another Gre homolog, Rv3788 was not functional in transcript cleavage activity indicating that a single Gre is sufficient for efficient transcription of the M. tuberculosis genome.

  9. Transcription pattern of UL131A-128 mRNA in clinical strains of human cytomegalovirus

    Indian Academy of Sciences (India)

    Zhengrong Sun; Gaowei Ren; Yanping Ma; Ning Wang; Yaohua Ji; Ying Qi; Mali Li; Rong He; Qiang Ruan

    2010-09-01

    Human cytomegalovirus (HCMV) mRNA was obtained from human embryonic lung fibroblast cells infected by HCMV clinical strains from urine samples of infants at different kinetic periods. The cDNA of UL131A-128 mRNAs was amplified using reverse transcription-polymerase chain reaction (RT-PCR) and analysed by sequencing. Mean while, clones containing UL131A-128 transcripts in an HCMV cDNA library of a clinical strain were selected and sequenced. It was demonstrated that UL131A-128 mRNA was expressed with immediately early, early and late kinetics. Sequences obtained by RT-PCR showed that the UL131A gene consisted of two exons and the coding region of the UL130 gene was not interrupted by any intron in the region as reported earlier. However, the transcript of the UL128 gene showed two patterns: one pattern consisted of three exons as reported earlier; the other contained the three exons and also the first intron. Moreover, the above characteristics of UL131A-128 spliced transcripts were confirmed by the sequences of clones selected from the HCMV cDNA library. Our results demonstrated that the UL131A, UL130 and UL128 genes were transcribed with the 3′-coterminal, although the initiation points of their mRNA may be different. The variation in the transcripts found in our study indicated the complex nature of transcription of UL131A-128 genes in clinical strains of HCMV.

  10. The Human Adult Skeletal Muscle Transcriptional Profile Reconstructed by a Novel Computational Approach

    Science.gov (United States)

    Bortoluzzi, Stefania; d'Alessi, Fabio; Romualdi, Chiara; Danieli, Gian Antonio

    2000-01-01

    By applying a novel software tool, information on 4080 UniGene clusters was retrieved from three adult human skeletal muscle cDNA libraries, which were selected for being neither normalized nor subtracted. Reconstruction of a transcriptional profile of the corresponding tissue was attempted by a computational approach, classifying each transcript according to its level of expression. About 25% of the transcripts accounted for about 80% of the detected transcriptional activity, whereas most genes showed a low level of expression. This in silico transcriptional profile was then compared with data obtained by a SAGE study. A fairly good agreement between the two methods was observed. About 400 genes, highly expressed in skeletal muscle or putatively skeletal muscle-specific, may represent the minimal set of genes needed to determine the tissue specificity. These genes could be used as a convenient reference to monitor major changes in the transcriptional profile of adult human skeletal muscle in response to different physiological or pathological conditions, thus providing a framework for designing DNA microarrays and initiating biological studies. PMID:10720575

  11. New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III.

    Science.gov (United States)

    Lama, Lodoe; Seidl, Christine I; Ryan, Kevin

    2014-01-01

    Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3' end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells.

  12. Transcription of piano music with deep learning

    OpenAIRE

    Jug, Jan

    2015-01-01

    Transcription of music is a complex process of transcribing an audio recording into a symbolic notation. The goal of this thesis was to examine transcription of piano music with deep learning, for which three models of deep neural networks were implemented: multilayer perceptron, convolutional neural network and deep belief network. Through the use of deep belief network, unsupervised pretraining for automatic extraction of musical features from audio signals was also tested. Learning of thes...

  13. Extraction of Transcript Diversity from Scientific Literature

    OpenAIRE

    Parantu K Shah; Jensen, Lars J.; Stéphanie Boué; Peer Bork

    2005-01-01

    Synopsis Given the functional complexity of higher eukaryotes, the relatively small number of genes in the human and other mammalian genomes came as a surprise to the scientific community. Later it was discovered that the majority of genes are subject to alternative splicing (“cutting and pasting”) or associated mechanisms that ultimately increase the diversity of transcripts that code for proteins. Studies exploring transcript diversity are currently dominated by high-throughput experiments ...

  14. A Discriminative Model for Polyphonic Piano Transcription

    Directory of Open Access Journals (Sweden)

    Poliner Graham E

    2007-01-01

    Full Text Available We present a discriminative model for polyphonic piano transcription. Support vector machines trained on spectral features are used to classify frame-level note instances. The classifier outputs are temporally constrained via hidden Markov models, and the proposed system is used to transcribe both synthesized and real piano recordings. A frame-level transcription accuracy of 68% was achieved on a newly generated test set, and direct comparisons to previous approaches are provided.

  15. Do transcriptional enhancers also augment DNA replication?

    OpenAIRE

    O'Connor, D T; Subramani, S

    1988-01-01

    Enhancers are DNA elements that augment transcription in cis, independent of distance and orientation. Evidence such as hormone dependent neoplastic cell growth and the stimulation of viral replication by sequences present in enhancers suggests that enhancers may also directly affect DNA replication. We tested this hypothesis in recombinant plasmids by asking whether sequences that stimulated DNA replication shared the properties of transcriptional enhancers. The homologous simian virus 40 (S...

  16. Transcription Factors in Xylem Development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sederoff, Ronald; Whetten, Ross; O' Malley, David; Campbell, Malcolm

    1999-07-01

    Answers to the following questions are answered in this report. do the two pine Byb proteins previously identified as candidate transcription factors bind to DNA and activate transcription? In what cell types are tehse Myb proteins expressed? Are these proteins localized to the nucleus? Do other proteins in pine xylem interact with these Myb proteins? Does altered expression of these genes have an impact on xylogenesis, specifically the expression of monolignol biosynthetic genes?

  17. Transcriptional Targeting in Cancer Gene Therapy

    OpenAIRE

    Tracy Robson; David G. Hirst

    2003-01-01

    Cancer gene therapy has been one of the most exciting areas of therapeutic research in the past decade. In this review, we discuss strategies to restrict transcription of transgenes to tumour cells. A range of promoters which are tissue-specific, tumour-specific, or inducible by exogenous agents are presented. Transcriptional targeting should prevent normal tissue toxicities associated with other cancer treatments, such as radiation and chemotherapy. In addition, the specificity of these stra...

  18. Fluctuations in spo0A transcription control rare developmental transitions in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Nicolas Mirouze

    2011-04-01

    Full Text Available Phosphorylated Spo0A is a master regulator of stationary phase development in the model bacterium Bacillus subtilis, controlling the formation of spores, biofilms, and cells competent for transformation. We have monitored the rate of transcription of the spo0A gene during growth in sporulation medium using promoter fusions to firefly luciferase. This rate increases sharply during transient diauxie-like pauses in growth rate and then declines as growth resumes. In contrast, the rate of transcription of an rRNA gene decreases and increases in parallel with the growth rate, as expected for stable RNA synthesis. The growth pause-dependent bursts of spo0A transcription, which reflect the activity of the spo0A vegetative promoter, are largely independent of all known regulators of spo0A transcription. Evidence is offered in support of a "passive regulation" model in which RNA polymerase stops transcribing rRNA genes during growth pauses, thus becoming available for the transcription of spo0A. We show that the bursts are followed by the production of phosphorylated Spo0A, and we propose that they represent initial responses to stress that bring the average cell closer to the thresholds for transition to bimodally expressed developmental responses. Measurement of the numbers of cells expressing a competence marker before and after the bursts supports this hypothesis. In the absence of ppGpp, the increase in spo0A transcription that accompanies the entrance to stationary phase is delayed and sporulation is markedly diminished. In spite of this, our data contradicts the hypothesis that sporulation is initiated when a ppGpp-induced depression of the GTP pool relieves repression by CodY. We suggest that, while the programmed induction of sporulation that occurs in stationary phase is apparently provoked by increased flux through the phosphorelay, bet-hedging stochastic transitions to at least competence are induced by bursts in transcription.

  19. MADS-box gene evolution - structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin;

    2002-01-01

    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  20. Structure and regulatory function of plant transcription factors

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The expression of inducible genes in plants is regulated byspecific transcription factors at the transcriptional level. A typical transcription factor usually contains a DNA-binding domain, a transcription regulation domain, a dimerization site and a nuclear localization domain. These functional domains define the characteristic, localization and regulatory role of a transcription factor. Transcription factors recognize and bind to specific cis-acting elements or interact with other proteins, and then activate or repress the transcription of target genes by their functional domains. In recent years, elucidation on the structure and function of transcription factors has become an important subject in plant molecular biology.

  1. Proofreading of misincorporated nucleotides in DNA transcription.

    Science.gov (United States)

    Voliotis, Margaritis; Cohen, Netta; Molina-París, Carmen; Liverpool, Tanniemola B

    2012-06-01

    The accuracy of DNA transcription is crucial for the proper functioning of the cell. Although RNA polymerases demonstrate selectivity for correct nucleotides, additional active mechanisms of transcriptional error correction are required to achieve observed levels of fidelity. Recent experimental findings have shed light on a particular mechanism of transcriptional error correction involving: (i) diffusive translocation of the RNA polymerase along the DNA (backtracking) and (ii) irreversible RNA cleavage. This mechanism achieves preferential cleavage of misincorporated nucleotides by biasing the local rates of translocation. Here, we study how misincorporated nucleotides affect backtracking dynamics and how this effect determines the level of transcriptional fidelity. We consider backtracking as a diffusive process in a periodic, one-dimensional energy landscape, which at a coarse-grained level gives rise to a hopping process between neighboring local minima. We propose a model for how misincorporated nucleotides deform this energy landscape and hence affect the hopping rates. In particular, we show that this model can be used to derive both the theoretical limit on the fidelity (i.e. the minimum fraction of misincorporated nucleotides) and the actual fidelity relative to this optimum, achieved for specific combinations of the cleavage and polymerization rates. Finally, we study how external factors influencing backtracking dynamics affect transcriptional fidelity. We show that biologically relevant loads, similar to those exerted by nucleosomes or other transcriptional barriers, increase error correction. PMID:22643861

  2. A Saccharomyces cerevisiae mitochondrial transcription factor, sc-mtTFB, shares features with sigma factors but is functionally distinct.

    OpenAIRE

    Shadel, G S; Clayton, D A

    1995-01-01

    In Saccharomyces cerevisiae mitochondria, sc-mtTFB is a 341-amino-acid transcription factor required for initiation of transcription from mitochondrial DNA promoters. Specific transcription in vitro requires only sc-mtTFB and the bacteriophage-related core sc-mtRNA polymerase. Mutational analysis of sc-mtTFB has defined two regions of the protein that are important for normal function both in vivo and in vitro. These regions overlap portions of the protein that exhibit similarity to conserved...

  3. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange

    DEFF Research Database (Denmark)

    Rist, Wolfgang; Jørgensen, Thomas J D; Roepstorff, Peter;

    2003-01-01

    Stress conditions such as heat shock alter the transcriptional profile in all organisms. In Escherichia coli the heat shock transcription factor, sigma 32, out-competes upon temperature up-shift the housekeeping sigma-factor, sigma 70, for binding to core RNA polymerase and initiates heat shock...... gene transcription. To investigate possible heat-induced conformational changes in sigma 32 we performed amide hydrogen (H/D) exchange experiments under optimal growth and heat shock conditions combined with mass spectrometry. We found a rapid exchange of around 220 of the 294 amide hydrogens at 37...

  4. Germ line transcription in mice bearing neor gene downstream of Igamma3 exon in the Ig heavy chain locus.

    Science.gov (United States)

    Samara, Maha; Oruc, Zeliha; Dougier, Hei-Lanne; Essawi, Tamer; Cogné, Michel; Khamlichi, Ahmed Amine

    2006-04-01

    Class switch recombination (CSR) is preceded by germ line transcription that initiates from promoters upstream of switch (S) sequences and terminates downstream of associated constant genes. Previous work showed that germ line transcripts and their processing are required for CSR and that germ line transcription is regulated in a major part by a regulatory region located downstream of the Ig heavy chain locus. This long-range, polarized effect can be disturbed by inserting an expressed neomycine resistance (neo(r)) gene. To contribute to a better understanding of the mechanism of such a long-distance regulation, we generated knock-in mice in which a neo(r) gene was inserted downstream of Igamma3 exon leaving intact all the necessary elements for germ line transcription and splicing. We show that the expressed neo(r) gene interferes with transcription initiation from Igamma3, and that it impairs but does not block S recombination to Cgamma3. Moreover, we show for the first time that the neo(r) gene provides through chimeric neo(r)-Cgamma3 transcripts the necessary elements for splicing of germ line transcripts by activating two novel cryptic splice sites, one in the coding region of the intronless neo(r) gene and the other in the Igamma3-Cgamma3 intron.

  5. The transcriptional diversity of 25 Drosophila cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Cherbas, L.; Willingham, A.; Zhang, D.; Yang, L.; Zou, Y.; Eads, B. D.; Carlson, J. W.; Landolin, J. M.; Kapranov, P.; Dumais, J.; Samsonova, A.; Choi, J. -H.; Roberts, J.; Davis, C. A.; Tang, H.; van Baren, M. J.; Ghosh, S.; Dobin, A.; Bell, K.; Lin, W.; Langton, L.; Duff, M. O.; Tenney, A. E.; Zaleski, C.; Brent, M. R.; Hoskins, R. A.; Kaufman, T. C.; Andrews, J.; Graveley, B. R.; Perrimon, N.; Celniker, S. E.; Gingeras, T. R.; Cherbas, P.

    2010-12-22

    those patterns reveal about the origins of the lines and the stability of spatial expression patterns. We also offer an initial analysis of previously unannotated transcripts in the cell lines.

  6. CsrA Participates in a PNPase Autoregulatory Mechanism by Selectively Repressing Translation of pnp Transcripts That Have Been Previously Processed by RNase III and PNPase

    OpenAIRE

    Park, Hongmarn; Yakhnin, Helen; Connolly, Michael; Romeo, Tony; Babitzke, Paul

    2015-01-01

    Csr is a conserved global regulatory system that represses or activates gene expression posttranscriptionally. CsrA of Escherichia coli is a homodimeric RNA binding protein that regulates transcription elongation, translation initiation, and mRNA stability by binding to the 5′ untranslated leader or initial coding sequence of target transcripts. pnp mRNA, encoding the 3′ to 5′ exoribonuclease polynucleotide phosphorylase (PNPase), was previously identified as a CsrA target by transcriptome se...

  7. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs.

    Science.gov (United States)

    Dhir, Ashish; Dhir, Somdutta; Proudfoot, Nick J; Jopling, Catherine L

    2015-04-01

    MicroRNAs (miRNAs) play a major part in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with cotranscriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. Although most miRNAs are located within introns of protein-coding transcripts, a substantial minority of miRNAs originate from long noncoding (lnc) RNAs, for which transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lncRNA transcripts containing miRNAs (lnc-pri-miRNAs) do not use the canonical cleavage-and-polyadenylation pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a new RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells.

  8. Instrumented Pipeline Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  9. The Knowledge Stealing Initiative?

    Science.gov (United States)

    Goshorn, Larry

    2005-01-01

    I have the honor of being on the Academy of Program and Project Leadership (APPL) Knowledge Sharing Feedback and Assessment Team (FAA), and as such, I am privileged to receive the feedback written by many of you as attendees of the Project Management (PM) Master s Forums. It is the intent of the FAA Team and APPL leadership to use this feedback as a tool for continuous program improvement. As a retired (sort of) PM in the payload contracting industry, I'm a big supporter of NASA s Knowledge Sharing Initiative (KSI), especially the Master's Forums. I really enjoy participating in them. Unfortunately I had to miss the 8th forum in Pasadena this past Spring, but I did get the feedback package for the Assessment Team work. So here I was, reviewing twelve pages of comments, reflections, learning notes and critiques from attendees of the 8th forum.

  10. Breckinridge Project, initial effort

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1982-09-01

    Report III, Volume 1 contains those specifications numbered A through J, as follows: General Specifications (A); Specifications for Pressure Vessels (C); Specifications for Tanks (D); Specifications for Exchangers (E); Specifications for Fired Heaters (F); Specifications for Pumps and Drivers (G); and Specifications for Instrumentation (J). The standard specifications of Bechtel Petroleum Incorporated have been amended as necessary to reflect the specific requirements of the Breckinridge Project, and the more stringent specifications of Ashland Synthetic Fuels, Inc. These standard specifications are available to the Initial Effort (Phase Zero) work performed by all contractors and subcontractors. Report III, Volume 1 also contains the unique specifications prepared for Plants 8, 15, and 27. These specifications will be substantially reviewed during Phase I of the project, and modified as necessary for use during the engineering, procurement, and construction of this project.

  11. The Ombudperson Initiative Group

    CERN Document Server

    Laura Stewart

    Following many discussions that took place at some of the ATLAS Women's Network lunch gatherings, a few ATLAS women joined forces with similarly concerned CERN staff women to form a small group last Fall to discuss the need for a CERN-wide Ombudsperson. This has since evolved into the Ombudsperson Initiative Group (OIG) currently composed of the following members: Barbro Asman, Stockholm University; Pierre Charrue, CERN AB; Anna Cook, CERN IT; Catherine Delamare, CERN and IT Ombudsperson; Paula Eerola, Lund University; Pauline Gagnon, Indiana University; Eugenia Hatziangeli, CERN AB; Doreen Klem, CERN IT; Bertrand Nicquevert, CERN TS and Laura Stewart, CERN AT. On June 12, members of the OIG met with representatives of Human Resources (HR) and the Equal Opportunity Advisory Panel (EOAP) to discuss the proposal drafted by the OIG. The meeting was very positive. Everybody agreed that the current procedures at CERN applicable in the event of conflict required a thorough review, and that a professionnally trai...

  12. Transcript Isoform Variation Associated with Cytosine Modification in Human Lymphoblastoid Cell Lines.

    Science.gov (United States)

    Zhang, Xu; Zhang, Wei

    2016-06-01

    Cytosine modification on DNA is variable among individuals, which could correlate with gene expression variation. The effect of cytosine modification on interindividual transcript isoform variation (TIV), however, remains unclear. In this study, we assessed the extent of cytosine modification-specific TIV in lymphoblastoid cell lines (LCLs) derived from unrelated individuals of European and African descent. Our study detected cytosine modification-specific TIVs for 17% of the analyzed genes at a 5% false discovery rate. Forty-five percent of the TIV-associated cytosine modifications correlated with the overall gene expression levels as well, with the corresponding CpG sites overrepresented in transcript initiation sites, transcription factor binding sites, and distinct histone modification peaks, suggesting that alternative isoform transcription underlies the TIVs. Our analysis also revealed 33% of the TIV-associated cytosine modifications that affected specific exons, with the corresponding CpG sites overrepresented in exon/intron junctions, splicing branching points, and transcript termination sites, implying that the TIVs are attributable to alternative splicing or transcription termination. Genetic and epigenetic regulation of TIV shared target preference but exerted independent effects on 61% of the common exon targets. Cytosine modification-specific TIVs detected from LCLs were differentially enriched in those detected from various tissues in The Cancer Genome Atlas, indicating their developmental dependency. Genes containing cytosine modification-specific TIVs were enriched in pathways of cancers and metabolic disorders. Our study demonstrated a prominent effect of cytosine modification variation on the transcript isoform spectrum over gross transcript abundance and revealed epigenetic contributions to diseases that were mediated through cytosine modification-specific TIV. PMID:27029734

  13. Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription.

    Directory of Open Access Journals (Sweden)

    Manuela Vanti

    2009-01-01

    Full Text Available Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 5' end of HIV-1 transcribed region (5'HIV-TR, which is immediately downstream of the transcription start site, plays an important role in the regulation of viral expression. The activation of HIV-1 transcription correlates with the rearrangement of a positioned nucleosome located at this region. These two facts suggest that the 5'HIV-TR contributes to inhibit basal transcription of those HIV-1 proviruses that remain latently inactive. However, little is known about the cell elements mediating the repressive role of the 5'HIV-TR. We performed a genetic analysis of this phenomenon in Saccharomyces cerevisiae after reconstructing a minimal HIV-1 transcriptional system in this yeast. Unexpectedly, we found that the critical role played by the 5'HIV-TR in maintaining low levels of basal transcription in yeast is mediated by FACT, Spt6, and Chd1, proteins so far associated with chromatin assembly and disassembly during ongoing transcription. We confirmed that this group of factors plays a role in HIV-1 postintegration latency in human cells by depleting the corresponding human orthologs with shRNAs, both in HIV latently infected cell populations and in particular single-integration clones, including a latent clone with a provirus integrated in a highly transcribed gene. Our results indicate that chromatin reassembly factors participate in the establishment of the equilibrium between activation and repression of HIV-1 when it integrates into the human genome, and they open the possibility of considering these factors as therapeutic targets of HIV-1 latency.

  14. Transcription-independent role for human mitochondrial RNA polymerase in mitochondrial ribosome biogenesis

    OpenAIRE

    Surovtseva, Yulia V; Shadel, Gerald S.

    2013-01-01

    Human mitochondrial RNA polymerase, POLRMT, is required for mitochondrial DNA (mtDNA) transcription and forms initiation complexes with human mitochondrial transcription factor B2 (h-mtTFB2). However, POLRMT also interacts with the paralogue of h-mtTFB2, h-mtTFB1, which is a 12S ribosomal RNA methyltransferase required for small (28S) mitochondrial ribosome subunit assembly. Herein, we show that POLRMT associates with h-mtTFB1 in 28S mitochondrial ribosome complexes that are stable in the abs...

  15. A cell-free transcription system for the hyperthermophilic archaeon Pyrococcus furiosus.

    OpenAIRE

    Hethke, C; Geerling, A C; Hausner, W.; de Vos, W.M.; Thomm, M

    1996-01-01

    We describe here the establishment of a cell-free transcription system for the hyperthermophilic Archaeon Pyrococcus furiosus using the cloned glutamate dehydrogenase (gdh) gene as template. The in vitro system that operated up to a temperature of 85 degrees C initiated transcription 23 bp downstream of a TATA box located 45 bp upstream of the translational start codon of gdh mRNA, at the same site as in Pyrococcus cells. Mutational analyses revealed that this TATA box is essential for in vit...

  16. Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A

    OpenAIRE

    Gangelhoff, Todd A.; Mungalachetty, Purnima S.; Nix, Jay C.; Mair E A Churchill

    2009-01-01

    The mitochondrial transcription factor A (mtTFA) is central to assembly and initiation of the mitochondrial transcription complex. Human mtTFA (h-mtTFA) is a dual high mobility group box (HMGB) protein that binds site-specifically to the mitochondrial genome and demarcates the promoters for recruitment of h-mtTFB1, h-mtTFB2 and the mitochondrial RNA polymerase. The stoichiometry of h-mtTFA was found to be a monomer in the absence of DNA, whereas it formed a dimer in the complex with the light...

  17. Selective suppression of human papillomavirus transcription in non-tumorigenic cells by 5-azacytidine.

    OpenAIRE

    Rösl, F; Dürst, M; zur Hausen, H

    1988-01-01

    The transcription of human papillomavirus type 18 (HPV 18) is selectively suppressed in non-tumorigenic HeLa x fibroblast or HeLa x keratinocyte cell hybrids by 5-azacytidine. In contrast, viral gene expression is not influenced by 5-azacytidine in both tumorigenic hybrid segregants and in the parental HeLa cells. The suppression mechanism seems to operate at the level of initiation of transcription since nuclear run-on experiments show the absence of elongated nascent viral RNA, whereas the ...

  18. Cdc18 transcription and proteolysis couple S phase to passage through mitosis.

    OpenAIRE

    Baum, B.; Nishitani, H; Yanow, S; Nurse, P

    1998-01-01

    In fission yeast, cdc18p plays a critical role in bringing about the onset of S phase. We show that cdc18p expression is subject to a complex sequence of cell cycle controls which ensure that cdc18p levels rise dramatically as cells exit mitosis, before the appearance of CDK activity in G1. We find that transcription of cdc18, together with the transcription of other cdc10p/res1p targets, is first initiated as cells enter mitosis and continues even in cells arrested in mitosis with highly con...

  19. Liver receptor homolog 1 transcriptionally regulates human bile salt export pump expression*

    OpenAIRE

    Song, Xiulong; Kaimal, Rajani; Yan, Bingfang; Deng, Ruitang

    2008-01-01

    The metabolic conversion of cholesterol into bile acids in liver is initiated by the rate-limiting cholesterol 7α-hydroxylase (CYP7A1), whereas the bile salt export pump (BSEP) is responsible for the canalicular secretion of bile acids. Liver receptor homolog 1 (LRH-1) is a key transcriptional factor required for the hepatic expression of CYP7A1. We hypothesized that LRH-1 was also involved in the transcriptional regulation of BSEP. In support of our hypothesis, we found that overexpression o...

  20. A one-step method for in vitro production of tRNA transcripts

    OpenAIRE

    Korenčić, Dragana; Söll, Dieter; Ambrogelly, Alexandre

    2002-01-01

    Sequencing of a large number of microbial genomes has led to the discovery of new enzymes involved in tRNA biosynthesis and tRNA function. Preparation of a great variety of RNA molecules is, therefore, of major interest for biochemical characterization of these proteins. We describe a fast, cost-effective and efficient method for in vitro production of tRNA transcripts. T7 RNA polymerase requires a double-stranded DNA promoter in order to initiate transcription; however, elongation does not r...

  1. Dynamic analysis of stochastic transcription cycles.

    Directory of Open Access Journals (Sweden)

    Claire V Harper

    2011-04-01

    Full Text Available In individual mammalian cells the expression of some genes such as prolactin is highly variable over time and has been suggested to occur in stochastic pulses. To investigate the origins of this behavior and to understand its functional relevance, we quantitatively analyzed this variability using new mathematical tools that allowed us to reconstruct dynamic transcription rates of different reporter genes controlled by identical promoters in the same living cell. Quantitative microscopic analysis of two reporter genes, firefly luciferase and destabilized EGFP, was used to analyze the dynamics of prolactin promoter-directed gene expression in living individual clonal and primary pituitary cells over periods of up to 25 h. We quantified the time-dependence and cyclicity of the transcription pulses and estimated the length and variation of active and inactive transcription phases. We showed an average cycle period of approximately 11 h and demonstrated that while the measured time distribution of active phases agreed with commonly accepted models of transcription, the inactive phases were differently distributed and showed strong memory, with a refractory period of transcriptional inactivation close to 3 h. Cycles in transcription occurred at two distinct prolactin-promoter controlled reporter genes in the same individual clonal or primary cells. However, the timing of the cycles was independent and out-of-phase. For the first time, we have analyzed transcription dynamics from two equivalent loci in real-time in single cells. In unstimulated conditions, cells showed independent transcription dynamics at each locus. A key result from these analyses was the evidence for a minimum refractory period in the inactive-phase of transcription. The response to acute signals and the result of manipulation of histone acetylation was consistent with the hypothesis that this refractory period corresponded to a phase of chromatin remodeling which significantly

  2. Stereotyped initiation of retinal waves by bipolar cells via presynaptic NMDA autoreceptors.

    Science.gov (United States)

    Zhang, Rong-Wei; Li, Xiao-Quan; Kawakami, Koichi; Du, Jiu-Lin

    2016-01-01

    Glutamatergic retinal waves, the spontaneous patterned neural activities propagating among developing retinal ganglion cells (RGCs), instruct the activity-dependent refinement of visuotopic maps. However, its initiation and underlying mechanism remain largely elusive. Here using larval zebrafish and multiple in vivo approaches, we discover that bipolar cells (BCs) are responsible for the generation of glutamatergic retinal waves. The wave originates from BC axon terminals (ATs) and propagates laterally to nearby BCs and vertically to downstream RGCs and the optic tectum. Its initiation is triggered by the activation of and consequent glutamate release from BC ATs, and is mediated by the N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) expressed at these ATs. Intercellular asymmetry of NMDAR expression at BC ATs enables the preferential initiation of waves at the temporal retina, where BC ATs express more NMDARs. Thus, our findings indicate that glutamatergic retinal waves are initiated by BCs through a presynaptic NMDA autoreceptor-dependent process. PMID:27586999

  3. Extraction of transcript diversity from scientific literature.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available Transcript diversity generated by alternative splicing and associated mechanisms contributes heavily to the functional complexity of biological systems. The numerous examples of the mechanisms and functional implications of these events are scattered throughout the scientific literature. Thus, it is crucial to have a tool that can automatically extract the relevant facts and collect them in a knowledge base that can aid the interpretation of data from high-throughput methods. We have developed and applied a composite text-mining method for extracting information on transcript diversity from the entire MEDLINE database in order to create a database of genes with alternative transcripts. It contains information on tissue specificity, number of isoforms, causative mechanisms, functional implications, and experimental methods used for detection. We have mined this resource to identify 959 instances of tissue-specific splicing. Our results in combination with those from EST-based methods suggest that alternative splicing is the preferred mechanism for generating transcript diversity in the nervous system. We provide new annotations for 1,860 genes with the potential for generating transcript diversity. We assign the MeSH term "alternative splicing" to 1,536 additional abstracts in the MEDLINE database and suggest new MeSH terms for other events. We have successfully extracted information about transcript diversity and semiautomatically generated a database, LSAT, that can provide a quantitative understanding of the mechanisms behind tissue-specific gene expression. LSAT (Literature Support for Alternative Transcripts is publicly available at http://www.bork.embl.de/LSAT/.

  4. Identification of epididymis-specific transcripts in the mouse and rat by transcriptional profiling

    Institute of Scientific and Technical Information of China (English)

    Daniel S. Johnston; Terry T. Turner; Joshua N. Finger; Tracy L. Owtscharuk; S. Kopf; Scott A. Jelinsky

    2007-01-01

    As part of our efforts to identify novel contraceptive targets in the epididymis we performed transcriptional profiling on each of the 10 and 19 segments of the mouse and rat epididymidis, respectively, using Affymetrix whole genome microarrays. A total of 17 096 and 16 360 probe sets representing transcripts were identified as being expressed in the segmented mouse and rat epididymal transcriptomes, respectively. Comparison of the expressed murine transcripts against a mouse transcriptional profiling database derived from 22 other mouse tissues identified 77transcripts that were expressed uniquely in the epididymis. The expression of these genes was further evaluated by reverse transcription polymerase chain reaction (RT-PCR) analysis of RNA from 21 mouse tissues. RT-PCR analysis confirmed epididymis-specific expression of Defensin Beta 13 and identified two additional genes with expression restricted only to the epididymis and testis. Comparison of the 16 360 expressed transcripts in the rat epididymis with data of 21 other tissues from a rat transcriptional profiling database identified 110 transcripts specific for the epididymis.Sixty-two of these transcripts were further investigated by qPCR analysis. Only Defensin 22 (E3 epididymal protein)was shown to be completely specific for the epididymis. In addition, 14 transcripts showed more than 100-fold selective expression in the epididymis. The products of these genes might play important roles in epididymal and/or sperm function and further investigation and validation as contraceptive targets are warranted. The results of the studies described in this report are available at the Mammalian Reproductive Genetics (MRG) Database (http://mrg.genetics.washington.edu/).

  5. MONTANA PALLADIUM RESEARCH INITIATIVE

    Energy Technology Data Exchange (ETDEWEB)

    Peters, John; McCloskey, Jay; Douglas, Trevor; Young, Mark; Snyder, Stuart; Gurney, Brian

    2012-05-09

    Project Objective: The overarching objective of the Montana Palladium Research Initiative is to perform scientific research on the properties and uses of palladium in the context of the U.S. Department of Energy's Hydrogen, Fuel Cells and Infrastructure Technologies Program. The purpose of the research will be to explore possible palladium as an alternative to platinum in hydrogen-economy applications. To achieve this objective, the Initiatives activities will focus on several cutting-edge research approaches across a range of disciplines, including metallurgy, biomimetics, instrumentation development, and systems analysis. Background: Platinum-group elements (PGEs) play significant roles in processing hydrogen, an element that shows high potential to address this need in the U.S. and the world for inexpensive, reliable, clean energy. Platinum, however, is a very expensive component of current and planned systems, so less-expensive alternatives that have similar physical properties are being sought. To this end, several tasks have been defined under the rubric of the Montana Palladium Research Iniative. This broad swath of activities will allow progress on several fronts. The membrane-related activities of Task 1 employs state-of-the-art and leading-edge technologies to develop new, ceramic-substrate metallic membranes for the production of high-purity hydrogen, and develop techniques for the production of thin, defect-free platinum group element catalytic membranes for energy production and pollution control. The biomimetic work in Task 2 explores the use of substrate-attached hydrogen-producing enzymes and the encapsulation of palladium in virion-based protein coats to determine their utility for distributed hydrogen production. Task 3 work involves developing laser-induced breakdown spectroscopy (LIBS) as a real-time, in situ diagnostic technique to characterize PGEs nanoparticles for process monitoring and control. The systems engineering work in task 4

  6. MONTANA PALLADIUM RESEARCH INITIATIVE

    Energy Technology Data Exchange (ETDEWEB)

    Peters, John

    2012-05-09

    Project Objective: The overarching objective of the Montana Palladium Research Initiative is to perform scientific research on the properties and uses of palladium in the context of the U.S. Department of Energy'™s Hydrogen, Fuel Cells and Infrastructure Technologies Program. The purpose of the research will be to explore possible palladium as an alternative to platinum in hydrogen-economy applications. To achieve this objective, the Initiatives activities will focus on several cutting-edge research approaches across a range of disciplines, including metallurgy, biomimetics, instrumentation development, and systems analysis. Background: Platinum-group elements (PGEs) play significant roles in processing hydrogen, an element that shows high potential to address this need in the U.S. and the world for inexpensive, reliable, clean energy. Platinum, however, is a very expensive component of current and planned systems, so less-expensive alternatives that have similar physical properties are being sought. To this end, several tasks have been defined under the rubric of the Montana Palladium Research Iniative. This broad swath of activities will allow progress on several fronts. The membrane-related activities of Task 1 employs state-of-the-art and leading-edge technologies to develop new, ceramic-substrate metallic membranes for the production of high-purity hydrogen, and develop techniques for the production of thin, defect-free platinum group element catalytic membranes for energy production and pollution control. The biomimetic work in Task 2 explores the use of substrate-attached hydrogen-producing enzymes and the encapsulation of palladium in virion-based protein coats to determine their utility for distributed hydrogen production. Task 3 work involves developing laser-induced breakdown spectroscopy (LIBS) as a real-time, in situ diagnostic technique to characterize PGEs nanoparticles for process

  7. Scientific Component Technology Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S; Bosl, B; Dahlgren, T; Kumfert, G; Smith, S

    2003-02-07

    The laboratory has invested a significant amount of resources towards the development of high-performance scientific simulation software, including numerical libraries, visualization, steering, software frameworks, and physics packages. Unfortunately, because this software was not designed for interoperability and re-use, it is often difficult to share these sophisticated software packages among applications due to differences in implementation language, programming style, or calling interfaces. This LDRD Strategic Initiative investigated and developed software component technology for high-performance parallel scientific computing to address problems of complexity, re-use, and interoperability for laboratory software. Component technology is an extension of scripting and object-oriented software development techniques that specifically focuses on the needs of software interoperability. Component approaches based on CORBA, COM, and Java technologies are widely used in industry; however, they do not support massively parallel applications in science and engineering. Our research focused on the unique requirements of scientific computing on ASCI-class machines, such as fast in-process connections among components, language interoperability for scientific languages, and data distribution support for massively parallel SPMD components.

  8. ALOS-2 initial results

    Science.gov (United States)

    Kankaku, Yukihiro; Suzuki, Shinichi; Shimada, Masanobu

    2015-10-01

    The Advanced Land Observing Satellite-2 (ALOS-2) was launched from Tanegashima Space Center by H-IIA rocket successfully on 24th May 2014. ALOS-2 carries the Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) as the state-of-the-art L-band SAR system which succeeds to PALSAR onboard ALOS. PALSAR-2 uses almost whole bandwidth allocated for L-band active sensor of Earth Exploration Satellites Service specified by the Radio Regulation in order to realize the high resolution observation, and also, it transmits more than 6 kW power for lower Noise Equivalent Sigma Zero using 180 TRMs driven by Gallium Nitride (GaN) amplifier which is the first use in space. Furthermore, because ALOS-2 carries the SAR system only, PALSAR-2 antenna can be mounted under the satellite body. It enables to observe right-/left-looking observation by satellite maneuvering. And the high accuracy orbit control to maintain the satellite within 500 m radius tube against the reference orbit enables high coherence for the InSAR processing. Using these new technologies, ALOS-2 has been operating to fulfill the mission requirements such as disaster monitoring and so on. This document introduces the initial result of ALOS-2 from the first year operation.

  9. The new childcare initiative

    CERN Multimedia

    Cigdem Issever

    The ATLAS Women's Network recently sent out a general mailing to all ATLAS and CMS members to announce a new initiative aimed at improving childcare facilities for Users coming to CERN. Several people have expressed the need that CERN should provide or facilitate affordable day care for children of temporary visitors at CERN. The ATLAS Women's Network is now forming a child care task force from concerned people and invites all those interested to join this effort. You can do so by either adding your name to the mailing list cern-users-childcare@cern.ch in Simba or by contacting Cigdem.Issever@cern.NOSPAM.ch and Pauline.Gagnon@cern.NOSPAM.ch. More than 50 people have already joined this effort. Those who have joined the mailing list will soon receive all the details about the next conference call meeting which has been scheduled for Thursday October 25th from 16:30 to 18:00 CERN time. The preliminary agenda is the following: Summary of our first contact of ATLAS and CMS (5 min) Discussion about the co-conv...

  10. The global transcriptional response of fission yeast to hydrogen sulfide.

    Directory of Open Access Journals (Sweden)

    Xu Jia

    Full Text Available BACKGROUND: Hydrogen sulfide (H(2S is a newly identified member of the small family of gasotransmitters that are endogenous gaseous signaling molecules that have a fundamental role in human biology and disease. Although it is a relatively recent discovery and the mechanism of H(2S activity is not completely understood, it is known to be involved in a number of cellular processes; H(2S can affect ion channels, transcription factors and protein kinases in mammals. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we have used fission yeast as a model organism to study the global gene expression profile in response to H(2S by microarray. We initially measured the genome-wide transcriptional response of fission yeast to H(2S. Through the functional classification of genes whose expression profile changed in response to H(2S, we found that H(2S mainly influences genes that encode putative or known stress proteins, membrane transporters, cell cycle/meiotic proteins, transcription factors and respiration protein in the mitochondrion. Our analysis showed that there was a significant overlap between the genes affected by H(2S and the stress response. We identified that the target genes of the MAPK pathway respond to H(2S; we also identified that a number of transporters respond to H(2S, these include sugar/carbohydrate transporters, ion transporters, and amino acid transporters. We found many mitochondrial genes to be down regulated upon H(2S treatment and that H(2S can reduce mitochondrial oxygen consumption. CONCLUSION/SIGNIFICANCE: This study identifies potential molecular targets of the signaling molecule H(2S in fission yeast and provides clues about the identity of homologues human proteins and will further the understanding of the cellular role of H(2S in human diseases.

  11. The evolution of transcriptional regulation in eukaryotes

    Science.gov (United States)

    Wray, Gregory A.; Hahn, Matthew W.; Abouheif, Ehab; Balhoff, James P.; Pizer, Margaret; Rockman, Matthew V.; Romano, Laura A.

    2003-01-01

    Gene expression is central to the genotype-phenotype relationship in all organisms, and it is an important component of the genetic basis for evolutionary change in diverse aspects of phenotype. However, the evolution of transcriptional regulation remains understudied and poorly understood. Here we review the evolutionary dynamics of promoter, or cis-regulatory, sequences and the evolutionary mechanisms that shape them. Existing evidence indicates that populations harbor extensive genetic variation in promoter sequences, that a substantial fraction of this variation has consequences for both biochemical and organismal phenotype, and that some of this functional variation is sorted by selection. As with protein-coding sequences, rates and patterns of promoter sequence evolution differ considerably among loci and among clades for reasons that are not well understood. Studying the evolution of transcriptional regulation poses empirical and conceptual challenges beyond those typically encountered in analyses of coding sequence evolution: promoter organization is much less regular than that of coding sequences, and sequences required for the transcription of each locus reside at multiple other loci in the genome. Because of the strong context-dependence of transcriptional regulation, sequence inspection alone provides limited information about promoter function. Understanding the functional consequences of sequence differences among promoters generally requires biochemical and in vivo functional assays. Despite these challenges, important insights have already been gained into the evolution of transcriptional regulation, and the pace of discovery is accelerating.

  12. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2010-07-01

    Full Text Available Abstract Background Plant cytochrome P450 monooxygenases (CYP mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. Results Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS in the upstream region and three candidate polyadenylation (PolyA sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. Conclusions This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression

  13. Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation.

    Science.gov (United States)

    Arimbasseri, Aneeshkumar G; Rijal, Keshab; Maraia, Richard J

    2014-01-01

    In eukaryotes, RNA polymerase (RNAP) III transcribes hundreds of genes for tRNAs and 5S rRNA, among others, which share similar promoters and stable transcription initiation complexes (TIC), which support rapid RNAP III recycling. In contrast, RNAP II transcribes a large number of genes with highly variable promoters and interacting factors, which exert fine regulatory control over TIC lability and modifications of RNAP II at different transitional points in the transcription cycle. We review data that illustrate a relatively smooth continuity of RNAP III initiation-elongation-termination and reinitiation toward its function to produce high levels of tRNAs and other RNAs that support growth and development.

  14. The onset of foreign gene transcription in nuclear-transferred embryos of fish

    Institute of Scientific and Technical Information of China (English)

    孙永华; 陈尚萍; 汪亚平; 朱作言

    2000-01-01

    The transcriptional onset ot hGH-transgene in fish was studied in the following three cases: the first is in MThGH-transgenic F4 common carp (Cyprinus carpio) embryos, the second is in nuclear-transferred embryos supported by the transgenic F4 embryonic nuclei, and the third is in nuclear-transferred embryos supported by the transgenic F4 tail-fin nuclei. RT-PCR results show that the hGH-transgene initiates its transcriptional activity from early-gastrula stage, the early blastula stage and even 16-cell stage in the first, second and third cases, respectively. It looks like that fish egg cytoplasm could just offer a very restricted reprogramming on transcriptional activity of specific gene in differentiated cell nuclei by nuclear transplantation.

  15. The onset of foreign gene transcription in nuclear-transferred embryos of fish

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The transcriptional onset of hGH-transgene in fish was studied in the following three cases: the first is in MThGH-transgenic F4 common carp (Cyprinus carpio) embryos, the second is in nuclear-transferred embryos supported by the transgenic F4 embryonic nuclei, and the third is in nuclear-transferred embryos supported by the transgenic F4 tail-fin nuclei. RT-PCR results show that the hGH-transgene initiates its transcriptional activity from early-gastrula stage, the early blas-tula stage and even 16-cell stage in the first, second and third cases, respectively. It looks like that fish egg cytoplasm could just offer a very restricted reprogramming on transcriptional activity of specific gene in differentiated cell nuclei by nuclear transplantation.

  16. Non-Canonical EZH2 Transcriptionally Activates RelB in Triple Negative Breast Cancer

    Science.gov (United States)

    Lawrence, Cortney L.; Baldwin, Albert S.

    2016-01-01

    Enhancer of zeste homology 2 (EZH2) is the methyltransferase component of the polycomb repressive complex (PRC2) which represses gene transcription via histone H3 trimethylation at lysine 23 (H3K27me3). EZH2 activity has been linked with oncogenesis where it is thought to block expression of certain tumor suppressors. Relative to a role in cancer, EZH2 functions to promote self-renewal and has been shown to be important for the tumor-initiating cell (TIC) phenotype in breast cancer. Recently a non-canonical role for EZH2 has been identified where it promotes transcriptional activation of certain genes. Here we show that EZH2, through a methyltransferase-independent mechanism, promotes the transcriptional activation of the non-canonical NF-κB subunit RelB to drive self-renewal and the TIC phenotype of triple-negative breast cancer cells. PMID:27764181

  17. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors

    DEFF Research Database (Denmark)

    Österlund, Tobias; Bordel, Sergio; Nielsen, Jens

    2015-01-01

    Transcriptional regulation is the most committed type of regulation in living cells where transcription factors (TFs) control the expression of their target genes and TF expression is controlled by other TFs forming complex transcriptional regulatory networks that can be highly interconnected. Here...... we analyze the topology and organization of nine transcriptional regulatory networks for E. coli, yeast, mouse and human, and we evaluate how the structure of these networks influences two of their key properties, namely controllability and stability. We calculate the controllability for each network...... as a measure of the organization and interconnectivity of the network. We find that the number of driver nodes n(D) needed to control the whole network is 64% of the TFs in the E. coli transcriptional regulatory network in contrast to only 17% for the yeast network, 4% for the mouse network and 8...

  18. Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling.

    Science.gov (United States)

    Zeitlinger, Julia; Simon, Itamar; Harbison, Christopher T; Hannett, Nancy M; Volkert, Thomas L; Fink, Gerald R; Young, Richard A

    2003-05-01

    Specialized gene expression programs are induced by signaling pathways that act on transcription factors. Whether these transcription factors can function in multiple developmental programs through a global switch in promoter selection is not known. We have used genome-wide location analysis to show that the yeast Ste12 transcription factor, which regulates mating and filamentous growth, is bound to distinct program-specific target genes dependent on the developmental condition. This condition-dependent distribution of Ste12 requires concurrent binding of the transcription factor Tec1 during filamentation and is differentially regulated by the MAP kinases Fus3 and Kss1. Program-specific distribution across the genome may be a general mechanism by which transcription factors regulate distinct gene expression programs in response to signaling. PMID:12732146

  19. European nuclear education initiatives

    International Nuclear Information System (INIS)

    Whatever option regarding their future nuclear energy development is chosen by European Union Member States, the availability of a sufficient number of well trained and experienced staff is key for the responsible use of nuclear energy. This is true in all areas including design, construction, operation, decommissioning, fuel cycle and waste management as well as radiation protection. Given the high average age of existing experts leading to a significant retirement induce a real risk of the loss of nuclear competencies in the coming years. Therefore the demand of hiring skilled employees is rising. The challenge of ensuring a sufficient number of qualified staff in the nuclear sector has been acknowledged widely among the different stakeholders, in particular the nuclear industry, national regulatory authorities and Technical Support Organisations (TSOs). Already the EURATOM Treaty refers explicitly to the obligation for the Commission to carry out training actions. Recently initiatives have been launched at EU level to facilitate and strengthen the efforts of national stakeholders. The European Nuclear Education Network (ENEN) Association aims at preservation and further development of expertise in the nuclear field by higher education and training. The goal of the European Nuclear Energy Leadership Academy (ENELA) is to educate future leaders in the nuclear field to ensure the further development of sustainable European nuclear energy solutions The European Nuclear Energy Forum (ENEF) is a platform operated by the European Commission for a broad discussion on the opportunities and risks of nuclear energy. The nuclear programs under investigation in the Joint Research Center (JRC) are increasingly contributing to Education and Training (E and T) initiatives, promoting a better cooperation between key players and universities as well as operators and regulatory bodies in order to mutually optimise their training programmes. Another objective is to increase

  20. Gauging without initial symmetry

    Science.gov (United States)

    Kotov, Alexei; Strobl, Thomas

    2016-01-01

    The gauge principle is at the heart of a good part of fundamental physics: Starting with a group G of so-called rigid symmetries of a functional defined over space-time Σ, the original functional is extended appropriately by additional Lie(G) -valued 1-form gauge fields so as to lift the symmetry to Maps(Σ , G) . Physically relevant quantities are then to be obtained as the quotient of the solutions to the Euler-Lagrange equations by these gauge symmetries. In this article we show that one can construct a gauge theory for a standard sigma model in arbitrary space-time dimensions where the target metric is not invariant with respect to any rigid symmetry group, but satisfies a much weaker condition: It is sufficient to find a collection of vector fields va on the target M satisfying the extended Killing equationv a(i ; j) = 0 for some connection acting on the index a. For regular foliations this is equivalent to requiring the conormal bundle to the leaves with its induced metric to be invariant under leaf-preserving diffeomorphisms of M, which in turn generalizes Riemannian submersions to which the notion reduces for smooth leaf spaces M / ∼. The resulting gauge theory has the usual quotient effect with respect to the original ungauged theory: in this way, much more general orbits can be factored out than usually considered. In some cases these are orbits that do not correspond to an initial symmetry, but still can be generated by a finite-dimensional Lie group G. Then the presented gauging procedure leads to an ordinary gauge theory with Lie algebra valued 1-form gauge fields, but showing an unconventional transformation law. In general, however, one finds that the notion of an ordinary structural Lie group is too restrictive and should be replaced by the much more general notion of a structural Lie groupoid.