WorldWideScience

Sample records for activator-dependent transcription initiation

  1. Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus.

    Science.gov (United States)

    Ch'ng, Toh Hean; Uzgil, Besim; Lin, Peter; Avliyakulov, Nuraly K; O'Dell, Thomas J; Martin, Kelsey C

    2012-07-01

    Long-lasting changes in synaptic efficacy, such as those underlying long-term memory, require transcription. Activity-dependent transport of synaptically localized transcriptional regulators provides a direct means of coupling synaptic stimulation with changes in transcription. The CREB-regulated transcriptional coactivator (CRTC1), which is required for long-term hippocampal plasticity, binds CREB to potently promote transcription. We show that CRTC1 localizes to synapses in silenced hippocampal neurons but translocates to the nucleus in response to localized synaptic stimulation. Regulated nuclear translocation occurs only in excitatory neurons and requires calcium influx and calcineurin activation. CRTC1 is controlled in a dual fashion with activity regulating CRTC1 nuclear translocation and cAMP modulating its persistence in the nucleus. Neuronal activity triggers a complex change in CRTC1 phosphorylation, suggesting that CRTC1 may link specific types of stimuli to specific changes in gene expression. Together, our results indicate that synapse-to-nuclear transport of CRTC1 dynamically informs the nucleus about synaptic activity.

  2. Structural basis of transcription initiation.

    Science.gov (United States)

    Zhang, Yu; Feng, Yu; Chatterjee, Sujoy; Tuske, Steve; Ho, Mary X; Arnold, Eddy; Ebright, Richard H

    2012-11-23

    During transcription initiation, RNA polymerase (RNAP) binds and unwinds promoter DNA to form an RNAP-promoter open complex. We have determined crystal structures at 2.9 and 3.0 Å resolution of functional transcription initiation complexes comprising Thermus thermophilus RNA polymerase, σ(A), and a promoter DNA fragment corresponding to the transcription bubble and downstream double-stranded DNA of the RNAP-promoter open complex. The structures show that σ recognizes the -10 element and discriminator element through interactions that include the unstacking and insertion into pockets of three DNA bases and that RNAP recognizes the -4/+2 region through interactions that include the unstacking and insertion into a pocket of the +2 base. The structures further show that interactions between σ and template-strand single-stranded DNA (ssDNA) preorganize template-strand ssDNA to engage the RNAP active center.

  3. Binding of TFIIIC to sine elements controls the relocation of activity-dependent neuronal genes to transcription factories.

    Directory of Open Access Journals (Sweden)

    Luca Crepaldi

    Full Text Available In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE conditions. We discovered that Short Interspersed Elements (SINEs located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs, and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes.

  4. Binding of TFIIIC to sine elements controls the relocation of activity-dependent neuronal genes to transcription factories.

    Science.gov (United States)

    Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T; Jongbloets, Bart C; Down, Thomas A; Riccio, Antonella

    2013-01-01

    In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes.

  5. Distinct regulation of activity-dependent transcription of immediate early genes in cultured rat cortical neurons.

    Science.gov (United States)

    Fukuchi, Mamoru; Sanabe, Tomofumi; Watanabe, Toshifumi; Kubota, Takane; Tabuchi, Akiko; Tsuda, Masaaki

    2017-08-26

    The activity-regulated expression of immediate early genes (IEGs) contributes to long-lasting neuronal functions underlying long-term memory. However, their response properties following neuronal activity are unique and remain poorly understood. To address this knowledge gap, here we further investigated the response properties of two representative IEGs, c-fos and brain-derived neurotrophic factor (Bdnf). Treatment of cultured cortical cells with KCl produces a depolarization process that results in the increase of intracellular calcium concentration in a KCl concentration-dependent manner. Consistent with this increase, c-fos expression was induced in a KCl concentration-dependent manner. In contrast, however, Bdnf expression was optimally activated by both 25 and 50 mM concentration of KCl. Similar results were observed when the cells were treated with okadaic acid, which inhibits protein phosphatases and elicits the hyper-phosphorylation of signaling molecules. Thus, Bdnf expression is strictly regulated by a neuronal activity threshold in an all or nothing manner, whereas c-fos expression is activated in a neuronal activity-dependent manner. Our findings also suggest that these differential responses might be due to the presence or absence of a TATA box. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. TAF7: traffic controller in transcription initiation.

    Science.gov (United States)

    Gegonne, Anne; Devaiah, Ballachanda N; Singer, Dinah S

    2013-01-01

    TAF7, a component of the TFIID complex, controls the first steps of transcription. It interacts with and regulates the enzymatic activities of transcription factors that regulate RNA polymerase II progression. Its diverse functions in transcription initiation are consistent with its essential role in cell proliferation.

  7. Regulated assembly of transcription factors and control of transcription initiation.

    Science.gov (United States)

    Beckett, D

    2001-11-30

    Proteins that function in regulation of transcription initiation are typically homo or hetero-oligomeric. Results of recent biophysical studies of transcription regulators indicate that the assembly of these proteins is often subject to regulation. This regulation of assembly dictates the frequency of transcription initiation via its influence on the affinity of a transcription regulator for DNA and its affect on target site selection. Factors that modulate transcription factor assembly include binding of small molecules, post-translational modification, DNA binding and interactions with other proteins. Here, the results of recent structural and/or thermodynamic studies of a number of transcription regulators that are subject to regulated assembly are reviewed. The accumulated data indicate that this phenomenon is ubiquitous and that mechanisms utilized in eukaryotes and prokaryotes share common features. Copyright 2001 Academic Press.

  8. Recent evidence for activity-dependent initiation of sympathetic sprouting and neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    Jun-Ming ZHANG; Judith A. Strong

    2008-01-01

    Traumatic injury or inflammatory irritation of the peripheral nervous system often leads to persistent pathophysiological pain states. It has been well-documented that, after peripheral nerve injury or inflammation, functional and anatomical alterations sweep over the entire peripheral nervous system including the peripheral nerve endings, the injured or inflamed afferent fibers, the dorsal root ganglion (DRG), and the central afferent terminals in the spinal cord. Among all the changes, ectopic discharge or spontaneous activity of primary sensory neurons is of great clinical interest, as such discharges doubtless contribute to the develop-ment of pathological pain states such as neuropathic pain. Two key sources of abnormal spontaneous activity have been identified following peripheral nerve injury: the injured afferent fibers (neuroma) leading to the DRG, and the DRG somata. The purpose of this review is to provide a global account of the abnormal spontaneous activity in various animal models of pain. Particular attention is focused on the consequence of peripheral nerve injury and localized inflammation. Further, mechanisms involved in the generation of spontaneous activity are also reviewed; evidence of spontaneous activity in contributing to abnormal sympathetic sprouting in the axotomized DRG and to the initiation of neuropathic pain based on new findings from our research group are discussed. An improved understanding of the causes of spontaneous activity and the origins of neuropathic pain should facilitate the development of novel strategies for effective treatment of pathological pain.

  9. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates.

    Science.gov (United States)

    Barvík, Ivan; Rejman, Dominik; Panova, Natalya; Šanderová, Hana; Krásný, Libor

    2016-10-30

    RNA polymerase (RNAP) is the central enzyme of transcription of the genetic information from DNA into RNA. RNAP recognizes four main substrates: ATP, CTP, GTP and UTP. Experimental evidence from the past several years suggests that, besides these four NTPs, other molecules can be used to initiate transcription: (i) ribooligonucleotides (nanoRNAs) and (ii) coenzymes such as NAD(+), NADH, dephospho-CoA and FAD. The presence of these molecules at the 5' ends of RNAs affects the properties of the RNA. Here, we discuss the expanding portfolio of molecules that can initiate transcription, their mechanism of incorporation, effects on RNA and cellular processes, and we present an outlook toward other possible initiation substrates.

  10. Molecular basis of transcription initiation in Archaea.

    Science.gov (United States)

    De Carlo, Sacha; Lin, Shih-Chieh; Taatjes, Dylan J; Hoenger, Andreas

    2010-01-01

    Compared with eukaryotes, the archaeal transcription initiation machinery-commonly known as the Pre-Initiation Complex-is relatively simple. The archaeal PIC consists of the TFIIB ortholog TFB, TBP, and an 11-subunit RNA polymerase (RNAP). The relatively small size of the entire archaeal PIC makes it amenable to structural analysis. Using purified RNAP, TFB, and TBP from the thermophile Pyrococcus furiosus, we assembled the biochemically active PIC at 65ºC. The intact archaeal PIC was isolated by implementing a cross-linking technique followed by size-exclusion chromatography, and the structure of this 440 kDa assembly was determined using electron microscopy and single-particle reconstruction techniques. Combining difference maps with crystal structure docking of various sub-domains, TBP and TFB were localized within the macromolecular PIC. TBP/TFB assemble near the large RpoB subunit and the RpoD/L "foot" domain behind the RNAP central cleft. This location mimics that of yeast TBP and TFIIB in complex with yeast RNAP II. Collectively, these results define the structural organization of the archaeal transcription machinery and suggest a conserved core PIC architecture.

  11. Structural basis of transcription initiation by RNA polymerase II.

    OpenAIRE

    Sainsbury, S.; Bernecky, C.; Cramer, P

    2015-01-01

    Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtaine...

  12. Transcriptional response of zebrafish embryos exposed to neurotoxic compounds reveals a muscle activity dependent hspb11 expression.

    Directory of Open Access Journals (Sweden)

    Nils Klüver

    Full Text Available Acetylcholinesterase (AChE inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM, in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB and 2,4-dinitrophenol (DNP. A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sop(fixe mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds.

  13. Structural basis of transcription initiation by RNA polymerase II.

    Science.gov (United States)

    Sainsbury, Sarah; Bernecky, Carrie; Cramer, Patrick

    2015-03-01

    Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.

  14. The schizophrenia- and autism-associated gene, transcription factor 4 regulates the columnar distribution of layer 2/3 prefrontal pyramidal neurons in an activity-dependent manner.

    Science.gov (United States)

    Page, S C; Hamersky, G R; Gallo, R A; Rannals, M D; Calcaterra, N E; Campbell, M N; Mayfield, B; Briley, A; Phan, B N; Jaffe, A E; Maher, B J

    2017-03-14

    Disruption of the laminar and columnar organization of the brain is implicated in several psychiatric disorders. Here, we show in utero gain-of-function of the psychiatric risk gene transcription factor 4 (TCF4) severely disrupts the columnar organization of medial prefrontal cortex (mPFC) in a transcription- and activity-dependent manner. This morphological phenotype was rescued by co-expression of TCF4 plus calmodulin in a calcium-dependent manner and by dampening neuronal excitability through co-expression of an inwardly rectifying potassium channel (Kir2.1). For we believe the first time, we show that N-methyl-d-aspartate (NMDA) receptor-dependent Ca(2+) transients are instructive to minicolumn organization because Crispr/Cas9-mediated mutation of NMDA receptors rescued TCF4-dependent morphological phenotypes. Furthermore, we demonstrate that the transcriptional regulation by the psychiatric risk gene TCF4 enhances NMDA receptor-dependent early network oscillations. Our novel findings indicate that TCF4-dependent transcription directs the proper formation of prefrontal cortical minicolumns by regulating the expression of genes involved in early spontaneous neuronal activity, and thus our results provides insights into potential pathophysiological mechanisms of TCF4-associated psychiatric disorders.Molecular Psychiatry advance online publication, 14 March 2017; doi:10.1038/mp.2017.37.

  15. CoSMoS unravels mysteries of transcription initiation.

    Science.gov (United States)

    Gourse, Richard L; Landick, Robert

    2012-02-17

    Using a fluorescence method called colocalization single-molecule spectroscopy (CoSMoS), Friedman and Gelles dissect the kinetics of transcription initiation at a bacterial promoter. Ultimately, CoSMoS could greatly aid the study of the effects of DNA sequence and transcription factors on both prokaryotic and eukaryotic promoters.

  16. CoSMoS Unravels Mysteries of Transcription Initiation

    OpenAIRE

    Gourse, Richard L.; Landick, Robert

    2012-01-01

    Using a fluorescence method called colocalization single-molecule spectroscopy (CoSMoS), Friedman and Gelles dissect the kinetics of transcription initiation at a bacterial promoter. Ultimately, CoSMoS could greatly aid the study of the effects of DNA sequence and transcription factors on both prokaryotic and eukaryotic promoters.

  17. Structural basis of transcription initiation by bacterial RNA polymerase holoenzyme.

    Science.gov (United States)

    Basu, Ritwika S; Warner, Brittany A; Molodtsov, Vadim; Pupov, Danil; Esyunina, Daria; Fernández-Tornero, Carlos; Kulbachinskiy, Andrey; Murakami, Katsuhiko S

    2014-08-29

    The bacterial RNA polymerase (RNAP) holoenzyme containing σ factor initiates transcription at specific promoter sites by de novo RNA priming, the first step of RNA synthesis where RNAP accepts two initiating ribonucleoside triphosphates (iNTPs) and performs the first phosphodiester bond formation. We present the structure of de novo transcription initiation complex that reveals unique contacts of the iNTPs bound at the transcription start site with the template DNA and also with RNAP and demonstrate the importance of these contacts for transcription initiation. To get further insight into the mechanism of RNA priming, we determined the structure of initially transcribing complex of RNAP holoenzyme with 6-mer RNA, obtained by in crystallo transcription approach. The structure highlights RNAP-RNA contacts that stabilize the short RNA transcript in the active site and demonstrates that the RNA 5'-end displaces σ region 3.2 from its position near the active site, which likely plays a key role in σ ejection during the initiation-to-elongation transition. Given the structural conservation of the RNAP active site, the mechanism of de novo RNA priming appears to be conserved in all cellular RNAPs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Initiation and regulation of paramyxovirus transcription and replication.

    Science.gov (United States)

    Noton, Sarah L; Fearns, Rachel

    2015-05-01

    The paramyxovirus family has a genome consisting of a single strand of negative sense RNA. This genome acts as a template for two distinct processes: transcription to generate subgenomic, capped and polyadenylated mRNAs, and genome replication. These viruses only encode one polymerase. Thus, an intriguing question is, how does the viral polymerase initiate and become committed to either transcription or replication? By answering this we can begin to understand how these two processes are regulated. In this review article, we present recent findings from studies on the paramyxovirus, respiratory syncytial virus, which show how its polymerase is able to initiate transcription and replication from a single promoter. We discuss how these findings apply to other paramyxoviruses. Then, we examine how trans-acting proteins and promoter secondary structure might serve to regulate transcription and replication during different phases of the paramyxovirus replication cycle.

  19. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation.

    Science.gov (United States)

    Peters, A; Storb, U

    1996-01-01

    To identify DNA sequences that target the somatic hypermutation process, the immunoglobulin gene promoter located upstream of the variable (V) region was duplicated upstream of the constant (C) region of a kappa transgene. Normally, kappa genes are somatically mutated only in the VJ region, but not in the C region. In B cell hybridomas from mice with this kappa transgene (P5'C), both the VJ region and the C region, but not the region between them, were mutated at similar frequencies, suggesting that the mutation mechanism is related to transcription. The downstream promoter was not occluded by transcripts from the upstream promoter. In fact, the levels of transcripts originating from the two promoters were similar, supporting a mutation model based on initiation of transcripts. Several "hot-spots" of somatic mutation were noted, further demonstrating that this transgene has the hallmarks of somatic mutation of endogenous immunoglobulin genes. A model linking somatic mutation to transcription-coupled DNA repair is proposed.

  20. A code for transcription initiation in mammalian genomes

    DEFF Research Database (Denmark)

    Frith, Martin C.; Valen, Eivind Dale; Krogh, Anders

    2007-01-01

    that initiation events are clustered on the chromosomes at multiple scales - clusters within clusters - indicating multiple regulatory processes. Within the smallest of such clusters, which can be interpreted as core promoters, the local DNA sequence predicts the relative transcription start usage of each...... of large- and small-scale effects: the selection of transcription start sites is largely governed by the local DNA sequence, whereas the transcriptional activity of a locus is regulated at a different level; it is affected by distal features or events such as enhancers and chromatin remodeling....

  1. A bacteriophage transcription regulator inhibits bacterial transcription initiation by σ-factor displacement.

    Science.gov (United States)

    Liu, Bing; Shadrin, Andrey; Sheppard, Carol; Mekler, Vladimir; Xu, Yingqi; Severinov, Konstantin; Matthews, Steve; Wigneshweraraj, Sivaramesh

    2014-04-01

    Bacteriophages (phages) appropriate essential processes of bacterial hosts to benefit their own development. The multisubunit bacterial RNA polymerase (RNAp) enzyme, which catalyses DNA transcription, is targeted by phage-encoded transcription regulators that selectively modulate its activity. Here, we describe the structural and mechanistic basis for the inhibition of bacterial RNAp by the transcription regulator P7 encoded by Xanthomonas oryzae phage Xp10. We reveal that P7 uses a two-step mechanism to simultaneously interact with the catalytic β and β' subunits of the bacterial RNAp and inhibits transcription initiation by inducing the displacement of the σ(70)-factor on initial engagement of RNAp with promoter DNA. The new mode of interaction with and inhibition mechanism of bacterial RNAp by P7 underscore the remarkable variety of mechanisms evolved by phages to interfere with host transcription.

  2. Tat gets the "green" light on transcription initiation

    Directory of Open Access Journals (Sweden)

    Kashanchi Fatah

    2005-11-01

    Full Text Available Abstract Human immunodeficiency virus type 1 (HIV-1 Tat transactivation is an essential step in the viral life cycle. Over the past several years, it has become widely accepted that Tat exerts its transcriptional effect by binding the transactivation-responsive region (TAR and enhancing transcriptional elongation. Consistent with this hypothesis, it has been shown that Tat promotes the binding of P-TEFb, a transcription elongation factor composed of cyclin T1 and cdk9, and the interaction of Tat with P-TEFb and TAR leads to hyperphosphorylation of the C-terminal domain (CTD of RNA Pol II and increased processivity of RNA Pol II. A recent report, however, has generated renewed interest that Tat may also play a critical role in transcription complex (TC assembly at the preinitiation step. Using in vivo chromatin immunoprecipitation assays, the authors reported that the HIV TC contains TBP but not TBP-associated factors. The stimulatory effect involved the direct interaction of Tat and P-TEFb and was evident at the earliest step of TC assembly, the TBP-TATA box interaction. In this article, we will review this data in context of earlier data which also support Tat's involvement in transcriptional complex assembly. Specifically, we will discuss experiments which demonstrated that Tat interacted with TBP and increased transcription initiation complex stability in cell free assays. We will also discuss studies which demonstrated that over expression of TBP alone was sufficient to obtain Tat activated transcription in vitro and in vivo. Finally, studies using self-cleaving ribozymes which suggested that Tat transactivation was not compatible with pausing of the RNA Pol II at the TAR site will be discussed.

  3. Dissecting the stochastic transcription initiation process in live Escherichia coli.

    Science.gov (United States)

    Lloyd-Price, Jason; Startceva, Sofia; Kandavalli, Vinodh; Chandraseelan, Jerome G; Goncalves, Nadia; Oliveira, Samuel M D; Häkkinen, Antti; Ribeiro, Andre S

    2016-06-01

    We investigate the hypothesis that, in Escherichia coli, while the concentration of RNA polymerases differs in different growth conditions, the fraction of RNA polymerases free for transcription remains approximately constant within a certain range of these conditions. After establishing this, we apply a standard model-fitting procedure to fully characterize the in vivo kinetics of the rate-limiting steps in transcription initiation of the Plac/ara-1 promoter from distributions of intervals between transcription events in cells with different RNA polymerase concentrations. We find that, under full induction, the closed complex lasts ∼788 s while subsequent steps last ∼193 s, on average. We then establish that the closed complex formation usually occurs multiple times prior to each successful initiation event. Furthermore, the promoter intermittently switches to an inactive state that, on average, lasts ∼87 s. This is shown to arise from the intermittent repression of the promoter by LacI. The methods employed here should be of use to resolve the rate-limiting steps governing the in vivo dynamics of initiation of prokaryotic promoters, similar to established steady-state assays to resolve the in vitro dynamics. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  4. Structural Basis of RNA Polymerase I Transcription Initiation.

    Science.gov (United States)

    Engel, Christoph; Gubbey, Tobias; Neyer, Simon; Sainsbury, Sarah; Oberthuer, Christiane; Baejen, Carlo; Bernecky, Carrie; Cramer, Patrick

    2017-03-23

    Transcription initiation at the ribosomal RNA promoter requires RNA polymerase (Pol) I and the initiation factors Rrn3 and core factor (CF). Here, we combine X-ray crystallography and cryo-electron microscopy (cryo-EM) to obtain a molecular model for basal Pol I initiation. The three-subunit CF binds upstream promoter DNA, docks to the Pol I-Rrn3 complex, and loads DNA into the expanded active center cleft of the polymerase. DNA unwinding between the Pol I protrusion and clamp domains enables cleft contraction, resulting in an active Pol I conformation and RNA synthesis. Comparison with the Pol II system suggests that promoter specificity relies on a distinct "bendability" and "meltability" of the promoter sequence that enables contacts between initiation factors, DNA, and polymerase. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Assessment of Site Specific Mutational Effect on Transcription Initiation at Escherichia coli Promoter

    Directory of Open Access Journals (Sweden)

    S. Kannan

    2009-01-01

    Full Text Available Problem statement: It is widely accepted thought that the weak promoters control the RNA synthesis and play regulatory role in complex genetic networks in bacterial system. An experiment had been designed to address whether mutations in the -16/-17 region affect the rate of transcription at an activator-independent promoter in E. coli or not? Approach: The aim of this study was to determine whether mutations in the -16/-17 region affect the rate of expression at an activator-dependent promoter in JM109 strain of E. coli. Primers were constructed to amplify the mutant promoter genes through PCR. The amplified PCR product was checked and then inserted into the MCS region of pAA128 plasmid. Further the plasmid vector was transformed into JM109 strain of E. coli and then cloned the selected transformats. Finally, the plasmid from each mutant colony was then sequenced using the protocol supplied with the Amersham Pharmacia Biotech T7 sequencing Kit. The JM109 cultures for which the sequences were determined, then assayed for ß-galactosidase activity to assess the rate of gene expression from the altered promoters. Results: The present investigation revealed that the extended-10 promoter region has a substantial effect on the rate of transcription at weak promoter sequence and also bearing little resemblance to the consensus sequence recognized by RNA. The expression of the genetically engineered plasmid proved that the 2 bps (-16 and -17 base pair found adjacently upstream of the extended-10 promoter have an effect on the level of transcription. This was achieved by site specific base substitutions into the weak promoter of a modified lac operon lacking any activator or repressor binding sites. The results from gene expression assays of several mutants showed a distinct preference for either GG or TT located adjacently upstream of the extended promoter element. Thus the present study emphasized that

  6. Structural basis of initial RNA polymerase II transcription.

    Science.gov (United States)

    Cheung, Alan C M; Sainsbury, Sarah; Cramer, Patrick

    2011-11-04

    During transcription initiation by RNA polymerase (Pol) II, a transient open promoter complex (OC) is converted to an initially transcribing complex (ITC) containing short RNAs, and to a stable elongation complex (EC). We report structures of a Pol II-DNA complex mimicking part of the OC, and of complexes representing minimal ITCs with 2, 4, 5, 6, and 7 nucleotide (nt) RNAs, with and without a non-hydrolyzable nucleoside triphosphate (NTP) in the insertion site +1. The partial OC structure reveals that Pol II positions the melted template strand opposite the active site. The ITC-mimicking structures show that two invariant lysine residues anchor the 3'-proximal phosphate of short RNAs. Short DNA-RNA hybrids adopt a tilted conformation that excludes the +1 template nt from the active site. NTP binding induces complete DNA translocation and the standard hybrid conformation. Conserved NTP contacts indicate a universal mechanism of NTP selection. The essential residue Q1078 in the closed trigger loop binds the NTP 2'-OH group, explaining how the trigger loop couples catalysis to NTP selection, suppressing dNTP binding and DNA synthesis.

  7. A new way to start: nanoRNA-mediated priming of transcription initiation.

    Science.gov (United States)

    Nickels, Bryce E

    2012-01-01

    A recent study provides evidence that RNA polymerase uses 2- to ~4-nt RNAs, species termed "nanoRNAs," to prime transcription initiation in Escherichia coli. Priming of transcription initiation with nanoRNAs represents a previously undocumented component of transcription start site selection and gene expression.

  8. In neurons, activity-dependent association of dendritically transported mRNA transcripts with the transacting factor CBF-A is mediated by A2RE/RTS elements.

    Science.gov (United States)

    Raju, Chandrasekhar S; Fukuda, Nanaho; López-Iglesias, Carmen; Göritz, Christian; Visa, Neus; Percipalle, Piergiorgio

    2011-06-01

    In neurons certain mRNA transcripts are transported to synapses through mechanisms that are not fully understood. Here we report that the heterogeneous nuclear ribonucleoprotein CBF-A (CArG Box binding Factor A) facilitates dendritic transport and localization of activity-regulated cytoskeleton-associated protein (Arc), brain-derived neurotrophic factor (BDNF), and calmodulin-dependent protein kinase II (CaMKIIα) mRNAs. We discovered that, in the adult mouse brain, CBF-A has a broad distribution. In the nucleus, CBF-A was found at active transcription sites and interchromosomal spaces and close to nuclear pores. In the cytoplasm, CBF-A localized to dendrites as well as pre- and postsynaptic sites. CBF-A was found in synaptosomal fractions, associated with Arc, BDNF, and CaMKIIα mRNAs. Electrophoretic mobility shift assays demonstrated a direct interaction mediated via their hnRNP A2 response element (A2RE)/RNA trafficking sequence (RTS) elements located in the 3' untranslated regions. In situ hybridization and microscopy on live hippocampal neurons showed that CBF-A is in dynamic granules containing Arc, BDNF, and CaMKIIα mRNAs. N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) postsynaptic receptor stimulation led to CBF-A accumulation in dendrites; increased Arc, BDNF, and CaMKIIα mRNA levels; and increased amounts of transcripts coprecipitating with CBF-A. Finally, CBF-A gene knockdown led to decreased mRNA levels. We propose that CBF-A cotranscriptionally binds RTSs in Arc, BDNF, and CaMKIIα mRNAs and follows the transcripts from genes to dendrites, promoting activity-dependent nuclear sorting of transport-competent mRNAs.

  9. Faithful transcription initiation from a mitochondrial promoter in transgenic plastids.

    Science.gov (United States)

    Bohne, Alexandra-Viola; Ruf, Stephanie; Börner, Thomas; Bock, Ralph

    2007-01-01

    The transcriptional machineries of plastids and mitochondria in higher plants exhibit striking similarities. All mitochondrial genes and part of the plastid genes are transcribed by related phage-type RNA polymerases. Furthermore, the majority of mitochondrial promoters and a subset of plastid promoters show a similar structural organization. We show here that the plant mitochondrial atpA promoter is recognized by plastid RNA polymerases in vitro and in vivo. The Arabidopsis phage-type RNA polymerase RpoTp, an enzyme localized exclusively to plastids, was found to recognize the mitochondrial atpA promoter in in vitro assays suggesting the possibility that mitochondrial promoters might function as well in plastids. We have, therefore, generated transplastomic tobacco plants harboring in their chloroplast genome the atpA promoter fused to the coding region of the bacterial nptII gene. The chimeric nptII gene was found to be efficiently transcribed in chloroplasts. Mapping of the 5' ends of the nptII transcripts revealed accurate recognition of the atpA promoter by the chloroplast transcription machinery. We show further that the 5' untranslated region (UTR) of the mitochondrial atpA transcript is capable of mediating translation in chloroplasts. The functional and evolutionary implications of these findings as well as possible applications in chloroplast genome engineering are discussed.

  10. A transcript finishing initiative for closing gaps in the human transcriptome

    DEFF Research Database (Denmark)

    Sogayar, Mari Cleide; Camargo, Anamaria A; Bettoni, Fabiana

    2004-01-01

    We report the results of a transcript finishing initiative, undertaken for the purpose of identifying and characterizing novel human transcripts, in which RT-PCR was used to bridge gaps between paired EST clusters, mapped against the genomic sequence. Each pair of EST clusters selected for experi...

  11. Analysis of the transcription initiation mechanism of tomato spotted wilt virus

    NARCIS (Netherlands)

    Duijsings, D.M.J.M.

    2001-01-01

    Genome replication and transcription of Tomato spotted wilt virus (TSWV, genus Tospovirus ) follows in most aspects the general rules for negative strand RNA viruses with segmented genomes. One common feature is the occurrence of "cap snatching" during transcription initiation. During this process,

  12. The interaction between bacterial transcription factors and RNA polymerase during the transition from initiation to elongation.

    Science.gov (United States)

    Yang, Xiao; Lewis, Peter J

    2010-01-01

    There are three stages of transcription: initiation, elongation and termination, and traditionally there has been a clear distinction between the stages. The specificity factor sigma is completely released from bacterial RNA polymerase after initiation, and then recycled for another round of transcription. Elongation factors then associate with the polymerase followed by termination factors (where necessary). These factors dissociate prior to initiation of a new round of transcription. However, there is growing evidence suggesting that sigma factors can be retained in the elongation complex. The structure of bacterial RNAP in complex with an essential elongation factor NusA has recently been published, which suggested rather than competing for the major σ binding site, NusA binds to a discrete region on RNAP. A model was proposed to help explain the way in which both factors could be associated with RNAP during the transition from transcription initiation to elongation.

  13. Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis

    NARCIS (Netherlands)

    C. Nepal (Chirag); Y. Hadzhiev (Yavor); C. Previti (Christopher); V. Haberle (Vanja); N. Li (Nan); H. Takahashi (Hiroyuki); A.M. Suzuki (Ana Maria); Y. Sheng (Ying); R.F. Abdelhamid (Rehab); S. Anand (Santosh); P.A. Gehrig (Paola A.); A. Akalin (Altuna); C. Kockx (Christel); A. Van Der Sloot (Antoine); W.F.J. van IJcken (Wilfred); O. Armant (Olivier); S. Rastegar (Sepand); C. Watson (Craig); U. Strähle (Uwe); E. Stupka (Elia); P. Carninci (Piero); B. Lenhard (Boris); F. Müller (Ferenc)

    2013-01-01

    textabstractSpatiotemporal control of gene expression is central to animal development. Core promoters represent a previously unanticipated regulatory level by interacting with cis-regulatory elements and transcription initiation in different physiological and developmental contexts. Here, we provid

  14. Retention of transcription initiation factor sigma(70) in transcription elongation: Single-molecule analysis

    OpenAIRE

    Kapanidis, A. N.; Margeat, E; Laurence, T A; Doose, S.; Ho, S O; Mukhopadhyay, J.; Kortkhonjia, E; Mekler, V; Ebright, R H; S. Weiss

    2005-01-01

    We report a single-molecule assay that defines, simultaneously, the translocational position of a protein complex relative to DNA and the subunit stoichiometry of the complex. We applied the assay to define translocational positions and sigma(70) contents of bacterial transcription elongation complexes in vitro. The results confirm ensemble results indicating that a large fraction, similar to 70%-90%, of early elongation complexes retain sigma(70) and that a determinant for sigma(70) recognit...

  15. Differentiation driven changes in the dynamic organization of Basal transcription initiation.

    Directory of Open Access Journals (Sweden)

    Giuseppina Giglia-Mari

    2009-10-01

    Full Text Available Studies based on cell-free systems and on in vitro-cultured living cells support the concept that many cellular processes, such as transcription initiation, are highly dynamic: individual proteins stochastically bind to their substrates and disassemble after reaction completion. This dynamic nature allows quick adaptation of transcription to changing conditions. However, it is unknown to what extent this dynamic transcription organization holds for postmitotic cells embedded in mammalian tissue. To allow analysis of transcription initiation dynamics directly into living mammalian tissues, we created a knock-in mouse model expressing fluorescently tagged TFIIH. Surprisingly and in contrast to what has been observed in cultured and proliferating cells, postmitotic murine cells embedded in their tissue exhibit a strong and long-lasting transcription-dependent immobilization of TFIIH. This immobilization is both differentiation driven and development dependent. Furthermore, although very statically bound, TFIIH can be remobilized to respond to new transcriptional needs. This divergent spatiotemporal transcriptional organization in different cells of the soma revisits the generally accepted highly dynamic concept of the kinetic framework of transcription and shows how basic processes, such as transcription, can be organized in a fundamentally different fashion in intact organisms as previously deduced from in vitro studies.

  16. Role of the σ54 Activator Interacting Domain in Bacterial Transcription Initiation

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Alexander R. [Univ. of California, Berkeley, CA (United States); Wemmer, David E. [Univ. of California, Berkeley, CA (United States)

    2016-10-11

    Bacterial sigma factors are subunits of RNA polymerase that direct the holoenzyme to specific sets of promoters in the genome and are a central element of regulating transcription. Most polymerase holoenzymes open the promoter and initiate transcription rapidly after binding. However, polymerase containing the members of the σ54 family must be acted on by a transcriptional activator before DNA opening and initiation occur. A key domain in these transcriptional activators forms a hexameric AAA + ATPase that acts through conformational changes brought on by ATP hydrolysis. Contacts between the transcriptional activator and σ54 are primarily made through an N-terminal σ54 activator interacting domain (AID). To better understand this mechanism of bacterial transcription initiation, we characterized the σ54 AID by NMR spectroscopy and other biophysical methods and show that it is an intrinsically disordered domain in σ54 alone. In this paper, we identified a minimal construct of the Aquifex aeolicus σ54 AID that consists of two predicted helices and retains native-like binding affinity for the transcriptional activator NtrC1. Using the NtrC1 ATPase domain, bound with the non-hydrolyzable ATP analog ADP-beryllium fluoride, we studied the NtrC1–σ54 AID complex using NMR spectroscopy. We show that the σ54 AID becomes structured after associating with the core loops of the transcriptional activators in their ATP state and that the primary site of the interaction is the first predicted helix. Finally, understanding this complex, formed as the first step toward initiation, will help unravel the mechanism of σ54 bacterial transcription initiation.

  17. Mechanisms of Antisense Transcription Initiation from the 3′ End of the GAL10 Coding Sequence In Vivo

    Science.gov (United States)

    Malik, Shivani; Durairaj, Geetha

    2013-01-01

    In spite of the important regulatory functions of antisense transcripts in gene expression, it remains unknown how antisense transcription is initiated. Recent studies implicated RNA polymerase II in initiation of antisense transcription. However, how RNA polymerase II is targeted to initiate antisense transcription has not been elucidated. Here, we have analyzed the association of RNA polymerase II with the antisense initiation site at the 3′ end of the GAL10 coding sequence in dextrose-containing growth medium that induces antisense transcription. We find that RNA polymerase II is targeted to the antisense initiation site at GAL10 by Reb1p activator as well as general transcription factors (e.g., TFIID, TFIIB, and Mediator) for antisense transcription initiation. Intriguingly, while GAL10 antisense transcription is dependent on TFIID, its sense transcription does not require TFIID. Further, the Gal4p activator that promotes GAL10 sense transcription is dispensable for antisense transcription. Moreover, the proteasome that facilitates GAL10 sense transcription does not control its antisense transcription. Taken together, our results reveal that GAL10 sense and antisense transcriptions are regulated differently and shed much light on the mechanisms of antisense transcription initiation. PMID:23836882

  18. Large heterogeneity of mitochondrial DNA transcription and initiation of replication exposed by single-cell imaging.

    Science.gov (United States)

    Chatre, Laurent; Ricchetti, Miria

    2013-02-15

    Mitochondrial DNA (mtDNA) replication and transcription are crucial for cell function, but these processes are poorly understood at the single-cell level. We describe a novel fluorescence in situ hybridization protocol, called mTRIP (mitochondrial transcription and replication imaging protocol), that reveals simultaneously mtDNA and RNA, and that can also be coupled to immunofluorescence for in situ protein examination. mTRIP reveals mitochondrial structures engaged in initiation of DNA replication by identification of a specific sequence in the regulatory D-loop, as well as unique transcription profiles in single human cells. We observe and quantify at least three classes of mitochondrial structures: (i) replication initiation active and transcript-positive (Ia-Tp); (ii) replication initiation silent and transcript-positive (Is-Tp); and (iii) replication initiation silent and transcript-negative (Is-Tn). Thus, individual mitochondria are dramatically heterogeneous within the same cell. Moreover, mTRIP exposes a mosaic of distinct nucleic acid patterns in the D-loop, including H-strand versus L-strand transcripts, and uncoupled rRNA transcription and mtDNA initiation of replication, which might have functional consequences in the regulation of the mtDNA. Finally, mTRIP identifies altered mtDNA processing in cells with unbalanced mtDNA content and function, including in human mitochondrial disorders. Thus, mTRIP reveals qualitative and quantitative alterations that provide additional tools for elucidating the dynamics of mtDNA processing in single cells and mitochondrial dysfunction in diseases.

  19. Effects of rate-limiting steps in transcription initiation on genetic filter motifs.

    Science.gov (United States)

    Häkkinen, Antti; Tran, Huy; Yli-Harja, Olli; Ribeiro, Andre S

    2013-01-01

    The behavior of genetic motifs is determined not only by the gene-gene interactions, but also by the expression patterns of the constituent genes. Live single-molecule measurements have provided evidence that transcription initiation is a sequential process, whose kinetics plays a key role in the dynamics of mRNA and protein numbers. The extent to which it affects the behavior of cellular motifs is unknown. Here, we examine how the kinetics of transcription initiation affects the behavior of motifs performing filtering in amplitude and frequency domain. We find that the performance of each filter is degraded as transcript levels are lowered. This effect can be reduced by having a transcription process with more steps. In addition, we show that the kinetics of the stepwise transcription initiation process affects features such as filter cutoffs. These results constitute an assessment of the range of behaviors of genetic motifs as a function of the kinetics of transcription initiation, and thus will aid in tuning of synthetic motifs to attain specific characteristics without affecting their protein products.

  20. Making ends meet: Coordination between RNA 3'end processing and transcription initiation

    DEFF Research Database (Denmark)

    Andersen, Pia Kjølhede; Jensen, Torben Heick; Lykke-Andersen, Søren

    2013-01-01

    RNA polymerase II (RNAPII)-mediated gene transcription initiates at promoters and ends at terminators. Transcription termination is intimately connected to 3'-end processing of the produced RNA and already when loaded at the promoter, RNAPII starts to become configured for this downstream event....... Conversely, RNAPII is 'reset' as part of the 3'-end processing/termination event, thus preparing the enzyme for its next round of transcription--possibly on the same gene. There is both direct and circumstantial evidence for preferential recycling of RNAPII from the gene terminator back to its own promoter......, which supposedly increases the efficiency of the transcription process under conditions where RNAPII levels are rate limiting. Here, we review differences and commonalities between initiation and 3'-end processing/termination processes on various types of RNAPII transcribed genes. In doing so, we...

  1. Landscape and Dynamics of Transcription Initiation in the Malaria Parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Sophie H. Adjalley

    2016-03-01

    Full Text Available A comprehensive map of transcription start sites (TSSs across the highly AT-rich genome of P. falciparum would aid progress toward deciphering the molecular mechanisms that underlie the timely regulation of gene expression in this malaria parasite. Using high-throughput sequencing technologies, we generated a comprehensive atlas of transcription initiation events at single-nucleotide resolution during the parasite intra-erythrocytic developmental cycle. This detailed analysis of TSS usage enabled us to define architectural features of plasmodial promoters. We demonstrate that TSS selection and strength are constrained by local nucleotide composition. Furthermore, we provide evidence for coordinate and stage-specific TSS usage from distinct sites within the same transcription unit, thereby producing transcript isoforms, a subset of which are developmentally regulated. This work offers a framework for further investigations into the interactions between genomic sequences and regulatory factors governing the complex transcriptional program of this major human pathogen.

  2. HTLV-I antisense transcripts initiating in the 3'LTR are alternatively spliced and polyadenylated

    Directory of Open Access Journals (Sweden)

    Marriott Susan J

    2006-03-01

    Full Text Available Abstract Background Antisense transcription in retroviruses has been suggested for both HIV-1 and HTLV-I, although the existence and coding potential of these transcripts remain controversial. Thorough characterization is required to demonstrate the existence of these transcripts and gain insight into their role in retrovirus biology. Results This report provides the first complete characterization of an antisense retroviral transcript that encodes the previously described HTLV-I HBZ protein. In this study, we show that HBZ-encoding transcripts initiate in the 3' long terminal repeat (LTR at several positions and consist of two alternatively spliced variants (SP1 and SP2. Expression of the most abundant HBZ spliced variant (SP1 could be detected in different HTLV-I-infected cell lines and importantly in cellular clones isolated from HTLV-I-infected patients. Polyadenylation of HBZ RNA occurred at a distance of 1450 nucleotides downstream of the HBZ stop codon in close proximity of a typical polyA signal. We have also determined that translation mostly initiates from the first exon located in the 3' LTR and that the HBZ isoform produced from the SP1 spliced variant demonstrated inhibition of Tax and c-Jun-dependent transcriptional activation. Conclusion These results conclusively demonstrate the existence of antisense transcription in retroviruses, which likely plays a role in HTLV-I-associated pathogenesis through HBZ protein synthesis.

  3. NanoRNAs: a class of small RNAs that can prime transcription initiation in bacteria.

    Science.gov (United States)

    Nickels, Bryce E; Dove, Simon L

    2011-10-07

    It has been widely assumed that all transcription in cells occur using NTPs only (i.e., de novo). However, it has been known for several decades that both prokaryotic and eukaryotic RNA polymerases can utilize small (2 to ∼5 nt) RNAs to prime transcription initiation in vitro, raising the possibility that small RNAs might also prime transcription initiation in vivo. A new study by Goldman et al. has now provided the first evidence that priming with so-called "nanoRNAs" (i.e., 2 to ∼5 nt RNAs) can, in fact, occur in vivo. Furthermore, this study provides evidence that altering the extent of nanoRNA-mediated priming of transcription initiation can profoundly influence global gene expression. In this perspective, we summarize the findings of Goldman et al. and discuss the prospect that nanoRNA-mediated priming of transcription initiation represents an underappreciated aspect of gene expression in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A novel intermediate in transcription initiation by human mitochondrial RNA polymerase.

    Science.gov (United States)

    Morozov, Yaroslav I; Agaronyan, Karen; Cheung, Alan C M; Anikin, Michael; Cramer, Patrick; Temiakov, Dmitry

    2014-04-01

    The mitochondrial genome is transcribed by a single-subunit T7 phage-like RNA polymerase (mtRNAP), structurally unrelated to cellular RNAPs. In higher eukaryotes, mtRNAP requires two transcription factors for efficient initiation-TFAM, a major nucleoid protein, and TFB2M, a transient component of mtRNAP catalytic site. The mechanisms behind assembly of the mitochondrial transcription machinery and its regulation are poorly understood. We isolated and identified a previously unknown human mitochondrial transcription intermediate-a pre-initiation complex that includes mtRNAP, TFAM and promoter DNA. Using protein-protein cross-linking, we demonstrate that human TFAM binds to the N-terminal domain of mtRNAP, which results in bending of the promoter DNA around mtRNAP. The subsequent recruitment of TFB2M induces promoter melting and formation of an open initiation complex. Our data indicate that the pre-initiation complex is likely to be an important target for transcription regulation and provide basis for further structural, biochemical and biophysical studies of mitochondrial transcription.

  5. Dissection of transcription factor TFIIF functional domains required for initiation and elongation.

    Science.gov (United States)

    Tan, S; Conaway, R C; Conaway, J W

    1995-06-20

    TFIIF is unique among the general transcription factors because of its ability to control the activity of RNA polymerase II at both the initiation and elongation stages of transcription. Mammalian TFIIF, a heterodimer of approximately 30-kDa (RAP30) and approximately 70-kDa (RAP74) subunits, assists TFIIB in recruiting RNA polymerase II into the preinitiation complex and activates the overall rate of RNA chain elongation by suppressing transient pausing by polymerase at many sites on DNA templates. A major objective of efforts to understand how TFIIF regulates transcription has been to establish the relationship between its initiation and elongation activities. Here we establish this relationship by demonstrating that TFIIF transcriptional activities are mediated by separable functional domains. To accomplish this, we sought and identified distinct classes of RAP30 mutations that selectively block TFIIF activity in transcription initiation and elongation. We propose that (i) TFIIF initiation activity is mediated at least in part by RAP30 C-terminal sequences that include a cryptic DNA-binding domain similar to conserved region 4 of bacterial sigma factors and (ii) TFIIF elongation activity is mediated in part by RAP30 sequences located immediately upstream of the C terminus in a region proposed to bind RNA polymerase II and by additional sequences located in the RAP30 N terminus.

  6. Regulation of axillary meristem initiation by transcription factors and plant hormones

    Directory of Open Access Journals (Sweden)

    Minglei eYang

    2016-02-01

    Full Text Available One distinctive feature of plant post-embryonic development is that plants can undergo reiterative growth and continuous organogenesis throughout their lifetimes. Axillary meristems in leaf axils play a central role in this growth and differences in meristem initiation and development produce the diversity of plant architecture. Studies in the past fifteen years have shown that several transcription factors and phytohormones affect axillary meristem initiation. In this review, we highlight recent research using systems biology approaches to examine the regulatory hierarchies underlying axillary meristem initiation and the role of auxins and cytokinins in axillary meristem initiation and development. This research revealed a developmental mechanism in which phytohormone signals act with a gene regulatory network containing multiple transcription factors to contribute to the initiation of axillary meristems.

  7. Small RNAs targeting transcription start site induce heparanase silencing through interference with transcription initiation in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Guosong Jiang

    Full Text Available Heparanase (HPA, an endo-h-D-glucuronidase that cleaves the heparan sulfate chain of heparan sulfate proteoglycans, is overexpressed in majority of human cancers. Recent evidence suggests that small interfering RNA (siRNA induces transcriptional gene silencing (TGS in human cells. In this study, transfection of siRNA against -9/+10 bp (siH3, but not -174/-155 bp (siH1 or -134/-115 bp (siH2 region relative to transcription start site (TSS locating at 101 bp upstream of the translation start site, resulted in TGS of heparanase in human prostate cancer, bladder cancer, and gastric cancer cells in a sequence-specific manner. Methylation-specific PCR and bisulfite sequencing revealed no DNA methylation of CpG islands within heparanase promoter in siH3-transfected cells. The TGS of heparanase did not involve changes of epigenetic markers histone H3 lysine 9 dimethylation (H3K9me2, histone H3 lysine 27 trimethylation (H3K27me3 or active chromatin marker acetylated histone H3 (AcH3. The regulation of alternative splicing was not involved in siH3-mediated TGS. Instead, siH3 interfered with transcription initiation via decreasing the binding of both RNA polymerase II and transcription factor II B (TFIIB, but not the binding of transcription factors Sp1 or early growth response 1, on the heparanase promoter. Moreover, Argonaute 1 and Argonaute 2 facilitated the decreased binding of RNA polymerase II and TFIIB on heparanase promoter, and were necessary in siH3-induced TGS of heparanase. Stable transfection of the short hairpin RNA construct targeting heparanase TSS (-9/+10 bp into cancer cells, resulted in decreased proliferation, invasion, metastasis and angiogenesis of cancer cells in vitro and in athymic mice models. These results suggest that small RNAs targeting TSS can induce TGS of heparanase via interference with transcription initiation, and significantly suppress the tumor growth, invasion, metastasis and angiogenesis of cancer cells.

  8. Characterization of cDNA for the large subunit of the transcription initiation factor TFIIF.

    Science.gov (United States)

    Aso, T; Vasavada, H A; Kawaguchi, T; Germino, F J; Ganguly, S; Kitajima, S; Weissman, S M; Yasukochi, Y

    1992-01-30

    At least six chromatographically resolvable general transcription factors may participate in accurate initiation by RNA polymerase II in HeLa cell-derived systems. TFIIF (also termed FC, RAP30/74 and beta/gamma) can bind directly to RNA polymerase II in solution and decrease the affinity of RNA polymerase II for nonspecific DNA. From studies on the kinetics of transcription initiation, on the composition of transcription initiation complexes fractionated by acrylamide gel electrophoresis, and on template competition experiments, TFIIF is known to act at an intermediate stage in initiation complex formation. It acts after TFIID firmly associates with DNA, but coincidentally with or immediately after RNA polymerase II binding to DNA, and before the recruitment of factor TFIIE. TFIIF may or may not have DNA helicase activity. The small subunit (RAP30) of TFIIF has been cloned and shows some amino-acid sequence homology to bacterial sigma factors. We have partially sequenced the RAP74 protein from purified HeLa cells, cloned its complementary DNA and shown that its translation product can interact with RAP30 in vitro as well as in vivo. The cDNA predicts an amino-acid sequence that lacks obvious DNA or RNA helicase motifs. It has regions rich in charged amino acids, including segments containing a higher content of acidic amino acids than are found in strong transcriptional activators such as VP16.

  9. X-ray Crystal Structures Elucidate the Nucleotidyl Transfer Reaction of Transcript Initiation Using Two Nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    M Gleghorn; E Davydova; R Basu; L Rothman-Denes; K Murakami

    2011-12-31

    We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groups of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.

  10. A universal transcription pause sequence is an element of initiation factor σ70-dependent pausing

    Science.gov (United States)

    Bird, Jeremy G.; Strobel, Eric J.; Roberts, Jeffrey W.

    2016-01-01

    The Escherichia coli σ70 initiation factor is required for a post-initiation, promoter-proximal pause essential for regulation of lambdoid phage late gene expression; potentially, σ70 acts at other sites during transcription elongation as well. The pause is induced by σ70 binding to a repeat of the promoter −10 sequence. After σ70 binding, further RNA synthesis occurs as DNA is drawn (or ‘scrunched’) into the enzyme complex, presumably exactly as occurs during initial synthesis from the promoter; this synthesis then pauses at a defined site several nucleotides downstream from the active center position when σ70 first engages the −10 sequence repeat. We show that the actual pause site in the stabilized, scrunched complex is the ‘elemental pause sequence’ recognized from its frequent occurrence in the E. coli genome. σ70 binding and the elemental pause sequence together, but neither alone, produce a substantial transcription pause. PMID:27098041

  11. Assessment of the Role of MAP Kinase in Mediating Activity-Dependent Transcriptional Activation of the Immediate Early Gene "Arc/Arg3.1" in the Dentate Gyrus in Vivo

    Science.gov (United States)

    Chotiner, Jennifer K.; Nielson, Jessica; Farris, Shannon; Lewandowski, Gail; Huang, Fen; Banos, Karla; de Leon, Ray; Steward, Oswald

    2010-01-01

    Different physiological and behavioral events activate transcription of "Arc/Arg3.1" in neurons in vivo, but the signal transduction pathways that mediate induction in particular situations remain to be defined. Here, we explore the relationships between induction of "Arc/Arg3.1" transcription in dentate granule cells in vivo and activation of…

  12. Assessment of the Role of MAP Kinase in Mediating Activity-Dependent Transcriptional Activation of the Immediate Early Gene "Arc/Arg3.1" in the Dentate Gyrus in Vivo

    Science.gov (United States)

    Chotiner, Jennifer K.; Nielson, Jessica; Farris, Shannon; Lewandowski, Gail; Huang, Fen; Banos, Karla; de Leon, Ray; Steward, Oswald

    2010-01-01

    Different physiological and behavioral events activate transcription of "Arc/Arg3.1" in neurons in vivo, but the signal transduction pathways that mediate induction in particular situations remain to be defined. Here, we explore the relationships between induction of "Arc/Arg3.1" transcription in dentate granule cells in vivo and activation of…

  13. Regulation of Axillary Meristem Initiation by Transcription Factors and Plant Hormones.

    Science.gov (United States)

    Yang, Minglei; Jiao, Yuling

    2016-01-01

    One distinctive feature of plant post-embryonic development is that plants can undergo reiterative growth and continuous organogenesis throughout their lifetimes. Axillary meristems (AMs) in leaf axils play a central role in this growth and differences in meristem initiation and development produce the diversity of plant architecture. Studies in the past 15 years have shown that several transcription factors (TFs) and phytohormones affect AM initiation. In this review, we highlight recent research using systems biology approaches to examine the regulatory hierarchies underlying AM initiation and the role of auxins and cytokinins in AM initiation and development. This research revealed a developmental mechanism in which phytohormone signals act with a gene regulatory network containing multiple TFs to contribute to the initiation of AMs.

  14. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Fay, Allison; Xu, Catherine; Bean, James M.; Saecker, Ruth M.; Glickman, Michael S.; Darst, Seth A.; Campbell, Elizabeth A. (Rockefeller); (SKI)

    2017-01-09

    RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the -10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD.

  15. Structure of the initiation-competent RNA polymerase I and its implication for transcription

    Science.gov (United States)

    Pilsl, Michael; Crucifix, Corinne; Papai, Gabor; Krupp, Ferdinand; Steinbauer, Robert; Griesenbeck, Joachim; Milkereit, Philipp; Tschochner, Herbert; Schultz, Patrick

    2016-07-01

    Eukaryotic RNA polymerase I (Pol I) is specialized in rRNA gene transcription synthesizing up to 60% of cellular RNA. High level rRNA production relies on efficient binding of initiation factors to the rRNA gene promoter and recruitment of Pol I complexes containing initiation factor Rrn3. Here, we determine the cryo-EM structure of the Pol I-Rrn3 complex at 7.5 Å resolution, and compare it with Rrn3-free monomeric and dimeric Pol I. We observe that Rrn3 contacts the Pol I A43/A14 stalk and subunits A190 and AC40, that association re-organizes the Rrn3 interaction interface, thereby preventing Pol I dimerization; and Rrn3-bound and monomeric Pol I differ from the dimeric enzyme in cleft opening, and localization of the A12.2 C-terminus in the active centre. Our findings thus support a dual role for Rrn3 in transcription initiation to stabilize a monomeric initiation competent Pol I and to drive pre-initiation complex formation.

  16. NRC-interacting factor directs neurite outgrowth in an activity-dependent manner.

    Science.gov (United States)

    Zhao, X-S; Fu, W-Y; Hung, K-W; Chien, W W Y; Li, Z; Fu, A K; Ip, N Y

    2015-03-19

    Nuclear hormone receptor coregulator-interacting factor 1 (NIF-1) is a zinc finger nuclear protein that was initially identified to enhance nuclear hormone receptor transcription via its interaction with nuclear hormone receptor coregulator (NRC). NIF-1 may regulate gene transcription either by modulating general transcriptional machinery or remodeling chromatin structure through interactions with specific protein partners. We previously reported that the cytoplasmic/nuclear localization of NIF-1 is regulated by the neuronal Cdk5 activator p35, suggesting potential neuronal functions for NIF-1. The present study reveals that NIF-1 plays critical roles in regulating neuronal morphogenesis at early stages. NIF-1 was prominently expressed in the nuclei of developing rat cortical neurons. Knockdown of NIF-1 expression attenuated both neurite outgrowth in cultured cortical neurons and retinoic acid (RA)-treated Neuro-2a neuroblastoma cells. Furthermore, activity-induced Ca(2+) influx, which is critical for neuronal morphogenesis, stimulated the nuclear localization of NIF-1 in cortical neurons. Suppression of NIF-1 expression reduced the up-regulation of neuronal activity-dependent gene transcription. These findings collectively suggest that NIF-1 directs neuronal morphogenesis during early developmental stages through modulating activity-dependent gene transcription.

  17. Transcription of ribosomal RNA genes is initiated in the third cell cycle of bovine embryos

    DEFF Research Database (Denmark)

    Jakobsen, Anne Sørig; Avery, Birthe; Dieleman, Steph J.

    2006-01-01

    of the embryonic genome. In the present study, ribosomal RNA (rRNA) transcription was investigated by visualization of the rRNA by fluorescent in situ hybridization, and subsequent visualization of the argyrophilic nucleolar proteins by silver staining. A total of 145 in vivo developed and 200 in vitro produced...... bovine embryos were investigated to allow comparison of transcription initiation. Signs of active transcription of rRNA were observed in the third cell cycle in 29% of the in vitro produced embryos (n=35) and in 58% of the in vivo developed embryos (n=11). Signs of active transcription of rRNA were...... not apparent in the early phase of the fourth cell cycle but restarted later on. All embryos in the fifth or later cell cycles were all transcribing rRNA. The signs of rRNA synthesis during the third and fourth embryonic cell cycles could be blocked by actinomycin D, which is a strong inhibitor of RNA...

  18. The relationship between transcription initiation RNAs and CCCTC-binding factor (CTCF localization

    Directory of Open Access Journals (Sweden)

    Taft Ryan J

    2011-08-01

    Full Text Available Abstract Background Transcription initiation RNAs (tiRNAs are nuclear localized 18 nucleotide RNAs derived from sequences immediately downstream of RNA polymerase II (RNAPII transcription start sites. Previous reports have shown that tiRNAs are intimately correlated with gene expression, RNA polymerase II binding and behaviors, and epigenetic marks associated with transcription initiation, but not elongation. Results In the present work, we show that tiRNAs are commonly found at genomic CCCTC-binding factor (CTCF binding sites in human and mouse, and that CTCF sites that colocalize with RNAPII are highly enriched for tiRNAs. To directly investigate the relationship between tiRNAs and CTCF we examined tiRNAs originating near the intronic CTCF binding site in the human tumor suppressor gene, p21 (cyclin-dependent kinase inhibitor 1A gene, also known as CDKN1A. Inhibition of CTCF-proximal tiRNAs resulted in increased CTCF localization and increased p21 expression, while overexpression of CTCF-proximal tiRNA mimics decreased CTCF localization and p21 expression. We also found that tiRNA-regulated CTCF binding influences the levels of trimethylated H3K27 at the alternate upstream p21 promoter, and affects the levels of alternate p21 (p21alt transcripts. Extending these studies to another randomly selected locus with conserved CTCF binding we found that depletion of tiRNA alters nucleosome density proximal to sites of tiRNA biogenesis. Conclusions Taken together, these data suggest that tiRNAs modulate local epigenetic structure, which in turn regulates CTCF localization.

  19. Anaerobic regulation of transcription initiation in the arcDABC operon of Pseudomonas aeruginosa.

    OpenAIRE

    Gamper, M; Zimmermann, A.; Haas, D.

    1991-01-01

    The arcDABC operon of Pseudomonas aeruginosa encodes the enzymes of the arginine deiminase pathway, which is inducible under conditions of oxygen limitation and serves to generate ATP from arginine. The 5' end of arc mRNA extracted from anaerobically grown cells was determined by S1 and primer extension mapping. The transcription initiation site was located upstream of the arcD gene and 41.5 bp downstream of the center of the sequence TTGAC....ATCAG. This sequence, termed the ANR box, is simi...

  20. Fate of HIV-1 cDNA intermediates during reverse transcription is dictated by transcription initiation site of virus genomic RNA

    Science.gov (United States)

    Masuda, Takao; Sato, Yoko; Huang, Yu-Lun; Koi, Satoshi; Takahata, Tatsuro; Hasegawa, Atsuhiko; Kawai, Gota; Kannagi, Mari

    2015-01-01

    Retroviral reverse transcription is accomplished by sequential strand-transfers of partial cDNA intermediates copied from viral genomic RNA. Here, we revealed an unprecedented role of 5′-end guanosine (G) of HIV-1 genomic RNA for reverse transcription. Based on current consensus for HIV-1 transcription initiation site, HIV-1 transcripts possess a single G at 5′-ends (G1-form). However, we found that HIV-1 transcripts with additional Gs at 5′-ends (G2- and G3-forms) were abundantly expressed in infected cells by using alternative transcription initiation sites. The G2- and G3-forms were also detected in the virus particle, although the G1-form predominated. To address biological impact of the 5′-G number, we generated HIV clone DNA to express the G1-form exclusively by deleting the alternative initiation sites. Virus produced from the clone showed significantly higher strand-transfer of minus strong-stop cDNA (-sscDNA). The in vitro assay using synthetic HIV-1 RNAs revealed that the abortive forms of -sscDNA were abundantly generated from the G3-form RNA, but dramatically reduced from the G1-form. Moreover, the strand-transfer of -sscDNA from the G1-form was prominently stimulated by HIV-1 nucleocapsid. Taken together, our results demonstrated that the 5′-G number that corresponds to HIV-1 transcription initiation site was critical for successful strand-transfer of -sscDNA during reverse transcription. PMID:26631448

  1. Initial Symbiont Contact Orchestrates Host Organ-wide Transcriptional Changes that Prime Tissue Colonization

    Science.gov (United States)

    Kremer, Natacha; Philipp, Eva E.R.; Carpentier, Marie-Christine; Brennan, Caitlin A.; Kraemer, Lars; Altura, Melissa A.; Augustin, René; Häsler, Robert; Heath-Heckman, Elizabeth A. C.; Peyer, Suzanne M.; Schwartzman, Julia; Rader, Bethany; Ruby, Edward G.; Rosenstiel, Philip; McFall-Ngai, Margaret J.

    2013-01-01

    SUMMARY Upon transit to colonization sites, bacteria often experience critical priming that prepares them for subsequent, specific interactions with the host; however, the underlying mechanisms are poorly described. During initiation of the symbiosis between the bacterium Vibrio fischeri and its squid host, which can be observed directly and in real time, ~5 V. fischeri cells aggregate along the mucociliary membranes of a superficial epithelium prior to entering host tissues. Here we show that these few early host-associated symbionts specifically induce robust changes in host gene expression that are critical to subsequent colonization steps. This exquisitely sensitive response to its specific symbiotic partner includes the upregulation of a host endochitinase, whose activity hydrolyzes polymeric chitin in the mucus into chitobiose, thereby priming the symbiont and also producing a chemoattractant gradient that promotes V. fischeri migration into host tissues. Thus, the host responds transcriptionally upon initial symbiont contact, which facilitates subsequent colonization. PMID:23954157

  2. Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Rach

    2011-01-01

    Full Text Available The application of deep sequencing to map 5' capped transcripts has confirmed the existence of at least two distinct promoter classes in metazoans: "focused" promoters with transcription start sites (TSSs that occur in a narrowly defined genomic span and "dispersed" promoters with TSSs that are spread over a larger window. Previous studies have explored the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II. These differences extend to histone variants (H2A.Z and marks (H3K4 methylation, as well as insulator binding (such as CTCF, independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies, and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from 5' capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of divergent transcriptional programs established within gene-proximal nucleosome organization.

  3. A structural model of the E. coli PhoB Dimer in the transcription initiation complex

    Directory of Open Access Journals (Sweden)

    Tung Chang-Shung

    2012-03-01

    Full Text Available Abstract Background There exist > 78,000 proteins and/or nucleic acids structures that were determined experimentally. Only a small portion of these structures corresponds to those of protein complexes. While homology modeling is able to exploit knowledge-based potentials of side-chain rotomers and backbone motifs to infer structures for new proteins, no such general method exists to extend our understanding of protein interaction motifs to novel protein complexes. Results We use a Motif Binding Geometries (MBG approach, to infer the structure of a protein complex from the database of complexes of homologous proteins taken from other contexts (such as the helix-turn-helix motif binding double stranded DNA, and demonstrate its utility on one of the more important regulatory complexes in biology, that of the RNA polymerase initiating transcription under conditions of phosphate starvation. The modeled PhoB/RNAP/σ-factor/DNA complex is stereo-chemically reasonable, has sufficient interfacial Solvent Excluded Surface Areas (SESAs to provide adequate binding strength, is physically meaningful for transcription regulation, and is consistent with a variety of known experimental constraints. Conclusions Based on a straightforward and easy to comprehend concept, "proteins and protein domains that fold similarly could interact similarly", a structural model of the PhoB dimer in the transcription initiation complex has been developed. This approach could be extended to enable structural modeling and prediction of other bio-molecular complexes. Just as models of individual proteins provide insight into molecular recognition, catalytic mechanism, and substrate specificity, models of protein complexes will provide understanding into the combinatorial rules of cellular regulation and signaling.

  4. Effects of single-base substitutions within the acanthamoeba castellanii rRNA promoter on transcription and on binding of transcription initiation factor and RNA polymerase I

    Energy Technology Data Exchange (ETDEWEB)

    Kownin, P.; Bateman, E.; Paule, M.R.

    1988-02-01

    Single-point mutations were introduced into the promoter region of the Acanthamoeba castellanii rRNA gene by chemical mutagen treatment of a single-stranded clone in vitro, followed by reverse transcription and cloning of the altered fragment. The promoter mutants were tested for transcription initiation factor (TIF) binding by a template commitment assay plus DNase I footprinting and for transcription by an in vitro runoff assay. Point mutations within the previously identified TIF interaction region (between -20 and -47, motifs A and B) indicated that TIF interacts most strongly with a sequence centered at -29 and less tightly with sequences upstream and downstream. Some alterations of the base sequence closer to the transcription start site (and outside the TIF-protected site) also significantly decrease specific RNA synthesis in vitro. These were within the region which is protected from DNAse I digestion by polymerase I, but these mutations did not detectably affect the binding of polymerase to the promoter.

  5. Transcription initiation factor IID-interactive histone chaperone CIA-II implicated in mammalian spermatogenesis.

    Science.gov (United States)

    Umehara, Takashi; Horikoshi, Masami

    2003-09-12

    Histones are thought to have specific roles in mammalian spermatogenesis, because several subtypes of histones emerge that are post-translationally modified during spermatogenesis. Though regular assembly of nucleosome is guaranteed by histone chaperones, their involvement in spermatogenesis is yet to be characterized. Here we identified a histone chaperone-related factor, which we designated as CCG1-interacting factor A-II (CIA-II), through interaction with bromodomains of TAFII250/CCG1, which is the largest subunit of human transcription initiation factor IID (TFIID). We found that human CIA-II (hCIA-II) localizes in HeLa nuclei and is highly expressed in testis and other proliferating cell-containing tissues. Expression of mouse CIA-II (mCIA-II) does not occur in the germ cell-lacking testes of adult WBB6F1-W/Wv mutant mice, indicating its expression in testis to be specific to germ cells. Fractionation of testicular germ cells revealed that mCIA-II transcripts accumulate in pachytene spermatocytes but not in spermatids. In addition, the mCIA-II transcripts in testis were present as early as 4 days after birth and decreased at 56 days after birth. These findings indicate that mCIA-II expression in testis is restricted to premeiotic to meiotic stages during spermatogenesis. Also, we found that hCIA-II interacts with histone H3 in vivo and with histones H3/H4 in vitro and that it facilitates supercoiling of circular DNA when it is incubated with core histones and topoisomerase I in vitro. These data suggest that CIA-II is a histone chaperone and is implicated in the regulation of mammalian spermatogenesis.

  6. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    Science.gov (United States)

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  7. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites.

    Science.gov (United States)

    Mejía-Guerra, María Katherine; Li, Wei; Galeano, Narmer F; Vidal, Mabel; Gray, John; Doseff, Andrea I; Grotewold, Erich

    2015-12-01

    Core promoters are crucial for gene regulation, providing blueprints for the assembly of transcriptional machinery at transcription start sites (TSSs). Empirically, TSSs define the coordinates of core promoters and other regulatory sequences. Thus, experimental TSS identification provides an essential step in the characterization of promoters and their features. Here, we describe the application of CAGE (cap analysis of gene expression) to identify genome-wide TSSs used in root and shoot tissues of two maize (Zea mays) inbred lines (B73 and Mo17). Our studies indicate that most TSS clusters are sharp in maize, similar to mice, but distinct from Arabidopsis thaliana, Drosophila melanogaster, or zebra fish, in which a majority of genes have broad-shaped TSS clusters. We established that ∼38% of maize promoters are characterized by a broader TATA-motif consensus, and this motif is significantly enriched in genes with sharp TSSs. A noteworthy plasticity in TSS usage between tissues and inbreds was uncovered, with ∼1500 genes showing significantly different dominant TSSs, sometimes affecting protein sequence by providing alternate translation initiation codons. We experimentally characterized instances in which this differential TSS utilization results in protein isoforms with additional domains or targeted to distinct subcellular compartments. These results provide important insights into TSS selection and gene expression in an agronomically important crop.

  8. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; Campbell, Elizabeth A.

    2017-07-13

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.

  9. Aptamers to the sigma factor mimic promoter recognition and inhibit transcription initiation by bacterial RNA polymerase.

    Science.gov (United States)

    Miropolskaya, Nataliya; Kulbachinskiy, Andrey

    2016-01-08

    Promoter recognition by bacterial RNA polymerase (RNAP) is a multi-step process involving multiple protein-DNA interactions and several structural and kinetic intermediates which remain only partially characterized. We used single-stranded DNA aptamers containing specific promoter motifs to probe the interactions of the Thermus aquaticus RNAP σ(A) subunit with the -10 promoter element in the absence of other parts of the promoter complex. The aptamer binding decreased intrinsic fluorescence of the σ subunit, likely as a result of interactions between the -10 element and conserved tryptophan residues of the σ DNA-binding region 2. By monitoring these changes, we demonstrated that DNA binding proceeds through a single rate-limiting step resulting in formation of very stable complexes. Deletion of the N-terminal domain of the σ(A) subunit increased the rate of aptamer binding while replacement of this domain with an unrelated N-terminal region 1.1 from the Escherichia coli σ(70) subunit restored the original kinetics of σ-aptamer interactions. The results demonstrate that the key step in promoter recognition can be modelled in a simple σ-aptamer system and reveal that highly divergent N-terminal domains similarly modulate the DNA-binding properties of the σ subunit. The aptamers efficiently suppressed promoter-dependent transcription initiation by the holoenzyme of RNA polymerase, suggesting that they may be used for development of novel transcription inhibitors.

  10. Defective transcription initiation causes postnatal growth failure in a mouse model of nucleotide excision repair (NER) progeria

    Science.gov (United States)

    Kamileri, Irene; Karakasilioti, Ismene; Sideri, Aria; Kosteas, Theodoros; Tatarakis, Antonis; Talianidis, Iannis; Garinis, George A.

    2012-01-01

    Nucleotide excision repair (NER) defects are associated with cancer, developmental disorders and neurodegeneration. However, with the exception of cancer, the links between defects in NER and developmental abnormalities are not well understood. Here, we show that the ERCC1-XPF NER endonuclease assembles on active promoters in vivo and facilitates chromatin modifications for transcription during mammalian development. We find that Ercc1−/− mice demonstrate striking physiological, metabolic and gene expression parallels with Taf10−/− animals carrying a liver-specific transcription factor II D (TFIID) defect in transcription initiation. Promoter occupancy studies combined with expression profiling in the liver and in vitro differentiation cell assays reveal that ERCC1-XPF interacts with TFIID and assembles with POL II and the basal transcription machinery on promoters in vivo. Whereas ERCC1-XPF is required for the initial activation of genes associated with growth, it is dispensable for ongoing transcription. Recruitment of ERCC1-XPF on promoters is accompanied by promoter-proximal DNA demethylation and histone marks associated with active hepatic transcription. Collectively, the data unveil a role of ERCC1/XPF endonuclease in transcription initiation establishing its causal contribution to NER developmental disorders. PMID:22323595

  11. Kinetics of transcription initiation directed by multiple cis-regulatory elements on the glnAp2 promoter.

    Science.gov (United States)

    Wang, Yaolai; Liu, Feng; Wang, Wei

    2016-12-15

    Transcription initiation is orchestrated by dynamic molecular interactions, with kinetic steps difficult to detect. Utilizing a hybrid method, we aim to unravel essential kinetic steps of transcriptional regulation on the glnAp2 promoter, whose regulatory region includes two enhancers (sites I and II) and three low-affinity sequences (sites III-V), to which the transcriptional activator NtrC binds. By structure reconstruction, we analyze all possible organization architectures of the transcription apparatus (TA). The main regulatory mode involves two NtrC hexamers: one at enhancer II transiently associates with site V such that the other at enhancer I can rapidly approach and catalyze the σ(54)-RNA polymerase holoenzyme. We build a kinetic model characterizing essential steps of the TA operation; with the known kinetics of the holoenzyme interacting with DNA, this model enables the kinetics beyond technical detection to be determined by fitting the input-output function of the wild-type promoter. The model further quantitatively reproduces transcriptional activities of various mutated promoters. These results reveal different roles played by two enhancers and interpret why the low-affinity elements conditionally enhance or repress transcription. This work presents an integrated dynamic picture of regulated transcription initiation and suggests an evolutionarily conserved characteristic guaranteeing reliable transcriptional response to regulatory signals. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. [SWI/SNF Protein Complexes Participate in the Initiation and Elongation Stages of Drosophila hsp70 Gene Transcription].

    Science.gov (United States)

    Mazina, M Yu; Nikolenko, Yu V; Krasnov, A N; Vorobyeva, N E

    2016-02-01

    The participation of the SWI/SNF chromatin remodeling complex in the stimulation of the RNA polymerase II binding to gene promotors was demonstrated in all model eukaryotic organisms. It was shown eight years ago that the SWI/SNF complex influence on transcription is not limited to its role in initiation but also includes participation in elongation and alternative splicing. In the current work, we describe the subunit composition of the SWI/SNF complexes participating in initiation, preparing for the elongation and elongation of hsp70 gene transcription in Drosophila melanogaster. The data reveal the high mobility of the SWI/SNF complex composition during the hsp 70 gene transcription process. We suggest a model describing the process of sequential SWI/SNF complex formation during heat-shock induced transcription of the hsp 70 gene.

  13. Structure and associated DNA-helicase activity of a general transcription initiation factor that binds to RNA polymerase II.

    Science.gov (United States)

    Sopta, M; Burton, Z F; Greenblatt, J

    1989-10-05

    RAP30/74 is a heteromeric general transcription initiation factor which binds to RNA polymerase II. Here we report that preparations of RAP30/74 contain an ATP-dependent DNA helicase whose probable function is to melt the DNA at transcriptional start sites. The sequence of the RAP30 subunit of RAP30/74 indicates that RAP30 may be distantly related to bacterial sigma factors.

  14. A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Kahns, Søren; Lykke-Andersen, Søren;

    2008-01-01

    Transcription and pre-mRNA splicing are interdependent events. Although mechanisms governing the effects of transcription on splicing are becoming increasingly clear, the means by which splicing affects transcription remain elusive. Using cell lines stably expressing HIV-1 or β-globin mRNAs, harb...

  15. A growth-dependent transcription initiation factor (TIF-IA) interacting with RNA polymerase I regulates mouse ribosomal RNA synthesis.

    Science.gov (United States)

    Schnapp, A; Pfleiderer, C; Rosenbauer, H; Grummt, I

    1990-09-01

    Control of mouse ribosomal RNA synthesis in response to extracellular signals is mediated by TIF-IA, a regulatory factor whose amount or activity correlates with cell proliferation. Factor TIF-IA interacts with RNA polymerase I (pol I), thus converting it into a transcriptionally active holoenzyme, which is able to initiate specifically at the rDNA promoter in the presence of the other auxiliary transcription initiation factors, designated TIF-IB, TIF-IC and UBF. With regard to several criteria, the growth-dependent factor TIF-IA behaves like a bacterial sigma factor: (i) it associates physically with pol I, (ii) it is required for initiation of transcription, (iii) it is present in limiting amounts and (iv) under certain salt conditions, it is chromatographically separable from the polymerase. In addition, evidence is presented that dephosphorylation of pol I abolishes in vitro transcription initiation from the ribosomal gene promoter without significantly affecting the polymerizing activity of the enzyme at nonspecific templates. The involvement of both a regulatory factor and post-translational modification of the transcribing enzyme provides an efficient and versatile mechanism of rDNA transcription regulation which enables the cell to adapt ribosome synthesis rapidly to a variety of extracellular signals.

  16. Modulation of Re-initiation of Measles Virus Transcription at Intergenic Regions by PXD to NTAIL Binding Strength.

    Science.gov (United States)

    Bloyet, Louis-Marie; Brunel, Joanna; Dosnon, Marion; Hamon, Véronique; Erales, Jenny; Gruet, Antoine; Lazert, Carine; Bignon, Christophe; Roche, Philippe; Longhi, Sonia; Gerlier, Denis

    2016-12-01

    Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase machinery to ensure viral transcription and replication. Their polymerase associates the phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activities. To be processive, the polymerase uses as template a nucleocapsid made of genomic RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase enters the nucleocapsid at the 3'end of the genome where are located the promoters for transcription and replication. Transcription of the six genes occurs sequentially. This implies ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here to which extent the binding of the X domain of P (XD) to the C-terminal region of the N protein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid template during the sequential transcription. Amino acid substitutions introduced in the XD-binding site on NTAIL resulted in a wide range of binding affinities as determined by combining protein complementation assays in E. coli and human cells and isothermal titration calorimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a complex network of hydrogen bonds, the disruption of which by two individual amino acid substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants were also found to correlate with the NTAIL to XD binding strength. Altogether, our data support a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex thereby ensuring transcription re-initiation at each intergenic region.

  17. Tuning of Recombinant Protein Expression in Escherichia coli by Manipulating Transcription, Translation Initiation Rates, and Incorporation of Noncanonical Amino Acids.

    Science.gov (United States)

    Schlesinger, Orr; Chemla, Yonatan; Heltberg, Mathias; Ozer, Eden; Marshall, Ryan; Noireaux, Vincent; Jensen, Mogens Høgh; Alfonta, Lital

    2017-03-09

    Protein synthesis in cells has been thoroughly investigated and characterized over the past 60 years. However, some fundamental issues remain unresolved, including the reasons for genetic code redundancy and codon bias. In this study, we changed the kinetics of the Eschrichia coli transcription and translation processes by mutating the promoter and ribosome binding domains and by using genetic code expansion. The results expose a counterintuitive phenomenon, whereby an increase in the initiation rates of transcription and translation lead to a decrease in protein expression. This effect can be rescued by introducing slow translating codons into the beginning of the gene, by shortening gene length or by reducing initiation rates. On the basis of the results, we developed a biophysical model, which suggests that the density of co-transcriptional-translation plays a role in bacterial protein synthesis. These findings indicate how cells use codon bias to tune translation speed and protein synthesis.

  18. A dinucleotide deletion in the ankyrin promoter alters gene expression, transcription initiation and TFIID complex formation in hereditary spherocytosis

    OpenAIRE

    Gallagher, Patrick G.; Nilson, Douglas G.; Wong, Clara; Weisbein, Jessica L.; Garrett-Beal, Lisa J.; Eber, Stephan W.; Bodine, David M.

    2017-01-01

    Ankyrin defects are the most common cause of hereditary spherocytosis (HS). In some HS patients, mutations in the ankyrin promoter have been hypothesized to lead to decreased ankyrin mRNA synthesis. The ankyrin erythroid promoter is a member of the most common class of mammalian promoters which lack conserved TATA, initiator or other promoter cis elements and have high G+C content, functional Sp1 binding sites and multiple transcription initiation sites. We identified a novel ankyrin gene pro...

  19. Structural and functional aspects of winged-helix domains at the core of transcription initiation complexes.

    Science.gov (United States)

    Teichmann, Martin; Dumay-Odelot, Hélène; Fribourg, Sébastien

    2012-01-01

    The winged helix (WH) domain is found in core components of transcription systems in eukaryotes and prokaryotes. It represents a sub-class of the helix-turn-helix motif. The WH domain participates in establishing protein-DNA and protein-protein-interactions. Here, we discuss possible explanations for the enrichment of this motif in transcription systems.

  20. Inhibition of transcription by the Caenorhabditis elegans germline protein PIE-1: genetic evidence for distinct mechanisms targeting initiation and elongation.

    Science.gov (United States)

    Ghosh, Dolan; Seydoux, Geraldine

    2008-01-01

    In Caenorhabditis elegans embryos, specification of the germ lineage depends on PIE-1, a maternal protein that blocks mRNA transcription in germline blastomeres. Studies in mammalian cell culture have suggested that PIE-1 inhibits P-TEFb, a kinase that phosphorylates serine 2 in the carboxyl-terminal domain (CTD) repeats of RNA polymerase II during transcriptional elongation. We have tested this hypothesis using an in vivo complementation assay for PIE-1 function. Our results support the view that PIE-1 inhibits P-TEFb using the CTD-like motif YAPMAPT. This activity is required to block serine 2 phosphorylation in germline blastomeres, but unexpectedly is not essential for transcriptional repression or specification of the germline. We find that sequences outside of the YAPMAPT are required to inhibit serine 5 phosphorylation, and that this second inhibitory mechanism is essential for transcriptional repression and specification of the germ lineage. Our results suggest that PIE-1 uses partially redundant mechanisms to block transcription by targeting both the initiation and elongation phases of the transcription cycle.

  1. Genetic networks controlled by the bacterial replication initiator and transcription factor DnaA in Bacillus subtilis.

    Science.gov (United States)

    Washington, Tracy A; Smith, Janet L; Grossman, Alan D

    2017-10-01

    DnaA is the widely conserved bacterial AAA+ ATPase that functions as both the replication initiator and a transcription factor. In many organisms, DnaA controls expression of its own gene and likely several others during growth and in response to replication stress. To evaluate the effects of DnaA on gene expression, separate from its role in replication initiation, we analyzed changes in mRNA levels in Bacillus subtilis cells with and without dnaA, using engineered strains in which dnaA is not essential. We found that dnaA was required for many of the changes in gene expression in response to replication stress. We also found that dnaA indirectly affected expression of several regulons during growth, including those controlled by the transcription factors Spo0A, AbrB, PhoP, SinR, RemA, Rok and YvrH. These effects were largely mediated by the effects of DnaA on expression of sda. DnaA activates transcription of sda, and Sda inhibits histidine protein kinases required for activation of the transcription factor Spo0A. We also found that loss of dnaA caused a decrease in the development of genetic competence. Together, our results indicate that DnaA plays an important role in modulating cell physiology, separate from its role in replication initiation. © 2017 John Wiley & Sons Ltd.

  2. Nuclear respiratory factor 1 mediates the transcription initiation of insulin-degrading enzyme in a TATA box-binding protein-independent manner.

    Directory of Open Access Journals (Sweden)

    Lang Zhang

    Full Text Available CpG island promoters often lack canonical core promoter elements such as the TATA box, and have dispersed transcription initiation sites. Despite the prevalence of CpG islands associated with mammalian genes, the mechanism of transcription initiation from CpG island promoters remains to be clarified. Here we investigate the mechanism of transcription initiation of the CpG island-associated gene, insulin-degrading enzyme (IDE. IDE is ubiquitously expressed, and has dispersed transcription initiation sites. The IDE core promoter locates within a 32-bp region, which contains three CGGCG repeats and a nuclear respiratory factor 1 (NRF-1 binding motif. Sequential mutation analysis indicates that the NRF-1 binding motif is critical for IDE transcription initiation. The NRF-1 binding motif is functional, because NRF-1 binds to this motif in vivo and this motif is required for the regulation of IDE promoter activity by NRF-1. Furthermore, the NRF-1 binding site in the IDE promoter is conserved among different species, and dominant negative NRF-1 represses endogenous IDE expression. Finally, TATA-box binding protein (TBP is not associated with the IDE promoter, and inactivation of TBP does not abolish IDE transcription, suggesting that TBP is not essential for IDE transcription initiation. Our studies indicate that NRF-1 mediates IDE transcription initiation in a TBP-independent manner, and provide insights into the potential mechanism of transcription initiation for other CpG island-associated genes.

  3. Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex

    National Research Council Canada - National Science Library

    Katsuhiko S. Murakami; Shoko Masuda; Elizabeth A. Campbell; Oriana Muzzin; Seth A. Darst

    2002-01-01

    .... All sequence-specific contacts with core promoter elements are mediated by the σ subunit. A universally conserved tryptophan is ideally positioned to stack on the exposed face of the base pair at the upstream edge of the transcription bubble...

  4. A membrane-tethered transcription factor ANAC089 negatively regulates floral initiation in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The plant-specific NAC (NAM, ATAF1/2,and CUC2) transcription factors have a regulatory function in developmental processes and stress responses. Notably a group of NAC members named NTLs (NTM1-Like) are membrane-tethered, ensuring plants rapidly respond to developmental changes and environmental stimuli. Our results indicated that ANAC089 was a membrane-tethered transcription factor and its truncated form was responsible for the physiological function in flowering time control.

  5. Characterization of S1 nuclease sensitive site at transcription initiation region of Attacus ricini rDNA

    Institute of Scientific and Technical Information of China (English)

    何明亮; 赵慕钧; 靳嘉瑞; 李载平

    1997-01-01

    A single-stranded S1 nuclease hypersensitive site which contains a d(AT)18 sequence structure locat-ed in the 5 -non transcription spacer of silkworm A . ricini ribosomal RNA gene has been reported[1] Using starved-refed silkworms, another S1 nuclease sensitive site was found existing in the rDNA chromatin, while under merely starving, this S1 sensitive site disappeared[2] . Recently this inducible S1 sensitive site has been further determined. It consists of a d(GT)10-d(AT)10 special DNA sequence at the transcription initiation region, and shows a behavior of ease in DNA-unwinding, indicating that S1 nuclease sensitive sites may have an important function in the regulation of rDNA transcription and replication.

  6. TIP48/Reptin and H2A.Z requirement for initiating chromatin remodeling in estrogen-activated transcription.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    2013-04-01

    Full Text Available Histone variants, including histone H2A.Z, are incorporated into specific genomic sites and participate in transcription regulation. The role of H2A.Z at these sites remains poorly characterized. Our study investigates changes in the chromatin environment at the Cyclin D1 gene (CCND1 during transcriptional initiation in response to estradiol in estrogen receptor positive mammary tumour cells. We show that H2A.Z is present at the transcription start-site and downstream enhancer sequences of CCND1 when the gene is poorly transcribed. Stimulation of CCND1 expression required release of H2A.Z concomitantly from both these DNA elements. The AAA+ family members TIP48/reptin and the histone variant H2A.Z are required to remodel the chromatin environment at CCND1 as a prerequisite for binding of the estrogen receptor (ERα in the presence of hormone. TIP48 promotes acetylation and exchange of H2A.Z, which triggers a dissociation of the CCND1 3' enhancer from the promoter, thereby releasing a repressive intragenic loop. This release then enables the estrogen receptor to bind to the CCND1 promoter. Our findings provide new insight into the priming of chromatin required for transcription factor access to their target sequence. Dynamic release of gene loops could be a rapid means to remodel chromatin and to stimulate transcription in response to hormones.

  7. From indole to pyrrole, furan, thiophene and pyridine: Search for novel small molecule inhibitors of bacterial transcription initiation complex formation.

    Science.gov (United States)

    Thach, Oscar; Mielczarek, Marcin; Ma, Cong; Kutty, Samuel K; Yang, Xiao; Black, David StC; Griffith, Renate; Lewis, Peter J; Kumar, Naresh

    2016-03-15

    The search for small molecules capable of inhibiting transcription initiation in bacteria has resulted in the synthesis of N,N'-disubstituted hydrazines and imine-carbohydrazides comprised of indole, pyridine, pyrrole, furan and thiophene using the respective trichloroacetyl derivatives, carbohydrazides and aldehydes. Replacement of the indole moiety by smaller heterocycles linked by CONHNC linkers afforded a broad variety of compounds efficiently targeting the RNA polymerase-σ(70)/σ(A) interaction as determined by ELISA and exhibiting increased inhibition of the growth of Escherichia coli compared to Bacillus subtilis in culture. The structural features of the synthesized transcription initiation inhibitors needed for antibacterial activity were identified employing molecular modelling and structure-activity relationship (SAR) studies.

  8. High-density transcriptional initiation signals underline genomic islands in bacteria.

    Directory of Open Access Journals (Sweden)

    Qianli Huang

    Full Text Available Genomic islands (GIs, frequently associated with the pathogenicity of bacteria and having a substantial influence on bacterial evolution, are groups of "alien" elements which probably undergo special temporal-spatial regulation in the host genome. Are there particular hallmark transcriptional signals for these "exotic" regions? We here explore the potential transcriptional signals that underline the GIs beyond the conventional views on basic sequence composition, such as codon usage and GC property bias. It showed that there is a significant enrichment of the transcription start positions (TSPs in the GI regions compared to the whole genome of Salmonella enterica and Escherichia coli. There was up to a four-fold increase for the 70% GIs, implying high-density TSPs profile can potentially differentiate the GI regions. Based on this feature, we developed a new sliding window method GIST, Genomic-island Identification by Signals of Transcription, to identify these regions. Subsequently, we compared the known GI-associated features of the GIs detected by GIST and by the existing method Islandviewer to those of the whole genome. Our method demonstrates high sensitivity in detecting GIs harboring genes with biased GI-like function, preferred subcellular localization, skewed GC property, shorter gene length and biased "non-optimal" codon usage. The special transcriptional signals discovered here may contribute to the coordinate expression regulation of foreign genes. Finally, by using GIST, we detected many interesting GIs in the 2011 German E. coli O104:H4 outbreak strain TY-2482, including the microcin H47 system and gene cluster ycgXEFZ-ymgABC that activates the production of biofilm matrix. The aforesaid findings highlight the power of GIST to predict GIs with distinct intrinsic features to the genome. The heterogeneity of cumulative TSPs profiles may not only be a better identity for "alien" regions, but also provide hints to the special

  9. HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis.

    Science.gov (United States)

    Shi, Hui; Zhong, Shangwei; Mo, Xiaorong; Liu, Na; Nezames, Cynthia D; Deng, Xing Wang

    2013-10-01

    Seed germination is the first step for seed plants to initiate a new life cycle. Light plays a predominant role in promoting seed germination, where the initial phase is mediated by photoreceptor phytochrome B (phyB). Previous studies showed that phytochrome-interacting factor1 (PIF1) represses seed germination downstream of phyB. Here, we identify a positive regulator of phyB-dependent seed germination, long hypocotyl in far-red1 (HFR1). HFR1 blocks PIF1 transcriptional activity by forming a heterodimer with PIF1 that prevents PIF1 from binding to DNA. Our whole-genomic analysis shows that HFR1 and PIF1 oppositely mediate the light-regulated transcriptome in imbibed seeds. Through the HFR1-PIF1 module, light regulates expression of numerous genes involved in cell wall loosening, cell division, and hormone pathways to initiate seed germination. The functionally antagonistic HFR1-PIF1 pair constructs a fail-safe mechanism for fine-tuning seed germination during low-level illumination, ensuring a rapid response to favorable environmental changes. This study identifies the HFR1-PIF1 pair as a central module directing the whole genomic transcriptional network to rapidly initiate light-induced seed germination.

  10. Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters

    DEFF Research Database (Denmark)

    Chen, Yun; Pai, Athma A.; Herudek, Jan

    2016-01-01

    sites, promoters often cluster so that the divergent activity of one might impact another. Here we found that the distance between promoters strongly correlates with the expression, stability and length of their associated PROMPTs. Adjacent promoters driving divergent mRNA transcription support PROMPT...... suggest that basic building blocks of divergently transcribed core promoter pairs, in combination with the wealth of TSSs in mammalian genomes, provide a framework with which evolution shapes transcriptomes....

  11. Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters

    DEFF Research Database (Denmark)

    Chen, Yun; Pai, Athma A.; Herudek, Jan;

    2016-01-01

    sites, promoters often cluster so that the divergent activity of one might impact another. Here we found that the distance between promoters strongly correlates with the expression, stability and length of their associated PROMPTs. Adjacent promoters driving divergent mRNA transcription support PROMPT...... suggest that basic building blocks of divergently transcribed core promoter pairs, in combination with the wealth of TSSs in mammalian genomes, provide a framework with which evolution shapes transcriptomes....

  12. Transcriptional profiling of the murine cutaneous response during initial and subsequent infestations with Ixodes scapularis nymphs

    Directory of Open Access Journals (Sweden)

    Heinze Dar M

    2012-02-01

    Full Text Available Abstract Background Ixodes scapularis ticks are hematophagous arthropods capable of transmitting many infectious agents to humans. The process of blood feeding is an extended and continuous interplay between tick and host responses. While this process has been studied extensively in vitro, no global understanding of the host response to ticks has emerged. Methods To address this issue, we used PCR-arrays to measure skin-specific expression of 233 discrete genes at 8 time points during primary and secondary infestations of mice with pathogen-free I. scapularis nymphs. Selected results were then validated at the mRNA and protein levels by additional real-time PCR and bioplex assay. Results Primary infestation was characterized by the late induction of an innate immune response. Lectin pattern recognition receptors, cytokines, and chemokines were upregulated consistent with increased neutrophil and macrophage migration. Gene ontology and pathway analyses of downregulated genes suggested inhibition of gene transcription and Th17 immunity. During the secondary infestation, additional genes were modulated suggesting a broader involvement of immune cells including CD8 and CD4 positive T lymphocytes. The cytokine response showed a mixed Th1/Th2 profile with a potential for T regulatory cell activity. Key gene ontology clusters observed during the secondary infestation were cell migration and activation. Matrix metalloproteinases were upregulated, apoptosis-related genes were differentially modulated, and immunoreceptor signaling molecules were upregulated. In contrast, transcripts related to mitogenic, WNT, Hedgehog, and stress pathways were downregulated. Conclusions Our results support a model of tick feeding where lectin pattern recognition receptors orchestrate an innate inflammatory response during primary infestation that primes a mixed Th1/Th2 response upon secondary exposure. Tick feeding inhibits gene transcription and Th17 immunity. Salivary

  13. Excitation-transcription coupling in sympathetic neurons and the molecular mechanism of its initiation.

    Science.gov (United States)

    Ma, Huan; Groth, Rachel D; Wheeler, Damian G; Barrett, Curtis F; Tsien, Richard W

    2011-05-01

    In excitable cells, membrane depolarization and activation of voltage-gated Ca²+ (Ca(V)) channels trigger numerous cellular responses, including muscle contraction, secretion, and gene expression. Yet, while the mechanisms underlying excitation-contraction and excitation-secretion coupling have been extensively characterized, how neuronal activity is coupled to gene expression has remained more elusive. In this article, we will discuss recent progress toward understanding the relationship between patterns of channel activity driven by membrane depolarization and activation of the nuclear transcription factor CREB. We show that signaling strength is steeply dependent on membrane depolarization and is more sensitive to the open probability of Ca(V) channels than the Ca²+ entry itself. Furthermore, our data indicate that by decoding Ca(V) channel activity, CaMKII (a Ca²+/calmodulin-dependent protein kinase) links membrane excitation to activation of CREB in the nucleus. Together, these results revealed some interesting and unexpected similarities between excitation-transcription coupling and other forms of excitation-response coupling.

  14. Determining physical constraints in transcriptional initiation complexes using DNA sequence analysis.

    Directory of Open Access Journals (Sweden)

    Ryan K Shultzaberger

    Full Text Available Eukaryotic gene expression is often under the control of cooperatively acting transcription factors whose binding is limited by structural constraints. By determining these structural constraints, we can understand the "rules" that define functional cooperativity. Conversely, by understanding the rules of binding, we can infer structural characteristics. We have developed an information theory based method for approximating the physical limitations of cooperative interactions by comparing sequence analysis to microarray expression data. When applied to the coordinated binding of the sulfur amino acid regulatory protein Met4 by Cbf1 and Met31, we were able to create a combinatorial model that can correctly identify Met4 regulated genes. Interestingly, we found that the major determinant of Met4 regulation was the sum of the strength of the Cbf1 and Met31 binding sites and that the energetic costs associated with spacing appeared to be minimal.

  15. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage.

    Science.gov (United States)

    Walia, Harkamal; Wilson, Clyde; Zeng, Linghe; Ismail, Abdelbagi M; Condamine, Pascal; Close, Timothy J

    2007-03-01

    Rice yield is most sensitive to salinity stress imposed during the panicle initiation (PI) stage. In this study, we have focused on physiological and transcriptional responses of four rice genotypes exposed to salinity stress during PI. The genotypes selected included a pair of indicas (IR63731 and IR29) and a pair of japonica (Agami and M103) rice subspecies with contrasting salt tolerance. Physiological characterization showed that tolerant genotypes maintained a much lower shoot Na+ concentration relative to sensitive genotypes under salinity stress. Global gene expression analysis revealed a strikingly large number of genes which are induced by salinity stress in sensitive genotypes, IR29 and M103 relative to tolerant lines. We found 19 probe sets to be commonly induced in all four genotypes. We found several salinity modulated, ion homeostasis related genes from our analysis. We also studied the expression of SKC1, a cation transporter reported by others as a major source of variation in salt tolerance in rice. The transcript abundance of SKC1 did not change in response to salinity stress at PI stage in the shoot tissue of all four genotypes. However, we found the transcript abundance of SKC1 to be significantly higher in tolerant japonica Agami relative to sensitive japonica M103 under control and stressed conditions during PI stage.

  16. The Calmodulin-Binding Transcription Activator CAMTA1 Is Required for Long-Term Memory Formation in Mice

    Science.gov (United States)

    Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M. M.; Bengtson, C. Peter; Bading, Hilmar

    2016-01-01

    The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by…

  17. The Calmodulin-Binding Transcription Activator CAMTA1 Is Required for Long-Term Memory Formation in Mice

    Science.gov (United States)

    Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M. M.; Bengtson, C. Peter; Bading, Hilmar

    2016-01-01

    The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by…

  18. Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities!

    Directory of Open Access Journals (Sweden)

    Christopher E Pearson

    2011-03-01

    Full Text Available Diseases associated with unstable repetitive elements in the DNA, RNA, and amino acids have consistently revealed scientific surprises. Most diseases are caused by expansions of trinucleotide repeats, which ultimately lead to diseases like Huntington's disease, myotonic dystrophy, fragile X syndrome, and a series of spinocerebellar ataxias. These repeat mutations are dynamic, changing through generations and within an individual, and the repeats can be bi-directionally transcribed. Unsuspected modes of pathogenesis involve aberrant loss of protein expression; aberrant over-expression of non-mutant proteins; toxic-gain-of-protein function through expanded polyglutamine tracts that are encoded by expanded CAG tracts; and RNA-toxic-gain-of-function caused by transcripts harboring expanded CUG, CAG, or CGG tracts. A recent advance reveals that RNA transcripts with expanded CAG repeats can be translated in the complete absence of a starting ATG, and this Repeat Associated Non-ATG translation (RAN-translation occurs across expanded CAG repeats in all reading frames (CAG, AGC, and GCA to produce homopolymeric proteins of long polyglutamine, polyserine, and polyalanine tracts. Expanded CTG tracts expressing CUG transcripts also show RAN-translation occurring in all three frames (CUG, UGC, and GCU, to produce polyleucine, polycysteine, and polyalanine. These RAN-translation products can be toxic. Thus, one unstable (CAG•(CTG DNA can produce two expanded repeat transcripts and homopolymeric proteins with reading frames (the AUG-directed polyGln and six RAN-translation proteins, yielding a total of potentially nine toxic entities. The occurrence of RAN-translation in patient tissues expands our horizons of modes of disease pathogenesis. Moreover, since RAN-translation counters the canonical requirements of translation initiation, many new questions are now posed that must be addressed. This review covers RAN-translation and some of the pertinent

  19. A role for the H4 subunit of vaccinia RNA polymerase in transcription initiation at a viral early promoter.

    Science.gov (United States)

    Deng, L; Shuman, S

    1994-05-13

    The vaccinia virus H4 gene encodes an essential subunit of the DNA-dependent RNA polymerase holoenzyme encapsidated within virus particles (Ahn, B., and Moss, B. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 3536-3540; Kane, E. M., and Shuman, S. (1992) J. Virol. 66, 5752-5762). The role of this protein in transcription of viral early genes was revealed by the effects of affinity-purified anti-H4 antibody on discrete phases of the early transcription reaction in vitro. Anti-H4 specifically prevented the synthesis of a 21-nucleotide nascent RNA chain but had no impact on elongation of the 21-mer RNA by preassembled ternary complexes. Inhibition of initiation but not elongation was also observed with affinity-purified anti-D6 antibody directed against the 70-kDa subunit of the vaccinia early transcription initiation factor (ETF). Native gel mobility-shift assays showed that anti-H4 prevented the NTP-dependent recruitment of RNA polymerase to the preinitiation complex of ETF bound at the early promoter. Two species of ternary complexes could be resolved by native gel electrophoresis. Addition of anti-H4 to preformed complexes elicited a supershift of both ternary species but not of the preinitiation complex. Supeshift by anti-D6 revealed that the more rapidly migrating species of ternary complex did not contain immunoreactive ETF. Loss of ETF from the ternary complex was time-dependent. Thus, whereas the H4 protein was a stable constituent of the elongation complex, ETF was dissociable. We suggest that H4 functions as a molecular bridge to ETF and thereby allows specific recognition of early promoters by the core RNA polymerase. H4 is unlike bacterial sigma factor in that it remains bound to polymerase after the elongation complex is established.

  20. Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex

    Science.gov (United States)

    Murakami, Katsuhiko S.; Masuda, Shoko; Campbell, Elizabeth A.; Muzzin, Oriana; Darst, Seth A.

    2002-05-01

    The crystal structure of Thermus aquaticus RNA polymerase holoenzyme (α2ββ'ωσA) complexed with a fork-junction promoter DNA fragment has been determined by fitting high-resolution x-ray structures of individual components into a 6.5-angstrom resolution map. The DNA lies across one face of the holoenzyme, completely outside the RNA polymerase active site channel. All sequence-specific contacts with core promoter elements are mediated by the σ subunit. A universally conserved tryptophan is ideally positioned to stack on the exposed face of the base pair at the upstream edge of the transcription bubble. Universally conserved basic residues of the σ subunit provide critical contacts with the DNA phosphate backbone and play a role in directing the melted DNA template strand into the RNA polymerase active site. The structure explains how holoenzyme recognizes promoters containing variably spaced -10 and -35 elements and provides the basis for models of the closed and open promoter complexes.

  1. Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic Kras(G12D.).

    Science.gov (United States)

    Wang, I-C; Ustiyan, V; Zhang, Y; Cai, Y; Kalin, T V; Kalinichenko, V V

    2014-11-13

    Lung cancer is the leading cause of deaths in cancer patients in the United States. Identification of new molecular targets is clearly needed to improve therapeutic outcomes of this devastating human disease. Activating mutations in K-Ras oncogene and increased expression of FOXM1 protein are associated with poor prognosis in patients with non-small-cell lung cancer. Transgenic expression of activated Kras(G12D) in mouse respiratory epithelium is sufficient to induce lung adenocarcinomas; however, transcriptional mechanisms regulated by K-Ras during the initiation of lung cancer remain poorly understood. Foxm1 transcription factor, a downstream target of K-Ras, stimulates cellular proliferation during embryogenesis, organ repair and tumor growth, but its role in tumor initiation is unknown. In the present study, we used transgenic mice expressing Kras(G12D) under control of Sftpc promoter to demonstrate that Foxm1 was induced in type II epithelial cells before the formation of lung tumors. Conditional deletion of Foxm1 from Kras(G12D)-expressing respiratory epithelium prevented the initiation of lung tumors in vivo. The loss of Foxm1 inhibited expression of K-Ras target genes critical for the nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, including Ikbkb, Nfkb1, Nfkb2, Rela, Jnk1, N-Myc, Pttg1 and Cdkn2a. Transgenic overexpression of activated FOXM1 mutant was sufficient to induce expression of these genes in alveolar type II cells. FOXM1 directly bound to promoter regions of Ikbkb, Nfkb2, N-Myc, Pttg1 and Cdkn2a, indicating that these genes are direct FOXM1 targets. FOXM1 is required for K-Ras-mediated lung tumorigenesis by activating genes critical for the NF-κB and JNK pathways.

  2. Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons

    Science.gov (United States)

    Ch'ng, Toh Hean; DeSalvo, Martina; Lin, Peter; Vashisht, Ajay; Wohlschlegel, James A.; Martin, Kelsey C.

    2015-01-01

    Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1) in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation. PMID:26388727

  3. Cell Biological Mechanisms of Activity-Dependent Synapse to Nucleus Translocation of CRTC1 in Neurons

    Directory of Open Access Journals (Sweden)

    Toh Hean eCh'ng

    2015-09-01

    Full Text Available Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1 in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of synaptic glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation.

  4. Role of BDNF epigenetics in activity-dependent neuronal plasticity.

    Science.gov (United States)

    Karpova, Nina N

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is a key mediator of the activity-dependent processes in the brain that have a major impact on neuronal development and plasticity. Impaired control of neuronal activity-induced BDNF expression mediates the pathogenesis of various neurological and psychiatric disorders. Different environmental stimuli, such as the use of pharmacological compounds, physical and learning exercises or stress exposure, lead to activation of specific neuronal networks. These processes entail tight temporal and spatial transcriptional control of numerous BDNF splice variants through epigenetic mechanisms. The present review highlights recent findings on the dynamic and long-term epigenetic programming of BDNF gene expression by the DNA methylation, histone-modifying and microRNA machineries. The review also summarizes the current knowledge on the activity-dependent BDNF mRNA trafficking critical for rapid local regulation of BDNF levels and synaptic plasticity. Current data open novel directions for discovery of new promising therapeutic targets for treatment of neuropsychiatric disorders. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Inhibition of adenovirus replication by the E1A antisense transcript initiated from hsp70 and VA-1 promoters.

    Science.gov (United States)

    Miroshnichenko, O I; Borisenko, A S; Ponomareva, T I; Tikhonenko, T I

    1990-03-01

    The E1A region of the adenoviral genome, important for initiation of virus infection and activation of other viral genes, was chosen as a target for engineering antisense RNA (asRNA) to inhibit adenovirus 5 (Ad5) replication in COS-1 cell culture in vitro. The hsp70 promoter, taken from the appropriate heat-shock-protein gene of Drosophila melanogaster, and the VA-1 RNA promoter, derived from the Ad5 gene coding for low-molecular-mass VA-1 RNA and recognized by RNA polymerase III were used as regulatory elements of transcription. The two types of recombinant constructs contained E1A fragments of 710 bp (hsp70 constructs) or 380 or 740 bp (VA-1 RNA constructs) in reverse orientation relative to the promoter position, as well as a transcription termination signal, the SV40 ori, and the gene controlling Geneticin (antibiotic G418) resistance (G418R). After selection of transfected COS-1 cells in the presence of G418, a number of stable G418R cell lines were raised which expressed engineered asRNAs. Plating of Ad5 suspensions of known titre on monolayers of transfected COS-1 cells clearly showed strong inhibition of adenovirus replication by asRNAs: 75% with the hsp70 promoter and 90% with the VA-1 RNA promoter.

  6. Definition of a Bidirectional Activity-Dependent Pathway Involving BDNF and Narp

    Directory of Open Access Journals (Sweden)

    Abigail Mariga

    2015-12-01

    Full Text Available One of the cardinal features of neural development and adult plasticity is the contribution of activity-dependent signaling pathways. However, the interrelationships between different activity-dependent genes are not well understood. The immediate early gene neuronal-activity-regulated pentraxin (NPTX2 or Narp encodes a protein that has been associated with excitatory synaptogenesis, AMPA receptor aggregation, and the onset of critical periods. Here, we show that Narp is a direct transcriptional target of brain-derived neurotrophic factor (BDNF, another highly regulated activity-dependent gene involved in synaptic plasticity. Unexpectedly, Narp is bidirectionally regulated by BDNF. Acute BDNF withdrawal results in downregulation of Narp, whereas transcription of Narp is greatly enhanced by BDNF. Furthermore, our results show that BDNF directly regulates Narp to mediate glutamatergic transmission and mossy fiber plasticity. Hence, Narp serves as a significant epistatic target of BDNF to regulate synaptic plasticity during periods of dynamic activity.

  7. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation

    Directory of Open Access Journals (Sweden)

    Miller Eric S

    2010-12-01

    Full Text Available Abstract Over 50 years of biological research with bacteriophage T4 includes notable discoveries in post-transcriptional control, including the genetic code, mRNA, and tRNA; the very foundations of molecular biology. In this review we compile the past 10 - 15 year literature on RNA-protein interactions with T4 and some of its related phages, with particular focus on advances in mRNA decay and processing, and on translational repression. Binding of T4 proteins RegB, RegA, gp32 and gp43 to their cognate target RNAs has been characterized. For several of these, further study is needed for an atomic-level perspective, where resolved structures of RNA-protein complexes are awaiting investigation. Other features of post-transcriptional control are also summarized. These include: RNA structure at translation initiation regions that either inhibit or promote translation initiation; programmed translational bypassing, where T4 orchestrates ribosome bypass of a 50 nucleotide mRNA sequence; phage exclusion systems that involve T4-mediated activation of a latent endoribonuclease (PrrC and cofactor-assisted activation of EF-Tu proteolysis (Gol-Lit; and potentially important findings on ADP-ribosylation (by Alt and Mod enzymes of ribosome-associated proteins that might broadly impact protein synthesis in the infected cell. Many of these problems can continue to be addressed with T4, whereas the growing database of T4-related phage genome sequences provides new resources and potentially new phage-host systems to extend the work into a broader biological, evolutionary context.

  8. A cDNA encoding RAP74, a general initiation factor for transcription by RNA polymerase II.

    Science.gov (United States)

    Finkelstein, A; Kostrub, C F; Li, J; Chavez, D P; Wang, B Q; Fang, S M; Greenblatt, J; Burton, Z F

    1992-01-30

    RAP30/74 (also known as TFIIF, beta gamma and FC is one of several general factors required for initiation by RNA polymerase II. The small RAP30 subunit of RAP30/74 binds directly to polymerase and appears structurally and functionally homologous to bacterial sigma factors in their RNA polymerase-binding region. RAP30/74 or recombinant RAP30 suppresses nonspecific binding of RNA polymerase II to DNA and is required for RNA polymerase II to assemble stably into a preinitiation complex containing promoter DNA and the general factors TFIID, TFIIA and TFIIB; both RAP30 and RAP74 are physical components of the preinitiation complex. A complementary DNA encoding human RAP30 has been isolated, and here we report the isolation of a cDNA encoding human RAP74. RAP30 and RAP74 produced in Escherichia coli can be used in place of natural human RAP30/74 to direct accurate transcription initiation by RNA polymerase II in vitro.

  9. Translation initiation factor eIF4G1 preferentially binds yeast transcript leaders containing conserved oligo-uridine motifs.

    Science.gov (United States)

    Zinshteyn, Boris; Rojas-Duran, Maria F; Gilbert, Wendy V

    2017-09-01

    Translational control of gene expression plays essential roles in cellular stress responses and organismal development by enabling rapid, selective, and localized control of protein production. Translational regulation depends on context-dependent differences in the protein output of mRNAs, but the key mRNA features that distinguish efficiently translated mRNAs are largely unknown. Here, we comprehensively determined the RNA-binding preferences of the eukaryotic initiation factor 4G (eIF4G) to assess whether this core translation initiation factor has intrinsic sequence preferences that may contribute to preferential translation of specific mRNAs. We identified a simple RNA sequence motif-oligo-uridine-that mediates high-affinity binding to eIF4G in vitro. Oligo(U) motifs occur naturally in the transcript leader (TL) of hundreds of yeast genes, and mRNAs with unstructured oligo(U) motifs were enriched in immunoprecipitations against eIF4G. Ribosome profiling following depletion of eIF4G in vivo showed preferentially reduced translation of mRNAs with long TLs, including those that contain oligo(U). Finally, TL oligo(U) elements are enriched in genes with regulatory roles and are conserved between yeast species, consistent with an important cellular function. Taken together, our results demonstrate RNA sequence preferences for a general initiation factor, which cells potentially exploit for translational control of specific mRNAs. © 2017 Zinshteyn et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. GlnR negatively regulates the transcription of the alanine dehydrogenase encoding gene ald in Amycolatopsis mediterranei U32 under nitrogen limited conditions via specific binding to its major transcription initiation site.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Ammonium assimilation is catalyzed by two enzymatic pathways, i.e., glutamine synthetase/glutamate synthase (GS/GOGAT and alanine dehydrogenase (AlaDH in Amycolatopsis mediterranei U32. Under nitrogen-rich conditions, the AlaDH pathway is the major route for ammonium assimilation, while the GS/GOGAT pathway takes over when the extracellular nitrogen supply is limited. The global nitrogen regulator GlnR was previously characterized to activate the transcription of the GS encoding gene glnA in response to nitrogen limitation and is demonstrated in this study as a repressor for the transcription of the AlaDH encoding gene ald, whose regulation is consistent with the switch of the ammonium assimilation pathways from AlaDH to GS/GOGAT responding to nitrogen limitation. Three transcription initiation sites (TISs of ald were determined with primer extension assay, among which transcription from aldP2 contributed the major transcripts under nitrogen-rich conditions but was repressed to an undetectable level in response to nitrogen limitation. Through DNase I footprinting assay, two separate regions were found to be protected by GlnR within ald promoter, within which three GlnR binding sites (a1, b1 sites in region I and a2 site in region II were defined. Interestingly, the major TIS aldP2 is located in the middle of a2 site within region II. Therefore, one may easily conclude that GlnR represses the transcription of ald via specific binding to the GlnR binding sites, which obviously blocks the transcription initiation from aldP2 and therefore reduces ald transcripts.

  11. An MSC2 Promoter-lacZ Fusion Gene Reveals Zinc-Responsive Changes in Sites of Transcription Initiation That Occur across the Yeast Genome

    Science.gov (United States)

    Wu, Yi-Hsuan; Taggart, Janet; Song, Pamela Xiyao; MacDiarmid, Colin; Eide, David J.

    2016-01-01

    The Msc2 and Zrg17 proteins of Saccharomyces cerevisiae form a complex to transport zinc into the endoplasmic reticulum. ZRG17 is transcriptionally induced in zinc-limited cells by the Zap1 transcription factor. In this report, we show that MSC2 mRNA also increases (~1.5 fold) in zinc-limited cells. The MSC2 gene has two in-frame ATG codons at its 5’ end, ATG1 and ATG2; ATG2 is the predicted initiation codon. When the MSC2 promoter was fused at ATG2 to the lacZ gene, we found that unlike the chromosomal gene this reporter showed a 4-fold decrease in lacZ mRNA in zinc-limited cells. Surprisingly, β-galactosidase activity generated by this fusion gene increased ~7 fold during zinc deficiency suggesting the influence of post-transcriptional factors. Transcription of MSC2ATG2-lacZ was found to start upstream of ATG1 in zinc-replete cells. In zinc-limited cells, transcription initiation shifted to sites just upstream of ATG2. From the results of mutational and polysome profile analyses, we propose the following explanation for these effects. In zinc-replete cells, MSC2ATG2-lacZ mRNA with long 5’ UTRs fold into secondary structures that inhibit translation. In zinc-limited cells, transcripts with shorter unstructured 5’ UTRs are generated that are more efficiently translated. Surprisingly, chromosomal MSC2 did not show start site shifts in response to zinc status and only shorter 5’ UTRs were observed. However, the shifts that occur in the MSC2ATG2-lacZ construct led us to identify significant transcription start site changes affecting the expression of ~3% of all genes. Therefore, zinc status can profoundly alter transcription initiation across the yeast genome. PMID:27657924

  12. Telomeric Retrotransposon HeT-A Contains a Bidirectional Promoter that Initiates Divergent Transcription of piRNA Precursors in Drosophila Germline.

    Science.gov (United States)

    Radion, Elizaveta; Ryazansky, Sergei; Akulenko, Natalia; Rozovsky, Yakov; Kwon, Dmitry; Morgunova, Valeriya; Olovnikov, Ivan; Kalmykova, Alla

    2016-12-07

    PIWI-interacting RNAs (piRNAs) provide the silencing of transposable elements in the germline. Drosophila telomeres are maintained by transpositions of specialized telomeric retroelements. piRNAs generated from sense and antisense transcripts of telomeric elements provide telomere length control in the germline. Previously, we have found that antisense transcription of the major telomeric retroelement HeT-A is initiated upstream of the HeT-A sense transcription start site. Here, we performed a deletion analysis of the HeT-A promoter and show that common regulatory elements are shared by sense and antisense promoters of HeT-A. Therefore, the HeT-A promoter is a bidirectional promoter capable of processive sense and antisense transcription. Ovarian small RNA data show that a solo HeT-A promoter within an euchromatic transgene initiates the divergent transcription of transgenic reporter genes and subsequent processing of these transcripts into piRNAs. These events lead to the formation of a divergent unistrand piRNA cluster at solo HeT-A promoters, in contrast to endogenous telomeres that represent strong dual-strand piRNA clusters. Solo HeT-A promoters are not immunoprecipitated with heterochromatin protein 1 (HP1) homolog Rhino, a marker of the dual-strand piRNA clusters, but are associated with HP1 itself, which provides piRNA-mediated transcriptional repression of the reporter genes. Unlike endogenous dual-strand piRNA clusters, the solo HeT-A promoter does not produce overlapping transcripts. In a telomeric context, however, bidirectional promoters of tandem HeT-A repeats provide a read-through transcription of both genomic strands, followed by Rhi binding. These data indicate that Drosophila telomeres share properties of unistrand and dual-strand piRNA clusters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Eaf1p Is Required for Recruitment of NuA4 in Targeting TFIID to the Promoters of the Ribosomal Protein Genes for Transcriptional Initiation In Vivo.

    Science.gov (United States)

    Uprety, Bhawana; Sen, Rwik; Bhaumik, Sukesh R

    2015-09-01

    NuA4 (nucleosome acetyltransferase of H4) promotes transcriptional initiation of TFIID (a complex of TBP and TBP-associated factors [TAFs])-dependent ribosomal protein genes involved in ribosome biogenesis. However, it is not clearly understood how NuA4 regulates the transcription of ribosomal protein genes. Here, we show that NuA4 is recruited to the promoters of ribosomal protein genes, such as RPS5, RPL2B, and RPS11B, for TFIID recruitment to initiate transcription, and the recruitment of NuA4 to these promoters is impaired in the absence of its Eaf1p component. Intriguingly, impaired NuA4 recruitment in a Δeaf1 strain depletes recruitment of TFIID (a TAF-dependent form of TBP) but not the TAF-independent form of TBP to the promoters of ribosomal protein genes. However, in the absence of NuA4, SAGA (Spt-Ada-Gcn5-acetyltransferase) is involved in targeting the TAF-independent form of TBP to the promoters of ribosomal protein genes for transcriptional initiation. Thus, NuA4 plays an important role in targeting TFIID to the promoters of ribosomal protein genes for transcriptional initiation in vivo. Such a function is mediated via its targeted histone acetyltransferase activity. In the absence of NuA4, ribosomal protein genes lose TFIID dependency and become SAGA dependent for transcriptional initiation. Collectively, these results provide significant insights into the regulation of ribosomal protein gene expression and, hence, ribosome biogenesis and functions.

  14. Structural basis for RNA recognition by NusB and NusE in the initiation of transcription antitermination.

    Science.gov (United States)

    Stagno, Jason R; Altieri, Amanda S; Bubunenko, Mikhail; Tarasov, Sergey G; Li, Jess; Court, Donald L; Byrd, R Andrew; Ji, Xinhua

    2011-09-01

    Processive transcription antitermination requires the assembly of the complete antitermination complex, which is initiated by the formation of the ternary NusB-NusE-BoxA RNA complex. We have elucidated the crystal structure of this complex, demonstrating that the BoxA RNA is composed of 8 nt that are recognized by the NusB-NusE heterodimer. Functional biologic and biophysical data support the structural observations and establish the relative significance of key protein-protein and protein-RNA interactions. Further crystallographic investigation of a NusB-NusE-dsRNA complex reveals a heretofore unobserved dsRNA binding site contiguous with the BoxA binding site. We propose that the observed dsRNA represents BoxB RNA, as both single-stranded BoxA and double-stranded BoxB components are present in the classical lambda antitermination site. Combining these data with known interactions amongst antitermination factors suggests a specific model for the assembly of the complete antitermination complex.

  15. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth

    DEFF Research Database (Denmark)

    Zhao, Jian; Yuan, Xuejun; Frödin, Morten;

    2003-01-01

    Phosphorylation of transcription factors by mitogen-activated protein kinase (MAPK) cascades links cell signaling with the control of gene expression. Here we show that growth factors induce rRNA synthesis by activating MAPK-dependent signaling cascades that target the RNA polymerase I-specific t...

  16. Identification of EhTIF-IA: The putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA

    Indian Academy of Sciences (India)

    Ankita Srivastava; Alok Bhattacharya; Sudha Bhattacharya; Gagan Deep Jhingan

    2016-03-01

    Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica.

  17. Identification of EhTIF-IA: The putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA.

    Science.gov (United States)

    Srivastava, Ankita; Bhattacharya, Alok; Bhattacharya, Sudha; Jhingan, Gagan Deep

    2016-03-01

    Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica.

  18. Events during eucaryotic rRNA transcription initiation and elongation: Conversion from the closed to the open promoter complex requires nucleotide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, E.; Paule, M.R.

    1988-05-01

    Chemical footprinting and topological analysis were carried out on the Acanthamoeba castellanii rRNA transcription initiation factor (TIF) and RNA polymerase I complexes with DNA during transcription initiation and elongation. The results show that the binding of TIF and polymerase to the promoter does not alter the supercoiling of the DNA template and the template does not become sensitive to modification by diethylpyro-carbonate, which can identify melted DNA regions. Thus, in contrast to bacterial RNA polymerase, the eucaryotic RNA polymerase I-promoter complex is in a closed configuration preceding addition of nucleotides in vitro. Initiation and 3'-O-methyl CTP-limited translocation by RNA polymerase I results in separation of the polymerase-TIF footprints, leaving the TIF footprint unaltered. In contrast, initiation and translocation result in a significant change in the conformation of the polymerase-DNA complex, culminating in an unwound DNA region of at least 10 base pairs.

  19. The H4 subunit of vaccinia virus RNA polymerase is not required for transcription initiation at a viral late promoter.

    OpenAIRE

    Wright, C F; Coroneos, A M

    1995-01-01

    Chromatography of RNA polymerase purified from vaccinia virions and from vaccinia virus-infected HeLa cells resulted in the separation of populations active for early and late transcription. An RNA polymerase population immunodepleted for the vaccinia virus H4 gene peptide could support late transcription.

  20. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA.

    Directory of Open Access Journals (Sweden)

    Janet L Smith

    2015-05-01

    Full Text Available DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq. We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.

  1. Characterization of novel elongated Parvulin isoforms that are ubiquitously expressed in human tissues and originate from alternative transcription initiation

    Directory of Open Access Journals (Sweden)

    Hartmann-Fatu Cristina

    2006-03-01

    Full Text Available Abstract Background The peptidyl prolyl cis/trans isomerase (PPIase Parvulin (Par14/PIN4 is highly conserved in all metazoans and is assumed to play a role in cell cycle progression and chromatin remodeling. It is predominantly localized to the nucleus and binds to chromosomal DNA as well as bent oligonucleotides in vitro. Results In this study we confirm by RT-PCR the existence of a longer Parvulin isoform expressed in all tissues examined so far. This isoform contains a 5' extension including a 75 bp extended open reading frame with two coupled SNPs leading to amino acid substitutions Q16R and R18S. About 1% of all Parvulin mRNAs include the novel extension as quantified by real-time PCR. The human Parvulin promoter is TATA-less and situated in a CpG island typical for house keeping genes. Thus, different Parvulin mRNAs seem to arise by alternative transcription initiation. N-terminally extended Parvulin is protected from rapid proteinaseK degradation. In HeLa and HepG2 cell lysates two protein species of about 17 and 28 KDa are detected by an antibody against an epitope within the N-terminal extension. These two bands are also recognized by an antibody towards the PPIase domain of Parvulin. The longer Parvulin protein is encoded by the human genome but absent from rodent, bovine and non-mammalian genomes. Conclusion Due to its molecular weight of 16.6 KDa we denote the novel Parvulin isoform as Par17 following the E. coli Par10 and human Par14 nomenclature. The N-terminal elongation of Par17-QR and Par17-RS suggests these isoforms to perform divergent functions within the eukaryotic cell than the well characterized Par14.

  2. Structure of the transcription initiation and termination sequences of seven early genes in the vaccinia virus HindIII D fragment.

    Science.gov (United States)

    Lee-Chen, G J; Bourgeois, N; Davidson, K; Condit, R C; Niles, E G

    1988-03-01

    The vaccinia virus HindIII D fragment is 16,060 bp in length and encodes 13 complete genes [E.G. Niles et al. (1986). Virology 153, 96-112; S. L. Weinrich and D. E. Hruby (1986). Nucleic Acids Res. 14, 3003-3016]. Six of these genes are expressed only at early times after infection and one gene is expressed at both early and late times [G. -J. Lee-Chen and E. G. Niles (1988). Virology 163, 52-63]. Transcript mapping by S1 nuclease protection studies was carried out and compared to the results of primer extension analyses, in order to locate map positions of the 5' termini of each early mRNA. The lengths of the products of in vitro transcription, from DNA templates which possess the transcription start regions of each of the early genes, were determined and compared to the lengths of DNA products generated by S1 nuclease protection and primer extension, in order to demonstrate that the 5' termini identified by S1 mapping and primer extension are due to transcription initiation and not to mRNA processing. For each of the early genes in the HindIII D fragment, transcription starts within 25 nucleotides of the translation initiation codon. The precise location of the 3' termini of each early transcript was identified by S1 nuclease mapping. In all but one case, the 3' ends map within 75 nucleotides of the putative transcription termination signal TTTTTNT [G. Rohrmann, L. Yuen, and B. Moss (1986).

  3. Dynamic Association of the Replication Initiator and Transcription Factor DnaA with the Bacillus subtilis Chromosome during Replication Stress ▿

    OpenAIRE

    2008-01-01

    DnaA functions as both a transcription factor and the replication initiator in bacteria. We characterized the DNA binding dynamics of DnaA on a genomic level. Based on cross-linking and chromatin immunoprecipitation data, DnaA binds at least 17 loci, 15 of which are regulated transcriptionally in response to inhibition of replication (replication stress). Six loci, each of which has a cluster of at least nine potential DnaA binding sites, had significant increases in binding by DnaA when repl...

  4. Oncogene-initiated aberrant signaling engenders the metastatic phenotype: synergistic transcription factor interactions are targets for cancer therapy.

    Science.gov (United States)

    Denhardt, D T

    1996-01-01

    Certain p21GTPases (notably Ras) and some of their guanine nucleotide exchange factors (e.g., Ost, Dbl, Tiam) and downstream mediators (e.g., Raf, Myc) have the potential to promote the development of malignancies because they can enhance the transcription of genes that foster the tumorigenic and metastatic phenotype. Among these are genes that stimulate cell proliferation, confer immortality, and facilitate the invasion of normal tissues. Oncogenes upstream of Ras-cell surface receptors such as ErbB2/Neu, Met, or Trk (and their ligands), and nonreceptor cytoplasmic protein tyrosine kinases such as Src and Abl-not only can act through Ras but also contribute additional signals. This review presents a synopsis of our understanding of signaling pathways controlled by the p21GTPases, with a focus on transcription factors regulated by the pathways. Mutations in one or more of the elements in these signaling pathways are invariably found in cancer cells. Crosstalk among the pathways may explain how some forms of stress can contribute to the development of a malignancy. Abnormal signaling leads to modified cytoskeletal structures and permanently altered (i.e., self-sustaining or epigenetic) transcription of target genes. A common therne is that genes whose transcription is elevated to the greatest extent by Ras often have in their promoters juxtaposed binding sites for two different transcription factors (particularly those in the Fos/Jun, CREB/ATF, NFkB, and Ets families) each of which is activated and such that together they synergize to augment transcription substantially. Some of these transcription factors can also act as oncogenes in certain cell types when appropriately modified and expressed. This unifying theme among many different cancers suggests that strategies to restore the balance among the signaling pathways or to suppress synergistic interactions between transcription factors may prove broadly useful in reversing the malignant phenotype.

  5. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages.

    Directory of Open Access Journals (Sweden)

    James Witham

    Full Text Available The transcriptional activation of the chicken lysozyme gene (cLys by lipopolysaccharide (LPS in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR triggering eviction of the CCCTC-binding factor (CTCF from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE. In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3' end of the gene.

  6. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages.

    Science.gov (United States)

    Witham, James; Ouboussad, Lylia; Lefevre, Pascal F

    2013-01-01

    The transcriptional activation of the chicken lysozyme gene (cLys) by lipopolysaccharide (LPS) in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR) triggering eviction of the CCCTC-binding factor (CTCF) from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE). In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3' end of the gene.

  7. Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).

    Science.gov (United States)

    Kampa, Marilena; Notas, George; Pelekanou, Vassiliki; Troullinaki, Maria; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Lavrentaki, Katerina; Castanas, Elias

    2012-08-01

    The complexity of estrogen actions mainly relies to the presence of different identified receptors (ERα, ERβ, their isoforms, and GPR30/GPER) and their discrete cellular distribution. Depending on the localization of the receptor that mediates estrogen effects, nuclear and extra-nuclear actions have been described. The latter can trigger a number of signaling events leading also to transcriptional modifications. In an attempt to clarify the nature of the receptor(s) involved in the membrane initiated effect of estrogens on gene expression, we performed a whole transcriptome analysis of breast cancer cell lines with different receptor profiles (T47D, MCF7, MDA-MB-231, SK-BR-3). A pharmacological approach was conducted with the use of estradiol (E(2)) or membrane-impermeable E(2)-BSA in the absence or presence of a specific ERα-β or GPR30/GPER antagonist. Our results clearly show that in addition to the ERα isoforms and/or GPR30/GPER that mainly mediate the transcriptional effect of E(2)-BSA, there is a specific transcriptional signature (found in T47D and MCF-7 cells) suggesting the presence of an unidentified membrane ER element (ERx). Analysis of its signature and phenotypic verification revealed that important cell function such as apoptosis, transcriptional regulation, and growth factor signaling are associated with ERx. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor-activated transcription.

    Science.gov (United States)

    Xu, Muyu; Gonzalez-Hurtado, Elsie; Martinez, Ernest

    2016-04-01

    Gene-specific activation by enhancers involves their communication with the basal RNA polymerase II transcription machinery at the core promoter. Core promoters are diverse and may contain a variety of sequence elements such as the TATA box, the Initiator (INR), and the downstream promoter element (DPE) recognized, respectively, by the TATA-binding protein (TBP) and TBP-associated factors of the TFIID complex. Core promoter elements contribute to the gene selectivity of enhancers, and INR/DPE-specific enhancers and activators have been identified. Here, we identify a TATA box-selective activating sequence upstream of the human β-actin (ACTB) gene that mediates serum response factor (SRF)-induced transcription from TATA-dependent but not INR-dependent promoters and requires the TATA-binding/bending activity of TBP, which is otherwise dispensable for transcription from a TATA-less promoter. The SRF-dependent ACTB sequence is stereospecific on TATA promoters but activates in an orientation-independent manner a composite TATA/INR-containing promoter. More generally, we show that SRF-regulated genes of the actin/cytoskeleton/contractile family tend to have a TATA box. These results suggest distinct TATA-dependent and INR-dependent mechanisms of TFIID-mediated transcription in mammalian cells that are compatible with only certain stereospecific combinations of activators, and that a TBP-TATA binding mechanism is important for SRF activation of the actin/cytoskeleton-related gene family.

  9. Myeloidcell—lineage and premylocytic—stage—specific—expression of the mouse myeloperoxidase gene is controlled at initiation as well as elongation levels of transcription

    Institute of Scientific and Technical Information of China (English)

    ZHUJINGDE

    1999-01-01

    The myeloperoxidase (MPO) is an important microbicidal protein present at high concentration in the primary granule of mature granulocyte and its expression is regulated in both myeloidcell-lineage and premyelocytic-stagespecific manners.A better understanding of the underlying control mechanisms should provide insights into the temporal and co-ordinate regulation of the gene expression during granulopoiesis.We have identified its promoter by mapping the start(s) of transcription using various molecular approaches together with demonstrating the promoter function of the relevant DNA segment in a transient transfection reporter assay.Besides the major start of transcription mapped at G residue,11 nucleotide upstream of the 3' end of exon 0,the usage of that is specific to the MPO expressing cell lines,we have shown that irrespective of the MPO-expression status of the hematopoietic cells,transcription occurs broadly within a two kb region upstream of the 5' proximity of the gene,and is largely terminated in intron 2.These data support a model of the premyelocytic-stage-specific MPO expression,the control of which is operated at initiation as well as elongation levels of transcription.

  10. ppGpp Binding to a Site at the RNAP-DksA Interface Accounts for Its Dramatic Effects on Transcription Initiation during the Stringent Response.

    Science.gov (United States)

    Ross, Wilma; Sanchez-Vazquez, Patricia; Chen, Albert Y; Lee, Jeong-Hyun; Burgos, Hector L; Gourse, Richard L

    2016-06-16

    Throughout the bacterial domain, the alarmone ppGpp dramatically reprograms transcription following nutrient limitation. This "stringent response" is critical for survival and antibiotic tolerance and is a model for transcriptional regulation by small ligands. We report that ppGpp binds to two distinct sites 60 Å apart on E. coli RNA polymerase (RNAP), one characterized previously (site 1) and a second identified here at an interface of RNAP and the transcription factor DksA (site 2). The location and unusual tripartite nature of site 2 account for the DksA-ppGpp synergism and suggest mechanisms for ppGpp enhancement of DksA's effects on RNAP. Site 2 binding results in the majority of ppGpp's effects on transcription initiation in vitro and in vivo, and strains lacking site 2 are severely impaired for growth following nutritional shifts. Filling of the two sites at different ppGpp concentrations would expand the dynamic range of cellular responses to changes in ppGpp levels.

  11. Regulation of phosphoenolpyruvate carboxykinase gene transcription by insulin and cAMP: reciprocal actions on initiation and elongation.

    OpenAIRE

    1988-01-01

    Nuclei isolated from H4IIE rat hepatoma cells were used in an in vitro run-on assay, with probes directed against various regions of the phosphoenolpyruvate carboxykinase [GTP: oxaloacetate carboxy-lyase (transphosphorylating); EC 4.1.1.32] gene, to analyze whether transcription proceeds uniformly across this gene in response to insulin and cAMP treatment. Fewer polymerase II complexes were associated with the phosphoenolpyruvate carboxykinase gene after insulin treatment, as compared with cA...

  12. Isolation of novel single-chain Cro proteins targeted for binding to the bcl-2 transcription initiation site by repertoire selection and subunit combinatorics.

    Science.gov (United States)

    Jonas, Kristina; Van Der Vries, Erhard; Nilsson, Mikael T I; Widersten, Mikael

    2005-11-01

    New designed DNA-binding proteins may be recruited to act as transcriptional regulators and could provide new therapeutic agents in the treatment of genetic disorders such as cancer. We have isolated tailored DNA-binding proteins selected for affinity to a region spanning the transcription initiation site of the human bcl-2 gene. The proteins were derived from a single-chain derivative of the lambda Cro protein (scCro), randomly mutated in its recognition helices to construct libraries of protein variants of distinct DNA-binding properties. By phage display-afforded affinity selections combined with recombination of shuffled subunits, protein variants were isolated, which displayed high affinity for the target bcl-2 sequence, as determined by electrophoretic mobility shift and biosensor assays. The proteins analyzed were moderately sequence-specific but provide a starting point for further maturation of desired function.

  13. A new era for functional labeling of neurons: activity-dependent promoters have come of age

    Directory of Open Access Journals (Sweden)

    Takashi eKawashima

    2014-04-01

    Full Text Available Genetic labeling of neurons with a specific response feature is an emerging technology for precise dissection of brain circuits that are functionally heterogeneous at the single-cell level. While immediate early gene mapping has been widely used for decades to identify brain regions which are activated by external stimuli, recent characterization of the promoter and enhancer elements responsible for neuronal activity-dependent transcription have opened new avenues for live imaging of active neurons. Indeed, these advancements provided the basis for a growing repertoire of novel experiments to address the role of active neuronal networks in cognitive behaviors. In this review, we summarize the current literature on the usage and development of activity-dependent promoters and discuss the future directions of this expanding new field.

  14. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration.

    Directory of Open Access Journals (Sweden)

    Nils Rudqvist

    Full Text Available 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland.BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value 1.5, and p-value <0.05, respectively.In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy.

  15. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation.

    Science.gov (United States)

    Ross, Wilma; Vrentas, Catherine E; Sanchez-Vazquez, Patricia; Gaal, Tamas; Gourse, Richard L

    2013-05-01

    The global regulatory nucleotide ppGpp ("magic spot") regulates transcription from a large subset of Escherichia coli promoters, illustrating how small molecules can control gene expression promoter-specifically by interacting with RNA polymerase (RNAP) without binding to DNA. However, ppGpp's target site on RNAP, and therefore its mechanism of action, has remained unclear. We report here a binding site for ppGpp on E. coli RNAP, identified by crosslinking, protease mapping, and analysis of mutant RNAPs that fail to respond to ppGpp. A strain with a mutant ppGpp binding site displays properties characteristic of cells defective for ppGpp synthesis. The binding site is at an interface of two RNAP subunits, ω and β', and its position suggests an allosteric mechanism of action involving restriction of motion between two mobile RNAP modules. Identification of the binding site allows prediction of bacterial species in which ppGpp exerts its effects by targeting RNAP.

  16. Upregulation of the mammalian X chromosome is associated with enhanced transcription initiation, MOF-mediated H4K16 acetylation, and longer RNA half-life

    Science.gov (United States)

    Deng, Xinxian; Berletch, Joel B.; Ma, Wenxiu; Nguyen, Di Kim; Noble, William S.; Shendure, Jay; Disteche, Christine M.

    2013-01-01

    SUMMARY X upregulation in mammals increases levels of expressed X-linked transcripts to compensate for autosomal bi-allelic expression. Here, we present molecular mechanisms that enhance X expression at transcriptional and posttranscriptional levels. Active mouse X-linked promoters are enriched in the initiation form of RNA polymerase II (PolII-S5p) and in specific histone marks including H4K16ac and histone variant H2AZ. The H4K16 acetyltransferase MOF, known to mediate the Drosophila X upregulation, is also enriched on the mammalian X. Depletion of MOF or MSL1 in mouse ES cells causes a specific decrease in PolII-S5p and in expression of a subset of X-linked genes. Analyses of RNA half-life datasets show increased stability of mammalian X-linked transcripts. Both ancestral X-linked genes, defined as those conserved on chicken autosomes, and newly acquired X-linked genes are upregulated by similar mechanisms but to a different extent, suggesting that subsets of genes are distinctly regulated dependent on their evolutionary history. PMID:23523075

  17. Alternative transcriptional initiation and alternative use of polyadenylation signals in the alphaB-crystallin gene expressed in different chicken tissues.

    Science.gov (United States)

    Macip, S; Mezquita, C; Mezquita, J

    1997-03-18

    Overexpression of alphaB-crystallin is associated with numerous neurodegenerative diseases and abnormal cell growth patterns. To study the mechanisms involved in the control of the transcriptional activity of the gene we have characterized its expression in different chicken tissues. The sequence of the alphaB-crystallin cDNA isolated from chicken testis and 6-day-old chick embryo is highly homologous to the duck alphaB-crystallin cDNA and differs from the previously reported chicken lens alphaB-crystallin cDNA in the 5' untranslated region (5'-UTR) and in one amino acid of the coding sequence. Four forms of the alphaB-crystallin cDNA detected in chicken testes arise from the use of alternative transcription initiation sites and alternative polyadenylation signals. The two principal hybridizing bands found in lens and embryonic tissues possess a short 5'-UTR and differ in the length of the 3'-UTR. Forms with longer 5'-UTR are present in testis, muscle, and heart. The use of different start sites and polyadenylation signals could modulate transcriptional activity and the stability of the messages. The expression of the alphaB-crystallin gene decreases from day 6 to day 8 of chick embryogenesis, in parallel with the expression of the polyubiquitin gene UbII.

  18. A downstream CpG island controls transcript initiation and elongation and the methylation state of the imprinted Airn macro ncRNA promoter.

    Directory of Open Access Journals (Sweden)

    Martha V Koerner

    Full Text Available A CpG island (CGI lies at the 5' end of the Airn macro non-protein-coding (nc RNA that represses the flanking Igf2r promoter in cis on paternally inherited chromosomes. In addition to being modified on maternally inherited chromosomes by a DNA methylation imprint, the Airn CGI shows two unusual organization features: its position immediately downstream of the Airn promoter and transcription start site and a series of tandem direct repeats (TDRs occupying its second half. The physical separation of the Airn promoter from the CGI provides a model to investigate if the CGI plays distinct transcriptional and epigenetic roles. We used homologous recombination to generate embryonic stem cells carrying deletions at the endogenous locus of the entire CGI or just the TDRs. The deleted Airn alleles were analyzed by using an ES cell imprinting model that recapitulates the onset of Igf2r imprinted expression in embryonic development or by using knock-out mice. The results show that the CGI is required for efficient Airn initiation and to maintain the unmethylated state of the Airn promoter, which are both necessary for Igf2r repression on the paternal chromosome. The TDRs occupying the second half of the CGI play a minor role in Airn transcriptional elongation or processivity, but are essential for methylation on the maternal Airn promoter that is necessary for Igf2r to be expressed from this chromosome. Together the data indicate the existence of a class of regulatory CGIs in the mammalian genome that act downstream of the promoter and transcription start.

  19. Rad3-Cds1 mediates coupling of initiation of meiotic recombination with DNA replication. Mei4-dependent transcription as a potential target of meiotic checkpoint.

    Science.gov (United States)

    Ogino, Keiko; Masai, Hisao

    2006-01-20

    Premeiotic S-phase and meiotic recombination are known to be strictly coupled in Saccharomyces cerevisiae. However, the checkpoint pathway regulating this coupling has been largely unknown. In fission yeast, Rad3 is known to play an essential role in coordination of DNA replication and cell division during both mitotic growth and meiosis. Here we have examined whether the Rad3 pathway also regulates the coupling of DNA synthesis and recombination. Inhibition of premeiotic S-phase with hydroxyurea completely abrogates the progression of meiosis, including the formation of DNA double-strand breaks (DSBs). DSB formation is restored in rad3 mutant even in the presence of hydroxyurea, although repair of DSBs does not take place or is significantly delayed, indicating that the subsequent recombination steps may be still inhibited. Examination of the roles of downstream checkpoint kinases reveals that Cds1, but not Chk1 or Mek1, is required for suppression of DSB in the presence of hydroxyurea. Transcriptional induction of some rec+ genes essential for DSB occurs at a normal timing and to a normal level in the absence of DNA synthesis in both the wild-type and cds1delta cells. On the other hand, the transcriptional induction of the mei4+ transcription factor and cdc25+ phosphatase, which is significantly suppressed by hydroxyurea in the wild-type cells, occurs almost to a normal level in cds1delta cells even in the presence of hydroxyurea. These results show that the Rad3-Cds1 checkpoint pathway coordinates initiation of meiotic recombination and meiotic cell divisions with premeiotic DNA synthesis. Because mei4+ is known to be required for DSB formation and cdc25+ is required for activation of meiotic cell divisions, we propose an intriguing possibility that the Rad3-Cds1 meiotic checkpoint pathway may target transcription of these factors.

  20. Initiation and beyond: molecular determinants of gene regulation. Mechanisms of Transcription Control, A Jacques Monod Conference, sponsored by the Centre National de la Recherche Scientifique, Roscoff, France, September 30-October 4, 1991.

    Science.gov (United States)

    Umek, R M

    1992-03-01

    The study of the mechanisms of transcriptional control continues to be an exciting area of research. The characterization of the constituents of the initiation complex and their interactions are leading to a greater understanding of gene regulation. The findings presented at this meeting emphasized the need to understand these interactions in three-dimensional space to effectively account for the observed regulation of the initiation of transcription.

  1. G Clustering Is Important for the Initiation of Transcription-Induced R-Loops In Vitro, whereas High G Density without Clustering Is Sufficient Thereafter▿ †

    Science.gov (United States)

    Roy, Deepankar; Lieber, Michael R.

    2009-01-01

    R-loops form cotranscriptionally in vitro and in vivo at transcribed duplex DNA regions when the nascent RNA is G-rich, particularly with G clusters. This is the case for phage polymerases, as used here (T7 RNA polymerase), as well as RNA polymerases in bacteria, Saccharomyces cerevisiae, avians, mice, and humans. The nontemplate strand is left in a single-stranded configuration within the R-loop region. These structures are known to form at mammalian immunoglobulin class switch regions, thus exposing regions of single-stranded DNA for the action of AID, a single-strand-specific cytidine deaminase. R-loops form by thread-back of the RNA onto the template DNA strand, and here we report that G clusters are extremely important for the initiation phase of R-loop formation. Even very short regions with one GGGG sequence can initiate R-loops much more efficiently than random sequences. The high efficiencies observed with G clusters cannot be achieved by having a very high G density alone. Annealing of the transcript, which is otherwise disadvantaged relative to the nontemplate DNA strand because of unfavorable proximity while exiting the RNA polymerase, can offer greater stability if it occurs at the G clusters, thereby initiating an R-loop. R-loop elongation beyond the initiation zone occurs in a manner that is not as reliant on G clusters as it is on a high G density. These results lead to a model in which G clusters are important to nucleate the thread-back of RNA for R-loop initiation and, once initiated, the elongation of R-loops is primarily determined by the density of G on the nontemplate DNA strand. Without both a favorable R-loop initiation zone and elongation zone, R-loop formation is inefficient. PMID:19307304

  2. G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter.

    Science.gov (United States)

    Roy, Deepankar; Lieber, Michael R

    2009-06-01

    R-loops form cotranscriptionally in vitro and in vivo at transcribed duplex DNA regions when the nascent RNA is G-rich, particularly with G clusters. This is the case for phage polymerases, as used here (T7 RNA polymerase), as well as RNA polymerases in bacteria, Saccharomyces cerevisiae, avians, mice, and humans. The nontemplate strand is left in a single-stranded configuration within the R-loop region. These structures are known to form at mammalian immunoglobulin class switch regions, thus exposing regions of single-stranded DNA for the action of AID, a single-strand-specific cytidine deaminase. R-loops form by thread-back of the RNA onto the template DNA strand, and here we report that G clusters are extremely important for the initiation phase of R-loop formation. Even very short regions with one GGGG sequence can initiate R-loops much more efficiently than random sequences. The high efficiencies observed with G clusters cannot be achieved by having a very high G density alone. Annealing of the transcript, which is otherwise disadvantaged relative to the nontemplate DNA strand because of unfavorable proximity while exiting the RNA polymerase, can offer greater stability if it occurs at the G clusters, thereby initiating an R-loop. R-loop elongation beyond the initiation zone occurs in a manner that is not as reliant on G clusters as it is on a high G density. These results lead to a model in which G clusters are important to nucleate the thread-back of RNA for R-loop initiation and, once initiated, the elongation of R-loops is primarily determined by the density of G on the nontemplate DNA strand. Without both a favorable R-loop initiation zone and elongation zone, R-loop formation is inefficient.

  3. Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box.

    Science.gov (United States)

    Horikoshi, M; Wang, C K; Fujii, H; Cromlish, J A; Weil, P A; Roeder, R G

    1989-09-28

    The TATA sequence-binding factor TFIID plays a central role both in promoter activation by RNA polymerase II and other common initiation factors, and in promoter regulation by gene-specific factors. The sequence of yeast TFIID, which seems to be encoded by a single gene, contains interesting structural motifs that are possibly involved in these functions, and is similar to sequences of bacterial sigma factors.

  4. Cloning and characterization of the nitrate reductase-encoding gene from Chlorella vulgaris: structure and identification of transcription start points and initiator sequences.

    Science.gov (United States)

    Dawson, H N; Pendleton, L C; Solomonson, L P; Cannons, A C

    1996-06-01

    The reduction of nitrate to nitrite catalyzed by nitrate reductase (NR) is considered to be the rate-limiting and regulated step of nitrate assimilation, a major metabolic pathway occurring in a wide range of organisms which in turn supply the nutritional nitrogen requirements for other forms of life. Chlorella vulgaris NR mRNA levels are very responsive to changes in nitrogen source. In the presence of ammonia as the sole nitrogen source, under repressed conditions, NR mRNA is undetectable. Under inducing conditions, the removal of ammonia and addition of nitrate, rapid NR mRNA synthesis occurs. We are studying the elements involved in regulating the expression of this important gene. Two overlapping genomic clones (NRS1 and NR5') were isolated from a cosmid library. The two clones were sequenced and their sequences were aligned with that of a full-length NR cDNA. The gene is approximately 8 kb long and consists of 19 exons and 18 introns. Unlike NR isolated from other species, the exons which code for the functional domains of C. vulgaris are separated by introns. Two transcription start points (tsp) were identified and each is surrounded by potential initiator sequences. No TATA, CAAT or GC-rich promoter elements were located. A time course of NR induction revealed that while transcription initiation from one tsp remains at a constant level from the point of induction through steady state, the level of initiation from another tsp is high upon induction, but decreases as steady state is attained.

  5. Recruitment of the transcriptional coactivator HCF-1 to viral immediate-early promoters during initiation of reactivation from latency of herpes simplex virus type 1.

    Science.gov (United States)

    Whitlow, Zackary; Kristie, Thomas M

    2009-09-01

    The transcriptional coactivator host cell factor 1 (HCF-1) is critical for the expression of immediate-early (IE) genes of the alphaherpesviruses herpes simplex virus type 1 (HSV-1) and varicella-zoster virus. HCF-1 may also be involved in the reactivation of these viruses from latency as it is sequestered in the cytoplasm of sensory neurons but is rapidly relocalized to the nucleus upon stimulation that results in reactivation. Here, chromatin immunoprecipitation assays demonstrate that HCF-1 is recruited to IE promoters of viral genomes during the initiation of reactivation, correlating with RNA polymerase II occupancy and IE expression. The data support the model whereby HCF-1 plays a pivotal role in the reactivation of HSV-1 from latency.

  6. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  7. The tumor-selective over-expression of the human Hsp 70 gene is attributed to the aberrant controls at both initiation and elongation levels of transcription

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The tumor selective over-expression of the human Hsp70 gene has been well documented in human tumors, linked to the poor prognosis, being refractory to chemo- and radio-therapies as well as the advanced stage of tumorous lesions in particular. However, both the nature and details of aberrations in the control of the Hsp70 expression in tumor remain enigmatic. By comparing various upstream segments of the Hsp70gene for each's ability to drive the luciferase reporter genes in the context of the tumor cell lines varying in their p53 status and an immortal normal liver cell line, we demonstrated in a great detail the defects in the control mechanisms at the both initiation and elongation levels of transcription being instrumental to the tumor selective profile of its expression. Our data should not only offer new insights into our understanding of the tumor specific over-expression of the human Hsp70 gene, but also paved the way for the rational utilization of the tumor selective mechanism with the Hsp70 at the central stage for targeting the therapeutic gene expression to human tumors.

  8. Soybean miR172c Targets the Repressive AP2 Transcription Factor NNC1 to Activate ENOD40 Expression and Regulate Nodule Initiation[C][W

    Science.gov (United States)

    Wang, Youning; Wang, Lixiang; Zou, Yanmin; Chen, Liang; Cai, Zhaoming; Zhang, Senlei; Zhao, Fang; Tian, Yinping; Jiang, Qiong; Ferguson, Brett J.; Gresshoff, Peter M.; Li, Xia

    2014-01-01

    MicroRNAs are noncoding RNAs that act as master regulators to modulate various biological processes by posttranscriptionally repressing their target genes. Repression of their target mRNA(s) can modulate signaling cascades and subsequent cellular events. Recently, a role for miR172 in soybean (Glycine max) nodulation has been described; however, the molecular mechanism through which miR172 acts to regulate nodulation has yet to be explored. Here, we demonstrate that soybean miR172c modulates both rhizobium infection and nodule organogenesis. miR172c was induced in soybean roots inoculated with either compatible Bradyrhizobium japonicum or lipooligosaccharide Nod factor and was highly upregulated during nodule development. Reduced activity and overexpression of miR172c caused dramatic changes in nodule initiation and nodule number. We show that soybean miR172c regulates nodule formation by repressing its target gene, Nodule Number Control1, which encodes a protein that directly targets the promoter of the early nodulin gene, ENOD40. Interestingly, transcriptional levels of miR172c were regulated by both Nod Factor Receptor1α/5α-mediated activation and by autoregulation of nodulation-mediated inhibition. Thus, we established a direct link between miR172c and the Nod factor signaling pathway in addition to adding a new layer to the precise nodulation regulation mechanism of soybean. PMID:25549672

  9. Transcription and translation of human F11R gene are required for an initial step of atherogenesis induced by inflammatory cytokines

    Science.gov (United States)

    2011-01-01

    Background - The F11 Receptor (F11R; aka JAM-A, JAM-1) is a cell adhesion protein present constitutively on the membrane surface of circulating platelets and within tight junctions of endothelial cells (ECs). Previous reports demonstrated that exposure of ECs to pro-inflammatory cytokines causes insertion of F11R molecules into the luminal surface of ECs, ensuing with homologous interactions between F11R molecules of platelets and ECs, and a resultant adhesion of platelets to the inflamed ECs. The main new finding of the present report is that the first step in this chain of events is the de-novo transcription and translation of F11R molecules, induced in ECs by exposure to inflammatory cytokines. Methods - The experimental approach utilized isolated, washed human platelet suspensions and cultured human venous endothelial cells (HUVEC) and human arterial endothelial cells (HAEC) exposed to the proinflammatory cytokines TNF-alpha and/or IFN-gamma, for examination of the ability of human platelets to adhere to the inflamed ECs thru the F11R. Our strategy was based on testing the effects of the following inhibitors on this activity: general mRNA synthesis inhibitors, inhibitors of the NF-kappaB and JAK/STAT pathways, and small interfering F11R-mRNA (siRNAs) to specifically silence the F11R gene. Results - Treatment of inflamed ECs with the inhibitors actinomycin, parthenolide or with AG-480 resulted in complete blockade of F11R- mRNA expression, indicating the involvement of NF-kappaB and JAK/STAT pathways in this induction. Transfection of ECs with F11R siRNAs caused complete inhibition of the cytokine-induced upregulation of F11R mRNA and inhibition of detection of the newly- translated F11R molecules in cytokine-inflamed ECs. The functional consequence of the inhibition of F11R transcription and translation was the significant blockade of the adhesion of human platelets to inflamed ECs. Conclusion - These results prove that de novo synthesis of F11R in ECs is

  10. Transcription and translation of human F11R gene are required for an initial step of atherogenesis induced by inflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Kornecki Elizabeth

    2011-06-01

    Full Text Available Abstract Background - The F11 Receptor (F11R; aka JAM-A, JAM-1 is a cell adhesion protein present constitutively on the membrane surface of circulating platelets and within tight junctions of endothelial cells (ECs. Previous reports demonstrated that exposure of ECs to pro-inflammatory cytokines causes insertion of F11R molecules into the luminal surface of ECs, ensuing with homologous interactions between F11R molecules of platelets and ECs, and a resultant adhesion of platelets to the inflamed ECs. The main new finding of the present report is that the first step in this chain of events is the de-novo transcription and translation of F11R molecules, induced in ECs by exposure to inflammatory cytokines. Methods - The experimental approach utilized isolated, washed human platelet suspensions and cultured human venous endothelial cells (HUVEC and human arterial endothelial cells (HAEC exposed to the proinflammatory cytokines TNF-alpha and/or IFN-gamma, for examination of the ability of human platelets to adhere to the inflamed ECs thru the F11R. Our strategy was based on testing the effects of the following inhibitors on this activity: general mRNA synthesis inhibitors, inhibitors of the NF-kappaB and JAK/STAT pathways, and small interfering F11R-mRNA (siRNAs to specifically silence the F11R gene. Results - Treatment of inflamed ECs with the inhibitors actinomycin, parthenolide or with AG-480 resulted in complete blockade of F11R- mRNA expression, indicating the involvement of NF-kappaB and JAK/STAT pathways in this induction. Transfection of ECs with F11R siRNAs caused complete inhibition of the cytokine-induced upregulation of F11R mRNA and inhibition of detection of the newly- translated F11R molecules in cytokine-inflamed ECs. The functional consequence of the inhibition of F11R transcription and translation was the significant blockade of the adhesion of human platelets to inflamed ECs. Conclusion - These results prove that de novo synthesis

  11. From retinal waves to activity-dependent retinogeniculate map development.

    Directory of Open Access Journals (Sweden)

    Jeffrey Markowitz

    Full Text Available A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca(2+-activated K(+ channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops.

  12. Activity dependence of spreading depression in the locust CNS.

    Science.gov (United States)

    Spong, Kristin E; Mazzetti, Tom R; Robertson, R Meldrum

    2016-03-01

    Spreading depression (SD) is associated with large changes in extracellular ion concentrations and can be induced by impairing mechanisms of K(+) ion homeostasis. We tested activity dependence of SD in the locust model of ouabain-induced SD in the metathoracic ganglion. Wind activation of thoracic circuitry resulted in small increases of K(+) concentration that took 5-10 s to be cleared from the extracellular space. In the presence of the Na(+)/K(+)-ATPase inhibitor ouabain, wind stimulation every 30 s halved the latency to the first SD event and increased its duration. Wind stimulation was able to trigger the first event, suggesting that local activity could determine the origin of successive SD events. Perfusion with calcium-free saline blocked neural activity in the ganglion and prevented the occurrence of ouabain-induced SD. We conclude that ouabain-induced SD in the locust CNS is strongly dependent on the existing level of neural activity.

  13. The Role of CREB, SRF, and MEF2 in Activity-Dependent Neuronal Plasticity in the Visual Cortex.

    Science.gov (United States)

    Pulimood, Nisha S; Rodrigues, Wandilson Dos Santos; Atkinson, Devon A; Mooney, Sandra M; Medina, Alexandre E

    2017-07-12

    The transcription factors CREB (cAMP response element binding factor), SRF (serum response factor), and MEF2 (myocyte enhancer factor 2) play critical roles in the mechanisms underlying neuronal plasticity. However, the role of the activation of these transcription factors in the different components of plasticity in vivo is not well known. In this study, we tested the role of CREB, SRF, and MEF2 in ocular dominance plasticity (ODP), a paradigm of activity-dependent neuronal plasticity in the visual cortex. These three proteins bind to the synaptic activity response element (SARE), an enhancer sequence found upstream of many plasticity-related genes (Kawashima et al., 2009; Rodríguez-Tornos et al., 2013), and can act cooperatively to express Arc, a gene required for ODP (McCurry et al., 2010). We used viral-mediated gene transfer to block the transcription function of CREB, SRF, and MEF2 in the visual cortex, and measured visually evoked potentials in awake male and female mice before and after a 7 d monocular deprivation, which allowed us to examine both the depression component (Dc-ODP) and potentiation component (Pc-ODP) of plasticity independently. We found that CREB, SRF, and MEF2 are all required for ODP, but have differential effects on Dc-ODP and Pc-ODP. CREB is necessary for both Dc-ODP and Pc-ODP, whereas SRF and MEF2 are only needed for Dc-ODP. This finding supports previous reports implicating SRF and MEF2 in long-term depression (required for Dc-ODP), and CREB in long-term potentiation (required for Pc-ODP).SIGNIFICANCE STATEMENT Activity-dependent neuronal plasticity is the cellular basis for learning and memory, and it is crucial for the refinement of neuronal circuits during development. Identifying the mechanisms of activity-dependent neuronal plasticity is crucial to finding therapeutic interventions in the myriad of disorders where it is disrupted, such as Fragile X syndrome, Rett syndrome, epilepsy, major depressive disorder, and autism

  14. Cis-motifs upstream of the transcription and translation initiation sites are effectively revealed by their positional disequilibrium in eukaryote genomes using frequency distribution curves

    Directory of Open Access Journals (Sweden)

    Harter Klaus

    2006-11-01

    Full Text Available Abstract Background The discovery of cis-regulatory motifs still remains a challenging task even though the number of sequenced genomes is constantly growing. Computational analyses using pattern search algorithms have been valuable in phylogenetic footprinting approaches as have expression profile experiments to predict co-occurring motifs. Surprisingly little is known about the nature of cis-regulatory element (CRE distribution in promoters. Results In this paper we used the Motif Mapper open-source collection of visual basic scripts for the analysis of motifs in any aligned set of DNA sequences. We focused on promoter motif distribution curves to identify positional over-representation of DNA motifs. Using differentially aligned datasets from the model species Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster and Saccharomyces cerevisiae, we convincingly demonstrated the importance of the position and orientation for motif discovery. Analysis with known CREs and all possible hexanucleotides showed that some functional elements gather close to the transcription and translation initiation sites and that elements other than the TATA-box motif are conserved between eukaryote promoters. While a high background frequency usually decreases the effectiveness of such an enumerative investigation, we improved our analysis by conducting motif distribution maps using large datasets. Conclusion This is the first study to reveal positional over-representation of CREs and promoter motifs in a cross-species approach. CREs and motifs shared between eukaryotic promoters support the observation that an eukaryotic promoter structure has been conserved throughout evolutionary time. Furthermore, with the information on positional enrichment of a motif or a known functional CRE, it is possible to get a more detailed insight into where an element appears to function. This in turn might accelerate the in depth examination of known and yet unknown

  15. Control of Neuropeptide Expression by Parallel Activity-dependent Pathways in Caenorhabditis elegans

    Science.gov (United States)

    Rojo Romanos, Teresa; Petersen, Jakob Gramstrup; Pocock, Roger

    2017-01-01

    Monitoring of neuronal activity within circuits facilitates integrated responses and rapid changes in behavior. We have identified a system in Caenorhabditis elegans where neuropeptide expression is dependent on the ability of the BAG neurons to sense carbon dioxide. In C. elegans, CO2 sensing is predominantly coordinated by the BAG-expressed receptor-type guanylate cyclase GCY-9. GCY-9 binding to CO2 causes accumulation of cyclic GMP and opening of the cGMP-gated TAX-2/TAX-4 cation channels; provoking an integrated downstream cascade that enables C. elegans to avoid high CO2. Here we show that cGMP regulation by GCY-9 and the PDE-1 phosphodiesterase controls BAG expression of a FMRFamide-related neuropeptide FLP-19 reporter (flp-19::GFP). This regulation is specific for CO2-sensing function of the BAG neurons, as loss of oxygen sensing function does not affect flp-19::GFP expression. We also found that expression of flp-19::GFP is controlled in parallel to GCY-9 by the activity-dependent transcription factor CREB (CRH-1) and the cAMP-dependent protein kinase (KIN-2) signaling pathway. We therefore show that two parallel pathways regulate neuropeptide gene expression in the BAG sensory neurons: the ability to sense changes in carbon dioxide and CREB transcription factor. Such regulation may be required in particular environmental conditions to enable sophisticated behavioral decisions to be performed. PMID:28139692

  16. Transcription in archaea

    Science.gov (United States)

    Kyrpides, N. C.; Ouzounis, C. A.; Woese, C. R. (Principal Investigator)

    1999-01-01

    Using the sequences of all the known transcription-associated proteins from Bacteria and Eucarya (a total of 4,147), we have identified their homologous counterparts in the four complete archaeal genomes. Through extensive sequence comparisons, we establish the presence of 280 predicted transcription factors or transcription-associated proteins in the four archaeal genomes, of which 168 have homologs only in Bacteria, 51 have homologs only in Eucarya, and the remaining 61 have homologs in both phylogenetic domains. Although bacterial and eukaryotic transcription have very few factors in common, each exclusively shares a significantly greater number with the Archaea, especially the Bacteria. This last fact contrasts with the obvious close relationship between the archaeal and eukaryotic transcription mechanisms per se, and in particular, basic transcription initiation. We interpret these results to mean that the archaeal transcription system has retained more ancestral characteristics than have the transcription mechanisms in either of the other two domains.

  17. Activity-dependent transmission and integration control the timescales of auditory processing at an inhibitory synapse.

    Science.gov (United States)

    Ammer, Julian J; Siveke, Ida; Felmy, Felix

    2015-06-15

    To capture the context of sensory information, neural networks must process input signals across multiple timescales. In the auditory system, a prominent change in temporal processing takes place at an inhibitory GABAergic synapse in the dorsal nucleus of the lateral lemniscus (DNLL). At this synapse, inhibition outlasts the stimulus by tens of milliseconds, such that it suppresses responses to lagging sounds, and is therefore implicated in echo suppression. Here, we untangle the cellular basis of this inhibition. We demonstrate with in vivo whole-cell patch-clamp recordings in Mongolian gerbils that the duration of inhibition increases with sound intensity. Activity-dependent spillover and asynchronous release translate the high presynaptic firing rates found in vivo into a prolonged synaptic output in acute slice recordings. A key mechanism controlling the inhibitory time course is the passive integration of the hyperpolarizing inhibitory conductance. This prolongation depends on the synaptic conductance amplitude. Computational modeling shows that this prolongation is a general mechanism and relies on a non-linear effect caused by synaptic conductance saturation when approaching the GABA reversal potential. The resulting hyperpolarization generates an efficient activity-dependent suppression of action potentials without affecting the threshold or gain of the input-output function. Taken together, the GABAergic inhibition in the DNLL is adjusted to the physiologically relevant duration by passive integration of inhibition with activity-dependent synaptic kinetics. This change in processing timescale combined with the reciprocal connectivity between the DNLLs implements a mechanism to suppress the distracting localization cues of echoes and helps to localize the initial sound source reliably.

  18. Activity-dependent subcellular localization of NAC1.

    Science.gov (United States)

    Korutla, Laxman; Champtiaux, Nicholas; Shen, Hao-Wei; Klugmann, Matthias; Klugman, Matthias; Kalivas, Peter W; Mackler, Scott A

    2005-07-01

    The expression of the transcriptional regulator NAC1 is increased in the nucleus accumbens of rats withdrawn from cocaine self-administration, and in vivo studies indicate that the up-regulation is a compensatory mechanism opposing the acute effects of cocaine. Both mammalian two-hybrid assay and punctate localization largely in the nucleus suggest NAC1 is a transcriptional regulator. However, in this report it is shown that in differentiated PC12 and Neuro2A cells, as well as in primary cortical neurons, NAC1 is diffusely expressed not only in the cell nucleus but also in cytoplasm. Blockade of spontaneous electrical activity by tetrodotoxin prevented the diffuse expression of NAC1, and depolarization with high potassium concentrations induced diffuse cellular localization in non-differentiating cells. The use of protein kinase C (PKC) inhibitors and activator, as well as the systematic mutation of potential PKC phosphorylation sites in NAC1, demonstrated that phosphorylation of residue S245 by PKC is a necessary event inducing diffuse NAC1 expression outside of the nucleus. These observations indicate a potential non-transcriptional role for NAC1 in the brain.

  19. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Carmen E Flores

    2014-10-01

    Full Text Available Inhibitory transmission through the neurotransmitter Ɣ-aminobutyric acid (GABA shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.

  20. OCT intensity and phase fluctuations correlated with activity-dependent neuronal calcium dynamics in the Drosophila CNS [Invited

    Science.gov (United States)

    Tong, Minh Q.; Hasan, Md. Monirul; Lee, Sang Soo; Haque, Md. Rezuanul; Kim, Do-Hyoung; Islam, Md. Shahidul; Adams, Michael E.; Park, B. Hyle

    2017-01-01

    Phase-resolved OCT and fluorescence microscopy were used simultaneously to examine stereotypic patterns of neural activity in the isolated Drosophila central nervous system. Both imaging modalities were focused on individually identified bursicon neurons known to be involved in a fixed action pattern initiated by ecdysis-triggering hormone. We observed clear correspondence of OCT intensity, phase fluctuations, and activity-dependent calcium-induced fluorescence.

  1. Polycistronic transcription of fused cassettes and identification of translation initiation signals in an unusual gene cassette array from Pseudomonas aeruginosa [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Érica L. Fonseca

    2015-11-01

    Full Text Available The gene cassettes found in class 1 integrons are generally promoterless units composed by an open reading frame (ORF, a short 5’ untranslated region (UTR and a 3’ recombination site (attC. Fused gene cassettes are generated by partial or total loss of the attC from the first cassette in an array, creating, in some cases, a fusion with the ORF from the next cassette. These structures are rare and little is known about their mechanisms of mobilization and expression. The aim of this study was to evaluate the dynamic of mobilization and transcription of the gcu14-blaGES-1/aacA4 gene cassette array, which harbours a fused gene cassette represented by blaGES-1/aacA4. The cassette array was analyzed by Northern blot and real-time reverse transcription-polymerase chain reaction (RT-PCR in order to assess the transcription mechanism of blaGES-1/aacA4 fused cassette. Also, inverse polymerase chain reactions (PCR were performed to detect the free circular forms of gcu14, blaGES-1 and aacA4. The Northern blot and real time RT-PCR revealed a polycistronic transcription, in which the fused cassette blaGES-1/aacA4 is transcribed as a unique gene, while gcu14 (with a canonical attC recombination site has a monocistronic transcription. The gcu14 cassette, closer to the weak configuration of cassette promoter (PcW, had a higher transcription level than blaGES-1/aacA4, indicating that the cassette position affects the transcript amounts. The presence of ORF-11 at attI1, immediately preceding gcu14, and of a Shine-Dalgarno sequence upstream blaGES-1/aacA4 composes a scenario for the occurrence of array translation. Inverse PCR generated amplicons corresponding to gcu14, gcu14-aacA4 and gcu14-blaGES-1/aacA4 free circular forms, but not to blaGES-1 and aacA4 alone, indicating that the GES-1 truncated attC is not substrate of integrase activity and that these genes are mobilized together as a unique cassette. This study was original in showing the transcription

  2. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Geetaram; Farley, Kalamo [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); El-Hage, Nazira [Virginia Commonwealth University, Richmond, VA (United States); Aiamkitsumrit, Benjamas; Fassnacht, Ryan [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Kashanchi, Fatah [George Mason University, Manassas, VA (United States); Ochem, Alex [ICGEB, Wernher and Beit Building, Anzio Road, Observatory, 7925 Cape Town (South Africa); Simon, Gary L. [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Karn, Jonathan [Case Western Reserve University, Cleveland, OH (United States); Hauser, Kurt F. [Virginia Commonwealth University, Richmond, VA (United States); Tyagi, Mudit, E-mail: tmudit@email.gwu.edu [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037 (United States)

    2015-09-15

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR.

  3. Massively Systematic Transcript End Readout (MASTER): Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields

    Science.gov (United States)

    Vvedenskaya, Irina O.; Zhang, Yuanchao; Goldman, Seth R.; Valenti, Anna; Visone, Valeria; Taylor, Deanne M.; Ebright, Richard H.; Nickels, Bryce E.

    2015-01-01

    SUMMARY We report the development of a next-generation sequencing-based technology that entails construction of a DNA library comprising up to at least 47 (~16,000) bar-coded sequences, production of RNA transcripts, and analysis of transcript ends and transcript yields ("massively systematic transcript end readout," MASTER). Using MASTER, we define full inventories of transcription start sites ("TSSomes") of Escherichia coli RNA polymerase for initiation at a consensus core promoter in vitro and in vivo, we define the TSS-region DNA-sequence determinants for TSS selection, reiterative initiation ("slippage synthesis"), and transcript yield, and we define effects of DNA topology and NTP concentration. The results reveal that slippage synthesis occurs from the majority of TSS-region DNA sequences and that TSS-region DNA sequences have profound, up to 100-fold, effects on transcript yield. The results further reveal that TSSomes depend on DNA topology, consistent with the proposal that TSS selection involves transcription-bubble expansion ("scrunching") and transcription-bubble contraction ("anti-scrunching"). PMID:26626484

  4. Massively Systematic Transcript End Readout, "MASTER": Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields.

    Science.gov (United States)

    Vvedenskaya, Irina O; Zhang, Yuanchao; Goldman, Seth R; Valenti, Anna; Visone, Valeria; Taylor, Deanne M; Ebright, Richard H; Nickels, Bryce E

    2015-12-17

    We report the development of a next-generation sequencing-based technology that entails construction of a DNA library comprising up to at least 4(7) (∼ 16,000) barcoded sequences, production of RNA transcripts, and analysis of transcript ends and transcript yields (massively systematic transcript end readout, "MASTER"). Using MASTER, we define full inventories of transcription start sites ("TSSomes") of Escherichia coli RNA polymerase for initiation at a consensus core promoter in vitro and in vivo; we define the TSS-region DNA sequence determinants for TSS selection, reiterative initiation ("slippage synthesis"), and transcript yield; and we define effects of DNA topology and NTP concentration. The results reveal that slippage synthesis occurs from the majority of TSS-region DNA sequences and that TSS-region DNA sequences have profound, up to 100-fold, effects on transcript yield. The results further reveal that TSSomes depend on DNA topology, consistent with the proposal that TSS selection involves transcription-bubble expansion ("scrunching") and transcription-bubble contraction ("anti-scrunching").

  5. Role of cAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3) in the initiation of mitochondrial biogenesis and stress response in liver cells.

    Science.gov (United States)

    Than, Tin Aung; Lou, Huan; Ji, Cheng; Win, Sanda; Kaplowitz, Neil

    2011-06-24

    Peroxisome proliferator-activated receptor α, coactivator 1α (PGC-1α) is the master regulator of mitochondrial biogenesis. PGC-1α expression is under the control of the transcription factor, cAMP-responsive element-binding protein (CREB). In searching for candidate transcription factors that mediate mitochondrial stress-initiated mitochondria-to-nucleus signaling in the regulation of mitochondrial biogenesis, we assessed the effect of silencing CREB-regulated transcription co-activators (CRTC). CRTC isoforms are co-activators of CREB-regulated transcription by a CREB phosphorylation-independent pathway. Using cultured HepG2 cells and primary mouse hepatocytes, we determined that mitochondrial stress imposed by the complex I inhibitor rotenone elicited mitochondrial biogenesis, which was dependent on an induction of PGC-1α, which was inhibited by silencing PGC-1α. PGC-1α induction in response to rotenone was inhibited by silencing the expression of CRTC3, which blocked downstream mitochondria biogenesis. In contrast, silencing CRTC2 did not affect the induction of this pathway in response to rotenone. Thus, CRTC3 plays a selective role in mitochondrial biogenesis in response to rotenone.

  6. Identification and initial characterization of the 3' end of gene transcripts encoding putative members of the pheromone receptor subfamily in Lepidoptera

    Institute of Scientific and Technical Information of China (English)

    Stephen F. Garczynski; Kevin W. Wanner; Thomas R. Unruh

    2012-01-01

    Semiochemicals,including pheromones and kairomones,used in pest management programs reduce the need for chemical insecticides,and understanding their interactions with their membrane receptors may help make them more effective in the field.Identification of odorant receptors in the Lepidoptera has mainly been achieved using bioinformatics to search DNA sequences generated by genome or expressed sequence tag (EST) sequencing projects.This study reports a rapid method to identify members of the pheromone receptor subfamily in Lepidoptera.Degenerate oligonucleotide primers were designed against a conserved amino acid sequence in the carboxyl terminus of known lepidopteran pheromone receptors,and the primers were used in a 3' rapid amplification of complementary DNA (cDNA) ends procedure.Polymerase chain reaction products generated from seven different lepidopteran species were TA cloned and sequenced.The eDNA sequences of 25 transcripts were determined to encode potential members of the pheromone receptor subfamily.These cDNAs ranged from 238 to 642 bp and encoded 49-54 amino acids of the carboxyl terminus.Analysis of the 3' untranslated region reveals that most of the transcripts contain multiple polyadenylation signal sequences,and in the case ofManduca sexta,an alternate polyadenylation signal appears to be used in transcript processing.The 3' untranslated region was also useful in determining unique receptors encoded by transcripts having highly similar nucleotide and amino acid sequences.Overall,this technique provides a complementary method of pheromone receptor identification in EST sequencing projects,or can be used as a stand-alone method in conjunction with 5' rapid amplification of cDNA ends procedures.

  7. Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the HindIII H genome fragment.

    Science.gov (United States)

    Rosel, J L; Earl, P L; Weir, J P; Moss, B

    1986-11-01

    The sequence of the 8,600-base-pair HindIII H fragment, located at the center of the vaccinia virus genome, was determined to analyze several late genes. Seven major complete open reading frames (ORFs) and two that started from or continued into adjacent DNA segments were identified. ORFs were closely spaced and present on both DNA strands. Some adjacent ORFs had oppositely oriented overlapping termination codons or contiguous stop and start codons. Nucleotide compositional analysis indicated that the A-T frequency was consistently lowest in the first codon position. The sizes of the polypeptides predicted from the DNA sequence were compared with those determined by polyacrylamide gel electrophoresis of cell-free translation products of mRNAs selected by hybridization to cloned single-stranded DNA segments or synthesized in vitro by bacteriophage T7 RNA polymerase. Six transcripts that initiated within the HindIII H DNA fragment were detected, and of these, four were synthesized only at late times, one was synthesized only early, and one was synthesized early and late. The sites on the genome corresponding to the 5' ends of the transcripts were located by high-resolution nuclease S1 analysis. For late genes, the transcriptional and translational initiation sites mapped within a few nucleotides of each other, and in each case the sequence TAAATGG occurred at the start of the ORF. The extremely short leader and the absence of A or G in the -3 position, relative to the first nucleotide of the initiation codon, distinguishes the majority of vaccinia virus late genes from eucaryotic and vaccinia virus early genes.

  8. Transcription Dynamics in Living Cells.

    Science.gov (United States)

    Lenstra, Tineke L; Rodriguez, Joseph; Chen, Huimin; Larson, Daniel R

    2016-07-01

    The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that (a) transcription is heterogeneous between cells and (b) transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle. We present the techniques allowing for single-cell transcription measurements, review evidence from different organisms, and discuss how these experiments have broadened our mechanistic understanding of transcription regulation.

  9. Genetic feedback regulation of frontal cortical neuronal ensembles through activity-dependent Arc expression and dopaminergic input

    Directory of Open Access Journals (Sweden)

    Surjeet Mastwal

    2016-12-01

    Full Text Available Mental functions involve coordinated activities of specific neuronal ensembles that are embedded in complex brain circuits. Aberrant neuronal ensemble dynamics is thought to form the neurobiological basis of mental disorders. A major challenge in mental health research is to identify these cellular ensembles and determine what molecular mechanisms constrain their emergence and consolidation during development and learning. Here, we provide a perspective based on recent studies that use activity-dependent gene Arc/Arg3.1 as a cellular marker to identify neuronal ensembles and a molecular probe to modulate circuit functions. These studies have demonstrated that the transcription of Arc is activated in selective groups of frontal cortical neurons in response to specific behavioral tasks. Arc expression regulates the persistent firing of individual neurons and predicts the consolidation of neuronal ensembles during repeated learning. Therefore, the Arc pathway represents a prototypical example of activity-dependent genetic feedback regulation of neuronal ensembles. The activation of this pathway in the frontal cortex starts during early postnatal development and requires dopaminergic input. Conversely, genetic disruption of Arc leads to a hypoactive mesofrontal dopamine circuit and its related cognitive deficit. This mutual interaction suggests an auto-regulatory mechanism to amplify the impact of neuromodulators and activity-regulated genes during postnatal development. Such a mechanism may contribute to the association of mutations in dopamine and Arc pathways with neurodevelopmental psychiatric disorders. As the mesofrontal dopamine circuit shows extensive activity-dependent developmental plasticity, activity-guided modulation of dopaminergic projections or Arc ensembles during development may help to repair circuit deficits related to neuropsychiatric disorders.

  10. Geometry and dynamics of activity-dependent homeostatic regulation in neurons.

    Science.gov (United States)

    Olypher, Andrey V; Prinz, Astrid A

    2010-06-01

    To maintain activity in a functional range, neurons constantly adjust membrane excitability to changing intra- and extracellular conditions. Such activity-dependent homeostatic regulation (ADHR) is critical for normal processing of the nervous system and avoiding pathological conditions. Here, we posed a homeostatic regulation problem for the classical Morris-Lecar (ML) model. The problem was motivated by the phenomenon of the functional recovery of stomatogastric neurons in crustaceans in the absence of neuromodulation. In our study, the regulation of the ionic conductances in the ML model depended on the calcium current or the intracellular calcium concentration. We found an asymptotic solution to the problem under the assumption of slow regulation. The solution provides a full account of the regulation in the case of correlated or anticorrelated changes of the maximal conductances of the calcium and potassium currents. In particular, the solution shows how the target and parameters of the regulation determine which perturbations of the conductances can be compensated by the ADHR. In some cases, the sets of compensated initial perturbations are not convex. On the basis of our analysis we formulated specific questions for subsequent experimental and theoretical studies of ADHR.

  11. Novel activity-dependent approaches to therapeutic hypnosis and psychotherapy: the general waking trance.

    Science.gov (United States)

    Rossi, Ernest; Erickson-Klein, Roxanna; Rossi, Kathryn

    2008-10-01

    This paper presents a highly edited version of a videotape made in 1980 by Marion Moore, M.D., showing Milton H. Erickson and Moore demonstrating novel, activity-dependent approaches to hand-levitation and therapeutic hypnosis on their subject, Ernest Rossi. Erickson's naturalistic and utilization approach is described in his very direct and surprising induction in a trance challenged patient. These novel, and surprising inductions are examples of how Erickson was prescient in developing activity-dependent approaches to therapeutic hypnosis and psychotherapy several generations before modern neuroscience documented the activity-dependent molecular-genomic mechanisms of memory, learning, and behavior change. Erickson describes a case where he utilized what he called, "The General Waking Trance" when he "dared" not use an obvious hypnotic induction. It is proposed that the states of intense mental absorption and response attentiveness that are facilitated by the general waking trance are functionally related to the three conditions neuroscientists have identified as novelty, enrichment, and exercise (both mental and physical), which can turn on activity-dependent gene expression and activity-dependent brain plasticity, that are the molecular-genomic and neural basis ofmemory, learning, consciousness, and behavior change. We recommend that the next step in investigating the efficacy of therapeutic hypnosis will be in partnering with neuroscientists to explore the possibilities and limitations of utilizing the activity-dependent approaches to hypnotic induction and the general waking trance in facilitating activity-dependent gene expression and brain plasticity.

  12. The Evaluation and Comparison of Transcriptionally Targeted Noxa and Puma Killer Genes to Initiate Apoptosis Under Cancer-Specific Promoter CXCR1 in Hepatocarcinoma Gene Therapy

    Directory of Open Access Journals (Sweden)

    Khoshtinat Nikkhoi

    2016-09-01

    Full Text Available Background Cancerous cells proliferate as fast as possible without a proper surveillance system. This rapid cell division leads to enormous mutation rates, which help a tumor establish. Objectives This study evaluated the potential of inducing apoptosis using Noxa and Puma in a hepatocarcinoma cell line. Methods The current study generated two recombinant lentiviruses, pLEX-GCN and pLEX-GCP, bearing Noxa and Puma, respectively. Transduction of both genes to hepatocarcinoma (HepG2 was verified using fluorescent microscopic analysis, western blotting, and quantitative real-time polymerase chain reaction (PCR. To evaluate the potential of Noxa and Puma to initiate apoptosis, a caspase-9 real-time, MTT assay, and a 4’, 6-diamidino-2-phenylindole (DAPI reagent were performed to stain apoptotic cells. Results The data verified successful transduction to HepG2 and HEK293T. Higher relative expression of Noxa and Puma rather than the untransduced cell line showed these genes are expressed more in HepG2 in comparison to HEK293T. The results of the real-time PCR, MTT assay, and DAPI reagent illustrated that higher cells initiated apoptosis following Puma transduction rather than Noxa. Conclusions In this approach, the suicide gene was transferred to transformed cells and ignited apoptosis to exterminate them. Puma is a more potent killer gene and has higher capabilities to start intrinsic apoptosis pathway.

  13. Active dependency.

    Science.gov (United States)

    Bornstein, R F

    1995-02-01

    Although dependency has long been associated with passivity, weakness, and submissiveness, a review of the empirical literature reveals that, in certain situations and settings, dependent persons actually exhibit a variety of active, assertive behaviors. In this article, I: a) trace the historical roots of the dependency-passivity link; b) review empirical studies from developmental, social, and clinical psychology which indicate that, in certain circumstances, dependency is associated with active, assertive behavior on the part of the dependent person; c) offer an alternative conceptual model of dependency that accounts for the entire range of behaviors-both passive and active-that are exhibited by the dependent person; and d) discuss the diagnostic and therapeutic implications of this alternative conceptual model of dependency.

  14. ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons.

    Science.gov (United States)

    Noh, Kyung-Min; Maze, Ian; Zhao, Dan; Xiang, Bin; Wenderski, Wendy; Lewis, Peter W; Shen, Li; Li, Haitao; Allis, C David

    2015-06-02

    ATRX (the alpha thalassemia/mental retardation syndrome X-linked protein) is a member of the switch2/sucrose nonfermentable2 (SWI2/SNF2) family of chromatin-remodeling proteins and primarily functions at heterochromatic loci via its recognition of "repressive" histone modifications [e.g., histone H3 lysine 9 tri-methylation (H3K9me3)]. Despite significant roles for ATRX during normal neural development, as well as its relationship to human disease, ATRX function in the central nervous system is not well understood. Here, we describe ATRX's ability to recognize an activity-dependent combinatorial histone modification, histone H3 lysine 9 tri-methylation/serine 10 phosphorylation (H3K9me3S10ph), in postmitotic neurons. In neurons, this "methyl/phos" switch occurs exclusively after periods of stimulation and is highly enriched at heterochromatic repeats associated with centromeres. Using a multifaceted approach, we reveal that H3K9me3S10ph-bound Atrx represses noncoding transcription of centromeric minor satellite sequences during instances of heightened activity. Our results indicate an essential interaction between ATRX and a previously uncharacterized histone modification in the central nervous system and suggest a potential role for abnormal repetitive element transcription in pathological states manifested by ATRX dysfunction.

  15. Transcription factories

    Science.gov (United States)

    Rieder, Dietmar; Trajanoski, Zlatko; McNally, James G.

    2012-01-01

    There is considerable evidence that transcription does not occur homogeneously or diffusely throughout the nucleus, but rather at a number of specialized, discrete sites termed transcription factories. The factories are composed of ~4–30 RNA polymerase molecules, and are associated with many other molecules involved in transcriptional activation and mRNA processing. Some data suggest that the polymerase molecules within a factory remain stationary relative to the transcribed DNA, which is thought to be reeled through the factory site. There is also some evidence that transcription factories could help organize chromatin and nuclear structure, contributing to both the formation of chromatin loops and the clustering of active and co-regulated genes. PMID:23109938

  16. Pervasive transcription: detecting functional RNAs in bacteria.

    Science.gov (United States)

    Lybecker, Meghan; Bilusic, Ivana; Raghavan, Rahul

    2014-01-01

    Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.

  17. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models

    Directory of Open Access Journals (Sweden)

    Caleb Andrew Doll

    2014-02-01

    Full Text Available Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent developmental processes are specifically impaired in autism spectrum disorders (ASDs. ASD genetic models in both mouse and Drosophila have pioneered our insights into normal activity-dependent neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic Fragile X syndrome (FXS, a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in activity-dependent critical period processes. The Fragile X Mental Retardation Protein (FMRP is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the activity-dependent remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor activity-dependent processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of activity-dependent mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model.

  18. The down-stream effects of mannan-induced lectin complement pathway activation depend quantitatively on alternative pathway amplification

    DEFF Research Database (Denmark)

    Harboe, Morten; Garred, Peter; Karlstrøm, Ellen

    2009-01-01

    was not observed even at high mannan concentrations since addition of the inhibiting anti-MBL mAb 3F8 completely abolished generation of the terminal C5b-9 complex (TCC). However, selective blockade of AP by anti-factor D inhibited more than 80% of TCC release into the fluid phase after LP activation showing...... that AP amplification is quantitatively responsible for the final effect of initial specific LP activation. TCC generation on the solid phase was distinctly but less inhibited by anti-fD. C2 bypass of the LP pathway could be demonstrated, and AP amplification was also essential during C2 bypass in LP...... as shown by complete inhibition of TCC generation in C2-deficient serum by anti-fD and anti-properdin antibodies. In conclusion, the down-stream effect of LP activation depends strongly on AP amplification in normal human serum and in the C2 bypass pathway....

  19. A unified model for yeast transcript definition.

    Science.gov (United States)

    de Boer, Carl G; van Bakel, Harm; Tsui, Kyle; Li, Joyce; Morris, Quaid D; Nislow, Corey; Greenblatt, Jack F; Hughes, Timothy R

    2014-01-01

    Identifying genes in the genomic context is central to a cell's ability to interpret the genome. Yet, in general, the signals used to define eukaryotic genes are poorly described. Here, we derived simple classifiers that identify where transcription will initiate and terminate using nucleic acid sequence features detectable by the yeast cell, which we integrate into a Unified Model (UM) that models transcription as a whole. The cis-elements that denote where transcription initiates function primarily through nucleosome depletion, and, using a synthetic promoter system, we show that most of these elements are sufficient to initiate transcription in vivo. Hrp1 binding sites are the major characteristic of terminators; these binding sites are often clustered in terminator regions and can terminate transcription bidirectionally. The UM predicts global transcript structure by modeling transcription of the genome using a hidden Markov model whose emissions are the outputs of the initiation and termination classifiers. We validated the novel predictions of the UM with available RNA-seq data and tested it further by directly comparing the transcript structure predicted by the model to the transcription generated by the cell for synthetic DNA segments of random design. We show that the UM identifies transcription start sites more accurately than the initiation classifier alone, indicating that the relative arrangement of promoter and terminator elements influences their function. Our model presents a concrete description of how the cell defines transcript units, explains the existence of nongenic transcripts, and provides insight into genome evolution.

  20. Evolution and diversification of the basal transcription machinery.

    Science.gov (United States)

    Duttke, Sascha H C

    2015-03-01

    Transcription initiation was once thought to be regulated primarily by sequence-specific transcription factors with the basal transcription machinery being largely invariant. Gradually it became apparent that the basal transcription machinery greatly diversified during evolution and new studies now demonstrate that diversification of the TATA-binding protein (TBP) family yielded specialized and largely independent transcription systems.

  1. Structural basis of transcription activation.

    Science.gov (United States)

    Feng, Yu; Zhang, Yu; Ebright, Richard H

    2016-06-10

    Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme. Copyright © 2016, American Association for the Advancement of Science.

  2. Reduced activity-dependent protein levels in a mouse model of the fragile X premutation

    NARCIS (Netherlands)

    R.E. von Leden (Ramona); L.C. Curley (Lindsey); G.D. Greenberg (Gian); M.R. Hunsaker (Michael); R. Willemsen (Rob); R.F. Berman (Robert)

    2014-01-01

    textabstractEnvironmental enrichment results in increased levels of Fmrp in brain and increased dendritic complexity. The present experiment evaluated activity-dependent increases in Fmrp levels in the motor cortex in response to training on a skilled forelimb reaching task in the CGG KI mouse model

  3. Activity-Dependent NPAS4 Expression and the Regulation of Gene Programs Underlying Plasticity in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    José Fernando Maya-Vetencourt

    2013-01-01

    Full Text Available The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable.

  4. Activity-Dependent NPAS4 Expression and the Regulation of Gene Programs Underlying Plasticity in the Central Nervous System

    Science.gov (United States)

    2013-01-01

    The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable. PMID:24024041

  5. Activity-dependent BDNF release and TRPC signaling is impaired in hippocampal neurons of Mecp2 mutant mice.

    Science.gov (United States)

    Li, Wei; Calfa, Gaston; Larimore, Jennifer; Pozzo-Miller, Lucas

    2012-10-16

    Dysfunction of the neurotrophin brain-derived neurotrophic factor (BDNF) is implicated in Rett syndrome (RTT), but the state of its releasable pool and downstream signaling in mice lacking methyl-CpG-binding protein-2 (Mecp2) is unknown. Here, we show that membrane currents and dendritic Ca(2+) signals evoked by recombinant BDNF or an activator of diacylglycerol (DAG)-sensitive transient receptor potential canonical (TRPC) channels are impaired in CA3 pyramidal neurons of symptomatic Mecp2 mutant mice. TRPC3 and TRPC6 mRNA and protein levels are lower in Mecp2 mutant hippocampus, and chromatin immunoprecipitation (ChIP) identified Trpc3 as a target of MeCP2 transcriptional regulation. BDNF mRNA and protein levels are also lower in Mecp2 mutant hippocampus and dentate gyrus granule cells, which is reflected in impaired activity-dependent release of endogenous BDNF estimated from TRPC currents and dendritic Ca(2+) signals in CA3 pyramidal neurons. These results identify the gene encoding TRPC3 channels as a MeCP2 target and suggest a potential therapeutic strategy to boost impaired BDNF signaling in RTT.

  6. The emerging regulatory potential of SCFMet30 -mediated polyubiquitination and proteolysis of the Met4 transcriptional activator

    Directory of Open Access Journals (Sweden)

    Chandrasekaran Srikripa

    2008-07-01

    Full Text Available Abstract The yeast SCFMet30 ubiquitin ligase plays a critical role in cell division by regulating the Met4 transcriptional activator of genes that control the uptake and assimilation of sulfur into methionine and S-adenosyl-methionine. The initial view on how SCFMet30 performs its function has been driven by the assumption that SCFMet30 acts exclusively as Met4 inhibitor when high levels of methionine drive an accumulation of cysteine. We revisit this model in light of the growing evidence that SCFMet30 can also activate Met4. The notion that Met4 can be inhibited or activated depending on the sulfur metabolite context is not new, but for the first time both aspects have been linked to SCFMet30, creating an interesting regulatory paradigm in which polyubiquitination and proteolysis of a single transcriptional activator can play different roles depending on context. We discuss the emerging molecular basis and the implications of this new regulatory phenomenon.

  7. Transcription elongation

    Science.gov (United States)

    Imashimizu, Masahiko; Shimamoto, Nobuo; Oshima, Taku; Kashlev, Mikhail

    2014-01-01

    Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity. PMID:25764114

  8. Activity-Dependent Callosal Axon Projections in Neonatal Mouse Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Yoshiaki Tagawa

    2012-01-01

    Full Text Available Callosal axon projections are among the major long-range axonal projections in the mammalian brain. They are formed during the prenatal and early postnatal periods in the mouse, and their development relies on both activity-independent and -dependent mechanisms. In this paper, we review recent findings about the roles of neuronal activity in callosal axon projections. In addition to the well-documented role of sensory-driven neuronal activity, recent studies using in utero electroporation demonstrated an essential role of spontaneous neuronal activity generated in neonatal cortical circuits. Both presynaptic and postsynaptic neuronal activities are critically involved in the axon development. Studies have begun to reveal intracellular signaling pathway which works downstream of neuronal activity. We also review several distinct patterns of neuronal activity observed in the developing cerebral cortex, which might play roles in activity-dependent circuit construction. Such neuronal activity during the neonatal period can be disrupted by genetic factors, such as mutations in ion channels. It has been speculated that abnormal activity caused by such factors may affect activity-dependent circuit construction, leading to some developmental disorders. We discuss a possibility that genetic mutation in ion channels may impair callosal axon projections through an activity-dependent mechanism.

  9. Brain-derived neurotrophic factor activation of NFAT (nuclear factor of activated T-cells)-dependent transcription: a role for the transcription factor NFATc4 in neurotrophin-mediated gene expression.

    Science.gov (United States)

    Groth, Rachel D; Mermelstein, Paul G

    2003-09-03

    A member of the neurotrophin family, brain-derived neurotrophic factor (BDNF) regulates neuronal survival and differentiation during development. Within the adult brain, BDNF is also important in neuronal adaptive processes, such as the activity-dependent plasticity that underlies learning and memory. These long-term changes in synaptic strength are mediated through alterations in gene expression. However, many of the mechanisms by which BDNF is linked to transcriptional and translational regulation remain unknown. Recently, the transcription factor NFATc4 (nuclear factor of activated T-cells isoform 4) was discovered in neurons, where it is believed to play an important role in long-term changes in neuronal function. Interestingly, NFATc4 is particularly sensitive to the second messenger systems activated by BDNF. Thus, we hypothesized that NFAT-dependent transcription may be an important mediator of BDNF-induced plasticity. In cultured rat CA3-CA1 hippocampal neurons, BDNF activated NFAT-dependent transcription via TrkB receptors. Inhibition of calcineurin blocked BDNF-induced nuclear translocation of NFATc4, thus preventing transcription. Further, phospholipase C was a critical signaling intermediate between BDNF activation of TrkB and the initiation of NFAT-dependent transcription. Both inositol 1,4,5-triphosphate (IP3)-mediated release of calcium from intracellular stores and activation of protein kinase C were required for BDNF-induced NFAT-dependent transcription. Finally, increased expression of IP3 receptor 1 and BDNF after neuronal exposure to BDNF was linked to NFAT-dependent transcription. These results suggest that NFATc4 plays a crucial role in neurotrophin-mediated synaptic plasticity.

  10. Transcription regulation mechanisms of bacteriophages

    Science.gov (United States)

    Yang, Haiquan; Ma, Yingfang; Wang, Yitian; Yang, Haixia; Shen, Wei; Chen, Xianzhong

    2014-01-01

    Phage diversity significantly contributes to ecology and evolution of new bacterial species through horizontal gene transfer. Therefore, it is essential to understand the mechanisms underlying phage-host interactions. After initial infection, the phage utilizes the transcriptional machinery of the host to direct the expression of its own genes. This review presents a view on the transcriptional regulation mechanisms of bacteriophages, and its contribution to phage diversity and classification. Through this review, we aim to broaden the understanding of phage-host interactions while providing a reference source for researchers studying the regulation of phage transcription. PMID:25482231

  11. Deciphering Transcriptional Regulation

    DEFF Research Database (Denmark)

    Valen, Eivind

    RNA); and ii) translation, in which the mRNA is translated into a protein. This thesis focus on the ¿rst of these steps, transcription, and speci¿cally the initiation of this. Simpli¿ed, initiation is preceded by the binding of several proteins, known as transcription factors (TFs), to DNA. This takes place......The myriad of cells in the human body are all made from the same blueprint: the human genome. At the heart of this diversity lies the concept of gene regulation, the process in which it is decided which genes are used where and when. Genes do not function as on/off buttons, but more like a volume...... control spanning the range from completely muted to cranked up to maximum. The volume, in this case, is the production rate of proteins. This production is the result of a two step procedure: i) transcription, in which a small part of DNA from the genome (a gene) is transcribed into an RNA molecule (an m...

  12. Structural basis of eukaryotic gene transcription.

    Science.gov (United States)

    Boeger, Hinrich; Bushnell, David A; Davis, Ralph; Griesenbeck, Joachim; Lorch, Yahli; Strattan, J Seth; Westover, Kenneth D; Kornberg, Roger D

    2005-02-07

    An RNA polymerase II promoter has been isolated in transcriptionally activated and repressed states. Topological and nuclease digestion analyses have revealed a dynamic equilibrium between nucleosome removal and reassembly upon transcriptional activation, and have further shown that nucleosomes are removed by eviction of histone octamers rather than by sliding. The promoter, once exposed, assembles with RNA polymerase II, general transcription factors, and Mediator in a approximately 3 MDa transcription initiation complex. X-ray crystallography has revealed the structure of RNA polymerase II, in the act of transcription, at atomic resolution. Extension of this analysis has shown how nucleotides undergo selection, polymerization, and eventual release from the transcribing complex. X-ray and electron crystallography have led to a picture of the entire transcription initiation complex, elucidating the mechanisms of promoter recognition, DNA unwinding, abortive initiation, and promoter escape.

  13. Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors.

    Science.gov (United States)

    Palmer, Adam C; Egan, J Barry; Shearwin, Keith E

    2011-01-01

    Transcriptional interference is the in cis suppression of one transcriptional process by another. Mathematical modeling shows that promoter occlusion by elongating RNA polymerases cannot produce strong interference. Interference may instead be generated by (1) dislodgement of slow-to-assemble pre-initiation complexes and transcription factors and (2) prolonged occlusion by paused RNA polymerases.

  14. Early survival factor deprivation in the olfactory epithelium enhances activity-dependent survival

    Directory of Open Access Journals (Sweden)

    Adrien eFrançois

    2013-12-01

    Full Text Available The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs. However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226. We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population towards detection of environmental odorants.

  15. Novel marker for the onset of frontotemporal dementia: early increase in activity-dependent neuroprotective protein (ADNP in the face of Tau mutation.

    Directory of Open Access Journals (Sweden)

    Yulie Schirer

    Full Text Available Tauopathy, a major pathology in Alzheimer's disease, is also found in ~50% of frontotemporal dementias (FTDs. Tau transcript, a product of a single gene, undergoes alternative splicing to yield 6 protein species, each with either 3 or 4 microtubule binding repeat domains (tau 3R or 4R, associated with dynamic and stable microtubules, respectively. While the healthy human brain shows a 1/1 ratio of tau 3R/4R, this ratio may be dramatically changed in the FTD brain. We have previously discovered that activity-dependent neuroprotective protein (ADNP is essential for brain formation in the mouse, with ADNP+/- mice exhibiting tauopathy, age-driven neurodegeneration and behavioral deficits. Here, in transgenic mice overexpressing a mutated tau 4R species, in the cerebral cortex but not in the cerebellum, we showed significantly increased ADNP expression (~3-fold transcripts in the cerebral cortex of young transgenic mice (~disease onset, but not in the cerebellum, as compared to control littermates. The transgene-age-related increased ADNP expression paralleled augmented dynamic tau 3R transcript level compared to control littermates. Blocking mutated tau 4R transgene expression resulted in normalization of ADNP and tau 3R expression. ADNP was previously shown to be a member of the SWItch/Sucrose NonFermentable (SWI/SNF chromatin remodeling complex. Here, Brahma (Brm, a component of the SWI/SNF complex regulating alternative splicing, showed a similar developmental expression pattern to ADNP. Immunoprecipitations further suggested Brm-ADNP interaction coupled to ADNP - polypyrimidine tract-binding protein (PTB-associated splicing factor (PSF-binding, with PSF being a direct regulator of tau transcript splicing. It should be noted that although we have shown a correlation between levels of ADNP and tau isoform expression three months of age, we are not presenting evidence of a direct link between the two. Future research into ADNP/tau relations is

  16. Structural insights into transcription complexes

    NARCIS (Netherlands)

    Berger, I.; Blanco, A.G.; Boelens, R.; Cavarelli, J.; Coll, M.; Folkers, G.E.; Nie, Y.; Pogenberg, V.; Schultz, P.; Wilmanns, M.; Moras, D.; Poterszman, A.

    2011-01-01

    Control of transcription allows the regulation of cell activity in response to external stimuli and research in the field has greatly benefited from efforts in structural biology. In this review, based on specific examples from the European SPINE2-COMPLEXES initiative, we illustrate the impact of

  17. VAMP4 Is an Essential Cargo Molecule for Activity-Dependent Bulk Endocytosis.

    Science.gov (United States)

    Nicholson-Fish, Jessica C; Kokotos, Alexandros C; Gillingwater, Thomas H; Smillie, Karen J; Cousin, Michael A

    2015-12-02

    The accurate formation of synaptic vesicles (SVs) and incorporation of their protein cargo during endocytosis is critical for the maintenance of neurotransmission. During intense neuronal activity, a transient and acute accumulation of SV cargo occurs at the plasma membrane. Activity-dependent bulk endocytosis (ADBE) is the dominant SV endocytosis mode under these conditions; however, it is currently unknown how ADBE mediates cargo retrieval. We examined the retrieval of different SV cargo molecules during intense stimulation using a series of genetically encoded pH-sensitive reporters in neuronal cultures. The retrieval of only one reporter, VAMP4-pHluorin, was perturbed by inhibiting ADBE. This selective recovery was confirmed by the enrichment of endogenous VAMP4 in purified bulk endosomes formed by ADBE. VAMP4 was also essential for ADBE, with a cytoplasmic di-leucine motif being critical for this role. Therefore, VAMP4 is the first identified ADBE cargo and is essential for this endocytosis mode to proceed.

  18. Slow State Transitions of Sustained Neural Oscillations by Activity-Dependent Modulation of Intrinsic Excitability

    Science.gov (United States)

    Fröhlich, Flavio; Bazhenov, Maxim; Timofeev, Igor; Steriade, Mircea; Sejnowski, Terrence J.

    2010-01-01

    Little is known about the dynamics and mechanisms of transitions between tonic firing and bursting in cortical networks. Here, we use a computational model of a neocortical circuit with extracellular potassium dynamics to show that activity-dependent modulation of intrinsic excitability can lead to sustained oscillations with slow transitions between two distinct firing modes: fast run (tonic spiking or fast bursts with few spikes) and slow bursting. These transitions are caused by a bistability with hysteresis in a pyramidal cell model. Balanced excitation and inhibition stabilizes a network of pyramidal cells and inhibitory interneurons in the bistable region and causes sustained periodic alternations between distinct oscillatory states. During spike-wave seizures, neocortical paroxysmal activity exhibits qualitatively similar slow transitions between fast run and bursting. We therefore predict that extracellular potassium dynamics can cause alternating episodes of fast and slow oscillatory states in both normal and epileptic neocortical networks. PMID:16763023

  19. Activity-dependent increase of the AHP amplitude in T sensory neurons of the leech.

    Science.gov (United States)

    Scuri, Rossana; Mozzachiodi, Riccardo; Brunelli, Marcello

    2002-11-01

    We identified a new form of activity-dependent modulation of the afterhyperpolarization (AHP) in tactile (T) sensory neurons of the leech Hirudo medicinalis. Repetitive intracellular stimulation with 30 trains of depolarizing impulses at 15-s inter-stimulus interval (ISI) led to an increase of the AHP amplitude (~60% of the control). The enhancement of AHP lasted for >/=15 min. The AHP increase was also elicited when a T neuron was activated by repetitive stimulation of its receptive field. The ISI was a critical parameter for the induction and maintenance of AHP enhancement. ISI duration had to fit within a time window with the upper limit of 20 s to make the training effective to induce an enhancement of the AHP amplitude. After recovery from potentiation, AHP amplitude could be enhanced once again by delivering another training session. The increase of AHP amplitude persisted in high Mg(2+) saline, suggesting an intrinsic cellular mechanism for its induction. Previous investigations reported that AHP of leech T neurons was mainly due to the activity of the Na(+)/K(+) ATPase and to a Ca(2+)-dependent K(+) current (I(K/Ca)). In addition, it has been demonstrated that serotonin (5HT) reduces AHP amplitude through the inhibition of the Na(+)/K(+) ATPase. By blocking the I(K/Ca) with pharmacological agents, such as cadmium and apamin, we still observed an increase of the AHP amplitude after repetitive stimulation, whereas 5HT application completely inhibited the AHP increment. These data indicate that the Na(+)/K(+) ATPase is involved in the induction and maintenance of the AHP increase after repetitive stimulation. Moreover, the AHP increase was affected by the level of serotonin in the CNS. Finally, the increase of the AHP amplitude produced a lasting depression of the synaptic connection between two T neurons, suggesting that this activity-dependent phenomenon might be involved in short-term plasticity associated with learning processes.

  20. Activity-dependent modulation of inhibitory synaptic kinetics in the cochlear nucleus

    Directory of Open Access Journals (Sweden)

    Jana eNerlich

    2014-12-01

    Full Text Available Spherical bushy cells (SBCs in the anteroventral cochlear nucleus respond to acoustic stimulation with discharges that precisely encode the phase of low-frequency sound. The accuracy of spiking is crucial for sound localization and speech perception. Compared to the auditory nerve input, temporal precision of SBC spiking is improved through the engagement of acoustically evoked inhibition. Recently, the inhibition was shown to be less precise than previously understood. It shifts from predominantly glycinergic to synergistic GABA/glycine transmission in an activity-dependent manner. Concurrently, the inhibition attains a tonic character through temporal summation. The present study provides a comprehensive understanding of the mechanisms underlying this slow inhibitory input. We performed whole-cell voltage clamp recordings on SBCs from juvenile Mongolian gerbils and recorded evoked inhibitory postsynaptic currents (IPSCs at physiological rates. The data reveal activity-dependent IPSC kinetics, i.e. the decay is slowed with increased input rates or recruitment. Lowering the release probability yielded faster decay kinetics of the single- and short train-IPSCs at 100Hz, suggesting that transmitter quantity plays an important role in controlling the decay. Slow transmitter clearance from the synaptic cleft caused prolonged receptor binding and, in the case of glycine, spillover to nearby synapses. The GABAergic component prolonged the decay by contributing to the asynchronous vesicle release depending on the input rate. Hence, the different factors controlling the amount of transmitters in the synapse jointly slow the inhibition during physiologically relevant activity. Taken together, the slow time course is predominantly determined by the receptor kinetics and transmitter clearance during short stimuli, whereas long duration or high frequency stimulation additionally engage asynchronous release to prolong IPSCs.

  1. Harnessing transcription for bioproduction in cyanobacteria

    DEFF Research Database (Denmark)

    Stensjö, Karin; Vavitsas, Konstantinos; Tyystjärvi, Taina

    2017-01-01

    of cyanobacteria. A wide variety of expression systems will be required to adjust both the expression of heterologous enzyme(s) and metabolic routes to the best possible balance, allowing the optimal production of a particular substance. In bacteria, transcription, especially the initiation of transcription, has...... a central role in adjusting gene expression and thus also metabolic fluxes of cells according to environmental cues. Here we summarize the recent progress in developing tools for efficient cyanofactories, focusing especially on transcriptional regulation....

  2. Control and signal processing by transcriptional interference

    OpenAIRE

    2009-01-01

    A transcriptional activator can suppress gene expression by interfering with transcription initiated by another activator. Transcriptional interference has been increasingly recognized as a regulatory mechanism of gene expression. The signals received by the two antagonistically acting activators are combined by the polymerase trafficking along the DNA. We have designed a dual-control genetic system in yeast to explore this antagonism systematically. Antagonism by an upstream activator bears ...

  3. HP1 recruits activity-dependent neuroprotective protein to H3K9me3 marked pericentromeric heterochromatin for silencing of major satellite repeats.

    Directory of Open Access Journals (Sweden)

    Kerstin Mosch

    Full Text Available H3 lysine 9 trimethylation (H3K9me3 is a histone posttranslational modification (PTM that has emerged as hallmark of pericentromeric heterochromatin. This constitutive chromatin domain is composed of repetitive DNA elements, whose transcription is differentially regulated. Mammalian cells contain three HP1 proteins, HP1α, HP1β and HP1γ These have been shown to bind to H3K9me3 and are thought to mediate the effects of this histone PTM. However, the mechanisms of HP1 chromatin regulation and the exact functional role at pericentromeric heterochromatin are still unclear. Here, we identify activity-dependent neuroprotective protein (ADNP as an H3K9me3 associated factor. We show that ADNP does not bind H3K9me3 directly, but that interaction is mediated by all three HP1 isoforms in vitro. However, in cells ADNP localization to areas of pericentromeric heterochromatin is only dependent on HP1α and HP1β. Besides a PGVLL sequence patch we uncovered an ARKS motif within the ADNP homeodomain involved in HP1 dependent H3K9me3 association and localization to pericentromeric heterochromatin. While knockdown of ADNP had no effect on HP1 distribution and heterochromatic histone and DNA modifications, we found ADNP silencing major satellite repeats. Our results identify a novel factor in the translation of H3K9me3 at pericentromeric heterochromatin that regulates transcription.

  4. SCN10A Mutation in a Patient with Erythromelalgia Enhances C-Fiber Activity Dependent Slowing.

    Science.gov (United States)

    Kist, Andreas M; Sagafos, Dagrun; Rush, Anthony M; Neacsu, Cristian; Eberhardt, Esther; Schmidt, Roland; Lunden, Lars Kristian; Ørstavik, Kristin; Kaluza, Luisa; Meents, Jannis; Zhang, Zhiping; Carr, Thomas Hedley; Salter, Hugh; Malinowsky, David; Wollberg, Patrik; Krupp, Johannes; Kleggetveit, Inge Petter; Schmelz, Martin; Jørum, Ellen; Lampert, Angelika; Namer, Barbara

    2016-01-01

    Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by microneurography and patch-clamp techniques. Recordings of the patient's peripheral nerve fibers showed increased activity dependent slowing (ADS) in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations. To evaluate the impact of the p.M650K mutation on neuronal firing and channel gating, we performed current and voltage-clamp recordings on transfected sensory neurons (DRGs) and neuroblastoma cells. The p.M650K mutation shifted steady-state fast inactivation of Nav1.8 to more hyperpolarized potentials and did not significantly alter any other tested gating behaviors. The AP half-width was significantly broader and the stimulated action potential firing rate was reduced for M650K transfected DRGs compared to WT. We discuss the potential link between enhanced steady state fast inactivation, broader action potential width and the potential physiological consequences.

  5. Activity-dependent upregulation of presynaptic kainate receptors at immature CA3-CA1 synapses.

    Science.gov (United States)

    Clarke, Vernon R J; Molchanova, Svetlana M; Hirvonen, Teemu; Taira, Tomi; Lauri, Sari E

    2014-12-10

    Presynaptic kainate-type glutamate receptors (KARs) regulate glutamate release probability and short-term plasticity in various areas of the brain. Here we show that long-term depression (LTD) in the area CA1 of neonatal rodent hippocampus is associated with an upregulation of tonic inhibitory KAR activity, which contributes to synaptic depression and causes a pronounced increase in short-term facilitation of transmission. This increased KAR function was mediated by high-affinity receptors and required activation of NMDA receptors, nitric oxide (NO) synthetase, and postsynaptic calcium signaling. In contrast, KAR activity was irreversibly downregulated in response to induction of long-term potentiation in a manner that depended on activation of the TrkB-receptor of BDNF. Both tonic KAR activity and its plasticity were restricted to early stages of synapse development and were lost in parallel with maturation of the network due to ongoing BDNF-TrkB signaling. These data show that presynaptic KARs are targets for activity-dependent modulation via diffusible messengers NO and BDNF, which enhance and depress tonic KAR activity at immature synapses, respectively. The plasticity of presynaptic KARs in the developing network allows nascent synapses to shape their response to incoming activity. In particular, upregulation of KAR function after LTD allows the synapse to preferentially pass high-frequency afferent activity. This can provide a potential rescue from synapse elimination by uncorrelated activity and also increase the computational dynamics of the developing CA3-CA1 circuitry.

  6. Activity-dependent regulation of synaptic strength by PSD-95 in CA1 neurons.

    Science.gov (United States)

    Zhang, Peng; Lisman, John E

    2012-02-01

    CaMKII and PSD-95 are the two most abundant postsynaptic proteins in the postsynaptic density (PSD). Overexpression of either can dramatically increase synaptic strength and saturate long-term potentiation (LTP). To do so, CaMKII must be activated, but the same is not true for PSD-95; expressing wild-type PSD-95 is sufficient. This raises the question of whether PSD-95's effects are simply an equilibrium process [increasing the number of AMPA receptor (AMPAR) slots] or whether activity is somehow involved. To examine this question, we blocked activity in cultured hippocampal slices with TTX and found that the effects of PSD-95 overexpression were greatly reduced. We next studied the type of receptors involved. The effects of PSD-95 were prevented by antagonists of group I metabotropic glutamate receptors (mGluRs) but not by antagonists of ionotropic glutamate receptors. The inhibition of PSD-95-induced strengthening was not simply a result of inhibition of PSD-95 synthesis. To understand the mechanisms involved, we tested the role of CaMKII. Overexpression of a CaMKII inhibitor, CN19, greatly reduced the effect of PSD-95. We conclude that PSD-95 cannot itself increase synaptic strength simply by increasing the number of AMPAR slots; rather, PSD-95's effects on synaptic strength require an activity-dependent process involving mGluR and CaMKII.

  7. Long lasting protein synthesis- and activity-dependent spine shrinkage and elimination after synaptic depression.

    Directory of Open Access Journals (Sweden)

    Yazmín Ramiro-Cortés

    Full Text Available Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that spines can undergo bidirectional physical modifications. However, it is unclear whether protein synthesis dependent synaptic depression leads to long lasting structural changes. Here, we investigate the structural correlates of protein synthesis dependent long-term depression (LTD mediated by metabotropic glutamate receptors (mGluRs through two-photon imaging of dendritic spines on hippocampal pyramidal neurons. We find that induction of mGluR-LTD leads to robust and long lasting spine shrinkage and elimination that lasts for up to 24 hours. These effects depend on signaling through group I mGluRs, require protein synthesis, and activity. These data reveal a mechanism for long lasting remodeling of synaptic inputs, and offer potential insights into mental retardation.

  8. Activity-Dependent Neurorehabilitation Beyond Physical Trainings: "Mental Exercise" Through Mirror Neuron Activation.

    Science.gov (United States)

    Yuan, Ti-Fei; Chen, Wei; Shan, Chunlei; Rocha, Nuno; Arias-Carrión, Oscar; Paes, Flávia; de Sá, Alberto Souza; Machado, Sergio

    2015-01-01

    The activity dependent brain repair mechanism has been widely adopted in many types of neurorehabilitation. The activity leads to target specific and non-specific beneficial effects in different brain regions, such as the releasing of neurotrophic factors, modulation of the cytokines and generation of new neurons in adult hood. However physical exercise program clinically are limited to some of the patients with preserved motor functions; while many patients suffered from paralysis cannot make such efforts. Here the authors proposed the employment of mirror neurons system in promoting brain rehabilitation by "observation based stimulation". Mirror neuron system has been considered as an important basis for action understanding and learning by mimicking others. During the action observation, mirror neuron system mediated the direct activation of the same group of motor neurons that are responsible for the observed action. The effect is clear, direct, specific and evolutionarily conserved. Moreover, recent evidences hinted for the beneficial effects on stroke patients after mirror neuron system activation therapy. Finally some music-relevant therapies were proposed to be related with mirror neuron system.

  9. Key physiological parameters dictate triggering of activity-dependent bulk endocytosis in hippocampal synapses.

    Directory of Open Access Journals (Sweden)

    Eva M Wenzel

    Full Text Available To maintain neurotransmission in central neurons, several mechanisms are employed to retrieve synaptically exocytosed membrane. The two major modes of synaptic vesicle (SV retrieval are clathrin-mediated endocytosis and activity-dependent bulk endocytosis (ADBE. ADBE is the dominant SV retrieval mode during intense stimulation, however the precise physiological conditions that trigger this mode are not resolved. To determine these parameters we manipulated rat hippocampal neurons using a wide spectrum of stimuli by varying both the pattern and duration of stimulation. Using live-cell fluorescence imaging and electron microscopy approaches, we established that stimulation frequency, rather than the stimulation load, was critical in the triggering of ADBE. Thus two hundred action potentials, when delivered at high frequency, were sufficient to induce near maximal bulk formation. Furthermore we observed a strong correlation between SV pool size and ability to perform ADBE. We also identified that inhibitory nerve terminals were more likely to utilize ADBE and had a larger SV recycling pool. Thus ADBE in hippocampal synaptic terminals is tightly coupled to stimulation frequency and is more likely to occur in terminals with large SV pools. These results implicate ADBE as a key modulator of both hippocampal neurotransmission and plasticity.

  10. An Evolutionarily Conserved Mechanism for Activity-dependent Visual Circuit Development

    Directory of Open Access Journals (Sweden)

    Kara Geo Pratt

    2016-10-01

    Full Text Available Neural circuit development is an activity-dependent process. This activity can be spontaneous, such as the retinal waves that course across the mammalian embryonic retina, or it can be sensory-driven, such as the activation of retinal ganglion cells by visual stimuli. Whichever the source, neural activity provides essential instruction to the developing circuit. Indeed, experimentally altering activity has been shown to impact circuit development and function in many different ways and in many different model systems. In this review we contemplate the idea that retinal waves in amniotes, the animals that develop either in ovo or utero (namely reptiles, birds, mammals could be an evolutionary adaptation to life on land, and that the anamniotes, animals whose development is entirely external (namely the aquatic amphibians and fish, do not display retinal waves, most likely because they simply don’t need them. We then review what is known about the function of both retinal waves and visual stimuli on their respective downstream targets, and predict that the experience-dependent development of the tadpole visual system is a blueprint of what will be found in future studies of the effects of spontaneous retinal waves on instructing development of retinorecipient targets such as the superior colliculus and the lateral geniculate nucleus.

  11. Accessorizing the human mitochondrial transcription machinery.

    Science.gov (United States)

    Bestwick, Megan L; Shadel, Gerald S

    2013-06-01

    The human genome comprises large chromosomes in the nucleus and mitochondrial DNA (mtDNA) housed in the dynamic mitochondrial network. Human cells contain up to thousands of copies of the double-stranded, circular mtDNA molecule that encodes essential subunits of the oxidative phosphorylation complexes and the rRNAs and tRNAs needed to translate these in the organelle matrix. Transcription of human mtDNA is directed by a single-subunit RNA polymerase, POLRMT, which requires two primary transcription factors, TFB2M (transcription factor B2, mitochondrial) and TFAM (transcription factor A, mitochondrial), to achieve basal regulation of the system. Here, we review recent advances in understanding the structure and function of the primary human transcription machinery and the other factors that facilitate steps in transcription beyond initiation and provide more intricate control over the system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The molecular basis of eucaryotic transcription.

    Science.gov (United States)

    Kornberg, R D

    2007-12-01

    Thanks to the Nobel Foundation for permission to publish this Lecture. We report here the Nobel Lecture delivered by Professor RD Kornberg describing his research in the understanding of transcription in eucaryotes. The amazing work by Professor Kornberg goes from the discovery of the nucleosome to the structural and functional studies of pol II transcription complexes. His research sheds light on fundamental molecular biology problems such as transcription initiation, fidelity of transcription, RNA release at the end of transcription, and many more. This is a beautiful report on how structural and functional studies can be combined to really understand in an accurate and detailed way how proteins combine in huge molecular complexes to regulate one of the most important cellular processes: gene transcription.

  13. Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks.

    Science.gov (United States)

    Picton, Laurence D; Nascimento, Filipe; Broadhead, Matthew J; Sillar, Keith T; Miles, Gareth B

    2017-01-25

    Ubiquitously expressed sodium pumps are best known for maintaining the ionic gradients and resting membrane potential required for generating action potentials. However, activity- and state-dependent changes in pump activity can also influence neuronal firing and regulate rhythmic network output. Here we demonstrate that changes in sodium pump activity regulate locomotor networks in the spinal cord of neonatal mice. The sodium pump inhibitor, ouabain, increased the frequency and decreased the amplitude of drug-induced locomotor bursting, effects that were dependent on the presence of the neuromodulator dopamine. Conversely, activating the pump with the sodium ionophore monensin decreased burst frequency. When more "natural" locomotor output was evoked using dorsal-root stimulation, ouabain increased burst frequency and extended locomotor episode duration, whereas monensin slowed and shortened episodes. Decreasing the time between dorsal-root stimulation, and therefore interepisode interval, also shortened and slowed activity, suggesting that pump activity encodes information about past network output and contributes to feedforward control of subsequent locomotor bouts. Using whole-cell patch-clamp recordings from spinal motoneurons and interneurons, we describe a long-duration (∼60 s), activity-dependent, TTX- and ouabain-sensitive, hyperpolarization (∼5 mV), which is mediated by spike-dependent increases in pump activity. The duration of this dynamic pump potential is enhanced by dopamine. Our results therefore reveal sodium pumps as dynamic regulators of mammalian spinal motor networks that can also be affected by neuromodulatory systems. Given the involvement of sodium pumps in movement disorders, such as amyotrophic lateral sclerosis and rapid-onset dystonia parkinsonism, knowledge of their contribution to motor network regulation also has considerable clinical importance.

  14. Eph receptors are involved in the activity-dependent synaptic wiring in the mouse cerebellar cortex.

    Directory of Open Access Journals (Sweden)

    Roberta Cesa

    Full Text Available Eph receptor tyrosine kinases are involved in many cellular processes. In the developing brain, they act as migratory and cell adhesive cues while in the adult brain they regulate dendritic spine plasticity. Here we show a new role for Eph receptor signalling in the cerebellar cortex. Cerebellar Purkinje cells are innervated by two different excitatory inputs. The climbing fibres contact the proximal dendritic domain of Purkinje cells, where synapse and spine density is low; the parallel fibres contact the distal dendritic domain, where synapse and spine density is high. Interestingly, Purkinje cells have the intrinsic ability to generate a high number of spines over their entire dendritic arborisations, which can be innervated by the parallel fibres. However, the climbing fibre input continuously exerts an activity-dependent repression on parallel fibre synapses, thus confining them to the distal Purkinje cell dendritic domain. Such repression persists after Eph receptor activation, but is overridden by Eph receptor inhibition with EphA4/Fc in neonatal cultured cerebellar slices as well as mature acute cerebellar slices, following in vivo infusion of the EphA4/Fc inhibitor and in EphB receptor-deficient mice. When electrical activity is blocked in vivo by tetrodotoxin leading to a high spine density in Purkinje cell proximal dendrites, stimulation of Eph receptor activation recapitulates the spine repressive effects of climbing fibres. These results suggest that Eph receptor signalling mediates the repression of spine proliferation induced by climbing fibre activity in Purkinje cell proximal dendrites. Such repression is necessary to maintain the correct architecture of the cerebellar cortex.

  15. Stochastically gating ion channels enable patterned spike firing through activity-dependent modulation of spike probability.

    Directory of Open Access Journals (Sweden)

    Joshua T Dudman

    2009-02-01

    Full Text Available The transformation of synaptic input into patterns of spike output is a fundamental operation that is determined by the particular complement of ion channels that a neuron expresses. Although it is well established that individual ion channel proteins make stochastic transitions between conducting and non-conducting states, most models of synaptic integration are deterministic, and relatively little is known about the functional consequences of interactions between stochastically gating ion channels. Here, we show that a model of stellate neurons from layer II of the medial entorhinal cortex implemented with either stochastic or deterministically gating ion channels can reproduce the resting membrane properties of stellate neurons, but only the stochastic version of the model can fully account for perithreshold membrane potential fluctuations and clustered patterns of spike output that are recorded from stellate neurons during depolarized states. We demonstrate that the stochastic model implements an example of a general mechanism for patterning of neuronal output through activity-dependent changes in the probability of spike firing. Unlike deterministic mechanisms that generate spike patterns through slow changes in the state of model parameters, this general stochastic mechanism does not require retention of information beyond the duration of a single spike and its associated afterhyperpolarization. Instead, clustered patterns of spikes emerge in the stochastic model of stellate neurons as a result of a transient increase in firing probability driven by activation of HCN channels during recovery from the spike afterhyperpolarization. Using this model, we infer conditions in which stochastic ion channel gating may influence firing patterns in vivo and predict consequences of modifications of HCN channel function for in vivo firing patterns.

  16. Activity-dependent survival of developing neocortical neurons depends on PI3K signalling.

    Science.gov (United States)

    Wagner-Golbs, Antje; Luhmann, Heiko J

    2012-02-01

    Spontaneous electrical network activity plays a major role in the control of cell survival in the developing brain. Several intracellular pathways are implicated in transducing electrical activity into gene expression dependent and independent survival signals. These include activation of phosphatidylinositol 3-kinase (PI3K) and its downstream effector Akt, activation of Ras and subsequently MAPK/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase and signalling via calcium/calmodulin-dependent protein kinase (CaMK). In the present study, we analyzed the role of these pathways for the control of neuronal survival in different extracellular potassium concentrations ([K(+) ](ex) ). Organotypic neocortical slice cultures prepared from newborn mice were kept in 5.3, 8.0 and 25.0mM [K(+) ](ex) and treated with specific inhibitors of PI3K, MEK1, CaMKK and a broad spectrum CaMK inhibitor. After 6h of incubation, slices were immunostained for activated caspase 3 (a-caspase 3) and the number of apoptotic cells was quantified by computer based analysis. We found that in 5.3 and 8.0mM [K(+) ](ex) only PI3K was important for neuronal survival. When [K(+) ](ex) was raised to 25.0mM, a concentration above the depolarization block, we found no influence of PI3K on neuronal survival. Our data demonstrate that only the PI3K pathway, and not the MEK1, CaMKK or CaMKs pathway, plays a central role in the regulation of activity-dependent neuronal survival in the developing cerebral cortex.

  17. Synaptic vesicle exocytosis and increased cytosolic calcium are both necessary but not sufficient for activity-dependent bulk endocytosis.

    Science.gov (United States)

    Morton, Andrew; Marland, Jamie R K; Cousin, Michael A

    2015-08-01

    Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) endocytosis mode in central nerve terminals during intense neuronal activity. By definition this mode is triggered by neuronal activity; however, key questions regarding its mechanism of activation remain unaddressed. To determine the basic requirements for ADBE triggering in central nerve terminals, we decoupled SV fusion events from activity-dependent calcium influx using either clostridial neurotoxins or buffering of intracellular calcium. ADBE was monitored both optically and morphologically by observing uptake of the fluid phase markers tetramethylrhodamine-dextran and horse radish peroxidase respectively. Ablation of SV fusion with tetanus toxin resulted in the arrest of ADBE, but had no effect on other calcium-dependent events such as activity-dependent dynamin I dephosphorylation, indicating that SV exocytosis is necessary for triggering. Furthermore, the calcium chelator EGTA abolished ADBE while leaving SV exocytosis intact, demonstrating that ADBE is triggered by intracellular free calcium increases outside the active zone. Activity-dependent dynamin I dephosphorylation was also arrested in EGTA-treated neurons, consistent with its proposed role in triggering ADBE. Thus, SV fusion and increased cytoplasmic free calcium are both necessary but not sufficient individually to trigger ADBE. Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) endocytosis mode in central nerve terminals during intense neuronal activity. To determine the minimal requirements for ADBE triggering, we decoupled SV fusion events from activity-dependent calcium influx using either clostridial neurotoxins or buffering of intracellular calcium. We found that SV fusion and increased cytoplasmic free calcium are both necessary but not sufficient to trigger ADBE.

  18. Boosting transcription by transcription: enhancer-associated transcripts.

    Science.gov (United States)

    Darrow, Emily M; Chadwick, Brian P

    2013-12-01

    Enhancers are traditionally viewed as DNA sequences located some distance from a promoter that act in cis and in an orientation-independent fashion to increase utilization of specific promoters and thereby regulate gene expression. Much progress has been made over the last decade toward understanding how these distant elements interact with target promoters, but how transcription is enhanced remains an object of active inquiry. Recent reports convey the prevalence and diversity of enhancer transcription and transcripts and support both as key factors with mechanistically distinct, but not mutually exclusive roles in enhancer function. Decoupling the causes and effects of transcription on the local chromatin landscape and understanding the role of enhancer transcripts in the context of long-range interactions are challenges that require additional attention. In this review, we focus on the possible functions of enhancer transcription by highlighting several recent enhancer RNA papers and, within the context of other enhancer studies, speculate on the role of enhancer transcription in regulating differential gene expression.

  19. Transcription of Tnfaip3 is regulated by NF-κB and p38 via C/EBPβ in activated macrophages.

    Directory of Open Access Journals (Sweden)

    Ting-Yu Lai

    Full Text Available Macrophages play a pivotal role in the immune system through recognition and elimination of microbial pathogens. Toll-like receptors (TLRs on macrophages interact with microbial substances and initiate signal transduction through intracellular adapters. TLR4, which recognizes the lipopolysaccharides (LPS on Gram-positive and Gram-negative bacteria, triggers downstream signaling mediators and eventually activates IκB kinase (IKK complex and mitogen-activated protein kinases (MAPKs such as p38. Previous reports revealed that, in addition to NF-κB, a core transcription factor of the innate immune response, the induction of some LPS-induced genes in macrophages required another transcription factor whose activity depends on p38. However, these additional transcription factors remain to be identified. In order to identify p38-activated transcription factors that cooperate with NF-κB in response to LPS stimulation, microarrays were used to identify genes regulated by both NF-κB and p38 using wild-type, IKK-depleted, and p38 inhibitor-treated mouse bone marrow-derived macrophages (BMDMs. In silico analysis of transcription factor binding sites was used to predict the potential synergistic transcription factors from the co-expressed genes. Among these genes, NF-κB and C/EBPβ, a p38 downstream transcription factor, were predicted to co-regulate genes in LPS-stimulated BMDMs. Based on the subsequent results of a chromatin immunoprecipitation assay and TNFAIP3 expression in C/EBPβ-ablated macrophages, we demonstrated that Tnfaip3 is regulated by both NF-κB and p38-dependent C/EBPβ. These results identify a novel regulatory mechanism in TLR4-mediated innate immunity.

  20. Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex

    OpenAIRE

    Sakata, Kazuko; Woo, Newton H.; Martinowich, Keri; Greene, Joshua S.; Schloesser, Robert J.; Shen, Liya; Lu, Bai

    2009-01-01

    Transcription of Bdnf is controlled by multiple promoters, which drive expression of multiple transcripts encoding for the same protein. Promoter IV contributes significantly to activity-dependent brain-derived neurotrophic factor (BDNF) transcription. We have generated promoter IV mutant mice (BDNF-KIV) by inserting a GFP-STOP cassette within the Bdnf exon IV locus. This genetic manipulation results in disruption of promoter IV-mediated Bdnf expression. BDNF-KIV animals exhibited significant...

  1. Mechanistic differences in the transcriptional interpretation of local and long-range Shh morphogen signaling.

    Science.gov (United States)

    Oosterveen, Tony; Kurdija, Sanja; Alekseenko, Zhanna; Uhde, Christopher W; Bergsland, Maria; Sandberg, Magnus; Andersson, Elisabet; Dias, José M; Muhr, Jonas; Ericson, Johan

    2012-11-13

    Morphogens orchestrate tissue patterning in a concentration-dependent fashion during vertebrate embryogenesis, yet little is known of how positional information provided by such signals is translated into discrete transcriptional outputs. Here we have identified and characterized cis-regulatory modules (CRMs) of genes operating downstream of graded Shh signaling and bifunctional Gli proteins in neural patterning. Unexpectedly, we find that Gli activators have a noninstructive role in long-range patterning and cooperate with SoxB1 proteins to facilitate a largely concentration-independent mode of gene activation. Instead, the opposing Gli-repressor gradient is interpreted at transcriptional levels, and, together with CRM-specific repressive input of homeodomain proteins, comprises a repressive network that translates graded Shh signaling into regional gene expression patterns. Moreover, local and long-range interpretation of Shh signaling differs with respect to CRM context sensitivity and Gli-activator dependence, and we propose that these differences provide insight into how morphogen function may have mechanistically evolved from an initially binary inductive event.

  2. Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis Shows that WhiB Is a Transcription Factor That Cocontrols Its Regulon with WhiA To Initiate Developmental Cell Division in Streptomyces

    Directory of Open Access Journals (Sweden)

    Matthew J. Bush

    2016-04-01

    Full Text Available WhiB is the founding member of a family of proteins (the WhiB-like [Wbl] family that carry a [4Fe-4S] iron-sulfur cluster and play key roles in diverse aspects of the biology of actinomycetes, including pathogenesis, antibiotic resistance, and the control of development. In Streptomyces, WhiB is essential for the process of developmentally controlled cell division that leads to sporulation. The biochemical function of Wbl proteins has been controversial; here, we set out to determine unambiguously if WhiB functions as a transcription factor using chromatin immunoprecipitation sequencing (ChIP-seq in Streptomyces venezuelae. In the first demonstration of in vivo genome-wide Wbl binding, we showed that WhiB regulates the expression of key genes required for sporulation by binding upstream of ~240 transcription units. Strikingly, the WhiB regulon is identical to the previously characterized WhiA regulon, providing an explanation for the identical phenotypes of whiA and whiB mutants. Using ChIP-seq, we demonstrated that in vivo DNA binding by WhiA depends on WhiB and vice versa, showing that WhiA and WhiB function cooperatively to control expression of a common set of WhiAB target genes. Finally, we show that mutation of the cysteine residues that coordinate the [4Fe-4S] cluster in WhiB prevents DNA binding by both WhiB and WhiA in vivo.

  3. Geomagnetic and solar activity dependence of ionospheric upflowing O+: FAST observations

    Science.gov (United States)

    Zhao, K.; Jiang, Y.; Chen, K. W.; Huang, L. F.

    2016-09-01

    This paper investigates the dependence of the occurrence frequency of ionospheric upflowing oxygen (O+) ions on the sunspot cycle and geomagnetic activity. We examine the upflows response to the geomagnetic disturbances as well as the influence of the ion energy factor in controlling the magnitude of the occurrence frequency and the net energy flux. We discuss the spatial distribution of the upflow occurrence frequency and construct a regression model as a function of the magnetic latitude. The results show an overall enhancement of the upflow occurrence frequency during magnetically disturbed periods and indicate that the high-occurrence area spreads out from the source regions during magnetically quiet periods. The high-occurrence areas are located at 70° magnetic latitude (mLat) in the dayside auroral oval zone and between 76-80° mLat in the dayside polar cusp region. In the nightside auroral oval zone, these areas are near 60° mLat, penetrating further equatorward to 55° mLat during magnetically disturbed periods. High energy (≥1 keV) upflowing ions are common in the nightside auroral oval zone while low energy (<1 keV) upflowing ions are found escaping from the high latitude dayside cusp region. A Gaussian function is shown to be a good fit to the occurrence frequency over the magnetic latitude. For high energy upflowing O+ ions, the occurrence frequency exhibits a single peak located at about 60° mLat in the nightside auroral oval zone while for low energy upflowing O+ ions, it exhibits two peaks, one near 60° mLat in the auroral oval zone and the other near 78° mLat in the cusp region. We study the solar activity dependence by analyzing the relationship between the upflow occurrence frequency and the sunspot number (RZ). The statistical result shows that the frequency decreases with declining solar activity level, from ˜30 % at solar maximum to ˜5 % at solar minimum. In addition, the correlation coefficient between the occurrence frequency and RZ

  4. Activity-dependent increases in local oxygen consumption correlate with post-synaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Joan

    2011-01-01

    mitochondrial signaling, but whether this also occurs in the intact brain is unknown. Here we applied a pharmacological approach to dissect the effects of ionic currents and cytosolic Ca2+ rises of neuronal origin on activity-dependent rises in CMRO2. We used two-photon microscopy and current source density...

  5. Activity-dependent increases in local oxygen consumption correlate with post-synaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Joan

    2011-01-01

    Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow. Activity-dependent rises in CMRO2 fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca2+ stimulate oxidative metabolism vi...

  6. Activity-dependent increases in local oxygen consumption correlate with postsynaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Engelund

    2011-01-01

    Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF). Activity-dependent rises in CMRO(2) fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca(2+) stimulate oxidative m...

  7. Protein tyrosine phosphatase-PEST (PTP-PEST) regulates mast cell-activating signals in PTP activity-dependent and -independent manners.

    Science.gov (United States)

    Motohashi, Satoru; Koizumi, Karen; Honda, Reika; Maruyama, Atsuko; Palmer, Helen E F; Mashima, Keisuke

    2014-01-01

    Aggregation of the high-affinity IgE receptor (FcεRI) in mast cells leads to degranulation and production of numerous cytokines and lipid mediators that promote allergic inflammation. Tyrosine phosphorylation of proteins in response to FcεRI aggregation has been implicated in mast cell activation. Here, we determined the role of PTP-PEST (encoded by PTPN12) in the regulation of mast cell activation using the RBL-2H3 rat basophilic leukemia cell line as a model. PTP-PEST expression was significantly induced upon FcεRI-crosslinking, and aggregation of FcεRI induced the phosphorylation of PTP-PEST at Ser39, thus resulting in the suppression of PTP activity. By overexpressing a phosphatase-dead mutant (PTP-PEST CS) and a constitutively active mutant (PTP-PEST SA) in RBL-2H3 cells, we showed that PTP-PEST decreased degranulation and enhanced IL-4 and IL-13 transcription in FcεRI-crosslinked RBL-2H3 cells, but PTP activity of PTP-PEST was not necessary for this regulation. However, FcεRI-induced TNF-α transcription was increased by the overexpression of PTP-PEST SA and suppressed by the overexpression of PTP-PEST CS. Taken together, these results suggest that PTP-PEST is involved in the regulation of FcεRI-mediated mast cell activation through at least two different processes represented by PTP activity-dependent and -independent pathways.

  8. In Vitro Transcription Assays and Their Application in Drug Discovery.

    Science.gov (United States)

    Yang, Xiao; Ma, Cong

    2016-09-20

    In vitro transcription assays have been developed and widely used for many years to study the molecular mechanisms involved in transcription. This process requires multi-subunit DNA-dependent RNA polymerase (RNAP) and a series of transcription factors that act to modulate the activity of RNAP during gene expression. Sequencing gel electrophoresis of radiolabeled transcripts is used to provide detailed mechanistic information on how transcription proceeds and what parameters can affect it. In this paper we describe the protocol to study how the essential elongation factor NusA regulates transcriptional pausing, as well as a method to identify an antibacterial agent targeting transcription initiation through inhibition of RNAP holoenzyme formation. These methods can be used a as platform for the development of additional approaches to explore the mechanism of action of the transcription factors which still remain unclear, as well as new antibacterial agents targeting transcription which is an underutilized drug target in antibiotic research and development.

  9. Nucleic Acid Analogue Induced Transcription of Double Stranded DNA

    DEFF Research Database (Denmark)

    1998-01-01

    RNA is transcribed from a double stranded DNA template by forming a complex by hybridizing to the template at a desired transcription initiation site one or more oligonucleic acid analogues of the PNA type capable of forming a transcription initiation site with the DNA and exposing the complex...

  10. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription

    DEFF Research Database (Denmark)

    Marquardt, Sebastian; Raitskin, Oleg; Wu, Zhe

    2014-01-01

    perturbs a cotranscriptional feedback mechanism linking COOLAIR processing to FLC gene body histone demethylation and reduced FLC transcription. The importance of COOLAIR splicing in this repression mechanism was confirmed by disrupting COOLAIR production and mutating the COOLAIR proximal splice acceptor...... site. Our findings suggest that altered splicing of a long noncoding transcript can quantitatively modulate gene expression through cotranscriptional coupling mechanisms.......Antisense transcription is widespread in many genomes; however, how much is functional is hotly debated. We are investigating functionality of a set of long noncoding antisense transcripts, collectively called COOLAIR, produced at Arabidopsis FLOWERING LOCUS C (FLC). COOLAIR initiates just...

  11. Interactions of transcription factors with chromatin.

    Science.gov (United States)

    van Bakel, Harm

    2011-01-01

    Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.

  12. Activity-dependent gene expression in honey bee mushroom bodies in response to orientation flight.

    Science.gov (United States)

    Lutz, Claudia C; Robinson, Gene E

    2013-06-01

    The natural history of adult worker honey bees (Apis mellifera) provides an opportunity to study the molecular basis of learning in an ecological context. Foragers must learn to navigate between the hive and floral locations that may be up to miles away. Young pre-foragers prepare for this task by performing orientation flights near the hive, during which they begin to learn navigational cues such as the appearance of the hive, the position of landmarks, and the movement of the sun. Despite well-described spatial learning and navigation behavior, there is currently limited information on the neural basis of insect spatial learning. We found that Egr, an insect homolog of Egr-1, is rapidly and transiently upregulated in the mushroom bodies in response to orientation. This result is the first example of an Egr-1 homolog acting as a learning-related immediate-early gene in an insect and also demonstrates that honey bee orientation uses a molecular mechanism that is known to be involved in many other forms of learning. This transcriptional response occurred both in naïve bees and in foragers induced to re-orient. Further experiments suggest that visual environmental novelty, rather than exercise or memorization of specific visual cues, acts as the stimulus for Egr upregulation. Our results implicate the mushroom bodies in spatial learning and emphasize the deep conservation of Egr-related pathways in experience-dependent plasticity.

  13. Co-transcriptional splicing in two yeasts

    OpenAIRE

    Herzel, Lydia

    2015-01-01

    Cellular function and physiology are largely established through regulated gene expression. The first step in gene expression, transcription of the genomic DNA into RNA, is a process that is highly aligned at the levels of initiation, elongation and termination. In eukaryotes, protein-coding genes are exclusively transcribed by RNA polymerase II (Pol II). Upon transcription of the first 15-20 nucleotides (nt), the emerging nascent RNA 5’ end is modified with a 7-methylguanosyl cap. This is on...

  14. A unified architecture of transcriptional regulatory elements

    DEFF Research Database (Denmark)

    Andersson, Robin; Sandelin, Albin Gustav; Danko, Charles G.

    2015-01-01

    Gene expression is precisely controlled in time and space through the integration of signals that act at gene promoters and gene-distal enhancers. Classically, promoters and enhancers are considered separate classes of regulatory elements, often distinguished by histone modifications. However...... and enhancers are considered a single class of functional element, with a unified architecture for transcription initiation. The context of interacting regulatory elements and the surrounding sequences determine local transcriptional output as well as the enhancer and promoter activities of individual elements....

  15. Structural insights into transcription complexes.

    Science.gov (United States)

    Berger, Imre; Blanco, Alexandre G; Boelens, Rolf; Cavarelli, Jean; Coll, Miquel; Folkers, Gert E; Nie, Yan; Pogenberg, Vivian; Schultz, Patrick; Wilmanns, Matthias; Moras, Dino; Poterszman, Arnaud

    2011-08-01

    Control of transcription allows the regulation of cell activity in response to external stimuli and research in the field has greatly benefited from efforts in structural biology. In this review, based on specific examples from the European SPINE2-COMPLEXES initiative, we illustrate the impact of structural proteomics on our understanding of the molecular basis of gene expression. While most atomic structures were obtained by X-ray crystallography, the impact of solution NMR and cryo-electron microscopy is far from being negligible. Here, we summarize some highlights and illustrate the importance of specific technologies on the structural biology of protein-protein or protein/DNA transcription complexes: structure/function analysis of components the eukaryotic basal and activated transcription machinery with focus on the TFIID and TFIIH multi-subunit complexes as well as transcription regulators such as members of the nuclear hormone receptor families. We also discuss molecular aspects of promoter recognition and epigenetic control of gene expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. CHD chromatin remodelers and the transcription cycle.

    Science.gov (United States)

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  17. Our evolving knowledge of the transcriptional landscape.

    Science.gov (United States)

    Hume, David A

    2008-01-01

    The development of a genome-scale approach to identification of the 5' ends of capped mRNAs (CAGE) has given new insights into many aspects of mammalian RNApolII transcription control. They include the identification of the minimal initiator motif, the different types of proximal promoter architecture, the promoters of noncoding RNAs, the transcription of retrotransposons, and the extensive impact of alternative promoters on the proteome. CAGE also offers applications as a form of expression profiling that measures promoter use, allowing more precise development of transcriptional network models.

  18. Calcineurin /NFAT activation-dependence of leptin synthesis and vascular growth in response to mechanical stretch

    Directory of Open Access Journals (Sweden)

    Nadia Soudani

    2016-09-01

    Full Text Available Background and Aims- Hypertension and obesity are important risk factors of cardiovascular disease. They are both associated with high leptin levels and have been shown to promote vascular hypertrophy, through the RhoA/ROCK and ERK1/2 phosphorylation. Calcineurin/NFAT activation also induces vascular hypertrophy by upregulating various genes. This study aimed to decipher whether a crosstalk exists between the RhoA/ROCK pathway, Ca+2/calcineurin/NFAT pathway, and ERK1/2 phosphorylation in the process of mechanical stretch-induced vascular smooth muscle cell (VSMC hypertrophy and leptin synthesis. Methods and Results- Rat portal vein (RPV organ culture was used to investigate the effect of mechanical stretch and exogenous leptin (3.1 nM on VSMC hypertrophy and leptin synthesis. Results showed that stretching the RPV significantly upregulated leptin secretion, mRNA and protein expression, which were inhibited by the calcium channel blocker nifedipine (10 μM, the selective calcineurin inhibitor FK506 (1 nM and the ERK1/2 inhibitor PD98059 (1 μM. The transcription inhibitor actinomycin D (0.1M and the translation inhibitor cycloheximide (1 mM significantly decreased stretch-induced leptin protein expression. Mechanical stretch or leptin caused an increase in wet weight changes and protein synthesis, considered as hypertrophic markers, while they were inhibited by FK506 (0.1 nM; 1 nM. In addition, stretch or exogenous leptin significantly increased calcineurin activity and MCIP1 expression whereas leptin induced NFAT nuclear translocation in VSMCs. Moreover, in response to stretch or exogenous leptin, the Rho inhibitor C3 exoenzyme (30 ng/mL, the ROCK inhibitor Y-27632 (10 μM, and the actin depolymerization agents Latrunculin B (50 nM and cytochalasin D (1 μM reduced calcineurin activation and NFAT nuclear translocation. ERK1/2 phosphorylation was inhibited by FK506 and C3. Conclusions- Mechanical stretch-induced VSMC hypertrophy and leptin

  19. Rethinking transcription coupled DNA repair.

    Science.gov (United States)

    Kamarthapu, Venu; Nudler, Evgeny

    2015-04-01

    Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a subpathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, plays a major role in initiating the repair process. We discuss the tradeoff between the new and conventional models of TCR, how and when each pathway operates to repair DNA damage, and the necessity of pervasive transcription in maintaining genome integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. NMDA-mediated and Self-induced Bdnf Exon IV Transcriptions are Differentially Regulated in Cultured Cortical Neurons

    OpenAIRE

    Zheng, Fei; Wang, Hongbing

    2009-01-01

    Activity-dependent transcriptional up-regulation of bdnf (brain-derived neurotrophic factor) is involved in regulating many aspects of neuronal functions. The NMDA (N-methyl-D-aspartic acid)-mediated and BDNF-mediated exon IV transcription may represent mechanistically different responses, and relevant to activity-dependent changes in neurons. We found that the activities of ERK (extracellular signal-regulated kinase), CaM KII/IV (calmodulin-dependent protein kinase II and IV), PI3K (phosphoi...

  1. Stepwise mechanism for transcription fidelity

    Directory of Open Access Journals (Sweden)

    Zorov Savva

    2010-05-01

    Full Text Available Abstract Background Transcription is the first step of gene expression and is characterized by a high fidelity of RNA synthesis. During transcription, the RNA polymerase active centre discriminates against not just non-complementary ribo NTP substrates but also against complementary 2'- and 3'-deoxy NTPs. A flexible domain of the RNA polymerase active centre, the Trigger Loop, was shown to play an important role in this process, but the mechanisms of this participation remained elusive. Results Here we show that transcription fidelity is achieved through a multi-step process. The initial binding in the active centre is the major discrimination step for some non-complementary substrates, although for the rest of misincorporation events discrimination at this step is very poor. During the second step, non-complementary and 2'-deoxy NTPs are discriminated against based on differences in reaction transition state stabilization and partly in general base catalysis, for correct versus non-correct substrates. This step is determined by two residues of the Trigger Loop that participate in catalysis. In the following step, non-complementary and 2'-deoxy NTPs are actively removed from the active centre through a rearrangement of the Trigger Loop. The only step of discrimination against 3'-deoxy substrates, distinct from the ones above, is based on failure to orient the Trigger Loop catalytic residues in the absence of 3'OH. Conclusions We demonstrate that fidelity of transcription by multi-subunit RNA polymerases is achieved through a stepwise process. We show that individual steps contribute differently to discrimination against various erroneous substrates. We define the mechanisms and contributions of each of these steps to the overall fidelity of transcription.

  2. [The Effect of Transcription on Enhancer Activity in Drosophila melanogaster].

    Science.gov (United States)

    Erokhin, M M; Davydova, A I; Lomaev, D V; Georgiev, P G; Chetverina, D A

    2016-01-01

    In higher eukaryotes, the level of gene transcription is under the control of DNA regulatory elements, such as promoter, from which transcription is initiated with the participation of RNA polymerase II and general transcription factors, as well as the enhancer, which increase the rate of transcription with the involvement of activator proteins and cofactors. It was demonstrated that enhancers are often located in the transcribed regions of the genome. We showed earlier that transcription negatively affected the activity of enhancers in Drosophila in model transgenic systems. In this study, we tested the effect of the distance between the leading promoter, enhancer, and target promoter on the inhibitory effect of transcriptions of different strengths. It was demonstrated that the negative effect of transcription remained, but weakened with increased distance between the leading promoter and enhancer and with decreased distance between the enhancer and target promoter. Thus, transcription can modulate the activity of enhancers by controlling its maximum level.

  3. Theoretical analysis of transcription process with polymerase stalling

    CERN Document Server

    Li, Jingwei

    2015-01-01

    Experimental evidences show that in gene transcription, RNA polymerase has the possibility to be stalled at certain position of the transcription template. This may be due to the template damage, or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, or simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the {\\it effective} transcription rate (the rate to synthesize correct product mRNA) and the transcription {\\it effectiveness} (the ratio of the {\\it effective} transcription rate to the {\\it effective} transcription initiation rate) are both influenced by polymerase stalling events. This study shows that, Without backtracking, detachment of stalled polymerase can also help to increase the {\\it effective} transcription rate and transcription {\\it effectiveness}. Generally, the increase of bypass rate of the stalled polymeras...

  4. Mapping Yeast Transcriptional Networks

    OpenAIRE

    Hughes, Timothy R; de Boer, Carl G.

    2013-01-01

    The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face....

  5. Urolithins display both antioxidant and pro-oxidant activities depending on assay system and conditions.

    Science.gov (United States)

    Kallio, Tuija; Kallio, Johanna; Jaakkola, Mari; Mäki, Marianne; Kilpeläinen, Pekka; Virtanen, Vesa

    2013-11-13

    The biological effects of polyphenolic ellagitannins are mediated by their intestinal metabolites, urolithins. This study investigated redox properties of urolithins A and B using ORAC assay, three cell-based assays, copper-initiated pro-oxidant activity (CIPA) assay, and cyclic voltammetry. Urolithins were strong antioxidants in the ORAC assay, but mostly pro-oxidants in cell-based assays, although urolithin A was an antioxidant in cell culture medium. Parent compound ellagic acid was a strong extracellular antioxidant, but showed no response in the intracellular assay. The CIPA assay confirmed the pro-oxidant activity of ellagitannin metabolites. In the cell proliferation assay, urolithins but not ellagic acid decreased growth and metabolism of HepG2 liver cells. In cyclic voltammetry, the oxidation of urolithin A was partly reversible, but that of urolithin B was irreversible. These results illustrate how strongly measured redox properties depend on the employed assay system and conditions and emphasize the importance of studying pro-oxidant and antioxidant activities in parallel.

  6. A Nonnatural Transcriptional Coactivator

    Science.gov (United States)

    Nyanguile, Origene; Uesugi, Motonari; Austin, David J.; Verdine, Gregory L.

    1997-12-01

    In eukaryotes, sequence-specific DNA-binding proteins activate gene expression by recruiting the transcriptional apparatus and chromatin remodeling proteins to the promoter through protein-protein contacts. In many instances, the connection between DNA-binding proteins and the transcriptional apparatus is established through the intermediacy of adapter proteins known as coactivators. Here we describe synthetic molecules with low molecular weight that act as transcriptional coactivators. We demonstrate that a completely nonnatural activation domain in one such molecule is capable of stimulating transcription in vitro and in vivo. The present strategy provides a means of gaining external control over gene activation through intervention using small molecules.

  7. The RNA polymerase I transcription machinery.

    Science.gov (United States)

    Russell, Jackie; Zomerdijk, Joost C B M

    2006-01-01

    The rRNAs constitute the catalytic and structural components of the ribosome, the protein synthesis machinery of cells. The level of rRNA synthesis, mediated by Pol I (RNA polymerase I), therefore has a major impact on the life and destiny of a cell. In order to elucidate how cells achieve the stringent control of Pol I transcription, matching the supply of rRNA to demand under different cellular growth conditions, it is essential to understand the components and mechanics of the Pol I transcription machinery. In this review, we discuss: (i) the molecular composition and functions of the Pol I enzyme complex and the two main Pol I transcription factors, SL1 (selectivity factor 1) and UBF (upstream binding factor); (ii) the interplay between these factors during pre-initiation complex formation at the rDNA promoter in mammalian cells; and (iii) the cellular control of the Pol I transcription machinery.

  8. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I

    2012-01-01

    ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...

  9. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein codi...

  10. Sry is a transcriptional activator.

    Science.gov (United States)

    Dubin, R A; Ostrer, H

    1994-09-01

    The SRY gene functions as a genetic switch in gonadal ridge initiating testis determination. The mouse Sry and human SRY open reading frames (ORFs) share a conserved DNA-binding domain (the HMG-box) yet exhibit no additional homology outside this region. As judged by the accumulation of lacZ-SRY hybrid proteins in the nucleus, both the human and mouse SRY ORFs contain a nuclear localization signal. The mouse Sry HMG-box domain selectively binds the sequence NACAAT in vitro when challenged with a random pool of oligonucleotides and binds AACAAT with the highest affinity. When put under the control of a heterologous promotor, the mouse Sry gene activated transcription of a reporter gene containing multiple copies of the AACAAT binding site. Activation was likewise observed for a GAL4-responsive reporter gene, when the mouse Sry gene was linked to the DNA-binding domain of GAL4. Using this system, the activation function was mapped to a glutamine/histidine-rich domain. In addition, LexA-mouse Sry fusion genes activated a LexA-responsive reporter gene in yeast. In contrast, a GAL4-human SRY fusion gene did not cause transcriptional activation. These studies suggest that both the human and the mouse SRY ORFs encode nuclear, DNA-binding proteins and that the mouse Sry ORF can function as a transcriptional activator with separable DNA-binding and activator domains.

  11. Multiple sigma subunits and the partitioning of bacterial transcription space.

    Science.gov (United States)

    Gruber, Tanja M; Gross, Carol A

    2003-01-01

    Promoter recognition in eubacteria is carried out by the initiation factor sigma, which binds RNA polymerase and initiates transcription. Cells have one housekeeping factor and a variable number of alternative sigma factors that possess different promoter-recognition properties. The cell can choose from its repertoire of sigmas to alter its transcriptional program in response to stress. Recent structural information illuminates the process of initiation and also shows that the two key sigma domains are structurally conserved, even among diverse family members. We use the sigma repertoire of Escherichia coli, Bacillus subtilis, Streptomyces coelicolor, and cyanobacteria to illustrate the different strategies utilized to organize transcriptional space using multiple sigma factors.

  12. Mechanical Properties of Transcription

    Science.gov (United States)

    Sevier, Stuart A.; Levine, Herbert

    2017-06-01

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

  13. Biophysical models of transcription in cells

    Science.gov (United States)

    Choubey, Sandeep

    Cells constantly face environmental challenges and deal with them by changing their gene expression patterns. They make decisions regarding which genes to express and which genes not to express based on intra-cellular and environmental cues. These decisions are often made by regulating the process of transcription. While the identities of the different molecules that take part in regulating transcription have been determined for a number of different genes, their dynamics inside the cell are still poorly understood. One key feature of these regulatory dynamics is that the numbers of the bio-molecules involved is typically small, resulting in large temporal fluctuations in transcriptional outputs (mRNA and protein). In this thesis I show that measurements of the cell-to-cell variability of the distribution of transcribing RNA polymerases along a gene provide a previously unexplored method for deciphering the mechanism of its transcription in vivo. First, I propose a simple kinetic model of transcription initiation and elongation from which I calculate transcribing RNA polymerase copy-number fluctuations. I test my theory against published data obtained for yeast genes and propose a novel mechanism of transcription. Rather than transcription being initiated through a single rate-limiting step, as was previously proposed, my single-cell analysis reveals the presence of at least two rate limiting steps. Second, I compute the distribution of inter-polymerase distance distribution along a gene and propose a method for analyzing inter-polymerase distance distributions acquired in experiments. By applying this method to images of polymerases transcribing ribosomal genes in E.coli I show that one model of regulation of these genes is consistent with inter-polymerase distance data while a number of other models are not. The analytical framework described in this thesis can be used to extract quantitative information about the dynamics of transcription from single

  14. Systematic clustering of transcription start site landscapes

    DEFF Research Database (Denmark)

    Zhao, Xiaobei; Valen, Eivind; Parker, Brian J;

    2011-01-01

    Genome-wide, high-throughput methods for transcription start site (TSS) detection have shown that most promoters have an array of neighboring TSSs where some are used more than others, forming a distribution of initiation propensities. TSS distributions (TSSDs) vary widely between promoters...

  15. Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity.

    Science.gov (United States)

    Esposito, Umberto; Giugliano, Michele; Vasilaki, Eleni

    2014-01-01

    The anatomical connectivity among neurons has been experimentally found to be largely non-random across brain areas. This means that certain connectivity motifs occur at a higher frequency than would be expected by chance. Of particular interest, short-term synaptic plasticity properties were found to colocalize with specific motifs: an over-expression of bidirectional motifs has been found in neuronal pairs where short-term facilitation dominates synaptic transmission among the neurons, whereas an over-expression of unidirectional motifs has been observed in neuronal pairs where short-term depression dominates. In previous work we found that, given a network with fixed short-term properties, the interaction between short- and long-term plasticity of synaptic transmission is sufficient for the emergence of specific motifs. Here, we introduce an error-driven learning mechanism for short-term plasticity that may explain how such observed correspondences develop from randomly initialized dynamic synapses. By allowing synapses to change their properties, neurons are able to adapt their own activity depending on an error signal. This results in more rich dynamics and also, provided that the learning mechanism is target-specific, leads to specialized groups of synapses projecting onto functionally different targets, qualitatively replicating the experimental results of Wang and collaborators.

  16. Human cytomegalovirus IE2 protein interacts with transcription activating factors

    Institute of Scientific and Technical Information of China (English)

    XU; Jinping(徐进平); YE; Linbai(叶林柏)

    2002-01-01

    The human cytomegalovirus (HCMV) IE86 Cdna was cloned into Pgex-2T and fusion protein GST-IE86 was expressed in E. Coli. SDS-PAGE and Western blot assay indicated that fusion protein GST-IE86 with molecular weight of 92 ku is soluble in the supernatant of cell lysate. Protein GST and fusion protein GST-IE86 were purified by affinity chromatography. The technology of co-separation and specific affinity chromatography was used to study the interactions of HCMV IE86 protein with some transcriptional regulatory proteins and transcriptional factors. The results indicated that IE86 interacts separately with transcriptional factor TFIIB and promoter DNA binding transcription trans-activating factors SP1, AP1 and AP2 to form a heterogenous protein complex. These transcriptional trans-activating factors, transcriptional factor and IE86 protein were adsorbed and retained in the affinity chromatography simultaneously. But IE86 protein could not interact with NF-Кb, suggesting that the function of IE86 protein that can interact with transcriptional factor and transcriptional trans-activating factors has no relevance to protein glycosylation. IE86 protein probably has two domains responsible for binding transcriptional trans-activating regulatory proteins and transcriptional factors respectively, thus activating the transcription of many genes. The interactions accelerated the assembly of the transcriptional initiation complexes.

  17. Synaptic strength is bidirectionally controlled by opposing activity-dependent regulation of Nedd4-1 and USP8.

    Science.gov (United States)

    Scudder, Samantha L; Goo, Marisa S; Cartier, Anna E; Molteni, Alice; Schwarz, Lindsay A; Wright, Rebecca; Patrick, Gentry N

    2014-12-10

    The trafficking of AMPA receptors (AMPARs) to and from synapses is crucial for synaptic plasticity. Previous work has demonstrated that AMPARs undergo activity-dependent ubiquitination by the E3 ubiquitin ligase Nedd4-1, which promotes their internalization and degradation in lysosomes. Here, we define the molecular mechanisms involved in ubiquitination and deubiquitination of AMPARs. We report that Nedd4-1 is rapidly redistributed to dendritic spines in response to AMPAR activation and not in response to NMDA receptor (NMDAR) activation in cultured rat neurons. In contrast, NMDAR activation directly antagonizes Nedd4-1 function by promoting the deubiquitination of AMPARs. We show that NMDAR activation causes the rapid dephosphorylation and activation of the deubiquitinating enzyme (DUB) USP8. Surface AMPAR levels and synaptic strength are inversely regulated by Nedd4-1 and USP8. Strikingly, we show that homeostatic downscaling of synaptic strength is accompanied by an increase and decrease in Nedd4-1 and USP8 protein levels, respectively. Furthermore, we show that Nedd4-1 is required for homeostatic loss of surface AMPARs and downscaling of synaptic strength. This study provides the first mechanistic evidence for rapid and opposing activity-dependent control of a ubiquitin ligase and DUB at mammalian CNS synapses. We propose that the dynamic regulation of these opposing forces is critical in maintaining synapses and scaling them during homeostatic plasticity.

  18. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury.

    Science.gov (United States)

    McPherson, Jacob G; Miller, Robert R; Perlmutter, Steve I

    2015-09-29

    Use-dependent movement therapies can lead to partial recovery of motor function after neurological injury. We attempted to improve recovery by developing a neuroprosthetic intervention that enhances movement therapy by directing spike timing-dependent plasticity in spared motor pathways. Using a recurrent neural-computer interface in rats with a cervical contusion of the spinal cord, we synchronized intraspinal microstimulation below the injury with the arrival of functionally related volitional motor commands signaled by muscle activity in the impaired forelimb. Stimulation was delivered during physical retraining of a forelimb behavior and throughout the day for 3 mo. Rats receiving this targeted, activity-dependent spinal stimulation (TADSS) exhibited markedly enhanced recovery compared with animals receiving targeted but open-loop spinal stimulation and rats receiving physical retraining alone. On a forelimb reach and grasp task, TADSS animals recovered 63% of their preinjury ability, more than two times the performance level achieved by the other therapy groups. Therapeutic gains were maintained for 3 additional wk without stimulation. The results suggest that activity-dependent spinal stimulation can induce neural plasticity that improves behavioral recovery after spinal cord injury.

  19. Adaptor protein complexes 1 and 3 are essential for generation of synaptic vesicles from activity-dependent bulk endosomes.

    Science.gov (United States)

    Cheung, Giselle; Cousin, Michael A

    2012-04-25

    Activity-dependent bulk endocytosis is the dominant synaptic vesicle retrieval mode during high intensity stimulation in central nerve terminals. A key event in this endocytosis mode is the generation of new vesicles from bulk endosomes, which replenish the reserve vesicle pool. We have identified an essential requirement for both adaptor protein complexes 1 and 3 in this process by employing morphological and optical tracking of bulk endosome-derived synaptic vesicles in rat primary neuronal cultures. We show that brefeldin A inhibits synaptic vesicle generation from bulk endosomes and that both brefeldin A knockdown and shRNA knockdown of either adaptor protein 1 or 3 subunits inhibit reserve pool replenishment from bulk endosomes. Conversely, no plasma membrane function was found for adaptor protein 1 or 3 in either bulk endosome formation or clathrin-mediated endocytosis. Simultaneous knockdown of both adaptor proteins 1 and 3 indicated that they generated the same population of synaptic vesicles. Thus, adaptor protein complexes 1 and 3 play an essential dual role in generation of synaptic vesicles during activity-dependent bulk endocytosis.

  20. Novel DLK-independent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth

    Science.gov (United States)

    Awal, Mehraj R.; Shay, James; McLoed, Melissa M.; Mazur, Eric; Gabel, Christopher V.

    2016-01-01

    During development, a neuron transitions from a state of rapid growth to a stable morphology, and neurons within the adult mammalian CNS lose their ability to effectively regenerate in response to injury. Here, we identify a novel form of neuronal regeneration, which is remarkably independent of DLK-1/DLK, KGB-1/JNK, and other MAPK signaling factors known to mediate regeneration in Caenorhabditis elegans, Drosophila, and mammals. This DLK-independent regeneration in C. elegans has direct genetic and molecular links to a well-studied form of endogenous activity-dependent ectopic axon outgrowth in the same neuron type. Both neuron outgrowth types are triggered by physical lesion of the sensory dendrite or mutations disrupting sensory activity, calcium signaling, or genes that restrict outgrowth during neuronal maturation, such as SAX-1/NDR kinase or UNC-43/CaMKII. These connections suggest that ectopic outgrowth represents a powerful platform for gene discovery in neuronal regeneration. Moreover, we note numerous similarities between C. elegans DLK-independent regeneration and lesion conditioning, a phenomenon producing robust regeneration in the mammalian CNS. Both regeneration types are triggered by lesion of a sensory neurite via reduction of neuronal activity and enhanced by disrupting L-type calcium channels or elevating cAMP. Taken as a whole, our study unites disparate forms of neuronal outgrowth to uncover fresh molecular insights into activity-dependent control of the adult nervous system’s intrinsic regenerative capacity. PMID:27078101

  1. Structural basis of transcription by bacterial and eukaryotic RNA polymerases.

    Science.gov (United States)

    Sekine, Shun-ichi; Tagami, Shunsuke; Yokoyama, Shigeyuki

    2012-02-01

    DNA-dependent RNA polymerase (RNAP) is responsible for cellular gene transcription. Although crystallographic studies on prokaryotic and eukaryotic RNAPs have elucidated the basic RNAP architectures, the structural details of many essential events during transcription initiation, elongation, and termination are still largely unknown. Recent crystallographic studies on a bacterial RNAP and yeast RNAP II have revealed different RNAP structural states from that of the normal transcribing complex, as well as the basis of transcription factor functions, advancing our understanding of transcription. These studies have highlighted unexpected similarities in many fundamental aspects of transcription mechanisms between the bacterial and eukaryotic transcription machineries. Remarkable differences also exist between the bacterial and eukaryotic transcription systems, suggesting directions for future studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Mathematical relationships among DNA supercoiling, cation concentration, and temperature for prokaryotic transcription.

    Science.gov (United States)

    Wang, J Y

    1998-08-01

    DNA twist has been proposed to affect transcription from some promoters of Escherichia coli, but involvement of twist has been difficult to test because it cannot be measured in transcription reaction mixtures. However, changes in other factors affect both DNA twist and transcription. These parameters are expected to be related when maximum transcription initiation is considered. In the present work, mathematical relationships among supercoiling, cation concentration, and temperature are derived for prokaryotic transcription initiation. The relationships indicate that as DNA becomes more negatively supercoiled, maximal initiation occurs at a higher cation concentration and at a lower temperature. For example, when superhelical density becomes more negative by 0.0025, a 1.6-fold increase in potassium concentration is predicted to be required to maintain transcription initiation at its maximum rate. Experimental verification of the relationships should provide a useful test of the idea that transcription initiation is sensitive to DNA twist.

  3. A sensitive RNase protection assay to detect transcripts from potentially functional human endogenous L1 retrotransposons

    DEFF Research Database (Denmark)

    Woodcock, D M; Williamson, M R; Doherty, J P

    1996-01-01

    A high background of read-through transcripts from degenerate human L1 retrotransposons is present in almost all human cell types. This prevents the detection of RNA transcripts from potentially functional elements. To overcome this, we have developed an RNase protection assay based on the recons...... transcripts from divergent L1 families but are either discrete shorter transcripts or specifically processed products from longer initial transcripts....

  4. 分离植物目的基因全长cDNA和启动子的新方法--快速定位转录起始位点(RITIS)%Isolation of Full-length cDNA and Promoter of Target Gene from Plant by Rapid Identification of Transcriptional Initiation Site (RITIS)

    Institute of Scientific and Technical Information of China (English)

    冯丽; 任茂智; 罗洪发; 何光华

    2006-01-01

    by rapid identification of transcriptional initiation site (RITIS). Transcriptional initiation site (TIS) is cut-offpoint of promoter and transcript of target gene. Accurate position of TIS is the key for full-length cDNA and promoter isolation. Exons in transcript downstream TIS can be amplified by means of RT-PCR whereaspromoter sequence cannot be obtained in the same way. Taking advantage of this principle, we develop the approach of R1TIS which can be used to define the promoter region and the 5'-untranslated region of the gene efficiently and circumvents laborious cDNA libraries construction for full-length cDNA and promoter isolation.

  5. Divergent RNA transcription: a role in promoter unwinding?

    Science.gov (United States)

    Naughton, Catherine; Corless, Samuel; Gilbert, Nick

    2013-01-01

    New approaches using biotinylated-psoralen as a probe for investigating DNA structure have revealed new insights into the relationship between DNA supercoiling, transcription and chromatin compaction. We explore a hypothesis that divergent RNA transcription generates negative supercoiling at promoters facilitating initiation complex formation and subsequent promoter clearance.

  6. DNA supercoiling during transcription.

    Science.gov (United States)

    Ma, Jie; Wang, Michelle D

    2016-11-01

    The twin-supercoiled-domain model describes how transcription can drive DNA supercoiling, and how DNA supercoiling, in turn plays an important role in regulating gene transcription. In vivo and in vitro experiments have disclosed many details of the complex interactions in this relationship, and recently new insights have been gained with the help of genome-wide DNA supercoiling mapping techniques and single molecule methods. This review summarizes the general mechanisms of the interplay between DNA supercoiling and transcription, considers the biological implications, and focuses on recent important discoveries and technical advances in this field. We highlight the significant impact of DNA supercoiling in transcription, but also more broadly in all processes operating on DNA.

  7. DNA supercoiling during transcription

    Science.gov (United States)

    Ma, Jie; Wang, Michelle D.

    2017-01-01

    The twin-supercoiled-domain model describes how transcription can drive DNA supercoiling, and how DNA supercoiling, in turn plays an important role in regulating gene transcription. In vivo and in vitro experiments have disclosed many details of the complex interactions in this relationship, and recently new insights have been gained with the help of genome-wide DNA supercoiling mapping techniques and single molecule methods. This review summarizes the general mechanisms of the interplay between DNA supercoiling and transcription, considers the biological implications, and focuses on recent important discoveries and technical advances in this field. We highlight the significant impact of DNA supercoiling in transcription, but also more broadly in all processes operating on DNA.

  8. The Transcription Bubble of the RNA Polymerase-Promoter Open Complex Exhibits Conformational Heterogeneity and Millisecond-Scale Dynamics : Implications for Transcription Start-Site Selection

    NARCIS (Netherlands)

    Robb, Nicole C.; Cordes, Thorben; Hwang, Ling Chin; Gryte, Kristofer; Duchi, Diego; Craggs, Timothy D.; Santoso, Yusdi; Weiss, Shimon; Ebright, Richard H.; Kapanidis, Achillefs N.

    2013-01-01

    Bacterial transcription is initiated after RNA polymerase (RNAP) binds to promoter DNA, melts similar to 14 bp around the transcription start site and forms a single-stranded "transcription bubble" within a catalytically active RNAP-DNA open complex (RPo). There is significant flexibility in the tra

  9. Mitochondrial transcription: is a pattern emerging?

    Science.gov (United States)

    Jaehning, J A

    1993-04-01

    Despite the striking similarities of RNA polymerases and transcription signals shared by eubacteria, archaebacteria and eukaryotes, there has been little indication that transcription in mitochondria is related to any previously characterized model. Only in yeast has the subunit structure of the mitochondrial RNA polymerase been determined. The yeast enzyme is composed of a core related to polymerases from bacteriophage T7 and T3, and a promoter recognition factor similar to bacterial sigma factors. Soluble systems for studying mitochondrial transcript initiation in vitro have been described from several organisms, and used to determine consensus sequences at or near transcription start sites. Comparison of these sequences from fungi, plants, and amphibians with the T7/T3 promoter suggests some intriguing similarities. Mammalian mitochondrial promoters do not fit this pattern but instead appear to utilize upstream sites, the target of a transcriptional stimulatory factor, to position the RNA polymerase. The recent identification of a possible homologue of the mammalian upstream factor in yeast mitochondria may indicate that a pattern will eventually be revealed relating the transcriptional machineries of all eukaryotic mitochondria.

  10. Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan.

    Science.gov (United States)

    Rothman, S M; Mattson, M P

    2013-06-03

    During development of the nervous system, the formation of connections (synapses) between neurons is dependent upon electrical activity in those neurons, and neurotrophic factors produced by target cells play a pivotal role in such activity-dependent sculpting of the neural networks. A similar interplay between neurotransmitter and neurotrophic factor signaling pathways mediates adaptive responses of neural networks to environmental demands in adult mammals, with the excitatory neurotransmitter glutamate and brain-derived neurotrophic factor (BDNF) being particularly prominent regulators of synaptic plasticity throughout the central nervous system. Optimal brain health throughout the lifespan is promoted by intermittent challenges such as exercise, cognitive stimulation and dietary energy restriction, that subject neurons to activity-related metabolic stress. At the molecular level, such challenges to neurons result in the production of proteins involved in neurogenesis, learning and memory and neuronal survival; examples include proteins that regulate mitochondrial biogenesis, protein quality control, and resistance of cells to oxidative, metabolic and proteotoxic stress. BDNF signaling mediates up-regulation of several such proteins including the protein chaperone GRP-78, antioxidant enzymes, the cell survival protein Bcl-2, and the DNA repair enzyme APE1. Insufficient exposure to such challenges, genetic factors may conspire to impair BDNF production and/or signaling resulting in the vulnerability of the brain to injury and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Further, BDNF signaling is negatively regulated by glucocorticoids. Glucocorticoids impair synaptic plasticity in the brain by negatively regulating spine density, neurogenesis and long-term potentiation, effects that are potentially linked to glucocorticoid regulation of BDNF. Findings suggest that BDNF signaling in specific brain regions mediates some

  11. Three promoters regulate the transcriptional activity of the human holocarboxylase synthetase gene.

    Science.gov (United States)

    Xia, Mengna; Malkaram, Sridhar A; Zempleni, Janos

    2013-11-01

    Holocarboxylase synthetase (HLCS) is the only protein biotin ligase in the human proteome. HLCS-dependent biotinylation of carboxylases plays crucial roles in macronutrient metabolism. HLCS appears to be an essential part of multiprotein complexes in the chromatin that cause gene repression and contribute toward genome stability. Consistent with these essential functions, HLCS knockdown causes strong phenotypes including shortened life span and low stress resistance in Drosophila melanogaster, and de-repression of long-terminal repeats in humans, other mammalian cell lines and Drosophila. Despite previous observations that the expression of HLCS depends on biotin status in rats and in human cell lines, little is known about the regulation of HLCS expression. The goal of this study was to identify promoters that regulate the expression of the human HLCS gene. Initially, the human HLCS locus was interrogated in silico using predictors of promoters including sequences of HLCS mRNA and expressed sequence tags, CpG islands, histone marks denoting transcriptionally poised chromatin, transcription factor binding sites and DNaseI hypersensitive regions. Our predictions revealed three putative HLCS promoters, denoted P1, P2 and P3. Promoters lacked a TATA box, which is typical for housekeeping genes. When the three promoters were cloned into a luciferase reporter plasmid, reporter gene activity was at least three times background noise in human breast, colon and kidney cell lines; activities consistently followed the pattern P1>P3>P2. Promoter activity depended on the concentration of biotin in culture media, but the effect was moderate. We conclude that we have identified promoters in the human HLCS gene.

  12. Epigenetic modulation of Homer1a transcription regulation in amygdala and hippocampus with pavlovian fear conditioning.

    Science.gov (United States)

    Mahan, Amy L; Mou, Liping; Shah, Nirali; Hu, Jia-Hua; Worley, Paul F; Ressler, Kerry J

    2012-03-28

    The consolidation of conditioned fear involves upregulation of genes necessary for long-term memory formation. An important question remains as to whether this results in part from epigenetic regulation and chromatin modulation. We examined whether Homer1a, which is required for memory formation, is necessary for Pavlovian cued fear conditioning, whether it is downstream of BDNF-TrkB activation, and whether this pathway utilizes histone modifications for activity-dependent transcriptional regulation. We initially found that Homer1a knock-out mice exhibited deficits in cued fear conditioning (5 tone-shock presentations with 70 dB, 6 kHz tones and 0.5 s, 0.6 mA footshocks). We then demonstrated that: (1) Homer1a mRNA increases after fear conditioning in vivo within both amygdala and hippocampus of wild-type mice; (2) it increases after BDNF application to primary hippocampal and amygdala cultures in vitro; and (3) these increases are dependent on transcription and MAPK signaling. Furthermore, using chromatin immunoprecipitation we found that both in vitro and in vivo manipulations result in decreases in Homer1 promoter H3K9 methylation in amygdala cells but increases in Homer1 promoter H3 acetylation in hippocampal cells. However, no changes were observed in H4 acetylation or H3K27 dimethylation. Inhibition of histone deacetylation by sodium butyrate enhanced contextual but not cued fear conditioning and enhanced Homer1 H3 acetylation in the hippocampus. These data provide evidence for dynamic epigenetic regulation of Homer1a following BDNF-induced plasticity and during a BDNF-dependent learning process. Furthermore, upregulation of this gene may be regulated through distinct epigenetic modifications in the hippocampus and amygdala.

  13. Transcription reactions of yeast RNA polymerase II in vitro

    Institute of Scientific and Technical Information of China (English)

    赵宇; 敖世洲

    1995-01-01

    The transcription reactions in vitro of yeast ADHl and PHO5 gene promoters are investigated by means of a yeast crude nuclear extract. Using specific RNA probes, the transcription products of these 2 promoters have been first obtained. A low concentration of α-amanitin is highly inhibitory. The transcription of the PHO5 gene was initiated in vitro at or near the sites used in vim. The transcription products increase with the amount of the template and reach the maximum at certain concentrations of the template. The deletion of the yeast promoter sequences abolishes the reaction.

  14. Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID.

    Science.gov (United States)

    Bhaumik, Sukesh R

    2011-02-01

    A growing number of human diseases are linked to abnormal gene expression which is largely controlled at the level of transcriptional initiation. The gene-specific activator promotes the initiation of transcription through its interaction with one or more components of the transcriptional initiation machinery, hence leading to stimulated transcriptional initiation or activation. However, all activator proteins do not target the same component(s) of the transcriptional initiation machinery. Rather, they can have different target specificities, and thus, can lead to distinct mechanisms of transcriptional activation. Two such distinct mechanisms of transcriptional activation in yeast are mediated by the SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (Transcription factor IID) complexes, and are termed as "SAGA-dependent" and "TFIID-dependent" transcriptional activation, respectively. SAGA is the target of the activator in case of SAGA-dependent transcriptional activation, while the targeting of TFIID by the activator leads to TFIID-dependent transcriptional activation. Both the SAGA and TFIID complexes are highly conserved from yeast to human, and play crucial roles in gene activation among eukaryotes. The regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID are discussed here. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!

  15. Initial Study

    DEFF Research Database (Denmark)

    Torp, Kristian

    2009-01-01

    Congestion is a major problem in most cities and the problem is growing (Quiroga, 2000) (Faghri & Hamad, 2002). When the congestion level is increased the drivers notice this as delays in the traffic (Taylor, Woolley, & Zito, 2000), i.e., the travel time for the individual driver is simply...... increased. In the initial study presented here, the time it takes to pass an intersection is studied in details. Two major signal-controlled four-way intersections in the center of the city Aalborg are studied in details to estimate the congestion levels in these intersections, based on the time it takes...

  16. Smad transcription factors.

    Science.gov (United States)

    Massagué, Joan; Seoane, Joan; Wotton, David

    2005-12-01

    Smad transcription factors lie at the core of one of the most versatile cytokine signaling pathways in metazoan biology-the transforming growth factor-beta (TGFbeta) pathway. Recent progress has shed light into the processes of Smad activation and deactivation, nucleocytoplasmic dynamics, and assembly of transcriptional complexes. A rich repertoire of regulatory devices exerts control over each step of the Smad pathway. This knowledge is enabling work on more complex questions about the organization, integration, and modulation of Smad-dependent transcriptional programs. We are beginning to uncover self-enabled gene response cascades, graded Smad response mechanisms, and Smad-dependent synexpression groups. Our growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.

  17. The embryo as a laboratory: quantifying transcription in Drosophila

    Science.gov (United States)

    Gregor, Thomas; Garcia, Hernan G.; Little, Shawn C.

    2014-01-01

    Transcriptional regulation of gene expression is fundamental to most cellular processes, including determination of cellular fates. Quantitative studies of transcription in cultured cells have led to significant advances in identifying mechanisms underlying transcriptional control. Recent progress allowed implementation of these same quantitative methods in multicellular organisms to ask how transcriptional regulation unfolds both in vivo and at the single molecule level in the context of embryonic development. Here we review some of these advances in early Drosophila development, which bring the embryo on par with its single-celled counterparts. In particular, we discuss progress in methods to measure mRNA and protein distributions in fixed and living embryos, and we highlight some initial applications that lead to fundamental new insights about molecular transcription processes. We end with an outlook on how to further exploit the unique advantages that come with investigating transcriptional control in the developmental context of the embryo. PMID:25005921

  18. The transcription factor encyclopedia.

    Science.gov (United States)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  19. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I

    2012-01-01

    mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written......ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...

  20. Analysis of Termination of Transcription Using BrUTP-strand-specific Transcription Run-on (TRO) Approach.

    Science.gov (United States)

    Dhoondia, Zuzer; Tarockoff, Ricci; Alhusini, Nadra; Medler, Scott; Agarwal, Neha; Ansari, Athar

    2017-03-12

    This manuscript describes a protocol for detecting transcription termination defect in vivo. The strand-specific TRO protocol using BrUTP described here is a powerful experimental approach for analyzing the transcription termination defect under physiological conditions. Like the traditional TRO assay, it relies on the presence of a transcriptionally active polymerase beyond the 3' end of the gene as an indicator of a transcription termination defect(1). It overcomes two major problems encountered with the traditional TRO assay. First, it can detect if the polymerase reading through the termination signal is the one that initiated transcription from the promoter-proximal region, or if it is simply representing a pervasively transcribing polymerase that initiated non-specifically from somewhere in the body or the 3' end of the gene. Secondly, it can distinguish if the transcriptionally active polymerase signal beyond the terminator region is truly the readthrough sense mRNA transcribing polymerase or a terminator-initiated non-coding anti-sense RNA signal. Briefly, the protocol involves permeabilizing the exponentially growing yeast cells, allowing the transcripts that initiated in vivo to elongate in the presence of the BrUTP nucleotide, purifying BrUTP-labelled RNA by the affinity approach, reverse transcribing the purified nascent RNA and amplifying the cDNA using strand-specific primers flanking the promoter and the terminator regions of the gene(2).

  1. Activity-dependent regulation of release probability at excitatory hippocampal synapses: a crucial role of FMRP in neurotransmission

    OpenAIRE

    2014-01-01

    Transcriptional silencing of the Fmr1 gene encoding fragile X mental retardation protein (FMRP) causes Fragile X Syndrome (FXS), the most common form of inherited intellectual disability and the leading genetic cause of autism. FMRP has been suggested to play important roles in regulating neurotransmission and short-term synaptic plasticity at excitatory hippocampal and cortical synapses. However, the origins and the mechanisms of these FMRP actions remain incompletely understood, and the rol...

  2. An overview on transcriptional regulators in Streptomyces.

    Science.gov (United States)

    Romero-Rodríguez, Alba; Robledo-Casados, Ivonne; Sánchez, Sergio

    2015-08-01

    Streptomyces are Gram-positive microorganisms able to adapt and respond to different environmental conditions. It is the largest genus of Actinobacteria comprising over 900 species. During their lifetime, these microorganisms are able to differentiate, produce aerial mycelia and secondary metabolites. All of these processes are controlled by subtle and precise regulatory systems. Regulation at the transcriptional initiation level is probably the most common for metabolic adaptation in bacteria. In this mechanism, the major players are proteins named transcription factors (TFs), capable of binding DNA in order to repress or activate the transcription of specific genes. Some of the TFs exert their action just like activators or repressors, whereas others can function in both manners, depending on the target promoter. Generally, TFs achieve their effects by using one- or two-component systems, linking a specific type of environmental stimulus to a transcriptional response. After DNA sequencing, many streptomycetes have been found to have chromosomes ranging between 6 and 12Mb in size, with high GC content (around 70%). They encode for approximately 7000 to 10,000 genes, 50 to 100 pseudogenes and a large set (around 12% of the total chromosome) of regulatory genes, organized in networks, controlling gene expression in these bacteria. Among the sequenced streptomycetes reported up to now, the number of transcription factors ranges from 471 to 1101. Among these, 315 to 691 correspond to transcriptional regulators and 31 to 76 are sigma factors. The aim of this work is to give a state of the art overview on transcription factors in the genus Streptomyces.

  3. Control and signal processing by transcriptional interference

    Science.gov (United States)

    Buetti-Dinh, Antoine; Ungricht, Rosemarie; Kelemen, János Z; Shetty, Chetak; Ratna, Prasuna; Becskei, Attila

    2009-01-01

    A transcriptional activator can suppress gene expression by interfering with transcription initiated by another activator. Transcriptional interference has been increasingly recognized as a regulatory mechanism of gene expression. The signals received by the two antagonistically acting activators are combined by the polymerase trafficking along the DNA. We have designed a dual-control genetic system in yeast to explore this antagonism systematically. Antagonism by an upstream activator bears the hallmarks of competitive inhibition, whereas a downstream activator inhibits gene expression non-competitively. When gene expression is induced weakly, the antagonistic activator can have a positive effect and can even trigger paradoxical activation. Equilibrium and non-equilibrium models of transcription shed light on the mechanism by which interference converts signals, and reveals that self-antagonism of activators imitates the behavior of feed-forward loops. Indeed, a synthetic circuit generates a bell-shaped response, so that the induction of expression is limited to a narrow range of the input signal. The identification of conserved regulatory principles of interference will help to predict the transcriptional response of genes in their genomic context. PMID:19690569

  4. Rhythm quantization for transcription

    NARCIS (Netherlands)

    Cemgil, A.T.; Desain, P.W.M.; Kappen, H.J.

    1999-01-01

    Automatic Music Transcription is the extraction of an acceptable notation from performed music. One important task in this problem is rhythm quantization which refers to categorization of note durations. Although quantization of a pure mechanical performance is rather straightforward, the task becom

  5. Bayesian Music Transcription

    NARCIS (Netherlands)

    Cemgil, A.T.

    2004-01-01

    Music transcription refers to extraction of a human readable and interpretable description from a recording of a music performance. The final goal is to implement a program that can automatically infer a musical notation that lists the pitch levels of notes and corresponding score positions in any a

  6. Mapping yeast transcriptional networks.

    Science.gov (United States)

    Hughes, Timothy R; de Boer, Carl G

    2013-09-01

    The term "transcriptional network" refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.

  7. Bayesian Music Transcription

    NARCIS (Netherlands)

    Cemgil, A.T.

    2004-01-01

    Music transcription refers to extraction of a human readable and interpretable description from a recording of a music performance. The final goal is to implement a program that can automatically infer a musical notation that lists the pitch levels of notes and corresponding score positions in any

  8. Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of "stuttering conduction".

    Science.gov (United States)

    Muschol, Martin; Kosterin, Paul; Ichikawa, Michinori; Salzberg, B M

    2003-12-10

    Using millisecond time-resolved optical recordings of transmembrane voltage and intraterminal calcium, we have determined how activity-dependent changes in the population action potential are related to a concurrent modulation of calcium transients in the neurohypophysis. We find that repetitive stimulation dramatically alters the amplitude of the population action potential and significantly increases its temporal dispersion. The population action potentials and the calcium transients exhibit well correlated frequency-dependent amplitude depression, with broadening of the action potential playing only a limited role. High-speed camera recordings indicate that the magnitude of the spike modulation is uniform throughout the neurohypophysis, thereby excluding propagation failure as the underlying mechanism. In contrast, temporal dispersion and latency of the population spike do increase with distance from the stimulation site. This increase is enhanced during repeated stimulation and by raising the stimulation frequency. Changes in Ca influx directly affect the decline in population spike amplitude, consistent with electrophysiological measurements of the local loss of excitability in nerve terminals and varicosities, mediated by a Ca-activated K conductance. Our observations suggest a model of "stuttering conduction": repeated action potential stimulation causes excitability failures limited to nerve terminals and varicosities, which account for the rapid decline in the population spike amplitude. These failures, however, do not block action potential propagation but generate the cumulative increases in spike latency.

  9. The BDNF Val66Met polymorphism enhances glutamatergic transmission but diminishes activity-dependent synaptic plasticity in the dorsolateral striatum.

    Science.gov (United States)

    Jing, Deqiang; Lee, Francis S; Ninan, Ipe

    2017-01-01

    The Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene disrupts the activity-dependent release of BDNF, which might underlie its involvement in several neuropsychiatric disorders. Consistent with the potential role of regulated release of BDNF in synaptic functions, earlier studies have demonstrated that the BDNF Val66Met polymorphism impairs NMDA receptor-mediated synaptic transmission and plasticity in the hippocampus, the medial prefrontal cortex and the central amygdala. However, it is unknown whether the BDNF Val66Met polymorphism affects synapses in the dorsal striatum, which depends on cortical afferents for BDNF. Electrophysiological experiments revealed an enhanced glutamatergic transmission in the dorsolateral striatum (DLS) of knock-in mice containing the variant polymorphism (BDNF(Met/Met)) compared to the wild-type (BDNF(Val/Val)) mice. This increase in glutamatergic transmission is mediated by a potentiation in glutamate release and NMDA receptor transmission in the medium spiny neurons without any alterations in non-NMDA receptor-mediated transmission. We also observed an impairment of synaptic plasticity, both long-term potentiation and depression in the DLS neurons, in BDNF(Met/Met) mice. Thus, the BDNF Val66Met polymorphism exerts an increase in glutamatergic transmission but impairs synaptic plasticity in the dorsal striatum, which might play a role in its effect on neuropsychiatric symptoms. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.

  10. Activity-dependent branching ratios in stocks, solar x-ray flux, and the Bak-Tang-Wiesenfeld sandpile model

    Science.gov (United States)

    Martin, Elliot; Shreim, Amer; Paczuski, Maya

    2010-01-01

    We define an activity-dependent branching ratio that allows comparison of different time series Xt . The branching ratio bx is defined as bx=E[ξx/x] . The random variable ξx is the value of the next signal given that the previous one is equal to x , so ξx={Xt+1∣Xt=x} . If bx>1 , the process is on average supercritical when the signal is equal to x , while if bxefficient market hypothesis.” For stock volumes, solar x-ray flux intensities, and the Bak-Tang-Wiesenfeld (BTW) sandpile model, bx is supercritical for small values of activity and subcritical for the largest ones, indicating a tendency to return to a typical value. For stock volumes this tendency has an approximate power-law behavior. For solar x-ray flux and the BTW model, there is a broad regime of activity where bx≃1 , which we interpret as an indicator of critical behavior. This is true despite different underlying probability distributions for Xt and for ξx . For the BTW model the distribution of ξx is Gaussian, for x sufficiently larger than 1, and its variance grows linearly with x . Hence, the activity in the BTW model obeys a central limit theorem when sampling over past histories. The broad region of activity where bx is close to one disappears once bulk dissipation is introduced in the BTW model—supporting our hypothesis that it is an indicator of criticality.

  11. Activity-dependent changes in extracellular Ca2+ and K+ reveal pacemakers in the spinal locomotor-related network.

    Science.gov (United States)

    Brocard, Frédéric; Shevtsova, Natalia A; Bouhadfane, Mouloud; Tazerart, Sabrina; Heinemann, Uwe; Rybak, Ilya A; Vinay, Laurent

    2013-03-20

    Changes in the extracellular ionic concentrations occur as a natural consequence of firing activity in large populations of neurons. The extent to which these changes alter the properties of individual neurons and the operation of neuronal networks remains unknown. Here, we show that the locomotor-like activity in the isolated neonatal rodent spinal cord reduces the extracellular calcium ([Ca(2+)]o) to 0.9 mM and increases the extracellular potassium ([K(+)]o) to 6 mM. Such changes in [Ca(2+)]o and [K(+)]o trigger pacemaker activities in interneurons considered to be part of the locomotor network. Experimental data and a modeling study show that the emergence of pacemaker properties critically involves a [Ca(2+)]o-dependent activation of the persistent sodium current (INaP). These results support a concept for locomotor rhythm generation in which INaP-dependent pacemaker properties in spinal interneurons are switched on and tuned by activity-dependent changes in [Ca(2+)]o and [K(+)]o.

  12. Transcriptional inhibition of the bacteriophage T7 early promoter region by oligonucleotide triple helix formation.

    Science.gov (United States)

    Ross, C; Samuel, M; Broitman, S L

    1992-12-30

    We have identified a purine-rich triplex binding sequence overlapping a -35 transcriptional early promoter region of the bacteriophage T7. Triplex-forming oligonucleotide designed to bind this target was annealed to T7 templates and introduced into in vitro transcription systems under conditions favoring specific initiation from this promoter. These templates demonstrated significant transcriptional inhibition relative to naked genomic templates and templates mixed with non-triplex-forming oligonucleotide. It is suggested that triplex formation along this target interferes with transcriptional initiation, and this mechanism may hold potential to disrupt bacteriophage T7 early transcription in vivo.

  13. Evolution of transcriptional regulation in "Escherichia coli"

    OpenAIRE

    Wolf, Luise

    2014-01-01

    During gene expression, transcription initiation marks the first step towards synthesis of functional proteins. Expression levels of specific types of RNA molecules in the cell depend on the underlying genotype of the promoter sequence. Prediction of expression levels from the promoter sequence alone can have important implications for the design of artificial promoters. In this work, we explored promoter determinants that cause differences in expression levels and tracked how ...

  14. Openness initiative

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, S.S. [Los Alamos National Lab., NM (United States)

    1995-12-31

    Although antinuclear campaigns seem to be effective, public communication and education efforts on low-level radioactive waste have mixed results. Attempts at public information programs on low-level radioactive waste still focus on influencing public opinion. A question then is: {open_quotes}Is it preferable to have a program focus on public education that will empower individuals to make informed decisions rather than trying to influence them in their decisions?{close_quotes} To address this question, a case study with both quantitative and qualitative data will be used. The Ohio Low-Level Radioactive Waste Education Program has a goal to provide people with information they want/need to make their own decisions. The program initiated its efforts by conducting a statewide survey to determine information needed by people and where they turned for that information. This presentation reports data from the survey and then explores the program development process in which programs were designed and presented using the information. Pre and post data from the programs reveal attitude and knowledge shifts.

  15. Methylation of an intragenic alternative promoter regulates transcription of GARP.

    Science.gov (United States)

    Haupt, Sonja; Söntgerath, Viktoria Sophie Apollonia; Leipe, Jan; Schulze-Koops, Hendrik; Skapenko, Alla

    2016-02-01

    Alternative promoter usage has been proposed as a mechanism regulating transcriptional and translational diversity in highly elaborated systems like the immune system in humans. Here, we report that transcription of human glycoprotein A repetitions predominant (GARP) in regulatory CD4 T cells (Tregs) is tightly regulated by two alternative promoters. An intragenic promoter contains several CpGs and acts as a weak promoter that is demethylated and initiates transcription Treg-specifically. The strong up-stream promoter containing a CpG-island is, in contrast, fully demethylated throughout tissues. Transcriptional activity of the strong promoter was surprisingly down-regulated upon demethylation of the weak promoter. This demethylation-induced transcriptional attenuation regulated the magnitude of GARP expression and correlated with disease activity in rheumatoid arthritis. Treg-specific GARP transcription was initiated by synergistic interaction of forkhead box protein 3 (Foxp3) with nuclear factor of activated T cells (NFAT) and was underpinned by permissive chromatin remodeling caused by release of the H3K4 demethylase, PLU-1. Our findings describe a novel function of alternative promoters in regulating the extent of transcription. Moreover, since GARP functions as a transporter of transforming growth factor β (TGFβ), a cytokine with broad pleiotropic traits, GARP transcriptional attenuation by alternative promoters might provide a mechanism regulating peripheral TGFβ to avoid unwanted harmful effects.

  16. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins

    Science.gov (United States)

    Mitchell, Pamela J.; Tjian, Robert

    1989-07-01

    The cloning of genes encoding mammalian DNA binding transcription factors for RNA polymerase II has provided the opportunity to analyze the structure and function of these proteins. This review summarizes recent studies that define structural domains for DNA binding and transcriptional activation functions in sequence-specific transcription factors. The mechanisms by which these factors may activate transcriptional initiation and by which they may be regulated to achieve differential gene expression are also discussed.

  17. Non-transcriptional regulatory processes shape transcriptional network dynamics

    OpenAIRE

    Ray, J. Christian J; Tabor, Jeffrey J.; Igoshin, Oleg A.

    2011-01-01

    Information about the extra- or intracellular environment is often captured as biochemical signals propagating through regulatory networks. These signals eventually drive phenotypic changes, typically by altering gene expression programs in the cell. Reconstruction of transcriptional regulatory networks has given a compelling picture of bacterial physiology, but transcriptional network maps alone often fail to describe phenotypes. In many cases, the dynamical performance of transcriptional re...

  18. Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats.

    Science.gov (United States)

    Qian, Taizhe; Chen, Rongqing; Nakamura, Masato; Furukawa, Tomonori; Kumada, Tatsuro; Akita, Tenpei; Kilb, Werner; Luhmann, Heiko J; Nakahara, Daiichiro; Fukuda, Atsuo

    2014-01-01

    In the developing cerebral cortex, the marginal zone (MZ), consisting of early-generated neurons such as Cajal-Retzius cells, plays an important role in cell migration and lamination. There is accumulating evidence of widespread excitatory neurotransmission mediated by γ-aminobutyric acid (GABA) in the MZ. Cajal-Retzius cells express not only GABAA receptors but also α2/β subunits of glycine receptors, and exhibit glycine receptor-mediated depolarization due to high [Cl(-)]i. However, the physiological roles of glycine receptors and their endogenous agonists during neurotransmission in the MZ are yet to be elucidated. To address this question, we performed optical imaging from the MZ using the voltage-sensitive dye JPW1114 on tangential neocortical slices of neonatal rats. A single electrical stimulus evoked an action-potential-dependent optical signal that spread radially over the MZ. The amplitude of the signal was not affected by glutamate receptor blockers, but was suppressed by either GABAA or glycine receptor antagonists. Combined application of both antagonists nearly abolished the signal. Inhibition of Na(+), K(+)-2Cl(-) cotransporter by 20 µM bumetanide reduced the signal, indicating that this transporter contributes to excitation. Analysis of the interstitial fluid obtained by microdialysis from tangential neocortical slices with high-performance liquid chromatography revealed that GABA and taurine, but not glycine or glutamate, were released in the MZ in response to the electrical stimulation. The ambient release of taurine was reduced by the addition of a voltage-sensitive Na(+) channel blocker. Immunohistochemistry and immunoelectron microscopy indicated that taurine was stored both in Cajal-Retzius and non-Cajal-Retzius cells in the MZ, but was not localized in presynaptic structures. Our results suggest that activity-dependent non-synaptic release of endogenous taurine facilitates excitatory neurotransmission through activation of glycine

  19. Activity-dependent branching ratios in stocks, solar x-ray flux, and the Bak-Tang-Wiesenfeld sandpile model.

    Science.gov (United States)

    Martin, Elliot; Shreim, Amer; Paczuski, Maya

    2010-01-01

    We define an activity-dependent branching ratio that allows comparison of different time series X(t). The branching ratio b(x) is defined as b(x)=E[xi(x)/x]. The random variable xi(x) is the value of the next signal given that the previous one is equal to x, so xi(x)=[X(t+1) | X(t)=x]. If b(x)>1, the process is on average supercritical when the signal is equal to x, while if b(x)market hypothesis." For stock volumes, solar x-ray flux intensities, and the Bak-Tang-Wiesenfeld (BTW) sandpile model, b(x) is supercritical for small values of activity and subcritical for the largest ones, indicating a tendency to return to a typical value. For stock volumes this tendency has an approximate power-law behavior. For solar x-ray flux and the BTW model, there is a broad regime of activity where b(x) approximately equal 1, which we interpret as an indicator of critical behavior. This is true despite different underlying probability distributions for X(t) and for xi(x). For the BTW model the distribution of xi(x) is Gaussian, for x sufficiently larger than 1, and its variance grows linearly with x. Hence, the activity in the BTW model obeys a central limit theorem when sampling over past histories. The broad region of activity where b(x) is close to one disappears once bulk dissipation is introduced in the BTW model-supporting our hypothesis that it is an indicator of criticality.

  20. Cortical axons, isolated in channels, display activity-dependent signal modulation as a result of targeted stimulation

    Directory of Open Access Journals (Sweden)

    Marta K. Lewandowska

    2016-03-01

    Full Text Available Mammalian cortical axons are extremely thin processes that are difficult to study as a result of their small diameter: they are too narrow to patch while intact, and super-resolution microscopy is needed to resolve single axons. We present a method for studying axonal physiology by pairing a high-density microelectrode array with a microfluidic axonal isolation device, and use it to study activity-dependent modulation of axonal signal propagation evoked by stimulation near the soma. Up to three axonal branches from a single neuron, isolated in different channels, were recorded from simultaneously using 10-20 electrodes per channel. The axonal channels amplified spikes such that propagations of individual signals along tens of electrodes could easily be discerned with high signal to noise. Stimulation from 10 Hz up to 160 Hz demonstrated similar qualitative results from all of the cells studied: extracellular action potential characteristics changed drastically in response to stimulation. Spike height decreased, spike width increased, and latency increased, as a result of reduced propagation velocity, as the number of stimulations and the stimulation frequencies increased. Quantitatively, the strength of these changes manifested itself differently in cells at different frequencies of stimulation. Some cells’ signal fidelity fell to 80% already at 10 Hz, while others maintained 80% signal fidelity at 80 Hz. Differences in modulation by axonal branches of the same cell were also seen for many different stimulation frequencies, starting at 10 Hz. Potassium ion concentration changes altered the behavior of the cells causing propagation failures at lower concentrations and improving signal fidelity at higher concentrations.

  1. Activity-dependent repression of Cbln1 expression: mechanism for developmental and homeostatic regulation of synapses in the cerebellum.

    Science.gov (United States)

    Iijima, Takatoshi; Emi, Kyoichi; Yuzaki, Michisuke

    2009-04-29

    Cbln1, which belongs to the C1q/tumor necrosis factor superfamily, is released from cerebellar granule cells and plays a crucial role in forming and maintaining excitatory synapses between parallel fibers (PFs; axons of granule cells) and Purkinje cells not only during development but also in the adult cerebellum. Although neuronal activity is known to cause morphological changes at synapses, how Cbln1 signaling is affected by neuronal activity remains unclear. Here, we show that chronic stimulation of neuronal activity by elevating extracellular K(+) levels or by adding kainate decreased the expression of cbln1 mRNA within several hours in mature granule cells in a manner dependent on L-type voltage-dependent Ca(2+) channels and calcineurin. Chronic activity also reduced Cbln1 protein levels within a few days, during which time the number of excitatory synapses on Purkinje cell dendrites was reduced; this activity-induced reduction of synapses was prevented by the addition of exogenous Cbln1 to the culture medium. Therefore, the activity-dependent downregulation of cbln1 may serve as a new presynaptic mechanism by which PF-Purkinje cell synapses adapt to chronically elevated activity, thereby maintaining homeostasis. In addition, the expression of cbln1 mRNA was prevented when immature granule cells were maintained in high-K(+) medium. Since immature granule cells are chronically depolarized before migrating to the internal granule layer, this depolarization-dependent regulation of cbln1 mRNA expression may also serve as a developmental switch to facilitate PF synapse formation in mature granule cells in the internal granule layer.

  2. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity.

    Science.gov (United States)

    Ary, Alexis W; Cozzoli, Debra K; Finn, Deborah A; Crabbe, John C; Dehoff, Marlin H; Worley, Paul F; Szumlinski, Karen K

    2012-06-01

    Neuronal activity dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol.

  3. Activity-dependent regulation of the K/Cl transporter KCC2 membrane diffusion, clustering, and function in hippocampal neurons.

    Science.gov (United States)

    Chamma, Ingrid; Heubl, Martin; Chevy, Quentin; Renner, Marianne; Moutkine, Imane; Eugène, Emmanuel; Poncer, Jean Christophe; Lévi, Sabine

    2013-09-25

    The neuronal K/Cl transporter KCC2 exports chloride ions and thereby influences the efficacy and polarity of GABA signaling in the brain. KCC2 is also critical for dendritic spine morphogenesis and the maintenance of glutamatergic transmission in cortical neurons. Because KCC2 plays a pivotal role in the function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. Here, we studied the impact of membrane diffusion and clustering on KCC2 function. KCC2 forms clusters in the vicinity of both excitatory and inhibitory synapses. Using quantum-dot-based single-particle tracking on rat primary hippocampal neurons, we show that KCC2 is slowed down and confined at excitatory and inhibitory synapses compared with extrasynaptic regions. However, KCC2 escapes inhibitory synapses faster than excitatory synapses, reflecting stronger molecular constraints at the latter. Interfering with KCC2-actin interactions or inhibiting F-actin polymerization releases diffusion constraints on KCC2 at excitatory but not inhibitory synapses. Thus, F-actin constrains KCC2 diffusion at excitatory synapses, whereas KCC2 is confined at inhibitory synapses by a distinct mechanism. Finally, increased neuronal activity rapidly increases the diffusion coefficient and decreases the dwell time of KCC2 at excitatory synapses. This effect involves NMDAR activation, Ca(2+) influx, KCC2 S940 dephosphorylation and calpain protease cleavage of KCC2 and is accompanied by reduced KCC2 clustering and ion transport function. Thus, activity-dependent regulation of KCC2 lateral diffusion and clustering allows for a rapid regulation of chloride homeostasis in neurons.

  4. Activity-dependent induction of multitransmitter signaling onto pyramidal cells and interneurons of hippocampal area CA3.

    Science.gov (United States)

    Romo-Parra, Héctor; Vivar, Carmen; Maqueda, Jasmín; Morales, Miguel A; Gutiérrez, Rafael

    2003-06-01

    The granule cells of the dentate gyrus (DG) are considered to be glutamatergic, but they contain glutamic acid decarboxylase, gamma-amino butyric acid (GABA), and the vesicular GABA transporter mRNA. Their expression is regulated in an activity-dependent manner and coincides with the appearance of GABAergic transmission from the mossy fibers (MF) to pyramidal cells in area CA3. These data support the hypothesis that MF are able to release glutamate and GABA. Following the principle that a given neuron releases the same neurotransmitter(s) onto all its targets, we here demonstrate the emergence, after a generalized convulsive seizure, of MF GABAergic signaling sensitive to activation mGluR-III onto pyramidal cells and interneurons of CA3. Despite this, excitation overrides inhibition in interneurons, preventing disinhibition. Furthermore, on blockade of GABA and glutamate ionotropic receptors, an M1-cholinergic depolarizing signal is also revealed in both targets, which postsynaptically modulates the glutamatergic and GABAergic fast neurotransmission. The emergence of these nonglutamatergic signals depends on protein synthesis. In contrast to cholinergic responses evoked by associational/commissural fibers activation, cholinergic transmission evoked by DG stimulation is only observed after seizures and is strongly depressed by the activation of mGluR-II, whereas both are depressed by M2-AChR activation. With immunohistological experiments, we show that this cholinergic pathway runs parallel to the MF. Thus seizures compromise a delicate balance of excitation and inhibition, on which a complex interaction of different neurotransmitters emerges to counteract excitation at pre- and postsynaptic sites. Particularly, MF GABAergic inhibition emerges to exert an overall inhibitory action on CA3.

  5. Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats

    Directory of Open Access Journals (Sweden)

    Taizhe eQian

    2014-02-01

    Full Text Available In the developing cerebral cortex, the marginal zone (MZ, consisting of early-generated neurons such as Cajal-Retzius cells, plays an important role in cell migration and lamination. There is accumulating evidence of widespread excitatory neurotransmission mediated by γ-aminobutyric acid (GABA in the MZ. Cajal-Retzius cells express not only GABAA receptors but also α2/β subunits of glycine receptors, and exhibit glycine receptor-mediated depolarization due to high [Cl−]i. However, the physiological roles of glycine receptors and their endogenous agonists during neurotransmission in the MZ are yet to be elucidated. To address this question, we performed optical imaging from the MZ using the voltage-sensitive dye JPW1114 on tangential neocortical slices of neonatal rats. A single electrical stimulus evoked an action-potential-dependent optical signal that spread radially over the MZ. The amplitude of the signal was not affected by glutamate receptor blockers, but was suppressed by either GABAA or glycine receptor antagonists. Combined application of both antagonists nearly abolished the signal. Inhibition of Na+, K+-2Cl− cotransporter by 20 µM bumetanide reduced the signal, indicating that this transporter contributes to excitation. Analysis of the interstitial fluid obtained by microdialysis from tangential neocortical slices with high-performance liquid chromatography revealed that GABA and taurine, but not glycine or glutamate, were released in the MZ in response to the electrical stimulation. The ambient release of taurine was reduced by the addition of a voltage-sensitive Na+ channel blocker. Immunohistochemistry and immunoelectron microscopy indicated that taurine was stored both in Cajal-Retzius and non-Cajal-Retzius cells in the MZ, but was not localized in presynaptic structures. Our results suggest that activity-dependent non-synaptic release of endogenous taurine facilitates excitatory neurotransmission through activation of

  6. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    KAUST Repository

    Jolivet, Renaud

    2015-02-26

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

  7. Eukaryotic transcription factors

    DEFF Research Database (Denmark)

    Staby, Lasse; O'Shea, Charlotte; Willemoës, Martin

    2017-01-01

    Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains...... targeting specific cis-acting elements in genes, and by the significant lack of fixed tertiary structure in their extensive intrinsically disordered regions. Recent research in protein intrinsic disorder (ID) has changed our understanding of transcriptional activation domains from 'negative noodles' to ID...... them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions...

  8. DNA Topoisomerases in Transcription

    DEFF Research Database (Denmark)

    Rødgaard, Morten Terpager

    2015-01-01

    This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most of the ex......This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most...... topoisomerase-DNA cleavage complex. The second study is an investigation of how topoisomerases influence gene regulation by keeping the genome in an optimal topological state....

  9. SNFing HIV transcription

    Directory of Open Access Journals (Sweden)

    Bukrinsky Michael

    2006-08-01

    Full Text Available Abstract The SWI/SNF chromatin remodeling complex is an essential regulator of transcription of cellular genes. HIV-1 infection induces exit of a core component of SWI/SNF, Ini1, into the cytoplasm and its association with the viral pre-integration complex. Several recent papers published in EMBO Journal, Journal of Biological Chemistry, and Retrovirology provide new information regarding possible functions of Ini1 and SWI/SNF in HIV life cycle. It appears that Ini1 has an inhibitory effect on pre-integration steps of HIV replication, but also contributes to stimulation of Tat-mediated transcription. This stimulation involves displacement of the nucleosome positioned at the HIV promoter.

  10. The nature of mutations induced by replication–transcription collisions.

    Science.gov (United States)

    Sankar, T Sabari; Wastuwidyaningtyas, Brigitta D; Dong, Yuexin; Lewis, Sarah A; Wang, Jue D

    2016-07-01

    The DNA replication and transcription machineries share a common DNA template and thus can collide with each other co-directionally or head-on. Replication–transcription collisions can cause replication fork arrest, premature transcription termination, DNA breaks, and recombination intermediates threatening genome integrity. Collisions may also trigger mutations, which are major contributors to genetic disease and evolution. However, the nature and mechanisms of collision-induced mutagenesis remain poorly understood. Here we reveal the genetic consequences of replication–transcription collisions in actively dividing bacteria to be two classes of mutations: duplications/deletions and base substitutions in promoters. Both signatures are highly deleterious but are distinct from the previously well-characterized base substitutions in the coding sequence. Duplications/deletions are probably caused by replication stalling events that are triggered by collisions; their distribution patterns are consistent with where the fork first encounters a transcription complex upon entering a transcription unit. Promoter substitutions result mostly from head-on collisions and frequently occur at a nucleotide that is conserved in promoters recognized by the major σ factor in bacteria. This substitution is generated via adenine deamination on the template strand in the promoter open complex, as a consequence of head-on replication perturbing transcription initiation. We conclude that replication–transcription collisions induce distinct mutation signatures by antagonizing replication and transcription, not only in coding sequences but also in gene regulatory elements.

  11. Non-transcriptional regulatory processes shape transcriptional network dynamics.

    Science.gov (United States)

    Ray, J Christian J; Tabor, Jeffrey J; Igoshin, Oleg A

    2011-10-11

    Information about the extra- or intracellular environment is often captured as biochemical signals that propagate through regulatory networks. These signals eventually drive phenotypic changes, typically by altering gene expression programmes in the cell. Reconstruction of transcriptional regulatory networks has given a compelling picture of bacterial physiology, but transcriptional network maps alone often fail to describe phenotypes. Cellular response dynamics are ultimately determined by interactions between transcriptional and non-transcriptional networks, with dramatic implications for physiology and evolution. Here, we provide an overview of non-transcriptional interactions that can affect the performance of natural and synthetic bacterial regulatory networks.

  12. Transcription and processing of mitochondrial RNA in the human pathogen Acanthamoeba castellanii.

    Science.gov (United States)

    Accari, Jessica; Barth, Christian

    2015-07-01

    The size, structure, gene content and organisation of mitochondrial genomes can be highly diverse especially amongst the protists. We investigated the transcription and processing of the mitochondrial genome of the opportunistic pathogen Acanthamoeba castellanii and here we present a detailed transcription map of the 41.6 kb genome that encodes 33 proteins, 16 tRNAs and 2 rRNAs. Northern hybridisation studies identified six major polycistronic transcripts, most of which are co-transcriptionally processed into smaller mono-, di- and tricistronic RNAs. The maturation of the polycistronic transcripts is likely to involve endonucleolytic cleavage where tRNAs serve as processing signals. Reverse transcription polymerase chain reactions across the intervening regions between the six major polycistronic transcripts suggest that these transcripts were once part of an even larger transcript. Our findings indicate that the mitochondrial genome of A. castellanii is transcribed from only one or two promoters, very similar to the mode of transcription in the mitochondria of its close relative Dictyostelium discoideum, where transcription is known to occur from only a single transcription initiation site. Transcription initiation from a minimal number of promoters despite a large genome size may be an emerging trend in the mitochondria of protists.

  13. Characterization of the transcripts of human cytomegalovirus UL144

    Directory of Open Access Journals (Sweden)

    Sun Zhengrong

    2011-06-01

    Full Text Available Abstract Background The genome of human cytomegalovirus (HCMV has been studied extensively, particularly in the UL/b' region. In this study, transcripts of one of the UL/b' genes, UL144, were identified in 3 HCMV isolates obtained from urine samples of congenitally infected infants. Methods Northern blot hybridization, cDNA library screening, and RACE-PCR were used. Results We identified at least 4 differentially regulated 3'-coterminal transcripts of UL144 in infected cells of 1,300, 1,600, 1,700, and 3,500 nucleotides (nt. The 1600 nt transcript was the major form of UL144 mRNA. The largest transcript initiated from the region within the UL141 open reading frame (ORF and included UL141, UL142, UL143, UL144, and UL145 ORFs. Conclusions These findings reveal the complex nature of the transcription of the UL144 gene in clinical isolates.

  14. Telomerase stimulates ribosomal DNA transcription under hyperproliferative conditions.

    Science.gov (United States)

    Gonzalez, Omar Garcia; Assfalg, Robin; Koch, Sylvia; Schelling, Adrian; Meena, Jitendra K; Kraus, Johann; Lechel, Andre; Katz, Sarah-Fee; Benes, Vladimir; Scharffetter-Kochanek, Karin; Kestler, Hans A; Günes, Cagatay; Iben, Sebastian

    2014-08-13

    In addition to performing its canonical function, Telomerase Reverse Transcriptase (TERT) has been shown to participate in cellular processes independent of telomerase activity. Furthermore, although TERT mainly localizes to Cajal bodies, it is also present within the nucleolus. Because the nucleolus is the site of rDNA transcription, we investigated the possible role of telomerase in regulating RNA polymerase I (Pol I). Here we show that TERT binds to rDNA and stimulates transcription by Pol I during liver regeneration and Ras-induced hyperproliferation. Moreover, the inhibition of telomerase activity by TERT- or TERC-specific RNA interference, the overexpression of dominant-negative-TERT, and the application of the telomerase inhibitor imetelstat reduce Pol I transcription and the growth of tumour cells. In vitro, telomerase can stimulate the formation of the transcription initiation complex. Our results demonstrate how non-canonical features of telomerase may direct Pol I transcription in oncogenic and regenerative hyperproliferation.

  15. Activity-dependent PI(3,5)P2 synthesis controls AMPA receptor trafficking during synaptic depression.

    Science.gov (United States)

    McCartney, Amber J; Zolov, Sergey N; Kauffman, Emily J; Zhang, Yanling; Strunk, Bethany S; Weisman, Lois S; Sutton, Michael A

    2014-11-11

    Dynamic regulation of phosphoinositide lipids (PIPs) is crucial for diverse cellular functions, and, in neurons, PIPs regulate membrane trafficking events that control synapse function. Neurons are particularly sensitive to the levels of the low abundant PIP, phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], because mutations in PI(3,5)P2-related genes are implicated in multiple neurological disorders, including epilepsy, severe neuropathy, and neurodegeneration. Despite the importance of PI(3,5)P2 for neural function, surprisingly little is known about this signaling lipid in neurons, or any cell type. Notably, the mammalian homolog of yeast vacuole segregation mutant (Vac14), a scaffold for the PI(3,5)P2 synthesis complex, is concentrated at excitatory synapses, suggesting a potential role for PI(3,5)P2 in controlling synapse function and/or plasticity. PI(3,5)P2 is generated from phosphatidylinositol 3-phosphate (PI3P) by the lipid kinase PI3P 5-kinase (PIKfyve). Here, we present methods to measure and control PI(3,5)P2 synthesis in hippocampal neurons and show that changes in neural activity dynamically regulate the levels of multiple PIPs, with PI(3,5)P2 being among the most dynamic. The levels of PI(3,5)P2 in neurons increased during two distinct forms of synaptic depression, and inhibition of PIKfyve activity prevented or reversed induction of synaptic weakening. Moreover, altering neuronal PI(3,5)P2 levels was sufficient to regulate synaptic strength bidirectionally, with enhanced synaptic function accompanying loss of PI(3,5)P2 and reduced synaptic strength following increased PI(3,5)P2 levels. Finally, inhibiting PI(3,5)P2 synthesis alters endocytosis and recycling of AMPA-type glutamate receptors (AMPARs), implicating PI(3,5)P2 dynamics in AMPAR trafficking. Together, these data identify PI(3,5)P2-dependent signaling as a regulatory pathway that is critical for activity-dependent changes in synapse strength.

  16. Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells.

    Directory of Open Access Journals (Sweden)

    Zhiyong Deng

    Full Text Available Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73 and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation.

  17. Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells.

    Science.gov (United States)

    Deng, Zhiyong; Sui, Guangchao; Rosa, Paulo Mottin; Zhao, Weiling

    2012-01-01

    Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73) and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS) potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation.

  18. Transcription regulation by distal enhancers: who's in the loop?

    Science.gov (United States)

    Stadhouders, Ralph; van den Heuvel, Anita; Kolovos, Petros; Jorna, Ruud; Leslie, Kris; Grosveld, Frank; Soler, Eric

    2012-01-01

    Genome-wide chromatin profiling efforts have shown that enhancers are often located at large distances from gene promoters within the noncoding genome. Whereas enhancers can stimulate transcription initiation by communicating with promoters via chromatin looping mechanisms, we propose that enhancers may also stimulate transcription elongation by physical interactions with intronic elements. We review here recent findings derived from the study of the hematopoietic system.

  19. Transcription regulation mechanisms of bacteriophages: Recent advances and future prospects

    OpenAIRE

    Yang, Haiquan; Ma, Yingfang; Wang, Yitian; Yang, Haixia; Shen, Wei; Chen, Xianzhong

    2014-01-01

    Phage diversity significantly contributes to ecology and evolution of new bacterial species through horizontal gene transfer. Therefore, it is essential to understand the mechanisms underlying phage-host interactions. After initial infection, the phage utilizes the transcriptional machinery of the host to direct the expression of its own genes. This review presents a view on the transcriptional regulation mechanisms of bacteriophages, and its contribution to phage diversity and classification...

  20. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  1. TCP transcription factors: architectures of plant form.

    Science.gov (United States)

    Manassero, Nora G Uberti; Viola, Ivana L; Welchen, Elina; Gonzalez, Daniel H

    2013-04-01

    After its initial definition in 1999, the TCP family of transcription factors has become the focus of a multiplicity of studies related with plant development at the cellular, organ, and tissue levels. Evidence has accumulated indicating that TCP transcription factors are the main regulators of plant form and architecture and constitute a tool through which evolution shapes plant diversity. The TCP transcription factors act in a multiplicity of pathways related with cell proliferation and hormone responses. In recent years, the molecular pathways of TCP protein action and biochemical studies on their mode of interaction with DNA have begun to shed light on their mechanism of action. However, the available information is fragmented and a unifying view of TCP protein action is lacking, as well as detailed structural studies of the TCP-DNA complex. Also important, the possible role of TCP proteins as integrators of plant developmental responses to the environment has deserved little attention. In this review, we summarize the current knowledge about the structure and functions of TCP transcription factors and analyze future perspectives for the study of the role of these proteins and their use to modify plant development.

  2. Interaction of Restin with transcription factors

    Institute of Scientific and Technical Information of China (English)

    WU; Yousheng; LU; Fan; QI; Yinxin; WANG; Ruihua; ZHANG; Jia

    2005-01-01

    Restin, a member of melanoma-associated antigen superfamily gene, was first cloned from differentiated leukemia cell induced by all trans-retinoic acid, and was able to inhibit cell proliferation, but the molecular mechanism was not clear. Since Restin was localized in cell nucleus, and its homolog member, Necdin (neuronal growth suppressor factor), could interact with transcription factors p53 and E2F1, we proposed that Restin might also function as Necdin through interacting with some transcription factors. In this study, transcription factors p53, AP1,ATFs and E2Fs were cloned and used in the mammalian two-hybrid system to identify their interaction with Restin. The results showed that only ATF3 had a strong interaction with Restin. It is interesting to know that ATF3 was an important transcription factor for G1 cell cycle initiation in physiological stress response. It was possible that the inhibition of cell proliferation by Restin might be related with the inhibition of ATF3 activity.

  3. Transcriptional networks in epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Christo Venkov

    Full Text Available Epithelial-mesenchymal transition (EMT changes polarized epithelial cells into migratory phenotypes associated with loss of cell-cell adhesion molecules and cytoskeletal rearrangements. This form of plasticity is seen in mesodermal development, fibroblast formation, and cancer metastasis.Here we identify prominent transcriptional networks active during three time points of this transitional process, as epithelial cells become fibroblasts. DNA microarray in cultured epithelia undergoing EMT, validated in vivo, were used to detect various patterns of gene expression. In particular, the promoter sequences of differentially expressed genes and their transcription factors were analyzed to identify potential binding sites and partners. The four most frequent cis-regulatory elements (CREs in up-regulated genes were SRY, FTS-1, Evi-1, and GC-Box, and RNA inhibition of the four transcription factors, Atf2, Klf10, Sox11, and SP1, most frequently binding these CREs, establish their importance in the initiation and propagation of EMT. Oligonucleotides that block the most frequent CREs restrain EMT at early and intermediate stages through apoptosis of the cells.Our results identify new transcriptional interactions with high frequency CREs that modulate the stability of cellular plasticity, and may serve as targets for modulating these transitional states in fibroblasts.

  4. Activity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways.

    Science.gov (United States)

    Hanno-Iijima, Yoko; Tanaka, Masami; Iijima, Takatoshi

    2015-01-01

    Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses.

  5. Dynamic usage of transcription start sites within core promoters

    DEFF Research Database (Denmark)

    Kawaji, Hideya; Frith, Martin C; Katayama, Shintaro

    2006-01-01

    BACKGROUND: Mammalian promoters do not initiate transcription at single, well defined base pairs, but rather at multiple, alternative start sites spread across a region. We previously characterized the static structures of transcription start site usage within promoters at the base pair level......, based on large-scale sequencing of transcript 5' ends. RESULTS: In the present study we begin to explore the internal dynamics of mammalian promoters, and demonstrate that start site selection within many mouse core promoters varies among tissues. We also show that this dynamic usage of start sites...

  6. Transcriptional Activation of the Zygotic Genome in Drosophila.

    Science.gov (United States)

    Harrison, Melissa M; Eisen, Michael B

    2015-01-01

    During the first stages of metazoan development, the genomes of the highly specified sperm and egg must unite and be reprogrammed to allow for the generation of a new organism. This process is controlled by maternally deposited products. Initially, the zygotic genome is largely transcriptionally quiescent, and it is not until hours later that the zygotic genome takes control of development. The transcriptional activation of the zygotic genome is tightly coordinated with the degradation of the maternal products. Here, we review the current understanding of the processes that mediate the reprogramming of the early embryonic genome and facilitate transcriptional activation during the early stages of Drosophila development.

  7. The Mediator complex and transcription regulation

    Science.gov (United States)

    Poss, Zachary C.; Ebmeier, Christopher C.

    2013-01-01

    The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module. PMID:24088064

  8. Transcription without XPB Establishes a Unified Helicase-Independent Mechanism of Promoter Opening in Eukaryotic Gene Expression.

    Science.gov (United States)

    Alekseev, Sergey; Nagy, Zita; Sandoz, Jérémy; Weiss, Amélie; Egly, Jean-Marc; Le May, Nicolas; Coin, Frederic

    2017-02-02

    Transcription starts with the assembly of pre-initiation complexes on promoters followed by their opening. Current models suggest that class II gene transcription requires ATP and the TFIIH XPB subunit to open a promoter. Here, we observe that XPB depletion surprisingly leaves transcription virtually intact. In contrast, inhibition of XPB ATPase activity affects transcription, revealing that mRNA expression paradoxically accommodates the absence of XPB while being sensitive to the inhibition of its ATPase activity. The XPB-depleted TFIIH complex is recruited to active promoters and contributes to transcription. We finally demonstrate that the XPB ATPase activity is only used to relieve a transcription initiation block imposed by XPB itself. In the absence of this block, transcription initiation can take place without XPB ATPase activity. These results suggest that a helicase is dispensable for mRNA transcription, thereby unifying the mechanism of promoter DNA opening for the three eukaryotic RNA polymerases.

  9. Intron and intronless transcription of the chicken polyubiquitin gene UbII.

    Science.gov (United States)

    Mezquita, J; López-Ibor, B; Pau, M; Mezquita, C

    1993-03-22

    We have previously reported that the chicken polyubiquitin gene UbII is preferentially expressed during spermatogenesis and we show here that UbII is the predominant polyubiquitin gene expressed in early embryogenesis. Two main initiation sites were detected. Transcription from the initiation site used in early embryos results in the presence of an intron in the 5'-untranslated region of the transcripts as has been reported for other polyubiquitin messages. In mature testis, however, the use of a different initiation site, located within the intron, produces intronless transcripts. Distinct promoter sequences, present in each initiation site, may regulate the differential expression observed in this gene.

  10. Nascent transcription affected by RNA polymerase IV in Zea mays.

    Science.gov (United States)

    Erhard, Karl F; Talbot, Joy-El R B; Deans, Natalie C; McClish, Allison E; Hollick, Jay B

    2015-04-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3'-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance.

  11. Bipartite functions of the CREB co-activators selectively direct alternative splicing or transcriptional activation.

    Science.gov (United States)

    Amelio, Antonio L; Caputi, Massimo; Conkright, Michael D

    2009-09-16

    The CREB regulated transcription co-activators (CRTCs) regulate many biological processes by integrating and converting environmental inputs into transcriptional responses. Although the mechanisms by which CRTCs sense cellular signals are characterized, little is known regarding how CRTCs contribute to the regulation of cAMP inducible genes. Here we show that these dynamic regulators, unlike other co-activators, independently direct either pre-mRNA splice-site selection or transcriptional activation depending on the cell type or promoter context. Moreover, in other scenarios, the CRTC co-activators coordinately regulate transcription and splicing. Mutational analyses showed that CRTCs possess distinct functional domains responsible for regulating either pre-mRNA splicing or transcriptional activation. Interestingly, the CRTC1-MAML2 oncoprotein lacks the splicing domain and is incapable of altering splice-site selection despite robustly activating transcription. The differential usage of these distinct domains allows CRTCs to selectively mediate multiple facets of gene regulation, indicating that co-activators are not solely restricted to coordinating alternative splicing with increase in transcriptional activity.

  12. Transcription-coupled DNA repair in prokaryotes.

    Science.gov (United States)

    Ganesan, Ann; Spivak, Graciela; Hanawalt, Philip C

    2012-01-01

    Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) that acts specifically on lesions in the transcribed strand of expressed genes. First reported in mammalian cells, TCR was then documented in Escherichia coli. In this organism, an RNA polymerase arrested at a lesion is displaced by the transcription repair coupling factor, Mfd. This protein recruits the NER lesion-recognition factor UvrA, and then dissociates from the DNA. UvrA binds UvrB, and the assembled UvrAB* complex initiates repair. In mutants lacking active Mfd, TCR is absent. A gene transcribed by the bacteriophage T7 RNA polymerase in E. coli also requires Mfd for TCR. The CSB protein (missing or defective in cells of patients with Cockayne syndrome, complementation group B) is essential for TCR in humans. CSB and its homologs in higher eukaryotes are likely functional equivalents of Mfd. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives.

    Science.gov (United States)

    Charlier, Jean-Benoit; Polese, Catherine; Nouet, Cécile; Carnol, Monique; Bosman, Bernard; Krämer, Ute; Motte, Patrick; Hanikenne, Marc

    2015-07-01

    In Arabidopsis thaliana, FRD3 (FERRIC CHELATE REDUCTASE DEFECTIVE 3) plays a central role in metal homeostasis. FRD3 is among a set of metal homeostasis genes that are constitutively highly expressed in roots and shoots of Arabidopsis halleri, a zinc hyperaccumulating and hypertolerant species. Here, we examined the regulation of FRD3 by zinc in both species to shed light on the evolutionary processes underlying the evolution of hyperaccumulation in A. halleri. We combined gene expression studies with the use of β-glucuronidase and green fluorescent protein reporter constructs to compare the expression profile and transcriptional and post-transcriptional regulation of FRD3 in both species. The AtFRD3 and AhFRD3 genes displayed a conserved expression profile. In A. thaliana, alternative transcription initiation sites from two promoters determined transcript variants that were differentially regulated by zinc supply in roots and shoots to favour the most highly translated variant under zinc-excess conditions. In A. halleri, a single transcript variant with higher transcript stability and enhanced translation has been maintained. The FRD3 gene thus undergoes complex transcriptional and post-transcriptional regulation in Arabidopsis relatives. Our study reveals that a diverse set of mechanisms underlie increased gene dosage in the A. halleri lineage and illustrates how an environmental challenge can alter gene regulation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Dynamic Mechanism for the Transcription Apparatus Orchestrating Reliable Responses to Activators

    Science.gov (United States)

    Wang, Yaolai; Liu, Feng; Wang, Wei

    2012-05-01

    The transcription apparatus (TA) is a huge molecular machine. It detects the time-varying concentrations of transcriptional activators and initiates mRNA transcripts at appropriate rates. Based on the general structural organizations of the TA, we propose how the TA dynamically orchestrates transcriptional responses. The activators rapidly cycle in and out of a clamp-like space temporarily formed between the enhancer and the Mediator, with the concentration of activators encoded as their temporal occupancy rate (RTOR) within the space. The entry of activators into this space induces allostery in the Mediator, resulting in a facilitated circumstance for transcriptional reinitiation. The reinitiation rate is much larger than the cycling rate of activators, thereby RTOR guiding the amount of transcripts. Based on this mechanism, stochastic simulations can qualitatively reproduce and interpret multiple features of gene expression, e.g., transcriptional bursting is not mere noise as traditionally believed, but rather the basis of reliable transcriptional responses.

  15. Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation

    Science.gov (United States)

    Chauvier, Adrien; Picard-Jean, Frédéric; Berger-Dancause, Jean-Christophe; Bastet, Laurène; Naghdi, Mohammad Reza; Dubé, Audrey; Turcotte, Pierre; Perreault, Jonathan; Lafontaine, Daniel A.

    2017-01-01

    On the basis of nascent transcript sequencing, it has been postulated but never demonstrated that transcriptional pausing at translation start sites is important for gene regulation. Here we show that the Escherichia coli thiamin pyrophosphate (TPP) thiC riboswitch contains a regulatory pause site in the translation initiation region that acts as a checkpoint for thiC expression. By biochemically probing nascent transcription complexes halted at defined positions, we find a narrow transcriptional window for metabolite binding, in which the downstream boundary is delimited by the checkpoint. We show that transcription complexes at the regulatory pause site favour the formation of a riboswitch intramolecular lock that strongly prevents TPP binding. In contrast, cotranscriptional metabolite binding increases RNA polymerase pausing and induces Rho-dependent transcription termination at the checkpoint. Early transcriptional pausing may provide a general mechanism, whereby transient transcriptional windows directly coordinate the sensing of environmental cues and bacterial mRNA regulation. PMID:28071751

  16. Matrix formulation of a universal microbial transcript profiling system

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, J P; Ng, J; Sokhansanj, B A

    2000-11-01

    DNA chips and microarrays are used to profile gene transcription. Unfortunately, the initial fabrication cost for a chip and the reagent costs to amplify thousands of open reading frames for a microarray are over $100K for a typical 4 Mbase bacterial genome. To avoid these expensive steps, a matrix formulation of a universal hybrid chip-microarray approach to transcript profiling is demonstrated for synthetic data. Initial considerations for application to the 4.3 Mbase bacterium Yersinia pestis are also presented. This approach can be applied to arbitrary bacteria by recalculating a matrix and pseudoinverse. This approach avoids the large upfront expenses associated with DNA chips and microarrays.

  17. Genomic and chromatin signals underlying transcription start-site selection

    DEFF Research Database (Denmark)

    Valen, Eivind; Sandelin, Albin Gustav

    2011-01-01

    A central question in cellular biology is how the cell regulates transcription and discerns when and where to initiate it. Locating transcription start sites (TSSs), the signals that specify them, and ultimately elucidating the mechanisms of regulated initiation has therefore been a recurrent theme......; the field is now faced with the daunting challenge of translating these descriptive maps into quantitative and predictive models describing the underlying biology. We review here the genomic and chromatin features that underlie TSS selection and usage, focusing on the differences between the major classes...

  18. The Escherichia coli transcriptional regulator MarA directly represses transcription of purA and hdeA.

    Science.gov (United States)

    Schneiders, Thamarai; Barbosa, Teresa M; McMurry, Laura M; Levy, Stuart B

    2004-03-05

    The Escherichia coli MarA protein mediates a response to multiple environmental stresses through the activation or repression in vivo of a large number of chromosomal genes. Transcriptional activation for a number of these genes has been shown to occur via direct interaction of MarA with a 20-bp degenerate asymmetric "marbox" sequence. It was not known whether repression by MarA was also direct. We found that purified MarA was sufficient in vitro to repress transcription of both purA and hdeA. Transcription and electrophoretic mobility shift experiments in vitro using mutant promoters suggested that the marbox involved in the repression overlapped the -35 promoter motif and was in the "backward" orientation. This organization contrasts with that of the class II promoters activated by MarA, in which the marbox also overlaps the -35 motif but is in the "forward" orientation. We conclude that MarA, a member of the AraC/XylS family, can act directly as a repressor or an activator, depending on the position and orientation of the marbox within a promoter.

  19. Transcriptional Silencing of Retroviral Vectors

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M.; Pedersen, F.S.

    1996-01-01

    . Extinction of long-term vector expression has been observed after implantation of transduced hematopoietic cells as well as fibroblasts, myoblasts and hepatocytes. Here we review the influence of vector structure, integration site and cell type on transcriptional silencing. While down-regulation of proviral...... transcription is known from a number of cellular and animal models, major insight has been gained from studies in the germ line and embryonal cells of the mouse. Key elements for the transfer and expression of retroviral vectors, such as the viral transcriptional enhancer and the binding site for the t......RNA primer for reverse transcription may have a major influence on transcriptional silencing. Alterations of these elements of the vector backbone as well as the use of internal promoter elements from housekeeping genes may contribute to reduce transcriptional silencing. The use of cell culture and animal...

  20. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... of the transcriptional response is essential for cells to progress through the cell cycle in a normal manner. The involvement of cytoplasmic and nuclear accessory molecules, and the general nuclear membrane transport components, are essential for this process. Although nuclear import and export for different...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...

  1. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...... of the transcriptional response is essential for cells to progress through the cell cycle in a normal manner. The involvement of cytoplasmic and nuclear accessory molecules, and the general nuclear membrane transport components, are essential for this process. Although nuclear import and export for different...

  2. DNA topology and transcription

    Science.gov (United States)

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions. PMID:24755522

  3. DNA topology and transcription.

    Science.gov (United States)

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions.

  4. Deciphering Transcriptional Dynamics In Vivo by Counting Nascent RNA Molecules.

    Science.gov (United States)

    Choubey, Sandeep; Kondev, Jane; Sanchez, Alvaro

    2015-11-01

    Deciphering how the regulatory DNA sequence of a gene dictates its expression in response to intra and extracellular cues is one of the leading challenges in modern genomics. The development of novel single-cell sequencing and imaging techniques, as well as a better exploitation of currently available single-molecule imaging techniques, provides an avenue to interrogate the process of transcription and its dynamics in cells by quantifying the number of RNA polymerases engaged in the transcription of a gene (or equivalently the number of nascent RNAs) at a given moment in time. In this paper, we propose that measurements of the cell-to-cell variability in the number of nascent RNAs provide a mostly unexplored method for deciphering mechanisms of transcription initiation in cells. We propose a simple kinetic model of transcription initiation and elongation from which we calculate nascent RNA copy-number fluctuations. To demonstrate the usefulness of this approach, we test our theory against published nascent RNA data for twelve constitutively expressed yeast genes. Rather than transcription being initiated through a single rate limiting step, as it had been previously proposed, our single-cell analysis reveals the presence of at least two rate limiting steps. Surprisingly, half of the genes analyzed have nearly identical rates of transcription initiation, suggesting a common mechanism. Our analytical framework can be used to extract quantitative information about dynamics of transcription from single-cell sequencing data, as well as from single-molecule imaging and electron micrographs of fixed cells, and provides the mathematical means to exploit the quantitative power of these technologies.

  5. Deciphering Transcriptional Dynamics In Vivo by Counting Nascent RNA Molecules.

    Directory of Open Access Journals (Sweden)

    Sandeep Choubey

    2015-11-01

    Full Text Available Deciphering how the regulatory DNA sequence of a gene dictates its expression in response to intra and extracellular cues is one of the leading challenges in modern genomics. The development of novel single-cell sequencing and imaging techniques, as well as a better exploitation of currently available single-molecule imaging techniques, provides an avenue to interrogate the process of transcription and its dynamics in cells by quantifying the number of RNA polymerases engaged in the transcription of a gene (or equivalently the number of nascent RNAs at a given moment in time. In this paper, we propose that measurements of the cell-to-cell variability in the number of nascent RNAs provide a mostly unexplored method for deciphering mechanisms of transcription initiation in cells. We propose a simple kinetic model of transcription initiation and elongation from which we calculate nascent RNA copy-number fluctuations. To demonstrate the usefulness of this approach, we test our theory against published nascent RNA data for twelve constitutively expressed yeast genes. Rather than transcription being initiated through a single rate limiting step, as it had been previously proposed, our single-cell analysis reveals the presence of at least two rate limiting steps. Surprisingly, half of the genes analyzed have nearly identical rates of transcription initiation, suggesting a common mechanism. Our analytical framework can be used to extract quantitative information about dynamics of transcription from single-cell sequencing data, as well as from single-molecule imaging and electron micrographs of fixed cells, and provides the mathematical means to exploit the quantitative power of these technologies.

  6. Mammalian glutaminase Gls2 gene encodes two functional alternative transcripts by a surrogate promoter usage mechanism.

    Directory of Open Access Journals (Sweden)

    Mercedes Martín-Rufián

    Full Text Available BACKGROUND: Glutaminase is expressed in most mammalian tissues and cancer cells, but the regulation of its expression is poorly understood. An essential step to accomplish this goal is the characterization of its species- and cell-specific isoenzyme pattern of expression. Our aim was to identify and characterize transcript variants of the mammalian glutaminase Gls2 gene. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate for the first time simultaneous expression of two transcript variants from the Gls2 gene in human, rat and mouse. A combination of RT-PCR, primer-extension analysis, bioinformatics, real-time PCR, in vitro transcription and translation and immunoblot analysis was applied to investigate GLS2 transcripts in mammalian tissues. Short (LGA and long (GAB transcript forms were isolated in brain and liver tissue of human, rat and mouse. The short LGA transcript arises by a combination of two mechanisms of transcriptional modulation: alternative transcription initiation and alternative promoter. The LGA variant contains both the transcription start site (TSS and the alternative promoter in the first intron of the Gls2 gene. The full human LGA transcript has two in-frame ATGs in the first exon, which are missing in orthologous rat and mouse transcripts. In vitro transcription and translation of human LGA yielded two polypeptides of the predicted size, but only the canonical full-length protein displayed catalytic activity. Relative abundance of GAB and LGA transcripts showed marked variations depending on species and tissues analyzed. CONCLUSIONS/SIGNIFICANCE: This is the first report demonstrating expression of alternative transcripts of the mammalian Gls2 gene. Transcriptional mechanisms giving rise to GLS2 variants and isolation of novel GLS2 transcripts in human, rat and mouse are presented. Results were also confirmed at the protein level, where catalytic activity was demonstrated for the human LGA protein. Relative abundance of GAB and

  7. Activity-dependent regulation of MHC class I expression in the developing primary visual cortex of the common marmoset monkey

    Directory of Open Access Journals (Sweden)

    Schlumbohm Christina

    2011-01-01

    Full Text Available Abstract Background Several recent studies have highlighted the important role of immunity-related molecules in synaptic plasticity processes in the developing and adult mammalian brains. It has been suggested that neuronal MHCI (major histocompatibility complex class I genes play a role in the refinement and pruning of synapses in the developing visual system. As a fast evolutionary rate may generate distinct properties of molecules in different mammalian species, we studied the expression of MHCI molecules in a nonhuman primate, the common marmoset monkey (Callithrix jacchus. Methods and results Analysis of expression levels of MHCI molecules in the developing visual cortex of the common marmoset monkeys revealed a distinct spatio-temporal pattern. High levels of expression were detected very early in postnatal development, at a stage when synaptogenesis takes place and ocular dominance columns are formed. To determine whether the expression of MHCI molecules is regulated by retinal activity, animals were subjected to monocular enucleation. Levels of MHCI heavy chain subunit transcripts in the visual cortex were found to be elevated in response to monocular enucleation. Furthermore, MHCI heavy chain immunoreactivity revealed a banded pattern in layer IV of the visual cortex in enucleated animals, which was not observed in control animals. This pattern of immunoreactivity indicated that higher expression levels were associated with retinal activity coming from the intact eye. Conclusions These data demonstrate that, in the nonhuman primate brain, expression of MHCI molecules is regulated by neuronal activity. Moreover, this study extends previous findings by suggesting a role for neuronal MHCI molecules during synaptogenesis in the visual cortex.

  8. The post-transcriptional operon

    DEFF Research Database (Denmark)

    Tenenbaum, Scott A.; Christiansen, Jan; Nielsen, Henrik

    2011-01-01

    A post-transcriptional operon is a set of monocistronic mRNAs encoding functionally related proteins that are co-regulated by a group of RNA-binding proteins and/or small non-coding RNAs so that protein expression is coordinated at the post-transcriptional level. The post-transcriptional operon...... model (PTO) is used to describe data from an assortment of methods (e.g. RIP-Chip, CLIP-Chip, miRNA profiling, ribosome profiling) that globally address the functionality of mRNA. Several examples of post-transcriptional operons have been documented in the literature and demonstrate the usefulness...

  9. Promoter-mediated transcriptional dynamics.

    Science.gov (United States)

    Zhang, Jiajun; Zhou, Tianshou

    2014-01-21

    Genes in eukaryotic cells are typically regulated by complex promoters containing multiple binding sites for a variety of transcription factors, but how promoter dynamics affect transcriptional dynamics has remained poorly understood. In this study, we analyze gene models at the transcriptional regulation level, which incorporate the complexity of promoter structure (PS) defined as transcriptional exits (i.e., ON states of the promoter) and the transition pattern (described by a matrix consisting of transition rates among promoter activity states). We show that multiple exits of transcription are the essential origin of generating multimodal distributions of mRNA, but promoters with the same transition pattern can lead to multimodality of different modes, depending on the regulation of transcriptional factors. In turn, for similar mRNA distributions in the models, the mean ON or OFF time distributions may exhibit different characteristics, thus providing the supplemental information on PS. In addition, we demonstrate that the transcriptional noise can be characterized by a nonlinear function of mean ON and OFF times. These results not only reveal essential characteristics of promoter-mediated transcriptional dynamics but also provide signatures useful for inferring PS based on characteristics of transcriptional outputs. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins

    KAUST Repository

    Schaefer, Ulf

    2010-10-21

    The initiation and regulation of transcription in eukaryotes is complex and involves a large number of transcription factors (TFs), which are known to bind to the regulatory regions of eukaryotic DNA. Apart from TF-DNA binding, protein-protein interaction involving TFs is an essential component of the machinery facilitating transcriptional regulation. Proteins that interact with TFs in the context of transcription regulation but do not bind to the DNA themselves, we consider transcription co-factors (TcoFs). The influence of TcoFs on transcriptional regulation and initiation, although indirect, has been shown to be significant with the functionality of TFs strongly influenced by the presence of TcoFs. While the role of TFs and their interaction with regulatory DNA regions has been well-studied, the association between TFs and TcoFs has so far been given less attention. Here, we present a resource that is comprised of a collection of human TFs and the TcoFs with which they interact. Other proteins that have a proven interaction with a TF, but are not considered TcoFs are also included. Our database contains 157 high-confidence TcoFs and additionally 379 hypothetical TcoFs. These have been identified and classified according to the type of available evidence for their involvement in transcriptional regulation and their presence in the cell nucleus. We have divided TcoFs into four groups, one of which contains high-confidence TcoFs and three others contain TcoFs which are hypothetical to different extents. We have developed the Dragon Database for Human Transcription Co-Factors and Transcription Factor Interacting Proteins (TcoF-DB). A web-based interface for this resource can be freely accessed at http://cbrc.kaust.edu.sa/tcof/ and http://apps.sanbi.ac.za/tcof/. © The Author(s) 2010.

  11. Mastering Transcription: Multiplexed Analysis of Transcription Start Site Sequences.

    Science.gov (United States)

    Hochschild, Ann

    2015-12-17

    In this issue of Molecular Cell, Vvedenskaya et al. (2015) describe a high-throughput sequencing-based methodology for the massively parallel analysis of transcription from a high-complexity barcoded template library both in vitro and in vivo, providing a powerful new tool for the study of transcription.

  12. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses.

    Science.gov (United States)

    Je, H Shawn; Yang, Feng; Ji, Yuanyuan; Nagappan, Guhan; Hempstead, Barbara L; Lu, Bai

    2012-09-25

    Formation of specific neuronal connections often involves competition between adjacent axons, leading to stabilization of the active terminal, while retraction of the less active ones. The underlying molecular mechanisms remain unknown. We show that activity-dependent conversion of pro-brain-derived neurotrophic factor (proBDNF) to mature (m)BDNF mediates synaptic competition. Stimulation of motoneurons triggers proteolytic conversion of proBDNF to mBDNF at nerve terminals. In Xenopus nerve-muscle cocultures, in which two motoneurons innervate one myocyte, proBDNF-p75(NTR) signaling promotes retraction of the less active terminal, whereas mBDNF-tyrosine-related kinase B (TrkB) p75NTR (p75 neurotrophin receptor) facilitates stabilization of the active one. Thus, proBDNF and mBDNF may serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, and activity-dependent conversion of proBDNF to mBDNF may regulate synapse elimination.

  13. Human mediator subunit MED15 promotes transcriptional activation.

    Science.gov (United States)

    Nakatsubo, Takuya; Nishitani, Saori; Kikuchi, Yuko; Iida, Satoshi; Yamada, Kana; Tanaka, Aki; Ohkuma, Yoshiaki

    2014-10-01

    In eukaryotes, the Mediator complex is an essential transcriptional cofactor of RNA polymerase II (Pol II). In humans, it contains up to 30 subunits and consists of four modules: head, middle, tail, and CDK/Cyclin. One of the subunits, MED15, is located in the tail module, and was initially identified as Gal11 in budding yeast, where it plays an essential role in the transcriptional regulation of galactose metabolism with the potent transcriptional activator Gal4. For this reason, we investigated the function of the human MED15 subunit (hMED15) in transcriptional activation. First, we measured the effect of hMED15 knockdown on cell growth in HeLa cells. The growth rate was greatly reduced. By immunostaining, we observed the colocalization of hMED15 with the general transcription factors TFIIE and TFIIH in the nucleus. We measured the effects of siRNA-mediated knockdown of hMED15 on transcriptional activation using two different transcriptional activators, VP16 and SREBP1a. Treatment with siRNAs reduced transcriptional activation, and this reduction could be rescued by overexpression of HA/Flag-tagged, wild-type hMED15. To investigate hMED15 localization, we treated human MCF-7 cells with the MDM2 inhibitor Nutlin-3, thus inducing p21 transcription. We found that hMED15 localized to both the p53 binding site and the p21 promoter region, along with TFIIE and TFIIH. These results indicate that hMED15 promotes transcriptional activation.

  14. RNA polymerase: the vehicle of transcription.

    Science.gov (United States)

    Borukhov, Sergei; Nudler, Evgeny

    2008-03-01

    RNA polymerase (RNAP) is the principal enzyme of gene expression and regulation for all three divisions of life: Eukaryota, Archaea and Bacteria. Recent progress in the structural and biochemical characterization of RNAP illuminates this enzyme as a flexible, multifunctional molecular machine. During each step of the transcription cycle, RNAP undergoes elaborate conformational changes. As many fundamental and previously mysterious aspects of how RNAP works begin to be understood, this enzyme reveals intriguing similarities to man-made engineered devices. These resemblances can be found in the mechanics of RNAP-DNA complex formation, in RNA chain initiation and in the elongation processes. Here we highlight recent advances in understanding RNAP function and regulation.

  15. Chicken Fetal Liver DNA Damage and Adduct Formation by Activation-Dependent DNA-Reactive Carcinogens and Related Compounds of Several Structural Classes

    OpenAIRE

    2014-01-01

    The chicken egg genotoxicity assay (CEGA), which utilizes the liver of an intact and aseptic embryo-fetal test organism, was evaluated using four activation-dependent DNA-reactive carcinogens and four structurally related less potent carcinogens or non-carcinogens. In the assay, three daily doses of test substances were administered to eggs containing 9–11-day-old fetuses and the fetal livers were assessed for two endpoints, DNA breaks using the alkaline single cell gel electrophoresis (comet...

  16. Transcriptional and post-transcriptional profile of human chromosome 21.

    Science.gov (United States)

    Nikolaev, Sergey I; Deutsch, Samuel; Genolet, Raphael; Borel, Christelle; Parand, Leila; Ucla, Catherine; Schütz, Frederic; Duriaux Sail, Genevieve; Dupré, Yann; Jaquier-Gubler, Pascale; Araud, Tanguy; Conne, Beatrice; Descombes, Patrick; Vassalli, Jean-Dominique; Curran, Joseph; Antonarakis, Stylianos E

    2009-08-01

    Recent studies have demonstrated extensive transcriptional activity across the human genome, a substantial fraction of which is not associated with any functional annotation. However, very little is known regarding the post-transcriptional processes that operate within the different classes of RNA molecules. To characterize the post-transcriptional properties of expressed sequences from human chromosome 21 (HSA21), we separated RNA molecules from three cell lines (GM06990, HeLa S3, and SK-N-AS) according to their ribosome content by sucrose gradient fractionation. Polyribosomal-associated RNA and total RNA were subsequently hybridized to genomic tiling arrays. We found that approximately 50% of the transcriptional signals were located outside of annotated exons and were considered as TARs (transcriptionally active regions). Although TARs were observed among polysome-associated RNAs, RT-PCR and RACE experiments revealed that approximately 40% were likely to represent nonspecific cross-hybridization artifacts. Bioinformatics discrimination of TARs according to conservation and sequence complexity allowed us to identify a set of high-confidence TARs. This set of TARs was significantly depleted in the polysomes, suggesting that it was not likely to be involved in translation. Analysis of polysome representation of RefSeq exons showed that at least 15% of RefSeq transcripts undergo significant post-transcriptional regulation in at least two of the three cell lines tested. Among the regulated transcripts, enrichment analysis revealed an over-representation of genes involved in Alzheimer's disease (AD), including APP and the BACE1 protease that cleaves APP to produce the pathogenic beta 42 peptide. We demonstrate that the combination of RNA fractionation and tiling arrays is a powerful method to assess the transcriptional and post-transcriptional properties of genomic regions.

  17. Computational model of touch sensory cells (T Cells) of the leech: role of the afterhyperpolarization (AHP) in activity-dependent conduction failure.

    Science.gov (United States)

    Cataldo, Enrico; Brunelli, Marcello; Byrne, John H; Av-Ron, Evyatar; Cai, Yidao; Baxter, Douglas A

    2005-01-01

    Bursts of spikes in T cells produce an AHP, which results from activation of a Na+/K+ pump and a Ca2+-dependent K+ current. Activity-dependent increases in the AHP are believed to induce conduction block of spikes in several regions of the neuron, which in turn, may decrease presynaptic invasion of spikes and thereby decrease transmitter release. To explore this possibility, we used the neurosimulator SNNAP to develop a multi-compartmental model of the T cell. The model incorporated empirical data that describe the geometry of the cell and activity-dependent changes of the AHP. Simulations indicated that at some branching points, activity-dependent increases of the AHP reduced the number of spikes transmitted from the minor receptive fields to the soma and beyond. More importantly, simulations also suggest that the AHP could modulate, under some circumstances, transmission from the soma to the synaptic terminals, suggesting that the AHP can regulate spike conduction within the presynaptic arborizations of the cell and could in principle contribute to the synaptic depression that is correlated with increases in the AHP.

  18. First Exon Length Controls Active Chromatin Signatures and Transcription

    Directory of Open Access Journals (Sweden)

    Nicole I. Bieberstein

    2012-07-01

    Full Text Available Here, we explore the role of splicing in transcription, employing both genome-wide analysis of human ChIP-seq data and experimental manipulation of exon-intron organization in transgenic cell lines. We show that the activating histone modifications H3K4me3 and H3K9ac map specifically to first exon-intron boundaries. This is surprising, because these marks help recruit general transcription factors (GTFs to promoters. In genes with long first exons, promoter-proximal levels of H3K4me3 and H3K9ac are greatly reduced; consequently, GTFs and RNA polymerase II are low at transcription start sites (TSSs and exhibit a second, promoter-distal peak from which transcription also initiates. In contrast, short first exons lead to increased H3K4me3 and H3K9ac at promoters, higher expression levels, accuracy in TSS usage, and a lower frequency of antisense transcription. Therefore, first exon length is predictive for gene activity. Finally, splicing inhibition and intron deletion reduce H3K4me3 levels and transcriptional output. Thus, gene architecture and splicing determines transcription quantity and quality as well as chromatin signatures.

  19. Riboswitch control of Rho-dependent transcription termination.

    Science.gov (United States)

    Hollands, Kerry; Proshkin, Sergey; Sklyarova, Svetlana; Epshtein, Vitaly; Mironov, Alexander; Nudler, Evgeny; Groisman, Eduardo A

    2012-04-03

    Riboswitches are RNA sensors that regulate gene expression upon binding specific metabolites or ions. Bacterial riboswitches control gene expression primarily by promoting intrinsic transcription termination or by inhibiting translation initiation. We now report a third general mechanism of riboswitch action: governing the ability of the RNA-dependent helicase Rho to terminate transcription. We establish that Rho promotes transcription termination in the Mg(2+)-sensing mgtA riboswitch from Salmonella enterica serovar Typhimurium and the flavin mononucleotide-sensing ribB riboswitch from Escherichia coli when the corresponding riboswitch ligands are present. The Rho-specific inhibitor bicyclomycin enabled transcription of the coding regions at these two loci in bacteria experiencing repressing concentrations of the riboswitch ligands in vivo. A mutation in the mgtA leader that favors the "high Mg(2+)" conformation of the riboswitch promoted Rho-dependent transcription termination in vivo and in vitro and enhanced the ability of the RNA to stimulate Rho's ATPase activity in vitro. These effects were overcome by mutations in a C-rich region of the mRNA that is alternately folded at high and low Mg(2+), suggesting a role for this region in regulating the activity of Rho. Our results reveal a potentially widespread mode of gene regulation whereby riboswitches dictate whether a protein effector can interact with the transcription machinery to prematurely terminate transcription.

  20. Accumulation of Transcripts Abundance after Barley Inoculation with Cochliobolus sativus

    Directory of Open Access Journals (Sweden)

    Mohammad Imad Eddin Arabi

    2015-03-01

    Full Text Available Spot blotch caused by the hemibiotrophic pathogen Cochliobolus sativus has been the major yield-reducing factor for barley production during the last decade. Monitoring transcriptional reorganization triggered in response to this fungus is an essential first step for the functional analysis of genes involved in the process. To characterize the defense responses initiated by barley resistant and susceptible cultivars, a survey of transcript abundance at early time points of C. sativus inoculation was conducted. A notable number of transcripts exhibiting significant differential accumulations in the resistant and susceptible cultivars were detected compared to the non-inoculated controls. At the p-value of 0.0001, transcripts were divided into three general categories; defense, regulatory and unknown function, and the resistant cultivar had the greatest number of common transcripts at different time points. Quantities of differentially accumulated gene transcripts in both cultivars were identified at 24 h post infection, the approximate time when the pathogen changes trophic lifestyles. The unique and common accumulated transcripts might be of considerable interest for enhancing effective resistance to C. sativus.

  1. Heterogeneity of Calcium Channel/cAMP-Dependent Transcriptional Activation.

    Science.gov (United States)

    Kobrinsky, Evgeny

    2015-01-01

    The major function of the voltage-gated calcium channels is to provide the Ca(2+) flux into the cell. L-type voltage-gated calcium channels (Cav1) serve as voltage sensors that couple membrane depolarization to many intracellular processes. Electrical activity in excitable cells affects gene expression through signaling pathways involved in the excitation-transcription (E-T) coupling. E-T coupling starts with activation of the Cav1 channel and results in initiation of the cAMP-response element binding protein (CREB)-dependent transcription. In this review we discuss the new quantitative approaches to measuring E-T signaling events. We describe the use of wavelet transform to detect heterogeneity of transcriptional activation in nuclei. Furthermore, we discuss the properties of discovered microdomains of nuclear signaling associated with the E-T coupling and the basis of the frequency-dependent transcriptional regulation.

  2. Small molecule selectively suppresses MYC transcription in cancer cells.

    Science.gov (United States)

    Bouvard, Claire; Lim, Sang Min; Ludka, John; Yazdani, Nahid; Woods, Ashley K; Chatterjee, Arnab K; Schultz, Peter G; Zhu, Shoutian

    2017-03-28

    Stauprimide is a staurosporine analog that promotes embryonic stem cell (ESC) differentiation by inhibiting nuclear localization of the MYC transcription factor NME2, which in turn results in down-regulation of MYC transcription. Given the critical role the oncogene MYC plays in tumor initiation and maintenance, we explored the potential of stauprimide as an anticancer agent. Here we report that stauprimide suppresses MYC transcription in cancer cell lines derived from distinct tissues. Using renal cancer cells, we confirmed that stauprimide inhibits NME2 nuclear localization. Gene expression analysis also confirmed the selective down-regulation of MYC target genes by stauprimide. Consistent with this activity, administration of stauprimide inhibited tumor growth in rodent xenograft models. Our study provides a unique strategy for selectively targeting MYC transcription by pharmacological means as a potential treatment for MYC-dependent tumors.

  3. Regulation of the Hippo Pathway Transcription Factor TEAD.

    Science.gov (United States)

    Lin, Kimberly C; Park, Hyun Woo; Guan, Kun-Liang

    2017-09-27

    The TEAD transcription factor family is best known for transcriptional output of the Hippo signaling pathway and has been implicated in processes such as development, cell growth and proliferation, tissue homeostasis, and regeneration. Our understanding of the functional importance of TEADs has increased dramatically since its initial discovery three decades ago. The majority of our knowledge of TEADs is in the context of Hippo signaling as nuclear DNA-binding proteins passively activated by Yes-associated protein (YAP) and transcriptional activator with PDZ-binding domain (TAZ), transcription coactivators downstream of the Hippo pathway. However, recent studies suggest that TEAD itself is actively regulated. Here, we highlight evidence demonstrating Hippo-independent regulation of TEADs and the potential impacts these studies may have on new cancer therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 7SK-BAF axis controls pervasive transcription at enhancers.

    Science.gov (United States)

    Flynn, Ryan A; Do, Brian T; Rubin, Adam J; Calo, Eliezer; Lee, Byron; Kuchelmeister, Hannes; Rale, Michael; Chu, Ci; Kool, Eric T; Wysocka, Joanna; Khavari, Paul A; Chang, Howard Y

    2016-03-01

    RNA functions at enhancers remain mysterious. Here we show that the 7SK small nuclear RNA (snRNA) inhibits enhancer transcription by modulating nucleosome position. 7SK occupies enhancers and super enhancers genome wide in mouse and human cells, and it is required to limit enhancer-RNA initiation and synthesis in a manner distinct from promoter pausing. Clustered elements at super enhancers uniquely require 7SK to prevent convergent transcription and DNA-damage signaling. 7SK physically interacts with the BAF chromatin-remodeling complex, recruits BAF to enhancers and inhibits enhancer transcription by modulating chromatin structure. In turn, 7SK occupancy at enhancers coincides with that of Brd4 and is exquisitely sensitive to the bromodomain inhibitor JQ1. Thus, 7SK uses distinct mechanisms to counteract the diverse consequences of pervasive transcription that distinguish super enhancers, enhancers and promoters.

  5. Mechanosensitive mechanisms in transcriptional regulation.

    Science.gov (United States)

    Mammoto, Akiko; Mammoto, Tadanori; Ingber, Donald E

    2012-07-01

    Transcriptional regulation contributes to the maintenance of pluripotency, self-renewal and differentiation in embryonic cells and in stem cells. Therefore, control of gene expression at the level of transcription is crucial for embryonic development, as well as for organogenesis, functional adaptation, and regeneration in adult tissues and organs. In the past, most work has focused on how transcriptional regulation results from the complex interplay between chemical cues, adhesion signals, transcription factors and their co-regulators during development. However, chemical signaling alone is not sufficient to explain how three-dimensional (3D) tissues and organs are constructed and maintained through the spatiotemporal control of transcriptional activities. Accumulated evidence indicates that mechanical cues, which include physical forces (e.g. tension, compression or shear stress), alterations in extracellular matrix (ECM) mechanics and changes in cell shape, are transmitted to the nucleus directly or indirectly to orchestrate transcriptional activities that are crucial for embryogenesis and organogenesis. In this Commentary, we review how the mechanical control of gene transcription contributes to the maintenance of pluripotency, determination of cell fate, pattern formation and organogenesis, as well as how it is involved in the control of cell and tissue function throughout embryogenesis and adult life. A deeper understanding of these mechanosensitive transcriptional control mechanisms should lead to new approaches to tissue engineering and regenerative medicine.

  6. Transcriptional networks controlling adipocyte differentiation

    DEFF Research Database (Denmark)

    Siersbæk, R; Mandrup, Susanne

    2011-01-01

    Adipocyte differentiation is regulated by a complex cascade of signals that drive the transcriptional reprogramming of the fibroblastic precursors. Genome-wide analyses of chromatin accessibility and binding of adipogenic transcription factors make it possible to generate "snapshots" of the trans...

  7. Structural basis of transcription elongation.

    Science.gov (United States)

    Martinez-Rucobo, Fuensanta W; Cramer, Patrick

    2013-01-01

    For transcription elongation, all cellular RNA polymerases form a stable elongation complex (EC) with the DNA template and the RNA transcript. Since the millennium, a wealth of structural information and complementary functional studies provided a detailed three-dimensional picture of the EC and many of its functional states. Here we summarize these studies that elucidated EC structure and maintenance, nucleotide selection and addition, translocation, elongation inhibition, pausing and proofreading, backtracking, arrest and reactivation, processivity, DNA lesion-induced stalling, lesion bypass, and transcriptional mutagenesis. In the future, additional structural and functional studies of elongation factors that control the EC and their possible allosteric modes of action should result in a more complete understanding of the dynamic molecular mechanisms underlying transcription elongation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Thermodynamic Model of Transcription Elongation

    Science.gov (United States)

    Tadigotla, Vasisht; O'Maoileidigh, Daibhid; Sengupta, Anirvan; Epshtein, Vitaly; Ebright, Richard; Nudler, Evgeny; Ruckenstein, Andrei

    2006-03-01

    We present a statistical mechanics approach to the prediction of backtracked pauses in prokaryotic transcription elongation derived from structural models of the transcription elongation complex (TEC). Our algorithm is based on the thermodynamic stability of TEC along the DNA template calculated from the sequence dependent free-energy of DNA-DNA, DNA-RNA and RNA-RNA base pairing associated with (a) the translocation and size fluctuations of the transcription bubble; (b) the changes in the DNA-RNA hybrid; and (c) the changes in the RNA folding free-energy. The calculations involve no adjustable parameters apart from a cutoff used to discriminate paused from non-paused complexes. When applied to 100 experimental pauses in transcription elongation by E. coli RNA polymerase on ten DNA templates the approach produces highly statistically significant results. Transcription elongation is an inherently kinetic process and a simplified kinetic model with the same predictive power is presented separately.

  9. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons.

    Science.gov (United States)

    Wang, Wenjing; Wildes, Craig P; Pattarabanjird, Tanyaporn; Sanchez, Mateo I; Glober, Gordon F; Matthews, Gillian A; Tye, Kay M; Ting, Alice Y

    2017-09-01

    Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high- to low-calcium signal ratio of 10 after 10 min of stimulation. Opsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- and motor-activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium.

  10. LPS-induced microglial secretion of TNFα increases activity-dependent neuronal apoptosis in the neonatal cerebral cortex.

    Science.gov (United States)

    Nimmervoll, Birgit; White, Robin; Yang, Jenq-Wei; An, Shuming; Henn, Christopher; Sun, Jyh-Jang; Luhmann, Heiko J

    2013-07-01

    During the pre- and neonatal period, the cerebral cortex reveals distinct patterns of spontaneous synchronized activity, which is critically involved in the formation of early networks and in the regulation of neuronal survival and programmed cell death (apoptosis). During this period, the cortex is also highly vulnerable to inflammation and in humans prenatal infection may have a profound impact on neurodevelopment causing long-term neurological deficits. Using in vitro and in vivo multi-electrode array recordings and quantification of caspase-3 (casp-3)-dependent apoptosis, we demonstrate that lipopolysaccharide-induced inflammation causes rapid alterations in the pattern of spontaneous burst activities, which subsequently leads to an increase in apoptosis. We show that these inflammatory effects are specifically initiated by the microglia-derived pro-inflammatory cytokine tumor necrosis factor α and the chemokine macrophage inflammatory protein 2. Our data demonstrate that inflammation-induced modifications in spontaneous network activities influence casp-3-dependent cell death in the developing cerebral cortex.

  11. The generation of promoter-mediated transcriptional noise in bacteria.

    Directory of Open Access Journals (Sweden)

    Namiko Mitarai

    2008-07-01

    Full Text Available Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005 can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise.

  12. Mfd as a central partner of transcription coupled repair.

    Science.gov (United States)

    Monnet, Jordan; Grange, Wilfried; Strick, Terence R; Joly, Nicolas

    2013-01-01

    Transcription-coupled repair (TCR) is one of the key of the nucleotide excision repair (NER) pathways required to preserve genome integrity. Although understanding TCR is still a major challenge, recent single-molecule experiments have brought new insights into the initial steps of TCR leading to new perspectives.

  13. Transcription regulation by distal enhancers: Who's in the loop?

    NARCIS (Netherlands)

    R. Stadhouders (Ralph); A. van den Heuvel (Anita); P. Kolovos (Petros); R.J.J. Jorna (Ruud); K. Leslie (Kris); F.G. Grosveld (Frank); E. Soler (Eric)

    2012-01-01

    textabstractGenome-wide chromatin profiling efforts have shown that enhancers are often located at large distances from gene promoters within the noncoding genome. Whereas enhancers can stimulate transcription initiation by communicating with promoters via chromatin looping mechanisms, we propose th

  14. Structural motifs and potential sigma homologies in the large subunit of human general transcription factor TFIIE.

    Science.gov (United States)

    Ohkuma, Y; Sumimoto, H; Hoffmann, A; Shimasaki, S; Horikoshi, M; Roeder, R G

    1991-12-05

    The general transcription factor TFIIE has an essential role in eukaryotic transcription initiation together with RNA polymerase II and other general factors. Human TFIIE consists of two subunits of relative molecular mass 57,000 (TFIIE-alpha) and 34,000 (TFIIE-beta) and joins the preinitiation complex after RNA polymerase II and TFIIF. Here we report the cloning and structure of a complementary DNA encoding a functional human TFIIE-alpha. TFIIE-alpha is necessary for transcription initiation together with TFIIE-beta, and recombinant TFIIE-alpha can fully replace the natural subunit in an in vitro transcription assay. The sequence contains several interesting structural motifs (leucine repeat, zinc finger and helix-turn-helix) and sequence similarities to bacterial sigma factors that suggest direct involvement in the regulation of transcription initiation.

  15. Genome-wide location analysis reveals a role for Sub1 in RNA polymerase III transcription

    Science.gov (United States)

    Tavenet, Arounie; Suleau, Audrey; Dubreuil, Géraldine; Ferrari, Roberto; Ducrot, Cécile; Michaut, Magali; Aude, Jean-Christophe; Dieci, Giorgio; Lefebvre, Olivier; Conesa, Christine; Acker, Joël

    2009-01-01

    Human PC4 and the yeast ortholog Sub1 have multiple functions in RNA polymerase II transcription. Genome-wide mapping revealed that Sub1 is present on Pol III-transcribed genes. Sub1 was found to interact with components of the Pol III transcription system and to stimulate the initiation and reinitiation steps in a system reconstituted with all recombinant factors. Sub1 was required for optimal Pol III gene transcription in exponentially growing cells. PMID:19706510

  16. DksA involvement in transcription fidelity buffers stochastic epigenetic change.

    Science.gov (United States)

    Satory, Dominik; Gordon, Alasdair J E; Wang, Mengyu; Halliday, Jennifer A; Golding, Ido; Herman, Christophe

    2015-12-01

    DksA is an auxiliary transcription factor that interacts with RNA polymerase and influences gene expression. Depending on the promoter, DksA can be a positive or negative regulator of transcription initiation. Moreover, DksA has a substantial effect on transcription elongation where it prevents the collision of transcription and replication machineries, plays a key role in maintaining transcription elongation when translation and transcription are uncoupled and has been shown to be involved in transcription fidelity. Here, we assessed the role of DksA in transcription fidelity by monitoring stochastic epigenetic switching in the lac operon (with and without an error-prone transcription slippage sequence), partial phenotypic suppression of a lacZ nonsense allele, as well as monitoring the number of lacI mRNA transcripts produced in the presence and absence of DksA via an operon fusion and single molecule fluorescent in situ hybridization studies. We present data showing that DksA acts to maintain transcription fidelity in vivo and the role of DksA seems to be distinct from that of the GreA and GreB transcription fidelity factors.

  17. Sigma Factors for Cyanobacterial Transcription

    Directory of Open Access Journals (Sweden)

    Sousuke Imamura

    2009-04-01

    Full Text Available Cyanobacteria are photosynthesizing microorganisms that can be used as a model for analyzing gene expression. The expression of genes involves transcription and translation. Transcription is performed by the RNA polymerase (RNAP holoenzyme, comprising a core enzyme and a sigma (σ factor which confers promoter selectivity. The unique structure, expression, and function of cyanobacterial σ factors (and RNAP core subunits are summarized here based on studies, reported previously. The types of promoter recognized by the σ factors are also discussed with regard to transcriptional regulation.

  18. Transcriptional requirements of the distal heavy-strand promoter of mtDNA.

    Science.gov (United States)

    Zollo, Ornella; Tiranti, Valeria; Sondheimer, Neal

    2012-04-24

    The heavy strand of mtDNA contains two promoters with nonoverlapping functions. The role of the minor heavy-strand promoter (HSP2) is controversial, because the promoter has been difficult to activate in an in vitro system. We have isolated HSP2 by excluding its interaction with the more powerful HSP1 promoter, and we find that it is transcribed efficiently by recombinant mtRNA polymerase and mitochondrial transcription factor B2. The mitochondrial transcription factor A is not required for initiation, but it has the ability to alternatively activate and repress the HSP2 transcriptional unit depending on the ratio between mitochondrial transcription factor A and other transcription factors. The positioning of transcriptional initiation agrees with our current understanding of HSP2 activity in vivo. Serial deletion of HSP2 shows that only proximal sequences are required. Several mutations, including the disruption of a polycytosine track upstream of the HSP2 initiation site, influence transcriptional activity. Transcription from HSP2 is also observed when HeLa cell mitochondrial extract is used as the source of mitochondrial polymerase, and this transcription is maintained when HSP2 is provided in proper spacing and context to the HSP1 promoter. Studies of the linked heavy-strand promoters show that they are differentially regulated by ATP dosage. We conclude that HSP2 is transcribed and has features that allow it to regulate mitochondrial mRNA synthesis.

  19. Genomic structure and cloning of two transcript isoforms of human Sp8.

    NARCIS (Netherlands)

    M.A. Milona (Maria-athina); J.E. Gough (Julie); A.J. Edgar (Alasdair)

    2004-01-01

    textabstractBACKGROUND: The Specificity proteins (Sp) are a family of transcription factors that have three highly conserved zinc-fingers located towards the carboxy-terminal that bind GC-boxes and assist in the initiation of gene transcription. Human Sp1-7 genes have been characte

  20. Inhibitory effects of neem seed oil and its extract on various direct acting and activation-dependant mutagens-induced bacterial mutagenesis.

    Science.gov (United States)

    Vijayan, Vinod; Tiwari, Pramod Kumar; Meshram, Ghansham Pundilikji

    2013-12-01

    Azadirachta indica A. Juss (Meliaceae), commonly called neem is a plant native to the Indian sub-continent. Neem oil extracted from the seeds of neem tree has shown promising medicinal properties. To investigate the possible anti-mutagenic activity of neem seed oil (NO) and its dimethylsulfoxide (DMSO) extract (NDE) on the mutagenicity induced by various direct acting and activation-dependant mutagens. The possible anti-mutagenic activity of NO (100-10,000 µg/plate) and NDE (0.1-1000 µg/plate) as well as the mechanism of anti-mutagenic activity was studied in an in vitro Ames Salmonella/microsome assay. NSO and NDE inhibited the mutagenic activity of methyl glyoxal (MG), in which case the extent of inhibition ranged from 65 to 77% and against 4-nitroquinoline-N-oxide (NQNO); it showed a 48-87% inhibition in the non-toxic doses. Similar response of NSO and NDE was seen against the activation-dependant mutagens aflatoxin B1 (AFB1, 48-88%), benzo(a)pyrene (B(a)P, 31-85%), cyclophosphamide (CP, 66-71%), 20-methylcholanthrane (20-MC, 37-83%) and acridine orange (AO, 39-72%) in the non-toxic doses. Mechanism-based studies indicated that NDE exhibits better anti-mutagenic activity in the pre- and simultaneous-treatment protocol against MG, suggesting that one or several active phytochemicals present in the extract covalently bind with the mutagen and prevent its interaction with the genome. These findings demonstrate that neem oil is capable of attenuating the mutagenic activity of various direct acting and activation-dependant mutagens.

  1. Critical Role of Histone Turnover in Neuronal Transcription and Plasticity.

    Science.gov (United States)

    Maze, Ian; Wenderski, Wendy; Noh, Kyung-Min; Bagot, Rosemary C; Tzavaras, Nikos; Purushothaman, Immanuel; Elsässer, Simon J; Guo, Yin; Ionete, Carolina; Hurd, Yasmin L; Tamminga, Carol A; Halene, Tobias; Farrelly, Lorna; Soshnev, Alexey A; Wen, Duancheng; Rafii, Shahin; Birtwistle, Marc R; Akbarian, Schahram; Buchholz, Bruce A; Blitzer, Robert D; Nestler, Eric J; Yuan, Zuo-Fei; Garcia, Benjamin A; Shen, Li; Molina, Henrik; Allis, C David

    2015-07-01

    Turnover and exchange of nucleosomal histones and their variants, a process long believed to be static in post-replicative cells, remains largely unexplored in brain. Here, we describe a novel mechanistic role for HIRA (histone cell cycle regulator) and proteasomal degradation-associated histone dynamics in the regulation of activity-dependent transcription, synaptic connectivity, and behavior. We uncover a dramatic developmental profile of nucleosome occupancy across the lifespan of both rodents and humans, with the histone variant H3.3 accumulating to near-saturating levels throughout the neuronal genome by mid-adolescence. Despite such accumulation, H3.3-containing nucleosomes remain highly dynamic-in a modification-independent manner-to control neuronal- and glial-specific gene expression patterns throughout life. Manipulating H3.3 dynamics in both embryonic and adult neurons confirmed its essential role in neuronal plasticity and cognition. Our findings establish histone turnover as a critical and previously undocumented regulator of cell type-specific transcription and plasticity in mammalian brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. RNA-guided transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  3. The eukaryotic gene transcription machinery.

    Science.gov (United States)

    Kornberg, R D

    2001-08-01

    Seven purified proteins may be combined to reconstitute regulated, promoter-dependent RNA polymerase II transcription: five general transcription factors, Mediator, and RNA polymerase II. The entire system has been conserved across species from yeast to humans. The structure of RNA polymerase II, consisting of 10 polypeptides with a mass of about 500 kDa, has been determined at atomic resolution. On the basis of this structure, that of an actively transcribing RNA polymerase II complex has been determined as well.

  4. Convergent transcription confers a bistable switch in Enterococcus faecalis conjugation.

    Science.gov (United States)

    Chatterjee, Anushree; Johnson, Christopher M; Shu, Che-Chi; Kaznessis, Yiannis N; Ramkrishna, Doraiswami; Dunny, Gary M; Hu, Wei-Shou

    2011-06-07

    Convergent gene pairs with head-to-head configurations are widespread in both eukaryotic and prokaryotic genomes and are speculated to be involved in gene regulation. Here we present a unique mechanism of gene regulation due to convergent transcription from the antagonistic prgX/prgQ operon in Enterococcus faecalis controlling conjugative transfer of the antibiotic resistance plasmid pCF10 from donor cells to recipient cells. Using mathematical modeling and experimentation, we demonstrate that convergent transcription in the prgX/prgQ operon endows the system with the properties of a robust genetic switch through premature termination of elongating transcripts due to collisions between RNA polymerases (RNAPs) transcribing from opposite directions and antisense regulation between complementary counter-transcripts. Evidence is provided for the presence of truncated RNAs resulting from convergent transcription from both the promoters that are capable of sense-antisense interactions. A mathematical model predicts that both RNAP collision and antisense regulation are essential for a robust bistable switch behavior in the control of conjugation initiation by prgX/prgQ operons. Moreover, given that convergent transcription is conserved across species, the mechanism of coupling RNAP collision and antisense interaction is likely to have a significant regulatory role in gene expression.

  5. Transcriptional control of DNA replication licensing by Myc

    Science.gov (United States)

    Valovka, Taras; Schönfeld, Manuela; Raffeiner, Philipp; Breuker, Kathrin; Dunzendorfer-Matt, Theresia; Hartl, Markus; Bister, Klaus

    2013-12-01

    The c-myc protooncogene encodes the Myc transcription factor, a global regulator of fundamental cellular processes. Deregulation of c-myc leads to tumorigenesis, and c-myc is an important driver in human cancer. Myc and its dimerization partner Max are bHLH-Zip DNA binding proteins involved in transcriptional regulation of target genes. Non-transcriptional functions have also been attributed to the Myc protein, notably direct interaction with the pre-replicative complex (pre-RC) controlling the initiation of DNA replication. A key component of the pre-RC is the Cdt1 protein, an essential factor in origin licensing. Here we present data suggesting that the CDT1 gene is a transcriptional target of the Myc-Max complex. Expression of the CDT1 gene in v-myc-transformed cells directly correlates with myc expression. Also, human tumor cells with elevated c-myc expression display increased CDT1 expression. Occupation of the CDT1 promoter by Myc-Max is demonstrated by chromatin immunoprecipitation, and transactivation by Myc-Max is shown in reporter assays. Ectopic expression of CDT1 leads to cell transformation. Our results provide a possible direct mechanistic link of Myc's canonical function as a transcription factor to DNA replication. Furthermore, we suggest that aberrant transcriptional activation of CDT1 by deregulated myc alleles contributes to the genomic instabilities observed in tumor cells.

  6. Modular construction of mammalian gene circuits using TALE transcriptional repressors.

    Science.gov (United States)

    Li, Yinqing; Jiang, Yun; Chen, He; Liao, Weixi; Li, Zhihua; Weiss, Ron; Xie, Zhen

    2015-03-01

    An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardized and interchangeable parts. However, engineering of complex circuits in mammalian cells is currently limited by the availability of well-characterized and orthogonal transcriptional repressors. Here, we introduce a library of 26 reversible transcription activator-like effector repressors (TALERs) that bind newly designed hybrid promoters and exert transcriptional repression through steric hindrance of key transcriptional initiation elements. We demonstrate that using the input-output transfer curves of our TALERs enables accurate prediction of the behavior of modularly assembled TALER cascade and switch circuits. We also show that TALER switches using feedback regulation exhibit improved accuracy for microRNA-based HeLa cancer cell classification versus HEK293 cells. Our TALER library is a valuable toolkit for modular engineering of synthetic circuits, enabling programmable manipulation of mammalian cells and helping elucidate design principles of coupled transcriptional and microRNA-mediated post-transcriptional regulation.

  7. Thermodynamic and Kinetic Modeling of Transcriptional Pausing

    National Research Council Canada - National Science Library

    Vasisht R. Tadigotla; Dáibhid Ó. Maoiléidigh; Anirvan M. Sengupta; Vitaly Epshtein; Richard H. Ebright; Evgeny Nudler; Andrei E. Ruckenstein

    2006-01-01

    We present a statistical mechanics approach for the prediction of backtracked pauses in bacterial transcription elongation derived from structural models of the transcription elongation complex (EC...

  8. National Capital Planning Commission Meeting Transcripts

    Data.gov (United States)

    National Capital Planning Commission — Transcripts of the monthly (with the exception of August) National Capital Planning Commission meeting transcripts are provided for research to confirm actions taken...

  9. The Plus 50 Initiative Evaluation: Initiative Impact

    Science.gov (United States)

    American Association of Community Colleges (NJ1), 2012

    2012-01-01

    The American Association of Community Colleges (AACC), with funding from The Atlantic Philanthropies, created the Plus 50 Initiative (2008-2012). This initiative was designed to build the capacity of community colleges nationwide to develop programming that engages the plus 50 learner. This report contains: (1) An overview of the Plus 50…

  10. Transcriptional networks in developing and mature B cells.

    Science.gov (United States)

    Matthias, Patrick; Rolink, Antonius G

    2005-06-01

    The development of B cells from haematopoietic stem cells proceeds along a highly ordered, yet flexible, pathway. At multiple steps along this pathway, cells are instructed by transcription factors on how to further differentiate, and several check-points have been identified. These check-points are initial commitment to lymphocytic progenitors, specification of pre-B cells, entry to the peripheral B-cell pool, maturation of B cells and differentiation into plasma cells. At each of these regulatory nodes, there are transcriptional networks that control the outcome, and much progress has recently been made in dissecting these networks. This article reviews our current understanding of this exciting field.

  11. Transcription of the soybean leghemoglobin genes during nodule development

    DEFF Research Database (Denmark)

    Marcker, Anne; Lund, Marianne; Jensen, Erik Ø

    1984-01-01

    During the early stages of soybean nodule development the leghemoglobin (Lb) genes are activated sequentially in the opposite order to which they are arranged in the soybean genome. At a specific stage after the initial activation of all the Lb genes, a large increment occurs in the transcription...... of the Lb(c1), Lb(c3) and Lb(a) genes while the transcription of the Lb(c2) gene is not amplified to a similar extent. All the Lb genes retain significant activity for a long period during the lifetime of a nodule. Consequently the soybean Lb genes are not regulated by a developmental gene switching...

  12. Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Colbert, C M; Magee, J C; Hoffman, D A; Johnston, D

    1997-09-01

    Na+ action potentials propagate into the dendrites of pyramidal neurons driving an influx of Ca2+ that seems to be important for associative synaptic plasticity. During repetitive (10-50 Hz) firing, dendritic action potentials display a marked and prolonged voltage-dependent decrease in amplitude. Such a decrease is not apparent in somatic action potentials. We investigated the mechanisms of the different activity dependence of somatic and dendritic action potentials in CA1 pyramidal neurons of adult rats using whole-cell and cell-attached patch-clamp methods. There were three main findings. First, dendritic Na+ currents decreased in amplitude when repeatedly activated by brief (2 msec) depolarizations. Recovery was slow and voltage-dependent. Second, Na+ currents decreased much less in somatic than in dendritic patches. Third, although K+ currents remained constant during trains, K+ currents were necessary for dendritic action potential amplitude to decrease in whole-cell experiments. These results suggest that regional differences in Na+ and K+ channels determine the differences in the activity dependence of somatic and dendritic action potential amplitudes.

  13. Modulation of BK channels contributes to activity-dependent increase of excitability through MTORC1 activity in CA1 pyramidal cells of mouse hippocampus

    Directory of Open Access Journals (Sweden)

    Steven eSpringer

    2015-01-01

    Full Text Available Memory acquisition and synaptic plasticity are accompanied by changes in the intrinsic excitability of CA1 pyramidal neurons. These activity-dependent changes in excitability are mediated by modulation of intrinsic currents which alters the responsiveness of the cell to synaptic inputs. The afterhyperpolarization, a major contributor to the regulation of neuronal excitability, is reduced in animals that have acquired several types of hippocampus-dependent memory tasks and also following synaptic potentiation by high frequency stimulation. BK channels underlie the fast afterhyperpolarization and contribute to spike repolarization, and this afterhyperpolarization is reduced in animals that successfully acquired trace-eyeblink conditioning. This suggests that BK channel function is activity-dependent, but the mechanisms are unknown. In this study, we found that blockade of BK channels with paxilline (10µM increased spike half-width and instantaneous frequency in response to a +100pA depolarization. In addition, induction of LTP by theta burst stimulation (TBS in CA1 pyramidal neurons reduced BK channel’s contribution to spike repolarization and instantaneous frequency. This result indicates that BK channel activity is decreased following synaptic potentiation. Interestingly, blockade of mammalian target of rapamycin (MTORC1 with rapamycin (400 nM following synaptic potentiation restored BK channel function, suggesting a role for protein translation in signaling events which decreased postsynaptic BK channel activity following synaptic potentiation.

  14. Brain-derived neurotrophic factor controls activity-dependent maturation of CA1 synapses by downregulating tonic activation of presynaptic kainate receptors.

    Science.gov (United States)

    Sallert, Marko; Rantamäki, Tomi; Vesikansa, Aino; Anthoni, Heidi; Harju, Kirsi; Yli-Kauhaluoma, Jari; Taira, Tomi; Castren, Eero; Lauri, Sari E

    2009-09-09

    Immature hippocampal synapses express presynaptic kainate receptors (KARs), which tonically inhibit glutamate release. Presynaptic maturation involves activity-dependent downregulation of the tonic KAR activity and consequent increase in release probability; however, the molecular mechanisms underlying this developmental process are unknown. Here, we have investigated whether brain derived neurotrophic factor (BDNF), a secreted protein implicated in developmental plasticity in several areas of the brain, controls presynaptic maturation by regulating KARs. Application of BDNF in neonate hippocampal slices resulted in increase in synaptic transmission that fully occluded the immature-type KAR activity in area CA1. Conversely, genetic ablation of BDNF was associated with delayed synaptic maturation and persistent presynaptic KAR activity, suggesting a role for endogenous BDNF in the developmental regulation of KAR function. In addition, our data suggests a critical role for BDNF TrkB signaling in fast activity-dependent regulation of KARs. Selective acute inhibition of TrkB receptors using a chemical-genetic approach prevented rapid change in synapse dynamics and loss of tonic KAR activity that is typically seen in response to induction of LTP at immature synapses. Together, these data show that BDNF-TrkB-dependent maturation of glutamatergic synapses is tightly associated with a loss of endogenous KAR activity. The coordinated action of these two receptor mechanisms has immediate physiological relevance in controlling presynaptic efficacy and transmission dynamics at CA3-CA1 synapses at a stage of development when functional contact already exists but transmission is weak.

  15. VEGF promotes the transcription of the human PRL-3 gene in HUVEC through transcription factor MEF2C.

    Directory of Open Access Journals (Sweden)

    Jianliang Xu

    Full Text Available Phosphatase of regenerating liver 3 (PRL-3 is known to be overexpressed in many tumors, and its transcript level is high in the vasculature and endothelial cells of malignant tumor tissue. However, the mechanism(s underlying its enhanced expression and its function in endothelial cells remain unknown. Here, we report that vascular endothelial growth factor (VEGF can induce PRL-3 transcription in human umbilical vein endothelial cells (HUVEC. An analysis of its 5'UTR revealed that PRL-3 transcription is initiated from two distinct sites, which results in the formation of the two transcripts, PRL-3-iso1 and PRL-3-iso2, but only the latter is up-regulated in HUVEC by VEGF. The PRL-3-iso2 promoter region includes two functional MEF2 (myocyte enhancer factor2 binding sites. The over-expression of the constitutively active form of MEF2C promotes the abundance of the PRL-3-iso2 transcript in a number of human cell lines. The siRNA-induced knockdown of MEF2C abolished the stimulative effect of VEGF on PRL-3 transcript in HUVEC, indicating that the VEGF-induced promotion of PRL-3 expression requires the presence of MEF2C. Finally, blocking PRL-3 activity or expression suppresses tube formation by HUVEC. We suggest that PRL-3 functions downstream of the VEGF/MEF2C pathway in endothelial cells and may play an important role in tumor angiogenesis.

  16. VEGF promotes the transcription of the human PRL-3 gene in HUVEC through transcription factor MEF2C.

    Science.gov (United States)

    Xu, Jianliang; Cao, Shaoxian; Wang, Lu; Xu, Rui; Chen, Gong; Xu, Qiang

    2011-01-01

    Phosphatase of regenerating liver 3 (PRL-3) is known to be overexpressed in many tumors, and its transcript level is high in the vasculature and endothelial cells of malignant tumor tissue. However, the mechanism(s) underlying its enhanced expression and its function in endothelial cells remain unknown. Here, we report that vascular endothelial growth factor (VEGF) can induce PRL-3 transcription in human umbilical vein endothelial cells (HUVEC). An analysis of its 5'UTR revealed that PRL-3 transcription is initiated from two distinct sites, which results in the formation of the two transcripts, PRL-3-iso1 and PRL-3-iso2, but only the latter is up-regulated in HUVEC by VEGF. The PRL-3-iso2 promoter region includes two functional MEF2 (myocyte enhancer factor2) binding sites. The over-expression of the constitutively active form of MEF2C promotes the abundance of the PRL-3-iso2 transcript in a number of human cell lines. The siRNA-induced knockdown of MEF2C abolished the stimulative effect of VEGF on PRL-3 transcript in HUVEC, indicating that the VEGF-induced promotion of PRL-3 expression requires the presence of MEF2C. Finally, blocking PRL-3 activity or expression suppresses tube formation by HUVEC. We suggest that PRL-3 functions downstream of the VEGF/MEF2C pathway in endothelial cells and may play an important role in tumor angiogenesis.

  17. Escherichia coli transcriptional regulatory network

    Directory of Open Access Journals (Sweden)

    Agustino Martinez-Antonio

    2011-06-01

    Full Text Available Escherichia coli is the most well-know bacterial model about the function of its molecular components. In this review are presented several structural and functional aspects of their transcriptional regulatory network constituted by transcription factors and target genes. The network discussed here represent to 1531 genes and 3421 regulatory interactions. This network shows a power-law distribution with a few global regulators and most of genes poorly connected. 176 of genes in the network correspond to transcription factors, which form a sub-network of seven hierarchical layers where global regulators tend to be set in superior layers while local regulators are located in the lower ones. There is a small set of proteins know as nucleoid-associated proteins, which are in a high cellular concentrations and reshape the nucleoid structure to influence the running of global transcriptional programs, to this mode of regulation is named analog regulation. Specific signal effectors assist the activity of most of transcription factors in E. coli. These effectors switch and tune the activity of transcription factors. To this type of regulation, depending of environmental signals is named the digital-precise-regulation. The integration of regulatory programs have place in the promoter region of transcription units where it is common to observe co-regulation among global and local TFs as well as of TFs sensing exogenous and endogenous conditions. The mechanistic logic to understand the harmonious operation of regulatory programs in the network should consider the globalism of TFs, their signal perceived, coregulation, genome position, and cellular concentration. Finally, duplicated TFs and their horizontal transfer influence the evolvability of members of the network. The most duplicated and transferred TFs are located in the network periphery.

  18. Initialized Fractional Calculus

    Science.gov (United States)

    Lorenzo, Carl F.; Hartley, Tom T.

    2000-01-01

    This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.

  19. Sequential changes in chromatin structure during transcriptional activation in the beta globin LCR and its target gene.

    Science.gov (United States)

    Kim, Kihoon; Kim, AeRi

    2010-09-01

    Chromatin structure is modulated during transcriptional activation. The changes include the association of transcriptional activators, formation of hypersensitive sites and covalent modifications of histones. To understand the order of the various changes accompanying transcriptional activation, we analyzed the mouse beta globin gene, which is transcriptionally inducible in erythroid MEL cells over a time course of HMBA treatment. Transcription of the globin genes requires the locus control region (LCR) consisting of several hypersensitive sites (HSs). Erythroid specific transcriptional activators such as NF-E2, GATA-1, TAL1 and EKLF were associated with the LCR in the uninduced state before transcriptional activation. The HSs of the LCR were formed in this state as revealed by high sensitivity to DNase I and MNase attack. However the binding of transcriptional activators and the depletion of histones were observed in the promoter of the beta globin gene only after transcriptional activation. In addition, various covalent histone modifications were sequentially detected in lysine residues of histone H3 during the activation. Acetylation of K9, K36 and K27 was notable in both LCR HSs and gene after induction but before transcriptional initiation. Inactive histone marks such as K9me2, K36me2 and K27me2 were removed coincident with transcriptional initiation in the gene region. Taken together, these results indicate that LCR has a substantially active structure in the uninduced state while transcriptional activation serially adds active marks, including histone modifications, and removes inactive marks in the target gene of the LCR.

  20. Gene Transcription Profile of the Detached Retina (An AOS Thesis)

    Science.gov (United States)

    Zacks, David N.

    2009-01-01

    Purpose: Separation of the neurosensory retina from the retinal pigment epithelium (RPE) yields many morphologic and functional consequences, including death of the photoreceptor cells, Müller cell hypertrophy, and inner retinal rewiring. Many of these changes are due to the separation-induced activation of specific genes. In this work, we define the gene transcription profile within the retina as a function of time after detachment. We also define the early activation of kinases that might be responsible for the detachment-induced changes in gene transcription. Methods: Separation of the retina from the RPE was induced in Brown-Norway rats by the injection of 1% hyaluronic acid into the subretinal space. Retinas were harvested at 1, 7, and 28 days after separation. Gene transcription profiles for each time point were determined using the Affymetrix Rat 230A gene microarray chip. Transcription levels in detached retinas were compared to those of nondetached retinas with the BRB-ArrayTools Version 3.6.0 using a random variance analysis of variance (ANOVA) model. Confirmation of the significant transcriptional changes for a subset of the genes was performed using microfluidic quantitative real-time polymerase chain reaction (qRT-PCR) assays. Kinase activation was explored using Western blot analysis to look for early phosphorylation of any of the 3 main families of mitogen-activated protein kinases (MAPK): the p38 family, the Janus kinase family, and the p42/p44 family. Results: Retinas separated from the RPE showed extensive alterations in their gene transcription profile. Many of these changes were initiated as early as 1 day after separation, with significant increases by 7 days. ANOVA analysis defined 144 genes that had significantly altered transcription levels as a function of time after separation when setting a false discovery rate at ≤0.1. Confirmatory RT-PCR was performed on 51 of these 144 genes. Differential transcription detected on the microarray

  1. Transcriptional, post-transcriptional and post-translational regulations of gene expression during leaf polarity formation

    Institute of Scientific and Technical Information of China (English)

    Lin Xu; Li Yang; Hai Huang

    2007-01-01

    Leaf morphogenesis requires the establishment of adaxial-abaxial polarity after primordium initiation from the shoot apical meristem (SAM). Several families of transcription factors are known to play critical roles in promoting adaxial or abaxial leaf fate. Recently, post-transcriptional gene silencing pathways have been shown to regulate the establishment of leaf polarity, providing novel and exciting insights into leaf development. For example, microRNAs (miR165/166)and a trans-acting siRNA (TAS3-derived tasiR-ARF) have been shown to repress the expression of several key transcription factor genes. In addition, yet another level of regulation, post-translational regulation, has been revealed recently by studies on the role of the 26S proteasome in leaf polarity. Although our understanding regarding the molecular mechanisms underlying establishment of adaxial-abaxial polarity has greatly improved, there is still much that remains elusive.This review aims to discuss recent progress, as well as the remaining questions, regarding the molecular mechanisms underlying leaf polarity formation.

  2. Transcription of the soybean leghemoglobin genes during nodule development

    DEFF Research Database (Denmark)

    Marcker, Anne; Ø Jensen, Erik; Marcker, Kjeld A

    1984-01-01

    mechanism as is the case for vertebrate globin genes. Concomitantly with the increase in Lb gene transcription some of the other nodule specific plant genes are activated. These specific changes in the activities of the Lb and nodulin genes precede the activation of the bacterial nitrogenase gene. Thus......During the early stages of soybean nodule development the leghemoglobin (Lb) genes are activated sequentially in the opposite order to which they are arranged in the soybean genome. At a specific stage after the initial activation of all the Lb genes, a large increment occurs in the transcription...... of the Lb(c1), Lb(c3) and Lb(a) genes while the transcription of the Lb(c2) gene is not amplified to a similar extent. All the Lb genes retain significant activity for a long period during the lifetime of a nodule. Consequently the soybean Lb genes are not regulated by a developmental gene switching...

  3. Transcription factors - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-03-01

    Full Text Available A hearty wellcome to prof. Higgins editorial toil: a necessary tool for those colleagues (young and older fighting each day with the transcription factor they are involved with. In fact, the book is a full coverage compendium of state of the art papers dealing with practical thecniques and theoretical concepts about transcription factors. Each of the chapters (twenty-four is written by colleagues already working with one of the many trascription factors we become acquainted with. For the sake of the reader the volume is divided in four parts: Part I is a brief (when compared to the others three ! introductory presentation of the shuttling (i.e., transcription factor nuclear-cytoplasmic trafficking achieved by three reviews presentation of this biologically critical phenomenon. Part II (nine chapters is devoted to the necessary techniques to study nuclear translocation ...............

  4. Analyses of in vivo interactions between transcription factors and the archaeal RNA polymerase.

    Science.gov (United States)

    Walker, Julie E; Santangelo, Thomas J

    2015-09-15

    Transcription factors regulate the activities of RNA polymerase (RNAP) at each stage of the transcription cycle. Many basal transcription factors with common ancestry are employed in eukaryotic and archaeal systems that directly bind to RNAP and influence intramolecular movements of RNAP and modulate DNA or RNA interactions. We describe and employ a flexible methodology to directly probe and quantify the binding of transcription factors to RNAP in vivo. We demonstrate that binding of the conserved and essential archaeal transcription factor TFE to the archaeal RNAP is directed, in part, by interactions with the RpoE subunit of RNAP. As the surfaces involved are conserved in many eukaryotic and archaeal systems, the identified TFE-RNAP interactions are likely conserved in archaeal-eukaryal systems and represent an important point of contact that can influence the efficiency of transcription initiation.

  5. The Structural Basis of Transcription: 10 Years After the Nobel Prize in Chemistry.

    Science.gov (United States)

    Hantsche, Merle; Cramer, Patrick

    2016-12-23

    Transcription is the first step in the expression of genetic information in all living cells. The regulation of transcription underlies cell differentiation, organism development, and the responses of living systems to changes in the environment. During transcription, the enzyme RNA polymerase uses DNA as a template to synthesize a complementary RNA copy from a gene. Herein, we summarize the progress in our understanding of the structural basis of eukaryotic gene transcription that has been made in the ten years since the Nobel Prize in Chemistry was given to Roger Kornberg in 2006. The basis for transcription initiation and RNA chain elongation is emerging, but the intricate mechanisms of transcription regulation remain to be elucidated. The field has also developed hybrid methods for structural biology that combine several techniques to determine the three-dimensional architecture of large and transient macromolecular assemblies. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Getting up to speed with transcription elongation by RNA polymerase II

    Science.gov (United States)

    Jonkers, Iris; Lis, John T.

    2016-01-01

    Recent advances in sequencing techniques that measure nascent transcripts and that reveal the positioning of RNA polymerase II (Pol II) have shown that the pausing of Pol II in promoter-proximal regions and its release to initiate a phase of productive elongation are key steps in transcription regulation. Moreover, after the release of Pol II from the promoter-proximal region, elongation rates are highly dynamic throughout the transcription of a gene, and vary on a gene-by-gene basis. Interestingly, Pol II elongation rates affect co-transcriptional processes such as splicing, termination and genome stability. Increasing numbers of factors and regulatory mechanisms have been associated with the steps of transcription elongation by Pol II, revealing that elongation is a highly complex process. Elongation is thus now recognized as a key phase in the regulation of transcription by Pol II. PMID:25693130

  7. Differential expression of brain-derived neurotrophic factor transcripts after pilocarpine-induced seizure-like activity is related to mode of Ca2+ entry.

    Science.gov (United States)

    Poulsen, F R; Lauterborn, J; Zimmer, J; Gall, C M

    2004-01-01

    Activity-dependent brain-derived neurotrophic factor (BDNF) expression is Ca2+-dependent, yet little is known about the Ca2+ channel contributions that might direct selective expression of the multiple BDNF transcripts. Here, effects of pilocarpine-induced seizure activity on total BDNF expression and on the individual sensitivity of BDNF transcripts to glutamate receptor and Ca2+ channel blockers were evaluated using hippocampal slice cultures and in situ hybridization of transcript-specific cRNA probes directed against mRNAs for the four 5' exons (I-IV) of the BDNF gene. mRNAs for nerve growth factor (NGF) and tyrosine kinase B (trkB) also were studied. Pilocarpine (5 mM) induced a dose- and time-dependent increase in total BDNF (exon V) mRNA expression in the dentate granule cells and CA3-CA1 pyramidal cells with maximal effects at 6 and 24 h, respectively. Increases were blocked by co-treatment with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX: 25 microM) and the N-methyl-d-aspartic acid receptor antagonist 2-amino-5-phosphonovaleric acid (APV; 25 microM), whereas the L-type voltage sensitive Ca2+ channel blocker nifedipine (20 microM) was without detectable effect. Maximal NGF and trkB mRNA expression was induced by pilocarpine at 4 and 12 h, respectively. For the individual BDNF transcripts, APV blocked pilocarpine-induced increases in transcript II, whereas nifedipine blocked increases in transcripts I and III. Transcript IV levels were not altered by treatment. These results indicate that transcript II makes the greatest contribution to pilocarpine effects on total BDNF mRNA content in this model and provides evidence for regional and Ca2+ channel-specific differences in activity-dependent regulation of the different BDNF transcripts in hippocampus.

  8. Detection, characterization and regulation of antisense transcripts in HIV-1

    Directory of Open Access Journals (Sweden)

    Mesnard Jean-Michel

    2007-10-01

    Full Text Available Abstract Background We and others have recently demonstrated that the human retrovirus HTLV-I was producing a spliced antisense transcript, which led to the synthesis of the HBZ protein. The objective of the present study was to demonstrate the existence of antisense transcription in HIV-1 and to provide a better characterization of the transcript and its regulation. Results Initial experiments conducted by standard RT-PCR analysis in latently infected J1.1 cell line and pNL4.3-transfected 293T cells confirmed the existence of antisense transcription in HIV-1. A more adapted RT-PCR protocol with limited RT-PCR artefacts also led to a successful detection of antisense transcripts in several infected cell lines. RACE analyses demonstrated the existence of several transcription initiation sites mapping near the 5' border of the 3'LTR (in the antisense strand. Interestingly, a new polyA signal was identified on the antisense strand and harboured the polyA signal consensus sequence. Transfection experiments in 293T and Jurkat cells with an antisense luciferase-expressing NL4.3 proviral DNA showed luciferase reporter gene expression, which was further induced by various T-cell activators. In addition, the viral Tat protein was found to be a positive modulator of antisense transcription by transient and stable transfections of this proviral DNA construct. RT-PCR analyses in 293T cells stably transfected with a pNL4.3-derived construct further confirmed these results. Infection of 293T, Jurkat, SupT1, U937 and CEMT4 cells with pseudotyped virions produced from the antisense luciferase-expressing NL4.3 DNA clone led to the production of an AZT-sensitive luciferase signal, which was however less pronounced than the signal from NL4.3Luc-infected cells. Conclusion These results demonstrate for the first time that antisense transcription exists in HIV-1 in the context of infection. Possible translation of the predicted antisense ORF in this transcript should

  9. Z-DNA, a new in situ marker for transcription

    Directory of Open Access Journals (Sweden)

    A Cerná

    2009-06-01

    Full Text Available Z-DNA forms transiently behind the active RNA polymerases, because of the mechanical torsional stress produced during transcription. In this paper, we explore the possibility that the distribution of Z-DNA stretches signals the sites related to nuclear transcription. To localize transcription, the in situ assay for active RNA polymerases, that allows the elongation of the already initiated transcripts but no initiation of new ones (runon experiments, was carried out in isolated nuclei of Allium cepa L. root meristems. Both nucleolar and non-nucleolar sites appeared labelled. Nucleoli were most active in transcription than the multiple non-nucleolar foci altogether. In situ immunodetection of Z-DNA provided images that were comparable to those obtained after the run-on assay, with one exception: while Z-DNA and transcription sites were scattered throughout the whole nucleus, Z-DNA also accumulated in the nuclear periphery, where no transcription foci were detected in the run-on assays. The peripheral Z-conformation signals might correspond to dsRNA segments present in the premRNA in the process of their export to cytoplasm. The Z-containing structures nearly disappeared when non-nucleolar RNA polymerase II-dependent transcription had been previously abolished by the adenosine analogue DRB (5,6- dichloro-1-b-D-ribofuranosylbenzimidazole. This inhibition selectively decreased the amount of all nucleoplasmic Z structures. On the other hand, the inhibition of the nucleolar RNA polymerase I by cordycepin (3’-deoxyadenosine prevented the presence of Z-DNA in nucleoli. We propose to use the in situ immunodetection of Z-DNA as a marker of the transcription level in both nucleolus and non-peripheral nucleoplasmic regions of nuclei. Co-detection of Z-DNA and of intermediate filament (IF proteins, the major components of the nuclear matrix, was also carried out. The IFA antibody recognises a conserved epitope essential for dimerization of the multiple IF

  10. NAC transcription factors in senescence

    DEFF Research Database (Denmark)

    Podzimska-Sroka, Dagmara; O'Shea, Charlotte; Gregersen, Per L.;

    2015-01-01

    Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes...... as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics...

  11. Subventricular zone microglia transcriptional networks.

    Science.gov (United States)

    Starossom, Sarah C; Imitola, Jaime; Wang, Yue; Cao, Li; Khoury, Samia J

    2011-07-01

    Microglia play an important role in inflammatory diseases of the central nervous system. There is evidence of microglial diversity with distinct phenotypes exhibiting either neuroprotection and repair or neurotoxicity. However the precise molecular mechanisms underlying this diversity are still unknown. Using a model of experimental autoimmune encephalomyelitis (EAE) we performed transcriptional profiling of isolated subventricular zone microglia from the acute and chronic disease phases of EAE. We found that microglia exhibit disease phase specific gene expression signatures, that correspond to unique gene ontology functions and genomic networks. Our data demonstrate for the first time, distinct transcriptional networks of microglia activation in vivo, that suggests a role as mediators of injury or repair.

  12. Pleiotropic action of aldosterone in epithelia mediated by transcription and post-transcription mechanisms.

    Science.gov (United States)

    Verrey, F; Pearce, D; Pfeiffer, R; Spindler, B; Mastroberardino, L; Summa, V; Zecevic, M

    2000-04-01

    The aldosterone-induced increase in sodium reabsorption across tight epithelia can be divided schematically into two functional phases: an early regulatory phase starting after a lag period of 20 to 60 minutes, during which the pre-existing transport machinery is activated, and a late phase (>2.5 h), which can be viewed as an anabolic action leading to a further amplification/differentiation of the Na+ transport machinery. At the transcriptional level, both early and late responses are initiated during the lag period, but the functional impact of newly synthesized regulatory proteins is faster than that of the structural ones. K-Ras2 and SGK were identified as the first early aldosterone-induced regulatory proteins in A6 epithelia. Their mRNAs also were shown to be regulated in vivo by aldosterone, and their expression (constitutively active K-Ras2 and wild-type SGK) was shown to increase the function of ENaC coexpressed in Xenopus oocytes. Recently, aldosterone was also shown to act on transcription factors in A6 epithelia: It down-regulates the mRNAs of the proliferation-promoting c-Myc, c-Jun, and c-Fos by a post-transcriptional mechanism, whereas it up-regulates that of Fra-2 (c-Fos antagonist) at the transcriptional level. Together, these new data illustrate the complexity of the regulatory network controlled by aldosterone and support the view that its early action is mediated by the induction of key regulatory proteins such as K-Ras2 and SGK. These early induced proteins are sites of convergence for different regulatory inputs, and thus, their aldosterone-regulated expression level tunes the impact of other regulatory cascades on sodium transport. This suggests mechanisms for the escape from aldosterone action.

  13. The functionalized amino acid (S-Lacosamide subverts CRMP2-mediated tubulin polymerization to prevent constitutive and activity-dependent increase in neurite outgrowth

    Directory of Open Access Journals (Sweden)

    Sarah M Wilson

    2014-07-01

    Full Text Available Activity-dependent neurite outgrowth is a highly complex, regulated process with important implications for neuronal circuit remodeling in development as well as in seizure-induced sprouting in epilepsy. Recent work has linked outgrowth to collapsin response mediator protein 2 (CRMP2, an intracellular phosphoprotein originally identified as axon guidance and growth cone collapse protein. The neurite outgrowth promoting function of CRMP2 is regulated by its phosphorylation state. In this study, depolarization (potassium chloride-driven activity increased the level of active CRMP2 by decreasing its phosphorylation by GSK3β via a reduction in priming by Cdk5. To determine the contribution of CRMP2 in activity-driven neurite outgrowth, we screened a limited set of compounds for their ability to reduce neurite outgrowth but not modify voltage-gated sodium channel (VGSC biophysical properties. This led to the identification of (S-lacosamide ((S-LCM, a stereoisomer of the clinically used antiepileptic drug (R-LCM (Vimpat®, as a novel tool for preferentially targeting CRMP2-mediated neurite outgrowth. Whereas (S-LCM was ineffective in targeting VGSCs, the presumptive pharmacological targets of (R-LCM, (S-LCM was more efficient than (R-LCM in subverting neurite outgrowth. Biomolecular interaction analyses revealed that (S-LCM bound to wildtype CRMP2 with low micromolar affinity, similar to (R-LCM. Through the use of this novel tool, the activity-dependent increase in neurite outgrowth observed following depolarization was characterized to be reliant on CRMP2 function. Knockdown of CRMP2 by siRNA in cortical neurons resulted in reduced CRMP2-dependent neurite outgrowth; incubation with (S-LCM phenocopied this effect. Other CRMP2-mediated processes were unaffected. (S-LCM subverted neurite outgrowth not by affecting the canonical CRMP2-tubulin association but rather by impairing the ability of CRMP2 to promote tubulin polymerization, events that are

  14. Role for calcium signaling and arachidonic acid metabolites in the activity-dependent increase of AHP amplitude in leech T sensory neurons.

    Science.gov (United States)

    Scuri, Rossana; Mozzachiodi, Riccardo; Brunelli, Marcello

    2005-08-01

    Previous studies have revealed a new form of activity-dependent modulation of the afterhyperpolarization (AHP) in tactile (T) neurons of the leech Hirudo medicinalis. The firing of T cells is characterized by an AHP, which is mainly due to the activity of the Na+/K+ ATPase. Low-frequency repetitive stimulation of T neurons leads to a robust increment of the AHP amplitude, which is correlated with a synaptic depression between T neuron and follower cells. In the present study, we explored the molecular cascades underlying the AHP increase. We tested the hypothesis that this activity-dependent phenomenon was triggered by calcium influx during neural activity by applying blockers of voltage-dependent Ca2+ channels. We report that AHP increase requires calcium influx that, in turn, induces release of calcium from intracellular stores so sustaining the enhancement of AHP. An elevation of the intracellular calcium can activate the cytosolic isoforms of the phosholipase A2 (PLA2). Therefore we analyzed the role of PLA2 in the increase of the AHP, and we provide evidence that not only PLA2 but also the recruitment of arachidonic acid metabolites generated by the 5-lipoxygenase pathway are necessary for the induction of AHP increase. These data indicate that a sophisticated cascade of intracellular signals links the repetitive discharge of T neurons to the activation of molecular pathways, which finally may alter the activity of critical enzymes such as the Na+/K+ ATPase, that sustains the generation of the AHP and its increase during repetitive stimulation. These results also suggest the potential importance of the poorly studied 5-lipoxygenase pathway in forms of neuronal plasticity.

  15. Activity-dependent release of endogenous BDNF from mossy fibers evokes a TRPC3 current and Ca2+ elevations in CA3 pyramidal neurons.

    Science.gov (United States)

    Li, Yong; Calfa, Gaston; Inoue, Takafumi; Amaral, Michelle D; Pozzo-Miller, Lucas

    2010-05-01

    Multiple studies have demonstrated that brain-derived neurotrophic factor (BDNF) is a potent modulator of neuronal structure and function in the hippocampus. However, the majority of studies to date have relied on the application of recombinant BDNF. We herein report that endogenous BDNF, released via theta burst stimulation of mossy fibers (MF), elicits a slowly developing cationic current and intracellular Ca(2+) elevations in CA3 pyramidal neurons with the same pharmacological profile of the transient receptor potential canonical 3 (TRPC3)-mediated I(BDNF) activated in CA1 neurons by brief localized applications of recombinant BDNF. Indeed, sensitivity to both the extracellular BDNF scavenger tropomyosin-related kinase B (TrkB)-IgG and small hairpin interference RNA-mediated TRPC3 channel knockdown confirms the identity of this conductance as such, henceforth-denoted MF-I(BDNF). Consistent with such activity-dependent release of BDNF, these MF-I(BDNF) responses were insensitive to manipulations of extracellular Zn(2+) concentration. Brief theta burst stimulation of MFs induced a long-lasting depression in the amplitude of excitatory postsynaptic currents (EPSCs) mediated by both AMPA and N-methyl-d-aspartate (NMDA) receptors without changes in the NMDA receptor/AMPA receptor ratio, suggesting a reduction in neurotransmitter release. This depression of NMDAR-mediated EPSCs required activity-dependent release of endogenous BDNF from MFs and activation of Trk receptors, as it was sensitive to the extracellular BDNF scavenger TrkB-IgG and the tyrosine kinase inhibitor k-252b. These results uncovered the most immediate response to endogenously released--native--BDNF in hippocampal neurons and lend further credence to the relevance of BDNF signaling for synaptic function in the hippocampus.

  16. Elucidating the germination transcriptional program using small molecules.

    Science.gov (United States)

    Bassel, George W; Fung, Pauline; Chow, Tsz-fung Freeman; Foong, Justin A; Provart, Nicholas J; Cutler, Sean R

    2008-05-01

    The transition from seed to seedling is mediated by germination, a complex process that starts with imbibition and completes with radicle emergence. To gain insight into the transcriptional program mediating germination, previous studies have compared the transcript profiles of dry, dormant, and germinating after-ripened Arabidopsis (Arabidopsis thaliana) seeds. While informative, these approaches did not distinguish the transcriptional responses due to imbibition, shifts in metabolism, or breaking of dormancy from those triggered by the initiation of germination. In this study, three mechanistically distinct small molecules that inhibit Arabidopsis seed germination (methotrexate, 2, 4-dinitrophenol, and cycloheximide) were identified using a small-molecule screen and used to probe the germination transcriptome. Germination-responsive transcripts were defined as those with significantly altered transcript abundance across all inhibitory treatments with respect to control germinating seeds, using data from ATH1 microarrays. This analysis identified numerous germination regulators as germination responsive, including the DELLA proteins GAI, RGA, and RGL3, the abscisic acid-insensitive proteins ABI4, ABI5, ABI8, and FRY1, and the gibberellin receptor GID1A. To help visualize these and other publicly available seed microarray data, we designed a seed mRNA expression browser using the electronic Fluorescent Pictograph platform. An overall decrease in gene expression and a 5-fold greater number of transcripts identified as statistically down-regulated in drug-inhibited seeds point to a role for mRNA degradation or turnover during seed germination. The genes identified in our study as responsive to germination define potential uncharacterized regulators of this process and provide a refined transcriptional signature for germinating Arabidopsis seeds.

  17. Transcript-RNA-templated DNA recombination and repair.

    Science.gov (United States)

    Keskin, Havva; Shen, Ying; Huang, Fei; Patel, Mikir; Yang, Taehwan; Ashley, Katie; Mazin, Alexander V; Storici, Francesca

    2014-11-20

    Homologous recombination is a molecular process that has multiple important roles in DNA metabolism, both for DNA repair and genetic variation in all forms of life. Generally, homologous recombination involves the exchange of genetic information between two identical or nearly identical DNA molecules; however, homologous recombination can also occur between RNA molecules, as shown for RNA viruses. Previous research showed that synthetic RNA oligonucleotides can act as templates for DNA double-strand break (DSB) repair in yeast and human cells, and artificial long RNA templates injected in ciliate cells can guide genomic rearrangements. Here we report that endogenous transcript RNA mediates homologous recombination with chromosomal DNA in yeast Saccharomyces cerevisiae. We developed a system to detect the events of homologous recombination initiated by transcript RNA following the repair of a chromosomal DSB occurring either in a homologous but remote locus, or in the same transcript-generating locus in reverse-transcription-defective yeast strains. We found that RNA-DNA recombination is blocked by ribonucleases H1 and H2. In the presence of H-type ribonucleases, DSB repair proceeds through a complementary DNA intermediate, whereas in their absence, it proceeds directly through RNA. The proximity of the transcript to its chromosomal DNA partner in the same locus facilitates Rad52-driven homologous recombination during DSB repair. We demonstrate that yeast and human Rad52 proteins efficiently catalyse annealing of RNA to a DSB-like DNA end in vitro. Our results reveal a novel mechanism of homologous recombination and DNA repair in which transcript RNA is used as a template for DSB repair. Thus, considering the abundance of RNA transcripts in cells, RNA may have a marked impact on genomic stability and plasticity.

  18. MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function.

    Science.gov (United States)

    Barbosa, Ana C; Kim, Mi-Sung; Ertunc, Mert; Adachi, Megumi; Nelson, Erika D; McAnally, John; Richardson, James A; Kavalali, Ege T; Monteggia, Lisa M; Bassel-Duby, Rhonda; Olson, Eric N

    2008-07-08

    Learning and memory depend on the activity-dependent structural plasticity of synapses and changes in neuronal gene expression. We show that deletion of the MEF2C transcription factor in the CNS of mice impairs hippocampal-dependent learning and memory. Unexpectedly, these behavioral changes were accompanied by a marked increase in the number of excitatory synapses and potentiation of basal and evoked synaptic transmission. Conversely, neuronal expression of a superactivating form of MEF2C results in a reduction of excitatory postsynaptic sites without affecting learning and memory performance. We conclude that MEF2C limits excessive synapse formation during activity-dependent refinement of synaptic connectivity and thus facilitates hippocampal-dependent learning and memory.

  19. Transcriptional regulation of the human mitochondrial peptide deformylase (PDF).

    Science.gov (United States)

    Pereira-Castro, Isabel; Costa, Luís Teixeira da; Amorim, António; Azevedo, Luisa

    2012-05-18

    The last years of research have been particularly dynamic in establishing the importance of peptide deformylase (PDF), a protein of the N-terminal methionine excision (NME) pathway that removes formyl-methionine from mitochondrial-encoded proteins. The genomic sequence of the human PDF gene is shared with the COG8 gene, which encodes a component of the oligomeric golgi complex, a very unusual case in Eukaryotic genomes. Since PDF is crucial in maintaining mitochondrial function and given the atypical short distance between the end of COG8 coding sequence and the PDF initiation codon, we investigated whether the regulation of the human PDF is affected by the COG8 overlapping partner. Our data reveals that PDF has several transcription start sites, the most important of which only 18 bp from the initiation codon. Furthermore, luciferase-activation assays using differently-sized fragments defined a 97 bp minimal promoter region for human PDF, which is capable of very strong transcriptional activity. This fragment contains a potential Sp1 binding site highly conserved in mammalian species. We show that this binding site, whose mutation significantly reduces transcription activation, is a target for the Sp1 transcription factor, and possibly of other members of the Sp family. Importantly, the entire minimal promoter region is located after the end of COG8's coding region, strongly suggesting that the human PDF preserves an independent regulation from its overlapping partner. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma

    Directory of Open Access Journals (Sweden)

    Dinesh K. Singh

    2017-01-01

    Full Text Available Efforts to identify and target glioblastoma (GBM drivers have primarily focused on receptor tyrosine kinases (RTKs. Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2 transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2 and zinc-finger E-box binding homeobox 1 (ZEB1, which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  1. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma.

    Science.gov (United States)

    Singh, Dinesh K; Kollipara, Rahul K; Vemireddy, Vamsidara; Yang, Xiao-Li; Sun, Yuxiao; Regmi, Nanda; Klingler, Stefan; Hatanpaa, Kimmo J; Raisanen, Jack; Cho, Steve K; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara; Mashimo, Tomoyuki; Wang, Shan; Humphries, Caroline G; Mickey, Bruce; Maher, Elizabeth A; Zheng, Hongwu; Kim, Ryung S; Kittler, Ralf; Bachoo, Robert M

    2017-01-24

    Efforts to identify and target glioblastoma (GBM) drivers have primarily focused on receptor tyrosine kinases (RTKs). Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2) transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2) and zinc-finger E-box binding homeobox 1 (ZEB1), which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  2. Dioxin Exposure Initiative

    Science.gov (United States)

    The Dioxin Exposure Initiative (DEI) is no longer active. This page contains a summary of the dioxin exposure initiative with illustrations, contact and background information.Originally supported by scientist Matthew Lorber, who retired in Mar 2017.

  3. Transcriptional regulation by nonclassical action of thyroid hormone

    Directory of Open Access Journals (Sweden)

    Moeller Lars C

    2011-08-01

    Full Text Available Abstract Thyroid hormone (TH is essential for normal development, growth and metabolism. Its effects were thought to be principally mediated through triiodothyronine (T3, acting as a ligand for the nuclear TH receptors (TRs α and β residing on thyroid hormone response elements (TREs in the promoter of TH target genes. In this classical model of TH action, T3 binding to TRs leads to recruitment of basal transcription factors and increased transcription of TH responsive genes. Recently, the concept of TH action on gene expression has become more diverse and now includes nonclassical actions of T3 and T4: T3 has been shown to activate PI3K via the TRs, which ultimately increases transcription of certain genes, e.g. HIF-1α. Additionally, both T3 and thyroxine (T4 can bind to a membrane integrin, αvβ3, which leads to activation of the PI3K and MAPK signal transduction pathways and finally also increases gene transcription, e.g. of the FGF2 gene. Therefore, these initially nongenomic, nonclassical actions seem to serve as additional interfaces for transcriptional regulation by TH. Aim of this perspective is to summarize the genes that are currently known to be induced by nonclassical TH action and the mechanisms involved.

  4. Transcription factor-based biosensor

    Science.gov (United States)

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  5. Regulating transcription traffic around DSBs.

    Science.gov (United States)

    Plosky, Brian S

    2015-05-07

    If a double-strand break (DSB) occurs and either a DNA polymerase or RNA polymerase is coming along, how do we save the train? In this issue of Molecular Cell, Ui et al. (2015) describe a connection between an elongation factor and a repressive complex to prevent transcription in proximity to a DSB.

  6. HDG1 transcription factor targets

    NARCIS (Netherlands)

    Horstman, A.; Boutilier, K.A.; Sanchez Perez, Gabino

    2015-01-01

    The AIL transcription factor BABY BOOM (BBM) is required together with the related PLETHORA proteins for embryo and root meristem development and its expression is sufficient to confer pluripotency and totipotency to somatic tissues. We show that BBM and other AIL proteins interact with multiple

  7. Transcription factors in alkaloid biosynthesis.

    Science.gov (United States)

    Yamada, Yasuyuki; Sato, Fumihiko

    2013-01-01

    Higher plants produce a large variety of low-molecular weight secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used pharmaceutically. Whereas alkaloid chemistry has been intensively investigated, alkaloid biosynthesis, including the relevant biosynthetic enzymes, genes and their regulation, and especially transcription factors, is largely unknown, as only a limited number of plant species produce certain types of alkaloids and they are difficult to study. Recently, however, several groups have succeeded in isolating the transcription factors that are involved in the biosynthesis of several types of alkaloids, including bHLH, ERF, and WRKY. Most of them show Jasmonate (JA) responsiveness, which suggests that the JA signaling cascade plays an important role in alkaloid biosynthesis. Here, we summarize the types and functions of transcription factors that have been isolated in alkaloid biosynthesis, and characterize their similarities and differences compared to those in other secondary metabolite pathways, such as phenylpropanoid and terpenoid biosyntheses. The evolution of this biosynthetic pathway and regulatory network, as well as the application of these transcription factors to metabolic engineering, is discussed.

  8. Transcriptional networks in plant immunity.

    Science.gov (United States)

    Tsuda, Kenichi; Somssich, Imre E

    2015-05-01

    Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity.

  9. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection.

    Science.gov (United States)

    Voitsik, Anna-Maria; Muench, Steffen; Deising, Holger B; Voll, Lars M

    2013-05-29

    NAC transcription factors belong to a large family of plant-specific transcription factors with more than 100 family members in monocot and dicot species. To date, the majority of the studied NAC proteins are involved in the response to abiotic stress, to biotic stress and in the regulation of developmental processes. Maize NAC transcription factors involved in the biotic stress response have not yet been identified. We have found that two NAC transcription factors, ZmNAC41 and ZmNAC100, are transcriptionally induced both during the initial biotrophic as well as the ensuing necrotrophic colonization of maize leaves by the hemibiotrophic ascomycete fungus C. graminicola. ZmNAC41 transcripts were also induced upon infection with C. graminicola mutants that are defective in host penetration, while the induction of ZmNAC100 did not occur in such interactions. While ZmNAC41 transcripts accumulated specifically in response to jasmonate (JA), ZmNAC100 transcripts were also induced by the salicylic acid analog 2,6-dichloroisonicotinic acid (INA).To assess the phylogenetic relation of ZmNAC41 and ZmNAC100, we studied the family of maize NAC transcription factors based on the recently annotated B73 genome information. We identified 116 maize NAC transcription factor genes that clustered into 12 clades. ZmNAC41 and ZmNAC100 both belong to clade G and appear to have arisen by a recent gene duplication event. Including four other defence-related NAC transcription factors of maize and functionally characterized Arabidopsis and rice NAC transcription factors, we observed an enrichment of NAC transcription factors involved in host defense regulation in clade G. In silico analyses identified putative binding elements for the defence-induced ERF, Myc2, TGA and WRKY transcription factors in the promoters of four out of the six defence-related maize NAC transcription factors, while one of the analysed maize NAC did not contain any of these potential binding sites. Our study provides a

  10. When "Other" Initiate Repair.

    Science.gov (United States)

    Schegloff, Emanuel A.

    2000-01-01

    Elaborates on the locus of other-initiated repair, and reports on a number of environments in which others initiate repair turns later than the one directly following the trouble-source turn. Describes several ways that other initiation of repair, which occurs in next-turn position, may be delayed within that position. (Author/VWL)

  11. Genomic and chromatin signals underlying transcription start-site selection.

    Science.gov (United States)

    Valen, Eivind; Sandelin, Albin

    2011-11-01

    A central question in cellular biology is how the cell regulates transcription and discerns when and where to initiate it. Locating transcription start sites (TSSs), the signals that specify them, and ultimately elucidating the mechanisms of regulated initiation has therefore been a recurrent theme. In recent years substantial progress has been made towards this goal, spurred by the possibility of applying genome-wide, sequencing-based analysis. We now have a large collection of high-resolution datasets identifying locations of TSSs, protein-DNA interactions, and chromatin features over whole genomes; the field is now faced with the daunting challenge of translating these descriptive maps into quantitative and predictive models describing the underlying biology. We review here the genomic and chromatin features that underlie TSS selection and usage, focusing on the differences between the major classes of core promoters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations

    Science.gov (United States)

    Streubel, Jana; Baum, Heidi; Grau, Jan; Stuttman, Johannes; Boch, Jens

    2017-01-01

    Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators. PMID:28301511

  13. Characterization of a novel radiation-inducible transcript, uscA, and analysis of its transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho

    2010-03-15

    The transcriptional expression of the uscA promote (P{sub uscA}) only occurred under aerobic conditions and a dose of 2Gy maximally activated transcription of P{sub uscA}. However, various environmental stress including physical shocks (pH, temperature, osmotic shock), DNA damaging agents (UV and MMC) or oxidative stressagents (paraquat, menadione, and H{sub 2}O{sub 2}) didn't cause the transcriptional activationof P{sub uscA}. The transcription of uscA was initiated at 170 bp upstream of the cyoA start codon, and ended around the ampG stop codon. The size of uscA was determined through reverse transcription assay, approximately 250 bp. The deletion analysis of uscA promoter demonstrates that radiation inducibility of P{sub uscA} is mediated by sequences present between -20 and +111 relativeto +1 of P{sub uscA} and radiation causes P{sub uscA} activation thorough permitting the expression that is repressed under non-irradiated conditions

  14. Fluorescence circadian imaging reveals a PDF-dependent transcriptional regulation of the Drosophila molecular clock.

    Science.gov (United States)

    Sabado, Virginie; Vienne, Ludovic; Nunes, José Manuel; Rosbash, Michael; Nagoshi, Emi

    2017-01-30

    Circadian locomotor behaviour is controlled by a pacemaker circuit composed of clock-containing neurons. To interrogate the mechanistic relationship between the molecular clockwork and network communication critical to the operation of the Drosophila circadian pacemaker circuit, we established new fluorescent circadian reporters that permit single-cell recording of transcriptional and post-transcriptional rhythms in brain explants and cultured neurons. Live-imaging experiments combined with pharmacological and genetic manipulations demonstrate that the neuropeptide pigment-dispersing factor (PDF) amplifies the molecular rhythms via time-of-day- and activity-dependent upregulation of transcription from E-box-containing clock gene promoters within key pacemaker neurons. The effect of PDF on clock gene transcription and the known role of PDF in enhancing PER/TIM stability occur via independent pathways downstream of the PDF receptor, the former through a cAMP-independent mechanism and the latter through a cAMP-PKA dependent mechanism. These results confirm and extend the mechanistic understanding of the role of PDF in controlling the synchrony of the pacemaker neurons. More broadly, our results establish the utility of the new live-imaging tools for the study of molecular-neural interactions important for the operation of the circadian pacemaker circuit.

  15. Mechanistic basis for transcriptional bursting of ribosomal genes in E. coli

    Science.gov (United States)

    Choubey, Sandeep; Sanchez, Alvaro; Kondev, Jane

    2012-02-01

    Upon adding more ribosomal genes to the E. coli cell, it adjusts the overall transcription of these genes by reducing the average transcription rate per gene, so as to keep constant the level of ribosomal RNA in the cell. It was observed that this reduction in the average transcription level per gene is accompanied by the generation of transcriptional bursts. The biophysical mechanism responsible for this type of transcriptional control is not yet known. We consider three possible mechanisms suggested in the literature: proximal pausing by RNA polymerase, cooperative recruitment of RNA polymerase by DNA supercoiling, and competition between RNA polymerase and a transcription factor for binding to regulatory DNA. We compute the expected statistical properties of transcription initiation for each one of these models,and compare our predictions with published distributions of distances between the polymerases transcribing the ribosomal genes, obtained from electron micrographs.We use this data to estimate the rates of transcription initiation, which are found to be in good agreement with independent measurements. We also show that the three mechanisms considered here can be discriminated by comparing their predictions for the mean and the variance of interpolymerase distances.

  16. Transcription of minute virus of mice, an autonomous parvovirus, may be regulated by attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Asher, E.; Aloni, Y.

    1984-10-01

    To characterize the transcriptional organization and regulation of minute virus of mice, an autonomous parvovirus, viral transcriptional complexes were isolated and cleaved with restriction enzymes. The in vivo preinitiated nascent RNA was elongated in vitro in the presence of (alpha-/sup 32/P)UTP to generate runoff transcripts. The lengths of the runoff transcripts were analyzed by gel electrophoresis under denaturing conditions. On the basis of the map locations of the restriction sites and the lengths of the runoff transcripts, the in vivo initiation sites were determined. Two major initiation sites having similar activities were thus identified at residues 201 +/- 5 and 2005 +/- 5; both of them were preceded by a TATAA sequence. When uncleaved viral transcriptional complexes or isolated nuclei were incubated in vitro in the presence of (alpha-/sup 32/P)UTP or (alpha-/sup 32/P)CTP, they synthesized labeled RNA that, as determined by polyacrylamide gel electrophoresis, contained a major band of 142 nucleotides. The RNA of the major band was mapped between the initiation site at residue 201 +/- 5 and residue 342. We noticed the potential of forming two mutually exclusive stem-and-loop structures in the 142-nucleotide RNA; one of them is followed by a string of uridylic acid residues typical of a procaryotic transcription termination signal. We propose that, as in the transcription of simian virus 40, RNA transcription in minute virus of mice may be regulated by attenuation and may involve eucaryotic polymerase B, which can respond to a transcription termination signal similar to that of the procaryotic polymerase.

  17. Investigating transcription reinitiation through in vitro approaches.

    Science.gov (United States)

    Dieci, Giorgio; Fermi, Beatrice; Bosio, Maria Cristina

    2014-01-01

    By influencing the number of RNA molecules repeatedly synthesized from the same gene, the control of transcription reinitiation has the potential to shape the transcriptome. Transcription reinitiation mechanisms have been mainly addressed in vitro, through approaches based on both crude and reconstituted systems. These studies support the notion that transcription reinitiation and its regulation rely on dedicated networks of molecular interactions within transcription machineries. At the same time, comparison with in vivo transcription rates suggests that additional mechanisms, factors and conditions must exist in the nucleus, whose biochemical elucidation is a fascinating challenge for future in vitro transcription studies.

  18. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters.

    Science.gov (United States)

    Erb, Ionas; van Nimwegen, Erik

    2011-01-01

    The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of 6 'proximal promoter motifs' (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters.

  19. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters.

    Directory of Open Access Journals (Sweden)

    Ionas Erb

    Full Text Available The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of 6 'proximal promoter motifs' (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1 occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters.

  20. Genome-wide uniformity of human ‘open’ pre-initiation complexes

    Science.gov (United States)

    Lai, William K.M.; Pugh, B. Franklin

    2017-01-01

    Transcription of protein-coding and noncoding DNA occurs pervasively throughout the mammalian genome. Their sites of initiation are generally inferred from transcript 5′ ends and are thought to be either locally dispersed or focused. How these two modes of initiation relate is unclear. Here, we apply permanganate treatment and chromatin immunoprecipitation (PIP-seq) of initiation factors to identify the precise location of melted DNA separately associated with the preinitiation complex (PIC) and the adjacent paused complex (PC). This approach revealed the two known modes of transcription initiation. However, in contrast to prevailing views, they co-occurred within the same promoter region: initiation originating from a focused PIC, and broad nucleosome-linked initiation. PIP-seq allowed transcriptional orientation of Pol II to be determined, which may be useful near promoters where sufficient sense/anti-sense transcript mapping information is lacking. PIP-seq detected divergently oriented Pol II at both coding and noncoding promoters, as well as at enhancers. Their occupancy levels were not necessarily coupled in the two orientations. DNA sequence and shape analysis of initiation complex sites suggest that both sequence and shape contribute to specificity, but in a context-restricted manner. That is, initiation sites have the locally “best” initiator (INR) sequence and/or shape. These findings reveal a common core to pervasive Pol II initiation throughout the human genome. PMID:27927716

  1. Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors

    Directory of Open Access Journals (Sweden)

    Estruch Francisco

    2012-09-01

    Full Text Available Abstract Background The various steps of mRNP biogenesis (transcription, processing and export are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. Results We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show that growth and mRNA export defects of dbp5 and mex67 mutant strains can be suppressed by mutation of specific transcription initiation components, but suppression was not observed for mutants acting in the very first steps of the pre-initiation complex (PIC formation. Conclusions Our results indicate that mere reduction in the amount of mRNP produced is not sufficient to suppress the defects caused by a defective mRNA export factor. Suppression occurs only with mutants affecting events within a narrow window of the mRNP biogenesis process. We propose that reducing the speed with which transcription converts from initiation and promoter clearance to elongation may have a positive effect on mRNP formation by permitting more effective recruitment of partially-functional mRNP proteins to the nascent mRNP.

  2. Overlapping transcription structure of human cytomegalovirus UL140 and UL141 genes

    Indian Academy of Sciences (India)

    Yanping Ma; Mali Li; Bo Zheng; Ning Wang; Shuang Gao; Lin Wang; Qi Ying; Zhengrong Sun; Qiang Ruan

    2013-03-01

    Transcription of human cytomegalovirus UL/b′ region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b′ genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR. At least three transcripts with length of 2800, 2400 and 1700 nt, as well as a group of transcripts of about 1000–1300 nt, were found in this gene region with an accordant 3′ ends. Among the transcripts, two initiated upstream of the start code of the UL140 gene and contained the UL140 and UL141 open reading frame (ORF), one initiated in the middle of the UL140 gene, and could encode short ORFs upstream of the UL141 ORF. A group of transcripts initiated upstream or downstream of the start code of the UL141 gene, and could encode `nested’ ORFs, including the UL141 ORF. These `nested’ ORFs possess different initiation sites but the same termination site as that of the UL141 ORF.

  3. A transcriptional cofactor YAP regulates IFNT expression via transcription factor TEAD in bovine conceptuses.

    Science.gov (United States)

    Kusama, K; Bai, R; Sakurai, T; Bai, H; Ideta, A; Aoyagi, Y; Imakawa, K

    2016-10-01

    Interferon tau (IFNT) is the pregnancy recognition protein in all ruminants, and its expression is restricted to trophoblast cells. Interferon tau production increases as the conceptus elongates; however, its expression is downregulated soon after the initiation of conceptus attachment to the uterine epithelium. Our previous study identified that among 8 bovine IFNT genes, only 2 forms of IFNTs, IFNT2 and IFN-tau-c1, were expressed by the conceptuses during the periattachment period. To characterize whether Hippo signaling including a transcription cofactor yes-associated protein (YAP) was involved in the IFNT regulation, we examined the expression and effects of YAP and/or TEAD in human choriocarcinoma JEG3 and bovine trophoblast CT-1 cells, and in bovine conceptuses obtained from day 17, 20 or 22 pregnant animals (pregnant day 19.5 = day of conceptus attachment to the endometrium). YAP was expressed in bovine conceptuses and transfection of YAP or TEAD4, a transcription factor partner of YAP, expression plasmid increased the luciferase activity of IFNT2 and IFN-tau-c1 reporter plasmids in JEG3 cells. In the presence of YAP expression plasmid, TEAD2 or TEAD4 expression plasmid further upregulated transcriptional activity of IFNT2 or IFN-tau-c1 constructs, which were substantially reduced in the absence of the TEAD-binding site on IFNT2 or IFN-tau-c1 promoter region in JEG3 cells. In CT-1 cells, treatment with TEAD2, TEAD4, or YAP small-interfering RNA downregulated endogenous IFNT expression. It should be noted that TEAD2 and TEAD4 were predominantly localized in the nuclei of trophectoderm of Day 17 conceptuses, but nuclear localization appeared to be lower in those cells of conceptuses on days 20 and 22 of pregnancy. Moreover, the binding of TEAD4 to the TEAD-binding site of the IFN-tau-c1 promoter region in day 17 conceptuses was less in day 20 and 22 conceptuses. Furthermore, the level of YAP phosphorylation increased in day 20 and 22 conceptuses. These

  4. Tonic 5nM DA stabilizes neuronal output by enabling bidirectional activity-dependent regulation of the hyperpolarization activated current via PKA and calcineurin.

    Directory of Open Access Journals (Sweden)

    Wulf-Dieter C Krenz

    Full Text Available Volume transmission results in phasic and tonic modulatory signals. The actions of tonic dopamine (DA at type 1 DA receptors (D1Rs are largely undefined. Here we show that tonic 5nM DA acts at D1Rs to stabilize neuronal output over minutes by enabling activity-dependent regulation of the hyperpolarization activated current (I h. In the presence but not absence of 5nM DA, I h maximal conductance (G max was adjusted according to changes in slow wave activity in order to maintain spike timing. Our study on the lateral pyloric neuron (LP, which undergoes rhythmic oscillations in membrane potential with depolarized plateaus, demonstrated that incremental, bi-directional changes in plateau duration produced corresponding alterations in LP I hG max when preparations were superfused with saline containing 5nM DA. However, when preparations were superfused with saline alone there was no linear correlation between LP I hGmax and duty cycle. Thus, tonic nM DA modulated the capacity for activity to modulate LP I h G max; this exemplifies metamodulation (modulation of modulation. Pretreatment with the Ca2+-chelator, BAPTA, or the specific PKA inhibitor, PKI, prevented all changes in LP I h in 5nM DA. Calcineurin inhibitors blocked activity-dependent changes enabled by DA and revealed a PKA-mediated, activity-independent enhancement of LP I hG max. These data suggested that tonic 5nM DA produced two simultaneous, PKA-dependent effects: a direct increase in LP I h G max and a priming event that permitted calcineurin regulation of LP I h. The latter produced graded reductions in LP I hG max with increasing duty cycles. We also demonstrated that this metamodulation preserved the timing of LP's first spike when network output was perturbed with bath-applied 4AP. In sum, 5nM DA permits slow wave activity to provide feedback that maintains spike timing, suggesting that one function of low-level, tonic modulation is to stabilize specific features of a dynamic output.

  5. Inflammatory Pain Reduces C Fiber Activity-Dependent Slowing in a Sex-Dependent Manner, Amplifying Nociceptive Input to the Spinal Cord

    Science.gov (United States)

    McCormick, Barry; Lukito, Veny; Wilson, Kirsten L.

    2017-01-01

    C fibers display activity-dependent slowing (ADS), whereby repetitive stimulation (≥1 Hz) results in a progressive slowing of action potential conduction velocity, which manifests as a progressive increase in response latency. However, the impact of ADS on spinal pain processing has not been explored, nor whether ADS is altered in inflammatory pain conditions. To investigate, compound action potentials were made, from dorsal roots isolated from rats with or without complete Freund's adjuvant (CFA) hindpaw inflammation, in response to electrical stimulus trains. CFA inflammation significantly reduced C fiber ADS at 1 and 2 Hz stimulation rates. Whole-cell patch-clamp recordings in the spinal cord slice preparation with attached dorsal roots also demonstrated that CFA inflammation reduced ADS in the monosynaptic C fiber input to lamina I neurokinin 1 receptor-expressing neurons (1–10 Hz stimulus trains) without altering the incidence of synaptic response failures. When analyzed by sex, it was revealed that females display a more pronounced ADS that is reduced by CFA inflammation to a level comparable with males. Cumulative ventral root potentials evoked by long and short dorsal root stimulation lengths, to maximize and minimize the impact of ADS, respectively, demonstrated that reducing ADS facilitates spinal summation, and this was also sex dependent. This finding correlated with the behavioral observation of increased noxious thermal thresholds and enhanced inflammatory thermal hypersensitivity in females. We propose that sex/inflammation-dependent regulation of C fiber ADS can, by controlling the temporal relay of nociceptive inputs, influence the spinal summation of nociceptive signals contributing to sex/inflammation-dependent differences in pain sensitivity. SIGNIFICANCE STATEMENT The intensity of a noxious stimulus is encoded by the frequency of action potentials relayed by nociceptive C fibers to the spinal cord. C fibers conduct successive action

  6. Tonic 5nM DA stabilizes neuronal output by enabling bidirectional activity-dependent regulation of the hyperpolarization activated current via PKA and calcineurin.

    Science.gov (United States)

    Krenz, Wulf-Dieter C; Rodgers, Edmund W; Baro, Deborah J

    2015-01-01

    Volume transmission results in phasic and tonic modulatory signals. The actions of tonic dopamine (DA) at type 1 DA receptors (D1Rs) are largely undefined. Here we show that tonic 5nM DA acts at D1Rs to stabilize neuronal output over minutes by enabling activity-dependent regulation of the hyperpolarization activated current (I h). In the presence but not absence of 5nM DA, I h maximal conductance (G max) was adjusted according to changes in slow wave activity in order to maintain spike timing. Our study on the lateral pyloric neuron (LP), which undergoes rhythmic oscillations in membrane potential with depolarized plateaus, demonstrated that incremental, bi-directional changes in plateau duration produced corresponding alterations in LP I hG max when preparations were superfused with saline containing 5nM DA. However, when preparations were superfused with saline alone there was no linear correlation between LP I hGmax and duty cycle. Thus, tonic nM DA modulated the capacity for activity to modulate LP I h G max; this exemplifies metamodulation (modulation of modulation). Pretreatment with the Ca2+-chelator, BAPTA, or the specific PKA inhibitor, PKI, prevented all changes in LP I h in 5nM DA. Calcineurin inhibitors blocked activity-dependent changes enabled by DA and revealed a PKA-mediated, activity-independent enhancement of LP I hG max. These data suggested that tonic 5nM DA produced two simultaneous, PKA-dependent effects: a direct increase in LP I h G max and a priming event that permitted calcineurin regulation of LP I h. The latter produced graded reductions in LP I hG max with increasing duty cycles. We also demonstrated that this metamodulation preserved the timing of LP's first spike when network output was perturbed with bath-applied 4AP. In sum, 5nM DA permits slow wave activity to provide feedback that maintains spike timing, suggesting that one function of low-level, tonic modulation is to stabilize specific features of a dynamic output.

  7. Asymmetric bidirectional transcription from the FSHD-causing D4Z4 array modulates DUX4 production.

    Directory of Open Access Journals (Sweden)

    Gregory J Block

    Full Text Available Facioscapulohumeral Disease (FSHD is a dominantly inherited progressive myopathy associated with aberrant production of the transcription factor, Double Homeobox Protein 4 (DUX4. The expression of DUX4 depends on an open chromatin conformation of the D4Z4 macrosatellite array and a specific haplotype on chromosome 4. Even when these requirements are met, DUX4 transcripts and protein are only detectable in a subset of cells indicating that additional constraints govern DUX4 production. Since the direction of transcription, along with the production of non-coding antisense transcripts is an important regulatory feature of other macrosatellite repeats, we developed constructs that contain the non-coding region of a single D4Z4 unit flanked by genes that report transcriptional activity in the sense and antisense directions. We found that D4Z4 contains two promoters that initiate sense and antisense transcription within the array, and that antisense transcription predominates. Transcriptional start sites for the antisense transcripts, as well as D4Z4 regions that regulate the balance of sense and antisense transcripts were identified. We show that the choice of transcriptional direction is reversible but not mutually exclusive, since sense and antisense reporter activity was often present in the same cell and simultaneously upregulated during myotube formation. Similarly, levels of endogenous sense and antisense D4Z4 transcripts were upregulated in FSHD myotubes. These studies offer insight into the autonomous distribution of muscle weakness that is characteristic of FSHD.

  8. Transcription Against an Applied Force

    Science.gov (United States)

    Yin, Hong; Wang, Michelle D.; Svoboda, Karel; Landick, Robert; Block, Steven M.; Gelles, Jeff

    1995-12-01

    The force produced by a single molecule of Escherichia coli RNA polymerase during transcription was measured optically. Polymerase immobilized on a surface was used to transcribe a DNA template attached to a polystyrene bead 0.5 micrometer in diameter. The bead position was measured by interferometry while a force opposing translocation of the polymerase along the DNA was applied with an optical trap. At saturating nucleoside triphosphate concentrations, polymerase molecules stalled reversibly at a mean applied force estimated to be 14 piconewtons. This force is substantially larger than those measured for the cytoskeletal motors kinesin and myosin and exceeds mechanical loads that are estimated to oppose transcriptional elongation in vivo. The data are consistent with efficient conversion of the free energy liberated by RNA synthesis into mechanical work.

  9. NACK is an integral component of the Notch transcriptional activation complex and is critical for development and tumorigenesis.

    Science.gov (United States)

    Weaver, Kelly L; Alves-Guerra, Marie-Clotilde; Jin, Ke; Wang, Zhiqiang; Han, Xiaoqing; Ranganathan, Prathibha; Zhu, Xiaoxia; DaSilva, Thiago; Liu, Wei; Ratti, Francesca; Demarest, Renee M; Tzimas, Cristos; Rice, Meghan; Vasquez-Del Carpio, Rodrigo; Dahmane, Nadia; Robbins, David J; Capobianco, Anthony J

    2014-09-01

    The Notch signaling pathway governs many distinct cellular processes by regulating transcriptional programs. The transcriptional response initiated by Notch is highly cell context dependent, indicating that multiple factors influence Notch target gene selection and activity. However, the mechanism by which Notch drives target gene transcription is not well understood. Herein, we identify and characterize a novel Notch-interacting protein, Notch activation complex kinase (NACK), which acts as a Notch transcriptional coactivator. We show that NACK associates with the Notch transcriptional activation complex on DNA, mediates Notch transcriptional activity, and is required for Notch-mediated tumorigenesis. We demonstrate that Notch1 and NACK are coexpressed during mouse development and that homozygous loss of NACK is embryonic lethal. Finally, we show that NACK is also a Notch target gene, establishing a feed-forward loop. Thus, our data indicate that NACK is a key component of the Notch transcriptional complex and is an essential regulator of Notch-mediated tumorigenesis and development.

  10. Basic Mechanisms in RNA Polymerase I Transcription of the Ribosomal RNA Genes

    Science.gov (United States)

    Goodfellow, Sarah J.; Zomerdijk, Joost C. B. M.

    2013-01-01

    RNA Polymerase (Pol) I produces ribosomal (r)RNA, an essential component of the cellular protein synthetic machinery that drives cell growth, underlying many fundamental cellular processes. Extensive research into the mechanisms governing transcription by Pol I has revealed an intricate set of control mechanisms impinging upon rRNA production. Pol I-specific transcription factors guide Pol I to the rDNA promoter and contribute to multiple rounds of transcription initiation, promoter escape, elongation and termination. In addition, many accessory factors are now known to assist at each stage of this transcription cycle, some of which allow the integration of transcriptional activity with metabolic demands. The organisation and accessibility of rDNA chromatin also impinge upon Pol I output, and complex mechanisms ensure the appropriate maintenance of the epigenetic state of the nucleolar genome and its effective transcription by Pol I. The following review presents our current understanding of the components of the Pol I transcription machinery, their functions and regulation by associated factors, and the mechanisms operating to ensure the proper transcription of rDNA chromatin. The importance of such stringent control is demonstrated by the fact that deregulated Pol I transcription is a feature of cancer and other disorders characterised by abnormal translational capacity. PMID:23150253

  11. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity.

    Science.gov (United States)

    Ahmed, Afsar U; Williams, Bryan R G; Hannigan, Gregory E

    2015-11-11

    Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding.

  12. Cooperative RNA polymerase molecules behavior on a stochastic sequence-dependent model for transcription elongation.

    Directory of Open Access Journals (Sweden)

    Pedro Rafael Costa

    Full Text Available The transcription process is crucial to life and the enzyme RNA polymerase (RNAP is the major component of the transcription machinery. The development of single-molecule techniques, such as magnetic and optical tweezers, atomic-force microscopy and single-molecule fluorescence, increased our understanding of the transcription process and complements traditional biochemical studies. Based on these studies, theoretical models have been proposed to explain and predict the kinetics of the RNAP during the polymerization, highlighting the results achieved by models based on the thermodynamic stability of the transcription elongation complex. However, experiments showed that if more than one RNAP initiates from the same promoter, the transcription behavior slightly changes and new phenomenona are observed. We proposed and implemented a theoretical model that considers collisions between RNAPs and predicts their cooperative behavior during multi-round transcription generalizing the Bai et al. stochastic sequence-dependent model. In our approach, collisions between elongating enzymes modify their transcription rate values. We performed the simulations in Mathematica® and compared the results of the single and the multiple-molecule transcription with experimental results and other theoretical models. Our multi-round approach can recover several expected behaviors, showing that the transcription process for the studied sequences can be accelerated up to 48% when collisions are allowed: the dwell times on pause sites are reduced as well as the distance that the RNAPs backtracked from backtracking sites.

  13. Sustainable Agricultural Marketing Initiatives

    OpenAIRE

    Hakan Adanacıoğlu

    2015-01-01

    Sustainable marketing is a holistic approach that puts equal emphasis on environmental, social equity, and economic concerns in the development of marketing strategies. The purpose of the study is to examine and discuss the sustainable agricultural marketing initiatives practiced throughout the World and Turkey, and to put forth suggestions to further improve the performance of agricultural marketing initiatives in Turkey. Some of the sustainable agricultural marketing initiatives practiced a...

  14. Functionality of intergenic transcription: an evolutionary comparison.

    Directory of Open Access Journals (Sweden)

    Philipp Khaitovich

    2006-10-01

    Full Text Available Although a large proportion of human transcription occurs outside the boundaries of known genes, the functional significance of this transcription remains unknown. We have compared the expression patterns of known genes as well as intergenic transcripts within the ENCODE regions between humans and chimpanzees in brain, heart, testis, and lymphoblastoid cell lines. We find that intergenic transcripts show patterns of tissue-specific conservation of their expression, which are comparable to exonic transcripts of known genes. This suggests that intergenic transcripts are subject to functional constraints that restrict their rate of evolutionary change as well as putative positive selection to an extent comparable to that of classical protein-coding genes. In brain and testis, we find that part of this intergenic transcription is caused by widespread use of alternative promoters. Further, we find that about half of the expression differences between humans and chimpanzees are due to intergenic transcripts.

  15. Functionality of Intergenic Transcription: An Evolutionary Comparison

    Science.gov (United States)

    Visagie, Johann; Giger, Thomas; Joerchel, Sabrina; Petzold, Ekkehard; Green, Richard E; Lachmann, Michael; Pääbo, Svante

    2006-01-01

    Although a large proportion of human transcription occurs outside the boundaries of known genes, the functional significance of this transcription remains unknown. We have compared the expression patterns of known genes as well as intergenic transcripts within the ENCODE regions between humans and chimpanzees in brain, heart, testis, and lymphoblastoid cell lines. We find that intergenic transcripts show patterns of tissue-specific conservation of their expression, which are comparable to exonic transcripts of known genes. This suggests that intergenic transcripts are subject to functional constraints that restrict their rate of evolutionary change as well as putative positive selection to an extent comparable to that of classical protein-coding genes. In brain and testis, we find that part of this intergenic transcription is caused by widespread use of alternative promoters. Further, we find that about half of the expression differences between humans and chimpanzees are due to intergenic transcripts. PMID:17040132

  16. Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation

    Science.gov (United States)

    E. coli DksA is in a class of transcription factors that modify RNA polymerase (RNAP) in all three kingdoms of life. DksA potentiates the effects of the global regulator ppGpp and the initiating NTP, controlling transcription initiation without binding to DNA. Incorporating benzoyl-phenylalanine (Bp...

  17. Emerging Pathogens Initiative (EPI)

    Data.gov (United States)

    Department of Veterans Affairs — The Emerging Pathogens Initiative (EPI) database contains emerging pathogens information from the local Veterans Affairs Medical Centers (VAMCs). The EPI software...

  18. Mutual interdependence of splicing and transcription elongation.

    Science.gov (United States)

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  19. GRIP1 Binds to ApoER2 and EphrinB2 to Induce Activity-Dependent AMPA Receptor Insertion at the Synapse

    Directory of Open Access Journals (Sweden)

    Sylvia Pfennig

    2017-10-01

    Full Text Available Regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA receptor trafficking in response to neuronal activity is critical for synaptic function and plasticity. Here, we show that neuronal activity induces the binding of ephrinB2 and ApoER2 receptors at the postsynapse to regulate de novo insertion of AMPA receptors. Mechanistically, the multi-PDZ adaptor glutamate-receptor-interacting protein 1 (GRIP1 binds ApoER2 and bridges a complex including ApoER2, ephrinB2, and AMPA receptors. Phosphorylation of ephrinB2 in a serine residue (Ser-9 is essential for the stability of such a complex. In vivo, a mutation on ephrinB2 Ser-9 in mice results in a complete disruption of the complex, absence of ApoER2 downstream signaling, and impaired activity-induced and ApoER2-mediated AMPA receptor insertion. Using compound genetics, we show the requirement of this complex for long-term potentiation (LTP. Together, our findings uncover a cooperative ephrinB2 and ApoER2 signaling at the synapse, which serves to modulate activity-dependent AMPA receptor dynamic changes during synaptic plasticity.

  20. Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade.

    Science.gov (United States)

    Bruno, Martin A; Cuello, A Claudio

    2006-04-25

    In this report, we provide direct demonstration that the neurotrophin nerve growth factor (NGF) is released in the extracellular space in an activity-dependent manner in its precursor form (proNGF) and that it is in this compartment that its maturation and degradation takes place because of the coordinated release and the action of proenzymes and enzyme regulators. This converting protease cascade and its endogenous regulators (including tissue plasminogen activator, plasminogen, neuroserpin, precursor matrix metalloproteinase 9, and tissue inhibitor metalloproteinase 1) are colocalized in neurons of the cerebral cortex and released upon neuronal stimulation. We also provide evidence that this mechanism operates in in vivo conditions, as the CNS application of inhibitors of converting and degrading enzymes lead to dramatic alterations in the tissue levels of either precursor NGF or mature NGF. Pathological alterations of this cascade in the CNS might cause or contribute to a lack of proper neuronal trophic support in conditions such as cerebral ischemia, seizure and Alzheimer's disease or, conversely, to excessive local production of neurotrophins as reported in inflammatory arthritis pain.

  1. A 1.5-to-5 V converter for a battery-powered activity-dependent intracortical microstimulation SoC.

    Science.gov (United States)

    Azin, Meysam; Mohseni, Pedram

    2012-01-01

    This paper reports on the design, analysis, implementation, and testing of a 1.5-to-5 V converter as part of a battery-powered activity-dependent intracortical microstimulation (ICMS) system-on-chip (SoC) that converts extracellular neural spikes recorded from one cortical area to electrical stimuli delivered to another cortical area in real time. The highly integrated voltage converter is intended to generate a 5-V supply for the stimulating back-end on the SoC from a miniature primary battery that powers the entire system. It is implemented in AMS 0.35 µm two-poly four-metal (2P/4M) complementary metal-oxide-semiconductor (CMOS) technology, employs only one external capacitor (1 µF) for storage, and delivers a maximum dc load current of ~88 µA with power efficiency of 31% with its output voltage adjusted to 5.05 V. This current drive capability affords simultaneous stimulation on all eight channels of the SoC with current amplitude up to ~100 µA and average stimulus rate >500 Hz, which is comfortably higher than firing rate of cortical neurons (<150 spikes per second). The measurement results also agree favorably with theoretical derivations from the analysis of converter operation.

  2. The great repression: chromatin and cryptic transcription.

    Science.gov (United States)

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  3. Interplay between DNA supercoiling and transcription elongation.

    Science.gov (United States)

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  4. 18 CFR 1b.12 - Transcripts.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  5. Transcriptional properties and splicing of the flamenco piRNA cluster.

    Science.gov (United States)

    Goriaux, Coline; Desset, Sophie; Renaud, Yoan; Vaury, Chantal; Brasset, Emilie

    2014-04-01

    In Drosophila, the piRNA cluster, flamenco, produces most of the piRNAs (PIWI-interacting RNAs) that silence transposable elements in the somatic follicle cells during oogenesis. These piRNAs are thought to be processed from a long single-stranded precursor transcript. Here, we demonstrate that flamenco transcription is initiated from an RNA polymerase II promoter containing an initiator motif (Inr) and downstream promoter element (DPE) and requires the transcription factor, Cubitus interruptus. We show that the flamenco precursor transcript undergoes differential alternative splicing to generate diverse RNA precursors that are processed to piRNAs. Our data reveal dynamic processing steps giving rise to piRNA cluster precursors.

  6. Cytokinin Signaling Activates WUSCHEL Expression during Axillary Meristem Initiation.

    Science.gov (United States)

    Wang, Jin; Tian, Caihuan; Zhang, Cui; Shi, Bihai; Cao, Xiuwei; Zhang, Tian-Qi; Zhao, Zhong; Wang, Jia-Wei; Jiao, Yuling

    2017-06-01

    The homeodomain transcription factor WUSCHEL (WUS) defines the shoot stem cell niche, but the mechanisms underlying the establishment of WUS expression remain unclear. Here, we show that cytokinin signaling precedes WUS expression in leaf axils and activates WUS expression de novo in the leaf axil to promote axillary meristem initiation. Furthermore, type-B Arabidopsis response regulator proteins, which are transcriptional activators in the cytokinin signaling pathway, directly bind to the WUS promoter and activate its expression. Finally, we show that cytokinin activation of WUS in the leaf axil correlates with increased histone acetylation and methylation markers associated with transcriptional activation, supporting the fact that WUS expression requires a permissive epigenetic environment to restrict it to highly defined meristematic tissues. Taken together, these findings explain how cytokinin regulates axillary meristem initiation and establish a mechanistic framework for the postembryonic establishment of the shoot stem cell niche. © 2017 American Society of Plant Biologists. All rights reserved.

  7. Transcriptional and post-transcriptional regulation of a NAC1 transcription factor in Medicago truncatula roots.

    Science.gov (United States)

    D'haeseleer, Katrien; Den Herder, Griet; Laffont, Carole; Plet, Julie; Mortier, Virginie; Lelandais-Brière, Christine; De Bodt, Stefanie; De Keyser, Annick; Crespi, Martin; Holsters, Marcelle; Frugier, Florian; Goormachtig, Sofie

    2011-08-01

    • Legume roots develop two types of lateral organs, lateral roots and nodules. Nodules develop as a result of a symbiotic interaction with rhizobia and provide a niche for the bacteria to fix atmospheric nitrogen for the plant. • The Arabidopsis NAC1 transcription factor is involved in lateral root formation, and is regulated post-transcriptionally by miRNA164 and by SINAT5-dependent ubiquitination. We analyzed in Medicago truncatula the role of the closest NAC1 homolog in lateral root formation and in nodulation. • MtNAC1 shows a different expression pattern in response to auxin than its Arabidopsis homolog and no changes in lateral root number or nodulation were observed in plants affected in MtNAC1 expression. In addition, no interaction was found with SINA E3 ligases, suggesting that post-translational regulation of MtNAC1 does not occur in M. truncatula. Similar to what was found in Arabidopsis, a conserved miR164 target site was retrieved in MtNAC1, which reduced protein accumulation of a GFP-miR164 sensor. Furthermore, miR164 and MtNAC1 show an overlapping expression pattern in symbiotic nodules, and overexpression of this miRNA led to a reduction in nodule number. • This work suggests that regulatory pathways controlling a conserved transcription factor are complex and divergent between M. truncatula and Arabidopsis.

  8. X chromosome inactivation is initiated in human preimplantation embryos

    NARCIS (Netherlands)

    van den Berg, Ilse M; Laven, Joop S E; Stevens, Mary; Jonkers, Iris; Galjaard, Robert-Jan; Gribnau, Joost; van Doorninck, J Hikke

    2009-01-01

    X chromosome inactivation (XCI) is the mammalian mechanism that compensates for the difference in gene dosage between XX females and XY males. Genetic and epigenetic regulatory mechanisms induce transcriptional silencing of one X chromosome in female cells. In mouse embryos, XCI is initiated at the

  9. Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor.

    Science.gov (United States)

    Park, Sunchung; Ek-Ramos, Maria Julissa; Oh, Sookyung; van Nocker, Steven

    2011-08-01

    Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function.

  10. Mechanisms of post-transcriptional gene regulation in bacterial biofilms

    Directory of Open Access Journals (Sweden)

    Viveka eVadyvaloo

    2014-03-01

    Full Text Available Abstract Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria.

  11. Transcriptional Regulation of Heart Development in Zebrafish

    Science.gov (United States)

    Lu, Fei; Langenbacher, Adam D.; Chen, Jau-Nian

    2016-01-01

    Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis. PMID:27148546

  12. Contribution of transcription to animal early development.

    Science.gov (United States)

    Wang, Jianbin; Davis, Richard E

    2014-01-01

    In mature gametes and during the oocyte-to-embryo transition, transcription is generally silenced and gene expression is post-transcriptionally regulated. However, we recently discovered that major transcription can occur immediately after fertilization, prior to pronuclear fusion, and in the first cell division of the oocyte-to-embryo transition in the nematode Ascaris suum. We postulate that the balance between transcriptional and post-transcriptional regulation during the oocyte-to-embryo transition may largely be determined by cell cycle length and thus the time available for the genome to be transcribed.

  13. Transcription factories: genetic programming in three dimensions.

    Science.gov (United States)

    Edelman, Lucas Brandon; Fraser, Peter

    2012-04-01

    Among the most intensively studied systems in molecular biology is the eukaryotic transcriptional apparatus, which expresses genes in a regulated manner across hundreds of different cell types. Several studies over the past few years have added weight to the concept that transcription takes place within discrete 'transcription factories' assembled inside the cell nucleus. These studies apply innovative technical approaches to gain insights into the molecular constituents, dynamical behaviour and organizational regulators of transcription factories, providing exciting insights into the spatial dimension of transcriptional control.

  14. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription.

    Science.gov (United States)

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin

    2014-01-01

    Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.

  15. Transcription-independent functions of MYC: regulation of translation and DNA replication

    Science.gov (United States)

    Cole, Michael D.; Cowling, Victoria H.

    2013-01-01

    MYC is a potent oncogene that drives unrestrained cell growth and proliferation. Shortly after its discovery as an oncogene, the MYC protein was recognized as a sequence-specific transcription factor. Since that time, MYC oncogene research has focused on the mechanism of MYC-induced transcription and on the identification of MYC transcriptional target genes. Recently, MYC was shown to control protein expression through mRNA translation and to directly regulate DNA replication, thus initiating exciting new areas of oncogene research. PMID:18698328

  16. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    MYBs to activate transcription of GLS biosynthetic genes. A lot is known about transcriptional regulation of these nine GLS regulators. This thesis aimed at identifying regulatory mechanisms at the protein level, allowing rapid and specific regulation of transcription factors using GLS as a model....... The general introduction and the first chapter provide background on protein level regulation and underline the importance of these mechanisms in regulating transcription factors. The remaining chapters report the identification of multiple new regulators of MYB transcription factors, potentially involved...... in their regulation at multiple steps of their activation. Plant signaling in connection with transcription factor regulation is an exciting field, allowing research on multiple regulatory mechanisms. This thesis shed light on the importance of integrating all steps of transcription factor activation in a regulatory...

  17. Transcriptional networks in leaf senescence.

    Science.gov (United States)

    Schippers, Jos H M

    2015-10-01

    Plant senescence is a natural phenomenon known for the appearance of beautiful autumn colors and the ripening of cereals in the field. Senescence is a controlled process that plants utilize to remobilize nutrients from source leaves to developing tissues. While during the past decades, molecular components underlying the onset of senescence have been intensively studied, knowledge remains scarce on the age-dependent mechanisms that control the onset of senescence. Recent advances have uncovered transcriptional networks regulating the competence to senesce. Here, gene regulatory networks acting as internal timing mechanisms for the onset of senescence are highlighted, illustrating that early and late leaf developmental phases are highly connected.

  18. Vesicular Stomatitis Virus Polymerase's Strong Affinity to Its Template Suggests Exotic Transcription Models

    Science.gov (United States)

    Tang, Xiaolin; Bendjennat, Mourad; Saffarian, Saveez

    2014-01-01

    Vesicular stomatitis virus (VSV) is the prototype for negative sense non segmented (NNS) RNA viruses which include potent human and animal pathogens such as Rabies, Ebola and measles. The polymerases of NNS RNA viruses only initiate transcription at or near the 3′ end of their genome template. We measured the dissociation constant of VSV polymerases from their whole genome template to be 20 pM. Given this low dissociation constant, initiation and sustainability of transcription becomes nontrivial. To explore possible mechanisms, we simulated the first hour of transcription using Monte Carlo methods and show that a one-time initial dissociation of all polymerases during entry is not sufficient to sustain transcription. We further show that efficient transcription requires a sliding mechanism for non-transcribing polymerases and can be realized with different polymerase-polymerase interactions and distinct template topologies. In conclusion, we highlight a model in which collisions between transcribing and sliding non-transcribing polymerases result in release of the non-transcribing polymerases allowing for redistribution of polymerases between separate templates during transcription and suggest specific experiments to further test these mechanisms. PMID:25501005

  19. The Yekaterinburg headache initiative

    DEFF Research Database (Denmark)

    Lebedeva, Elena R; Olesen, Jes; Osipova, Vera V

    2013-01-01

    for a demonstrational interventional project in Russia, undertaken within the Global Campaign against Headache. The initiative proposes three actions: 1) raise awareness of need for improvement; 2) design and implement a three-tier model (from primary care to a single highly specialized centre with academic affiliation...... of a health-care needs assessment, and as a model for all Russia. We present and discuss early progress of the initiative, justify the investment of resources required for implementation and call for the political support that full implementation requires. The more that the Yekaterinburg headache initiative...

  20. Identification of HTF (HER2 transcription factor) as an AP-2 (activator protein-2) transcription factor and contribution of the HTF binding site to ERBB2 gene overexpression.

    Science.gov (United States)

    Vernimmen, Douglas; Begon, Dominique; Salvador, Christophe; Gofflot, Stéphanie; Grooteclaes, Madeleine; Winkler, Rosita

    2003-02-15

    The ERBB2 gene is overexpressed in 30% of human breast cancers and this is correlated with poor prognosis. Overexpression of the ERBB2 gene is due to increased transcription and gene amplification. Our previous studies have identified a new cis element in the ERBB2 promoter which is involved in the gene's overexpression. This cis element, located 501 bp upstream from the main ERBB2 transcription initiation site, binds a transcription factor called HTF (HER2 transcription factor). We report here the identification of HTF as an AP-2 (activator protein-2) transcription factor. The new cis element is bound by AP-2 with high affinity, compared with a previously described AP-2 binding site located 284 bp downstream. Co-transfection of an AP-2alpha expression vector with a reporter vector containing the newly identified AP-2 binding site in front of a minimal ERBB2 promoter induced a dose-dependent increase in transcriptional activity. We examined the contribution of the new AP-2 binding site to ERBB2 overexpression. For this purpose we abolished the new and/or the previously described AP-2 binding sequence by site-directed mutagenesis. The results show that the two functional AP-2 sites in the first 700 bp of the ERBB2 promoter co-operate to achieve maximal transcriptional activity.

  1. Development of an efficient in vitro transcription system for bloodstream form Trypanosoma brucei reveals life cycle-independent functionality of class I transcription factor A.

    Science.gov (United States)

    Park, Sung Hee; Nguyen, Tu N; Günzl, Arthur

    2012-01-01

    Trypanosomatid parasites possess extremely divergent transcription factors whose identification typically relied on biochemical, structural and functional analyses because they could not be identified by standard sequence analysis. For example, subunits of the Trypanosoma brucei mediator and class I transcription factor A (CITFA) have no sequence resemblance to putative counterparts in higher eukaryotes. Therefore, homologous in vitro transcription systems have been crucial in evaluating the transcriptional roles of T. brucei proteins but so far such systems have been restricted to the insect-stage, procyclic form (PF) of the parasite. Here, we report the development of a homologous system for the mammalian-infective, bloodstream form (BF) of T. brucei which supports accurately initiated transcription from three different RNA polymerase (pol) I promoters as well as from the RNA pol II-recruiting spliced leader RNA gene promoter. The system is based on a small scale extract preparation procedure which accommodates the low cell densities obtainable in BF culture. BF and PF systems behave surprisingly similar and we show that the CITFA complex purified from procyclic extract is fully functional in the BF system indicating that the transcriptional machinery in general is equivalent in both life cycle stages. A notable difference, however, was observed with the RNA pol I-recruiting GPEET procyclin promoter whose reduced promoter strength and increased sensitivity to manganese ions in the BF system suggests the presence of a specific transcriptional activator in the PF system. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex.

    Science.gov (United States)

    Sakata, Kazuko; Woo, Newton H; Martinowich, Keri; Greene, Joshua S; Schloesser, Robert J; Shen, Liya; Lu, Bai

    2009-04-07

    Transcription of Bdnf is controlled by multiple promoters, which drive expression of multiple transcripts encoding for the same protein. Promoter IV contributes significantly to activity-dependent brain-derived neurotrophic factor (BDNF) transcription. We have generated promoter IV mutant mice (BDNF-KIV) by inserting a GFP-STOP cassette within the Bdnf exon IV locus. This genetic manipulation results in disruption of promoter IV-mediated Bdnf expression. BDNF-KIV animals exhibited significant deficits in GABAergic interneurons in the prefrontal cortex (PFC), particularly those expressing parvalbumin, a subtype implicated in executive function and schizophrenia. Moreover, disruption of promoter IV-driven Bdnf transcription impaired inhibitory but not excitatory synaptic transmission recorded from layer V pyramidal neurons in the PFC. The attenuation of GABAergic inputs resulted in an aberrant appearance of spike-timing-dependent synaptic potentiation (STDP) in PFC slices derived from BDNF-KIV, but not wild-type littermates. These results demonstrate the importance of promoter IV-dependent Bdnf transcription in GABAergic function and reveal an unexpected regulation of STDP in the PFC by BDNF.

  3. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, transcript fidelity and mitochondrial transcription factor binding.

    Science.gov (United States)

    Velazquez, Gilberto; Sousa, Rui; Brieba, Luis G

    2015-01-01

    Single subunit RNA polymerases have evolved 2 mechanisms to synthesize long transcripts without falling off a DNA template: binding of nascent RNA and interactions with an RNA:DNA hybrid. Mitochondrial RNA polymerases share a common ancestor with T-odd bacteriophage single subunit RNA polymerases. Herein we characterized the role of the thumb subdomain of the yeast mtRNA polymerase gene (RPO41) in complex stability, processivity, and fidelity. We found that deletion and point mutants of the thumb subdomain of yeast mtRNA polymerase increase the synthesis of abortive transcripts and the probability that the polymerase will disengage from the template during the formation of the late initial transcription and elongation complexes. Mutations in the thumb subdomain increase the amount of slippage products from a homopolymeric template and, unexpectedly, thumb subdomain deletions decrease the binding affinity for mitochondrial transcription factor (Mtf1). The latter suggests that the thumb subdomain is part of an extended binding surface area involved in binding Mtf1.

  4. Experimental characterization of Cis-acting elements important for translation and transcription in halophilic archaea.

    Directory of Open Access Journals (Sweden)

    Mariam Brenneis

    2007-12-01

    Full Text Available The basal transcription apparatus of archaea is well characterized. However, much less is known about the mechanisms of transcription termination and translation initation. Recently, experimental determination of the 5'-ends of ten transcripts from Pyrobaculum aerophilum revealed that these are devoid of a 5'-UTR. Bioinformatic analysis indicated that many transcripts of other archaeal species might also be leaderless. The 5'-ends and 3'-ends of 40 transcripts of two haloarchaeal species, Halobacterium salinarum and Haloferax volcanii, have been determined. They were used to characterize the lengths of 5'-UTRs and 3'-UTRs and to deduce consensus sequence-elements for transcription and translation. The experimental approach was complemented with a bioinformatics analysis of the H. salinarum genome sequence. Furthermore, the influence of selected 5'-UTRs and 3'-UTRs on transcript stability and translational efficiency in vivo was characterized using a newly established reporter gene system, gene fusions, and real-time PCR. Consensus sequences for basal promoter elements could be refined and a novel element was discovered. A consensus motif probably important for transcriptional termination was established. All 40 haloarchaeal transcripts analyzed had a 3'-UTR (average size 57 nt, and their 3'-ends were not posttranscriptionally modified. Experimental data and genome analyses revealed that the majority of haloarchaeal transcripts are leaderless, indicating that this is the predominant mode for translation initiation in haloarchaea. Surprisingly, the 5'-UTRs of most leadered transcripts did not contain a Shine-Dalgarno (SD sequence. A genome analysis indicated that less than 10% of all genes are preceded by a SD sequence and even most proximal genes in operons lack a SD sequence. Seven different leadered transcripts devoid of a SD sequence were efficiently translated in vivo, including artificial 5'-UTRs of random sequences. Thus, an interaction of

  5. Promoter recognition by a cyanobacterial RNA polymerase: in vitro studies with the Calothrix sp. PCC 7601 transcriptional factors RcaA and RcaD.

    Science.gov (United States)

    Schyns, G; Jia, L; Coursin, T; Tandeau de Marsac, N; Houmard, J

    1998-03-01

    To study the transcriptional apparatus and the mechanisms that control gene expression in cyanobacteria, the RNA polymerase was purified from the filamentous Calothrix sp. PCC 7601 and used in in vitro transcription assays. Conditions required for specific transcription initiation to occur were analyzed with the eleven Calothrix PCC 7601 genes for which the 5' ends have been mapped. Most of the transcripts directly obtained did not have the expected size, providing a test for looking at specific transcription factors. Addition of RcaA, a protein that binds to the promoter region of the phycobiliprotein cpeBA operon, restored accurate initiation of transcription in the in vitro system for three phycobiliprotein promoters. RcaA thus is a transcription factor that allows to mimick in vivo transcription. In parallel, the functional properties of the Escherichia coli and cyanobacterial RNA polymerases were compared. The enteric enzyme could not precisely initiate transcription at the promoter of a phycobiliprotein gene and, reciprocally, the cyanobacterial RNA polymerase could initiate transcription at PlacUV5, but not from wild-type Plac promoters. The different behaviours of the enzymes are discussed in the light of the structural differences that exist between subunits of the RNA polymerases.

  6. RAS Initiative - Events

    Science.gov (United States)

    The NCI RAS Initiative has organized multiple events with outside experts to discuss how the latest scientific and technological breakthroughs can be applied to discover vulnerabilities in RAS-driven cancers.

  7. Prairie Reconstruction Initiative

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Prairie Reconstruction Initiative Advisory Team (PRIAT) is to identify and take steps to resolve uncertainties in the process of prairie...

  8. Nursing Home Quality Initiative

    Data.gov (United States)

    U.S. Department of Health & Human Services — This Nursing Home Quality Initiative (NHQI) website provides consumer and provider information regarding the quality of care in nursing homes. NHQI discusses quality...

  9. Nursing Home Quality Initiative

    Data.gov (United States)

    U.S. Department of Health & Human Services — This Nursing Home Quality Initiative (NHQI) website provides consumer and provider information regarding the quality of care in nursing homes. NHQI discusses...

  10. RAS Initiative - Community Outreach

    Science.gov (United States)

    Through community and technical collaborations, workshops and symposia, and the distribution of reference reagents, the RAS Initiative seeks to increase the sharing of knowledge and resources essential to defeating cancers caused by mutant RAS genes.

  11. Surgical Critical Care Initiative

    Data.gov (United States)

    Federal Laboratory Consortium — The Surgical Critical Care Initiative (SC2i) is a USU research program established in October 2013 to develop, translate, and validate biology-driven critical care....

  12. Prairie Reconstruction Initiative Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Prairie Reconstruction Initiative Advisory Team (PRIAT) is to identify and take steps to resolve uncertainties in the process of prairie...

  13. Quality Initiatives - General Information

    Data.gov (United States)

    U.S. Department of Health & Human Services — CMS has developed a standardized approach for the development of quality measures that it uses in its quality initiatives. Known as the Measures Management System...

  14. The transcriptional regulation of pluripotency

    Institute of Scientific and Technical Information of China (English)

    Jia-Chi Yeo; Huck-Hui Ng

    2013-01-01

    The defining features of embryonic stem cells (ESCs) are their self-renewing and pluripotent capacities.Indeed,the ability to give rise into all cell types within the organism not only allows ESCs to function as an ideal in vitro tool to study embryonic development,but also offers great therapeutic potential within the field of regenerative medicine.However,it is also this same remarkable developmental plasticity that makes the efficient control of ESC differentiation into the desired cell type very difficult.Therefore,in order to harness ESCs for clinical applications,a detailed understanding of the molecular and cellular mechanisms controlling ESC pluripotency and lineage commitment is necessary.In this respect,through a variety of transcriptomic approaches,ESC pluripotency has been found to be regulated by a system of ESC-associated transcription factors; and the external signalling environment also acts as a key factor in modulating the ESC transcriptome.Here in this review,we summarize our current understanding of the transcriptional regulatory network in ESCs,discuss how the control of various signalling pathways could influence pluripotency,and provide a future outlook of ESC research.

  15. Software Architecture Technology Initiative

    Science.gov (United States)

    2008-04-01

    2008 Carnegie Mellon University 2008 PLS March 2008 © 2008 Carnegie Mellon University Software Architecture Technology Initiative SATURN 2008...SUBTITLE Software Architecture Technology Initiative 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...SUPPLEMENTARY NOTES presented at the SEI Software Architecture Technology User Network (SATURN) Workshop, 30 Apr ? 1 May 2008, Pittsburgh, PA. 14

  16. Initial Public Offering

    OpenAIRE

    Veselý, Marek

    2009-01-01

    Thesis describes initial public offering on the stock markets. There are mentioned basic phases of this process. In this thesis is named pros & cons of this source of financing. Recommends also other ways how to gain capital for own company business acitivities. Thesis is interested about main conditions for successfull "going public". Initial Public Offering of bonds is described too. Practical part of this thesis is concern IPO in the Czech Republic -- historical data, IPO in the past on Pr...

  17. RNA Pol II promotes transcription of centromeric satellite DNA in beetles.

    Directory of Open Access Journals (Sweden)

    Zeljka Pezer

    Full Text Available Transcripts of centromeric satellite DNAs are known to play a role in heterochromatin formation as well as in establishment of the kinetochore. However, little is known about basic mechanisms of satellite DNA expression within constitutive heterochromatin and its regulation. Here we present comprehensive analysis of transcription of abundant centromeric satellite DNA, PRAT from beetle Palorus ratzeburgii (Coleoptera. This satellite is characterized by preservation and extreme sequence conservation among evolutionarily distant insect species. PRAT is expressed in all three developmental stages: larvae, pupae and adults at similar level. Transcripts are abundant comprising 0.033% of total RNA and are heterogeneous in size ranging from 0.5 kb up to more than 5 kb. Transcription proceeds from both strands but with 10 fold different expression intensity and transcripts are not processed into siRNAs. Most of the transcripts (80% are not polyadenylated and remain in the nucleus while a small portion is exported to the cytoplasm. Multiple, irregularly distributed transcription initiation sites as well as termination sites have been mapped within the PRAT sequence using primer extension and RLM-RACE. The presence of cap structure as well as poly(A tails in a portion of the transcripts indicate RNA polymerase II-dependent transcription and a putative polymerase II promoter site overlaps the most conserved part of the PRAT sequence. The treatment of larvae with alpha-amanitin decreases the level of PRAT transcripts at concentrations that selectively inhibit pol II activity. In conclusion, stable, RNA polymerase II dependant transcripts of abundant centromeric satellite DNA, not regulated by RNAi, have been identified and characterized. This study offers a basic understanding of expression of highly abundant heterochromatic DNA which in beetle species constitutes up to 50% of the genome.

  18. Expression liver-directed genes by employing synthetic transcriptional control units

    Institute of Scientific and Technical Information of China (English)

    Marie-Luise Lemken; Wolfgang A. Wybranietz; Ulrike Schmidt; Florian Graepler; Sorin Armeanu; Michael Bitzer; Ulrich M. Lauer

    2005-01-01

    AIM: To generate and characterize the synthetic transcriptional control units for transcriptional targeting of the liver,thereby compensating for the lack of specificity of currently available gene therapeutic vector systems.METHODS: Synthetic transcriptional control unit constructs were generated and analyzed for transcriptional activities in different cell types by FACS quantification, semi-quantitative RT-PCR, and Western blotting. RESULTS: A new bifunctionally-enhanced green fluorescent protein (EGFP)/neor fusion gene cassette was generated,and could flexibly be used both for transcript quantification and for selection of stable cell clones. Then, numerous synthetic transcriptional control units consisting of a minimal promoter linked to "naturally" derived composite enhancer elements from liver-specific expressed genes or binding sites of liver-specific transcription factors were inserted upstream of this reporter cassette. Following liposome-mediated transfection, EGFP reporter protein quantification by FACS analysis identified constructs encoding multimerized composite elements of the apolipoprotein B100 (ApoB) promoter or the ornithin transcarbamoylase (OTC) enhancer to exhibit maximum transcriptional activities in liver originating cell lines, but only background levels in non-liver originating cell lines. In contrast, constructs encoding only singular binding sites of liver-specific transcription factors, namely hepatocyte nuclear factor (HNF)1, HNF3, HNF4, HNF5, or CAAT/enhancer binding protein (C/EBP) only achieved background levels of EGFP expression. Finally, both semi-quantitative RT-PCR and Western blotting analysis of Hep3B cells demonstrated maximum transcriptional activities for a multimeric 4xApoB cassette construct, which fully complied with the data obtained by initial FACS analysis.CONCLUSION: Synthetic transcriptional control unit constructs not only exhibit a superb degree of structural compactness, but also provide new means for liver

  19. Stochastic sequence-level model of coupled transcription and translation in prokaryotes

    Directory of Open Access Journals (Sweden)

    Yli-Harja Olli

    2011-04-01

    Full Text Available Abstract Background In prokaryotes, transcription and translation are dynamically coupled, as the latter starts before the former is complete. Also, from one transcript, several translation events occur in parallel. To study how events in transcription elongation affect translation elongation and fluctuations in protein levels, we propose a delayed stochastic model of prokaryotic transcription and translation at the nucleotide and codon level that includes the promoter open complex formation and alternative pathways to elongation, namely pausing, arrests, editing, pyrophosphorolysis, RNA polymerase traffic, and premature termination. Stepwise translation can start after the ribosome binding site is formed and accounts for variable codon translation rates, ribosome traffic, back-translocation, drop-off, and trans-translation. Results First, we show that the model accurately matches measurements of sequence-dependent translation elongation dynamics. Next, we characterize the degree of coupling between fluctuations in RNA and protein levels, and its dependence on the rates of transcription and translation initiation. Finally, modeling sequence-specific transcriptional pauses, we find that these affect protein noise levels. Conclusions For parameter values within realistic intervals, transcription and translation are found to be tightly coupled in Escherichia coli, as the noise in protein levels is mostly determined by the underlying noise in RNA levels. Sequence-dependent events in transcription elongation, e.g. pauses, are found to cause tangible effects in the degree of fluctuations in protein levels.

  20. Stochastic sequence-level model of coupled transcription and translation in prokaryotes.

    Science.gov (United States)

    Mäkelä, Jarno; Lloyd-Price, Jason; Yli-Harja, Olli; Ribeiro, Andre S

    2011-04-26

    In prokaryotes, transcription and translation are dynamically coupled, as the latter starts before the former is complete. Also, from one transcript, several translation events occur in parallel. To study how events in transcription elongation affect translation elongation and fluctuations in protein levels, we propose a delayed stochastic model of prokaryotic transcription and translation at the nucleotide and codon level that includes the promoter open complex formation and alternative pathways to elongation, namely pausing, arrests, editing, pyrophosphorolysis, RNA polymerase traffic, and premature termination. Stepwise translation can start after the ribosome binding site is formed and accounts for variable codon translation rates, ribosome traffic, back-translocation, drop-off, and trans-translation. First, we show that the model accurately matches measurements of sequence-dependent translation elongation dynamics. Next, we characterize the degree of coupling between fluctuations in RNA and protein levels, and its dependence on the rates of transcription and translation initiation. Finally, modeling sequence-specific transcriptional pauses, we find that these affect protein noise levels. For parameter values within realistic intervals, transcription and translation are found to be tightly coupled in Escherichia coli, as the noise in protein levels is mostly determined by the underlying noise in RNA levels. Sequence-dependent events in transcription elongation, e.g. pauses, are found to cause tangible effects in the degree of fluctuations in protein levels.