WorldWideScience

Sample records for activator up-regulation reduces

  1. Activation of PPAR-γ reduces HPA axis activity in diabetic rats by up-regulating PI3K expression.

    Torres, Rafael Carvalho; Magalhães, Nathalia Santos; E Silva, Patrícia M R; Martins, Marco A; Carvalho, Vinicius F

    2016-10-01

    Increased hypothalamus-pituitary-adrenal axis (HPA) activity in diabetes is strongly associated with several morbidities noted in patients with the disease. We previously demonstrated that hyperactivity of HPA axis under diabetic conditions is associated with up-regulation of adrenocorticotrophic hormone (ACTH) receptors (MC2R) in adrenal and down-regulation of glucocorticoid receptors (GR and MR) in pituitary. This study investigates the role of peroxisome proliferator-activated receptor (PPAR)-γ in HPA axis hyperactivity in diabetic rats. Diabetes was induced by intravenous injection of alloxan into fasted rats. The PPAR-γ agonist rosiglitazone and/or PI3K inhibitor wortmannin were administered daily for 18 consecutive days, starting 3days after diabetes induction. Plasma ACTH and corticosterone were evaluated by radioimmunoassay, while intensities of MC2R, proopiomelanocortin (POMC), GR, MR, PI3K p110α and PPAR-γ were assessed using immunohistochemistry. Rosiglitazone treatment inhibited adrenal hypertrophy and hypercorticoidism observed in diabetic rats. Rosiglitazone also significantly reversed the diabetes-induced increase in the MC2R expression in adrenal cortex. We noted that rosiglitazone reduced the number of corticotroph cells and inhibited both anterior pituitary POMC expression and plasma ACTH levels. Furthermore, rosiglitazone treatment was unable to restore the reduced expression of GR and MR in the anterior pituitary of diabetic rats. Rosiglitazone increased the number of PPAR-γ(+) cells and expression of PI3K p110α in both anterior pituitary and adrenal cortex of diabetic rats. In addition, wortmannin blocked the ability of rosiglitazone to restore corticotroph cell numbers, adrenal hypertrophy and plasma corticosterone levels in diabetic rats. In conclusion, our findings revealed that rosiglitazone down-regulates HPA axis hyperactivity in diabetic rats via a mechanism dependent on PI3K activation in pituitary and adrenal glands.

  2. Activation of PPAR{delta} up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic {beta}-cells

    Wan, Jun; Jiang, Li; Lue, Qingguo; Ke, Linqiu [Department of Endocrinology, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041 (China); Tong, Nanwei, E-mail: buddyjun@hotmail.com [Department of Endocrinology, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041 (China)

    2010-01-15

    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor {delta} (PPAR{delta}) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic {beta}-cells. After HIT-T15 cells (a {beta}-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPAR{delta}), we found that administration of GW increased the expression of PPAR{delta} mRNA. GW-induced activation of PPAR{delta} up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4 (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPAR{delta} plays an important role in protecting pancreatic {beta}-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.

  3. Maggot debridement therapy promotes diabetic foot wound healing by up-regulating endothelial cell activity.

    Sun, Xinjuan; Chen, Jin'an; Zhang, Jie; Wang, Wei; Sun, Jinshan; Wang, Aiping

    2016-03-01

    To determine the role of maggot debridement therapy (MDT) on diabetic foot wound healing, we compared growth related factors in wounds before and after treatment. Furthermore, we utilized human umbilical vein endothelial cells (HUVECs) to explore responses to maggot excretions/secretions on markers of angiogenesis and proliferation. The results showed that there was neo-granulation and angiogenesis in diabetic foot wounds after MDT. Moreover, significant elevation in CD34 and CD68 levels was also observed in treated wounds. In vitro, ES increased HUVEC proliferation, improved tube formation, and increased expression of vascular endothelial growth factor receptor 2 in a dose dependent manner. These results demonstrate that MDT and maggot ES can promote diabetic foot wound healing by up-regulating endothelial cell activity.

  4. Corticosteroids reduce IL-6 in ASM cells via up-regulation of MKP-1.

    Quante, Timo; Ng, Yee Ching; Ramsay, Emma E; Henness, Sheridan; Allen, Jodi C; Parmentier, Johannes; Ge, Qi; Ammit, Alaina J

    2008-08-01

    The mechanisms by which corticosteroids reduce airway inflammation are not completely understood. Traditionally, corticosteroids were thought to inhibit cytokines exclusively at the transcriptional level. Our recent evidence, obtained in airway smooth muscle (ASM), no longer supports this view. We have found that corticosteroids do not act at the transcriptional level to reduce TNF-alpha-induced IL-6 gene expression. Rather, corticosteroids inhibit TNF-alpha-induced IL-6 secretion by reducing the stability of the IL-6 mRNA transcript. TNF-alpha-induced IL-6 mRNA decays at a significantly faster rate in ASM cells pretreated with the corticosteroid dexamethasone (t(1/2) = 2.4 h), compared to vehicle (t(1/2) = 9.0 h; P ASM cells.

  5. HBXIP up-regulates ACSL1 through activating transcriptional factor Sp1 in breast cancer.

    Wang, Yue; Cai, Xiaoli; Zhang, Shuqin; Cui, Ming; Liu, Fabao; Sun, Baodi; Zhang, Weiying; Zhang, Xiaodong; Ye, Lihong

    2017-03-11

    The oncoprotein hepatitis B X-interacting protein (HBXIP) results in the dysregulation of lipid metabolism to enhance the development of breast cancer. Acyl-CoA synthetase long-chain family member 1 (ACSL1) is required for thioesterification of long-chain fatty acids into their acyl-CoA derivatives. In this study, we present a hypothesis that HBXIP might be involved in the regulation of ACSL1 in breast cancer. Interestingly, we found that the overexpression of HBXIP was able to up-regulate ACSL1 at the levels of mRNA and protein in a dose-dependent manner in breast cancer cells. Conversely, silencing of HBXIP led to the opposite results. Mechanistically, HBXIP as a coactivator interacted with transcriptional factor Sp1 through binding to the promoter of ACSL1 by ChIP assays analysis, leading to the transcription of ACSL1 in breast cancer cells. Immunohistochemistry staining revealed that the positive rate of ACSL1 was 71.4% (35/49) in clinical breast cancer tissues, HBXIP 79.6% (39/49), in which the positive rate of ACSL1 was 76.9% (30/39) in the HBXIP-positive specimens. But, few positive rate of ACSL1 10% (1/10) was observed in normal breast tissues. The mRNA levels of ACSL1 were significantly higher in clinical breast cancer tissues than those in their corresponding peritumor tissues. The mRNA levels of ACSL1 were positively associated with those of HBXIP in clinical breast cancer tissues. Thus, we conclude that the oncoprotein HBXIP is able to up-regulate ACSL1 through activating the transcriptional factor Sp1 in breast cancer.

  6. Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB.

    Wei-Chun Huang

    Full Text Available Remodelling of the extracellular matrix (ECM and cell surface by matrix metalloproteinases (MMPs is an important function of monocytes and macrophages. Recent work has emphasised the diverse roles of classically and alternatively activated macrophages but the consequent regulation of MMPs and their inhibitors has not been studied comprehensively. Classical activation of macrophages derived in vitro from un-fractionated CD16(+/- or negatively-selected CD16(- macrophages up-regulated MMP-1, -3, -7, -10, -12, -14 and -25 and decreased TIMP-3 steady-state mRNA levels. Bacterial lipopolysaccharide, IL-1 and TNFα were more effective than interferonγ except for the effects on MMP-25, and TIMP-3. By contrast, alternative activation decreased MMP-2, -8 and -19 but increased MMP -11, -12, -25 and TIMP-3 steady-state mRNA levels. Up-regulation of MMPs during classical activation depended on mitogen activated protein kinases, phosphoinositide-3-kinase and inhibitor of κB kinase-2. Effects of interferonγ depended on janus kinase-2. Where investigated, similar effects were seen on protein concentrations and collagenase activity. Moreover, activity of MMP-1 and -10 co-localised with markers of classical activation in human atherosclerotic plaques in vivo. In conclusion, classical macrophage activation selectively up-regulates several MMPs in vitro and in vivo and down-regulates TIMP-3, whereas alternative activation up-regulates a distinct group of MMPs and TIMP-3. The signalling pathways defined here suggest targets for selective modulation of MMP activity.

  7. Up-regulated production and activation of the complement system in Alzheimer's disease brain.

    Yasojima, K; Schwab, C; McGeer, E G; McGeer, P L

    1999-03-01

    We used reverse transcriptase-polymerase chain reaction and Western blotting techniques to measure the levels of complement mRNAs and their protein products in Alzheimer's disease (AD) brain compared with non-AD brain. mRNAs for C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9 were detected in the 11 regions of brain that were investigated. The mRNA levels were markedly up-regulated in affected areas of AD brain. In the entorhinal cortex, hippocampus, and midtemporal gyrus, which had dense accumulations of plaques and tangles, C1q mRNA was increased 11- to 80-fold over control levels, and C9 mRNA 10- to 27-fold. These levels were substantially higher than in the livers of the same cases. Western blot analysis of AD hippocampus established the presence of all of the native complement proteins as well as their activation products C4d, C3d, and the membrane attack complex. These data indicate that high levels of complement are being produced in affected areas of AD brain, that full activation of the classical complement pathway is continuously taking place, and that this activation may be contributing significantly to AD pathology.

  8. Up-Regulated Production and Activation of the Complement System in Alzheimer’s Disease Brain

    Yasojima, Koji; Schwab, Claudia; McGeer, Edith G.; McGeer, Patrick L.

    1999-01-01

    We used reverse transcriptase-polymerase chain reaction and Western blotting techniques to measure the levels of complement mRNAs and their protein products in Alzheimer’s disease (AD) brain compared with non-AD brain. mRNAs for C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9 were detected in the 11 regions of brain that were investigated. The mRNA levels were markedly up-regulated in affected areas of AD brain. In the entorhinal cortex, hippocampus, and midtemporal gyrus, which had dense a...

  9. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2.

    de Jong, Olivier G; van Balkom, Bas W M; Gremmels, Hendrik; Verhaar, Marianne C

    2016-02-01

    Exosomes are important mediators of intercellular communication. Additionally, they contain a variety of components capable of interacting with the extracellular matrix (ECM), including integrins, matrix metalloproteinases and members of the immunoglobin superfamily. Despite these observations, research on exosome-ECM interactions is limited. Here, we investigate whether the exosome-associated lysyl oxidase family member lysyl oxidase-like 2 (LOXL2) is involved in ECM remodelling. We found that LOXL2 is present on the exterior of endothelial cell (EC)-derived exosomes, placing it in direct vicinity of the ECM. It is up-regulated twofold in EC-derived exosomes cultured under hypoxic conditions. Intact exosomes from hypoxic EC and LOXL2 overexpressing EC show increased activity in a fluorometric lysyl oxidase enzymatic activity assay as well as in a collagen gel contraction assay. Concordantly, knockdown of LOXL2 in exosome-producing EC in both normal and hypoxic conditions reduces activity of exosomes in both assays. Our findings show for the first time that ECM crosslinking by EC-derived exosomes is mediated by LOXL2 under the regulation of hypoxia, and implicate a role for exosomes in hypoxia-regulated focal ECM remodelling, a key process in both fibrosis and wound healing.

  10. Berberine exerts anti-adipogenic activity through up-regulation of C/EBP inhibitors, CHOP and DEC2.

    Pham, Truc P T; Kwon, Jeongho; Shin, Jaekyoon

    2011-09-23

    Berberine exerts an anti-adipogenic activity that is associated with the down-regulation of C/EBPα and PPARγ. Stimulation of AMP-activated kinase (AMPK) caused by inhibition of mitochondrial respiration has been suggested to underlie such molecular regulation. In the present study, we show that berberine up-regulated the expression of two different sets of C/EBP inhibitors, CHOP and DEC2, while down-modulating C/EBPα, PPARγ and other adipogenic markers and effectors in differentiating 3T3-L1 preadipocytes and mature adipocytes. Data also suggested that the berberine-induced up-regulation of CHOP and DEC2 was attributable to selective activation of an unfolded protein response (UPR) and modified extracellular environment, respectively. As a result, the anti-adipogenic activity of berberine was diminished remarkably by adjusting the differentiation culture media and limitedly but consistently by knockdown of CHOP expression. Together, up-regulation of C/EBP inhibitors appears to underlie the berberine-induced repression of C/EBPα and PPARγ and, so, the inhibition of adipogenesis.

  11. Acute morphine activates satellite glial cells and up-regulates IL-1β in dorsal root ganglia in mice via matrix metalloprotease-9

    Berta Temugin

    2012-03-01

    Full Text Available Abstract Background Activation of spinal cord glial cells such as microglia and astrocytes has been shown to regulate chronic opioid-induced antinociceptive tolerance and hyperalgesia, due to spinal up-regulation of the proinflammatory cytokines such as interleukin-1 beta (IL-1β. Matrix metalloprotease-9 (MMP-9 has been implicated in IL-1β activation in neuropathic pain. However, it is unclear whether acute opioid treatment can activate glial cells in the peripheral nervous system. We examined acute morphine-induced activation of satellite glial cells (SGCs and up-regulation of IL-1β in dorsal root ganglia (DRGs, and further investigated the involvement of MMP-9 in these opioid-induced peripheral changes. Results Subcutaneous morphine injection (10 mg/kg induced robust peripheral glial responses, as evidenced by increased GFAP expression in DRGs but not in spinal cords. The acute morphine-induced GFAP expression is transient, peaking at 2 h and declining after 3 h. Acute morphine treatment also increased IL-1β immunoreactivity in SGCs and IL-1β activation in DRGs. MMP-9 and GFAP are expressed in DRG neurons and SGCs, respectively. Confocal analysis revealed a close proximity of MMP-9 and GFAP immunostaining. Importantly, morphine-induced DRG up-regulation of GFAP expression and IL-1β activation was abolished after Mmp9 deletion or naloxone pre-treatment. Finally, intrathecal injections of IL-1β-selective siRNA not only reduced DRG IL-1β expression but also prolonged acute morphine-induced analgesia. Conclusions Acute morphine induces opioid receptors- and MMP-9-dependent up-regulation of GFAP expression and IL-1β activation in SGCs of DRGs. MMP-9 could mask and shorten morphine analgesia via peripheral neuron-glial interactions. Targeting peripheral glial activation might prolong acute opioid analgesia.

  12. Up-Regulation of Hepatic Alpha-2-HS-Glycoprotein Transcription by Testosterone via Androgen Receptor Activation

    Jakob Voelkl

    2014-06-01

    Full Text Available Background/Aims: Fetuin-A (alpha-2-HS-glycoprotein, AHSG, a liver borne plasma protein, contributes to the prevention of soft tissue calcification, modulates inflammation, reduces insulin sensitivity and fosters weight gain following high fat diet or ageing. In polycystic ovary syndrome, fetuin-A levels correlate with free androgen levels, an observation pointing to androgen sensitivity of fetuin-A expression. The present study thus explored whether the expression of hepatic fetuin-A is modified by testosterone. Methods: HepG2 cells were treated with testosterone and androgen receptor antagonist flutamide, and were silenced with androgen receptor siRNA. To test the in vivo relevance, male mice were subjected to androgen deprivation therapy (ADT for 7 weeks. AHSG mRNA levels were determined by quantitative RT-PCR and fetuin-A protein abundance by Western blotting. Results: In HepG2 cells, AHSG mRNA expression and fetuin-A protein abundance were both up-regulated following testosterone treatment. The human alpha-2-HS-glycoprotein gene harbors putative androgen receptor response elements in the proximal 5 kb promoter sequence relative to TSS. The effect of testosterone on AHSG mRNA levels was abrogated by silencing of the androgen receptor in HepG2 cells. Moreover, treatment of HepG2 cells with the androgen receptor antagonist flutamide in presence of endogenous ligands in the medium significantly down-regulated AHSG mRNA expression and fetuin-A protein abundance. In addition, ADT of male mice was followed by a significant decrease of hepatic Ahsg mRNA expression and fetuin-A protein levels. Conclusions: Testosterone participates in the regulation of hepatic fetuin-A expression, an effect mediated, at least partially, by androgen receptor activation.

  13. TGEV infection up-regulates FcRn expression via activation of NF-κB signaling.

    Guo, Jinyue; Li, Fei; Qian, Shaoju; Bi, Dingren; He, Qigai; Jin, Hui; Luo, Rui; Li, Shaowen; Meng, Xianrong; Li, Zili

    2016-08-24

    It has been well characterized that the neonatal Fc receptor (FcRn) transports maternal IgG to a fetus or newborn and protects IgG from degradation. We previously reported that FcRn is expressed in a model of normal porcine intestinal epithelial cells (IPEC-J2). Transmissible gastroenteritis is an acute enteric disease of swine that is caused by transmissible gastroenteritis virus (TGEV). How porcine FcRn (pFcRn) expression is regulated by pathogenic infection remains unknown. Our research shows that IPEC-J2 cells infected with TGEV had up-regulated pFcRn expression. In addition, the NF-κB signaling pathway was activated in IPEC-J2 cells by TGEV infection. Furthermore, treatment of TGEV-infected IPEC-J2 cells with the NF-κB-specific inhibitor BAY 11-7082 resulted in down-regulation of pFcRn expression. Transient transfection of pFcRn promoter luciferase report plasmids with overexpression of NF-κB p65 transcription factor enhanced the activation of the luciferase report plasmids. We identified four NF-κB transcription factor binding sites in the promoter region of this gene using luciferase reporter system, chromatin immunoprecipitation, electromobility shift assay, and supershift analysis. Together, the data provide the first evidence that TGEV infection up-regulates pFcRn expression via activation of NF-κB signaling.

  14. Interleukin 27 is up-regulated in patients with active inflammatory bowel disease.

    Furuzawa Carballeda, Janette; Fonseca Camarillo, Gabriela; Yamamoto-Furusho, Jesús K

    2016-08-01

    The aim of the study was to characterize and quantify tissue gene and protein expression of IL-27 in ulcerative colitis (UC) and Crohn's disease (CD) patients. This is an observational and cross-sectional study. Fifty-four patients with IBD were studied: 27 active UC, 12 inactive UC, 10 active CD, and 5 inactive CD. All patients belonged to the Inflammatory Bowel Disease Clinic at the Instituto Nacional de Ciencias Médicas y Nutrición. We found that IL-27 gene expression was significantly higher in active UC versus inactive UC group (P = 0.015). The IL-27 mRNA expression was increased in patients with active CD compared with inactive CD disease (P = 0.035). The percentage of IL-27 immunoreactive cells was higher in active UC versus active CD patients and non-inflamed tissue controls. The IL-27 was significantly elevated in active UC and CD patients, and it was associated with disease severity.

  15. Dietary methimazole-induced hypothyroidism reduces hepatic lipid deposition by down-regulating lipogenesis and up-regulating lipolysis in Pelteobagrus fulvidraco.

    Chen, Qi-Liang; Luo, Zhi; Shi, Xi; Wu, Kun; Zhuo, Mei-Qin; Song, Yu-Feng; Hu, Wei

    2015-01-01

    The present study was conducted to investigate the effects and mechanisms of hypothyroidism, induced by administration of 0.2% methimazole through the food, on lipid metabolism in the liver of juvenile yellow catfish Pelteobagrus fulvidraco. To this end, yellow catfish were fed diets containing either 0 or 2g methimazole per kg of diet for 8weeks, respectively. The results showed that fish fed diet containing methimazole had a significant reduction in growth performance, plasma THs levels and hepatic lipid content. Meanwhile, methimazole treatment inhibited the activities of lipogenic enzymes (6-phosphogluconate dehydrogenase, glucose 6-phosphate dehydrogenase, malic enzyme, isocitrate dehydrogenase and fatty acid synthase) and the mRNA levels of genes involved in lipogenesis (6-phosphogluconate dehydrogenase, glucose 6-phosphate dehydrogenase, fatty acid synthase, acetyl-CoA carboxylase α, sterol-regulator element-binding protein-1 and liver X receptor), but increased lipolytic enzyme (carnitine palmitoyltransferase 1) activity and the expression of genes involved in lipolysis (carnitine palmitoyltransferase 1a, hormone-sensitive lipase and peroxisome proliferators-activated receptor α). Thus, our study indicated that dietary methimazole-induced hypothyroidism could disturb the normal processes of lipid metabolism at the enzymatic and molecular levels in yellow catfish, and the reduced hepatic lipid content by hypothyroidism was attributable to the down-regulation of lipogenesis and up-regulation of lipolysis.

  16. UCP2 up-regulation within the course of autoimmune encephalomyelitis correlates with T-lymphocyte activation.

    Smorodchenko, Alina; Schneider, Stephanie; Rupprecht, Anne; Hilse, Karoline; Sasgary, Soleman; Zeitz, Ute; Erben, Reinhold G; Pohl, Elena E

    2017-04-01

    Multiple sclerosis (MS) is an inflammatory demyelinating autoimmune disorder of the central nervous system (CNS) associated with severe neurological disability. Reactive oxygen species (ROS) and mitochondrial dysfunction play a pivotal role in the pathogenesis of this disease. Several members of the mitochondrial uncoupling protein subfamily (UCP2-UCP5) were suggested to regulate ROS by diminishing the mitochondrial membrane potential and constitute therefore a promising pharmacological target for MS. To evaluate the role of different uncoupling proteins in neuroinflammation, we have investigated their expression patterns in murine brain and spinal cord (SC) during different stages of experimental autoimmune encephalomyelitis (EAE), an animal model for MS. At mRNA and protein levels we found that only UCP2 is up-regulated in the SC, but not in brain. The increase in UCP2 expression was antigen-independent, reached its maximum between 14 and 21days in both OVA and MOG immunized animals and correlated with an augmented number of CD3(+) T-lymphocytes in SC parenchyma. The decrease in abundance of UCP4 was due to neuronal injury and was only detected in CNS of MOG-induced EAE animals. The results provide evidence that the involvement of mitochondrial UCP2 in CNS inflammation during EAE may be mainly explained by the invasion of activated T-lymphocytes. This conclusion coincides with our previous observation that UCP2 is up-regulated in activated and rapidly proliferating T-cells and participates in fast metabolic re-programming of cells during proliferation.

  17. Up-regulation of glutamine synthesis in microglia activated with endotoxin.

    Nakajima, Kazuyuki; Kanamatsu, Tomoyuki; Takezawa, Yosuke; Kohsaka, Shinichi

    2015-03-30

    We previously verified that newborn rat brain-derived microglia have the ability to uptake (14)C-glutamate (Glu) through glutamate transporter-1. A given amount of Glu incorporated into microglia was suspected to be metabolized to glutamine (Gln). However, the ability of microglia to do this had not been demonstrated. Thus, in the present study we examined the possibility that primary rat microglia metabolize Glu into Gln. Immunocytochemical and immunoblotting studies indicated that the microglia express glutamine synthetase (GS) protein. As expected from these results, GS activity was actually detected in microglia, although the specific activity was lower than that of astrocytes. Considering this microglial property, it seemed possible that the taken Glu is metabolized to Gln in the cells. To investigate this possibility, we exposed microglia to [(13)C]Glu-containing medium and analyzed the change of Glu to Gln in a nuclear magnetic resonance examination. The results clarified that non-stimulated microglia hardly changed Glu to Gln, but when stimulated with lipopolysaccharide the microglia significantly metabolized [(13)C]Glu to [(13)C]Gln. Microglia were thus, strongly suggested to metabolize Glu to Gln via GS activity when activated in the inflammatory/pathological state of the nervous system.

  18. Proteolytic activity and cytokine up-regulation by non-albicans Candida albicans.

    Nawaz, Ali; Pärnänen, Pirjo; Kari, Kirsti; Meurman, Jukka H

    2015-05-01

    Mouth is an important source of infections and oral infections such as Candida infections increase the risk of mortality. Our purpose was to investigate differences in proteolytic activity of non-albicans Candida albicans (non-albicans Candida) between clinical isolates and laboratory samples. The second aim was to assess the concentration of pro- and anti-inflammatory cytokine levels IL-1β, IL-10, and TNF-α in saliva of patients with the non-albicans Candida and Candida-negative saliva samples. Clinical yeast samples from our laboratory were used for analyses. Candida strains were grown in YPG at 37 °C for 24 h in water bath with shaking. The activity of Candida proteinases of cell and cell-free fractions were analyzed by MDPF-gelatin zymography. The levels of IL-1β, IL-10, and TNF-α were measured from saliva with ELISA. The study showed differences in the proteolytic activity among the non-albicans Candida strains. C. tropicalis had higher proteolytic activity when compared to the other strains. Significant difference was found in salivary IL-1β levels between the non-albicans Candida and control strains (P albicans Candida strains. The increased IL-1β concentration may be one of the host response components associated with non-albicans Candida infection.

  19. Notch1 Activation Up-Regulates Pancreatic and Duodenal Homeobox-1

    Min Li

    2013-07-01

    Full Text Available Transcription factor pancreatic and duodenal homeobox-1 (PDX-1 plays an essential role in pancreatic development, β-cell differentiation, maintenance of normal β-cell function and tumorigenesis. PDX-1 expression is tightly controlled through a variety of mechanisms under different cellular contexts. We report here that overexpression of Notch1 intracellular domain (NICD, an activated form of Notch1, enhanced PDX-1 expression in both PDX-1 stable HEK293 cells and mouse insulinoma β-TC-6 cells, while NICD shRNA inhibited the enhancing effect. NICD-enhanced PDX-1 expression was accompanied by increased insulin expression/secretion and cell proliferation in β-TC-6 cells, which was reversed by NICD shRNA. Cre activation-induced specific expression of NICD in islet β cells of transgenic βNICD+/+ mice induced increased expression of PDX-1, insulin and proliferating cell nuclear antigen (PCNA and decreased expression of p27 with accompanied fasting hyperinsulinemia and hypoglycemia and altered responses to intraperitoneal glucose tolerance test. Systemically delivered NICD shRNA suppressed islet expression of PDX-1 and reversed the hypoglycemia and hyperinsulinemia. Moreover, expression levels of NICD were correlated with those of PDX-1 in human pancreatic neuroendocrine tumor. Thus, Notch1 acts as a positive regulator for PDX-1 expression, cooperates with PDX-1 in the development of insulin overexpression and islet cell neoplasia and represents a potential therapeutic target for islet neoplasia.

  20. Notch1 activation up-regulates pancreatic and duodenal homeobox-1.

    Liu, Shi-He; Zhou, Guisheng; Yu, Juehua; Wu, James; Nemunaitis, John; Senzer, Neil; Dawson, David; Li, Min; Fisher, William E; Brunicardi, F Charles

    2013-07-19

    Transcription factor pancreatic and duodenal homeobox-1 (PDX-1) plays an essential role in pancreatic development, β-cell differentiation, maintenance of normal β-cell function and tumorigenesis. PDX-1 expression is tightly controlled through a variety of mechanisms under different cellular contexts. We report here that overexpression of Notch1 intracellular domain (NICD), an activated form of Notch1, enhanced PDX-1 expression in both PDX-1 stable HEK293 cells and mouse insulinoma β-TC-6 cells, while NICD shRNA inhibited the enhancing effect. NICD-enhanced PDX-1 expression was accompanied by increased insulin expression/secretion and cell proliferation in β-TC-6 cells, which was reversed by NICD shRNA. Cre activation-induced specific expression of NICD in islet β cells of transgenic βNICD+/+ mice induced increased expression of PDX-1, insulin and proliferating cell nuclear antigen (PCNA) and decreased expression of p27 with accompanied fasting hyperinsulinemia and hypoglycemia and altered responses to intraperitoneal glucose tolerance test. Systemically delivered NICD shRNA suppressed islet expression of PDX-1 and reversed the hypoglycemia and hyperinsulinemia. Moreover, expression levels of NICD were correlated with those of PDX-1 in human pancreatic neuroendocrine tumor. Thus, Notch1 acts as a positive regulator for PDX-1 expression, cooperates with PDX-1 in the development of insulin overexpression and islet cell neoplasia and represents a potential therapeutic target for islet neoplasia.

  1. Up-Regulated Expression of LAMP2 and Autophagy Activity during Neuroendocrine Differentiation of Prostate Cancer LNCaP Cells

    Vara-Ciruelos, Diana; Ramos-Torres, Ágata; Altamirano-Dimas, Manuel; Díaz-Laviada, Inés; Rodríguez-Henche, Nieves

    2016-01-01

    Neuroendocrine (NE) prostate cancer (PCa) is a highly aggressive subtype of prostate cancer associated with resistance to androgen ablation therapy. In this study, we used LNCaP prostate cancer cells cultured in a serum-free medium for 6 days as a NE model of prostate cancer. Serum deprivation increased the expression of NE markers such as neuron-specific enolase (NSE) and βIII tubulin (βIII tub) and decreased the expression of the androgen receptor protein in LNCaP cells. Using cDNA microarrays, we compared gene expression profiles of NE cells and non-differentiated LNCaP cells. We identified up-regulation of 155 genes, among them LAMP2, a lysosomal membrane protein involved in lysosomal stability and autophagy. We then confirmed up-regulation of LAMP2 in NE cells by qRT-PCR, Western blot and confocal microscopy assays, showing that mRNA up-regulation correlated with increased levels of LAMP2 protein. Subsequently, we determined autophagy activity in NE cells by assessing the protein levels of SQSTM/p62 and LC3 by Western blot and LC3 and Atg5 mRNAs content by qRT-PCR. The decreased levels of SQSTM/p62 was accompanied by an enhanced expression of LC3 and ATG5, suggesting activation of autophagy in NE cells. Blockage of autophagy with 1μM AKT inhibitor IV, or by silencing Beclin 1 and Atg5, prevented NE cell differentiation, as revealed by decreased levels of the NE markers. In addition, AKT inhibitor IV as well as Beclin1 and Atg5 kwockdown attenuated LAMP2 expression in NE cells. On the other hand, LAMP2 knockdown by siRNA led to a marked blockage of autophagy, prevention of NE differentiation and decrease of cell survival. Taken together, these results suggest that LAMP2 overexpression assists NE differentiation of LNCaP cells induced by serum deprivation and facilitates autophagy activity in order to attain the NE phenotype and cell survival. LAMP2 could thus be a potential biomarker and potential target for NE prostate cancer. PMID:27627761

  2. TNF-α-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells

    Griffiths Gareth

    2009-07-01

    Full Text Available Abstract Background Phosphatidylcholine (PC is a major lipid of the gastrointestinal mucus layer. We recently showed that mucus from patients suffering from ulcerative colitis has low levels of PC. Clinical studies reveal that the therapeutic addition of PC to the colonic mucus using slow release preparations is beneficial. The positive role of PC in this disease is still unclear; however, we have recently shown that PC has an intrinsic anti-inflammatory property. It could be demonstrated that the exogenous application of PC inhibits membrane-dependent actin assembly and TNF-α-induced nuclear NF-κB activation. We investigate here in more detail the hypothesis that the exogenous application of PC has anti-inflammatory properties. Methods PC species with different fatty acid side chains were applied to differentiated and non-differentiated Caco-2 cells treated with TNF-α to induce a pro-inflammatory response. We analysed TNF-α-induced NF-κB-activation via the transient expression of a NF-κB-luciferase reporter system. Pro-inflammatory gene transcription was detected with the help of a quantitative real time (RT-PCR analysis. We assessed the binding of TNF-α to its receptor by FACS and analysed lipid rafts by isolating detergent resistant membranes (DRMs. Results The exogenous addition of all PC species tested significantly inhibited TNF-α-induced pro-inflammatory signalling. The expression levels of IL-8, ICAM-1, IP-10, MCP-1, TNF-α and MMP-1 were significantly reduced after PC pre-treatment for at least two hours. The effect was comparable to the inhibition of NF-kB by the NF-kB inhibitor SN 50 and was not due to a reduced binding of TNF-α to its receptor or a decreased surface expression of TNF-α receptors. PC was also effective when applied to the apical side of polarised Caco-2 cultures if cells were stimulated from the basolateral side. PC treatment changed the compartmentation of the TNF-α-receptors 1 and 2 to DRMs. Conclusion PC

  3. Regulation of store-operated Ca{sup 2+} entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells

    Kito, Hiroaki [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto (Japan); Yamamura, Hisao; Suzuki, Yoshiaki; Yamamura, Hideto [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Ohya, Susumu [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2015-04-10

    Store-operated Ca{sup 2+} entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cycle progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca{sup 2+} influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs.

  4. Up-regulation of interleukin-22 mediates liver fibrosis via activating hepatic stellate cells in patients with hepatitis C.

    Wu, Li-Yuan; Liu, Shuhong; Liu, Yuan; Guo, Chaonan; Li, Hanwei; Li, Wenshu; Jin, Xueyuan; Zhang, Keming; Zhao, Ping; Wei, Lai; Zhao, Jingmin

    2015-05-01

    Interleukin-22 (IL-22) is known to play a critical role in liver immunity. However, the role of IL-22 in HCV-associated liver fibrosis is poorly understood. In this study, patients with HCV infection disclosed significant increases in peripheral numbers of IL-22-producing cells as well as in IL-22 plasma levels. In the liver, the increased intrahepatic IL-22(+) cells were positively correlated with fibrotic staging scores and clinical progression from CHC to cirrhosis. Moreover, the majority of IL-22(+) cells were located in fibrotic areas in the liver of patients with cirrhosis and co-localized with α-smooth muscle actin (α-SMA) positive hepatic stellate cells (HSCs). In vitro, administration of IL-22 was accompanied with inhibited LX-2 cell apoptosis, promoted LX-2 cell proliferation, increased expression of α-SMA, and up-regulated collagen production by LX-2 cells. Collectively, our data provide evidence that IL-22 may contribute to the fibrogenesis of HCV-associated liver fibrosis by activating HSCs.

  5. Up-regulation of BRAF activated non-coding RNA is associated with radiation therapy for lung cancer.

    Chen, Jian-xiang; Chen, Ming; Zheng, Yuan-da; Wang, Sheng-ye; Shen, Zhu-ping

    2015-04-01

    Radiation therapy has become more effective in treating primary tumors, such as lung cancer. Recent evidence suggested that BRAF activated non-coding RNAs (BANCR) play a critical role in cellular processes and are found to be dysregulated in a variety of cancers. The clinical significance of BANCR in radiation therapy, and its molecular mechanisms controlling tumor growth are unclear. In the present study, C57BL/6 mice were inoculated Lewis lung cancer cells and exposed to radiation therapy, then BANCR expression was analyzed using qPCR. Chromatin immunoprecipitation and western blot were performed to calculate the enrichment of histone acetylation and HDAC3 protein levels in Lewis lung cancer cells, respectively. MTT assay was used to evaluate the effects of BANCR on Lewis lung cancer cell viability. Finally, we found that BANCR expression was significantly increased in C57BL/6 mice receiving radiation therapy (Pcancer cells. Histone deacetylation was observed to involve in the regulation of BANCR in Lewis lung cancer cells. Moreover, over expression HDAC3 reversed the effect of rays on BANCR expression. MTT assay showed that knockdown of BANCR expression promoted cell viability surviving from radiation. In conclusion, these findings indicated that radiation therapy was an effective treatment for lung cancer, and it may exert function through up-regulation BANCR expression.

  6. Cyclic up-regulation fluorescence of pyrene excimer for studying polynucleotide kinase activity based on dual amplification.

    Xu, Jing; Gao, Yanfang; Li, Baoxin; Jin, Yan

    2016-06-15

    Due to its important biological and clinical roles of polynucleotide kinase (PNK), accurate monitoring of PNK activity and inhibition is highly desirable. Herein, a homogeneous and sensitive fluorescence assay has been proposed for the detection of PNK activity by integrating target recycling signal amplification of DNA toehold strand displacement reaction (TSDR) with gamma-cyclodextrin (γ-CD) enhancement of pyrene excimer. A label-free hairpin DNA1 (H1) and two singly pyrene-labelled DNA, H2 and H3, are designed. Accompanying the occurrence of the efficient enzyme reactions, namely phosphorylation-actuated λ exonuclease reaction, a single-stranded DNA as a trigger DNA (tDNA) of TSDR can be released from H1. Then, tDNA drives circulatory interactions between H2 and H3 to continuously form H2/H3 duplex, resulting in formation of pyrene excimer and a "turn on" fluorescence signal of pyrene excimer. Furthermore, the fluorescence of pyrene excimer is further amplified by introducing gamma-cyclodextrin (γ-CD), which can regulate the space proximity of two pyrene molecules. Thus, TSDR-induced cyclic formation of pyrene excimer and γ-CD enhancement can specifically up-regulate the fluorescence of pyrene excimer for detection of PNK activity, the detection limit is 9.3 × 10(-5)UmL(-1), which is superior to those of most existing approaches. Moreover, the proposed strategy can also be successfully utilized to study inhibition efficiency of different PNK inhibitors as well. Therefore, a dual amplification approach is provided for nucleic acid phosphorylation related researches.

  7. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity.

    Ary, Alexis W; Cozzoli, Debra K; Finn, Deborah A; Crabbe, John C; Dehoff, Marlin H; Worley, Paul F; Szumlinski, Karen K

    2012-06-01

    Neuronal activity dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol.

  8. Galectin-3 facilitates cell motility in gastric cancer by up-regulating protease-activated receptor-1 (PAR-1 and matrix metalloproteinase-1 (MMP-1.

    Seok-Jun Kim

    Full Text Available BACKGROUND: Galectin-3 is known to regulate cancer metastasis. However, the underlying mechanism has not been defined. Through the DNA microarray studies after galectin-3 silencing, we demonstrated here that galectin-3 plays a key role in up-regulating the expressions of protease-activated receptor-1 (PAR-1 and matrix metalloproteinase-1 (MMP-1 PAR-1 thereby promoting gastric cancer metastasis. METHODOLOGY/PRINCIPAL FINDINGS: We examined the expression levels of Galectin-3, PAR-1, and MMP-1 in gastric cancer patient tissues and also the effects of silencing these proteins with specific siRNAs and of over-expressing them using specific lenti-viral constructs. We also employed zebrafish embryo model for analysis of in vivo gastric cancer cell invasion. These studies demonstrated that: a galectin-3 silencing decreases the expression of PAR-1. b galectin-3 over-expression increases cell migration and invasion and this increase can be reversed by PAR-1 silencing, indicating that galectin-3 increases cell migration and invasion via PAR-1 up-regulation. c galectin-3 directly interacts with AP-1 transcriptional factor, and this complex binds to PAR-1 promoter and drives PAR-1 transcription. d galectin-3 also amplifies phospho-paxillin, a PAR-1 downstream target, by increasing MMP-1 expression. MMP-1 silencing blocks phospho-paxillin amplification and cell invasion caused by galectin-3 over-expression. e Silencing of either galectin-3, PAR-1 or MMP-1 significantly reduced cell migration into the vessels in zebrafish embryo model. f Galectin-3, PAR-1, and MMP-1 are highly expressed and co-localized in malignant tissues from gastric cancer patients. CONCLUSIONS/SIGNIFICANCE: Galectin-3 plays the key role of activating cell surface receptor through production of protease and boosts gastric cancer metastasis. Galectin-3 has the potential to serve as a useful pharmacological target for prevention of gastric cancer metastasis.

  9. Stimulation of T cells up-regulates expression of Ifi202, an interferon-inducible lupus susceptibility gene, through activation of JNK/c-Jun pathway

    Chen, Jianming; Panchanathan, Ravichandran; Choubey, Divaker

    2008-01-01

    Studies have revealed that increased expression of interferon (IFN)-inducible Ifi202 gene (encoding p202 protein) in splenic B and T cells from B6.Nba2 congenic (congenic for Nb2 locus derived from NZB mice) female mice is associated with lupus susceptibility. However, signaling pathways that regulate Ifi202 expression in immune cells remain to be elucidated. Here we report that stimulation of T cells up-regulates the Ifi202 expression. We found that steady-state levels of Ifi202 mRNA and protein were detectable in splenic T cells from NZB mice and stimulation of T cells with anti-CD3 and anti-CD28 up-regulated expression of the Ifi202 gene. Similarly, stimulation of cells of a mouse T-cell hybridoma cell line (2B4.11) also activated transcription of the Ifi202 gene. Significantly, up-regulation of Ifi202 expression in stimulated T cells was inhibited by treatment of cells with SP600125, a specific inhibitor of c-Jun N-terminal kinase (JNK). Conversely, treatment of cells with anisomycin, a potent activator of the JNK and c-Jun, up-regulated Ifi202 expression. Consistent with the activation of JNK/c-Jun pathway by T cell stimulation, forced expression of c-Jun in 2B4 T-cells and in mouse embryonic fibroblasts (MEFs) also up-regulated the Ifi202 expression. Furthermore, we found that stimulation of T cells increased association of the activated c-Jun to the 5′-regulatory region of the Ifi202 gene in chromatin immunoprecipitation assays (ChIPs). Together, our observations demonstrate that stimulation of T cells up-regulates the Ifi202 expression in part through the JNK/c-Jun pathway. PMID:18374989

  10. Changes in neuronal excitability by activated microglia: Differential Na+ current up-regulation in pyramid-shaped and bipolar neurons by TNF-α and IL-18

    Lars eKlapal

    2016-03-01

    Full Text Available Microglia are activated during pathological events in the brain and are capable of releasing various types of inflammatory cytokines. Here we demonstrate that the addition of 5% microglia activated by 1 µg/ml lipopolysaccharides (LPS to hippocampal cultures up-regulates Na+ current densities (INavD of bipolar as well as pyramid-shaped neurons, thereby increasing their excitability. Deactivation of microglia by the addition of 10 ng/ml transforming growth factor-β (TGF-β decreases INavD below control levels suggesting that the residual activated microglial cells influence neuronal excitability in control cultures. Preincubation of hippocampal cultures with 10 ng/ml tumor necrosis factor-α (TNF-α, a major cytokine released by activated microglia, up-regulated INavD significantly by ~30% in bipolar cells, whereas in pyramid-shaped cells the up-regulation only reached an increase of ~14%. Incubation of the cultures with antibodies against either TNF-receptor 1 or 2 blocked the up-regulation of INavD in bipolar cells, whereas in pyramid-shaped cells increases in INavD were exclusively blocked by antibodies against TNF-receptor 2, suggesting that both cell types respond differently to TNF-α exposure. Since additional cytokines, such as interleukin-18 (IL-18, are released from activated microglia we tested potential effects of IL-18 on INavD in both cell types. Exposure to 5-10 ng/ml IL-18 for 4 days increased INavD in both pyramid-shaped as well as bipolar neurons, albeit the dose-response curves were shifted to lower concentrations in bipolar cells. Our results suggest that by secretion of cytokines microglial cells up-regulate Na+ current densities in bipolar and pyramid-shaped neurons to some extent differentially. Depending on the exact cytokine composition and concentration released this could change the balance between the activity of inhibitory bipolar and excitatory pyramid-shaped cells. Since bipolar cells show a larger up-regulation of

  11. Wedelolactone Regulates Lipid Metabolism and Improves Hepatic Steatosis Partly by AMPK Activation and Up-Regulation of Expression of PPARα/LPL and LDLR.

    Yun Zhao

    Full Text Available Hyperlipidemia is considered one of the greatest risk factors of cardiovascular diseases. We investigated the anti-hyperlipidemic effect and the underlying mechanism of wedelolactone, a plant-derived coumestan, in HepG2 cells and high-fat diet (HFD-induced hyperlipidemic hamsters. We showed that in cultured HepG2 cells, wedelolactone up-regulated protein levels of adenosine monophosphate activated protein kinase (AMPK and peroxisome proliferator-activated receptor-alpha (PPARα as well as the gene expression of AMPK, PPARα, lipoprotein lipase (LPL, and the low-density lipoprotein receptor (LDLR. Meanwhile, administration of wedelolactone for 4 weeks decreased the lipid profiles of plasma and liver in HFD-induced hyperlipidemic hamsters, including total cholesterol (TC, triglycerides (TG, and low-density lipoprotein-cholesterol (LDL-C. The activation of AMPK and up-regulation of PPARα was also observed with wedelolactone treatment. Furthermore, wedelolactone also increased the activities of superoxidase dismutase (SOD and glutathione peroxidase (GSH-Px and decreased the level of the lipid peroxidation product malondialdehyde (MDA in the liver, therefore decreasing the activity of alanine aminotransferase (ALT. In conclusion, we provide novel experimental evidence that wedelolactone possesses lipid-lowering and steatosis-improving effects, and the underlying mechanism is, at least in part, mediated by the activation of AMPK and the up-regulation of PPARα/LPL and LDLR.

  12. Up-regulation of Siah1 by ethanol triggers apoptosis in neural crest cells through p38 MAPK-mediated activation of p53 signaling pathway.

    Yuan, Fuqiang; Chen, Xiaopan; Liu, Jie; Feng, Wenke; Wu, Xiaoyang; Chen, Shao-Yu

    2017-02-01

    Seven in absentia homolog 1 (Siah1) is one of the E3 ubiquitin ligases and plays a key role in regulating target protein degradation. This study was designed to test the hypothesis that Siah1 mediates ethanol-induced apoptosis in NCCs through p38 MAPK-mediated activation of the p53 signaling pathway. We found that exposure of NCCs to ethanol resulted in the increases in the total protein levels of p53 and the phosphorylation of p53 at serine 15. Ethanol exposure also resulted in a significant increase in the phosphorylation of p38 MAPK. Knock-down of Siah1 dramatically reduced the ethanol-induced increase in the phosphorylation of p38 MAPK. Knock-down of Siah1 by siRNA or down-regulation of p38 MAPK by either siRNA or inhibitor significantly diminished ethanol-induced accumulations of p53 and the phosphorylation of p53. In addition, ethanol exposure resulted in a significant increase in the expression of p53 downstream targets and apoptosis in NCCs, which can be significantly diminished by down-regulation of Siah1 with siRNA. Knock-down of p38 MAPK by siRNA also dramatically reduced the ethanol-induced apoptosis. These results demonstrate that Siah1 plays a crucial role in ethanol-induced apoptosis in NCCs, and that the up-regulation of Siah1 by ethanol can trigger apoptosis through p38 MAPK-mediated activation of the p53 signaling pathway.

  13. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    Chih-Yeu Fang

    2015-01-01

    Full Text Available (−-Epigallocatechin-3-gallate (EGCG, a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC, yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC.

  14. Role of mitogen-activated protein kinases in endothelin ETB receptor up-regulation after organ culture of rat mesenteric artery

    Uddman, Erik; Henriksson, Marie; Eskesen, Karen;

    2003-01-01

    Organ culture of isolated arteries results in increased levels of endothelin ET(B) (ET(B)) receptor mRNA and in enhanced ET(B) receptor mediated contraction. The present study was designed to pinpoint the mitogen-activated protein kinase (MAPK) subtype involved in up-regulation of ET(B) receptors...... after organ culture of rat mesenteric arteries. Western blot and selective antibodies towards constitutional and phosphorylated MAPKs revealed the appearance of phosphorylated MAPK of the extracellular signal-regulated kinases (ERK) 1/2 type at 3 h of organ culture. The functional ET(B) receptor and its...... mRNA expression were up-regulated after 24 h of organ culture. Following incubation with the MEK 1/2 specific inhibitor SB408039 or the raf inhibitor SB386023b the up-regulation was attenuated both for ET(B) receptor responses and in ET(B) receptor mRNA expression in the vessel segments. Neither...

  15. PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells.

    Hyo-Sup Kim

    Full Text Available BACKGROUND: It has been reported that peroxisome proliferator-activated receptor (PPAR-γ and their synthetic ligands have direct effects on pancreatic β-cells. We investigated whether PPAR-γ activation stimulates insulin secretion through the up-regulation of GPR40 in pancreatic β-cells. METHODS: Rat insulinoma INS-1 cells and primary rat islets were treated with rosiglitazone (RGZ and/or adenoviral PPAR-γ overexpression. OLETF rats were treated with RGZ. RESULTS: PPAR-γ activation with RGZ and/or adenoviral PPAR-γ overexpression increased free fatty acid (FFA receptor GPR40 expression, and increased insulin secretion and intracellular calcium mobilization, and was blocked by the PLC inhibitors, GPR40 RNA interference, and GLUT2 RNA interference. As a downstream signaling pathway of intracellular calcium mobilization, the phosphorylated levels of CaMKII and CREB, and the downstream IRS-2 and phospho-Akt were significantly increased. Despite of insulin receptor RNA interference, the levels of IRS-2 and phospho-Akt was still maintained with PPAR-γ activation. In addition, the β-cell specific gene expression, including Pdx-1 and FoxA2, increased in a GPR40- and GLUT2-dependent manner. The levels of GPR40, phosphorylated CaMKII and CREB, and β-cell specific genes induced by RGZ were blocked by GW9662, a PPAR-γ antagonist. Finally, PPAR-γ activation up-regulated β-cell gene expressions through FoxO1 nuclear exclusion, independent of the insulin signaling pathway. Based on immunohistochemical staining, the GLUT2, IRS-2, Pdx-1, and GPR40 were more strongly expressed in islets from RGZ-treated OLETF rats compared to control islets. CONCLUSION: These observations suggest that PPAR-γ activation with RGZ and/or adenoviral overexpression increased intracellular calcium mobilization, insulin secretion, and β-cell gene expression through GPR40 and GLUT2 gene up-regulation.

  16. Transcriptional activation and cell cycle block are the keys for 5-fluorouracil induced up-regulation of human thymidylate synthase expression.

    Alessio Ligabue

    Full Text Available BACKGROUND: 5-fluorouracil, a commonly used chemotherapeutic agent, up-regulates expression of human thymidylate synthase (hTS. Several different regulatory mechanisms have been proposed to mediate this up-regulation in distinct cell lines, but their specific contributions in a single cell line have not been investigated to date. We have established the relative contributions of these previously proposed regulatory mechanisms in the ovarian cancer cell line 2008 and the corresponding cisplatin-resistant and 5-FU cross-resistant-subline C13*. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA polymerase II inhibitor DRB treated cell cultures, we showed that 70-80% of up-regulation of hTS results from transcriptional activation of TYMS mRNA. Moreover, we report that 5-FU compromises the cell cycle by blocking the 2008 and C13* cell lines in the S phase. As previous work has established that TYMS mRNA is synthesized in the S and G(1 phase and hTS is localized in the nuclei during S and G(2-M phase, the observed cell cycle changes are also expected to affect the intracellular regulation of hTS. Our data also suggest that the inhibition of the catalytic activity of hTS and the up-regulation of the hTS protein level are not causally linked, as the inactivated ternary complex, formed by hTS, deoxyuridine monophosphate and methylenetetrahydrofolate, was detected already 3 hours after 5-FU exposure, whereas substantial increase in global TS levels was detected only after 24 hours. CONCLUSIONS/SIGNIFICANCE: Altogether, our data indicate that constitutive TYMS mRNA transcription, cell cycle-induced hTS regulation and hTS enzyme stability are the three key mechanisms responsible for 5-fluorouracil induced up-regulation of human thymidylate synthase expression in the two ovarian cancer cell lines studied. As these three independent regulatory phenomena occur in a precise order, our work provides a feasible rationale for earlier observed synergistic combinations of 5

  17. Viral hemorrhagic septicaemia virus (VHSV) up-regulates the cytotoxic activity and the perforin/granzyme pathway in the rainbow trout RTS11 cell line.

    Ordás, M C; Cuesta, A; Mercado, L; Bols, N C; Tafalla, C

    2011-08-01

    A survey of immune-relevant genes that might be up-regulated in response to viral hemorrhagic septicaemia virus (VHSV) in the rainbow trout monocyte-macrophage cell line, RTS11, unexpectedly revealed an increased expression of perforin (PRF) and granzyme (GRZ) genes, which represent components of the major cytotoxic pathway. The natural killer-enhancing factor (NKEF), also known to modulate cytotoxic activity, was up-regulated at the gene but strikingly down-regulated at protein level. The expression of these genes was not affected in head kidney leukocytes (HKLs) infected with VHSV, leading us to evaluate the potential cytotoxic activity of RTS11 and HKLs. For the first time, the cytotoxic activity of RTS11 against xenogeneic targets has been demonstrated, although this was modest relative to HKLs. Yet the activity in RTS11 was significantly increased by VHSV, as in HKLs. This cytotoxic activity elicited by viral infection appeared to require viral gene expression because inactivated VHSV failed to increase RTS11 cytotoxic activity. As for other immune functions, RTS11 cells provide a model for further studying cytotoxic activities of fish monocyte-macrophages.

  18. Liver X receptor agonist T0901317 reduces atherosclerotic lesions in apoE-/- mice by up-regulating NPC1 expression

    2008-01-01

    In this study, we studied the effect of liver X receptor (LXR) agonist T0901317 on Niemann-Pick C1 protein (NPC1) expression in apoE-/- mice. Male apoE-/- mice were randomized into 4 groups, baseline group (n=10), control group (n=14), treatment group (n=14) and prevention group (n=14). All of the mice were fed with a high-fat/high-cholesterol (HFHC) diet containing 15% fat and 0.25% cholesterol. The baseline group treated with vehicle was sacrificed after 8 weeks of the diet. The control group and the prevention group were treated with either vehicle or T0901317 daily by oral gavage for 14 weeks. The treatment group was treated with vehicle for 8 weeks, and then was treated with the agonist T0901317 for additional 6 weeks. Gene and protein expression was analyzed by real-time quantitative PCR, immunohistochemistry and Western blotting, respectively. Plasma lipid concentrations were measured by commercially enzymatic methods. We used RNA interference technology to silence NPC1 gene expression in THP-1 macrophage-derived foam cells and then detected the effect of LXR agonist T0901317 on cholesterol efflux. Plasma triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C) and apoA-I concentrations were markedly increased in T0901317-treated groups. T0901317 treatment reduced the aortic atherosclerotic lesion area by 64.2% in the prevention group and 58.3% in the treatment group. LXR agonist treatment increased NPC1 mRNA expression and protein levels in the small intestine, liver and aorta of apoE-/- mice. Compared with the normal cells, cholesterol efflux of siRNA THP-1 macrophage-derived foam cells was significantly decreased, whereas cholesterol efflux of LXR agonist T0901317-treated THP-1 macrophage-derived foam cells was significantly increased. Our results suggest that LXR agonist T0901317 inhibits atherosclerosis development in apoE-/- mice, which is related to up-regulating NPC1 expression.

  19. TNF-alpha increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k

    Li, Yi-Ping; Lecker, Stewart H.; Chen, Yuling; Waddell, Ian D.; Goldberg, Alfred L.; Reid, Michael B.

    2003-01-01

    In some inflammatory diseases, TNF-alpha is thought to stimulate muscle catabolism via an NF-kappaB-dependent process that increases ubiquitin conjugation to muscle proteins. The transcriptional mechanism of this response has not been determined. Here we studied the potential role of UbcH2, a ubiquitin carrier protein and homologue of murine E220k. We find that UbcH2 is constitutively expressed by human skeletal and cardiac muscles, murine limb muscle, and cultured myotubes. TNF-alpha stimulates UbcH2 expression in mouse limb muscles in vivo and in cultured myotubes. The UbcH2 promoter region contains a functional NF-kappaB binding site; NF-kappaB binding to this sequence is increased by TNF-alpha stimulation. A dominant negative inhibitor of NF-kappaB activation blocks both UbcH2 up-regulation and the increase in ubiquitin-conjugating activity stimulated by TNF-alpha. In extracts from TNF-alpha-treated myotubes, ubiquitin-conjugating activity is limited by UbcH2 availability; activity is inhibited by an antiserum to UbcH2 or a dominant negative mutant of UbcH2 and is enhanced by wild-type UbcH2. Thus, UbcH2 up-regulation is a novel response to TNF-alpha/NF-kappaB signaling in skeletal muscle that appears to be essential for the increased ubiquitin conjugation induced by this cytokine.

  20. Helicobacter pylori promotes invasion and metastasis of gastric cancer cells through activation of AP-1 and up-regulation of CACUL1.

    Kong, Ying; Ma, Li-qing; Bai, Pei-song; Da, Rong; Sun, Hong; Qi, Xiao-gai; Ma, Jie-qun; Zhao, Ru-ming; Chen, Nan-zheng; Nan, Ke-jun

    2013-11-01

    Infection with Helicobacter pylori is important in the development and progression of gastric cancer. However, the mechanisms that regulate this activation in gastric tumors remain elusive. CACUL1 has been cloned and identified as a novel gene that is expressed in many types of cancer and is involved in cell cycle regulation and tumor growth. The current study aimed to examine the expression of CACUL1 in gastric cancer samples and analyze its correlation with H. pylori infection. We found that CACUL1 was highly expressed in gastric cancer tissues and negatively correlated with gastric cancer differentiation and TNM stage. In addition, CACUL1 expression was high in H. pylori-infected tissues compared with H. pylori non-infected tissue. We found that H. pylori could up-regulate CACUL1 expression through activating protein 1. The up-regulation of CACUL1 expression could promote matrix metalloproteinase 9 and Slug expression to increase invasion and metastasis of tumor cells. These results suggested that H. pylori-triggered CACUL1 production occurred in an activating protein 1-dependent manner and regulated matrix metalloproteinase 9 and Slug expression to affect the invasion and metastasis of tumor cells. Therefore, CACUL1 is a potential therapeutic target for the treatment of aggressive gastric cancer.

  1. Mycobacterial and HIV infections up-regulated human zinc finger protein 134, a novel positive regulator of HIV-1 LTR activity and viral propagation.

    Ronald Benjamin

    Full Text Available BACKGROUND: Concurrent occurrence of HIV and Tuberculosis (TB infections influence the cellular environment of the host for synergistic existence. An elementary approach to understand such coalition at the molecular level is to understand the interactions of the host and the viral factors that subsequently effect viral replication. Long terminal repeats (LTR of HIV genome serve as a template for binding trans-acting viral and cellular factors that regulate its transcriptional activity, thereby, deciding the fate of HIV pathogenesis, making it an ideal system to explore the interplay between HIV and the host. METHODOLOGY/PRINCIPAL FINDINGS: In this study, using biotinylated full length HIV-1 LTR sequence as bait followed by MALDI analyses, we identified and further characterized human-Zinc-finger-protein-134 (hZNF-134 as a novel positive regulator of HIV-1 that promoted LTR-driven transcription and viral production. Over-expression of hZNF-134 promoted LTR driven luciferase activity and viral transcripts, resulting in increased virus production while siRNA mediated knockdown reduced both the viral transcripts and the viral titers, establishing hZNF-134 as a positive effector of HIV-1. HIV, Mycobacteria and HIV-TB co-infections increased hZNF-134 expressions in PBMCs, the impact being highest by mycobacteria. Corroborating these observations, primary TB patients (n = 22 recorded extraordinarily high transcript levels of hZNF-134 as compared to healthy controls (n = 16. CONCLUSIONS/SIGNIFICANCE: With these observations, it was concluded that hZNF-134, which promoted HIV-1 LTR activity acted as a positive regulator of HIV propagation in human host. High titers of hZNF-134 transcripts in TB patients suggest that up-regulation of such positive effectors of HIV-1 upon mycobacterial infection can be yet another mechanism by which mycobacteria assists HIV-1 propagation during HIV-TB co-infections. hZNF-134, an uncharacterized host protein, thus

  2. Glial cell line-derived neurotrophic factor up-regulates GTP-cyclohydrolase I activity and tetrahydrobiopterin levels in primary dopaminergic neurones

    Bauer, M; Suppmann, S; Meyer, M;

    2002-01-01

    Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurones against toxic and physical damage. In addition, GDNF promotes differentiation and structural integrity of dopaminergic neurones. Here we show that GDNF can support the function of primary dopaminergic neurones...... by triggering activation of GTP-cyclohydrolase I (GTPCH I), a key enzyme in catecholamine biosynthesis. GDNF stimulation of primary dopaminergic neurones expressing both tyrosine 3-monooxygenase and GTPCH I resulted in a dose-dependent doubling of GTPCH I activity, and a concomitant increase...... in tetrahydrobiopterin levels whereas tyrosine 3-monooxygenase activity was not altered. Actinomycin D, asan inhibitor of de novo biosynthesis, abolished any GDNF-mediated up-regulation of GTPCH I activity. However, GTPCH I mRNA levels in primary dopaminergic neurones were not altered by GDNF treatment, suggesting...

  3. Glucose activation of islets of Langerhans up-regulates Toll-like receptor 5: possible mechanism of protection

    Weile, Christian Roar Andersen; Josefsen, Knud Elnegaard; Buschard, Karsten Stig

    2011-01-01

    Toll-like receptors are pattern-recognition receptors of the innate immune system that are activated during viral, bacterial or other infections, as well as during disease progression of type 1 and type 2 diabetes. Toll-like receptor 5 (TLR-5) specifically recognizes bacterial infection through b...

  4. Up-regulation of gelatinases and tissue type plasminogen activator by root canal sealers in human osteoblastic cells.

    Huang, Fu-Mei; Yang, Shun-Fa; Chang, Yu-Chao

    2008-03-01

    Histologic investigations have demonstrated that root canal sealers can induce mild to severe inflammatory alternations. However, there is little information on the precise mechanisms about root canal sealer-induced inflammatory reaction. The proteolysis of extracellular matrix by matrix metalloproteinases (MMPs) and plasminogen activators (PAs) seems to be a key initiating event for the progression of the inflammatory process. The aim of this study was to investigate the effects of epoxy resin-based root canal sealer AH26 and zinc oxide-eugenol-based root canal sealer Canals and one paste sealer N2 on the expression of MMPs and PAs in human osteoblastic cell line U2OS cells. The levels of gelatinolytic and caseinolytic activities were measured by gelatin and casein zymography. The results showed that AH26, Canals, and N2 were cytotoxic to U2OS cells in a concentration-dependent manner (P inflammation.

  5. Up-regulation effect of hepatitis B virus genome A1846T mutation on viral replication and core promoter activity

    Ling JIANG

    2013-01-01

    Full Text Available Objective  To evaluate the influence of hepatitis B virus (HBV genome nucleotide A1846T mutation on the viral replication capacity and the transcription activity of HBV core promoter (CP in vitro. Methods  A total of 385 patients with hepatitis B admitted to the 302 Hospital of PLA were enrolled in the study, including 116 with moderate chronic hepatitis B (CHB-M, 123 with severe chronic hepatitis B (CHB-S, and 146 with acute-on-chronic liver failure (ACLF. Serum HBV DNA was isolated and full-length HBV genome was amplified. The incidence of A1846T was analyzed. Full-length HBV genomes containing 1846T mutation were cloned into pGEM-T easy vector, and the counterpart wild-type 1846A plasmids were obtained by site-directed mutagenesis. The full-length HBV genome was released from recombinant plasmid by BspQ Ⅰ/Sca Ⅰ digestion, and then transfected into HepG2 cells. Secreted HBsAg level and intracellular HBV core particles were measured 72 hours post-transfection to analyze the replication capacity (a 1.0-fold HBV genome model. 1846 mutant and wild-type full-length HBV genomes were extracted to amplify the fragment of HBV CP region, and the dual luciferase reporter of the pGL3-CP was constructed. The luciferase activity was detected 48 hours post-transfection. Results  The incidence of A1846T mutation gradually increased with the severity of hepatitis B, reaching 31.03%, 42.27%, and 55.48% in CHB-M, CHB-S and ACLF patients respectively (P<0.01. The replication capacity of 1846T mutants, level of secreted HBsAg, and transcriptional activity of CP promoter were increased by 320%, 28% and 85% respectively, compared with 1846A wild-type strains. While the more common double mutation A1762T/G1764A in CP region was increased by 67%, 9% and 72% respectively, compared with its counterpart wild-type strains. A1846T had a greater influence on viral replication capacity in vitro. Conclusions A1846T mutation could significantly increase the

  6. Up-regulation of Store-operated Ca2+ Entry and Nuclear Factor of Activated T Cells Promote the Acinar Phenotype of the Primary Human Salivary Gland Cells.

    Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S

    2016-04-15

    The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca(2+)] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca(2+)-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca(2+) entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca(2+)-dependent up-regulation of AQP5. These important findings reveal that the Ca(2+)-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture.

  7. The Proteasome Activator PA28γ, a Negative Regulator of p53, Is Transcriptionally Up-Regulated by p53

    Zhen-Xing Wan

    2014-02-01

    Full Text Available PA28γ (also called REGγ, 11Sγ or PSME3 negatively regulates p53 activity by promoting its nuclear export and/or degradation. Here, using the RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE method, we identified the transcription start site of the PA28γ gene. Assessment with the luciferase assay demonstrated that the sequence −193 to +16 is the basal promoter. Three p53 binding sites were found within the PA28γ promoter utilizing a bioinformatics approach and were confirmed by chromatin immunoprecipitation and biotinylated DNA affinity precipitation experiments. The p53 protein promotes PA28γ transcription, and p53-stimulated transcription of PA28γ can be inhibited by PA28γ itself. Our results suggest that PA28γ and p53 form a negative feedback loop, which maintains the balance of p53 and PA28γ in cells.

  8. Up-regulation and Pre-activation of TRAF3 and TRAF5 in Inflammatory Bowel Disease

    Jun Shen, Yu-qi Qiao, Zhi-hua Ran, Tian-rong Wang

    2013-01-01

    Full Text Available Objective: TRAF3 and TRAF5 share a common ancestral gene, and interact as essential components of signaling pathways in immunity. TRAF3 and TRAF5 are overexpressed in the colon of rat/mouse models with colitis. However, the expressions of TRAF3 and TRAF5 in patients with inflammatory bowel disease have not been elucidated. The aim of the present study is to explore the potential roles of TRAF3 and TRAF5 in patients with inflammatory bowel disease.Methods: Plasma levels of TRAF3 and TRAF5 proteins were detected by Enzyme-linked Immunosorbent Assay (ELISA. Colonic expression of TRAF3 and TRAF5 proteins was detected by western blot analysis. Quantitative Real-time PCR (qRT-PCR was applied for gene expression. Inflamed intestinal mucosa and non-inflamed intestinal mucosa in patients with inflammatory bowel disease and normal mucosa was analyzed from healthy controls.Results: The plasma levels of TRAF3 and TRAF5 were significantly higher both in patients with Crohn's disease and ulcerative colitis than in healthy controls. Only soluble TRAF5 showed a weak correlation with endoscopic disease activity index (Baron score in patients with ulcerative colitis (spearman's r=0.358, P=0.022. Gene expressions of TRAF3 and TRAF5 in peripheral blood mononuclear cells were significantly higher both in patients with Crohn's disease and ulcerative colitis than in healthy controls (all P<0.0001. Gene and protein expressions of TRAF3 and TRAF5 were significantly higher in inflamed colonic mucosa of patients with Crohn's disease and ulcerative colitis than in non-inflamed colonic mucosa and normal mucosa of healthy controls (all P<0.0001. Furthermore, gene and protein expressions of TRAF3 and TRAF5 were also significantly higher in non-inflamed colonic mucosa of patients with Crohn's disease and ulcerative colitis than in normal mucosa of healthy controls.Conclusions: TRAF3 and TRAF5 are overexpressed in inflammatory bowel disease. Although the endoscopic appearance

  9. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    Bian, Yong, E-mail: drbiany@126.com [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China); Yu, Yun [College of Pharmacy, Nanjing University of Chinese Medicine, 210023 (China); Wang, Shanshan; Li, Lin [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China)

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  10. Vitamin A (retinol) up-regulates the receptor for advanced glycation endproducts (RAGE) through p38 and Akt oxidant-dependent activation.

    Gelain, Daniel Pens; de Bittencourt Pasquali, Matheus Augusto; Caregnato, Fernanda Freitas; Moreira, José Claudio Fonseca

    2011-10-28

    Retinol (vitamin A) is believed to exert preventive/protective effects against malignant, neurodegenerative and cardiovascular diseases by acting as an antioxidant. However, later clinical and experimental data show a pro-oxidant action of retinol and other retinoids at specific conditions. The receptor for advanced glycation endproducts (RAGE) is a pattern recognition receptor, being activated by different ligands such as S100 proteins, HMGB1 (amphoterin), β-amyloid peptide and advanced glycation endproducts (AGE). RAGE activation influences a wide range of pathological conditions such as diabetes, pro-inflammatory states and neurodegenerative processes. Here, we investigated the involvement of different mitogen-activated protein kinases (MAPK: ERK1/2, p38 and JNK), PKC, PKA and Akt in the up-regulation of RAGE by retinol. As previously reported, we observed that the increase in RAGE immunocontent by retinol is reversed by antioxidant co-treatment, indicating the involvement of oxidative stress in this process. Furthermore, the p38 inhibitor SB203580 and the Akt inhibitor LY294002 also decreased the effect of retinol on RAGE levels, suggesting the involvement of these protein kinases in such effect. Both p38 and Akt phosphorylation were increased by treatment with pro-oxidant concentrations of retinol, and the antioxidant co-treatment blocked this effect, indicating that activation of p38 and Akt during retinol treatment is dependent on reactive species production. The 2',7'-dichlorohydrofluorescein diacetate (DCFH) assay also indicated that retinol treatment enhances cellular reactive species production. Altogether, these data indicate that RAGE up-regulation by retinol is mediated by the free radical-dependent activation of p38 and Akt.

  11. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression

    Lescaille Géraldine

    2012-03-01

    Full Text Available Abstract Backgrounds An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC progression. Methods Precancerous and invasive oral tumoral tissues were used as well as the corresponding cell lines, DOK and SCC-9 respectively. The paracrine regulation of uPA by EMMPRIN was investigated by treating culture cells with EMMPRIN-enriched membrane vesicles. UPA expression was analyzed by qPCR and immunostaining and the consequence on the invasion capacity was studied using modified Boyden chamber assay, in the presence or absence of EMMPRIN blocking antibody, the uPA inhibitor amiloride or the MMP inhibitor marimastat. Results OSCC tumors were shown to express more EMMPRIN and uPA compared to dysplastic lesions. The corresponding cell models, SCC-9 and DOK cells, displayed similar expression pattern. In both cell types EMMPRIN upregulated the expression of uPA as well as that of MMP-2 and MMP-9. EMMPRIN treatment led to a significant increase in cell invasion both in the invasive SCC-9 and in the less invasive dysplastic DOK cells, in an MMP and uPA dependent manner. Conclusions Our results suggest that the upregulation of uPA contributes to EMMPRIN's effect in promoting oral tumor invasion.

  12. Lactoferrin up-regulates intestinal gene expression of brain-derived neurotrophic factors BDNF, UCHL1 and alkaline phosphatase activity to alleviate early weaning diarrhea in postnatal piglets.

    Yang, Changwei; Zhu, Xi; Liu, Ni; Chen, Yue; Gan, Hexia; Troy, Frederic A; Wang, Bing

    2014-08-01

    The molecular mechanisms underlying how dietary lactoferrin (Lf) impacts gut development and maturation and protects against early weaning diarrhea are not well understood. In this study, we supplemented postnatal piglets with an Lf at a dose level of 155 and 285 mg/kg/day from 3 to 38 days following birth. Our findings show that the high dose of Lf up-regulated messenger RNA expression levels of genes encoding brain-derived neurotrophic factor (BDNF) and ubiquitin carboxy-terminal hydrolase L1 (ubiquitin thiolesterase (UCHL1) and, to a lesser extent, glial cell line-derived neurotrophic factor, in the duodenum (Pintestinal alkaline phosphatase activity (Pbrain-microbe axis that has not been previously reported.

  13. Genetic mutations in adipose triglyceride lipase and myocardial up-regulation of peroxisome proliferated activated receptor-γ in patients with triglyceride deposit cardiomyovasculopathy

    Hirano, Ken-ichi, E-mail: khirano@cnt-osaka.com [Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Graduate School of Medicine, Osaka University, 6-2-3, Furuedai, Suita, Osaka 565-0874 (Japan); Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Tatsuya [Center for Medical Research and Education, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Ikeda, Yoshihiko [Department of Pathology, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita 565-8565 (Japan); Yamaguchi, Satoshi [Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Graduate School of Medicine, Osaka University, 6-2-3, Furuedai, Suita, Osaka 565-0874 (Japan); Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Zaima, Nobuhiro [Department of Applied Biochemistry, Kinki University, 3327-204, Nakamachi, Nara 631-8505 (Japan); Kobayashi, Kazuhiro [Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Suzuki, Akira [Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Graduate School of Medicine, Osaka University, 6-2-3, Furuedai, Suita, Osaka 565-0874 (Japan); Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Sakata, Yasuhiko [Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1, Seiryo-cho, Aoba-ku, Sendai 980-8574 (Japan); and others

    2014-01-10

    Highlights: •Triglyceride deposit cardiomyovasculopathy (TGCV) is a rare severe heart disease. •PPARγ is up-regulated in myocardium in patients with TGCV. •Possible vicious cycle for fatty acid may be involved in pathophysiology of TGCV. -- Abstract: Adipose triglyceride lipase (ATGL, also known as PNPLA2) is an essential molecule for hydrolysis of intracellular triglyceride (TG). Genetic ATGL deficiency is a rare multi-systemic neutral lipid storage disease. Information regarding its clinical profile and pathophysiology, particularly for cardiac involvement, is still very limited. A previous middle-aged ATGL-deficient patient in our institute (Case 1) with severe heart failure required cardiac transplantation (CTx) and exhibited a novel phenotype, “Triglyceride deposit cardiomyovasculopathy (TGCV)”. Here, we tried to elucidate molecular mechanism underlying TGCV. The subjects were two cases with TGCV, including our second case who was a 33-year-old male patient (Case 2) with congestive heart failure requiring CTx. Case 2 was homozygous for a point mutation in the 5′ splice donor site of intron 5 in the ATGL, which results in at least two types of mRNAs due to splicing defects. The myocardium of both patients (Cases 1 and 2) showed up-regulation of peroxisome proliferated activated receptors (PPARs), key transcription factors for metabolism of long chain fatty acids (LCFAs), which was in contrast to these molecules’ lower expression in ATGL-targeted mice. We investigated the intracellular metabolism of LCFAs under human ATGL-deficient conditions using patients’ passaged skin fibroblasts as a model. ATGL-deficient cells showed higher uptake and abnormal intracellular transport of LCFA, resulting in massive TG accumulation. We used these findings from cardiac specimens and cell-biological experiments to construct a hypothetical model to clarify the pathophysiology of the human disorder. In patients with TGCV, even when hydrolysis of intracellular TG

  14. Voluntary exercise prevents colonic inflammation in high-fat diet-induced obese mice by up-regulating PPAR-γ activity

    Liu, Wei-Xin, E-mail: weixinliu@yahoo.com [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Wang, Ting; Zhou, Feng; Wang, Ying; Xing, Jun-Wei; Zhang, Shen [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Gu, Shou-Zhi [Department of Anatomy, Seirei Christopher College, Hamamatsu 433-8558 (Japan); Sang, Li-Xuan [Department of Cadre Ward II, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Dai, Cong [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Wang, Hai-Lan [Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong (China)

    2015-04-10

    Obesity is associated with increased colonic inflammation, which elevates the risk of colon cancer. Although exercise exerts anti-inflammatory actions in multiple chronic diseases associated with inflammation, it is unknown whether this strategy prevents colonic inflammation in obesity. We hypothesized that voluntary exercise would suppress colonic inflammation in high-fat diet (HFD)-induced obesity by modulation of peroxisome proliferator-activated receptor (PPAR)-γ. Male C57Bl/6J mice fed either a control diet (6.5% fat, CON) or a high-fat diet (24% fat, HFD) were divided into sedentary, voluntary exercise or voluntary exercise with PPAR-γ antagonist GW9662 (10 mg/kg/day). All interventions took place for 12 weeks. Compared with CON-sedentary group, HFD-sedentary mice gained significantly more body weight and exhibited metabolic disorders. Molecular studies revealed that HFD-sedentary mice had increased expression of inflammatory mediators and activation of nuclear factor (NF)-κB in the colons, which were associated with decreased expression and activity of PPAR-γ. Voluntary exercise markedly attenuated body weight gain, improved metabolic disorders, and normalized the expression of inflammatory mediators and activation of NF-κB in the colons in HFD-mice while having no effects in CON-animals. Moreover, voluntary exercise significantly increased expression and activity of PPAR-γ in the colons in both HFD- and CON-animals. However, all of these beneficial effects induced by voluntary exercise were abolished by GW9662, which inhibited expression and activity of PPAR-γ. The results suggest that decreased PPAR-γ activity in the colon of HFD-induced obesity may facilitate the inflammatory response and colon carcinogenesis. Voluntary exercise prevents colonic inflammation in HFD-induced obesity by up-regulating PPAR-γ activity. - Highlights: • Obesity down-regulates PPAR-γ in the colon. • Down-regulated colonic PPAR-γ may facilitate inflammatory

  15. The potential impact of low dose ionizing γ-radiation on immune response activity up-regulated by Ikaros in IM-9 B lymphocytes

    Kim Sung Jn; Jang, Seon A; Yang, Kwang Hee; Kim, Ji Young; Kim, Cha Soon; Nam, Seon Young; Jeong, Mee Seon; Jin, Young Woo [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., LTD, Seoul (Korea, Republic of)

    2011-11-15

    The biological effects of low dose ionizing radiation (LDIR) remain insufficiently understood. We examined for the scientific evidence to show the biological effects of LDIR using radiation-sensitive immune cells. We found that Ikaros protein was responded to low dose-dependent effects of gamma radiation in IM-9 B lymphocytes. Ikaros encodes zinc finger transcription factors that is important regulators of a hematopoietic stem cells (HSCs) progression to the B lymphoid lineage development, differentiation and proliferation. In this study, we observed that cell proliferation was enhanced from 10% to 20% by LDIR (0.05 Gy) in IM-9 B lymphocytes. The Ikaros protein was phosphorylated in its serine/threonine (S/T) region and decreased its DNA binding activity in the cells exposed to LDIR. We found that Ikaros phosphorylation was up-regulated by CK2/AKT pathway and the residues of ser-304 and ser-306 in Ikaros was phosphorylated by LDIR. We also observed that Ikaros protein was localized from the nucleus to the cytoplasm after LDIR and bound with Autotaxin (ENPP2, ATX) protein, stimulating proliferation, migration and survival of immune cells. In addition, we found that the lysoPLD activity of ATX was dependent on Ikaros-ATX binding activity. These results indicate that the Ikaros is an important regulator of immune activation. Therefore, we suggest that low dose ionizing radiation can be considered as a beneficial effects, stimulating the activation of immune cells.

  16. Inhibitory effect of Chinese green tea on cigarette smoke-induced up-regulation of airway neutrophil elastase and matrix metalloproteinase-12 via antioxidant activity.

    Chan, Ka Ho; Chan, Stanley Chi Hang; Yeung, Sze Chun; Man, Ricky Ying Keung; Ip, Mary Sau Man; Mak, Judith Choi Wo

    2012-09-01

    Our recent study has indicated that Chinese green tea (Lung Chen), in which epigallocatechin-3-gallate (EGCG) accounts for 60% of catechins, protected cigarette smoke-induced lung injury. We now hypothesized that Lung Chen tea may also have potential effect on lung oxidative stress and proteases/anti-proteases in a smoking rat model. Sprague-Dawley rats were exposed to either sham air (SA) or 4% cigarette smoke (CS) plus 2% Lung Chen tea or water by oral gavage. Serine proteases, matrix metalloproteinases (MMPs) and their respective endogenous inhibitors were determined in bronchoalveolar lavage (BAL) and lung tissues by gelatin/casein zymography and biochemical assays. Green tea consumption significantly decreased CS-induced elevation of lung lipid peroxidation marker, malondialdehyde (MDA), and CS-induced up-regulation of neutrophil elastase (NE) concentration and activity along with that of α(1)-antitrypsin (α(1)-AT) and secretory leukoproteinase inhibitor (SLPI) in BAL and lung. In parallel, significant elevation of MMP-12 activity was found in BAL and lung of the CS-exposed group, which returned to the levels of SA-exposed group after green tea consumption but not CS-induced reduction of tissue inhibitor of metalloproteinase (TIMP)-1 activity, which was not reversed by green tea consumption. Taken together, our data supported the presence of local oxidative stress and protease/anti-protease imbalance in the airways after CS exposure, which might be alleviated by green tea consumption through its biological antioxidant activity.

  17. Lipopolysaccharide-induced serotonin transporter up-regulation involves PKG-I and p38MAPK activation partially through A3 adenosine receptor.

    Zhao, Rui; Wang, Shoubao; Huang, Zhonglin; Zhang, Li; Yang, Xiuying; Bai, Xiaoyu; Zhou, Dan; Qin, Zhizhen; Du, Guanhua

    2015-12-01

    Serotonin transporter (SERT) is a critical determinant of synaptic serotonin (5-hydroxytryptamine, 5-HT) inactivation which plays a critical role in the pathology of depression and other mood disorders. Lipopolysaccharide (LPS), a potent activator of the inflammatory system, has been reported to cause depression symptoms by the modulation of SERT in vivo and in vitro. This study is aimed to investigate the underlying mechanism of LPS-induced SERT modulation. The 4-(4-(dimethylamino) styryl)-N-methylpyridinium iodide (ASP) assay was used to detect dynamic 5-HT uptake as read out of SERT activities in RBL-2H3 cells, and cytosol Ca(2+) concentrations ([Ca(2+)]i) and nitric oxide (NO) were examined. Using specific cyclic GMP-dependent protein kinase type I (PKG-I), p38 mitogen-activated protein kinases (p38MAPK) and A3 adenosine receptor (A3AR) inhibitors, SERT expression was evaluated by western blot and immunofluorescence analysis. Results showed that 24 h treatment with LPS stimulated 5-HT transport and up-regulate plasma membrane distribution of SERT in RBL-2H3 cells. LPS treatment increased NO and [Ca(2+)]i, and led to significant increases in levels of phosphorylated calcium/calmodulin-dependent protein kinase type II (CaMK-II), inducible NOS (iNOS) and PKG-I as well as active p38 MAPK. Moreover, PKG-I inhibitor KT5823 or p38MAPK inhibitor SB203580 respectively impaired SERT activation and transposition to plasma membrane by LPS. Notably, A3 adenosine receptor inhibitor MRS1191 also hindered SERT stimulation by LPS. In conclusion, LPS-induced 5-HT uptake and transposition to plasma membrane of SERT in RBL-2H3 cells involves CaMK-II/iNOS/PKG-I and p38 MAPK activation, which may be partially mediated by A3 adenosine receptor activation. This finding provides a novel insight into the interrelationship between LPS and depression.

  18. Innate immune-stimulating and immune genes up-regulating activities of three types of alginate from Sargassum siliquosum in Pacific white shrimp, Litopenaeus vannamei.

    Yudiati, Ervia; Isnansetyo, Alim; Murwantoko; Ayuningtyas; Triyanto; Handayani, Christina Retna

    2016-07-01

    The Total Haemocyte Count (THC), phenoloxidase (PO), Superoxide Dismutase (SOD) activity, Phagocytic Activity/Index and Total Protein Plasma (TPP) were examined after feeding the white shrimp Litopenaeus vannamei with diets supplemented with three different types of alginates (acid, calcium and sodium alginates). Immune-related genes expression was evaluated by quantitative Real Time PCR (qRT-PCR). Results indicated that the immune parameters directly increased according to the doses of alginates and time. The 2.0 g kg(-1) of acid and sodium alginate treatments were gave better results. Four immune-related genes expression i.e. LGBP, Toll, Lectin, proPO were up regulated. It is therefore concluded that the supplementation of alginate of Sargassum siliquosum on the diet of L. vannamei enhanced the innate immunity as well as the expression of immune-related genes. It is the first report on the simultaneous evaluation of three alginate types to enhance innate immune parameters and immune-related genes expression in L. vannamei.

  19. Hypocholesterolemic activity of grape seed proanthocyanidin is mediated by enhancement of bile acid excretion and up-regulation of CYP7A1.

    Jiao, Rui; Zhang, Zesheng; Yu, Hongjian; Huang, Yu; Chen, Zhen-Yu

    2010-11-01

    Interest in grape seed proanthocyanidin (GSP) as a cholesterol-lowering nutraceutical is growing. This study was to investigate the effect of GSP on blood cholesterol level and gene expression of cholesterol-regulating enzymes in Golden Syrian hamsters maintained on a 0.1% cholesterol diet. Results affirmed supplementation of 0.5% or 1.0% GSP could decrease plasma total cholesterol and triacylglycerol level. Western blot and real-time polymerase chain reaction analyses demonstrated GSP did not affect sterol regulatory element binding protein-2 and low-density lipoprotein receptor; however, it increased mRNA 3-hydroxy-3-methylglutaryl coenzyme A reductase. GSP had no effect on the protein mass of liver X receptor alpha (LXRα) but it decreased mRNA LXRα. Most importantly, GSP increased not only the protein level of cholesterol-7α-hydroxylase (CYP7A1) but also mRNA CYP7A1. It was concluded that the hypocholesterolemic activity of GSP was most likely mediated by enhancement of bile acid excretion and up-regulation of CYP7A1.

  20. Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia.

    Striggow, F; Riek-Burchardt, M; Kiesel, A; Schmidt, W; Henrich-Noack, P; Breder, J; Krug, M; Reymann, K G; Reiser, G

    2001-08-01

    A variety of extracellular serine proteases are expressed in the central nervous system or might permeate the blood-brain barrier under pathological conditions. However, their intracerebral targets and physiological functions are largely unknown. Here, we show that four distinct subtypes of protease-activated receptors (PARs) are abundantly expressed in the adult rat brain and in organotypic hippocampal slice cultures. PAR-1 expression was significant in the hippocampus, cortex and amygdala. Highest densities of PAR-2 and PAR-3 were observed in hippocampus, cortex, amygdala, thalamus, hypothalamus and striatum. Apart from the striatum, a similar localization was found for PAR-4. Within the hippocampal formation, each PAR subtype was predominantly localized in the pyramidal cell layers. Additionally, we identified PAR-2 in mossy fibers between dentate gyrus and CA3, PAR-3 in the subiculum and PAR-4 in CA3 and in mossy fibres as well as in the stratum lacunosum moleculare. After exposing hippocampal slice cultures to a severe experimental ischemia (oxygen-glucose deprivation), the expression of PARs 1-3 was up-regulated with subtype-specific kinetics. The localization of PARs in brain regions particularly vulnerable to ischemic insults as well as distinct alterations in the expression pattern after experimental ischemia support the notion of an important role of extracellular serine proteases and PARs in cerebral ischemia.

  1. Ligation of cancer cell surface GRP78 with antibodies directed against its COOH-terminal domain up-regulates p53 activity and promotes apoptosis.

    Misra, Uma Kant; Mowery, Yvonne; Kaczowka, Steven; Pizzo, Salvatore Vincent

    2009-05-01

    Binding of activated α(2)-macroglobulin to GRP78 on the surface of human prostate cancer cells promotes proliferation by activating signaling cascades. Autoantibodies directed against the activated α(2)-macroglobulin binding site in the NH(2)-terminal domain of GRP78 are receptor agonists, and their presence in the sera of cancer patients is a poor prognostic indicator. We now show that antibodies directed against the GRP78 COOH-terminal domain inhibit [(3)H]thymidine uptake and cellular proliferation while promoting apoptosis as measured by DNA fragmentation, Annexin V assay, and clonogenic assay. These antibodies are receptor antagonists blocking autophosphorylation and activation of GRP78. Using 1-LN and DU145 prostate cancer cell lines and A375 melanoma cells, which express GRP78 on their cell surface, we show that antibodies directed against the COOH-terminal domain of GRP78 up-regulate the tumor suppressor protein p53. By contrast, antibody directed against the NH(2)-terminal domain of GRP78 shows negligible effects on p53 expression. PC-3 prostate cancer cells, which do not express GRP78 on their cell surface, are refractory to the effects of anti-GRP78 antibodies directed against either the COOH- or NH(2)-terminal domains. However, overexpression of GRP78 in PC-3 cells causes translocation of GRP78 to the cell surface and promotes apoptosis when these cells are treated with antibody directed against its COOH-terminal domain. Silencing GRP78 or p53 expression by RNA interference significantly blocked the increase in p53 induced by antibodies. Antibodies directed against the COOH-terminal domain may play a therapeutic role in cancer patients whose tumors trigger the production of autoantibodies directed against the NH(2)-terminal domain of GRP78.

  2. Gemfibrozil and fenofibrate, Food and Drug Administration-approved lipid-lowering drugs, up-regulate tripeptidyl-peptidase 1 in brain cells via peroxisome proliferator-activated receptor α: implications for late infantile Batten disease therapy.

    Ghosh, Arunava; Corbett, Grant T; Gonzalez, Frank J; Pahan, Kalipada

    2012-11-09

    The classical late infantile neuronal ceroid lipofuscinosis (LINCLs) is an autosomal recessive disease, where the defective gene is Cln2, encoding tripeptidyl-peptidase I (TPP1). At the molecular level, LINCL is caused by accumulation of autofluorescent storage materials in neurons and other cell types. Currently, there is no established treatment for this fatal disease. This study reveals a novel use of gemfibrozil and fenofibrate, Food and Drug Administration-approved lipid-lowering drugs, in up-regulating TPP1 in brain cells. Both gemfibrozil and fenofibrate up-regulated mRNA, protein, and enzymatic activity of TPP1 in primary mouse neurons and astrocytes as well as human astrocytes and neuronal cells. Because gemfibrozil and fenofibrate are known to activate peroxisome proliferator-activated receptor-α (PPARα), the role of PPARα in gemfibrozil- and fenofibrate-mediated up-regulation of TPP1 was investigated revealing that both drugs up-regulated TPP1 mRNA, protein, and enzymatic activity both in vitro and in vivo in wild type (WT) and PPARβ(-/-), but not PPARα(-/-), mice. In an attempt to delineate the mechanism of TPP1 up-regulation, it was found that the effects of the fibrate drugs were abrogated in the absence of retinoid X receptor-α (RXRα), a molecule known to form a heterodimer with PPARα. Accordingly, all-trans-retinoic acid, alone or together with gemfibrozil, up-regulated TPP1. Co-immunoprecipitation and ChIP studies revealed the formation of a PPARα/RXRα heterodimer and binding of the heterodimer to an RXR-binding site on the Cln2 promoter. Together, this study demonstrates a unique mechanism for the up-regulation of TPP1 by fibrate drugs via PPARα/RXRα pathway.

  3. H2O2-Activated Up-Regulation of Glutathione in Arabidopsis Involves Induction of Genes Encoding Enzymes Involved in Cysteine Synthesis in the Chloroplast

    Guillaume Queval; Dorothée Thominet; Hélène Vanacker; Myroslawa Miginiac-Maslow; Bertrand Gakière; Graham Noctor

    2009-01-01

    Glutathione is a key player in cellular redox homeostasis and, therefore, in the response to H2O2, but the factors regulating oxidation-activated glutathione synthesis are still unclear. We investigated H2O2-induced glutathione synthesis in a conditional Arabidopsis catalase-deficient mutant (cat2). Plants were grown from seed at elevated CO2 for 5 weeks, then transferred to air in either short-day or long-day conditions. Compared to cat2 at elevated CO2 or wild-type plants in any condition, transfer of cat2 to air in both photoperiods caused measurable oxidation of the leaf glutathione pool within hours. Oxidation continued on subsequent days and was accompanied by accumulation of glutathione. This effect was stronger in cat2 transferred to air in short days, and was not linked to appreciable increases in the extractable activities of or transcripts encoding enzymes involved in the committed pathway of glutathione synthesis. In contrast, it was accompanied by increases in serine, O-acetylserine, and cysteine. These changes in metabolites were accompanied by induction of genes encoding adenosine phosphosulfate reductase (APR), particularly APR3, as well as a specific serine acetyltransferase gene (SAT2.1) encoding a chloroplastic SAT. Marked induction of these genes was only observed in cat2 transferred to air in short-day conditions, where cysteine and glutathione accumulation was most dramatic. Unlike other SAT genes, which showed negligible induction in cat2, the relative abundance of APR and SAT2.1 transcripts was closely correlated with marker transcripts for H2O2 signaling. Together, the data underline the importance of cysteine synthesis in oxidant-induced up-regulation of glutathione synthesis and suggest that the chloroplast makes an important contribution to cysteine production under these circumstances.

  4. Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures.

    Lopez-Matas, Maria-Angeles; Nuñez, Paulina; Soto, Alvaro; Allona, Isabel; Casado, Rosa; Collada, Carmen; Guevara, Maria-Angeles; Aragoncillo, Cipriano; Gomez, Luis

    2004-04-01

    Heat shock, and other stresses that cause protein misfolding and aggregation, trigger the accumulation of heat shock proteins (HSPs) in virtually all organisms. Among the HSPs of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. We analyzed the occurrence of sHSPs in vegetative organs of Castanea sativa (sweet chestnut), a temperate woody species that exhibits remarkable freezing tolerance. A constitutive sHSP subject to seasonal periodic changes of abundance was immunodetected in stems. This protein was identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry and internal peptide sequencing as CsHSP17.5, a cytosolic class I sHSP previously described in cotyledons. Expression of the corresponding gene in stems was confirmed through cDNA cloning and reverse transcription-PCR. Stem protein and mRNA profiles indicated that CsHSP17.5 is significantly up-regulated in spring and fall, reaching maximal levels in late summer and, especially, in winter. In addition, cold exposure was found to quickly activate shsp gene expression in both stems and roots of chestnut seedlings kept in growth chambers. Our main finding is that purified CsHSP17.5 is very effective in protecting the cold-labile enzyme lactate dehydrogenase from freeze-induced inactivation (on a molar basis, CsHSP17.5 is about 400 times more effective as cryoprotectant than hen egg-white lysozyme). Consistent with these observations, repeated freezing/thawing did not affect appreciably the chaperone activity of diluted CsHSP17.5 nor its ability to form dodecameric complexes in vitro. Taken together, these results substantiate the hypothesis that sHSPs can play relevant roles in the acquisition of freezing tolerance.

  5. Expression of DIAPH1 is up-regulated in colorectal cancer and its down-regulation strongly reduces the metastatic capacity of colon carcinoma cells.

    Lin, Yuan-Na; Izbicki, Jakob R; König, Alexandra; Habermann, Jens K; Blechner, Christine; Lange, Tobias; Schumacher, Udo; Windhorst, Sabine

    2014-04-01

    In most cases, metastatic colorectal cancer is not curable, thus new approaches are necessary to identify novel targets for colorectal cancer therapy. Actin-binding-proteins (ABPs) directly regulate motility of metastasising tumor cells, and for cortactin an association with colon cancer metastasis has been already shown. However, as its depletion only incompletely inhibits metastasis, additional, more suitable cellular targets have to be identified. Here we analyzed expression of the ABPs, DIAPH1, VASP, N-WASP, and fascin in comparison with cortactin and found that, besides cortactin, DIAPH1 was expressed with the highest frequency (63%) in colorectal cancer. As well as cortactin, DIAPH1 was not detectable in normal colon tissue and expression of both proteins was positively correlated with metastasis of colorectal cancer. To analyse the mechanistic role of DIAPH1 for metastasis of colon carcinoma cells in comparison with cortactin, expression of the proteins was stably down-regulated in the human colon carcinoma cell lines HT-29, HROC-24 and HCT-116. Analysis of metastasis of colon carcinoma cells in SCID mice revealed that depletion of DIAPH1 reduced metastasis 60-fold and depletion of cortactin 16-fold as compared with control cells. Most likely the stronger effect of DIAPH1 depletion on colon cancer metastasis is due to the fact that in vitro knock down of DIAPH1 impaired all steps of metastasis; adhesion, invasion and migration while down-regulation of cortactin only reduced adhesion and invasion. This very strong reducing effect of DIAPH1 depletion on colon carcinoma cell metastasis makes the protein a promising therapeutic target for individualized colorectal cancer therapy.

  6. Irradiation-induced up-regulation of HLA-E on macrovascular endothelial cells confers protection against killing by activated natural killer cells.

    Isabelle Riederer

    -induced, transient up-regulation of HLA-E on macrovascular ECs might confer protection against NK cell-mediated vascular injury.

  7. p38 mitogen-activated protein kinase up-regulates NF-{kappa}B transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    Ji, Guoping [Department of Orthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai 200011 (China); Liu, Dongxu [Department of Orthodontics, College of Stomatology, Shandong University, Jinan, Shandong Province 250012 (China); Liu, Jing [Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province 266075 (China); Gao, Hui [Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin 300041 (China); Yuan, Xiao, E-mail: yuanxiaoqd@163.com [Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province 266075 (China); Shen, Gang, E-mail: ganshen2007@163.com [Department of Orthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai 200011 (China)

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-{kappa}B in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-{kappa}B activation during myogenesis, not through down-regulation of degradation of I{kappa}B-{alpha}, and consequent translocation of the p65 subunit of NF-{kappa}B to the nucleus. It is likely that stretch-induced NF-{kappa}B activation by phosphorylation of p65 NF-{kappa}B. Moreover, depletion of p38{alpha} using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-{kappa}B activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-{kappa}B signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The {alpha} isoform of p38MAP kinase regulates the transcriptional activation of NF-{kappa}B following stimulation with cyclic stretch.

  8. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    Zhang, Shuai [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); Zou, Lihui [Institute of Geriatrics, Beijing Hospital, 1 Dahua Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China); Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); Xiao, Fei [Institute of Geriatrics, Beijing Hospital, 1 Dahua Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China); Wang, Chen, E-mail: chenwangcjfh@163.com [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China)

    2015-03-15

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension.

  9. GL-V9, a new synthetic flavonoid derivative, ameliorates DSS-induced colitis against oxidative stress by up-regulating Trx-1 expression via activation of AMPK/FOXO3a pathway.

    Zhao, Yue; Sun, Yang; Ding, Youxiang; Wang, Xiaoping; Zhou, Yuxin; Li, Wenjun; Huang, Shaoliang; Li, Zhiyu; Kong, Lingyi; Guo, Qinglong; Lu, Na

    2015-09-22

    GL-V9, a new synthesized flavonoid derivative, has been reported to possess anti-cancer properties in our previous studies. Uncontrolled overproduction of reactive oxygen species (ROS) has been implicated in oxidative damage of inflammatory bowel disease (IBD). In this study, we aimed to investigate the protective effect of GL-V9 against dextran sulfate sodium (DSS)-induced colitis. GL-V9 attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. GL-V9 also inhibited inflammatory cells infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities. Moreover, GL-V9 inhibited ROS and malondialdehyde (MDA) generation, but enhanced superoxide dismutase (SOD), glutathione (GSH) and total antioxidant capacity. GL-V9 reduced pro-inflammatory cytokines production in serum and colon as well. Mechanically, GL-V9 could increase Trx-1 via activation of AMPK/FOXO3a to suppress DSS-induced colonic oxidative stress. Furthermore, GL-V9 decreased pro-inflammatory cytokines and ROS production and increased the antioxidant defenses in the mouse macrophage cells RAW264.7 by promoting Trx-1 expression. In conclusion, our study demonstrated that GL-V9 attenuated DSS-induced colitis against oxidative stress by up-regulating Trx-1 via activation of AMPK/FOXO3a pathway, suggesting that GL-V9 might be a potential effective drug for colitis.

  10. Propofol inhibits the activation of p38 through up-regulating the expression of annexin A1 to exert its anti-inflammation effect.

    Jing Tang

    Full Text Available Inflammatory response is a kind of nonspecific immune response, with the central link of vascular response, which is mainly manifested by changes in neutrophils and vascular endothelial cells. In recent years, the in vivo and in vitro role of intravenous anesthetic propofol in inhibiting inflammatory response has been attracting more and more attention, but the anti-inflammatory mechanisms of propofol for mononuclear cells still remain undefined. In this study, proteomics analysis was applied to investigate protein expression profile changes in serum mononuclear cells following intervention of rats with endotoxemia using propofol. After two-dimensional electrophoresis and mass spectrometric identification, it has been found that the protein Annexin A1 was up-regulated in the propofol intervention group. Annexin A1 is a glucocorticoid-dependent anti-inflammatory protein. After detection using ELISA and Western blot assays, it has also been found that propofol can not only promote the expression of Annexin A1, but also inhibit the phosphorylation level of p38 and release of inflammatory factors (IL-1β, IL-6 and TNF-α in rats with endotoxemia. In order to further determine the role of up-regulated expression of Annexin A1 in anti-inflammation of propofol, this gene was silenced in vitro in human THP-1 cells, to detect the phosphorylation status of p38 and release of inflammatory factors. The results show that Annexin A1 can negatively regulate phosphorylation of p38 and release of IL-1β, IL-6 and TNF-α in THP-1 cells following propofol intervention and lipopolysaccharide (LPS stimulation. Our results clearly indicate that propofol can up-regulate Annexin A1 to inhibit the phosphorylation level of p38 and release of IL-1β, IL-6 and TNF-α, so as to inhibit inflammatory response. Therefore, it can be speculated that Annexin A1 might be the key signaling protein in the in vivo and in vitro anti-inflammatory mechanisms of propofol.

  11. beta-Tryptase up-regulates vascular endothelial growth factor expression via proteinase-activated receptor-2 and mitogen-activated protein kinase pathways in bone marrow stromal cells in acute myeloid leukemia.

    Yang, Xiu-Peng; Li, Yan; Wang, Yazhu; Wang, Yue; Wang, Pingping

    2010-08-01

    Tryptases are predominantly mast cell-specific serine proteases with pleiotropic biological activities. Recently, significant amounts of tryptases have been shown to be produced by myeloblasts in certain patients with acute myeloid leukemia (AML), but the function of secreted tryptases in pathological circumstances remains unknown. In this study, we investigated whether beta-tryptase affects the expression of vascular endothelial growth factor (VEGF) in bone marrow stromal cells (BMSCs) in AML. We detected the expression of proteinase-activated receptor-2 (PAR-2) on AML BMSCs and found that beta-tryptase significantly up-regulated VEGF mRNA and protein expression in a dose-dependent manner by real-time PCR, Western blot, and ELISA. Furthermore, beta-tryptase increased ERK1/2 and p38MAPK phosphorylation, and pretreatment with FLLSY-NH(2), PD98059, and SB230580 (PAR-2, ERK1/2, and p38MAPK inhibitors, respectively) inhibited the beta-tryptase-induced production of VEGF. These results suggest that beta-tryptase up-regulates VEGF production in AML BMSCs via the PAR-2, ERK1/2, and p38MAPK signaling pathways.

  12. Up-regulation of endothelin type B receptors in the human internal mammary artery in culture is dependent on protein kinase C and mitogen-activated kinase signaling pathways

    Nilsson, David; Gustafsson, Lotta; Wackenfors, Angelica;

    2008-01-01

    Up-regulation of vascular endothelin type B (ETB) receptors is implicated in the pathogenesis of cardiovascular disease. Culture of intact arteries has been shown to induce similar receptor alterations and has therefore been suggested as a suitable method for, ex vivo, in detail delineation of th...... of the regulation of endothelin receptors. We hypothesize that mitogen-activated kinases (MAPK) and protein kinase C (PKC) are involved in the regulation of endothelin ETB receptors in human internal mammary arteries.......Up-regulation of vascular endothelin type B (ETB) receptors is implicated in the pathogenesis of cardiovascular disease. Culture of intact arteries has been shown to induce similar receptor alterations and has therefore been suggested as a suitable method for, ex vivo, in detail delineation...

  13. Increasing levels of wild-type CREB up-regulates several activity-regulated inhibitor of death (AID genes and promotes neuronal survival

    Tan Yan-Wei

    2012-05-01

    Full Text Available Abstract Background CREB (cAMP-response element binding protein is the prototypical signal-regulated transcription factor. In neurons, it is the target of the synaptic activity-induced nuclear calcium-calcium/calmodulin dependent protein kinase (CaMK IV signaling pathway that controls the expression of genes important for acquired neuroprotection as well as other long-lasting adaptive processes in the nervous system. The function of CREB as a transcriptional activator is controlled by its phosphorylation on serine 133, which can be catalyzed by CaMKIV and leads to the recruitment of the co-activator, CREB binding protein (CBP. Activation of CBP function by nuclear calcium-CaMKIV signaling is a second regulatory step required for CREB/CBP-mediated transcription. Results Here we used recombinant adeno-associated virus (rAAV to increase the levels of wild type CREB or to overexpress a mutant version of CREB (mCREB containing a serine to alanine mutation at position amino acid 133 in mouse hippocampal neurons. Increasing the levels of CREB was sufficient to boost neuroprotective activity even under basal conditions (i.e., in the absence of stimulation of synaptic activity. In contrast, overexpression of mCREB increased cell death. The ratio of phospho(serine 133CREB to CREB immunoreactivity in unstimulated hippocampal neurons was similar for endogenous CREB and overexpressed wild type CREB and, as expected, dramatically reduced for overexpressed mCREB. A gene expression analysis revealed that increased expression of CREB but not that of mCREB in hippocampal neurons led to elevated expression levels of bdnf as well as that of several members of a previously characterized set of Activity-regulated Inhibitor of Death (AID genes, which include atf3, btg2, gadd45β, and gadd45γ. Conclusions Our findings indicate that the expression levels of wild type CREB are a critical determinant of the ability of hippocampal neurons to survive harmful conditions

  14. Nodavirus infection of sea bass (Dicentrarchus labrax) induces up-regulation of galectin-1 expression with potential anti-inflammatory activity.

    Poisa-Beiro, Laura; Dios, Sonia; Ahmed, Hafiz; Vasta, Gerardo R; Martínez-López, Alicia; Estepa, Amparo; Alonso-Gutiérrez, Jorge; Figueras, Antonio; Novoa, Beatriz

    2009-11-15

    Sea bass nervous necrosis virus is the causative agent of viral nervous necrosis, a disease responsible of high economic losses in larval and juvenile stages of cultured sea bass (Dicentrarchus labrax). To identify genes potentially involved in antiviral immune defense, gene expression profiles in response to nodavirus infection were investigated in sea bass head kidney using the suppression subtractive hybridization (SSH) technique. A total of 8.7% of the expressed sequence tags found in the SSH library showed significant similarities with immune genes, of which a prototype galectin (Sbgalectin-1), two C-type lectins (SbCLA and SbCLB) from groups II and VII, respectively, and a short pentraxin (Sbpentraxin) were selected for further characterization. Results of SSH were validated by in vivo up-regulation of expression of Sbgalectin-1, SbCLA, and SbCLB in response to nodavirus infection. To examine the potential role(s) of Sbgalectin-1 in response to nodavirus infection in further detail, the recombinant protein (rSbgalectin-1) was produced, and selected functional assays were conducted. A dose-dependent decrease of respiratory burst was observed in sea bass head kidney leukocytes after incubation with increasing concentrations of rSbgalectin-1. A decrease in IL-1beta, TNF-alpha, and Mx expression was observed in the brain of sea bass simultaneously injected with nodavirus and rSbgalectin-1 compared with those infected with nodavirus alone. Moreover, the protein was detected in the brain from infected fish, which is the main target of the virus. These results suggest a potential anti-inflammatory, protective role of Sbgalectin-1 during viral infection.

  15. Oct-2 transcription factor binding activity and expression up-regulation in rat cerebral ischaemia is associated with a diminution of neuronal damage in vitro.

    Camós, Susanna; Gubern, Carme; Sobrado, Mónica; Rodríguez, Rocío; Romera, Víctor G; Moro, María Ángeles; Lizasoain, Ignacio; Serena, Joaquín; Mallolas, Judith; Castellanos, Mar

    2014-06-01

    Brain plasticity provides a mechanism to compensate for lesions produced as a result of stroke. The present study aims to identify new transcription factors (TFs) following focal cerebral ischaemia in rat as potential therapeutic targets. A transient focal cerebral ischaemia model was used for TF-binding activity and TF-TF interaction profile analysis. A permanent focal cerebral ischaemia model was used for the transcript gene analysis and for the protein study. The identification of TF variants, mRNA analysis, and protein study was performed using conventional polymerase chain reaction (PCR), qPCR, and Western blot and immunofluorescence, respectively. Rat cortical neurons were transfected with small interfering RNA against the TF in order to study its role. The TF-binding analysis revealed a differential binding activity of the octamer family in ischaemic brain in comparison with the control brain samples both in acute and late phases. In this study, we focused on Oct-2 TF. Five of the six putative Oct-2 transcript variants are expressed in both control and ischaemic rat brain, showing a significant increase in the late phase of ischaemia. Oct-2 protein showed neuronal localisation both in control and ischaemic rat brain cortical slices. Functional studies revealed that Oct-2 interacts with TFs involved in important brain processes (neuronal and vascular development) and basic cellular functions and that Oct-2 knockdown promotes neuronal injury. The present study shows that Oct-2 expression and binding activity increase in the late phase of cerebral ischaemia and finds Oct-2 to be involved in reducing ischaemic-mediated neuronal injury.

  16. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice.

    Shen Yon Toh

    Full Text Available Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27(-/- mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse strains. Furthermore, we isolated mouse embryonic fibroblasts (MEFs from wildtype and Fsp27(-/- mice, followed by their differentiation into adipocytes in vitro. We found that Fsp27 is expressed in both brown adipose tissue (BAT and white adipose tissue (WAT and its levels were significantly elevated in the WAT and liver of leptin-deficient ob/ob mice. Fsp27(-/- mice had increased energy expenditure, lower levels of plasma triglycerides and free fatty acids. Furthermore, Fsp27(-/-and Fsp27/lep double-deficient mice are resistant to diet-induced obesity and display increased insulin sensitivity. Moreover, white adipocytes in Fsp27(-/- mice have reduced triglycerides accumulation and smaller lipid droplets, while levels of mitochondrial proteins, mitochondrial size and activity are dramatically increased. We further demonstrated that BAT-specific genes and key metabolic controlling factors such as FoxC2, PPAR and PGC1alpha were all markedly upregulated. In contrast, factors inhibiting BAT differentiation such as Rb, p107 and RIP140 were down-regulated in the WAT of Fsp27(-/- mice. Remarkably, Fsp27(-/- MEFs differentiated in vitro show many brown adipocyte characteristics in the presence of the thyroid hormone triiodothyronine (T3. Our data thus suggest that Fsp27 acts as a novel regulator in vivo to control WAT identity, mitochondrial activity and insulin sensitivity.

  17. Up-regulation of interleukin-8 expressions induced by mast cell tryptase via protease activated receptor-2 in endothelial cell line

    LU Chao; ZHAO Feng-di; LI Xiao-bo; YIN Lian-hua

    2005-01-01

    Background Protease activated receptor-2 is cleaved and activated by trypsin or mast cell tryptase and may play an important role in inflammation. However, it is unknown whetehr PAR-2 can mediate tryptase-induced inflammatory reaction. This study was conduct to investigate wheter PAR-2 could be the activated by mast cell tryptase and medicated the tryptase induced interleukin-8 expression in endothelial cells.Methods Protease activated receptor-2 expression was found in endothelial cell lines ECV304 cell by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. Interleukin-8 stimulated by purified human mast cell tryptase was determined by RT-PCR and enzyme linked immunosorbent assay (ELISA). Data were analysed by the S-N-K one-way ANOVA test.Results The present study shows that mRNA and protein of protease activated receptor-2 could be expressed in ECV304 cells, and tryptase upregulated the expression levels of both interleukin-8 mRNA and protein. The increased expression of interleukin-8 was inhibited by an antiprotease activated receptor-2 monoclonal antibody, SAM11. An additional band was observed by Western blotting after the incubation of ECV304 cells with tryptase for 2 hours, which suggested that protease activated receptor-2 was activated. Conclusion Protease activated receptor-2 can mediate the mast cell tryptase stimulated expression of interleukin-8 in ECV304 cell.

  18. Fisetin up-regulates the expression of adiponectin in 3T3-L1 adipocytes via the activation of silent mating type information regulation 2 homologue 1 (SIRT1)-deacetylase and peroxisome proliferator-activated receptors (PPARs).

    Jin, Taewon; Kim, Oh Yoen; Shin, Min-Jeong; Choi, Eun Young; Lee, Sung Sook; Han, Ye Sun; Chung, Ji Hyung

    2014-10-29

    Adiponectin, an adipokine, has been described as showing physiological benefits against obesity-related malfunctions and vascular dysfunction. Several natural compounds that promote the expression and secretion of adipokines in adipocytes could be useful for treating metabolic disorders. This study investigated the effect of fisetin, a dietary flavonoid, on the regulation of adiponectin in adipocytes using 3T3-L1 preadipocytes. The expression and secretion of adiponectin increased in 3T3-L1 cells upon treatment with fisetin in a dose-dependent manner. Fisetin-induced adiponectin secretion was inhibited by peroxisome proliferator-activated receptor (PPAR) antagonists. It was also revealed that fisetin increased the activities of PPARs and silent mating type information regulation 2 homologue 1 (SIRT1) in a dose-dependent manner. Furthermore, the up-regulation of adiponectin and the activation of PPARs induced by fisetin were prevented by a SIRT1 inhibitor. Fisetin also promoted deacetylation of PPAR γ coactivator 1 (PGC-1) and its interaction with PPARs. SIRT knockdown by siRNA significantly decreased both adiponectin production and PPARs-PGC-1 interaction. These results provide evidence that fisetin promotes the gene expression of adiponectin through the activation of SIRT1 and PPARs in adipocytes.

  19. Chronic epithelial NF-kappaB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation

    Shaked, H.; Hofseth, L.J.; Chumanevich, A.; Chumanevich, A.A.; Wang, J.; Wang, Y.; Taniguchi, K.; Guma, M.; Shenouda, S.; Clevers, H.; Harris, C.C.; Karin, M.

    2012-01-01

    The role of NF-kappaB activation in tumor initiation has not been thoroughly investigated. We generated Ikkbeta(EE)(IEC) transgenic mice expressing constitutively active IkappaB kinase beta (IKKbeta) in intestinal epithelial cells (IECs). Despite absence of destructive colonic inflammation, Ikkbeta(

  20. TNF-α Up-regulates Matrix Metalloproteinase-9 Expression and Activity in Alveolar Macrophages from Patients with Chronic Obstructive Pulmonary Disease

    2006-01-01

    To study the effects of tumor necrosis factor (TNF)-α on matrix metalloproteinase (MMP)-9 expression and activity in alveolar macrophages (AM) and to investigate the role of NF-κB in the induction, AM were collected from bronchoalveolar lavage fluid (BALF) of healthy subjects and patients with chronic obstructive pulmonary disease (COPD). MMP-9 expression and activity were detected by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Western blotting and zymography. NF-κB activity was detected by electrophoretic mobility shift assay (EMSA). MMP-9 expression and activity induced by TNF-α in AM from healthy subjects or patients with COPD were significantly increased in a dose-dependent manner (P<0.05). NF-κB activity induced by TNF-α was significantly increased in AM from patients with COPD, and pyrrolidine dithiocarbamate (PDTC) and N-acetyl-L-cysteine (NAC) significantly inhibited the activation of NF-κB induced by TNF-α (P<0.05). The presents study suggested that the expression and activity of MMP-9 from AM can be induced by TNF-α, and TNF-α/NF-κB signal pathway may play an important role in the induction.

  1. Compensatory up-regulation of cardiac SR Ca2+-pump by heat-shock counteracts SR Ca2+-channel activation by ischemia/reperfusion.

    O'Brien, P J; Li, G O; Locke, M; Klabunde, R E; Ianuzzo, C D

    1997-08-01

    We tested the hypothesis that heat-shock protected myocardial Ca2+-cycling by sarcoplasmic reticulum from ischemia and reperfusion (I/R) injury. Twenty-four hours after increasing body temperature to 42 degrees C for 15 min, rat hearts were isolated, Langendorff-perfused, and subjected to 30 min ischemia then 30 min reperfusion. Left ventricles were homogenized and their ionized Ca2+ concentration monitored with indo- during Ca2+-uptake in the presence and absence of the Ca2+-release channel (CRC) modulator ryanodine. Tissue content of heat-shock protein 72 (HSP 72) was analyzed. Exposure to I/R resulted in a 37% enhancement of CRC activity but no effect on Ca2+-pumping activity, resulting in 25% decreased net Ca2+-uptake activity. Pre-exposure to heat-shock resulted in a 10-fold increase in HSP 72, and a 25% enhancement of maximal Ca2+-pumping activity which counteracted the effect of I/R on CRC and net Ca2+-uptake activities. This protection of SR Ca2+-cycling was associated with partial protection of myocardial physiological performance. Net Ca2+-uptake activity was correlated with the left ventricular developed pressure and its rate of change. We conclude that one of the mechanisms by which heat-shock protects myocardium from I/R injury is to upregulate SR Ca2+-pumping activity to counteract the enhanced SR Ca2+-release produced by I/R.

  2. Protease-activated receptor-2 induces myofibroblast differentiation and tissue factor up-regulation during bleomycin-induced lung injury: Potential role in pulmonary fibrosis

    K. Borensztajn (Keren); P. Bresser (Paul); C.M. van der Loos (Chris); I. Bot (Ilze); B. van den Blink (Bernt); M.A. den Bakker (Michael); J. Daalhuisen (Joost); A.P. Groot (Angelique); M.P. Peppelenbosch (Maikel); J. von der Thusen (Jan); C.A. Spek (Arnold)

    2010-01-01

    textabstractIdiopathic pulmonary fibrosis constitutes the most devastating form of fibrotic lung disorders and remains refractory to current therapies. The coagulation cascade is frequently activated during pulmonary fibrosis, but this observation has so far resisted a mechanistic explanation. Recen

  3. α-Dihydroxychalcone-glycoside (α-DHC) isolated from the heartwood of Pterocarpus marsupium inhibits LPS induced MAPK activation and up regulates HO-1 expression in murine RAW 264.7 macrophage

    Chakraborty, Prarthana; Saraswat, Ghungroo; Kabir, Syed N., E-mail: snkabir@iicb.res.in

    2014-05-15

    Three phenolic glycosides isolated from the heartwood of Pterocarpus marsupium showed significant free radical and superoxide ion scavenging activity and antioxidant potential that were comparable to, or several folds higher than those of standard antioxidants, trolox and ascorbic acid. The effective concentrations of these compounds were far below their cytotoxic levels. Compound 3, which was characterized to be α-dihydroxychalcone-glycoside (α-DHC), was the most potent one. Subsequent studies demonstrated that α-DHC effectively reduced nitric oxide and cytokine production by the LPS stimulated RAW 264.7 mouse macrophage cell line. The compound effectively attenuated the expression of inflammation-mediating enzymes COX-2 and iNOS at the mRNA as well as protein levels in a concentration dependent manner. It prevented phosphorylation of all the three MAPKs (JNK, ERK, p38) and eventually blocked the activation of downstream elements contributing to inflammation. Phosphorylation of IκB-α and subsequent translocation of NF-κB into the nucleus were restricted, while the expression of stress responsive gene HO-1 was up-regulated. α-DHC targeted Keap-1 by modifying its cysteine thiols, dissociating it from Nrf-2 and facilitating nuclear entry of the latter; and this in turn induced HO-1 expression. Thus α-DHC exerts its anti-inflammatory activity in a dual manner: by down regulating MAPKs and restricting nuclear stabilization of NF-κB at one end, and by disrupting Nrf-2–Keap-1 complex on the other. In conclusion, the anti-inflammatory potential together with its high therapeutic index envisages α-DHC as a prospective candidate molecule for the development of therapeutic strategy against inflammatory disorders. - Highlights: • α-DHC isolated from Pterocarpus marsupium has significant antioxidant potential. • α-DHC inhibits NO, IL-6, IL-1β, TNF-α production in LPS-stimulated RAW 264.7 cells. • α-DHC down-regulates of COX-2, iNOS expression in LPS

  4. 1-Bromopropane up-regulates cyclooxygenase-2 expression via NF-κB and C/EBP activation in murine macrophages.

    Han, Eun Hee; Yang, Ji Hye; Kim, Hyung-Kyun; Choi, Jae Ho; Khanal, Tilak; Do, Minh Truong; Chung, Young Chul; Lee, Kwang Youl; Jeong, Tae Cheon; Jeong, Hye Gwang

    2012-05-01

    1-Bromopropane (1-BP) has been used in industry as an alternative to ozone-depleting solvents. In the present study, we examined the effect of 1-BP on cyclooxygenase-2 (COX-2) gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. 1-BP dose-dependently increased COX-2 protein and mRNA levels, as well as COX-2 promoter-driven luciferase activity in macrophages. Additionally, exposure to 1-BP markedly enhanced the production of prostaglandin E(2) (PGE(2)), a major COX-2 metabolite, in macrophages. Transfection experiments with several human COX-2 promoter constructs revealed that 1-BP activated the transcription factors nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein (C/EBP), but not AP-1 or the cyclic AMP response element binding protein. Furthermore, Akt and mitogen-activated protein (MAP) kinases were significantly activated by 1-BP. These results demonstrated that 1-BP induced COX-2 expression via NF-κB and C/EBP activation through the Akt/ERK and p38 MAP kinase pathways. These findings provide further insight into the signal transduction pathways involved in the inflammatory effects of 1-BP.

  5. Chronic epithelial NF-κB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation

    Shaked, Helena; Hofseth, Lorne J.; Chumanevich, Alena; Chumanevich, Alexander A.; Wang, Jin; Wang, Yinsheng; Taniguchi, Koji; Guma, Monica; Shenouda, Steve; Clevers, Hans; Curtis C Harris; Karin, Michael

    2012-01-01

    The role of NF-κB activation in tumor initiation has not been thoroughly investigated. We generated Ikkβ(EE)IEC transgenic mice expressing constitutively active IκB kinase β (IKKβ) in intestinal epithelial cells (IECs). Despite absence of destructive colonic inflammation, Ikkβ(EE)IEC mice developed intestinal tumors after a long latency. However, when crossed to mice with IEC-specific allelic deletion of the adenomatous polyposis coli (Apc) tumor suppressor locus, Ikkβ(EE)IEC mice exhibited m...

  6. Protease-Activated Receptor-2 Induces Myofibroblast Differentiation and Tissue Factor Up-Regulation during Bleomycin-Induced Lung Injury Potential Role in Pulmonary Fibrosis

    Borensztajn, Keren; Bresser, Paul; van der Loos, Chris; Bot, Ilze; van den Blink, Bernt; den Bakker, Michael A.; Daalhuisen, Joost; Groot, Angelique P.; Peppelenbosch, Maikel P.; von der Thusen, Jan H.; Spek, C. Arnold

    2010-01-01

    Idiopathic pulmonary fibrosis constitutes the most devastating form of fibrotic lung disorders and re mains refractory to current therapies The coagula non cascade is frequently activated during pulmonary fibrosis but this observation has so far resisted a mechanistic explanation Recent data suggest

  7. Dexamethasone up-regulates skeletal muscle maximal Na+,K+ pump activity by muscle group specific mechanisms in humans

    Nordsborg, Nikolai; Goodmann, Craig; McKenna, Michael J.

    2005-01-01

    Dexamethasone, a widely clinically used glucocorticoid, increases human skeletal muscle Na+,K+ pump content, but the effects on maximal Na+,K+ pump activity and subunit specific mRNA are unknown. Ten healthy male subjects ingested dexamethasone for 5 days and the effects on Na+,K+ pump content, m...

  8. A peroxisome proliferator-activated receptor ligand MCC-555 imparts anti-proliferative response in pancreatic cancer cells by PPARgamma-independent up-regulation of KLF4

    Min, Kyung-Won [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Zhang, Xiaobo [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100 (China); Imchen, Temjenmongla [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Baek, Seung Joon, E-mail: sbaek2@utk.edu [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States)

    2012-09-01

    MCC-555 is a novel PPARα/γ dual ligand of the thiazolidinedione class and was recently developed as an anti-diabetic drug with unique properties. MCC-555 also has anti-proliferative activity through growth inhibition and apoptosis induction in several cancer cell types. Our group has shown that MCC-555 targets several proteins in colorectal tumorigenesis including nonsteroidal anti-inflammatory drug (NSAID)-activated gene (NAG-1) which plays an important role in chemoprevention responsible for chemopreventive compounds. NAG-1 is a member of the TGF-β superfamily and is involved in tumor progression and development; however, NAG-1's roles in pancreatic cancer have not been studied. In this report, we found that MCC-555 alters not only NAG-1 expression, but also p21 and cyclin D1 expression. NAG-1 and p21 expression was not blocked by PPARγ-specific antagonist GW9662, suggesting that MCC-555-induced NAG-1 and p21 expression is independent of PPARγ activation. However, decreasing cyclin D1 by MCC-555 seems to be affected by PPARγ activation. Further, we found that the GC box located in the NAG-1 promoter play an important role in NAG-1 transactivation by MCC-555. Subsequently, we screened several transcription factors that may bind to the GC box region in the NAG-1 promoter and found that KLF4 potentially binds to this region. Expression of KLF4 precedes NAG-1 and p21 expression in the presence of MCC-555, whereas blocking KLF4 expression using specific KLF4 siRNA showed that both NAG-1 and p21 expression by MCC-555 was blocked. In conclusion, MCC-555's actions on anti-proliferation involve both PPARγ-dependent and -independent pathways, thereby enhancing anti-tumorigenesis in pancreatic cancer cells. -- Highlights: ► PPARα/γ ligand MCC-555 exhibits anti-proliferative activity in pancreatic cancer cells. ► MCC-555 affects KLF4 expression following by NAG-1 and p21 expression in a PPARγ independent manner. ► MCC-555 also affects cyclin D1 down

  9. The TLR4 D299G and T399I SNPs are constitutively active to up-regulate expression of Trif-dependent genes.

    Georgina L Hold

    Full Text Available Dysregulated Toll-Like Receptor (TLR signalling and genetic polymorphisms in these proteins are linked to many human diseases. We investigated TLR4 functional variants D299G and T399I to assess the impact on LPS-induced responsiveness in comparison to wild-type TLR4. The mechanism by which this occurs in unclear as these SNPs do not lie within the lipid A binding domain or dimerisation sites of the LPS-TLR4/MD2 receptor complexes. Transfection of TLR4D299G, TLR4T399I or TLR4D299G. T399I into HEK cells resulted in constitutive activation of an NF-κB reporter gene and a blunting of the LPS-induced reporter activation compared to WT-TLR4. Unstimulated human monocyte/macrophages, from patients with the D299G and T399I SNPs demonstrated a downregulation of many genes, particularly Tram/Trif signalling pathway constitutents compared to the TLR4 wild-type subjects supporting the concept of basal receptor activity. Monocyte/macrophages from carriers of the TLR4 D299G and T399I polymorphisms stimulated with LPS showed >6 fold lower levels of NF-κB and ∼12 fold higher IFN-β gene expression levels compared to wild-type subjects (P<0.05; MWU test and dramatically altered resultant cytokine profiles. We conclude that these TLR4 SNPs affect constitutive receptor activity which impacts on the hosts ability to respond to LPS challenge leading to a dysregulated sub-optimal immune response to infection.

  10. Cathelicidin stimulates colonic mucus synthesis by up-regulating MUC1 and MUC2 expression through a mitogen-activated protein kinase pathway

    CHO Chi-hin

    2008-01-01

    Objective Mucus forms the physical barrier along the gastrointestinal (GI) tract. It plays an important role to prevent mucosal damage and inflammation. Our previous finding showed that antibacterial peptide 'cathelicidin' increased mucus thickness and prevented inflammation in the colon. In the current study, we examined the protective mechanisms by which the peptide increased mucus synthesis in vitro. Methods Human colonic cell line (HT-29) was used to assess the stimulatory action of cathelicidin on mucus synthesis which was measured by the D-[6-3H] glucosamine incorporation assay. Results Human cathelicidin (LL-37) dose-dependently (10-40 μg·mL-1) and significantly stimulated mucus synthesis. Real-time PCR data showed that addition of LL-37 induced more than 50 % increase in MUC1 and MUC2 mRNA levels. Treatment with MUC1 and MUC2 siRNAs normalized the stimulatory action of LL-37 on mucus synthesis. LL-37 also activated the phosphorylation of mitogen-activated protein (MAP) kinase in the cells. A specific inhibitor of the MAP kinase pathway, U0126, completely blocked the increase of MUC1 and MUC2 expression as well as mucus synthesis by LL-37. Conclusions Taken together LL-37 stimulates mucus synthesis through the activation of MUC1 and MUC2 expression and the MAP kinase pathway in human colonic cells.

  11. The anti-inflammatory activity of Phellinus linteus (Berk. & M.A. Curt.) is mediated through the PKCdelta/Nrf2/ARE signaling to up-regulation of heme oxygenase-1.

    Kim, Byung-Chul; Jeon, Woo-Kwang; Hong, Hye-Young; Jeon, Kyung-Bum; Hahn, Jang-Hee; Kim, Young-Myeong; Numazawa, Satoshi; Yosida, Takemi; Park, Eun-Hee; Lim, Chang-Jin

    2007-09-05

    It has been reported that heme oxygenase-1 (HO-1) mediates the anti-inflammatory activity of the n-BuOH subfraction (PL) prepared from fruiting bodies of Phellinus linteus. This continuing work aimed to elucidate the signaling pathway to the up-regulation of HO-1 by PL. In RAW264.7 macrophage cells, PL was able to enhance phosphorylation of protein kinase Cdelta (PKCdelta), but not PKCalpha/betaII, in a time-dependent manner. PL-induced HO-1 expression was dramatically released by GF109203X, a general inhibitor of PKC, and rottlerin, a specific PKCdelta inhibitor but not by Gö6976, a selective inhibitor for PKCalpha/beta. Additionally, PL treatment resulted in a marked increase in antioxidant response element (ARE)-driven transcriptional activity, which was dependent on PKCdelta but not PKCalpha. An increase by PL treatment in the ARE-driven transcriptional activity was further enhanced by Nrf2, whereas it was diminished by Keap1. Furthermore, pretreatment of rottlerin and overexpression of PKCdelta (K376R), a kinase-inactive form of PKCdelta, partly blocked the suppression by PL of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, and iNOS promoter activity, which were elevated in the lypopolysaccharide (LPS)-activated macrophages. Similarly, expression of matrix metalloproteinase-9 (MMP-9) and its promoter activity were suppressed by PL, which were dependent upon PKCdelta. The present findings indicate that Phellinus linteus gives rise to an anti-inflammatory activity though the PKCdelta/Nrf2/ARE signaling to the up-regulation of HO-1 in an in vitro inflammation model.

  12. Up-regulation of stem cell markers by P21-activated kinase 1 contributes to 5-fluorouracil resistance of colorectal cancer.

    Huynh, Nhi; Shulkes, Arthur; Baldwin, Graham; He, Hong

    2016-08-01

    Cancer stem cells (CSC) are tumorigenic and resistant to chemotherapy. In colorectal cancer (CRC), CSCs have been identified by the expression of specific markers, including CD44, Bmi1 and Nanog. Although p21-activated kinase 1 (PAK1), acting downstream of Ras, stimulates Wnt/β-catenin signaling and is known to play an important role in CRC development and progression, the role of PAK1 in the expression of CSC markers has not previously been investigated. The effect of PAK1 over-expression, knockdown or inhibition on the expression or alteration (in the case of CD44) of CSC markers in human CRC cell lines was measured by immunofluorescence and Western blotting. The effect of PAK1 modulation on tumorigenesis, and on resistance to treatment with 5-fluorouracil (5-FU), was measured by sphere formation in vitro and by growth of xenografted tumors in vivo. The results show that PAK1 activity correlated with the expression of CSC markers and the CD44 isoform profile, and with tumor growth both in vitro and in vivo. Furthermore PAK overexpression partially overcame the inhibition of CRC growth by 5-FU, and PAK inhibition was synergistic with 5-FU treatment. Our findings lay the foundation for a combination therapy in which PAK1 inhibitors targeting CSCs may be combined with conventional 5-FU-based chemotherapy for the treatment of CRC.

  13. Corynebacterium pyruviciproducens, as an immune modulator, can promote the activity of macrophages and up-regulate antibody response to particulate antigen.

    Tong, Jia; Han, Qingzhen; Wang, Shengjun; Su, Zhaoliang; Zheng, Dong; Shen, Pei; Xia, Sheng; Huang, Xinxiang; Shao, Qixiang; Xu, Huaxi

    2012-11-01

    Corynebacterium pyruviciproducens is a newly discovered Corynebacterium species with no known pathogenic components such as diphtheria toxin and tuberculostearic acid, and it has similar biological properties to Propionibacterium acnes, but its role of immunoregulation is drawing people's attention. In this work, based on the role of macrophages in removal of pathogenic bacteria as a primary scavenger and particulate antigen-presenting cell, the stimulation of macrophages by C. pyruviciproducens was analyzed through detecting the levels of cytokine secretion and expression of membrane molecules, and the effect of C. pyruviciproducens in promoting antibody response to sheep red blood cells (SRBC) in vivo was detected. In vitro, C. pyruviciproducens led to a sharp release of interleukin-6 and tumour necrosis factor-α and encouraged the activation of macrophages including enhanced expressions of MHC-II, CD40, CD80 and CD86. In vivo, it enhanced the humoral immune response against SRBC, a particulate antigen. These observations suggest that C. pyruviciproducens, as an immunoregulator, can promote the host humoral immune response to pathogenic microorganisms by regulating macrophage function.

  14. Nicotine Elevated Intracellular Ca2+ in Rat Airway Smooth Muscle Cells via Activating and Up-Regulating α7-Nicotinic Acetylcholine Receptor

    Yongliang Jiang

    2014-02-01

    Full Text Available Background: Chronic obstructive pulmonary disease (COPD is characterized by airway remodeling with airway smooth muscle (ASM hypertrophy and hyperplasia. Since tobacco use is the key risk factor for the development of COPD and intracellular Ca2+ concentration ([Ca2+]i plays a major role in both cell proliferation and differentiation, we hypothesized that nicotinic acetylcholine receptor (nAChR activation plays a role in the elevation of [Ca2+]i in airway smooth muscle cells (ASMCs. Methods: We examined the expression of nAChR and characterized the functions of α7-nAChR in ASMCs. Results: RT-PCR analysis showed that α2-7, β2, and β3-nAChR subunits are expressed in rat ASMCs, with α7 being one of the most abundantly expressed subtypes. Chronic nicotine exposure increased α7-nAChR mRNA and protein expression, and elevated resting [Ca2+]i in cultured rat ASMCs. Acute application of nicotine evoked a rapid increase in [Ca2+]i in a concentration-dependent manner, and the response was significantly enhanced in ASMCs cultured with 1 µM nicotine for 48 hours. Nicotine-induced Ca2+ response was reversibly blocked by the α7-nAChR nicotinic antagonists, methyllycaconitine and α-bungarotoxin. Small interfering RNA suppression of α7-nAChR also substantially blunted the Ca2+ responses induced by nicotine. Conclusion: These observations suggest that nicotine elevates [Ca2+]i in ASMCs through α7-nAChR-mediated signals pathways, and highlight the possibility that α7-nAChR can be considered as a potential target for the treatment of airway remodeling.that nicotine elevates [Ca2+]i in ASMCs through α7-nAChR-mediated signals pathways, and highlight the possibility that α7-nAChR can be considered as a potential target for the treatment of airway remodeling.

  15. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase.

    Idelman, Gila; Smith, Darcey L H; Zucker, Stephen D

    2015-08-01

    It has been previously shown that bilirubin prevents the up-regulation of inducible nitric oxide synthase (iNOS) in response to LPS. The present study examines whether this effect is exerted through modulation of Toll-Like Receptor-4 (TLR4) signaling. LPS-stimulated iNOS and NADPH oxidase (Nox) activity in RAW 264.7 murine macrophages was assessed by measuring cellular nitrate and superoxide ( [Formula: see text] ) production, respectively. The generation of both nitrate and [Formula: see text] in response to LPS was suppressed by TLR4 inhibitors, indicating that activation of iNOS and Nox is TLR4-dependent. While treatment with superoxide dismutase (SOD) and bilirubin effectively abolished LPS-mediated [Formula: see text] production, hydrogen peroxide and nitrate release were inhibited by bilirubin and PEG-catalase, but not SOD, supporting that iNOS activation is primarily dependent upon intracellular H2O2. LPS treatment increased nuclear translocation of the redox-sensitive transcription factor Hypoxia Inducible Factor-1α (HIF-1α), an effect that was abolished by bilirubin. Cells transfected with murine iNOS reporter constructs in which the HIF-1α-specific hypoxia response element was disrupted exhibited a blunted response to LPS, supporting that HIF-1α mediates Nox-dependent iNOS expression. Bilirubin, but not SOD, blocked the cellular production of interferon-β, while interleukin-6 production remained unaffected. These data support that bilirubin inhibits the TLR4-mediated up-regulation of iNOS by preventing activation of HIF-1α through scavenging of Nox-derived reactive oxygen species. Bilirubin also suppresses interferon-β release via a ROS-independent mechanism. These findings characterize potential mechanisms for the anti-inflammatory effects of bilirubin.

  16. Up-regulation of hepatic low-density lipoprotein receptor-related protein 1: a possible novel mechanism of antiatherogenic activity of hydroxymethylglutaryl-coenzyme A reductase inhibitor Atorvastatin and hepatic LRP1 expression.

    Moon, Jae Hoon; Kang, Saet Byol; Park, Jong Suk; Lee, Byung Wan; Kang, Eun Seok; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo

    2011-07-01

    Low-density lipoprotein receptor-related protein 1 (LRP1) binds to apolipoprotein E and serves as a receptor for remnant lipoproteins in the liver, thus playing an important role in clearing these atherogenic particles. In this study, we investigated the effect of atorvastatin, a hydroxymethylglutaryl-coenzyme A reductase inhibitor, on hepatic LRP1 expression. We used HepG2 and Hep3B cells for in vitro study, and Otsuka Long-Evans Tokushima fatty and Sprague-Dawley rats for in vivo study. We used relatively high pharmacologic dose of atorvastatin in this study (in vitro, 0.5 μmol/L in culture media, for 48 hours; in vivo, 20 mg/[kg d], for 6 weeks). Atorvastatin increased LRP1 and low-density lipoprotein (LDL) receptor expression in HepG2 and Hep3B cells and induced hepatic LRP1 and LDL receptor expression in chow diet-fed Sprague-Dawley rats and high-fat diet-fed Otsuka Long-Evans Tokushima fatty rats. Atorvastatin decreased intracellular sterol level and increased the amount of the nuclear form of sterol response element-binding protein-2 (SREBP-2) in both HepG2 and Hep3B cells as well as in two animal models. Treatment of HepG2 cells with LDL increased intracellular sterol level and reduced LRP1, LDL receptor, and SREBP-2. When SREBP-2 in HepG2 cells was knocked down by small interfering RNA, the induction of LRP1 expression by atorvastatin did not take place. In conclusion, up-regulation of hepatic LRP1 might be a novel mechanism by which statin treatment decreases remnant lipoproteins. In addition, SREBP-2 acts as a mediator of atorvastatin-induced up-regulation of hepatic LRP1. Future studies using standard doses of atorvastatin in humans are needed to elucidate clinical relevance of these findings.

  17. Rapamycin Sensitizes Glucocorticoid Resistant Acute Lymphoblastic Leukemia CEM-C1 Cells to Dexamethasone Induced Apoptosis through both mTOR Suppression and Up-Regulation and Activation of Glucocorticoid Receptor*

    GUO Xia; ZHOU Chen Yan; LI Qiang; GAO Ju; ZHU Yi Ping; GU Ling; MA Zhi Gui

    2013-01-01

    Objective To explore the role of glucocorticoid (GC) receptor (GR) in rapamycin's reversion of GC resistance in human GC-resistant T-acute lymphoblastic leukemia (ALL) CEM-C1 cells. Methods CEM-C1 cells were cultured in vitro and treated with rapamycin at different concentrations with or without 1 μmol/L dexamethasone (Dex). 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test was performed to assess cell proliferation. The cell cycle and cell apoptosis were analyzed by flow cytometry. The expression of GRα mRNA was determined by real-time quantitative RT-PCR. The expression of GR, p-70S6K, Mcl-1, and Bim proteins was detected by Western blot. Results When incubated with rapamycin at different concentrations, CEM-C1 cells showed significant growth inhibition in a time- and concentration-dependent manner. The growth inhibition was synergistically increased when CEM-C1 cells were treated with rapamycin plus 1 μmol/L Dex. CEM-C1 cells treated with rapamycin alone showed no apparent apoptosis, and were arrested at G0/G1 phase. After the treatment with Dex plus rapamycin, CEM-C1 cells demonstrated apparent apoptosis and increased the cell cycle arrested at G0/G1 phase. Rapamycin combined with Dex up-regulated GRα, phosphorylated GR(p-GR), and pro-apoptotic protein Bim-EL in CEM-C1 cells, but inhibited the expression of p-p70S6K, a downstream target protein of mTOR (mammalian target of rapamycin). Conclusion After the treatment with rapamycin plus Dex, Dex resistant CEM-C1 cells induce growth inhibition and apoptosis. The underlying mechanism may involve inhibition of the mTOR signaling pathway and also be associated with up-regulation of GR expression and activation of GC-GR signaling pathway.

  18. n-Propyl gallate suppresses lipopolysaccharide-induced inducible nitric oxide synthase activation through protein kinase Cδ-mediated up-regulation of heme oxygenase-1 in RAW264.7 macrophages.

    Jeon, Wookwang; Park, Seong Ji; Kim, Byung-Chul

    2017-04-15

    n-Propyl gallate is a synthetic phenolic antioxidant with potential anti-inflammatory effects. However, the underlying mechanism remains largely unknown. In the present study, we showed that n-propyl gallate increases the expression and activity of the heme oxygenase-1 (HO-1), a stress-inducible protein with potent anti-inflammatory activity, in RAW264.7 macrophages. The inhibition of the HO-1 activity by treatment with zinc (II) protoporphyrin IX (ZnPP) or by knockdown of the HO-1 expression with small interference RNA significantly reversed the inhibitory effect of n-Propyl gallate on activations of nuclear factor-κB (NF-κB) and inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide (LPS). An additional mechanism study using inhibitors of signaling kinases revealed the involvement of protein kinase Cδ (PKCδ) in the expression of HO-1 induced by n-Propyl gallate. Consistent with these results, n-Propyl gallate increased the intracellular levels of phosphorylated PKCδ in concentration- and time-dependent manners. The inhibitory effects of n-Propyl gallate on LPS-induced iNOS expression and nitric oxide production were also significantly attenuated by pretreatment with the PKCδ inhibitor, rottlerin, or by transfection with PKCδ (K376R), a kinase-inactive form of PKCδ. Taken together, these findings provide the first evidence that n-Propyl gallate exerts its anti-inflammatory effect through PKCδ-mediated up-regulation of HO-1 in macrophages.

  19. Cocoa flavonoids up-regulate antioxidant enzyme activity via the ERK1/2 pathway to protect against oxidative stress-induced apoptosis in HepG2 cells.

    Martín, María Angeles; Serrano, Ana Belén Granado; Ramos, Sonia; Pulido, María Izquierdo; Bravo, Laura; Goya, Luis

    2010-03-01

    Oxidative stress is widely recognized as an important mediator of apoptosis in liver cells and plays a pivotal role in the pathogenesis of several diseases. Cocoa flavonoids have shown a powerful antioxidant activity providing protection against oxidation and helping prevent oxidative stress-related diseases. However, the molecular mechanisms responsible for this protection are not fully understood. Thus, in this study we investigated the protective effect of a cocoa polyphenolic extract (CPE) against tert-butyl hydroperoxide (t-BOOH)-induced apoptosis and the molecular mechanisms involved in this process. Incubation of HepG2 cells with t-BOOH induced apoptosis as evidenced by caspase-3 activation. This effect was accompanied by increased reactive oxygen species formation and by transient activation of the extracellular regulated kinases (ERKs) as well as sustained activation of the c-Jun N-terminal kinases (JNKs). On the contrary, pretreatment of HepG2 cells with CPE prevented apoptosis through the reduction of reactive oxygen species generation and the modulation of the apoptotic pathways activated by t-BOOH. CPE treatment also activated survival signaling proteins, such as protein kinase B (AKT) and ERKs, and increased the activities of two antioxidant enzymes, glutathione peroxidase (GPx) and glutathione reductase (GR). ERK's implication on GPx and GR induction and the protective effect of CPE against t-BOOH-induced oxidative stress and apoptosis were confirmed through experiments with selective inhibitors. These findings suggest that CPE is an effective inductor of GPx and GR activities via ERK activation and that this up-regulation seems to be required to attenuate t-BOOH-induced injury.

  20. Regulated expression of CXCR4 constitutive active mutants revealed the up-modulated chemotaxis and up-regulation of genes crucial for CXCR4 mediated homing and engraftment of hematopoietic stem/progenitor cells

    Sharma M

    2013-04-01

    Full Text Available SDF-1/CXCR4 axis plays a principle role in the homing and engraftment of hematopoietic stem/progenitor cells (HSPCs, a process that defines cells ability to reach and seed recipient bone marrow niche following their intravenous infusion. However, the proper functioning of CXCR4 downstream signaling depends upon consistent optimal expression of both SDF-1 ligand and its receptor CXCR4, which in turn is variable and regulated by several factors. The constitutive active mutants of CXCR4 (N119A and N119S being able to induce autonomous downstream signaling, overcome the limitation of ligand-receptor interaction for induction of CXCR4 signaling. Therefore, we intended to explore their potential in chemotaxis; a key cellular process which crucially regulates cells homing to bone marrow. In present study, Tet-on inducible gene expression vector system was used for doxycycline inducible regulated transgene expression of CXCR4 active mutants in hematopoietic stem progenitor cell line K-562. Both of these mutants revealed significantly enhanced chemotaxis to SDF-1 gradient as compared to wild type. Furthermore, gene expression profiling of these genetically engineered cells as assessed by microarray analysis revealed the up-regulation of group of genes that are known to play a crucial role in CXCR4 mediated cells homing and engraftment. Hence, this study suggest the potential prospects of CXCR4 active mutants in research and development aimed to improve the efficiency of cells in the mechanism of homing and engraftment process.

  1. An extract of Phellinus linteus grown on germinated brown rice inhibits inflammation markers in RAW264.7 macrophages by suppressing inflammatory cytokines, chemokines, and mediators and up-regulating antioxidant activity.

    Park, Hye-Jin; Han, Eun Su; Park, Dong Ki; Lee, Chan; Lee, Ki Won

    2010-12-01

    The immunomodulatory activity of an organic extract of Phellinus linteus grown on slightly germinated brown rice (PBR) was previously demonstrated. Here, we investigated the possible anti-inflammatory activity of the PBR extract by analyzing its effect on the expression of macrophage-derived cytokines, chemokines, and mediator genes that participate in immune and inflammatory responses and diseases. The extract profoundly inhibited the induction of cytokines and chemokines, including tumor necrosis factor-α, chemokine (C-X-C motif) ligand-10, granulocyte-macrophage colony-stimulating factor, and interleukin-6, in lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells. It also greatly inhibited LPS-stimulated production of nitric oxide (NO) and prostaglandin E(2) in RAW264.7 cells by suppressing the expression of inducible NO synthase and cyclooxygenase-2. PBR extract inhibited NO production with a twofold lower half-maximal inhibitory concentration value than P. linteus extract. To elucidate the underlying mechanism of action, we examined the effect of the PBR extract on the LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) in RAW264.7 cells. PBR extract greatly inhibited extracellular signal-regulated kinase and c-Jun N-terminal kinase phosphorylation and slightly inhibited p38 MAPK phosphorylation. It also significantly increased intracellular glutathione peroxidase activity and heme oxygenase-1 protein expression. Thus, the PBR extract has anti-inflammatory activity in LPS-stimulated RAW264.7 cells by virtue of its ability to suppress the production of inflammatory cytokines and chemokines via inhibition of MAPK activation and up-regulation of antioxidant activities.

  2. The Wilms' Tumor Gene WT1 −17AA/−KTS Splice Variant Increases Tumorigenic Activity Through Up-Regulation of Vascular Endothelial Growth Factor in an In Vivo Ovarian Cancer Model

    Keiko Yamanouchi

    2014-10-01

    Full Text Available The Wilms' tumor 1 gene WT1 encodes a zinc transcription factor involved in a variety of cancer-related processes. In this study, we sought to investigate the effects of WT1 splice variants on tumorigenic activity and survival in an in vivo ovarian cancer model. To this end, we established stable ovarian cancer cell lines transduced with lentiviral constructs containing each of the four WT1 splice variants (−17AA/−KTS, +17AA/−KTS, −17AA/+KTS, and +17AA/+KTS. In mice inoculated intraperitoneally with SKOV3ip1 cells expressing WT1 −17AA/−KTS, disseminated tumor weights and production of ascites were significantly increased compared with those in mice inoculated with cells expressing the control vector. The overall survival in mice inoulated with WT1 −17AA/−KTS-expressing cells was significantly shorter than that in mice inoculated with control cells (P = .0115. Immunoblot analysis revealed that WT1 −17AA/−KTS significantly increased the expression of vascular endothelial growth factor (VEGF compared with the control. Greater numbers of CD31-immunopositive vessels were observed in tumors from mice injected with cells expressing WT1 −17AA/−KTS than in tumors from control mice. Finally, WT1 −17AA/−KTS significantly increased tumor microvessel density compared with that in the control (P < .05. Treatment with anti-VEGF antibody (bevacizumab inhibited tumor growth, dissemination, and ascites production in mice injected with cells expressing WT1 −17AA/−KTS. The overexpression of WT1 −17AA/−KTS induced a more aggressive phenotype in ovarian cancer cells through VEGF up-regulation in an in vivo ovarian cancer model. Our findings indicated that WT1 −17AA/−KTS enhanced tumorigenic activity and could decreased patient survival through up-regulation of VEGF expression in ovarian cancers.

  3. Transforming growth factor-β1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells.

    Park, Seong Ji; Yang, Sun Woo; Kim, Byung-Chul

    2016-04-01

    Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-β1 (TGF-β1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-β1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-β1-induced p27KIP1 expression and cell cycle arrest. TGF-β1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-β1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-β1.

  4. Up-regulation of GLT-1 severely impairs LTD at mossy fibre--CA3 synapses.

    Omrani, Azar; Melone, Marcello; Bellesi, Michele; Safiulina, Victoria; Aida, Tomomi; Tanaka, Kohishi; Cherubini, Enrico; Conti, Fiorenzo

    2009-10-01

    Glutamate transporters are responsible for clearing synaptically released glutamate from the extracellular space. By this action, they maintain low levels of ambient glutamate, thus preventing excitotoxic damage, and contribute to shaping synaptic currents. We show that up-regulation of the glutamate transporter GLT-1 by ceftriaxone severely impaired mGluR-dependent long-term depression (LTD), induced at rat mossy fibre (MF)-CA3 synapses by repetitive stimulation of afferent fibres. This effect involved GLT-1, since LTD was rescued by the selective GLT-1 antagonist dihydrokainate (DHK). DHK per se produced a modest decrease in fEPSP amplitude that rapidly regained control levels after DHK wash out. Moreover, the degree of fEPSP inhibition induced by the low-affinity glutamate receptor antagonist gamma-DGG was similar during basal synaptic transmission but not during LTD, indicating that in ceftriaxone-treated rats LTD induction did not alter synaptic glutamate transient concentration. Furthermore, ceftriaxone-induced GLT-1 up-regulation significantly reduced the magnitude of LTP at MF-CA3 synapses but not at Schaffer collateral-CA1 synapses. Postembedding immunogold studies in rats showed an increased density of gold particles coding for GLT-1a in astrocytic processes and in mossy fibre terminals; in the latter, gold particles were located near and within the active zones. In both CEF-treated and untreated GLT-1 KO mice used for verifying the specificity of immunostaining, the density of gold particles in MF terminals was comparable to background levels. The enhanced expression of GLT-1 at release sites may prevent activation of presynaptic receptors, thus revealing a novel mechanism by which GLT-1 regulates synaptic plasticity in the hippocampus.

  5. Sesamin induces melanogenesis by microphthalmia-associated transcription factor and tyrosinase up-regulation via cAMP signaling pathway

    Zequn Jiang; Shasha Li; Yunyi Liu; Pengyi Deng; Jianguo Huang; Guangyuan He

    2011-01-01

    In this study,we confirmed that sesamin,an active lignan isolated from sesame seed and oil,is a novel skin-tanning compound.The melanin content and tyrosinase activity were increased by sesamin in a dose-dependent manner in B16 melanoma cells.The mRNA and protein levels of tyrosinase were also enhanced after the treatment with sesamin.Western blot analysis revealed that sesamin induced and sustained up-regulation of microphthalmiaassociated transcription factor (MITF).Sesamin could activate cAMP response element (CRE) binding protein (CREB),but it had no effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK) or Akt.Moreover,sesamin activated protein kinase A (PKA) via a cAMP-dependent pathway.Consistent with these results,sesamin-mediated increase of melanin synthesis was reduced significantly by H-89,a PKA inhibitor,but not by SB203580,a p38 MAPK inhibitor or by LY294002,a phosphatidylinositol-3-kinase (PI3K) inhibitor.Sesamin-mediated phosphorylation of CREB and induction of MITF and tyrosinase expression were also inhibited by H-89.These findings indicated that sesamin could stimulate melanogenesis in B16 cells via the up-regulation of MITF and tyrosinase,which was,in turn,due to the activation of cAMP signaling.

  6. Sesamin induces melanogenesis by microphthalmia-associated transcription factor and tyrosinase up-regulation via cAMP signaling pathway.

    Jiang, Zequn; Li, Shasha; Liu, Yunyi; Deng, Pengyi; Huang, Jianguo; He, Guangyuan

    2011-10-01

    In this study, we confirmed that sesamin, an active lignan isolated from sesame seed and oil, is a novel skin-tanning compound. The melanin content and tyrosinase activity were increased by sesamin in a dose-dependent manner in B16 melanoma cells. The mRNA and protein levels of tyrosinase were also enhanced after the treatment with sesamin. Western blot analysis revealed that sesamin induced and sustained up-regulation of microphthalmia-associated transcription factor (MITF). Sesamin could activate cAMP response element (CRE) binding protein (CREB), but it had no effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK) or Akt. Moreover, sesamin activated protein kinase A (PKA) via a cAMP-dependent pathway. Consistent with these results, sesamin-mediated increase of melanin synthesis was reduced significantly by H-89, a PKA inhibitor, but not by SB203580, a p38 MAPK inhibitor or by LY294002, a phosphatidylinositol-3-kinase (PI3K) inhibitor. Sesamin-mediated phosphorylation of CREB and induction of MITF and tyrosinase expression were also inhibited by H-89. These findings indicated that sesamin could stimulate melanogenesis in B16 cells via the up-regulation of MITF and tyrosinase, which was, in turn, due to the activation of cAMP signaling.

  7. Nutraceutical up-regulation of serotonin paradoxically induces compulsive behavior

    The role of diet in either the etiology or treatment of complex mental disorder is highly controversial in psychiatry. However, physiological mechanisms by which diet can influence brain chemistry – particularly that of serotonin – are well established. Here we show that dietary up-regulation of br...

  8. Impaired endothelial shear stress induces podosome assembly via VEGF up-regulation.

    Fey, Theres; Schubert, Kai Michael; Schneider, Holger; Fein, Evelyn; Kleinert, Eike; Pohl, Ulrich; Dendorfer, Andreas

    2016-08-01

    Podosomes are dynamic cytoskeletal membrane structures with local adhesive and proteolytic activity. They are critically involved in angiogenesis and vascular adaptive growth. Here, we studied in HUVECs and murine small vessels whether shear stress controls podosome assembly and local proteolytic activity. Podosomes were characterized by immunohistochemistry, and their proteolytic activity was assessed as degradation imprints in fluorescent gelatin that was used as growth substrate. Compared with controls (10 dyn/cm(2)), the number of podosomes formed per time was doubled when cells were exposed to low shear stress (0.3 dyn/cm(2)) or even increased 5-fold under static conditions. This was a result of an enhanced expression of VEGF after reduction of shear stress. Consequently, enhanced podosome formation could be prevented by a VEGF receptor antagonist as well by interruption of VEGF signaling via inhibition of PI3K, Src, or p38. Increase of podosome assembly went along with significantly augmented cell motility. In vivo experiments in mouse arteries confirmed increased endothelial podosome numbers when shear stress was abolished by vessel occlusion. We conclude that shear stress, by reducing VEGF release, inhibits podosome assembly. Hence, endothelial cell-mediated matrix proteolysis and migratory activity are inhibited, thereby stabilizing the structure of the vessel wall.-Fey, T., Schubert, K. M., Schneider, H., Fein, E., Kleinert, E., Pohl, U., Dendorfer, A. Impaired endothelial shear stress induces podosome assembly via VEGF up-regulation.

  9. MDP Up-Regulates the Gene Expression of Type I Interferons in Human Aortic Endothelial Cells

    Xiumei Xie

    2012-03-01

    Full Text Available Muramyldipeptide (MDP, the minimum essential structure responsible for the immuno-adjuvant activity of peptidoglycan, is recognized by intracellular nuclear-binding oligomerization domain 2 (NOD2. Here, we obtained evidence that the treatment of human aortic endothelial cells (HAECs with MDP up-regulated the gene expression of type I interferons in a dose- and time-dependent manner. MDP also up-regulated the expression of the receptor NOD2, suggesting that MDP may induce a positive feedback response. The up-regulation of interferons was not dependent on the TNFa signaling, as HAECs did not express TNFa with the stimulation of MDP, and TNFa neutralizing antibody did not decrease the induction of IFNs induced by MDP. RT-PCR results showed that HAECs expressed the gene transcripts of interferon regulatory factor (IRF 1, 2, 3, 9. The western blot results showed that MDP induced the phosphorylation of IRF3. These results suggested that MDP induced the up-regulation of gene transcript of interferons through the activation of IRF3 signaling pathway. Meanwhile, MDP induced the gene expression of pro-inflammatory cytokines, including IL-1ß, IL-8, and MCP-1. Taken together, these results suggested that HAECs may play roles in the anti-infection immune response and in the induction of innate immunity.

  10. MDP up-regulates the gene expression of type I interferons in human aortic endothelial cells.

    Lv, Qingshan; Yang, Mei; Liu, Xueting; Zhou, Lina; Xiao, Zhilin; Chen, Xiaobin; Chen, Meifang; Xie, Xiumei; Hu, Jinyue

    2012-03-23

    Muramyldipeptide (MDP), the minimum essential structure responsible for the immuno-adjuvant activity of peptidoglycan, is recognized by intracellular nuclear-binding oligomerization domain 2 (NOD2). Here, we obtained evidence that the treatment of human aortic endothelial cells (HAECs) with MDP up-regulated the gene expression of type I interferons in a dose- and time-dependent manner. MDP also up-regulated the expression of the receptor NOD2, suggesting that MDP may induce a positive feedback response. The up-regulation of interferons was not dependent on the TNFa signaling, as HAECs did not express TNFa with the stimulation of MDP, and TNFa neutralizing antibody did not decrease the induction of IFNs induced by MDP. RT-PCR results showed that HAECs expressed the gene transcripts of interferon regulatory factor (IRF) 1, 2, 3, 9. The western blot results showed that MDP induced the phosphorylation of IRF3. These results suggested that MDP induced the up-regulation of gene transcript of interferons through the activation of IRF3 signaling pathway. Meanwhile, MDP induced the gene expression of pro-inflammatory cytokines, including IL-1ß, IL-8, and MCP-1. Taken together, these results suggested that HAECs may play roles in the anti-infection immune response and in the induction of innate immunity.

  11. Microarray and KOG analysis of Acanthamoeba healyi genes up-regulated by mouse-brain passage.

    Moon, Eun-Kyung; Xuan, Ying-Hua; Kong, Hyun-Hee

    2014-08-01

    Long-term cultivation in a laboratory could reduce the virulence of Acanthamoeba. To identify virulence factors of Acanthamoeba, the authors compared the transcription profiles of long-term cultivated Acanthamoeba healyi (OLD) and three times mouse-brain passaged A. healyi (MBP) using microarray analysis and eukaryotic orthologous group (KOG) assignments. Microarray analysis revealed that 601 genes were up-regulated by mouse-brain passage. The results of real-time PCR of 8 randomly selected genes up-regulated in the MBP strain confirmed microarray analysis findings. KOG assignments showed relatively higher percentages of the MBP strain up-regulated genes in T article (signal transduction mechanism), O article (posttranslational modification, protein turnover, chaperones), C article (energy production and conversion), and J article (translation, ribosomal structure and biogenesis). In particular, the MBP strain showed higher expressions of cysteine protease and metalloprotease. A comparison of KOG assignments by microarray analysis and previous EST (expressed sequence tags) analysis showed similar populations of up-regulated genes. These results provide important information regarding the identification of virulence factors of pathogenic Acanthamoeba.

  12. Slug inhibits the proliferation and tumor formation of human cervical cancer cells by up-regulating the p21/p27 proteins and down-regulating the activity of the Wnt/β-catenin signaling pathway via the trans-suppression Akt1/p-Akt1 expression

    Cui, Nan; Yang, Wen-Ting; Zheng, Peng-Sheng

    2016-01-01

    Slug (Snai2) has been demonstrated to act as an oncogene or tumor suppressor in different human cancers, but the function of Slug in cervical cancer remains poorly understood. In this study, we demonstrated that Slug could suppress the proliferation of cervical cancer cells in vitro and tumor formation in vivo. Further experiments found that Slug could trans-suppress the expression of Akt1/p-Akt1 by binding to E-box motifs in the promoter of the Akt1 gene and then inhibit the cell proliferation and tumor formation of cervical cancer cells by up-regulating p21/p27 and/or down-regulating the activity of the Wnt/β-catenin signaling pathway. Therefore, Slug acts as a tumor suppressor during cervical carcinogenesis. PMID:27036045

  13. Up-regulated miR-145 expression inhibits porcine preadipocytes differentiation by targeting IRS1.

    Guo, Yunxue; Chen, Yaosheng; Zhang, Yun; Zhang, Yue; Chen, Luxi; Mo, Delin

    2012-01-01

    Generally, most miRNAs that were up-regulated during differentiation promoted adipogenesis, but our research indicated that up-regulation of miR-145 in porcine preadipocytes did not promote but inhibit adipogenesis. In this study, miR-145 was significantly up-regulated during porcine dedifferentiated fat (DFAT) cells differentiation. In miR-145 overexpressed DFAT cells, adipogenesis was inhibited and triglycerides accumulation was decreased after hormone stimulation (P<0.05). Furthermore, up-regulation of miR-145 expression repressed induction of mRNA levels of adipogenic markers, such as CCAAT/enhancer-binding protein α (C/EBPα), and peroxisome proliferator-activated receptor γ2 (PPARγ2). These effects caused by miR-145 overexpression were mediated by Insulin receptor substrate 1 (IRS1) as a mechanism. These data suggested that induced miR-145 expression during differentiation could inhibit adipogenesis by targeting IRS1, and miR-145 may be novel agent for adipose tissue engineering.

  14. The emerging role of m-TOR up-regulation in brain Astrocytoma.

    Ryskalin, Larisa; Limanaqi, Fiona; Biagioni, Francesca; Frati, Alessandro; Esposito, Vincenzo; Calierno, Maria Teresa; Lenzi, Paola; Fornai, Francesco

    2017-05-01

    The present manuscript is an overview of various effects of mTOR up-regulation in astrocytoma with an emphasis on its deleterious effects on the proliferation of Glioblastoma Multiforme. The manuscript reports consistent evidence indicating the occurrence of mTOR up-regulation both in experimental and human astrocytoma. The grading of human astrocytoma is discussed in relationship with mTOR up-regulation. In the second part of the manuscript, the biochemical pathways under the influence of mTOR are translated to cell phenotypes which are generated by mTOR up-regulation and reverted by its inhibition. A special section is dedicated to the prominent role of autophagy in mediating the effects of mTOR in glioblastoma. In detail, autophagy inhibition produced by mTOR up-regulation determines the fate of cancer stem cells. On the other hand, biochemical findings disclose the remarkable effects of autophagy activators as powerful inducers of cell differentiation with a strong prevalence towards neuronal phenotypes. Thus, mTOR modulation acts on the neurobiology of glioblastoma just like it operates in vivo at the level of brain stem cell niches by altering autophagy-dependent cell differentiation. In the light of such a critical role of autophagy we analyzed the ubiquitin proteasome system. The merging between autophagy and proteasome generates a novel organelle, named autophagoproteasome which is strongly induced by mTOR inhibitors in glioblastoma cells. Remarkably, when mTOR is maximally inhibited the proteasome component selectively moves within autophagy vacuoles, thus making the proteasome activity dependent on the entry within autophagy compartment.

  15. Compassion-based emotion regulation up-regulates experienced positive affect and associated neural networks.

    Engen, Haakon G; Singer, Tania

    2015-09-01

    Emotion regulation research has primarily focused on techniques that attenuate or modulate the impact of emotional stimuli. Recent evidence suggests that this mode regulation can be problematic in the context of regulation of emotion elicited by the suffering of others, resulting in reduced emotional connectedness. Here, we investigated the effects of an alternative emotion regulation technique based on the up-regulation of positive affect via Compassion-meditation on experiential and neural affective responses to depictions of individuals in distress, and compared these with the established emotion regulation strategy of Reappraisal. Using fMRI, we scanned 15 expert practitioners of Compassion-meditation either passively viewing, or using Compassion-meditation or Reappraisal to modulate their emotional reactions to film clips depicting people in distress. Both strategies effectively, but differentially regulated experienced affect, with Compassion primarily increasing positive and Reappraisal primarily decreasing negative affect. Imaging results showed that Compassion, relative to both passive-viewing and Reappraisal increased activation in regions involved in affiliation, positive affect and reward processing including ventral striatum and medial orbitfrontal cortex. This network was shown to be active prior to stimulus presentation, suggesting that the regulatory mechanism of Compassion is the stimulus-independent endogenous generation of positive affect.

  16. Hepatotoxicity of piperazine designer drugs: up-regulation of key enzymes of cholesterol and lipid biosynthesis.

    Arbo, Marcelo Dutra; Melega, Simone; Stöber, Regina; Schug, Markus; Rempel, Eugen; Rahnenführer, Jörg; Godoy, Patricio; Reif, Raymond; Cadenas, Cristina; de Lourdes Bastos, Maria; Carmo, Helena; Hengstler, Jan G

    2016-12-01

    The piperazine derivatives most frequently consumed for recreational purposes are 1-benzylpiperazine, 1-(3,4-methylenedioxybenzyl) piperazine, 1-(3-trifluoromethylphenyl) piperazine and 1-(4-methoxyphenyl) piperazine. Generally, they are consumed as capsules, tablets or pills but also in powder or liquid forms. Currently, the precise mechanism by which piperazine designer drugs induce hepatotoxicity and whether they act by a common pathway is unclear. To answer this question, we performed a gene array study with rat hepatocytes incubated with the four designer drugs. Non-cytotoxic concentrations were chosen that neither induce a decrease in reduced glutathione or ATP depletion. Analysis of the gene array data showed a large overlap of gene expression alterations induced by the four drugs. This 'piperazine designer drug consensus signature' included 101 up-regulated and 309 down-regulated probe sets (p cholesterol biosynthesis represented a dominant overrepresented motif. Key enzymes of cholesterol biosynthesis up-regulated by all four piperazine drugs include sterol C4-methyloxidase, isopentyl-diphosphate-Δ-isomerase, Cyp51A1, squalene epoxidase and farnesyl diphosphate synthase. Additionally, glycoprotein transmembrane nmb, which participates in cell adhesion processes, and fatty acid desaturase 1, an enzyme that regulates unsaturation of fatty acids, were also up-regulated by the four piperazine designer drugs. Regarding the down-regulated probe sets, only one gene was common to all four piperazine derivatives, the betaine-homocysteine-S-methyltransferase 2. Analysis of transcription factor binding sites of the 'piperazine designer drug consensus signature' identified the sterol regulatory element binding protein (SREBP-1) as strongly overrepresented in the up-regulated genes. SREBP transcription factors are known to regulate multiple genes of cholesterol metabolism. In conclusion, the present study shows that piperazine designer drugs act by up-regulating key

  17. Electroacupuncture Pretreatment Attenuates Cerebral Ischemic Injury via Notch Pathway-Mediated Up-Regulation of Hypoxia Inducible Factor-1α in Rats.

    Zhao, Yu; Deng, Bin; Li, Yichong; Zhou, Lihua; Yang, Lei; Gou, Xingchun; Wang, Qiang; Chen, Guozhong; Xu, Hao; Xu, Lixian

    2015-11-01

    We have reported electroacupuncture (EA) pretreatment induced the tolerance against focal cerebral ischemia through activation of canonical Notch pathway. However, the underlying mechanisms have not been fully understood. Evidences suggest that up-regulation of hypoxia inducible factor-1α (HIF-1α) contributes to neuroprotection against ischemia which could interact with Notch signaling pathway in this process. Therefore, the current study is to test that up-regulation of HIF-1α associated with Notch pathway contributes to the neuroprotection of EA pretreatment. Sprague-Dawley rats were treated with EA at the acupoint "Baihui (GV 20)" 30 min per day for successive 5 days before MCAO. HIF-1α levels were measured before and after reperfusion. Then, HIF-1α antagonist 2ME2 and γ-secretase inhibitor MW167 were used. Neurologic deficit scores, infarction volumes, neuronal apoptosis, and Bcl2/Bax were evaluated. HIF-1α and Notch1 intracellular domain (NICD) were assessed. The results showed EA pretreatment enhanced the neuronal expression of HIF-1α, reduced infarct volume, improved neurological outcome, inhibited neuronal apoptosis, up-regulated expression of Bcl-2, and down-regulated expression of Bax after reperfusion in the penumbra, while the beneficial effects were attenuated by 2ME2. Furthermore, intraventricular injection with MW167 efficiently suppressed both up-regulation of NICD and HIF-1α after reperfusion. However, administration with 2ME2 could only decrease the expression of HIF-1α in the penumbra. In conclusion, EA pretreatment exerts neuroprotection against ischemic injury through Notch pathway-mediated up-regulation of HIF-1α.

  18. Adenosine A(2A receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina.

    Pin-Chien Huang

    Full Text Available BACKGROUND: Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs and retinal ganglion cells (RGCs. The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A(2A receptor (A(2AR regulates retinal waves and whether A(2AR regulation of retinal waves acts via presynaptic SACs. METHODOLOGY/PRINCIPAL FINDINGS: We showed that A(2AR was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A(2AR decreased the frequency of spontaneous Ca²⁺ transients, suggesting that endogenous A(2AR may up-regulate wave frequency. To investigate whether A(2AR acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca²⁺ transient frequency was increased by expressing wild-type A(2AR (A2AR-WT in SACs, suggesting that A(2AR may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A(2AR-WT increased the frequency of wave-associated postsynaptic currents (PSCs or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A(2AR may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A(2AR mutant (A(2AR-ΔC in SACs, the wave frequency was reduced compared to the A(2AR-WT, but was similar to the control, suggesting that the full-length A(2AR in SACs is required for A(2AR up-regulation of retinal waves. CONCLUSIONS/SIGNIFICANCE: A(2AR up-regulates the frequency of retinal waves via

  19. Active structures to reduce torsional vibrations

    Matthias, M.; Schlote, D.; Atzrodt, H.

    2013-03-01

    This paper describes the development of different active measures to reduce torsional vibrations in power trains. The measures are based on concepts developed for active mounts to reduce the transmission of structure-borne sound. To show the potential of these active measures and investigate their mode of operation to influence torsional vibrations, numerical simulations of powertrains with different active measures were done. First experimental results from tests on an experimental (reduced size) power train were used to align the numerical models. The work was done within the project 'LOEWE-Zentrum AdRIA: Adaptronik - Research, Innovation, Application' funded by the German federal state of Hessen, and the Project AKTos: 'Active control of torsional vibrations by coupling elements' placed in the research Framework program 'Navigation and Maritime Technology for the 21st Century' funded by the German Federal Ministry of Economics and Technology.

  20. EGF up-regulates miR-31 through the C/EBPβ signal cascade in oral carcinoma.

    Wen-Cheng Lu

    Full Text Available Oral squamous cell carcinoma (OSCC is one of the most prevalent carcinomas worldwide. MicroRNAs (miRNAs are short, non-coding RNAs that regulate gene expression and modulate physiological or pathological processes including OSCC carcinogenesis. miR-31 has been found to be up-regulated in OSCC and to act as an oncogenic miRNA. However, the molecular mechanism underlying miR-31 up-regulation in OSCC is still obscure. The activation of epidermal growth factor receptor (EGFR signaling axis plays key roles in driving oral carcinogenesis. Our screening identified that there is up-regulation of miR-31, miR-181b and miR-222 in OSCC cells following EGF treatment. Subsequent analysis showed that EGF treatment led to AKT activation, which then resulted in miR-31 up-regulation. Moreover, EGF treatment and the AKT activation induced by exogenous expression up-regulated C/EBPβ expression. The miR-31 up-regulation induced by EGF was abrogated by AKT inhibition or by the knockdown of C/EBPβ expression. In OSCC cell subclones stably overexpressing the functional isoform of C/EBPβ, miR-31 expression was up-regulated. Curcumin is a natural ingredient exhibiting anti-cancer potential. It was found that curcumin attenuated AKT activation and the up-regulation of C/EBPβ and miR-31 caused by EGF stimulation in OSCC cells. Lastly, concordance across the expression of EGFR, the expression of C/EBPβ and the expression of miR-31 in OSCC tissues was found. This study describes a novel scenario where the up-regulation of miR-31 expression in OSCC is, at least in part, a consequence of EGFR oncogenic activation. Although the AKT activation and C/EBPβ expression after EGF treatment might not be directly linked, both events are the crucial mediators underlying miR-31 up-regulation in the EGFR signaling axis.

  1. Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer.

    Takeshi Chiyomaru

    Full Text Available Genistein has been shown to inhibit cancers both in vitro and in vivo, by altering the expression of several microRNAs (miRNAs. In this study, we focused on tumor suppressor miRNAs regulated by genistein and investigated their function in prostate cancer (PCa and target pathways. Using miRNA microarray analysis and real-time RT-PCR we observed that miR-574-3p was significantly up-regulated in PCa cells treated with genistein compared with vehicle control. The expression of miR-574-3p was significantly lower in PCa cell lines and clinical PCa tissues compared with normal prostate cells (RWPE-1 and adjacent normal tissues. Low expression level of miR-574-3p was correlated with advanced tumor stage and higher Gleason score in PCa specimens. Re-expression of miR-574-3p in PCa cells significantly inhibited cell proliferation, migration and invasion in vitro and in vivo. miR-574-3p restoration induced apoptosis through reducing Bcl-xL and activating caspase-9 and caspase-3. Using GeneCodis software analysis, several pathways affected by miR-574-3p were identified, such as 'Pathways in cancer', 'Jak-STAT signaling pathway', and 'Wnt signaling pathway'. Luciferase reporter assays demonstrated that miR-574-3p directly binds to the 3' UTR of several target genes (such as RAC1, EGFR and EP300 that are components of 'Pathways in cancer'. Quantitative real-time PCR and Western analysis showed that the mRNA and protein expression levels of the three target genes in PCa cells were markedly down-regulated with miR-574-3p. Loss-of-function studies demonstrated that the three target genes significantly affect cell proliferation, migration and invasion in PCa cell lines. Our results show that genistein up-regulates tumor suppressor miR-574-3p expression targeting several cell signaling pathways. These findings enhance understanding of how genistein regulates with miRNA in PCa.

  2. SPARC is up-regulated during skeletal muscle regeneration and inhibits myoblast differentiation

    Petersson, Stine Juhl; Jørgensen, Louise Helskov; Andersen, Ditte C;

    2013-01-01

    , Myogenin, NCAM, CD34, and M-Cadherin, all known to be implicated in satellite cell activation/proliferation following muscle damage. This up regulation was detected in more cell types. Ectopic expression of SPARC in the muscle progenitor cell line C2C12 was performed to mimic the high levels of SPARC seen......Skeletal muscle repair is mediated primarily by the muscle stem cell, the satellite cell. Several factors, including extracellular matrix, are known to regulate satellite cell function and regeneration. One factor, the matricellular Secreted Protein Acidic and Rich in Cysteine (SPARC) is highly up......-regulated during skeletal muscle disease, but its function remains elusive. In the present study, we demonstrate a prominent yet transient increase in SPARC mRNA and protein content during skeletal muscle regeneration that correlates with the expression profile of specific muscle factors like MyoD, Myf5, Myf6...

  3. Up-regulation of cyclooxygenase-2 by product-prostaglandin E2

    Tjandrawinata, R. R.; Hughes-Fulford, M.

    1997-01-01

    The development of prostate cancer has been linked to high level of dietary fat intake. Our laboratory investigates the connection between cancer cell growth and fatty acid products. Studying human prostatic carcinoma PC-3 cells, we found that prostaglandin E2 (PGE2) increased cell growth and up-regulated the gene expression of its own synthesizing enzyme, cyclooxygenase-2 (COX-2). PGE2 increased COX-2 mRNA expression dose-dependently with the highest levels of stimulation seen at the 3-hour period following PGE2 addition. The NSAID flurbiprofen (5 microM), in the presence of exogenous PGE2, inhibited the up-regulation of COX-2 mRNA and cell growth. These data suggest that the levels of local intracellular PGE2 play a major role in the growth of prostate cancer cells through an activation of COX-2 gene expression.

  4. Up-regulation of miR-98 and unraveling regulatory mechanisms in gestational diabetes mellitus

    Cao, Jing-Li; Zhang, Lu; Li, Jian; Tian, Shi; Lv, Xiao-Dan; Wang, Xue-Qin; Su, Xing; Li, Ying; Hu, Yi; Ma, Xu; Xia, Hong-Fei

    2016-01-01

    MiR-98 expression was up-regulated in kidney in response to early diabetic nephropathy in mouse and down-regulated in muscle in type 2 diabetes in human. However, the expression prolife and functional role of miR-98 in human gestational diabetes mellitus (GDM) remained unclear. Here, we investigated its expression and function in placental tissues from GDM patients and the possible molecular mechanisms. The results showed that miR-98 was up-regulated in placentas from GDM patients compared with normal placentas. MiR-98 over-expression increased global DNA methylational level and miR-98 knockdown reduced global DNA methylational level. Further investigation revealed that miR-98 could inhibit Mecp2 expression by binding the 3′-untranslated region (UTR) of methyl CpG binding protein 2 (Mecp2), and then led to the expression dysregulation of canonical transient receptor potential 3 (Trpc3), a glucose uptake related gene. More importantly, in vivo analysis found that the expression level of Mecp2 and Trpc3 in placental tissues from GDM patients, relative to the increase of miR-98, was diminished, especially for GDM patients over the age of 35 years. Collectively, up-regulation of miR-98 in the placental tissues of human GDM is linked to the global DNA methylation via targeting Mecp2, which may imply a novel regulatory mechanism in GDM. PMID:27573367

  5. Neurokinin-1 receptor directly mediates glioma cell migration by up-regulation of matrix metalloproteinase-2 (MMP-2) and membrane type 1-matrix metalloproteinase (MT1-MMP).

    Mou, Lingyun; Kang, Yawei; Zhou, Ying; Zeng, Qian; Song, Hongjing; Wang, Rui

    2013-01-04

    Neurokinin-1 receptor (NK1R) occurs naturally on human glioblastomas. Its activation mediates glioma cell proliferation. However, it is unknown whether NK1R is directly involved in tumor cell migration. In this study, we found human hemokinin-1 (hHK-1), via NK1R, dose-dependently promoted the migration of U-251 and U-87 cells. In addition, we showed that hHK-1 enhanced the activity of MMP-2 and the expression of MMP-2 and MT1-matrix metalloproteinase (MMP), which were responsible for cell migration, because neutralizing the MMPs with antibodies decreased cell migration. The involved mechanisms were then investigated. In U-251, hHK-1 induced significant calcium efflux; phospholipase C inhibitor U-73122 reduced the calcium mobilization, the up-regulation of MMP-2 and MT1-MMP, and the cell migration induced by hHK-1, which meant the migration effect of NK1R was mainly mediated through the G(q)-PLC pathway. We further demonstrated that hHK-1 boosted rapid phosphorylation of ERK, JNK, and Akt; inhibition of ERK and Akt effectively reduced MMP-2 induction by hHK-1. Meanwhile, inhibition of ERK, JNK, and Akt reduced the MT1-MMP induction. hHK-1 stimulated significant phosphorylation of p65 and c-JUN in U-251. Reporter gene assays indicated hHK-1 enhanced both AP-1 and NF-κB activity; inhibition of ERK, JNK, and Akt dose-dependently suppressed the NF-κB activity; only the inhibition of ERK significantly suppressed the AP-1 activity. Treatment with specific inhibitors for AP-1 or NF-κB strongly blocked the MMP up-regulation by hHK-1. Taken together, our data suggested NK1R was a potential regulator of human glioma cell migration by the up-regulation of MMP-2 and MT1-MMP.

  6. 顺势疗法药物山金车30C通过上调核苷酸切除修复基因的表达减少紫外线照射后大肠杆菌的DNA损伤%Potential of the homeopathic remedy, Arnica Montana 30C,to reduce DNA damage in Escherichia coli exposed to ultraviolet irradiation through up-regulation of nucleotide excision repair genes

    Sreemanti Das; Santu Kumar Saha; Arnab De; Durba Das; Anisur Rahman Khuda-Bukhs

    2012-01-01

    -exposed bacteria were then supplemented with either AM-30C (drug) or placebo (P-30C).The drug-treated and placebo-treated bacteria were subjected to assay for DNA damage and oxidative stress 90 min after UV exposure.Several protocols like comet assay,gel electrophoresis for DNA ladder and intracellular reactive oxygen species (ROS) generation,and biomarker measurement like superoxide dismutase (SOD),catalase (CAT) and reduced glutathione (GSH) were conducted.The mRNA expressions of the excision repair genes like ultraviolet repair uvrA,B and C genes (or also known as excision repair genes) were estimated by reverse transcription-polymerase chain reaction method.RESULTS:The UV-exposed bacteria showed DNA damage and oxidative stress,as revealed by an increase in ROS generation,and a decrease in SOD,CAT and GSH activities.As compared to placebo,the AM-30C-treated bacteria showed less DNA damage and oxidative stress as manifested by a decrease in ROS generation,and an increase in SOD,CAT and GSH activities.AM-30C also up-regulated the expression of repair genes as compared to the control.CONCLUSION:AM-30C helped repair the DNA damage through up-regulation of repair genesand also ameliorated the oxidative stress through the reduction of ROS generation and suitable modulation of anti-oxidative stress enzymes.

  7. Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression.

    Paradisi, Andrea; Maisse, Carine; Coissieux, Marie-May; Gadot, Nicolas; Lépinasse, Florian; Delloye-Bourgeois, Céline; Delcros, Jean-Guy; Svrcek, Magali; Neufert, Clemens; Fléjou, Jean-François; Scoazec, Jean-Yves; Mehlen, Patrick

    2009-10-06

    Chronic inflammation and cancer are intimately associated. This is particularly true for inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, which show a major increased risk for colorectal cancer. While the understanding of the molecular pathogenesis of IBD has recently improved, the mechanisms that link these chronic inflammatory states to colorectal cancer development are in large part unknown. One of these mechanisms is NF-kappaB pathway activation which in turn may contribute to tumor formation by providing anti-apoptotic survival signals to the epithelial cells. Based on the observation that netrin-1, the anti-apoptotic ligand for the dependence receptors DCC and UNC5H is up-regulated in colonic crypts in response to NF-kappaB, we show here that colorectal cancers from inflammatory bowel diseases patients have selected up-regulation of netrin-1. Moreover, we demonstrate that this inflammation-driven netrin-1 up-regulation is causal for colorectal cancer development as interference with netrin-1 autocrine loop in a mouse model for ulcerative colitis-associated colorectal cancer, while showing no effect on inflammation, inhibits colorectal cancer progression.

  8. SIRT1 expression and activity are up-regulated in the brain tissue of epileptic patients and rat models%SIRT1在癫痫患者及大鼠脑组织中的表达与活性

    陈永平; 谢运兰; 王衡; 陈阳美

    2013-01-01

    Objective To investigate the expression and activity of silent information regulator 1 (SIRT1) in the temporal lobe of epileptic patients and rat models and explore its role in the occurrence and progression of epilepsy. Methods The temporal lobe tissue of epileptic patients and rat models (induced by lithium-pilocarpine) were examined for SERT1 expression using immunohistochemistry and Western blotting and also for SIRT1 activity using SIRT1 Deacetylase Assay Kit. Results Immunohistochemistry detected positive SIRT1 expression mainly in the cytoplasm of the neurons in both human and rat brains, and the epileptic groups showed stronger SIRT1 immunoreactivity than the control group. Western blotting and activity assay showed that the expression and activity of SIRT1 were significantly increased in the temporal lobe of patients with refractory epilepsy as compared with the tissues samples from non-epileptic patients (P0.05). In the rat models of epilepsy, SIRT1 expression was up-regulated at 6, 24, and 72 h and at 7,14, 30, and 60 days after kindling (P<0.05) and SIRT1 activity was significantly increased at 6, 24, and 72 h and at 7 and 14 days (P0.05), with the peak level of SIRT1 expression and activity occurring at 72 h. Conclusion Up-regulation of SIRT1 expression and activity in the temporal lobe of epileptic patients and rat models may play an important role in the pathogenesis of epilepsy.%目的 研究沉默信号调控因子1 (SIRT1)在难治性癫痫患者及癫痫大鼠颞叶脑组织中的表达与活性,探讨其与癫痫发生发展的关系.方法 在难治性癫痫患者及氯化锂-匹罗卡品癫痫大鼠颞叶脑组织中,应用蛋白免疫组织化学、免疫印迹技术检测其表达情况,应用SIRT1去乙酰化活性检测试剂盒检测其活性.结果 蛋白免疫组化结果显示:SIRT1主要表达于人与大鼠神经元细胞浆中,且癫痫组SIRT1的表达明显强于对照组.蛋白免疫印迹及活性检测结果显示:相对

  9. Ursolic acid attenuates diabetic mesangial cell injury through the up-regulation of autophagy via miRNA-21/PTEN/Akt/mTOR suppression.

    Xinxing Lu

    Full Text Available To investigate the effect of ursolic acid on autophagy mediated through the miRNA-21-targeted phosphoinositide 3 kinase (PI3K/protein kinase B (Akt/mammalian target of rapamycin (mTOR pathway in rat mesangial cells cultured under high glucose (HG conditions.Rat glomerular mesangial cells were cultured under normal glucose, HG, HG with the PI3K inhibitor LY294002 or HG with ursolic acid conditions. Cell proliferation and hypertrophy were assayed using an MTT assay and the ratio of total protein to cell number, respectively. The miRNA-21 expression was detected using RT-qPCR. The expression of phosphatase and tensin homolog (PTEN/AKT/mTOR signaling signatures, autophagy-associated protein and collagen I was detected by western blotting and RT-qPCR. Autophagosomes were observed using electron microscopy.Compared with mesangial cells cultured under normal glucose conditions, the cells exposed to HG showed up-regulated miRNA-21 expression, down-regulated PTEN protein and mRNA expression, up-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and down-regulated LC3II expression. Ursolic acid and LY294002 inhibited HG-induced mesangial cell hypertrophy and proliferation, down-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and up-regulated LC3II expression. However, LY294002 did not affect the expression of miRNA-21 and PTEN. Ursolic acid down-regulated miRNA-21 expression and up-regulated PTEN protein and mRNA expression.Ursolic acid inhibits the glucose-induced up-regulation of mesangial cell miRNA-21 expression, up-regulates PTEN expression, inhibits the activation of PI3K/Akt/mTOR signaling pathway, and enhances autophagy to reduce the accumulation of the extracellular matrix and ameliorate cell hypertrophy and proliferation.

  10. Gomisin N enhances TRAIL-induced apoptosis via reactive oxygen species-mediated up-regulation of death receptors 4 and 5.

    Inoue, Hiroki; Waiwut, Pornthip; Saiki, Ikuo; Shimada, Yutaka; Sakurai, Hiroaki

    2012-04-01

    Pharmacological studies have revealed that lignans isolated from Schisandra chinensis, including gomisin N, show anticancer, anti-hepatotoxic, anti-oxidative and anti-inflammatory activities. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an important member of the tumor necrosis factor superfamily with great potential in cancer therapy. The present study investigated whether pretreatment with gomisin N significantly enhanced TRAIL-induced cleavage of caspase-3, caspase-8 and PARP-1, which are key markers of apoptosis. Pretreatment with z-VAD-FMK, a pan-caspase inhibitor, was able to inhibit apoptosis enhanced by the combination of gomisin N and TRAIL. These results suggested that gomisin N could promote TRAIL-induced apoptosis through the caspase cascade. In search of the molecular mechanisms, we elucidated that such enhancement was achieved through transcriptional up-regulation of TRAIL receptors, death receptor 4 (DR4) and DR5. Neutralization of DR4 and DR5 could significantly reduce apoptosis induced by gomisin N and TRAIL. We also revealed that gomisin N increased the generation of reactive oxygen species (ROS). N-acetyl cysteine (NAC), an antioxidant, could inhibit ROS production and up-regulation of DR4 and DR5. Overall, our results indicated that gomisin N was able to potentiate TRAIL-induced apoptosis through ROS-mediated up-regulation of DR4 and DR5.

  11. Reducing Skin Picking via Competing Activities

    Lane, Kathleen Lynne; Thompson, Ada; Reske, Cara L.; Gable, Lauren M.; Barton-Arwood, Sally

    2006-01-01

    This study examined the outcomes of a competing activities intervention to decrease skin picking exhibited by a 9-year-old student with comorbid diagnoses. Results of an ABCBAB design revealed that the use of student-selected manipulatives resulted in reduced skin picking. (Contains 1 figure.)

  12. Genistein, isoflavonoids in soybeans, prevents the formation of excess radiation-induced centrosomes via p21 up-regulation

    Shimada, Mikio; Kato, Akihiro [Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-konoe, Sakyo, Kyoto 606-8501 (Japan); Habu, Toshiyuki [Department of Radiation System Biology, Radiation Biology Center, Kyoto University, Kyoto 606-8501 (Japan); Komatsu, Kenshi, E-mail: komatsu@house.rbc.kyoto-u.ac.jp [Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-konoe, Sakyo, Kyoto 606-8501 (Japan)

    2011-11-01

    The centrosome is a cytoplasmic organelle which duplicates once during each cell cycle, and the presence of excess centrosomes promote chromosome instability through chromosome missegregation following cytokinesis. Ionizing radiation (IR) can induce extra centrosomes by permitting the continuation of CDK2/Cyclin-A/E-mediated centrosome duplication when cells are arrested in the cell cycle after irradiation. The work described here shows that, in addition to IR, extra centrosomes were induced in human U2OS and mouse NIH3T3 cells after treatment with agents which include DNA adduct-forming chemicals: benzopyrene (BP), 4-nitroquinoline 1-oxide (4NQO), a DNA cross linker: cis-diamminedichloro-platinum (cisplatin), topoisomerase inhibitors: camptothecin, etoposide, genistein, and ultra-violet light (UV). These agents were divided into two categories with respect to the regulation of p21, which is an inhibitor of CDK2/Cyclin-A/E: specifically, p21 was up-regulated by an IR exposure and treatment with topoisomerase inhibitors. However, UV, BP, 4NQO and cisplatin down-regulated p21 below basal levels. When cells were irradiated with IR in combination with all of these agents, except genistein, enhanced induction of extra centrosomes was observed, regardless of the nature of p21 expression. Genistein significantly suppressed the frequency of IR-induced extra centrosomes in a dose-dependent manner, and 20 {mu}g/ml of genistein reduced this frequency to 66%. Consistent with this, genistein substantially up-regulated p21 expression over the induction caused by IR alone, while other agents down-regulated or marginally affected this. This suggests the inhibitory effect of genistein on the induction of extra centrosomes occurs through the inactivation of CDK2/Cyclin-A/E via p21 up-regulation. This hypothesis is supported by the observation that p21 knockdown with siRNA reduced the activity of CDK2/Cyclin-A/E and restored the enhanced effect of a combined treatment with genistein

  13. Mutations in BALB mitochondrial DNA induce CCL20 up-regulation promoting tumorigenic phenotypes

    Sligh, James [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Janda, Jaroslav [University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Jandova, Jana, E-mail: jjandova@email.arizona.edu [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States)

    2014-11-15

    -κB activation inhibited CCL20 expression in mtBALB cybrids and decreased their migratory capabilities. Thus, acquired mtDNA mutations may promote tumorigenic phenotypes through up-regulation of chemokine CCL20.

  14. Curcumin Enhances the Radiosensitivity of U87 Cells by Inducing DUSP-2 Up-Regulation

    Yu Qian

    2015-03-01

    Full Text Available Objective: Glioblastoma multiforme (GBM, an aggressive primary brain tumor, is radioresistant and recurs despite aggressive surgery, chemotherapy, and radiotherapy. Curcumin as a potential radiosensitizer has received extensive attention in cancer treatment. To explore an effectiveness of this radiosensitizer for GBM treatment, we evaluated the radiosensitizing effect of curcumin and investigated its potential molecular mechanisms in the human glioma cell line U87. Methods: The cytotoxic effects of curcumin on U87 cells were evaluated using the Cell Counting Kit-8 assay, and the radiosensitivity of U87 cells treated with curcumin was accessed by colony information assay. The effects of curcumin on cell proliferation and cell cycle regulation were determined using the 5-ethynyl-2-deoxyuridine incorporation assay and flow cytometry, respectively. Western blotting was applied to determine the effects of curcumin on protein expression of dual-specificity phosphatase-2 (DUSP-2, extracellular signal-regulated kinase (ERK, and c-Jun N-terminal kinase (JNK as well as phosphorylated ERK and JNK. Results: Curcumin significantly inhibited the proliferation of U87 cells in a dose-and time-dependent manner. Curcumin treatment at the concentrations of 5 µM and 10 M could significantly reduce the clonogenic activity and enhance the radiosensitivity of U87 cells with sensitive enhancement ratios (SERs of 1.71 and 4.65, respectively. Curcumin resulted in G2/M cell cycle arrest in U87 cells, which were radiosensitive. Pre-treatment of U87-MG cells with 5 µM curcumin enhanced radiation-induced cell proliferation inhibition and apoptosis. Furthermore, we observed that curcumin increased DUSP-2 protein expression and decreased the phosphorylation of ERK and JNK. Conclusion: Our results suggest that low-dose curcumin may enhance the radiosensitivity of human glioma U87 cells in vitro by inducing G2/M cell cycle arrest through up-regulation of DUSP-2 expression and

  15. Hypocholesterolemia of Rhizoma Coptidis alkaloids is related to the bile acid by up-regulated CYP7A1 in hyperlipidemic rats.

    Cao, Yang; Bei, Weijian; Hu, Yinming; Cao, Le; Huang, Lihua; Wang, Laiyou; Luo, Duosheng; Chen, Yuanyuan; Yao, Xi; He, Wei; Liu, Xiaobo; Guo, Jiao

    2012-06-15

    This study is to investigate the cholesterol-lowering effect and the new mode of action of coptis alkaloids on high lipid diet-induced hyperlipidemic rats. Coptis alkaloids extract (CAE) was prepared by alcohol extraction from Rhizoma Coptidis that have been quality-controlled according to the protocol. The cholesterol-lowering effect of CAE was evaluated on SD rats fed with high-lipid diet. Serum level of lipid, Bile acid and cholesterol in the liver and feces of the rats were measured using colorimetric assay kit. RT-PCR and Western blot were used to analyze the mRNA and protein expression of cholesterol metabolism-related genes including cholesterol 7α-hydroxylase (CYP7A1), peroxisome proliferator-activated receptor-alpha (PPARα) and farnesoid X receptor (FXR) in the livers of the rats. A HPLC analysis was used to assess the activity of CYP7A1. The results showed that CAE reduced the levels of serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C). CYP7A1 gene expression and its activity was up-regulated dose-dependently accompanying with the increased level of bile acid and the reduced cholesterol level in the livers of the CAE treated hyperlipidemic rats. Meanwhile, the mRNA expression of PPARα was also up-regulated in dose-dependent way accompanying the down-modulation of the FXR mRNA expression in the livers of the CAE treated hyperlipidemic rats. The results indicate that the cholesterol-lowering effect of coptis alkaloid extract is at least partly attributed to its promoting the cholesterol conversion into bile acids by up-regulating the gene expression of CYP7A1 and thus increasing its activity in the liver of the hyperlipidemic rats, which might related to the positive regulation of PPARα and the negative modulation of FXR.

  16. ACTIVITY ATTACK ON REDUCED VARIANTS OF RIJNDAEL

    Wei Baodian; Liu Dongsu; Wang Xinmei

    2004-01-01

    The famous Square attacks against the Rijndael algorithm have taken advantage of the change of the balance of some bytes. Further study shows that the change of activity always happens before the change of balance, which builds the foundation for a new activity attack presented in this paper. In the activity attack, the round in which the activity changes is executed in an equivalent form to avoid the obstructive restriction of the subkeys of that round.The existence of the birthday paradox guarantees much fewer plaintexts necessary for activity attacks comparing with that for corresponding Square attacks. But no benefit may result from the new attacks performed independently because the activity attacks guess four instead of one key byte once. Only when both the balance property and the activity property are exploited at the same time can much better performance be obtained. The better performance in the simulation shows that the consuming time and chosen plaintexts necessary are both reduced to one tenth of those of the corresponding Square attacks. So the activity attacks could be viewed as an efficient supplement to the Square attacks.

  17. Activity of Reducing Steel Slag of EAF

    GUO Chinhsiang; HWANG Chaolung; LIN Tingyi

    2011-01-01

    Reducing steel slag (RSS) was mainly acquired from five electric-arc furnace (EAF)steelmaking plants (among them, the products of two plants were carbon steel and those of other plants were stainless steel) for research tests. The chemical properties, compound compositions, activities and contents of main expansive compounds were tested. The results showed that the field sampled RSS had a very high crystallinity and hydraulicity with main chemical compositions close to those of Portland cement. It can be known from the study that in case of C/S ratio higher than 2.0, the main compound compositions are C2S, C3S, C2F and f-CaO. However, after the RSS was stored for six months, an obvious variation occurred with potential pre-hydration in RSS, where the SO3 content was slightly reduced and the compressive activity index was obviously higher than that at the 28th day.

  18. Mung bean decreases plasma cholesterol by up-regulation of CYP7A1.

    Yao, Yang; Hao, Liu; Shi, Zhenxing; Wang, Lixia; Cheng, Xuzhen; Wang, Suhua; Ren, Guixing

    2014-06-01

    Our results affirmed that supplementation of 1 or 2% mung bean could decrease plasma total cholesterol and triacylglycerol level. Mung bean increased mRNA 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. Most importantly, mung bean increased not only the protein level of cholesterol-7α-hydroxylase (CYP7A1) but also mRNA CYP7A1. It was concluded that the hypocholesterolemic activity of mung bean was most probable mediated by enhancement of bile acid excretion and up-regulation of CYP7A1.

  19. Up-regulation of NAD(P)H quinone oxidoreductase 1 during human liver injury

    Lauren M Aleksunes; Michael Goedken; José E Manautou

    2006-01-01

    AIM: To investigate the expression and activity of NAD(P)H quinone oxidoreductase 1 (NQO1) in human liver specimens obtained from patients with liver damage due to acetaminophen (APAP) overdose or primary biliary cirrhosis (PBC).METHODS: NQO1 activity was determined in cytosol from normal, APAP and PBC liver specimens. Western blot and immunohistochemical staining were used to determine patterns of NQO1 expression using a specific antibody against NQO1.RESULTS: NQO1 protein was very low in normal human livers. In both APAP and PBC livers, there was strong induction of NQO1 protein levels on Western blot.Correspondingly, significant up-regulation of enzyme activity (16- and 22-fold, P< 0.05) was also observed in APAP and PBC livers, respectively. Immunohistochemical analysis highlighted injury-specific patterns of NQO1 staining in both APAP and PBC livers.CONCLUSION: These data demonstrate that NQO1 protein and activity are markedly induced in human livers during both APAP overdose and PBC. Up-regulation of this cytoprotective enzyme may represent an adaptive stress response to limit further disease progression by detoxifying reactive species.

  20. Inflammation-related genes up-regulated in schizophrenia brains

    Kreuger Johan

    2007-09-01

    Full Text Available Abstract Background Multiple studies have shown that brain gene expression is disturbed in subjects suffering from schizophrenia. However, disentangling disease effects from alterations caused by medication is a challenging task. The main goal of this study is to find transcriptional alterations in schizophrenia that are independent of neuroleptic treatment. Methods We compared the transcriptional profiles in brain autopsy samples from 55 control individuals with that from 55 schizophrenic subjects, subdivided according to the type of antipsychotic medication received. Results Using global and high-resolution mRNA quantification techniques, we show that genes involved in immune response (GO:0006955 are up regulated in all groups of patients, including those not treated at the time of death. In particular, IFITM2, IFITM3, SERPINA3, and GBP1 showed increased mRNA levels in schizophrenia (p-values from qPCR ≤ 0.01. These four genes were co-expressed in both schizophrenic subjects and controls. In-vitro experiments suggest that these genes are expressed in both oligodendrocyte and endothelial cells, where transcription is inducible by the inflammatory cytokines TNF-α, IFN-α and IFN-γ. Conclusion Although the modified genes are not classical indicators of chronic or acute inflammation, our results indicate alterations of inflammation-related pathways in schizophrenia. In addition, the observation in oligodendrocyte cells suggests that alterations in inflammatory-related genes may have consequences for myelination. Our findings encourage future research to explore whether anti-inflammatory agents can be used in combination with traditional antipsychotics for a more efficient treatment of schizophrenia.

  1. Cholinergic Abnormalities, Endosomal Alterations and Up-Regulation of Nerve Growth Factor Signaling in Niemann-Pick Type C Disease

    Cabeza Carolina

    2012-03-01

    Full Text Available Abstract Background Neurotrophins and their receptors regulate several aspects of the developing and mature nervous system, including neuronal morphology and survival. Neurotrophin receptors are active in signaling endosomes, which are organelles that propagate neurotrophin signaling along neuronal processes. Defects in the Npc1 gene are associated with the accumulation of cholesterol and lipids in late endosomes and lysosomes, leading to neurodegeneration and Niemann-Pick type C (NPC disease. The aim of this work was to assess whether the endosomal and lysosomal alterations observed in NPC disease disrupt neurotrophin signaling. As models, we used i NPC1-deficient mice to evaluate the central cholinergic septo-hippocampal pathway and its response to nerve growth factor (NGF after axotomy and ii PC12 cells treated with U18666A, a pharmacological cellular model of NPC, stimulated with NGF. Results NPC1-deficient cholinergic cells respond to NGF after axotomy and exhibit increased levels of choline acetyl transferase (ChAT, whose gene is under the control of NGF signaling, compared to wild type cholinergic neurons. This finding was correlated with increased ChAT and phosphorylated Akt in basal forebrain homogenates. In addition, we found that cholinergic neurons from NPC1-deficient mice had disrupted neuronal morphology, suggesting early signs of neurodegeneration. Consistently, PC12 cells treated with U18666A presented a clear NPC cellular phenotype with a prominent endocytic dysfunction that includes an increased size of TrkA-containing endosomes and reduced recycling of the receptor. This result correlates with increased sensitivity to NGF, and, in particular, with up-regulation of the Akt and PLC-γ signaling pathways, increased neurite extension, increased phosphorylation of tau protein and cell death when PC12 cells are differentiated and treated with U18666A. Conclusions Our results suggest that the NPC cellular phenotype causes neuronal

  2. Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation

    Pekcec, A.; Unkrüer, B.; Schlichtiger, J.; Soerensen, J.; Hartz, A.M.S.; Bauer, B.; van Vliet, E.A.; Gorter, J.A.; Potschka, H.

    2009-01-01

    Up-regulation of the blood-brain barrier efflux transporter P-glycoprotein in central nervous system disorders results in restricted brain access and limited efficacy of therapeutic drugs. In epilepsies, seizure activity strongly triggers expression of P-glycoprotein. Here, we identified the prostag

  3. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    Kiso, Hironori [Department of Internal Medicine, Division of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine (Japan); Ohba, Takayoshi [Department of Cell Physiology, Akita University Graduate School of Medicine (Japan); Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka [Department of Internal Medicine, Division of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine (Japan); Murakami, Manabu [Department of Pharmacology, Hirosaki University Graduate School of Medicine (Japan); Ono, Kyoichi [Department of Cell Physiology, Akita University Graduate School of Medicine (Japan); Watanabe, Hiroyuki, E-mail: hirow@doc.med.akita-u.ac.jp [Department of Internal Medicine, Division of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine (Japan); Ito, Hiroshi [Department of Internal Medicine, Division of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine (Japan)

    2013-07-05

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression.

  4. BLT2 up-regulates interleukin-8 production and promotes the invasiveness of breast cancer cells.

    Hyunju Kim

    Full Text Available BACKGROUND: The elevated production of interleukin (IL-8 is critically associated with invasiveness and metastatic potential in breast cancer cells. However, the intracellular signaling pathway responsible for up-regulation of IL-8 production in breast cancer cells has remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we report that the expression of BLT2 is markedly up-regulated in the highly aggressive human breast cancer cell lines MDA-MB-231 and MDA-MB-435 compared with MCF-10A immortalized human mammary epithelial cells, as determined by RT-PCR, real-time PCR and FACS analysis. Blockade of BLT2 with BLT2 siRNA knockdown or BLT2 inhibitor treatment downregulated IL-8 production and thereby diminished the invasiveness of aggressive breast cancer cells, analyzed by Matrigel invasion chamber assays. We further characterized the downstream signaling mechanism by which BLT2 stimulates IL-8 production and identified critical mediatory roles for the generation of reactive oxygen species (ROS and the consequent activation of the transcription factor NF-κB. Moreover, blockade of BLT2 suppressed the formation of metastatic lung nodules by MDA-MB-231 cells in both experimental and orthotopic metastasis models. CONCLUSIONS/SIGNIFICANCE: Taken together, our study demonstrates that a BLT2-ROS-NF-κB pathway up-regulates IL-8 production in MDA-MB-231 and MDA-MB-435 cells, thereby contributing to the invasiveness of these aggressive breast cancer cells. Our findings provide insight into the molecular mechanism of invasiveness in breast cancer.

  5. Salvianolic acid B inhibits mitochondrial dysfunction by up-regulating mortalin

    Liu, Yunxia; Hu, Yingying; E, Qiukai; Zuo, Ji; Yang, Ling; Liu, Wen

    2017-01-01

    Salvianolic acid B is an antioxidative ingredient derived from Radix Salviae miltiorrhizae that has been widely used to treat liver diseases. However, the therapeutic mechanism underlying Salvianolic acid B has remained largely unknown. Our studies verified that Salvianolic acid B efficiently blocked mitochondrial deformation and dysfunction induced by H2O2 in the human hepatocyte cell line HL7702. Mortalin, a mitochondrial molecular chaperone, maintains mitochondrial morphology stabilization and function integrity. Previous results showed that mortalin overexpression has been observed in hematoma carcinoma cells and that mortalin maintains mitochondrial homeostasis and antagonizes oxidative stress damage. We found that Salvianolic acid B significantly up-regulated mortalin protein expression levels. In addition, Salvianolic acid B lost the function of preventing mitochondrial deformation and dysfunction induced by oxidative stress under mortalin knockdown conditions. We further found that mortalin overexpression increases the mRNA expression of mitofusin-related factor Mfn1 and mitofission-related factor hFis1. In conclusion, Salvianolic acid B maintains the mitochondrial structure stabilization and functional integrity by up-regulating mortalin, which may be associated with increased mitofusin factor Mfn1 and reduced mitofission factor hFis1. PMID:28251987

  6. Midazolam inhibits the hypoxia-induced up-regulation of erythropoietin in the central nervous system.

    Matsuyama, Tomonori; Tanaka, Tomoharu; Tatsumi, Kenichiro; Daijo, Hiroki; Kai, Shinichi; Harada, Hiroshi; Fukuda, Kazuhiko

    2015-08-15

    Erythropoietin (EPO), a regulator of red blood cell production, is endogenously expressed in the central nervous system. It is mainly produced by astrocytes under hypoxic conditions and has proven to have neuroprotective and neurotrophic effects. In the present study, we investigated the effect of midazolam on EPO expression in primary cultured astrocytes and the mouse brain. Midazolam was administered to 6-week-old BALB/c male mice under hypoxic conditions and pregnant C57BL/6N mice under normoxic conditions. Primary cultured astrocytes were also treated with midazolam under hypoxic conditions. The expression of EPO mRNA in mice brains and cultured astrocytes was studied. In addition, the expression of hypoxia-inducible factor (HIF), known as the main regulator of EPO, was evaluated. Midazolam significantly reduced the hypoxia-induced up-regulation of EPO in BALB/c mice brains and primary cultured astrocytes and suppressed EPO expression in the fetal brain. Midazolam did not affect the total amount of HIF proteins but significantly inhibited the nuclear expression of HIF-1α and HIF-2α proteins. These results demonstrated the suppressive effects of midazolam on the hypoxia-induced up-regulation of EPO both in vivo and in vitro.

  7. Salvianolic acid B inhibits mitochondrial dysfunction by up-regulating mortalin.

    Liu, Yunxia; Hu, Yingying; E, Qiukai; Zuo, Ji; Yang, Ling; Liu, Wen

    2017-03-02

    Salvianolic acid B is an antioxidative ingredient derived from Radix Salviae miltiorrhizae that has been widely used to treat liver diseases. However, the therapeutic mechanism underlying Salvianolic acid B has remained largely unknown. Our studies verified that Salvianolic acid B efficiently blocked mitochondrial deformation and dysfunction induced by H2O2 in the human hepatocyte cell line HL7702. Mortalin, a mitochondrial molecular chaperone, maintains mitochondrial morphology stabilization and function integrity. Previous results showed that mortalin overexpression has been observed in hematoma carcinoma cells and that mortalin maintains mitochondrial homeostasis and antagonizes oxidative stress damage. We found that Salvianolic acid B significantly up-regulated mortalin protein expression levels. In addition, Salvianolic acid B lost the function of preventing mitochondrial deformation and dysfunction induced by oxidative stress under mortalin knockdown conditions. We further found that mortalin overexpression increases the mRNA expression of mitofusin-related factor Mfn1 and mitofission-related factor hFis1. In conclusion, Salvianolic acid B maintains the mitochondrial structure stabilization and functional integrity by up-regulating mortalin, which may be associated with increased mitofusin factor Mfn1 and reduced mitofission factor hFis1.

  8. Ovulation efficiency is reduced in mice that lack plasminogen activator gene function: functional redundancy among physiological plasminogen activators.

    Leonardsson, G; Peng, X R; Liu, K; Nordström, L; Carmeliet, P; Mulligan, R; Collen, D; Ny, T

    1995-01-01

    Several lines of indirect evidence suggest that plasminogen activation plays a crucial role in degradation of the follicular wall during ovulation. However, single-deficient mice lacking tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), or PA inhibitor type 1(PAI-1) gene function were recently found to have normal reproduction, although mice with a combined deficiency of tPA and uPA were significantly less fertile. To investigate whether the reduced fertility of mice lacking PA gene function is due to a reduced ovulation mechanism, we have determined the ovulation efficiency in 25-day-old mice during gonadotropin-induced ovulation. Our results reveal that ovulation efficiency is normal in mice with a single deficiency of tPA or uPA but reduced by 26% in mice lacking both physiological PAs. This result suggests that plasminogen activation plays a role in ovulatory response, although neither tPA nor uPA individually or in combination is obligatory for ovulation. The loss of an individual PA seems to be functionally complemented by the remaining PA but this compensation does not appear to involve any compensatory up-regulation. Our data imply that a functionally redundant mechanism for plasmin formation operates during gonadotropin-induced ovulation and that PAs together with other proteases generate the proteolytic activity required for follicular wall degradation. Images Fig. 3 Fig. 4 PMID:8618918

  9. Genome-wide methylation and expression profiling identifies promoter characteristics affecting demethylation-induced gene up-regulation in melanoma

    Halaban Ruth

    2010-02-01

    Full Text Available Abstract Background Abberant DNA methylation at CpG dinucleotides represents a common mechanism of transcriptional silencing in cancer. Since CpG methylation is a reversible event, tumor supressor genes that have undergone silencing through this mechanism represent promising targets for epigenetically active anti-cancer therapy. The cytosine analog 5-aza-2'-deoxycytidine (decitabine induces genomic hypomethylation by inhibiting DNA methyltransferase, and is an example of an epigenetic agent that is thought to act by up-regulating silenced genes. Methods It is unclear why decitabine causes some silenced loci to re-express, while others remain inactive. By applying data-mining techniques to large-scale datasets, we attempted to elucidate the qualities of promoter regions that define susceptibility to the drug's action. Our experimental data, derived from melanoma cell strains, consist of genome-wide gene expression data before and after treatment with decitabine, as well as genome-wide data on un-treated promoter methylation status, and validation of specific genes by bisulfite sequencing. Results We show that the combination of promoter CpG content and methylation level informs the ability of decitabine treatment to up-regulate gene expression. Promoters with high methylation levels and intermediate CpG content appear most susceptible to up-regulation by decitabine, whereas few of those highly methylated promoters with high CpG content are up-regulated. For promoters with low methylation levels, those with high CpG content are more likely to be up-regulated, whereas those with low CpG content are underrepresented among up-regulated genes. Conclusions Clinically, elucidating the patterns of action of decitabine could aid in predicting the likelihood of up-regulating epigenetically silenced tumor suppressor genes and others from pathways involved with tumor biology. As a first step toward an eventual translational application, we build a classifier

  10. Substance P stimulates differentiation of mice osteoblast through up-regulating Osterix expression

    SUN Hai-biao; CHEN Jun-chang; Qiang; GUO Min-feng; ZHANG Hua-ping

    2010-01-01

    Objective:To investigate the molecular pathway of substance P(SP)to induce osteoblastic differentiation.Methods:Mesenchymal stem cells were isolated and cultured.The cultures were divided into four groups with Group A(control group)cultured without any factors,Group B cultured with SP,Group C cultured with SP and SP receptor neurokinin-1(NK_1)antagonist,and Group D cultured with SP NK_1 antagonist respectively to induce osteoblastic cells differentiation.Osterix gene expression was detected by reverse transcription-polymerase chain reaction(RT-PCR)for three times after 1-2 weeks of cultivation and the results were analyzed by one-way analysis of variance(ANOVA).Results:The log phase of bone marrow stromal cells appeared at 4-6 days.ALP staining revealed that the majority of cells,more than 95%,were positive and small bluepurple granules were found in the cytoplasm.And Group B,treated with SP,showed a higher level of ALP activity than the other three groups.Meanwhile,RT-PCR found that Osterix expression in Group B was obviously up-regulated,compared with other groups.But Osterix expression in Group D had no remarkable differences,compared with the controls.Conclusions:SP can up-regulate Osterix gene expression to stimulate differentiation of mesenchymal stem cells into osteoblastic cells at the final stage.The regulatory effect of SP on Osterix expression was dependant on SP NK_1 receptors.

  11. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation.

    Wang, Wuyang; Gao, Qiong; Yang, Meimei; Zhang, Xiaoli; Yu, Lu; Lawas, Maria; Li, Xinran; Bryant-Genevier, Marthe; Southall, Noel T; Marugan, Juan; Ferrer, Marc; Xu, Haoxing

    2015-03-17

    Upon nutrient starvation, autophagy digests unwanted cellular components to generate catabolites that are required for housekeeping biosynthesis processes. A complete execution of autophagy demands an enhancement in lysosome function and biogenesis to match the increase in autophagosome formation. Here, we report that mucolipin-1 (also known as TRPML1 or ML1), a Ca(2+) channel in the lysosome that regulates many aspects of lysosomal trafficking, plays a central role in this quality-control process. By using Ca(2+) imaging and whole-lysosome patch clamping, lysosomal Ca(2+) release and ML1 currents were detected within hours of nutrient starvation and were potently up-regulated. In contrast, lysosomal Na(+)-selective currents were not up-regulated. Inhibition of mammalian target of rapamycin (mTOR) or activation of transcription factor EB (TFEB) mimicked a starvation effect in fed cells. The starvation effect also included an increase in lysosomal proteostasis and enhanced clearance of lysosomal storage, including cholesterol accumulation in Niemann-Pick disease type C (NPC) cells. However, this effect was not observed when ML1 was pharmacologically inhibited or genetically deleted. Furthermore, overexpression of ML1 mimicked the starvation effect. Hence, lysosomal adaptation to environmental cues such as nutrient levels requires mTOR/TFEB-dependent, lysosome-to-nucleus regulation of lysosomal ML1 channels and Ca(2+) signaling.

  12. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    Elisabetta Mattei

    Full Text Available Duchenne Muscular Dystrophy (DMD is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  13. Romidepsin reduces histone deacetylase activity, induces acetylation of histones, inhibits proliferation, and activates apoptosis in immortalized epithelial endometriotic cells.

    Imesch, Patrick; Fink, Daniel; Fedier, André

    2010-12-01

    Romidepsin inhibited HDAC activity, produced acetylation of the histone proteins, up-regulated p21, and down-regulated cyclins B1 and D1, resulting in proliferation inhibition and apoptosis activation in 11z immortalized epithelial endometriotic cells. Our findings provide evidence that endometriotic cells are sensitive to the epigenetic effects of romidepsin and suggest that endometriosis may be therapeutically targeted by romidepsin.

  14. Paeonol suppresses chondrosarcoma metastasis through up-regulation of miR-141 by modulating PKCδ and c-Src signaling pathway.

    Horng, Chi-Ting; Shieh, Po-Chuen; Tan, Tzu-Wei; Yang, Wei-Hung; Tang, Chih-Hsin

    2014-07-02

    Chondrosarcoma, a primary malignant bone cancer, has potential for local invasion and distant metastasis, especially to the lungs. Patients diagnosed with it show poor prognosis. Paeonol (2'-hydroxy-4'-methoxyacetophenone), the main active compound of traditional Chinese remedy Paeonia lactiflora Pallas, exhibits anti-inflammatory and anti-tumor activity; whether paeonol regulates metastatic chondrosarcoma is largely unknown. Here, we find paeonol do not increase apoptosis. By contrast, at non-cytotoxic concentrations, paeonol suppresses migration and invasion of chondrosarcoma cells. We also demonstrate paeonol enhancing miR-141 expression and miR-141 inhibitor reversing paeonol-inhibited cell motility; paeonol also reduces protein kinase C (PKC)d and c-Src kinase activity. Since paeonol inhibits migration and invasion of human chondrosarcoma via up-regulation of miR-141 via PKCd and c-Src pathways, it thus might be a novel anti-metastasis agent for treatment of metastatic chondrosarcoma.

  15. Paeonol Suppresses Chondrosarcoma Metastasis through Up-Regulation of miR-141 by Modulating PKCδ and c-Src Signaling Pathway

    Chi-Ting Horng

    2014-07-01

    Full Text Available Chondrosarcoma, a primary malignant bone cancer, has potential for local invasion and distant metastasis, especially to the lungs. Patients diagnosed with it show poor prognosis. Paeonol (2'-hydroxy-4'-methoxyacetophenone, the main active compound of traditional Chinese remedy Paeonia lactiflora Pallas, exhibits anti-inflammatory and anti-tumor activity; whether paeonol regulates metastatic chondrosarcoma is largely unknown. Here, we find paeonol do not increase apoptosis. By contrast, at non-cytotoxic concentrations, paeonol suppresses migration and invasion of chondrosarcoma cells. We also demonstrate paeonol enhancing miR-141 expression and miR-141 inhibitor reversing paeonol-inhibited cell motility; paeonol also reduces protein kinase C (PKCd and c-Src kinase activity. Since paeonol inhibits migration and invasion of human chondrosarcoma via up-regulation of miR-141 via PKCd and c-Src pathways, it thus might be a novel anti-metastasis agent for treatment of metastatic chondrosarcoma.

  16. Up-regulated expression of extracellular matrix remodeling genes in phagocytically challenged trabecular meshwork cells.

    Kristine M Porter

    Full Text Available BACKGROUND: Cells in the trabecular meshwork (TM, the tissue responsible for draining aqueous humor out of the eye, are known to be highly phagocytic. Phagocytic function in TM cells is thought to play an important role in the normal functioning of the outflow pathway. Dysfunction of phagocytosis could lead to abnormalities of outflow resistance and increased intraocular pressure (IOP. However, the molecular mechanisms triggered by phagocytosis in TM cells are completely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression profile analysis of human TM cells phagocytically challenged to E. coli or pigment under physiological and oxidative stress environment were performed using Affymetrix U133 plus 2.0 array and analyzed with Genespring GX. Despite the differential biological response elicited by E. coli and pigment particles, a number of genes, including MMP1, MMP3, TNFSF11, DIO2, KYNU, and KCCN2 showed differential expression with both phagocytic ligands in all conditions. Data was confirmed by qPCR in both human and porcine TM cells. Metacore pathway analysis and the usage of recombinant adenovirus encoding the dominant negative mutant of IkB identified NF-κB as a transcription factor mediating the up-regulation of at least MMP1 and MMP3 in TM cells with phagocytosis. In-gel zymography demonstrated increased collagenolytic and caseinolytic activities in the culture media of TM cells challenge to E. coli. In addition, collagenolytic I activity was further confirmed using the self-quenched fluorescent substrate DQ-Collagen I. CONCLUSIONS/SIGNIFICANCE: Here we report for the first time the differential gene expression profile of TM cells phagocytically challenged with either E. coli or pigment. Our data indicate a potential role of phagocytosis in outflow pathway tissue homeostasis through the up-regulation and/or proteolytic activation of extracellular matrix remodeling genes.

  17. Up-regulation of reciprocal inhibition by explosive strength training

    Geertsen, Svend Sparre; Jensen, Jesper Lundbye; Nielsen, Jens Bo

    At the onset of dorsiflexion disynaptic reciprocal inhibition (DRI) of soleus motoneurones is increased in order to prevent activation of the antagonistic plantarflexors. This is caused by descending facilitation of transmission in the DRI pathway. Since the risk of eliciting stretch reflexes...

  18. Transforming growth factor-β stimulates human ovarian cancer cell migration by up-regulating connexin43 expression via Smad2/3 signaling.

    Qiu, Xin; Cheng, Jung-Chien; Zhao, Jianfang; Chang, Hsun-Ming; Leung, Peter C K

    2015-10-01

    Reduced connexin43 (Cx43) expression is frequently detected in different types of human cancer. Cx43 has been shown to regulate cancer cell migration in a cell-type dependent manner. In both primary and recurrent human ovarian cancer, overexpression of TGF-β ligand and its receptors have been detected. TGF-β can regulate Cx43 expression in other cell types and stimulate human ovarian cancer cell migration. However, whether Cx43 can be regulated by TGF-β and is involved in TGF-β-stimulated cell migration in human ovarian cancer cells remain unknown. In this study, we demonstrate that TGF-β up-regulates Cx43 in two human ovarian cancer cell lines, SKOV3 and OVCAR4. The stimulatory effect of TGF-β on Cx43 expression is blocked by inhibition of TGF-β receptor. Treatment with TGF-β activates Smad2 and Smad3 signaling pathways in both ovarian cancer cell lines. In addition, siRNA-mediated knockdown of Smad2 or Smd3 abolishes TGF-β-induced up-regulation of Cx43 expression. Moreover, knockdown of Cx43 attenuates TGF-β-stimulated cell migration. This study demonstrates an important role for Cx43 in mediating the effects of TGF-β on human ovarian cancer cell migration.

  19. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation.

    Sachiko Hirai

    Full Text Available Up-regulated sirtuin 1 (SIRT1, an NAD+-dependent class III histone deacetylase, deacetylates p53 and inhibits its transcriptional activity, leading to cell survival. SIRT1 overexpression has been reported to predict poor survival in some malignancies, including gastric cancer. However, the antitumor effect of SIRT1 inhibition remains elusive in gastric cancer. Here, we investigated the antitumor mechanisms of a sirtuin inhibitor, tenovin-6, in seven human gastric cancer cell lines (four cell lines with wild-type TP53, two with mutant-type TP53, and one with null TP53. Interestingly, tenovin-6 induced apoptosis in all cell lines, not only those with wild-type TP53, but also mutant-type and null versions, accompanied by up-regulation of death receptor 5 (DR5. In the KatoIII cell line (TP53-null, DR5 silencing markedly attenuated tenovin-6-induced apoptosis, suggesting that the pivotal mechanism behind its antitumor effects is based on activation of the death receptor signal pathway. Although endoplasmic reticulum stress caused by sirtuin inhibitors was reported to induce DR5 up-regulation in other cancer cell lines, we could not find marked activation of its related molecules, such as ATF6, PERK, and CHOP, in gastric cancer cells treated with tenovin-6. Tenovin-6 in combination with docetaxel or SN-38 exerted a slight to moderate synergistic cytotoxicity against gastric cancer cells. In conclusion, tenovin-6 has potent antitumor activity against human gastric cancer cells via DR5 up-regulation. Our results should be helpful for the future clinical development of sirtuin inhibitors.

  20. Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth

    Haixia Zhou; Yue Ge; Lili Sun; Wenjuan Ma; Jie Wu; Xiuyan Zhang; Xiaohui Hu; Eaves, Connie J; Depei Wu; Yun Zhao

    2014-01-01

    Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML), the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2) regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34+ progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form o...

  1. Activation of PPARalpha and PPARgamma reduces triacylglycerol synthesis in rat hepatoma cells by reduction of nuclear SREBP-1.

    König, Bettina; Koch, Alexander; Spielmann, Julia; Hilgenfeld, Christian; Hirche, Frank; Stangl, Gabriele I; Eder, Klaus

    2009-03-01

    Fibrates and thiazolidinediones, agonists of PPARalpha and PPARgamma, respectively, reduce triglyceride concentrations in rat liver and plasma. Fatty acid and triacylglycerol synthesis in mammals is regulated by sterol regulatory element-binding protein (SREBP)-1c. Recently, it was shown that insulin-induced gene (Insig)-1, the key regulator of SREBP activity, is up-regulated by both activation of PPARalpha and PPARgamma. In order to elucidate whether inhibition of SREBP-1 activation may contribute to the triacylglycerol lowering effect of PPARalpha and PPARgamma agonists, we incubated rat hepatoma Fao cells with WY 14,643 and troglitazone, strong and selective agonists of PPARalpha and PPARgamma, respectively. Activation of both, PPARalpha and PPARgamma led to increased concentrations of Insig-1 and Insig-2a, with the most prominent effect on Insig-2a after troglitazone incubation. As a result, the amount of nuclear SREBP-1 was reduced in Fao cells by both WY 14,643 and troglitazone treatment. The reduction of nuclear SREBP-1 was associated with decreased mRNA concentrations of its target genes fatty acid synthase and glycerol-3-phosphate acyltransferase, implicated in fatty acid and triacylglycerol synthesis. This was finally reflected in reduced rates of newly synthesized triacylglycerols from de novo-derived fatty acids and decreased intracellular and secreted triacylglycerol concentrations in Fao cells treated with WY 14,643 and troglitazone, respectively. Thus, these data suggest that the triacylglycerol reducing effect of fibrates and thiazolidinediones is partially caused by inhibition of SREBP-1 activation via up-regulation of Insig.

  2. Caffeine mediates sustained inactivation of breast cancer-associated myofibroblasts via up-regulation of tumor suppressor genes.

    Mysoon M Al-Ansari

    Full Text Available BACKGROUND: Active cancer-associated fibroblasts (CAFs or myofibroblasts play important roles not only in the development and progression of breast carcinomas, but also in their prognosis and treatment. Therefore, targeting these cells through suppressing their supportive procarcinogenic paracrine effects is mandatory for improving the current therapies that are mainly targeting tumor cells. To this end, we investigated the effect of the natural and pharmacologically safe molecule, caffeine, on CAF cells and their various procarcinogenic effects. METHODOLOGY/PRINCIPAL FINDINGS: We have shown here that caffeine up-regulates the tumor suppressor proteins p16, p21, p53 and Cav-1, and reduces the expression/secretion of various cytokines (IL-6, TGF-β, SDF-1 and MMP-2, and down-regulates α-SMA. Furthermore, caffeine suppressed the migratory/invasiveness abilities of CAF cells through PTEN-dependent Akt/Erk1/2 inactivation. Moreover, caffeine reduced the paracrine pro-invasion/-migration effects of CAF cells on breast cancer cells. These results indicate that caffeine can inactivate breast stromal myofibroblasts. This has been confirmed by showing that caffeine also suppresses the paracrine pro-angiogenic effect of CAF cells through down-regulating HIF-1αand its downstream effector VEGF-A. Interestingly, these effects were sustained in absence of caffeine. CONCLUSION/SIGNIFICANCE: The present findings provide a proof of principle that breast cancer myofibroblasts can be inactivated, and thereby caffeine may provide a safe and effective prevention against breast tumor growth/recurrence through inhibition of the procarcinogenic effects of active stromal fibroblasts.

  3. Integrin-linked kinase mediates the hydrogen peroxide-dependent transforming growth factor-β1 up-regulation.

    Gonzalez-Ramos, M; de Frutos, S; Griera, M; Luengo, A; Olmos, G; Rodriguez-Puyol, D; Calleros, L; Rodriguez-Puyol, M

    2013-08-01

    Transforming growth factor type-β1 (TGF-β1) has been recognized as a central mediator in many pathological events related to extracellular matrix (ECM) proteins accumulation, where their locally increased expression has been implicated in the fibrosis process of numerous organs, including glomerular fibrosis in the kidney. We and others have reported the TGF-β1 synthesis regulation by reactive oxygen species (ROS), and moreover we also described the implication of integrin-linked kinase (ILK) in the AP-1-dependent TGF-β1 up-regulation. Thus, we propose here that hydrogen peroxide (H2O2)-dependent TGF-β1 regulation may be mediated by ILK activation. First we confirmed the increase in TGF-β1 expression in human mesangial cells (HMC) after treatment with H2O2 or with an alternative H2O2-generating system such as the glucose-oxidase enzyme (GOX). By using immunoblotting, immunofluorescence, and ELISA techniques, we demonstrate that extracellular H2O2 up-regulates TGF-β1 transcription, as well as increases TGF-β1 promoter activity. Furthermore, catalase-decreased intracellular H2O2 abolished TGF-β1 up-regulation. The use of pharmacological inhibitors as well as knockdown of ILK with small interfering RNA (siRNA) demonstrated the implication of a PI3K/ILK/AKT/ERK MAPK signaling pathway axis in the H2O2-induced TGF-β1 overexpression. Finally, we explored the physiological relevance of these findings by treating HMC with angiotensin II, a known stimuli of H2O2 synthesis. Our results confirm the relevance of previous findings after a more physiological stimulus. In summary, our results provide evidence that ILK activity changes may act as a mechanism in response to different stimuli such as H2O2 in the induced TGF-β1 up-regulation in pathological or even physiological conditions.

  4. Up-regulation of thromboxane A2 receptor expression by lipid soluble smoking particles through post-transcriptional mechanisms

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars

    2008-01-01

    . The present study was designed to test if lipid soluble smoking particles (DSP) enhance TxA(2) receptor (TP) expression in rat mesenteric arteries, and if intracellular mitogen-activated protein kinase (MAPK) pathways play a role. Organ culture of rat mesenteric arteries in the presence of DSP (0.2 microl...... actinomycin D, but was almost completely abolished by cycloheximide, a general translational inhibitor. Dexamethasone, a glucocorticoid, manifested a potent inhibitory effect as well. These results suggest that the up-regulation of TP receptor occurs via post-transcriptional events, and mainly translation...... are responsible for the up-regulation of TP receptor by DSP, in which enhanced translation is the major cause of the elevated protein expression and the enhanced contraction....

  5. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.

    Yolanda Stypula-Cyrus

    Full Text Available Normal cell function is dependent on the proper maintenance of chromatin structure. Regulation of chromatin structure is controlled by histone modifications that directly influence chromatin architecture and genome function. Specifically, the histone deacetylase (HDAC family of proteins modulate chromatin compaction and are commonly dysregulated in many tumors, including colorectal cancer (CRC. However, the role of HDAC proteins in early colorectal carcinogenesis has not been previously reported. We found HDAC1, HDAC2, HDAC3, HDAC5, and HDAC7 all to be up-regulated in the field of human CRC. Furthermore, we observed that HDAC2 up-regulation is one of the earliest events in CRC carcinogenesis and observed this in human field carcinogenesis, the azoxymethane-treated rat model, and in more aggressive colon cancer cell lines. The universality of HDAC2 up-regulation suggests that HDAC2 up-regulation is a novel and important early event in CRC, which may serve as a biomarker. HDAC inhibitors (HDACIs interfere with tumorigenic HDAC activity; however, the precise mechanisms involved in this process remain to be elucidated. We confirmed that HDAC inhibition by valproic acid (VPA targeted the more aggressive cell line. Using nuclease digestion assays and transmission electron microscopy imaging, we observed that VPA treatment induced greater changes in chromatin structure in the more aggressive cell line. Furthermore, we used the novel imaging technique partial wave spectroscopy (PWS to quantify nanoscale alterations in chromatin. We noted that the PWS results are consistent with the biological assays, indicating a greater effect of VPA treatment in the more aggressive cell type. Together, these results demonstrate the importance of HDAC activity in early carcinogenic events and the unique role of higher-order chromatin structure in determining cell tumorigenicity.

  6. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.

    Stypula-Cyrus, Yolanda; Damania, Dhwanil; Kunte, Dhananjay P; Cruz, Mart Dela; Subramanian, Hariharan; Roy, Hemant K; Backman, Vadim

    2013-01-01

    Normal cell function is dependent on the proper maintenance of chromatin structure. Regulation of chromatin structure is controlled by histone modifications that directly influence chromatin architecture and genome function. Specifically, the histone deacetylase (HDAC) family of proteins modulate chromatin compaction and are commonly dysregulated in many tumors, including colorectal cancer (CRC). However, the role of HDAC proteins in early colorectal carcinogenesis has not been previously reported. We found HDAC1, HDAC2, HDAC3, HDAC5, and HDAC7 all to be up-regulated in the field of human CRC. Furthermore, we observed that HDAC2 up-regulation is one of the earliest events in CRC carcinogenesis and observed this in human field carcinogenesis, the azoxymethane-treated rat model, and in more aggressive colon cancer cell lines. The universality of HDAC2 up-regulation suggests that HDAC2 up-regulation is a novel and important early event in CRC, which may serve as a biomarker. HDAC inhibitors (HDACIs) interfere with tumorigenic HDAC activity; however, the precise mechanisms involved in this process remain to be elucidated. We confirmed that HDAC inhibition by valproic acid (VPA) targeted the more aggressive cell line. Using nuclease digestion assays and transmission electron microscopy imaging, we observed that VPA treatment induced greater changes in chromatin structure in the more aggressive cell line. Furthermore, we used the novel imaging technique partial wave spectroscopy (PWS) to quantify nanoscale alterations in chromatin. We noted that the PWS results are consistent with the biological assays, indicating a greater effect of VPA treatment in the more aggressive cell type. Together, these results demonstrate the importance of HDAC activity in early carcinogenic events and the unique role of higher-order chromatin structure in determining cell tumorigenicity.

  7. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis.

    Wang, Jiao; Liu, Shu; Yin, Yancun; Li, Mingjin; Wang, Bo; Yang, Li; Jiang, Yangfu

    2015-03-01

    The anthraquinone compound rhein is a natural agent in the traditional Chinese medicine rhubarb. Preclinical studies demonstrate that rhein has anticancer activity. Treatment of a variety of cancer cells with rhein may induce apoptosis. Here, we report that rhein induces atypical unfolded protein response in breast cancer MCF-7 cells and hepatoma HepG2 cells. Rhein induces CHOP expression, eIF2α phosphorylation and caspase cleavage, while it does not induce glucose-regulated protein 78 (GRP78) expression in both MCF-7 and HepG2 cells. Meanwhile, rhein inhibits thapsigargin-induced GRP78 expression and X box-binding protein 1 splicing. In addition, rhein inhibits Akt phosphorylation and stimulates FOXO transactivation activity. Rhein induces Bim expression in MCF-7 and HepG2 cells, which can be abrogated by FOXO3a knockdown. Knockdown of FOXO3a or Bim abrogates rhein-induced caspase cleavage and apoptosis. The chemical chaperone 4-phenylbutyrate acid antagonizes the induction of FOXO activation, Bim expression and caspase cleavage by rhein, indicating that protein misfolding may be involved in triggering these deleterious effects. We conclude that FOXO3a-mediated up-regulation of Bim is a key mechanism underlying rhein-induced cancer cells apoptosis.

  8. Pro-Inflammatory Cytokine IL-1β Up-Regulates CXC Chemokine Receptor 4 via Notch and ERK Signaling Pathways in Tongue Squamous Cell Carcinoma.

    Yi Sun

    Full Text Available Chronic inflammation contributes to tumor development through the induction of oncogenic mutations, genomic instability, early tumor promotion, and enhanced angiogenesis. Here, we report that IL-1 receptor 1 (IL-1R1 was expressed in 40 of 41 human tongue squamous cell carcinomas (TSCC. IL-1β up-regulated the expression of CXCR4, a CXC chemokine receptor that mediates cancer growth and metastasis, at both mRNA and protein levels in Tca8113 TSCC cells. IL-1β treatment of Tca8113 cells promoted migration in response to CXCR4 ligand stromal-derived factor α (SDF-1α. The inhibition of IL-1R1 by its antagonist IL-1Ra or RNA interference significantly reversed the up-regulation of CXCR4 induced by IL-1β. IL-1R1 activation also up-regulated the expression of IL-1β itself, suggesting a positive feedback regulation of CXCR4 expression. Furthermore, IL-1β induced the activation of Notch, which was originally considered a stem cell regulator. Pharmacological inhibition of Notch signaling reversed the up-regulation of CXCR4 induced by IL-1β, suggesting that Notch signaling may be involved in the growth and metastasis of cancers via up-regulation of CXCR4. In addition, IL-1β induced the activation of extracellular signal regulated kinase (ERK and ERK inhibition decreased the up-regulation of CXCR4 induced by IL-1β, suggesting the involvement of ERK signaling in cancer metastasis. Taken together these data suggest that IL-1β and IL-1R1 promote cancer growth and metastasis by up-regulating CXCR4 expression and that CXCR4 may be a link between inflammation and cancer.

  9. Desoxyrhapontigenin up-regulates Nrf2-mediated heme oxygenase-1 expression in macrophages and inflammatory lung injury

    Ran Joo Choi

    2014-01-01

    Full Text Available Heme oxygenase-1 (HO-1 is an important anti-inflammatory, antioxidative and cytoprotective enzyme that is regulated by the activation of the major transcription factor, nuclear factor (erythroid-derived 2-like 2 (Nrf2. In the present study, six stilbene derivatives isolated from Rheum undulatum L. were assessed for their antioxidative potential. In the tert-butylhydroperoxide (t-BHP-induced RAW 264.7 macrophage cell line, desoxyrhapontigenin was the most potent component that reduced intracellular reactive oxygen species (ROS and peroxynitrite. In response to desoxyrhapontigenin, the mRNA expression levels of antioxidant enzymes were up-regulated. An electrophoretic mobility shift assay (EMSA confirmed that desoxyrhapontigenin promoted the DNA binding of Nrf2 and increased the expression of antioxidant proteins and enzymes regulated by Nrf2. Further investigation utilizing specific inhibitors of Akt, p38, JNK and ERK demonstrated that the phosphatidylinositol 3-kinase (PI3K/Akt pathway mediates HO-1 expression. Moreover, the increase in Nrf2 expression mediated by treatment with desoxyrhapontigenin was reversed by Nrf2 or Akt gene knock-down. In the LPS-induced in vivo lung inflammation model, pretreatment with desoxyrhapontigenin markedly ameliorated LPS-induced lung inflammation and histological changes. Immunohistochemical analysis of Nrf2, HO-1 and p65 was conducted and confirmed that treatment with desoxyrhapontigenin induced Nrf2 and HO-1 expression but reduced p65 expression. These findings suggest that desoxyrhapontigenin may be a potential therapeutic candidate as an antioxidant or an anti-inflammatory agent.

  10. Inhibition of nuclear factor kappa B activation reduces Coxsackievirus B3 replication in lymphoid cells.

    Sobotta, Katharina; Wilsky, Steffi; Althof, Nadine; Wiesener, Nadine; Wutzler, Peter; Henke, Andreas

    2012-02-01

    Interactions between viral replication machineries and host cell metabolism display interesting information how certain viruses capitalize cellular pathways to support progeny production. Among those pathogens, Coxsackievirus B3 (CVB3) has been identified to manipulate intracellular signaling very comprehensively. Next to others, this human pathogenic virus causes acute and chronic forms of myocarditis, pancreatitis, and meningitis. Here, activation of nuclear factor kappa B (NFκB) signaling appears to be involved in successful infection. Viral replication is not restricted to solid organs but involves susceptible immune cells as well. In the present study, p65 phosphorylation as one aspect of NFκB activation and inhibition via BAY 11-7085 administration was analyzed in the context of CVB3 replication in lymphoid cells. During CVB3 infection, an up-regulation of p65 translation is detectable, which is accompanied by noticeable phosphorylation. Inhibition of NFκB signaling reduces viral replication in a dose- and time-dependent manner. Taken together, these results indicate that during CVB3 replication in human and murine lymphoid cells, NFκB signaling is activated and facilitates viral replication. Therefore, antiviral strategies to target such central cellular signaling pathways may represent potential possibilities for the development of new virostatica.

  11. Proteolytic fragments of laminin promote excitotoxic neurodegeneration by up-regulation of the KA1 subunit of the kainate receptor.

    Chen, Zu-Lin; Yu, Huaxu; Yu, Wei-Ming; Pawlak, Robert; Strickland, Sidney

    2008-12-29

    Degradation of the extracellular matrix (ECM) protein laminin contributes to excitotoxic cell death in the hippocampus, but the mechanism of this effect is unknown. To study this process, we disrupted laminin gamma1 (lamgamma1) expression in the hippocampus. Lamgamma1 knockout (KO) and control mice had similar basal expression of kainate (KA) receptors, but the lamgamma1 KO mice were resistant to KA-induced neuronal death. After KA injection, KA1 subunit levels increased in control mice but were unchanged in lamgamma1 KO mice. KA1 levels in tissue plasminogen activator (tPA)-KO mice were also unchanged after KA, indicating that both tPA and laminin were necessary for KA1 up-regulation after KA injection. Infusion of plasmin-digested laminin-1 into the hippocampus of lamgamma1 or tPA KO mice restored KA1 up-regulation and KA-induced neuronal degeneration. Interfering with KA1 function with a specific anti-KA1 antibody protected against KA-induced neuronal death both in vitro and in vivo. These results demonstrate a novel pathway for neurodegeneration involving proteolysis of the ECM and KA1 KA receptor subunit up-regulation.

  12. Aflatoxin B1 up-regulates insulin receptor substrate 2 and stimulates hepatoma cell migration.

    Yanli Ma

    Full Text Available Aflatoxin B1 (AFB1 is a potent carcinogen that can induce hepatocellular carcinoma. AFB1-8,9-exo-epoxide, one of AFB1 metabolites, acts as a mutagen to react with DNA and induce gene mutations, including the tumor suppressor p53. In addition, AFB1 reportedly stimulates IGF receptor activation. Aberrant activation of IGF-I receptor (IGF-IR signaling is tightly associated with various types of human tumors. In the current study, we investigated the effects of AFB1 on key elements in IGF-IR signaling pathway, and the effects of AFB1 on hepatoma cell migration. The results demonstrated that AFB1 induced IGF-IR, Akt, and Erk1/2 phosphorylation in hepatoma cell lines HepG2 and SMMC-7721, and an immortalized human liver cell line Chang liver. AFB1 also down-regulated insulin receptor substrate (IRS 1 but paradoxically up-regulated IRS2 through preventing proteasomal degradation. Treatment of hepatoma cells and Chang liver cells with IGF-IR inhibitor abrogated AFB1-induced Akt and Erk1/2 phosphorylation. In addition, IRS2 knockdown suppressed AFB1-induced Akt and Erk1/2 phosphorylation. Finally, AFB1 stimulated hepatoma cell migration. IGF-IR inhibitor or IRS2 knockdown suppressed AFB1-induced hepatoma cell migration. These data demonstrate that AFB1 stimulates hepatoma cell migration through IGF-IR/IRS2 axis.

  13. Hydrogen sulfide inhibits development of atherosclerosis through up-regulating protein S-nitrosylation.

    Lin, Yan; Chen, Yulong; Zhu, Ninghong; Zhao, Sihai; Fan, Jianglin; Liu, Enqi

    2016-10-01

    Hydrogen sulfide (H2S) is an important gaseous signaling molecule that serves many important regulatory roles in physiological and pathophysiological conditions. H2S exerts an anti-atherosclerotic effect through mediating the biological functions of nitric oxide (NO). However, its mechanism of action is unclear. The purpose of this study is to explore the effect mechanism of H2S on the development of atherosclerosis with regard to protein S-nitrosylation. A total of 45 male apoE(-/-) mice were randomly divided into three groups. Atherosclerosis was induced by Western diet (21% fat and 0.15% cholesterol) with/without administration of a H2S donor (NaHS) or an endogenous cystathionine γ-lyase inhibitor (d, l-propargylglycine) for 12 weeks. After 12 weeks, plasma lipid and plasma NO levels were measured. Aortic gross lesion area and histopathological features of aortic lesion were determined. Additionally, the level of S-nitrosylated proteins in vascular smooth muscle cells (VSMCs) was detected using immunofluorescence in aorta. Rat VSMCs were performed in an in vitro experiment. Inducible nitric oxide synthase (iNOS) protein expression, NO generation, protein S-nitrosylation, and cell proliferation and migration were measured. We found that H2S significantly reduced the aortic atherosclerotic lesion area (P=0.006) and inhibited lipid and macrophage accumulation (P=0.004, P=0.002) and VSMC proliferation (P=0.019) in apoE(-/-) mice. H2S could up-regulate levels of plasma NO and protein S-nitrosylation in aorta VSMCs. However, d, l- propargylglycine had the opposite effect, increasing the lesion area and the content of lipids and macrophages in the lesions of apoE(-/-) mice and down-regulating plasma NO levels and protein S-nitrosylation in aorta VSMCs. In vitro experiments, H2S could significantly reverse the reduction of iNOS expression and NO generation induced by oxidized low-density lipoprotein in VSMCs. Moreover, H2S could increase the protein S

  14. PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins.

    Soledad A Camolotto

    Full Text Available BACKGROUND: Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5'regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, -147/-140, was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA. This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. CONCLUSIONS/SIGNIFICANCE: Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.

  15. PAX3-FOXO1 Induces Up-Regulation of Noxa Sensitizing Alveolar Rhabdomyosarcoma Cells to Apoptosis

    Amy D. Marshall

    2013-07-01

    Full Text Available Alveolar rhabdomyosarcoma (ARMS has a much poorer prognosis than the more common embryonal subtype. Most ARMS tumors characteristically possess a specific genomic translocation between the genes of PAX3/7 and FOXO1 (FKHR, which forms fusion proteins possessing the DNA binding domains of PAX3/7 and the more transcriptionally potent transactivation domain of FOXO1. We have shown that the proapoptotic BH3-only family member Noxa is upregulated by the PAX3-FOXO1 fusion transcription factor in a p53-independent manner. The increased expression of Noxa renders PAX3-FOXO1-expressing cells more susceptible to apoptosis induced by a ă-secretase inhibitor (GSI1, Z-LLNle-CHO, the proteasome inhibitor bortezomib, and BH3 mimetic ABT-737. Apoptosis in response to bortezomib can be overcome by shRNA knockdown of Noxa. In vivo treatment with bortezomib reduced the growth of tumors derived from a PAX3-FOXO1-expressing primary myoblast tumor model and RH41 xenografts. We therefore demonstrate that PAX3-FOXO1 up-regulation of Noxa represents an unanticipated aspect of ARMS tumor biology that creates a therapeutic window to allow induction of apoptosis in ARMS cells.

  16. PAX3-FOXO1 induces up-regulation of Noxa sensitizing alveolar rhabdomyosarcoma cells to apoptosis.

    Marshall, Amy D; Picchione, Fabrizio; Geltink, Ramon I Klein; Grosveld, Gerard C

    2013-07-01

    Alveolar rhabdomyosarcoma (ARMS) has a much poorer prognosis than the more common embryonal subtype. Most ARMS tumors characteristically possess a specific genomic translocation between the genes of PAX3/7 and FOXO1 (FKHR), which forms fusion proteins possessing the DNA binding domains of PAX3/7 and the more transcriptionally potent transactivation domain of FOXO1. We have shown that the proapoptotic BH3-only family member Noxa is upregulated by the PAX3-FOXO1 fusion transcription factor in a p53-independent manner. The increased expression of Noxa renders PAX3-FOXO1-expressing cells more susceptible to apoptosis induced by a γ-secretase inhibitor (GSI1, Z-LLNle-CHO), the proteasome inhibitor bortezomib, and BH3 mimetic ABT-737. Apoptosis in response to bortezomib can be overcome by shRNA knockdown of Noxa. In vivo treatment with bortezomib reduced the growth of tumors derived from a PAX3-FOXO1-expressing primary myoblast tumor model and RH41 xenografts. We therefore demonstrate that PAX3-FOXO1 up-regulation of Noxa represents an unanticipated aspect of ARMS tumor biology that creates a therapeutic window to allow induction of apoptosis in ARMS cells.

  17. The Mutant KRAS Gene Up-regulates BCL-XL Protein via STAT3 to Confer Apoptosis Resistance That Is Reversed by BIM Protein Induction and BCL-XL Antagonism.

    Zaanan, Aziz; Okamoto, Koichi; Kawakami, Hisato; Khazaie, Khashayarsha; Huang, Shengbing; Sinicrope, Frank A

    2015-09-25

    In colorectal cancers with oncogenic GTPase Kras (KRAS) mutations, inhibition of downstream MEK/ERK signaling has shown limited efficacy, in part because of failure to induce a robust apoptotic response. We studied the mechanism of apoptosis resistance in mutant KRAS cells and sought to enhance the efficacy of a KRAS-specific MEK/ERK inhibitor, GDC-0623. GDC-0623 was shown to potently up-regulate BIM expression to a greater extent versus other MEK inhibitors in isogenic KRAS HCT116 and mutant KRAS SW620 colon cancer cells. ERK silencing enhanced BIM up-regulation by GDC-0623 that was due to its loss of phosphorylation at Ser(69), confirmed by a BIM-EL phosphorylation-defective mutant (S69G) that increased protein stability and blocked BIM induction. Despite BIM and BIK induction, the isogenic KRAS mutant versus wild-type cells remained resistant to GDC-0623-induced apoptosis, in part because of up-regulation of BCL-XL. KRAS knockdown by a doxycycline-inducible shRNA attenuated BCL-XL expression. BCL-XL knockdown sensitized KRAS mutant cells to GDC-0623-mediated apoptosis, as did the BH3 mimetic ABT-263. GDC-0623 plus ABT-263 induced a synergistic apoptosis by a mechanism that includes release of BIM from its sequestration by BCL-XL. Furthermore, mutant KRAS activated p-STAT3 (Tyr(705)) in the absence of IL-6 secretion, and STAT3 knockdown reduced BCL-XL mRNA and protein expression. These data suggest that BCL-XL up-regulation by STAT3 contributes to mutant KRAS-mediated apoptosis resistance. Such resistance can be overcome by potent BIM induction and concurrent BCL-XL antagonism to enable a synergistic apoptotic response.

  18. Up-regulation of lymphocyte antigen 6 complex expression in side-population cells derived from a human trophoblast cell line HTR-8/SVneo.

    Inagaki, Tetsunori; Kusunoki, Soshi; Tabu, Kouichi; Okabe, Hitomi; Yamada, Izumi; Taga, Tetsuya; Matsumoto, Akemi; Makino, Shintaro; Takeda, Satoru; Kato, Kiyoko

    2016-01-01

    The continual proliferation and differentiation of trophoblasts are critical for the maintenance of pregnancy. It is well known that the tissue stem cells are associated with the development of tissues and pathologies. It has been demonstrated that side-population (SP) cells identified by fluorescence-activated cell sorting (FACS) are enriched with stem cells. The SP cells in HTR-8/SVneo cells derived from human primary trophoblast cells were isolated by FACS. HTR-8/SVneo-SP cell cultures generated both SP and non-SP (NSP) subpopulations. In contrast, NSP cell cultures produced NSP cells and failed to produce SP cells. These SP cells showed self-renewal capability by serial colony-forming assay. Microarray expression analysis using a set of HTR-8/SVneo-SP and -NSP cells revealed that SP cells overexpressed several stemness genes including caudal type homeobox2 (CDX2) and bone morphogenic proteins (BMPs), and lymphocyte antigen 6 complex locus D (LY6D) gene was the most highly up-regulated in HTR-8/SVneo-SP cells. LY6D gene reduced its expression in the course of a 7-day cultivation in differentiation medium. SP cells tended to reduce its fraction by treatment of LY6D siRNA indicating that LY6D had potential to maintain cell proliferation of HTR-8/SVneo-SP cells. On ontology analysis, epithelial-mesenchymal transition (EMT) pathway was involved in the up-regulated genes on microarray analysis. HTR-SVneo-SP cells showed enhanced migration. This is the first report that LY6D was important for the maintenance of HTR-8/SVneo-SP cells. EMT was associated with the phenotype of these SP cells.

  19. INVERSE ELECTRON TRANSFER IN PEROXYOXALATE CHEMIEXCITATION USING EASILY REDUCIBLE ACTIVATORS

    Bartoloni, Fernando Heering; Monteiro Leite Ciscato, Luiz Francisco; Augusto, Felipe Alberto; Baader, Wilhelm Josef

    2010-01-01

    INVERSE ELECTRON TRANSFER IN PEROXYOXALATE CHEMIEXCITATION USING EASILY REDUCIBLE ACTIVATORS. Chemiluminescence properties of the peroxyoxalate reaction in the presence of activators bearing electron withdrawing substituents were studied, to evaluate the possible occurrence of an inverse electron tr

  20. Up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver.

    Zhang, Shuai; Li, Tao-Sheng; Soyama, Akihiko; Tanaka, Takayuki; Yan, Chen; Sakai, Yusuke; Hidaka, Masaaki; Kinoshita, Ayaka; Natsuda, Koji; Fujii, Mio; Kugiyama, Tota; Baimakhanov, Zhassulan; Kuroki, Tamotsu; Gu, Weili; Eguchi, Susumu

    2016-01-01

    Although the healthy liver is known to have high regenerative potential, poor liver regeneration under pathological conditions remains a substantial problem. We investigated the key molecules that impair the regeneration of cholestatic liver. C57BL/6 mice were randomly subjected to partial hepatectomy and bile duct ligation (PH+BDL group, n = 16), partial hepatectomy only (PH group, n = 16), or sham operation (Sham group, n = 16). The liver sizes and histological findings were similar in the PH and sham groups 14 days after operation. However, compared with those in the sham group, the livers in mice in the PH+BDL group had a smaller size, a lower cell proliferative activity, and more fibrotic tissue 14 days after the operation, suggesting the insufficient regeneration of the cholestatic liver. Pathway-focused array analysis showed that many genes were up- or down-regulated over 1.5-fold in both PH+BDL and PH groups at 1, 3, 7, and 14 days after treatment. Interestingly, more genes that were functionally related to the extracellular matrix and inflammatory chemokines were found in the PH+BDL group than in the PH group at 7 and 14 days after treatment. Our data suggest that up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver.

  1. Cathepsin B is up-regulated and mediates extracellular matrix degradation in trabecular meshwork cells following phagocytic challenge.

    Kristine Porter

    Full Text Available Cells in the trabecular meshwork (TM, a tissue responsible for draining aqueous humor out of the eye, are known to be highly phagocytic. Phagocytic activity in TM cells is thought to play an important role in outflow pathway physiology. However, the molecular mechanisms triggered by phagocytosis in TM cells are unknown. Here we investigated the effects of chronic phagocytic stress on lysosomal function using different phagocytic ligands (E. coli, carboxylated beads, collagen I-coated beads, and pigment. Lysotracker red co-localization and electron micrographs showed the maturation of E. coli- and collagen I-coated beads-containing phagosomes into phagolysosomes. Maturation of phagosomes into phagolysosomes was not observed with carboxylated beads or pigment particles. In addition, phagocytosis of E. coli and collagen I-coated beads led to increased lysosomal mass, and the specific up-regulation and activity of cathepsin B (CTSB. Higher levels of membrane-bound and secreted CTSB were also detected. Moreover, in vivo zymography showed the intralysosomal degradation of ECM components associated with active CTSB, as well as an overall increased gelatinolytic activity in phagocytically challenged TM cells. This increased gelatinolytic activity with phagocytosis was partially blocked with an intracellular CTSB inhibitor. Altogether, these results suggest a potential role of phagocytosis in outflow pathway tissue homeostasis through the up-regulation and/or proteolytic activation of extracellular matrix remodeling genes.

  2. Lipid rafts promote liver cancer cell proliferation and migration by up-regulation of TLR7 expression

    Liu, Yuan; Guo, Xiaodong; Wu, Liyuan; Yang, Mei; Li, Zhiwei; Gao, Yinjie; Liu, Shuhong; Zhou, Guangde; Zhao, Jingmin

    2016-01-01

    Hepatocellular carcinoma (HCC) occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Toll-like receptors (TLRs) play an important role in innate immune responses and TLR signaling has been associated with various chronic liver diseases. Lipid rafts provide the necessary microenvironment for certain specialized signaling events to take place, such as the innate immune recognition. The purpose of this study was to determine the pattern of TLR7 expression in HCC, how to recruit TLR7 into lipid rafts responded to ligands and whether targeting TLR7 might have beneficial effects. The study group was comprised of 130 human liver tissues: 23 chronic hepatitis B (CHB), 18 liver cirrhosis (LC), 68 HCC and 21 normal livers. The expression of TLR7 was evaluated using immunohistochemistry, western blotting, and flow cytometry. Proliferation and migration of human HepG2 cells were studied following stimulation of TLR7 using the agonist gardiquimod and inhibition with a specific antagonist 20S-protopanaxadiol (aPPD). The activation of lipid raft-associated TLR7 signaling was measured using western blotting, double immunohistochemistry and immunoprecipitation in liver tissues and HepG2 cells. TLR7 expression was up-regulated in human HCC tissues and hepatoma cell line. Proliferation and migration of HepG2 cells in vitro increased significantly in response to stimulation of TLR7. TLR7 inhibition using aPPD significantly reduced HepG2 cell migration in vitro. The lipid raft protein caveolin-1 and flotillin-1 were involved with enhanced TLR7 signaling in HCC. Conclusions The data suggest that inhibiting TLR7 with antagonists, like aPPD, could potentially be used as a novel therapeutic approach for HCC. PMID:27588480

  3. Tobacco carcinogen mediated up-regulation of AP-1 dependent pro-angiogenic cytokines in head and neck carcinogenesis.

    Swenson, Wade G; Wuertz, Beverly R K; Ondrey, Frank G

    2011-09-01

    Tobacco is notably genotoxic and associated with head and neck carcinogenesis. Cigarette carcinogens have the capacity to alter early response gene expression in tobacco-related malignancies via genes such as nuclear factor kappa B (NFκB). A number of early response gene activation events are also facilitated by fos/jun activator protein 1 (AP-1) associated pathways. In the present study, we hypothesize that tobacco products may induce microenvironment alterations, promoting angiogenesis and providing a permissive environment for head and neck cancer progression. In an in vitro analysis, we employed immortalized oral keratinocyte (HOK-16B) and laryngeal squamous carcinoma (UM-SCC-11A) cells to investigate interleukin (IL)-8 and vascular endothelial growth factor (VEGF) induction by cigarette smoke condensate (CSC). IL-8 and VEGF expression is based on interactions between NFκB, AP-1, and NF-IL6. We identified at least 1.5-fold dose-dependent induction of AP-1, VEGF, and IL-8 promoter/reporter gene activity after 24 h exposure to CSC. Next, we stably transfected UM-SCC-11A cells with A-Fos, a dominant negative AP-1 protein. Treatment with CSC of the A-Fos cell lines compared to empty vector controls significantly down-regulated AP-1, VEGF, and IL-8 promoter/reporter gene expression. We also performed ELISAs and discovered significant up-regulation of IL-8 and VEGF secretion by UMSCC 11A after treatment with phorbol 12-myristate 13-acetate, tumor necrosis factor alpha, and CSC, which was down-regulated by the A-Fos dominant negative protein. We conclude tobacco carcinogens up-regulate AP-1 activity and AP-1 dependent IL-8 and VEGF gene expression in head and neck cancer. This up-regulation may promote an angiogenic phenotype favoring invasion in both premalignant and squamous cancer cells of the head and neck.

  4. Proline accumulation in leaves of Periploca sepium via both biosynthesis up-regulation and transport during recovery from severe drought.

    Yuyan An

    Full Text Available Drought resistance and recovery ability are two important requisites for plant adaptation to drought environments. Proline (Pro metabolism has been a major concern in plant drought tolerance. However, roles of Pro metabolism in plant recovery ability from severe drought stress are largely unexplored. Periploca sepium Bunge has gained increasing attention for its adaptation to dry environments. Here, we investigated Pro metabolism in different tissues of P. sepium seedlings in the course of drought stress and recovery. We found that leaf Pro metabolism response during post-drought recovery was dependant on drought severity. Pro biosynthesis was down-regulated during recovery from -0.4 MPa but increased continually and notably during recovery from -1.0 MPa. Significant correlation between Pro concentration and Δ1-pyrroline-5-carboxylate synthetase activity indicates that Glutamate pathway is the predominant synthesis route during both drought and re-watering periods. Ornithine δ-aminotransferase activity was up-regulated significantly only during recovery from -1.0 MPa, suggesting positive contribution of ornithine pathway to improving plant recovery capacity from severe drought. In addition to up-regulation of biosynthesis, Pro transport from stems and roots also contributed to high Pro accumulation in leaves and new buds during recovery from -1.0 MPa, as indicated by the combined analysis of Pro concentration and its biosynthesis in stems, roots and new buds. Except its known roles as energy, carbon and nitrogen sources for plant rapid recovery, significant positive correlation between Pro concentration and total antioxidant activity indicates that Pro accumulation can also promote plant damage repair ability by up-regulating antioxidant activity during recovery from severe drought stress.

  5. Synergistic Action of Genistein and Calcitriol in Immature Osteosarcoma MG-63 Cells by SGPL1 Up-Regulation

    Engel, Nadja; Adamus, Anna; Schauer, Nicolas; Kühn, Juliane; Nebe, Barbara; Seitz, Guido; Kraft, Karin

    2017-01-01

    Background Phytoestrogens such as genistein, the most prominent isoflavone from soy, show concentration-dependent anti-estrogenic or estrogenic effects. High genistein concentrations (>10 μM) also promote proliferation of bone cancer cells in vitro. On the other hand, the most active component of the vitamin D family, calcitriol, has been shown to be tumor protective in vitro and in vivo. The purpose of this study was to examine a putative synergism of genistein and calcitriol in two osteosarcoma cell lines MG-63 (early osteoblast), Saos-2 (mature osteoblast) and primary osteoblasts. Methods Thus, an initial screening based on cell cycle phase alterations, estrogen (ER) and vitamin D receptor (VDR) expression, live cell metabolic monitoring, and metabolomics were performed. Results Exposure to the combination of 100 μM genistein and 10 nM calcitriol reduced the number of proliferative cells to control levels, increased ERß and VDR expression, and reduced extracellular acidification (40%) as well as respiratory activity (70%), primarily in MG-63 cells. In order to identify the underlying cellular mechanisms in the MG-63 cell line, metabolic profiling via GC/MS technology was conducted. Combined treatment significantly influenced lipids and amino acids preferably, whereas metabolites of the energy metabolism were not altered. The comparative analysis of the log2-ratios revealed that after combined treatment only the metabolite ethanolamine was highly up-regulated. This is the result: a strong overexpression (350%) of the enzyme sphingosine-1-phosphate lyase (SGPL1), which irreversibly degrades sphingosine-1-phosphate (S1P), thereby, generating ethanolamine. S1P production and secretion is associated with an increased capability of migration and invasion of cancer cells. Conclusion From these results can be concluded that the tumor promoting effect of high concentrations of genistein in immature osteosarcoma cells is reduced by the co-administration of calcitriol

  6. Leptin increases HER2 protein levels through a STAT3-mediated up-regulation of Hsp90 in breast cancer cells.

    Giordano, Cinzia; Vizza, Donatella; Panza, Salvatore; Barone, Ines; Bonofiglio, Daniela; Lanzino, Marilena; Sisci, Diego; De Amicis, Francesca; Fuqua, Suzanne A W; Catalano, Stefania; Andò, Sebastiano

    2013-06-01

    Obesity condition confers risks to breast cancer development and progression, and several reports indicate that the adipokine leptin, whose synthesis and plasma levels increase with obesity, might play an important role in modulating breast cancer cell phenotype. Functional crosstalk occurring between leptin and different signaling molecules contribute to breast carcinogenesis. In this study, we show, in different human breast cancer cell lines, that leptin enhanced the expression of a chaperone protein Hsp90 resulting in increased HER2 protein levels. Silencing of Hsp90 gene expression by RNA interference abrogated leptin-mediated HER2 up-regulation. Leptin effects were dependent on JAK2/STAT3 activation, since inhibition of this signaling cascade by AG490 or ectopic expression of a STAT3 dominant negative abrogated leptin-induced HER2 and Hsp90 expressions. Functional experiments showed that leptin treatment significantly up-regulated human Hsp90 promoter activity. This occurred through an enhanced STAT3 transcription factor binding to its specific responsive element located in the Hsp90 promoter region as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Analysis of HER2, Akt and MAPK phosphorylation levels revealed that leptin treatment amplified the responsiveness of breast cancer cells to growth factor stimulation. Furthermore, we found that long-term leptin exposure reduced sensitivity of breast cancer cells to the antiestrogen tamoxifen. In the same experimental conditions, the combined treatment of tamoxifen with the Hsp90 inhibitor 17-AAG completely abrogated leptin-induced anchorage-independent breast cancer cell growth. In conclusion, our results highlight, for the first time, the ability of the adipocyte-secreted factor leptin to modulate Hsp90/HER2 expressions in breast cancer cells providing novel insights into the molecular mechanism linking obesity to breast cancer growth and progression.

  7. GDNF pre-treatment aggravates neuronal cell loss in oxygen-glucose deprived hippocampal slice cultures: a possible effect of glutamate transporter up-regulation.

    Bonde, C; Sarup, A; Schousboe, A; Gegelashvili, G; Noraberg, J; Zimmer, J

    2003-01-01

    Besides its neurotrophic and neuroprotective effects on dopaminergic neurons and spinal motoneurons, glial cell line-derived neurotrophic factor (GDNF) has potent neuroprotective effects in cerebral ischemia. The protective effect has so far been related to reduced activation of N-methyl-D-aspartate receptors (NMDAr). This study tested the effects of GDNF on glutamate transporter expression, with the hypothesis that modulation of glutamate transporter activity would affect the outcome of cerebral ischemia. Organotypic hippocampal slice cultures, derived from 1-week-old rats, were treated with 100 ng/ml GDNF for either 2 or 5 days, followed by Western blot analysis of NMDAr subunit 1 (NR1) and two glutamate transporter subtypes, GLAST and GLT-1. After 5-day exposure to GDNF, expression of GLAST and GLT-1 was up-regulated to 169 and 181% of control values, respectively, whereas NR1 was down-regulated to 64% of control. However, despite these changes that potentially would support neuronal resistance to excitotoxicity, the long-term treatment with GDNF was found to aggravate the neuronal damage induced by oxygen-glucose deprivation (OGD). The increased cell death, assessed by propidium iodide (PI) uptake, occurred not only among the most susceptible CA1 pyramidal cells, but also in CA3 and fascia dentata. Given that glutamate transporters are able to release glutamate by reversed action during energy failure, it is suggested that the observed increase in OGD-induced cell death in the GDNF-pretreated cultures was caused by the build-up of excitotoxic concentrations of extracellular glutamate released through the glutamate transporters, which were up-regulated by GDNF. Although the extent and consequences of glutamate release via reversal of GLAST and GLT-1 transporters seem to vary in different energy failure models, the present findings should be taken into account in clinical trials of GDNF.

  8. Expression of murine Unc93b1 is up-regulated by interferon and estrogen signaling: implications for sex bias in the development of autoimmunity.

    Panchanathan, Ravichandran; Liu, Hongzhu; Choubey, Divaker

    2013-09-01

    The endoplasmic reticulum transmembrane protein, Unc93b1, is essential for trafficking of endosomal TLRs from the endoplasmic reticulum to endosomes. A genetic defect in the human UNC93B1 gene is associated with immunodeficiency. However, systemic lupus erythematosus (SLE) patients express increased levels of the UNC93B1 protein in B cells. Because SLE in patients and certain mouse models exhibits a sex bias and increased serum levels of type I interferons in patients are associated with the disease activity, we investigated whether the female sex hormone estrogen (E2) or type I interferon signaling could up-regulate the expression of the murine Unc93b1 gene. We found that steady-state levels of Unc93b1 mRNA and protein were measurably higher in immune cells (CD3(+), B220(+), CD11b(+) and CD11c(+)) isolated from C57BL/6 (B6) females than age-matched males. Moreover, treatment of CD11b(+) and B220(+) cells with E2 or interferons (IFN-α, IFN-β or IFN-γ) significantly increased the levels of Unc93b1 mRNA and protein. Accordingly, a deficiency of estrogen receptor-α or STAT1 expression in immune cells decreased the expression levels of the Unc93b1 protein. Interestingly, levels of Unc93b1 protein were appreciably higher in B6.Nba2 lupus-prone female mice compared with age-matched B6 females. Furthermore, increased expression of the interferon- and E2-inducible p202 protein in a murine macrophage cell line (RAW264.7) increased the levels of the Unc93b1 protein, whereas knockdown of p202 expression reduced the levels. To our knowledge, our observations demonstrate for the first time that activation of interferon and estrogen signaling in immune cells up-regulates the expression of murine Unc93b1.

  9. Chronic up-regulation of the SHH pathway normalizes some developmental effects of trisomy in Ts65Dn mice.

    Dutka, Tara; Hallberg, Dorothy; Reeves, Roger H

    2015-02-01

    Down Syndrome (DS) is a highly complex developmental genetic disorder caused by trisomy for human chromosome 21 (Hsa21). All individuals with DS exhibit some degree of brain structural changes and cognitive impairment; mouse models such as Ts65Dn have been instrumental in understanding the underlying mechanisms. Several phenotypes of DS might arise from a reduced response of trisomic cells to the Sonic Hedgehog (SHH) growth factor. If all trisomic cells show a similar reduced response to SHH, then up-regulation of the pathway in trisomic cells might ameliorate multiple DS phenotypes. We crossed Ptch1tm1Mps/+ mice, in which the canonical SHH pathway is expected to be up-regulated in every SHH-responsive cell due to the loss of function of one allele of the pathway suppressor, Ptch1, to the Ts65Dn DS model and assessed the progeny for possible rescue of multiple DS-related phenotypes. Down-regulation of Ptch produced several previously unreported effects on development by itself, complicating interpretation of some phenotypes, and a number of structural or behavioral effects of trisomy were not compensated by SHH signaling. However, a deficit in a nest-building task was partially restored in Ts;Ptch+/- mice, as were the structural anomalies of the cerebellum seen in Ts65Dn mice. These results extend the body of evidence indicating that reduced response to SHH in trisomic cells and tissues contributes to various aspects of the trisomic phenotype.

  10. AGEs-Induced IL-6 Synthesis Precedes RAGE Up-Regulation in HEK 293 Cells: An Alternative Inflammatory Mechanism?

    Andreea Iren Serban

    2015-08-01

    Full Text Available Advanced glycation end products (AGEs can activate the inflammatory pathways involved in diabetic nephropathy. Understanding these molecular pathways could contribute to therapeutic strategies for diabetes complications. We evaluated the modulation of inflammatory and oxidative markers, as well as the protective mechanisms employed by human embryonic kidney cells (HEK 293 upon exposure to 200 μg/mL bovine serum albumine (BSA or AGEs–BSA for 12, 24 and 48 h. The mRNA and protein expression levels of AGEs receptor (RAGE and heat shock proteins (HSPs 27, 60 and 70, the activity of antioxidant enzymes and the expression levels of eight cytokines were analysed. Cell damage via oxidative mechanisms was evaluated by glutathione and malondialdehyde levels. The data revealed two different time scale responses. First, the up-regulation of interleukin-6 (IL-6, HSP 27 and high catalase activity were detected as early as 12 h after exposure to AGEs–BSA, while the second response, after 24 h, consisted of NF-κB p65, RAGE, HSP 70 and inflammatory cytokine up-regulation, glutathione depletion, malondialdehyde increase and the activation of antioxidant enzymes. IL-6 might be important in the early ignition of inflammatory responses, while the cellular redox imbalance, RAGE activation and NF-κB p65 increased expression further enhance inflammatory signals in HEK 293 cells.

  11. Reduced-activation steels: Future development for improved creep strength

    Klueh, R. L.

    2008-08-01

    Reduced-activation steels for fusion applications were developed in the 1980s to replace the elevated-temperature commercial steels first considered. The new steels were patterned after the commercial steels, with the objective that the new steels have yield stress and ultimate tensile strength and impact toughness in a Charpy test comparable to or better than the steels they replaced. That objective was achieved in reduced-activation steels developed in Japan, Europe, and the United States. Although tensile and impact toughness of the reduced-activation steels exceed those of the commercial steels they were patterned after, their creep-rupture properties are inferior to some commercial steels they replaced. They are even more inferior to commercial steels developed since the 1980s. In this paper, compositional differences between reduced-activation steels and new commercial steels are examined, and compositions are proposed for development of new-and-improved reduced-activation steels.

  12. DMPD: Mechanism of age-associated up-regulation in macrophage PGE2 synthesis. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 15331118 Mechanism of age-associated up-regulation in macrophage PGE2 synthesis. Wu...e-associated up-regulation in macrophage PGE2 synthesis. PubmedID 15331118 Title Mechanism of age-associated... up-regulation in macrophage PGE2 synthesis. Authors Wu D, Meydani SN. Publicatio

  13. Acute morphine induces matrix metalloproteinase-9 up-regulation in primary sensory neurons to mask opioid-induced analgesia in mice

    Liu Yen-Chin

    2012-03-01

    Full Text Available Abstract Background Despite decades of intense research efforts, actions of acute opioids are not fully understood. Increasing evidence suggests that in addition to well-documented antinociceptive effects opioids also produce paradoxical hyperalgesic and excitatory effects on neurons. However, most studies focus on the pronociceptive actions of chronic opioid exposure. Matrix metalloproteinase 9 (MMP-9 plays an important role in neuroinflammation and neuropathic pain development. We examined MMP-9 expression and localization in dorsal root ganglia (DRGs after acute morphine treatment and, furthermore, the role of MMP-9 in modulating acute morphine-induced analgesia and hyperalgesia in mice. Results Subcutaneous morphine induced a marked up-regulation of MMP-9 protein in DRGs but not spinal cords. Morphine also increased MMP-9 activity and mRNA expression in DRGs. MMP-9 up-regulation peaked at 2 h but returned to the baseline after 24 h. In DRG tissue sections, MMP-9 is expressed in small and medium-sized neurons that co-express mu opioid receptors (MOR. In DRG cultures, MOR agonists morphine, DAMGO, and remifentanil each increased MMP-9 expression in neurons, whereas the opioid receptor antagonist naloxone and the MOR-selective antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP suppressed morphine-induced MMP-9 expression. Notably, subcutaneous morphine-induced analgesia was enhanced and prolonged in Mmp9 knockout mice and also potentiated in wild-type mice receiving intrathecal injection of MMP-9 inhibitors. Consistently, intrathecal injection of specific siRNA targeting MMP-9 reduced MMP-9 expression in DRGs and enhanced and prolonged morphine analgesia. Subcutaneous morphine also produced heat hyperalgesia at 24 h, but this opioid-induced hyperalgesia was not enhanced after MMP-9 deletion or inhibition. Conclusions Transient MMP-9 up-regulation in DRG neurons can mask opioid analgesia, without modulating opioid-induced hyperalgesia

  14. Modified AS1411 Aptamer Suppresses Hepatocellular Carcinoma by Up-Regulating Galectin-14.

    Cho, Yuri; Lee, Yun Bin; Lee, Jeong-Hoon; Lee, Dong Hyeon; Cho, Eun Ju; Yu, Su Jong; Kim, Yoon Jun; Kim, Jong In; Im, Jong Hun; Lee, Jung Hwan; Oh, Eun Ju; Yoon, Jung-Hwan

    2016-01-01

    Aptamers are small synthetic oligonucleotides that bind to target proteins with high specificity and affinity. AS1411 is an aptamer that binds to nucleolin, which is overexpressed in the cytoplasm and occurs on the surface of cancer cells. We investigated the therapeutic potential of aptamers in hepatocellular carcinoma (HCC) by evaluating anti-tumor effects and confirming the affinity and specificity of AS1411- and modified AS1411-aptamers in HCC cells. Cell growth was assessed using the MTS assay, and cell death signaling was explored by immunoblot analysis. Fluorescence-activated cell sorting was performed to evaluate the affinity and specificity of AS1411-aptamers in SNU-761 HCC cells. We investigated the in vivo effects of the AS1411-aptamer using BALB/c nude mice in a subcutaneous xenograft model with SNU-761 cells. Treatment with a modified AS1411-aptamer significantly decreased in vitro (under normoxic [P = 0.035] and hypoxic [P = 0.018] conditions) and in vivo (under normoxic conditions, P = 0.041) HCC cell proliferation compared to control aptamers. AS1411- and control aptamers failed to control HCC cell proliferation. However, AS1411- and the modified AS1411-aptamer did not induce caspase activation. Decrease in cell growth by AS1411 or modified AS1411 was not prevented by caspase or necrosis inhibitors. In a microarray, AS1411 significantly enhanced galectin-14 expression. Suppression of HCC cell proliferation by the modified AS1411-aptamer was attenuated by galectin-14 siRNA transfection. Modified AS1411-aptamer suppressed HCC cell growth in vitro and in vivo by up-regulating galectin-14 expressions. Modified AS1411-aptamers may have therapeutic potential as a novel targeted therapy for HCC.

  15. Up-regulation of heme oxygenase-1 contributes to the amelioration of aluminum-induced oxidative stress in Medicago sativa.

    Cui, Weiti; Zhang, Jing; Xuan, Wei; Xie, Yanjie

    2013-10-15

    In this report, pharmacological, histochemical and molecular approaches were used to investigate the effect of heme oxygenase-1 (HO-1) up-regulation on the alleviation of aluminum (Al)-induced oxidative stress in Medicago sativa. Exposure of alfalfa to AlCl3 (0-100 μM) resulted in a dose-dependent inhibition of root elongation as well as the enhancement of thiobarbituric acid reactive substances (TBARS) content. 1 and 10 μM (in particular) Al(3+) increased alfalfa HO-1 transcript or its protein level, and HO activity in comparison with the decreased changes in 100 μM Al-treated samples. After recuperation, however, TBARS levels in 1 and 10 μM Al-treated alfalfa roots returned to control values, which were accompanied with the higher levels of HO activity. Subsequently, exogenous CO, a byproduct of HO-1, could substitute for the cytoprotective effects of the up-regulation of HO-1 in alfalfa plants upon Al stress, which was confirmed by the alleviation of TBARS and Al accumulation, as well as the histochemical analysis of lipid peroxidation and loss of plasma membrane integrity. Theses results indicated that endogenous CO generated via heme degradation by HO-1 could contribute in a critical manner to its protective effects. Additionally, the pretreatments of butylated hydroxytoluene (BHT) and hemin, an inducer of HO-1, exhibited the similar cytoprotective roles in the alleviation of oxidative stress, both of which were impaired by the potent inhibitor of HO-1, zinc protoporphyrin IX (ZnPP). However, the Al-induced inhibition of root elongation was not influenced by CO, BHT and hemin, respectively. Together, the present results showed up-regulation of HO-1 expression could act as a mechanism of cell protection against oxidative stress induced by Al treatment.

  16. Stat3 promotes invasion of esophageal squamous cell carcinoma through up-regulation of MMP2.

    Xuan, Xaioyan; Li, Shanshan; Lou, Xi; Zheng, Xianzhao; Li, Yunyun; Wang, Feng; Gao, Yuan; Zhang, Hongyan; He, Hongliu; Zeng, Qingru

    2015-05-01

    Stat3 alters the expression of its downstream genes and is associated with tumor invasion and metastasis in several human cancers. Its role in esophageal squamous cell carcinoma (ESCC) has not been well characterized. We examined the tumor sections of 100 cases of ESCC by immunohistochemistry and observed significant overexpression of Stat3 in the cytoplasm of 89% of ESCC cells and of phosphorylated Stat3 (p-Stat3) in the nuclei of 71% of ESCC when compare with normal esophageal mucosa (72%, p = 0.02; and 31%, p = 0.001). Overexpression of Stat3 and p-Stat3 positively correlated with that of matrix metalloproteinase-2 (MMP2), a known regulator for cell migration, in 65% of ESCC while only 26% shown in benign esophageal mucosa. To further investigate the association of Stat3 with tumor metastasis in vitro, invasion of EC-1 cells (a human ESCC cell line) were investigated with Boyden chambers. The results showed that transfection of Stat3 not only promoted invasion of EC-1 cells but also significantly induced MMP2 expression in a dose-dependent manner. In contrast, suppressing expression of endogenous Stat3 mRNA and protein by Stat3 siRNA significantly reduced EC-1 cell invasion and MMP2 expression. A high-affinity Stat3-binding element was localized to the positions of 648-641 bp (TTCTCGAA) in the MMP2 promoter with electrophoretic mobility shift assay. Our results suggest that Stat3, p-Stat3, and MMP2 were overexpressed in ESCC and associated with invasion of ESCC; and Stat3 up-regulated expression of MMP2 in ESCC through directly binding to the MMP2 promoter.

  17. EFFECT OF UP-REGULATION OF S-ADOMET SYNTHETASE ON TAXOL-INDUCED APOPTOSIS IN HUMAN BREAST CANCER CELLS

    Chen Lirong; Zheng Shu; Fan Weimin; Zhang Suzhan

    1998-01-01

    Objective:To investigate the gene regulation of taxolinduced apoptosis. Methods: Northern blot hybridization,enzyme activity assay of S-AdoMet synthetase and flow cytometry were performed in the investigation of expression in the Mrna level and biological action of SAdoMet synthetase in taxol-induced apoptosis in human breast cancer cell line (Bcap 37). Results: Up-regulation of S-AdoMet synthetase expression was resulted by taxol treatment and the expression peaked at 48hours. Moreover,the up-regulation of S-AdoMet synthetase was associated with cytotoxicity of antimicrotubule agents including taxol and colchicine.Inhibition rate of S-AdoMet synthetase activity by 1%DMSO was 34% in taxol-treated cells and 14% in taxoluntreated cells compared to control groups, respectively.Posttreatment with 1% DMSO following pretreatment with individual antitumor agent for 3 hrs promoted apoptotic cell death of taxol-,colchicine-,and adriamycintreated Bcap37 cells. Conclusion : The induction of apoptosis enhanced by post-treatment with DMSO in taxol-treated cells is probably linked to its inhibition on enzyme activity of S-AdoMet synthetase ,suggesting that the increased expression of S-AdoMet synthetase possibly plays an important role in protecting cells from DNA fragmentation in taxol-induced apoptosis.

  18. Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism.

    Coleman, Heather D; Ellis, Dave D; Gilbert, Margarita; Mansfield, Shawn D

    2006-01-01

    The effects of the overexpression of sucrose synthase (SuSy) and UDP-glucose pyrophosphorylase (UGPase) on plant growth and metabolism were evaluated in tobacco (Nicotiana tabacum cv. Xanthi). T(1) transgenic plants expressing either gene under the control of a tandem repeat cauliflower mosaic virus 35S promoter (2x35S) or a xylem-localized 4CL promoter (4-coumarate:CoA ligase; 4CL) were generated, and reciprocally crossed to generate plants expressing both genes. Transcript levels, enzyme activity, growth parameters, fibre properties and carbohydrate content of stem tissue were quantified. The expression profiles of both genes confirmed the expression pattern of the promoters: 2x35S expressed more strongly in leaves, while 4CL expression was highest in stem tissue. In-depth plant characterization revealed that the single-transgene lines showed significant increases in the height growth compared with corresponding control lines. The double-transgene plants demonstrated an additive effect, proving to be even taller than the single-transgene parents. Several of these lines had associated increases in soluble sugar content. Although partitioning of storage carbohydrates into starch or cellulose was not observed, the increased height growth and increases in soluble carbohydrates suggest a role for SuSy as a marker in sink strength and lend credit to the function of UGPase in a similar role. The up-regulation of these two genes, although not increasing the percentage cellulose content, was effective in increasing the total biomass, and thus the overall cellulose yield, from a given plant.

  19. Impaired up-regulation of type II corticosteroid receptors in hippocampus of aged rats.

    Eldridge, J C; Fleenor, D G; Kerr, D S; Landfield, P W

    1989-01-30

    Several recent investigations have reported a decline of rat hippocampal corticosteroid-binding receptors (CSRs) with aging. This decline has been proposed to be an initial cause (through disinhibition) of the elevated adrenal steroid secretion that apparently occurs with aging; however, it could instead be an effect of corticoid elevation (through down-regulation). In order to assess the effects of age on CSR biosynthetic capacity in the absence of down-regulatory influences of endogenous corticoids, as well as to study aging changes in CSR plasticity, we examined the up-regulation of hippocampal CSR that follows adrenalectomy (ADX). The rat hippocampus contains at least two types of CSR binding and differential analysis of types I and II CSR was accomplished by selective displacement of [3H]corticosterone with RU-28362, a specific type II agonist. In young (3 months old) Fischer-344 rat hippocampus, up-regulation of type II binding above 2-day ADX baseline was present by 3-7 days and increased still further by 8-10 days post-ADX; type I CSR density did not change significantly between 1 and 10 days post-ADX. However, in aged (24-26 months old) rats, type II CSR up-regulation did not occur over the 10 day post-ADX period. Thus, the age-related impairment of type II up-regulation may reflect an intrinsic deficit in CSR biosynthesis or lability that is independent of the acute endogenous adrenal steroid environment.

  20. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma

    Shahrabi-Farahani, Shokoufeh; Gallottini, Marina; Martins, Fabiana; Li, Erik; Mudge, Dayna R.; Nakayama, Hironao; Hida, Kyoko; Panigrahy, Dipak; D'Amore, Patricia A.; Bielenberg, Diane R.

    2017-01-01

    Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells. PMID:26877262

  1. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma.

    Shahrabi-Farahani, Shokoufeh; Gallottini, Marina; Martins, Fabiana; Li, Erik; Mudge, Dayna R; Nakayama, Hironao; Hida, Kyoko; Panigrahy, Dipak; D'Amore, Patricia A; Bielenberg, Diane R

    2016-04-01

    Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells.

  2. Up-regulation of heme oxygenase-1 by isoflurane preconditioning during tolerance against neuronal injury induced by oxygen glucose deprivation

    Qifang Li; Yesen Zhu; Hong Jiang; Hui Xu; Heping Liu

    2008-01-01

    Heme oxygenase (HO) is the rate-limiting enzyme in the degradation of heme to produce bile pigments and carbon monoxide. The HO-1 isozyme is induced by a variety of factors such as heat, heme, ischemia, and hydrogen peroxide. In recent years, mounting findings have suggested that HO-1 has a neuroprotective activity against ischemic injury. The neuroprotective role of isoflurane, a commonly used anesthetic, has been well documented, but little is known about the underlying mechanisms involved. Recently, isoflurane has been shown to up-regulate HO-1 in the liver. In this study,we show that isoflurane preconditioning promotes the survival of cultured ischemic hippocampal neurons by increasing the number of surviving neurons and their viability. Further study by reverse transcription-polymerase chain reaction and Western blot analysis showed that isoflurane preconditioning significantly increases HO-1 expression in oxygen glucose deprivation (OGD)-induced neuronal injury. Furthermore,inhibition of HO activity by tin protoporphyrin partially abolishes isoflurane preconditioning's protective effect as measured by lactate dehydrogenase release in OGD neurons.These findings indicated that the neuroprotective role of isoflurane preconditioning against OGD-induced injury might be associated with its role in up-regulating HO-1 in ischemic neurons.

  3. Up-regulation of heme oxygenase-1 by isoflurane preconditioning during tolerance against neuronal injury induced by oxygen glucose deprivation.

    Li, Qifang; Zhu, Yesen; Jiang, Hong; Xu, Hui; Liu, Heping

    2008-09-01

    Heme oxygenase (HO) is the rate-limiting enzyme in the degradation of heme to produce bile pigments and carbon monoxide. The HO-1 isozyme is induced by a variety of factors such as heat, heme, ischemia, and hydrogen peroxide. In recent years, mounting findings have suggested that HO-1 has a neuroprotective activity against ischemic injury. The neuroprotective role of isoflurane, a commonly used anesthetic, has been well documented, but little is known about the underlying mechanisms involved. Recently, isoflurane has been shown to up-regulate HO-1 in the liver. In this study, we show that isoflurane preconditioning promotes the survival of cultured ischemic hippocampal neurons by increasing the number of surviving neurons and their viability. Further study by reverse transcription-polymerase chain reaction and Western blot analysis showed that isoflurane preconditioning significantly increases HO-1 expression in oxygen glucose deprivation (OGD)-induced neuronal injury. Furthermore, inhibition of HO activity by tin protoporphyrin partially abolishes isoflurane preconditioning's protective effect as measured by lactate dehydrogenase release in OGD neurons. These findings indicated that the neuroprotective role of isoflurane preconditioning against OGD-induced injury might be associated with its role in up-regulating HO-1 in ischemic neurons.

  4. Up-regulation of intestinal nuclear factor kappa B and intercellular adhesionmolecule-1 following traumatic brain injury in rats

    Chun-Hua Hang; Ji-Xin Shi; Jie-Shou Li; Wei-Qin Li; Hong-Xia Yin

    2005-01-01

    AIM: Nuclear factor kappa B (NF-κB) regulates a large number of genes involved in the inflammatory response to critical illnesses, but it is not known if and how NF-κB is activated and intercellular adhesion molecule-1 (ICAM-1)expressed in the gut following traumatic brain injury (TBI).The aim of current study was to investigate the temporal pattern of intestinal NF-κB activation and ICAM-1expression following TBI.METHODS: Male Wistar rats were randomly divided into six groups (6 rats in each group) including controls with sham operation and TBI groups at hours 3, 12, 24, and 72, and on d 7. Parietal brain contusion was adopted using weight-dropping method. All rats were decapitated at corresponding time point and mid-jejunum samples were taken. NF-κB binding activity in jejunal tissue was measured using EMSA. Immunohistochemistry was used for detection of ICAM-1 expression in jejunal samples.RESULTS: There was a very low NF-κB binding activity and little ICAM-1 expression in the gut of control rats after sham surgery. NF-κB binding activity in jejunum significantly increased by 160% at 3 h following TBI (P<0.05 vs control), peaked at 72 h (500% increase)and remained elevated on d 7 post-injury by 390% increase. Compared to controls, ICAM-1 was significantly up-regulated on the endothelia of microvessels in villous interstitium and lamina propria by 24 h following TBI and maximally expressed at 72 h post-injury (P<0.001). The endothelial ICAM-1 immunoreactivity in jejunal mucosa still remained strong on d 7 post-injury. The peak of NF-κB activation and endothelial ICAM-1 expression coincided in time with the period during which secondary mucosal injury of the gut was also at their culmination following TBI.CONCLUSION: TBI could induce an immediate and persistent up-regulation of NF-κB activity and subsequent up-regulation of ICAM-1 expression in the intestine.Inflammatory response mediated by increased NF-κB activation and ICAM-1 expression may play an

  5. Transcutaneous electrical nerve stimulation (TENS) improves the diabetic cytopathy (DCP) via up-regulation of CGRP and cAMP.

    Ding, Liucheng; Song, Tao; Yi, Chaoran; Huang, Yi; Yu, Wen; Ling, Lin; Dai, Yutian; Wei, Zhongqing

    2013-01-01

    The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS) on the diabetic cytopathy (DCP) in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM)/TENS group (n=15), DM group (n=15) and control group (n=15). The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min) for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP) was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG) in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG.

  6. Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection.

    Samuelian, Suren; Kleine, Michael; Ruyter-Spira, Carolien P; Klein-Lankhorst, René M; Jung, Christian

    2004-01-01

    The cDNA-AFLP technique was used to isolate sugar beet genes up-regulated upon infection with the beet cyst nematode Heterodera schachtii. Hairy root cultures were obtained from resistant plants carrying a Beta procumbens translocation as well as from a non-resistant control. mRNA was isolated from hairy root clones and sugar beet plants infected or not with the beet cyst nematode and 8000 transcript-derived fragments (TDFs) were analysed. One TDF was found to be differentially expressed in both materials and was further investigated. Real-time PCR confirmed that this TDF is specifically up-regulated in resistant sugar beet upon nematode infection and its full-length cDNA was isolated. Sequence analysis suggests that the gene encodes a 317 amino acid polypeptide of unknown function. No homology to any sequence present in the public databases could be detected. To further elucidate its function in resistance to the beet cyst nematode, the cDNA was transformed into hairy roots of susceptible sugar beet under the control of the 35S promoter and hairy root clones were inoculated with nematodes. The number of developing females was significantly reduced in 12 out of 15 clones resulting from independent transgenic events suggesting that the gene can be used for inducing cyst nematode resistance in plants.

  7. Transcutaneous electrical nerve stimulation (TENS improves the diabetic cytopathy (DCP via up-regulation of CGRP and cAMP.

    Liucheng Ding

    Full Text Available The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS on the diabetic cytopathy (DCP in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM/TENS group (n=15, DM group (n=15 and control group (n=15. The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG.

  8. FOXO1 promotes wound healing through the up-regulation of TGF-β1 and prevention of oxidative stress.

    Ponugoti, Bhaskar; Xu, Fanxing; Zhang, Chenying; Tian, Chen; Pacios, Sandra; Graves, Dana T

    2013-10-28

    Keratinocyte mobilization is a critical aspect of wound re-epithelialization, but the mechanisms that control its precise regulation remain poorly understood. We set out to test the hypothesis that forkhead box O1 (FOXO1) has a negative effect on healing because of its capacity to inhibit proliferation and promote apoptosis. Contrary to expectations, FOXO1 is required for keratinocyte transition to a wound-healing phenotype that involves increased migration and up-regulation of transforming growth factor β1 (TGF-β1) and its downstream targets, integrin-α3 and -β6 and MMP-3 and -9. Furthermore, we show that FOXO1 functions in keratinocytes to reduce oxidative stress, which is necessary to maintain cell migration and prevent cell death in a TGF-β1-independent manner. Thus, our studies identify a novel function for FOXO1 in coordinating the response of keratinocytes to wounding through up-regulation of TGF-β1 and other factors needed for keratinocyte migration and protection against oxidative stress, which together promote migration and decrease apoptosis.

  9. Sucrose prevents up-regulation of senescence-associated genes in carnation petals.

    Hoeberichts, Frank A; van Doorn, Wouter G; Vorst, Oscar; Hall, Robert D; van Wordragen, Monique F

    2007-01-01

    cDNA microarrays were used to characterize senescence-associated gene expression in petals of cut carnation (Dianthus caryophyllus) flowers, sampled from anthesis to the first senescence symptoms. The population of PCR fragments spotted on these microarrays was enriched for flower-specific and senescence-specific genes, using subtractive hybridization. About 90% of the transcripts showed a large increase in quantity, approximately 25% transiently, and about 65% throughout the 7 d experiment. Treatment with silver thiosulphate (STS), which blocks the ethylene receptor and prevented the normal senescence symptoms, prevented the up-regulation of almost all of these genes. Sucrose treatment also considerably delayed visible senescence. Its effect on gene expression was very similar to that of STS, suggesting that soluble sugars act as a repressor of ethylene signal transduction. Two fragments that encoded a carnation EIN3-like (EIL) protein were isolated, some of which are key transcription factors that control ethylene response genes. One of these (Dc-EIL3) was up-regulated during senescence. Its up-regulation was delayed by STS and prevented by sucrose. Sucrose, therefore, seems to repress ethylene signalling, in part, by preventing up-regulation of Dc-EIL3. Some other transcription factors displayed an early increase in transcript abundance: a MYB-like DNA binding protein, a MYC protein, a MADS-box factor, and a zinc finger protein. Genes suggesting a role in senescence of hormones other than ethylene encoded an Aux/IAA protein, which regulate transcription of auxin-induced genes, and a cytokinin oxidase/dehydrogenase, which degrades cytokinin. Taken together, the results suggest a master switch during senescence, controlling the co-ordinated up-regulation of numerous ethylene response genes. Dc-EIL3 might be (part of) this master switch.

  10. Temperature shift and host cell contact up-regulate sporozoite expression of Plasmodium falciparum genes involved in hepatocyte infection.

    Anthony Siau

    proteins involved in hepatocyte invasion, while the other two were predominantly expressed during hepatic parasite development. The genome-wide up-regulation of expression observed supports the hypothesis that the shift from the mosquito to the mammalian host contributes to activate quiescent salivary gland sporozoites into a state of readiness for the hepatic stages. Functional studies on four of the up-regulated genes validated our approach as one means to determine the repertoire of proteins implicated during the early events of the Plasmodium infection, and in this case that of P. falciparum, the species responsible for the severest forms of malaria.

  11. Reduced ceramide synthase 2 activity causes progressive myoclonic epilepsy

    Mosbech, Mai-Britt; Olsen, Anne S B; Neess, Ditte;

    2014-01-01

    with progressive myoclonic epilepsy (PME). Mass spectrometry and fluorescence microscopy were used to examine the effects of reduced CERS2 activity on cellular lipid composition and plasma membrane functions. RESULTS: We identify a novel 27 kb heterozygous deletion including the CERS2 gene in a proband diagnosed...... with PME. Compared to parental controls, levels of CERS2 mRNA, protein, and activity were reduced by ˜50% in fibroblasts isolated from this proband, resulting in significantly reduced levels of ceramides and sphingomyelins containing the very long-chain fatty acids C24:0 and C26:0. The change in SL...... to development of PME....

  12. Up-Regulation of Endothelin Receptors Induced by Cigarette Smoke — Involvement of MAPK in Vascular and Airway Hyper-Reactivity

    Yaping Zhang

    2010-01-01

    Full Text Available Cigarette smoke exposure is well known to cause cardiovascular and airway diseases, both of which are leading causes of death and disability in the world. However, the molecular mechanisms that link cigarette smoke to cardiovascular and airway diseases are not fully understood. Vascular and airway hyper-reactivity plays an important role in the pathogenesis of cardiovascular and airway diseases. Recent studies have demonstrated that endothelin receptor up-regulation mediates vascular and airway hyper-reactivity in response to endothelin-1 (ET-1, endothelin receptor agonist in cardiovascular and airway diseases. In the vasculature and airways, the main functional consequences of up-regulated endothelin receptors by cigarette smoke exposure are enhanced contraction and proliferation of the smooth muscle cells, which subsequently result in abnormal contraction (spasm and adverse proliferation (remodeling of the vasculature and airways. The structural alteration by adverse remodeling involves changes in cell growth, cell death, cell migration, and production or degradation of the extracellular matrix. This review focuses on cigarette smoke exposure that induces activation of intracellular mitogen-activated protein kinase (MAPK and subsequently results in the up-regulation of endothelin receptors in the vasculature and airways, which mediates vascular and airway hyper-reactivity, one of the important pathogenic characteristics of cardiovascular and airway diseases. Understanding the molecular mechanisms of how cigarette smoke causes up-regulation of endothelin receptors in the vasculature and airways may provide new strategies for the treatment of cigarette smoke—associated cardiovascular and lung diseases.

  13. A critical role of IFNγ in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1

    2008-01-01

    Bone-marrow-derived mesenchymal stem cells (MSCs) have been shown to possess immunosuppressive properties, e.g., by inhibiting T cell proliferation. Activated T cells can also enhance the immunosuppression ability of MSCs. The precise mechanisms underlying MSC-mediated immunosuppression remain largely undefined, although both cell-cell contact and soluble factors have been implicated; nor is it clear how the immunosuppressive property of MSCs is modulated by T cells. Using MSCs isolated from mouse bone marrow, we show here that interferon gamma (IFNγ), a well-known proinflammatory cytokine produced by activated T cells, plays an important role in priming the immunosuppressive property of MSCs. Mechanistically, IFNγ acts directly on MSCs and leads to up-regulation of B7-H1, an inhibitory surface molecule in these stem cells. MSCs primed by activated T cells derived from IFNγ-/- mouse exhibited dramatically reduced ability to suppress T cell proliferation, a defect that can be rescued by supplying exogenous IFNy. Moreover, siRNA-mediated knockdown of B7-H1 in MSCs abolished immunosuppression by these cells. Taken together, our results suggest that IFNy plays a critical role in triggering the immunosuppresion by MSCs through upregulating B7-H1 in these cells, and provide evidence supporting the cell-cell contact mechanism in MSC-mediated immunosuppression.

  14. Carboxypeptidase E protects hippocampal neurons during stress in male mice by up-regulating prosurvival BCL2 protein expression.

    Murthy, S R K; Thouennon, E; Li, W-S; Cheng, Y; Bhupatkar, J; Cawley, N X; Lane, M; Merchenthaler, I; Loh, Y P

    2013-09-01

    Prolonged chronic stress causing elevated plasma glucocorticoids leads to neurodegeneration. Adaptation to stress (allostasis) through neuroprotective mechanisms can delay this process. Studies on hippocampal neurons have identified carboxypeptidase E (CPE) as a novel neuroprotective protein that acts extracellularly, independent of its enzymatic activity, although the mechanism of action is unclear. Here, we aim to determine if CPE plays a neuroprotective role in allostasis in mouse hippocampus during chronic restraint stress (CRS), and the molecular mechanisms involved. Quantitative RT-PCR/in situ hybridization and Western blots were used to assay for mRNA and protein. After mild CRS (1 h/d for 7 d), CPE protein and mRNA were significantly elevated in the hippocampal CA3 region, compared to naïve littermates. In addition, luciferase reporter assays identified a functional glucocorticoid regulatory element within the cpe promoter that mediated the up-regulation of CPE expression in primary hippocampal neurons following dexamethasone treatment, suggesting that circulating plasma glucocorticoids could evoke a similar effect on CPE in the hippocampus in vivo. Overexpression of CPE in hippocampal neurons, or CRS in mice, resulted in elevated prosurvival BCL2 protein/mRNA and p-AKT levels in the hippocampus; however, CPE(-/-) mice showed a decrease. Thus, during mild CRS, CPE expression is up-regulated, possibly contributed by glucocorticoids, to mediate neuroprotection of the hippocampus by enhancing BCL2 expression through AKT signaling, and thereby maintaining allostasis.

  15. Up-regulation of the Kv3.4 potassium channel subunit in early stages of Alzheimer's disease.

    Angulo, Ester; Noé, Véronique; Casadó, Vicent; Mallol, Josefa; Gomez-Isla, Teresa; Lluis, Carmen; Ferrer, Isidre; Ciudad, Carlos J; Franco, Rafael

    2004-11-01

    Gene expression throughout the different stages of Alzheimer's disease was analysed in samples from cerebral cortex. The gene encoding the voltage-gated potassium channel Kv3.4 was already overexpressed in early stages of the disease, and in advanced stages Kv3.4 was present at high levels in neurodegenerative structures. This subunit regulates delayed-rectifier currents, which are primary determinants of spike repolarization in neurones. In unique samples from a patient with Alzheimer's disease whose amount of amyloid plaques was decreased by beta amyloid immunization, Kv3.4 was overexpressed. The channel subunit was expressed in the neuropil, in the remaining conventional plaques in the frontal cortex and in collapsed plaques in the orbitary cortex. Therefore, amyloid deposition in plaques does not seem to be responsible for the increase in Kv3.4 levels. Nevertheless, Kv3.4 up-regulation is related to amyloid pathology, given that transgenic mice with the Swedish mutation of amyloid precursor protein showed increased expression of Kv3.4. Up-regulation of voltage-gated potassium channel subunits alters potassium currents in neurones and leads to altered synaptic activity that may underlie the neurodegeneration observed in Alzheimer's disease. Thus, Kv3.4 likely represents a novel therapeutic target for the disease.

  16. Up-regulation of miR-26a promotes neurite outgrowth and ameliorates apoptosis by inhibiting PTEN in bupivacaine injured mouse dorsal root ganglia.

    Cui, Changlei; Xu, Gong; Qiu, Jinpeng; Fan, Xiushuang

    2015-08-01

    Local anesthetic of bupivacaine may inhibit neurite outgrowth and induce apoptosis in mouse dorsal root ganglia (DRG) neurons. In this work, we intended to investigate the functional role of microRNA 26a (miR-26a) in regulating bupivacaine-induced nerve injury in DRG neurons. DRG neurons were extracted from C57BL/6 mice and cultured in vitro. Bupivacaine was applied in vitro and it induced apoptosis, inhibited neurite growth, and significantly down-regulated miR-26a gene in DRG neurons. MiR-26a mimic was then used to up-regulate miR-26a expression in DRG neurons. We found that miR-26a up-regulation promoted neurite outgrowth and reduced apoptosis in bupivacaine-injured DRG neurons. Luciferase assay and Western blot confirmed that Phosphatase and tensin homolog (PTEN) was down-stream target of miR-26a in DRG neurons. Ectopic PTEN up-regulation was then able to reverse the protective effect of miR-26a overexpression on bupivacaine-induced nerve injury in DRG neurons. Overall, this work demonstrated that miR-26a had a functional role in regulating bupivacaine-induced nerve injury in DRG neurons. Up-regulating miR-26a to suppress PTEN signaling pathway may be an effective method to protect local anesthetic-induced nerve injury in spinal cord.

  17. Combined Treatment With Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands and Gamma Radiation Induces Apoptosis by PPARγ-Independent Up-Regulation of Reactive Oxygen Species-Induced Deoxyribonucleic Acid Damage Signals in Non-Small Cell Lung Cancer Cells

    Han, Eun Jong; Im, Chang-Nim; Park, Seon Hwa [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Moon, Eun-Yi [Department of Bioscience and Biotechnology, Sejong University, Seoul (Korea, Republic of); Hong, Sung Hee, E-mail: gobrian@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-04-01

    Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation in a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.

  18. Estrogen receptor-related receptor alpha mediates up-regulation of aromatase expression by prostaglandin E2 in prostate stromal cells.

    Miao, Lin; Shi, Jiandang; Wang, Chun-Yu; Zhu, Yan; Du, Xiaoling; Jiao, Hongli; Mo, Zengnan; Klocker, Helmut; Lee, Chung; Zhang, Ju

    2010-06-01

    Estrogen receptor-related receptor alpha (ERRalpha) is an orphan member of the nuclear receptor superfamily of transcription factors. ERRalpha is highly expressed in the prostate, especially in prostate stromal cells. However, little is known about the regulation and function of ERRalpha, which may contribute to the progression of prostatic diseases. We previously found that prostaglandin E2 (PGE2) up-regulated the expression of aromatase in prostate stromal cells. Here we show that PGE2 also up-regulates the expression of ERRalpha, which, as a transcription factor, further mediates the regulatory effects of PGE2 on the expression of aromatase. ERRalpha expression was up-regulated by PGE2 in prostate stromal cell line WPMY-1, which was mediated mainly through the protein kinase A signaling pathway by PGE2 receptor EP2. Suppression of ERRalpha activity by chlordane (an antagonist of ERRalpha) or small interfering RNA knockdown of ERRalpha blocked the increase of expression and promoter activity of aromatase induced by PGE2. Overexpression of ERRalpha significantly increased aromatase expression and promoter activity, which were further augmented by PGE2. Chromatin immunoprecipitation assay demonstrated that ERRalpha directly bound to the aromatase promoter in vivo, and PGE2 enhanced the recruitment of ERRalpha and promoted transcriptional regulatory effects on aromatase expression in WPMY-1. 17Beta-estradiol concentration in WPMY-1 medium was up-regulated by ERRalpha expression, and that was further increased by PGE2. Our results provided evidence that ERRalpha contributed to local estrogen production by up-regulating aromatase expression in response to PGE2 and provided further insights into the potential role of ERRalpha in estrogen-related prostatic diseases.

  19. Up-Regulation of Claudin-6 in the Distal Lung Impacts Secondhand Smoke-Induced Inflammation

    Joshua B. Lewis

    2016-10-01

    Full Text Available It has long been understood that increased epithelial permeability contributes to inflammation observed in many respiratory diseases. Recently, evidence has revealed that environmental exposure to noxious material such as cigarette smoke reduces tight junction barrier integrity, thus enhancing inflammatory conditions. Claudin-6 (Cldn6 is a tetraspanin transmembrane protein found within the tight junctional complex and is implicated in maintaining lung epithelial barriers. To test the hypothesis that increased Cldn6 ameliorates inflammation at the respiratory barrier, we utilized the Tet-On inducible transgenic system to conditionally over-express Clnd6 in the distal lung. Cldn6 transgenic (TG and control mice were continuously provided doxycycline from postnatal day (PN 30 until euthanasia date at PN90. A subset of Cldn6 TG and control mice were also subjected to daily secondhand tobacco smoke (SHS via a nose only inhalation system from PN30-90 and compared to room air (RA controls. Animals were euthanized on PN90 and lungs were harvested for histological and molecular characterization. Bronchoalveolar lavage fluid (BALF was procured for the assessment of inflammatory cells and molecules. Quantitative RT-PCR and immunoblotting revealed increased Cldn6 expression in TG vs. control animals and SHS decreased Cldn6 expression regardless of genetic up-regulation. Histological evaluations revealed no adverse pulmonary remodeling via Hematoxylin and Eosin (H&E staining or any qualitative alterations in the abundance of type II pneumocytes or proximal non-ciliated epithelial cells via staining for cell specific propeptide of Surfactant Protein-C (proSP-C or Club Cell Secretory Protein (CCSP, respectively. Immunoblotting and qRT-PCR confirmed the differential expression of Cldn6 and the pro-inflammatory cytokines TNF-α and IL-1β. As a general theme, inflammation induced by SHS exposure was influenced by the availability of Cldn6. These data reveal

  20. Up-Regulation of Claudin-6 in the Distal Lung Impacts Secondhand Smoke-Induced Inflammation

    Lewis, Joshua B.; Milner, Dallin C.; Lewis, Adam L.; Dunaway, Todd M.; Egbert, Kaleb M.; Albright, Scott C.; Merrell, Brigham J.; Monson, Troy D.; Broberg, Dallin S.; Gassman, Jason R.; Thomas, Daniel B.; Arroyo, Juan A.; Reynolds, Paul R.

    2016-01-01

    It has long been understood that increased epithelial permeability contributes to inflammation observed in many respiratory diseases. Recently, evidence has revealed that environmental exposure to noxious material such as cigarette smoke reduces tight junction barrier integrity, thus enhancing inflammatory conditions. Claudin-6 (Cldn6) is a tetraspanin transmembrane protein found within the tight junctional complex and is implicated in maintaining lung epithelial barriers. To test the hypothesis that increased Cldn6 ameliorates inflammation at the respiratory barrier, we utilized the Tet-On inducible transgenic system to conditionally over-express Clnd6 in the distal lung. Cldn6 transgenic (TG) and control mice were continuously provided doxycycline from postnatal day (PN) 30 until euthanasia date at PN90. A subset of Cldn6 TG and control mice were also subjected to daily secondhand tobacco smoke (SHS) via a nose only inhalation system from PN30-90 and compared to room air (RA) controls. Animals were euthanized on PN90 and lungs were harvested for histological and molecular characterization. Bronchoalveolar lavage fluid (BALF) was procured for the assessment of inflammatory cells and molecules. Quantitative RT-PCR and immunoblotting revealed increased Cldn6 expression in TG vs. control animals and SHS decreased Cldn6 expression regardless of genetic up-regulation. Histological evaluations revealed no adverse pulmonary remodeling via Hematoxylin and Eosin (H&E) staining or any qualitative alterations in the abundance of type II pneumocytes or proximal non-ciliated epithelial cells via staining for cell specific propeptide of Surfactant Protein-C (proSP-C) or Club Cell Secretory Protein (CCSP), respectively. Immunoblotting and qRT-PCR confirmed the differential expression of Cldn6 and the pro-inflammatory cytokines TNF-α and IL-1β. As a general theme, inflammation induced by SHS exposure was influenced by the availability of Cldn6. These data reveal captivating

  1. Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-ß mediated fibrosis

    Watson, Chris J

    2012-07-07

    AbstractBackgroundMechanical overload of the heart is associated with excessive deposition of extracellular matrix proteins and the development of cardiac fibrosis. This can result in reduced ventricular compliance, diastolic dysfunction, and heart failure. Extracellular matrix synthesis is regulated primarily by cardiac fibroblasts, more specifically, the active myofibroblast. The influence of mechanical stretch on human cardiac fibroblasts’ response to pro-fibrotic stimuli, such as transforming growth factor beta (TGFβ), is unknown as is the impact of stretch on B-type natriuretic peptide (BNP) and natriuretic peptide receptor A (NPRA) expression. BNP, acting via NPRA, has been shown to play a role in modulation of cardiac fibrosis.Methods and resultsThe effect of cyclical mechanical stretch on TGFβ induction of myofibroblast differentiation in primary human cardiac fibroblasts and whether differences in response to stretch were associated with changes in the natriuretic peptide system were investigated. Cyclical mechanical stretch attenuated the effectiveness of TGFβ in inducing myofibroblast differentiation. This finding was associated with a novel observation that mechanical stretch can increase BNP and NPRA expression in human cardiac fibroblasts, which could have important implications in modulating myocardial fibrosis. Exogenous BNP treatment further reduced the potency of TGFβ on mechanically stretched fibroblasts.ConclusionWe postulate that stretch induced up-regulation of the natriuretic peptide system may contribute to the observed reduction in myofibroblast differentiation.

  2. Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli.

    Gaëlle Cane

    Full Text Available BACKGROUND: Angiogenesis has been recently described as a novel component of inflammatory bowel disease pathogenesis. The level of vascular endothelial growth factor (VEGF has been found increased in Crohn's disease and ulcerative colitis mucosa. To question whether a pro-inflammatory Escherichia coli could regulate the expression of VEGF in human intestinal epithelial cells, we examine the response of cultured human colonic T84 cells to infection by E. coli strain C1845 that belongs to the typical Afa/Dr diffusely adhering E. coli family (Afa/Dr DAEC. METHODOLOGY: VEGF mRNA expression was examined by Northern blotting and q-PCR. VEGF protein levels were assayed by ELISA and its bioactivity was analysed in endothelial cells. The bacterial factor involved in VEGF induction was identified using recombinant E. coli expressing Dr adhesin, purified Dr adhesin and lipopolysaccharide. The signaling pathway activated for the up-regulation of VEGF was identified using a blocking monoclonal anti-DAF antibody, Western blot analysis and specific pharmacological inhibitors. PRINCIPAL FINDINGS: C1845 bacteria induce the production of VEGF protein which is bioactive. VEGF is induced by adhering C1845 in both a time- and bacteria concentration-dependent manner. This phenomenon is not cell line dependent since we reproduced this observation in intestinal LS174, Caco2/TC7 and INT407 cells. Up-regulation of VEGF production requires: (1 the interaction of the bacterial F1845 adhesin with the brush border-associated decay accelerating factor (DAF, CD55 acting as a bacterial receptor, and (2 the activation of a Src protein kinase upstream of the activation of the Erk and Akt signaling pathways. CONCLUSIONS: Results demonstrate that a Afa/Dr DAEC strain induces an adhesin-dependent activation of DAF signaling that leads to the up-regulation of bioactive VEGF in cultured human intestinal cells. Thus, these results suggest a link between an entero-adherent, pro

  3. Sox11 Reduces Caspase-6 Cleavage and Activity.

    Elaine Waldron-Roby

    Full Text Available The apoptotic cascade is an orchestrated event, whose final stages are mediated by effector caspases. Regulatory binding proteins have been identified for caspases such as caspase-3, -7, -8, and -9. Many of these proteins belong to the inhibitor of apoptosis (IAP family. By contrast, caspase-6 is not believed to be influenced by IAPs, and little is known about its regulation. We therefore performed a yeast-two-hybrid screen using a constitutively inactive form of caspase-6 for bait in order to identify novel regulators of caspase-6 activity. Sox11 was identified as a potential caspase-6 interacting protein. Sox11 was capable of dramatically reducing caspase-6 activity, as well as preventing caspase-6 self- cleavage. Several regions, including amino acids 117-214 and 362-395 within sox11 as well as a nuclear localization signal (NLS all contributed to the reduction in caspase-6 activity. Furthermore, sox11 was also capable of decreasing other effector caspase activity but not initiator caspases -8 and -9. The ability of sox11 to reduce effector caspase activity was also reflected in its capacity to reduce cell death following toxic insult. Interestingly, other sox proteins also had the ability to reduce caspase-6 activity but to a lesser extent than sox11.

  4. Identification of up-regulated genes in human uterine leiomyoma by suppression subtractive hybridization

    2002-01-01

    In searching for differentially expressed genes in human uterine leiomyomas (ULs), suppression sub-tractive hybridization was used to construct an UL up-regulated library, which turned out to represent 88genes. After two rounds of screening by reverse Northern analysis, twenty genes were proved to be up-regulated, including seventeen known genes and three genes with unknown function. All these genes werefirstly associated with UL. Three genes with notable difference were selected for Northern confirmationOur results proved the authenticity of the twenty genes. One gene named Phospholipase A2 (PLA2) showedup-regulation in 4/6 of the patients and investigation of tissue distribution indicated that it had obviousexpression in prostate, testis, liver, heart and skeletal muscle.

  5. Influence of Apoptin on Up-regulation of the Expression of Bad and Bax

    GUO Tai; YANG Qian

    2005-01-01

    The chicken anemia virus protein, apoptin, which manifests selectivity and specificity to tumor cells, induces a p53-independent and Bcl-2-insensitive type of apoptosis in various human tumor cells. In this study, the apoptin gene was cloned from the total DNA of chicken anemia virus, and the recombinant vector was constructed. We used oligonucleotide microarray to study the changes of four genes, including Bcl-2, Bcl-xL, Bad and Bax. The post-transfection with the recombinant was also studied. The pro-apoptotic genes(Bad and Bax) and anti-apoptosis genes(Bcl-2 and Bcl-xL) were up-regulated in contrast to the controls. According to the published data, either Bcl-2 or Bcl-xL can form non-functional heterodimers by Bad and Bax binding together, resulting in blocking partly the release of cytochrome c from mitochondria. However, apoptosis could be inhibited by neither the endogenous Bcl-xL nor Bcl-2 over-expression. The experiments show that the apoptin-induced apoptotic pathway is related to the up-regulation of Bad and Bax. Bad was up-regulated by apoptin; then this up-regulated product of Bad was in favor of displacing Bax from binding to Bcl-xL or Bcl-2. Consequently, Bax exerted a pro-apoptotic dysfunction to mitochondria, thereby inducing the release of cytochrome c. Finally, apoptin induced the apoptosis of HHCC cells. These results indicate that the oligonucleotide microarray can reveal the genes related to the apoptosis induced by apoptin in HHCC cells.

  6. Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex

    Okada Yasukazu

    2010-04-01

    Full Text Available Abstract Background Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera. Results Previous studies suggest that the timing of the sensitivity to kairomones in D. pulex can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, Hox3, extradenticle and escargot, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, JHAMT and Met, and the insulin signaling pathway genes, InR and IRS-1, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation. Conclusions It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype.

  7. Up-regulation of NKX3.1 Expression and Inhibition of LNCaP Cell Proliferation Induced by an Inhibitory Element Decoy

    An-Li JIANG; Xiao-Yan HU; Peng-Ju ZHANG; Mei-Lan HE; Feng KONG; Zhi-Fang LIU; Hui-Qing YUAN; Jian-Ye ZHANG

    2005-01-01

    NKX3.1 is an androgen-regulated prostate-specific homeobox gene that is thought to play an important role in prostate development and cancerogenesis. NKX3.1 acts as a tumor suppressor gene specifically in the prostate. Up-regulation of NKX3.1 gene offers a promising gene therapy for prostate cancer. The decoy strategy has been developed and is considered a useful tool for regulating gene expression and gene therapy. In our previous studies, we identified a 20 bp inhibitory element upstream of the NKX3.1 promoter.In this study, we focused on using the 20 bp inhibitory element decoy to block negative regulation of the NKX3.1 gene and to up-regulate NKX3.1 expression using synthetic double-stranded oligodeoxynucleotides of the 20 bp inhibitory element. We found in an electrophoretic mobility shift assay experiment that the 20 bp inhibitory decoy presented competitive binding to a specific binding protein of the 20 bp inhibitory element in prostate cancer cell line LNCaP. In luciferase reporter gene assays, we found that the 20 bp inhibitory decoy could enhance NKX3.1 promoter activity, and RT-PCR and Western blot analysis revealed that NKX3.1expression was up-regulated effectively by the transfection with the 20 bp inhibitory decoy. Furthermore,cell proliferation was inhibited by up-regulated NKX3.1 expression induced by the 20 bp inhibitory decoy.

  8. Toll-like receptor 3 signalling up-regulates expression of the HIV co-receptor G-protein coupled receptor 15 on human CD4+ T cells.

    Miriam Kiene

    Full Text Available BACKGROUND: Many HIV-2 and SIV isolates, as well as some HIV-1 strains, can use the orphan 7-transmembrane receptor GPR15 as co-receptor for efficient entry into host cells. GPR15 is expressed on central memory and effector memory CD4(+ T cells in healthy individuals and a subset of these cells is susceptible to HIV-1 and SIV infection. However, it has not been determined whether GPR15 expression is altered in the context of HIV-1 infection. RESULTS: Here, we show that GPR15 expression in CD4(+ T cells is markedly up-regulated in some HIV-1 infected individuals compared to the rest of the infected patients and to healthy controls. Infection of the PM1 T cell line with primary HIV-1 isolates was found to up-regulate GPR15 expression on the infected cells, indicating that viral components can induce GPR15 expression. Up-regulation of GPR15 expression on CD4(+ T cells was induced by activation of Toll-like receptor 3 signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF and was more prominent on gut-homing compared to lymph node-homing CD4(+ T cells. CONCLUSION: These results suggest that infection-induced up-regulation of GPR15 expression could increase susceptibility of CD4(+ T cells to HIV infection and target cell availability in the gut in some infected individuals.

  9. Moclobemide up-regulates proliferation of hippocampal progenitor cells in chronically stressed mice

    Yun-fengLI; You-zhiZHANG; Yan-qinLIU; Heng-linWANG; LiYUAN; Zhi-puLUO

    2004-01-01

    AIM: To explore the action mechanism of antidepressants. METHODS: The PC 12 cell proliferation was detected by flow cytometry,. The proliferation of hippocampal progenitor cells and level of brain-derived neurotrophic factor (BDNF) were measured by immunohistochemistry. RESULTS: Treatment with N-methylaspartate (NMDA)600 μmol/L for 3 d significantly decreased the percentage of S-phase in PC12 cells, while in the presence of classical antidepressant, moclobemide (MOC) 2 and 10 μnol/L, the percentage in S-phase increased. Furthermore,the proliferation of progenitor cells in hippocampal dentate gyrus (subgranular zone), as well as the level of BDNF in hippocampus significantly decreased in chronically stressed mice, while chronic administration with MOC 40 mg/kg (ip) up-regulated the progenitor cell proliferation and BDNF level in the same time course. CONLUSION:Up-regulation of the proliferation of hippocampal progenitor cells is one of the action mechanisms for MOC, which may be closely related to the elevation of BDNF level at the same time. These results also extend evidence for our hypothesis that up-regulation of the hippocampal neurogenesis is one of the common mechanisms for antidepressants.

  10. General up regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor.

    Brioschi, Daniela; Nadalini, Larissa D; Bengtson, Mario H; Sogayar, Mari Cleide; Moura, Daniel S; Silva-Filho, Marcio C

    2007-12-01

    The existence of a diverse serine proteinase gene family in lepidopteran insects suggests they play a significant role in the insect adaptation to plant proteinase inhibitors. These proteinases have been shown to be involved in the process of proteolytic digestion in insect larvae. We carried out a selective transcriptome study of midguts from Spodoptera frugiperda larvae fed on a diet supplemented with soybean proteinase inhibitor (SPI). Using subtracted cDNA libraries made of gut-expressed transcripts, a total of 2100 partial sequences were obtained, of those 38% were related to digestive process. Two large and diverse groups of chymotrypsins and trypsins were obtained, and some of these proteinase-encoding genes were further characterized by quantitative RT-PCR. The transcription analyses revealed two groups: one group of genes constitutively expressed in the control larvae that is up regulated by introducing SPI to the diet, and a second group that is absent in the control but is induced by the SPI-rich diet. This observation suggests that adaptation of S. frugiperda to SPI involves de novo synthesis and also up regulation of existing enzymes. Proteases from intestines of larvae reared on a diet with SPI showed insensitivity to the inhibitor. The proteases were also insensitive to a broad-spectrum potato proteinase inhibitor preparation. We propose that adaptation of S. frugiperda to SPI follows a "shotgun" approach, based on a general up regulation of a large set of endoproteinases.

  11. Gene expression profiling identifies a set of transcripts that are up-regulated inhuman testicular seminoma.

    Yamada, Shigeyuki; Kohu, Kazuyoshi; Ishii, Tomohiko; Ishidoya, Shigeto; Ishidoya, Shigeru; Hiramatsu, Masayoshi; Kanto, Satoru; Fukuzaki, Atsushi; Adachi, Yutsu; Endoh, Mareyuki; Moriya, Takuya; Sasaki, Hiroki; Satake, Masanobu; Arai, Yoichi

    2004-10-31

    Seminoma constitutes one subtype of human testicular germ cell tumors and is uniformly composed of cells that are morphologically similar to the primordial germ cells and/or the cells in the carcinoma in situ. We performed a genome-wide exploration of the genes that are specifically up-regulated in seminoma by oligonucleotide-based microarray analysis. This revealed 106 genes that are significantly and consistently up-regulated in the seminomas compared to the adjacent normal tissues of the testes. The microarray data were validated by semi-quantitative RT-PCR analysis. Of the 106 genes, 42 mapped to a small number of specific chromosomal regions, namely, 1q21, 2p23, 6p21-22, 7p14-15, 12pll, 12p13, 12q13-14 and 22q12-13. This list of up-regulated genes may be useful in identifying the causative oncogene(s) and/or the origin of seminoma. Furthermore, immunohistochemical analysis revealed that the seminoma cells specifically expressed the six gene products that were selected randomly from the list. These proteins include CCND2 and DNMT3A and may be useful as molecular pathological markers of seminoma.

  12. Moclobemide up-regulates proliferation of hippocampal progenitor cells in chronically stressed mice

    Yun-feng LI; You-zhi ZHANG; Yan-qin LIU; Heng-lin WANG; Li YUAN; Zhi-pu LUO

    2004-01-01

    AIM: To explore the action mechanism of antidepressants. METHODS: The PC12 cell proliferation was detected by flow cytometry,. The proliferation of hippocampal progenitor cells and level of brain-derived neurotrophic factor (BDNF) were measured by immunohistochemistry. RESULTS: Treatment with N-methylaspartate (NMDA)600 μmol/L for 3 d significantly decreased the percentage of S-phase in PC12 cells, while in the presence of classical antidepressant, moclobemide (MOC) 2 and 10 μmol/L, the percentage in S-phase increased. Furthermore,the proliferation of progenitor cells in hippocampal dentate gyrus (subgranular zone), as well as the level of BDNF in hippocampus significantly decreased in chronically stressed mice, while chronic administration with MOC 40mg/kg (ip) up-regulated the progenitor cell proliferation and BDNF level in the same time course. CONLUSION:Up-regulation of the proliferation of hippocampal progenitor cells is one of the action mechanisms for MOC, which may be closely related to the elevation of BDNF level at the same time. These results also extend evidence for our hypothesis that up-regulation of the hippocampal neurogenesis is one of the common mechanisms for antidepressants.

  13. Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells

    Park Raekil

    2006-01-01

    Full Text Available Abstract Background We recently showed that beta-defensins have antimicrobial activity against nontypeable Haemophilus influenzae (NTHi and that interleukin 1 alpha (IL-1 alpha up-regulates the transcription of beta-defensin 2 (DEFB4 according to new nomenclature of the Human Genome Organization in human middle ear epithelial cells via a Src-dependent Raf-MEK1/2-ERK signaling pathway. Based on these observations, we investigated if human middle ear epithelial cells could release IL-1 alpha upon exposure to a lysate of NTHi and if this cytokine could have a synergistic effect on beta-defensin 2 up-regulation by the bacterial components. Methods The studies described herein were carried out using epithelial cell lines as well as a murine model of acute otitis media (OM. Human cytokine macroarray analysis was performed to detect the released cytokines in response to NTHi exposure. Real time quantitative PCR was done to compare the induction of IL-1 alpha or beta-defensin 2 mRNAs and to identify the signaling pathways involved. Direct activation of the beta-defensin 2 promoter was monitored using a beta-defensin 2 promoter-Luciferase construct. An IL-1 alpha blocking antibody was used to demonstrate the direct involvement of this cytokine on DEFB4 induction. Results Middle ear epithelial cells released IL-1 alpha when stimulated by NTHi components and this cytokine acted in an autocrine/paracrine synergistic manner with NTHi to up-regulate beta-defensin 2. This synergistic effect of IL-1 alpha on NTHi-induced beta-defensin 2 up-regulation appeared to be mediated by the p38 MAP kinase pathway. Conclusion We demonstrate that IL-1 alpha is secreted by middle ear epithelial cells upon exposure to NTHi components and that it can synergistically act with certain of these molecules to up-regulate beta-defensin 2 via the p38 MAP kinase pathway.

  14. Effects of ethanol on voltage-sensitive Na-channels in cultured skeletal muscle: Up-regulation as a result of chronic treatment

    Brodie, C.; Sampson, S.R. (Bar-Ilan Univ., Ramat-Gan (Israel))

    1990-12-01

    The effects of acute and chronic treatment with ethanol were studied on the number and activity of tetrodotoxin-sensitive Na-channels in cultured rat skeletal muscle. The number of channels was determined by measurements of specific binding of (3H) saxitoxin (STX) in whole cell preparations. Measurements were also made of the frequency and rate of rise of spontaneously occurring action potentials, which are the physiologic expression of Na-channel density. Acute ethanol (37.5-150 mM), while causing depolarization of membrane potential and blockade of electrical activity, was without effect on specific STX binding. Neither methanol, acetaldehyde nor ethylene glycol had significant effects on these properties when given acutely in the same concentrations as ethanol. Chronic ethanol caused dose-related increases in STX binding and action potential properties with maximal levels being attained after 3 days of treatment at a concentration of 150 mM. On removal of ethanol from the culture medium all properties returned to control levels after 48 hr. Both increased external K+ and tetrodotoxin, which up-regulate Na-channels by reducing cytosolic Ca++, potentiated the ethanol-induced increase in Na-channel density. The increase in STX binding was not associated with changes in affinity of the binding sites for the ligand but was completely prevented by treatment with cycloheximide and actinomycin D. The results demonstrate that ethanol interacts with the cell membrane to induce synthesis of STX-binding sites.

  15. Growth arrest specific 2 is up-regulated in chronic myeloid leukemia cells and required for their growth.

    Haixia Zhou

    Full Text Available Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML, the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2 regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34+ progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form of GAS2 (GAS2DN to target GAS2, which resulted in calpain activity enhancement and growth inhibition of both K562 and MEG-01 cells. Targeting GAS2 also sensitized K562 cells to Imatinib mesylate (IM. GAS2DN suppressed the tumorigenic ability of MEG-01 cells and impaired the tumour growth as well. Moreover, the CD34+ cells from CML patients and healthy donors were transduced with control and GAS2DN lentiviral vectors, and the CD34+ transduced (YFP+ progeny cells (CD34+YFP+ were plated for colony-forming cell (CFC assay. The results showed that GAS2DN inhibited the CFC production of CML cells by 57±3% (n = 3, while affected those of normal hematopoietic cells by 31±1% (n = 2. Next, we found the inhibition of CML cells by GAS2DN was dependent on calpain activity but not the degradation of beta-catenin. Lastly, we generated microarray data to identify the differentially expressed genes upon GAS2DN and validated that the expression of HNRPDL, PTK7 and UCHL5 was suppressed by GAS2DN. These 3 genes were up-regulated in CML cells compared to normal control cells and the growth of K562 cells was inhibited upon HNRPDL silence. Taken together, we have demonstrated that GAS2 is up-regulated in CML cells and the inhibition of GAS2 impairs the growth of CML cells, which indicates GAS2 is a novel regulator of CML cells and a potential therapeutic target of this disease.

  16. Pregnane X Receptor Not Nuclear Factor-kappa B Up-regulates P-glycoprotein Expression in the Brain of Chronic Epileptic Rats Induced by Kainic Acid.

    Yu, Nian; Zhang, Yan-Fang; Zhang, Kang; Cheng, Yong-Fei; Ma, Hai-Yan; Di, Qing

    2017-03-16

    Drug-resistance epilepsy (DRE) is attributed to the brain P-glycoprotein (P-gp) overexpression. We previously reported that nuclear factor-kappa B (NF-κB) played a critical role in regulating P-gp expression at the brain of the acute seizure rats. This study was extended further to investigate the interaction effect of NF-κB and pregnane X receptor (PXR) on P-gp expression at the brain of chronic epileptic rats treated with carbamazepine (CBZ). The chronic epileptic models were induced by the micro-injection of kainic acid (KA) into rats' hippocampus. Subsequently, the successful models were treated with different intervention agents of CBZ; PMA(a non-specific PXR activity inhibitor) or PDTC(a specific NF-κB activity inhibitor) respectively. The expression levels of P-gp and its encoded gene mdr1a/b were significantly up-regulated on the brain of KA-induced chronic epilepsy rats or the epilepsy rats treated with CBZ for 1 week, meanwhile with a high expression of PXR. The treatment of PMA dramatically reduced both PXR and P-gp expressions at the protein and mRNA levels in the chronic epilepsy brain. By compared to the epilepsy model group, the P-gp expression was not markedly attenuated by the inhibition of NF-κB activity with PDTC treatment, nevertheless with a decrease of NF-κB expression in this intervention group. Higher levels of proinflammatory cytokines(IL-1β, IL-6, TNF-α) were found both in the brain tissue and the serum in the epilepsy rats of each group. There was a declined trend of the pro-inflammatory cytokines expression of the PDTC treatment group but with no statistical significance. This study demonstrates for the first time that P-gp up-regulation is due to increase PXR expression in the chronic phase of epilepsy, differently from that NF-κB signaling may induce the P-gp expression in the acute seizure phase. Our results offer insights into the mechanism underlying the development of DRE using or not using CBZ treatment.

  17. Vascular endothelial growth factor B (VEGF-B is up-regulated and exogenous VEGF-B is neuroprotective in a culture model of Parkinson's disease

    Zhang Shiling

    2009-12-01

    Full Text Available Abstract Parkinson's disease (PD results from the degeneration of dopaminergic neurons in the substantia nigra and the consequent deficit of dopamine released in the striatum. Current oral dopamine replacement or surgical therapies do not address the underlying issue of neurodegeneration, they neither slow nor halt disease. Neurotrophic factors have shown preclinical promise, but the choice of an appropriate growth factor as well as the delivery has proven difficult. In this study, we used a rotenone rat midbrain culture model to identify genes that are changed after addition of the neurotoxin. (1 We challenged rat midbrain cultures with rotenone (20 nM, a pesticide that has been shown to be toxic for dopaminergic neurons and that has been a well-characterized model of PD. A gene chip array analysis demonstrated that several genes were up-regulated after the rotenone treatment. Interestingly transcriptional activation of vascular endothelial growth factor B (VEGF-B was evident, while vascular endothelial growth factor A (VEGF-A levels remained unaltered. The results from the gene chip array experiment were verified with real time PCR and semi-quantitative western analysis using β-actin as the internal standard. (2 We have also found evidence that exogenously applied VEGF-B performed as a neuroprotective agent facilitating neuron survival in an even more severe rotenone culture model of PD (40 nM rotenone. VEGF-B has very recently been added to the list of trophic factors that reduce effects of neurodegeneration, as was shown in an in vivo model of motor neuron degeneration, while lacking potential adverse angiogenic activity. The data of an in vivo protective effect on motor neurons taken together with the presented results demonstrate that VEGF-B is a new candidate trophic factor distinct from the GDNF family of trophic factors. VEGF-B is activated by neurodegenerative challenges to the midbrain, and exogenous application of VEGF-B has a

  18. Up-regulation of miR-200 a attenuates TGF-β1-induced activation and collagen synthesis in rat pancreatic stellate cells%上调miR-200 a的表达减弱TGF-β1刺激的大鼠胰腺星状细胞活化和胶原合成

    张尤历; 王国英; 赵义; 李萍; 刘鑫; 倪鑫; 徐岷

    2015-01-01

    目的:探讨miR-200a对转化生长因子β1(TGF-β1)刺激的大鼠胰腺星状细胞(PSCs)活化和胶原蛋白合成的影响。方法用组织块法培养分离PSCs,免疫荧光染色检测结蛋白( desmin)、神经胶质原纤维酸性蛋白( GFAP)和α-平滑肌肌动蛋白(α-SMA)的表达鉴定PSCs;取新鲜培养的第2代PSCs,设空白对照组、TGF-β1组、TGF-β1+miR-NC组、TGF-β1+miR-200 a mimic组,Western blot法和细胞免疫荧光染色法检测α-SMA和Ⅰ型胶原蛋白( col-lagen Ⅰ)的表达,荧光定量PCR检测α-SMA、collagen Ⅰ mRNA及miR-200 a的表达。结果 TGF-β1可刺激大鼠PSCs活化及促进胶原蛋白的合成( P<0.05),且呈时间依赖性;转染miR-200 a mimic后,在相同浓度的TGF-β1刺激下,α-SMA和collagen Ⅰ的蛋白和mRNA表达明显降低(P<0.01)。结论上调miR-200a的表达,可减弱TGF-β1对大鼠PSCs活化和胶原蛋白合成的刺激作用,其可能的机制是抑制TGF-β1的生物学作用。%Objective To investigate the effect of miR-200 a mimic on transforming growth factor β1-mediated acti-vation and collagen secretion of rat pancreatic stellate cells .Methods PSCs were isolated and cultured from pan-creatic tissue and identified by desmin , GFAP and α-SMA immunofluorescence staining .PSCs of 2nd generation were divided into control group , TGF-β1 group, TGF-β1+miR-NC group and TGF-β1+miR-200a mimic group.α-SMA and collagen Ⅰ protein were measured by Western blot and immunofluorescence staining .The mRNA ofα-SMA and collagen Ⅰ and the expression of miR-200a were detected by quantitative real-time PCR.Results TGF-β1 stimulates the activation of PSCs and promote collagen synthesis in time-dependment manner ( P<0.05 ) . After transfection of the mimic , treating with the same concentration of TGF-β1, the expressions of protein and mR-NA of both α-SMA and collagen Ⅰ decreases significantly ( P<0.01 ) .Conclusions

  19. Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells

    Arafa, El-Shaimaa A.; Zhu Qianzheng [Department of Radiology, Ohio State University, Columbus, OH 43210 (United States); Shah, Zubair I. [James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH 43210 (United States); Wani, Gulzar; Barakat, Bassant M.; Racoma, Ira [Department of Radiology, Ohio State University, Columbus, OH 43210 (United States); El-Mahdy, Mohamed A., E-mail: Mohamed.el-mahdy@osumc.edu [Department of Radiology, Ohio State University, Columbus, OH 43210 (United States); Wani, Altaf A., E-mail: wani.2@osu.edu [Department of Radiology, Ohio State University, Columbus, OH 43210 (United States); Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210 (United States); James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH 43210 (United States); DNA Research Chair, King Saud University, Riyadh (Saudi Arabia)

    2011-01-10

    The use of innocuous naturally occurring compounds to overcome drug resistance and cancer recalcitrance is now in the forefront of cancer research. Thymoquinone (TQ) is a bioactive constituent of the volatile oil derived from seeds of Nigella sativa Linn. TQ has shown promising anti-carcinogenic and anti-tumor activities through different mechanisms. However, the effect of TQ on cell signaling and survival pathways in resistant cancer cells has not been fully delineated. Here, we report that TQ greatly inhibits doxorubicin-resistant human breast cancer MCF-7/DOX cell proliferation. TQ treatment increased cellular levels of PTEN proteins, resulting in a substantial decrease of phosphorylated Akt, a known regulator of cell survival. The PTEN expression was accompanied with elevation of PTEN mRNA. TQ arrested MCF-7/DOX cells at G2/M phase and increased cellular levels of p53 and p21 proteins. Flow cytometric analysis and agarose gel electrophoresis revealed a significant increase in Sub-G1 cell population and appearance of DNA ladders following TQ treatment, indicating cellular apoptosis. TQ-induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of caspases and PARP cleavage in MCF-7/DOX cells. Moreover, TQ treatment increased Bax/Bcl2 ratio via up-regulating Bax and down-regulating Bcl2 proteins. More importantly, PTEN silencing by target specific siRNA enabled the suppression of TQ-induced apoptosis resulting in increased cell survival. Our results reveal that up-regulation of the key upstream signaling factor, PTEN, in MCF-7/DOX cells inhibited Akt phosphorylation, which ultimately causes increase in their regulatory p53 levels affecting the induction of G2/M cell cycle arrest and apoptosis. Overall results provide mechanistic insights for understanding the molecular basis and utility of the anti-tumor activity of TQ.

  20. Immunomodulatory drugs act as inhibitors of DNA methyltransferases and induce PU.1 up-regulation in myeloma cells.

    Endo, Shinya; Amano, Masayuki; Nishimura, Nao; Ueno, Niina; Ueno, Shikiko; Yuki, Hiromichi; Fujiwara, Shiho; Wada, Naoko; Hirata, Shinya; Hata, Hiroyuki; Mitsuya, Hiroaki; Okuno, Yutaka

    2016-01-08

    Immunomodulatory drugs (IMiDs) such as thalidomide, lenalidomide, and pomalidomide are efficacious in the treatment of multiple myeloma and significantly prolong their survival. However, the mechanisms of such effects of IMiDs have not been fully elucidated. Recently, cereblon has been identified as a target binding protein of thalidomide. Lenalidomide-resistant myeloma cell lines often lose the expression of cereblon, suggesting that IMiDs act as an anti-myeloma agent through interacting with cereblon. Cereblon binds to damaged DNA-binding protein and functions as a ubiquitin ligase, inducing degradation of IKZF1 and IKZF3 that are essential transcription factors for B and T cell development. Degradation of both IKZF1 and IKZF3 reportedly suppresses myeloma cell growth. Here, we found that IMiDs act as inhibitors of DNA methyltransferases (DMNTs). We previously reported that PU.1, which is an ETS family transcription factor and essential for myeloid and lymphoid development, functions as a tumor suppressor in myeloma cells. PU.1 induces growth arrest and apoptosis of myeloma cell lines. In this study, we found that low-dose lenalidomide and pomalidomide up-regulate PU.1 expression through inducing demethylation of the PU.1 promoter. In addition, IMiDs inhibited DNMT1, DNMT3a, and DNMT3b activities in vitro. Furthermore, lenalidomide and pomalidomide decreased the methylation status of the whole genome in myeloma cells. Collectively, IMiDs exert demethylation activity through inhibiting DNMT1, 3a, and 3b, and up-regulating PU.1 expression, which may be one of the mechanisms of the anti-myeloma activity of IMiDs.

  1. Up-Regulation of Mitochondrial Antioxidant Superoxide Dismutase Underpins Persistent Cardiac Nutritional-Preconditioning by Long Chain n-3 Polyunsaturated Fatty Acids in the Rat

    Grace G. Abdukeyum

    2016-03-01

    Full Text Available Reactive oxygen species paradoxically underpin both ischaemia/reperfusion (I/R damage and ischaemic preconditioning (IPC cardioprotection. Long-chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA are highly susceptible to peroxidation, but are paradoxically cardioprotective. This study tested the hypothesis that LCn-3 PUFA cardioprotection is underpinned by peroxidation, upregulating antioxidant activity to reduce I/R-induced lipid oxidation, and the mechanisms of this nutritional preconditioning contrast to mechanisms of IPC. Rats were fed: fish oil (LCn-3 PUFA; sunflower seed oil (n-6 PUFA; or beef tallow (saturated fat, SF enriched diets for six weeks. Isolated hearts were subject to: 180 min normoxic perfusion; a 30 min coronary occlusion ischaemia protocol then 120 min normoxic reperfusion; or a 3 × 5 min global IPC protocol, 30 min ischaemia, then reperfusion. Dietary LCn-3 PUFA raised basal: membrane docosahexaenoic acid (22:6n-3 DHA; fatty acid peroxidisability index; concentrations of lipid oxidation products; and superoxide dismutase (MnSOD activity (but not CuZnSOD or glutathione peroxidase. Infarct size correlated inversely with basal MnSOD activity (r2 = 0.85 in the ischaemia protocol and positively with I/R-induced lipid oxidation (lipid hydroperoxides (LPO, r2 = 0.475; malondialdehyde (MDA, r2 = 0.583 across ischaemia and IPC protocols. While both dietary fish oil and IPC infarct-reduction were associated with reduced I/R-induced lipid oxidation, fish oil produced nutritional preconditioning by prior LCn-3 PUFA incorporation and increased peroxidisability leading to up-regulated mitochondrial SOD antioxidant activity.

  2. Reduced autonomic activity during stepwise exposure to high altitude

    Sevre, K; Bendz, B; Hanko, E; Nakstad, AR; Hauge, A; Kasin, JI; Lefrandt, JD; Smit, AJ; Eide, [No Value; Rostrup, M

    2001-01-01

    Several studies have shown increased sympathetic activity during acute exposure to hypobaric hypoxia. In a recent field study we found reduced plasma catecholamines during the first days after a stepwise ascent to high altitude. In the present study 14 subjects were exposed to a simulated ascent in

  3. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development

    Berbeé, J.F.P.; Boon, M.R.; Khedoe, P.P.S.J.; Bartelt, A.; Schlein, C.; Worthmann, A.; Kooijman, S.; Hoeke, G.; Mol, I.M.; John, C.; Jung, C.; Vazirpanah, N.; Brouwers, L.P.J.; Gordts, P.L.S.M.; Esko, J.D.; Hiemstra, P.S.; Havekes, L.M.; Scheja, L.; Heeren, J.; Rensen, P.C.N.

    2015-01-01

    Brown adipose tissue (BAT) combusts high amounts of fatty acids, thereby lowering plasma triglyceride levels and reducing obesity. However, the precise role of BAT in plasma cholesterol metabolism and atherosclerosis development remains unclear. Here we show that BAT activation by b3-adrenergic rece

  4. Up-regulation of peroxisome proliferator-activated receptors (PPAR-alpha) and PPAR-gamma messenger ribonucleic acid expression in the liver in murine obesity: troglitazone induces expression of PPAR-gamma-responsive adipose tissue-specific genes in the liver of obese diabetic mice.

    Memon, R A; Tecott, L H; Nonogaki, K; Beigneux, A; Moser, A H; Grunfeld, C; Feingold, K R

    2000-11-01

    Peroxisome proliferator-activated receptors (PPARs) are transcription factors that play an important role in the regulation of genes involved in lipid utilization and storage, lipoprotein metabolism, adipocyte differentiation, and insulin action. The three isoforms of the PPAR family, i.e. alpha, delta, and gamma, have distinct tissue distribution patterns. PPAR-alpha is predominantly present in the liver, and PPAR-gamma in adipose tissue, whereas PPAR-delta is ubiquitously expressed. A recent study reported increased PPAR-gamma messenger RNA (mRNA) expression in the liver in ob/ob mice; however, it is not known whether increased PPAR-gamma expression in the liver has any functional consequences. The expression of PPAR-alpha and -delta in the liver in obesity has not been determined. We have now examined the mRNA levels of PPAR-alpha, -delta, and -gamma in three murine models of obesity, namely, ob/ob (leptin-deficient), db/db (leptin-receptor deficient), and serotonin 5-HT2c receptor (5-HT2cR) mutant mice. 5-HT2cR mutant mice develop a late-onset obesity that is associated with higher plasma leptin levels. Our results show that PPAR-alpha mRNA levels in the liver are increased by 2- to 3-fold in all three obese models, whereas hepatic PPAR-gamma mRNA levels are increased by 7- to 9-fold in ob/ob and db/db mice and by 2-fold in obese 5-HT2cR mutant mice. PPAR-delta mRNA expression is not altered in ob/ob or db/db mice. To determine whether increased PPAR-gamma expression in the liver has any functional consequences, we examined the effect of troglitazone treatment on the hepatic mRNA levels of several PPAR-gamma-responsive adipose tissue-specific genes that have either no detectable or very low basal expression in the liver. The treatment of lean control mice with troglitazone significantly increased the expression of adipocyte fatty acid-binding protein (aP2) and fatty acid translocase (FAT/CD36) in the liver. This troglitazone-induced increase in the expression

  5. The up-regulation of glial fibrillary acidic protein media through P38-mitogen activated protein kinase pathway after spinal cord injury%脊髓损伤后通过P38丝裂素活化蛋白激酶途径上调胶质纤维酸性蛋白的表达

    于春雷; 王翀昊; 张弘; 刘长江; 腾宇飞

    2006-01-01

    目的 探讨脊髓损伤(SCI)后受损的脊髓组织与其周围组织中胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)和P38丝裂素活化蛋白激酶(P38-mitogen activated protein kinase,P38MAPK)的表达情况.方法 将80只大鼠随机分成10组:正常对照组、损伤后1 d组、损伤后4 d组、损伤后7 d组、损伤后14 d组、损伤后应用SB203580药物1 d组、4 d组、7 d组、14 d组及健康大鼠给药组,每组均8只.应用westerblot技术检测各组损伤组织及损伤周围组织的P38MAPK及GFAP的表达.结果 受损脊髓组织从伤后第1 d P38MAPK、GFAP开始上升,持续到第7 d开始回落,第7 d是表达最高峰.损伤组织P38MAPK及GFAP的表达具有明显正相关性(r=0.854,P<0.05),损伤周围组织P38MAPK及GFAP的表达无明显相关性(r=0.554,P>0.05).结论 损伤组织GFAP表达上调是通过P38MAPK介导的,损伤周围组织GFAP上调与P38MAPK表达无关.

  6. Transcriptional Up-Regulation of APE1/Ref-1 in Hepatic Tumor: Role in Hepatocytes Resistance to Oxidative Stress and Apoptosis.

    Vittorio Di Maso

    Full Text Available Human Hepatocellular Carcinoma (HCC is the fifth most frequent neoplasm worldwide and the most serious complication of long-standing chronic liver diseases (CLD. Its development is associated with chronic inflammation and sustained oxidative stress. Deregulation of apurinic apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1, a master regulator of cellular response to oxidative stress, has been associated with poor prognosis in several cancers including HCC.In the present study we investigated the APE1/Ref-1 mRNA levels in cirrhotic and HCC tissues obtained during HCC resection. The possible protective role of APE1/Ref-1 against oxidative stress and apoptosis was evaluated in vitro in immortalized human hepatocytes (IHH over-expressing APE1/Ref-1.APE1/Ref-1 was up-regulated in HCC, regulation occurring at the transcriptional level. APE1/Ref-1 mRNA content increased with the progression of liver disease with the transcriptional up-regulation present in cirrhosis significantly increased in HCC. The up-regulation was higher in the less differentiated cancers. In vitro, over-expression of APE1/Ref-1 in normal hepatocytes conferred cell protection against oxidative stress and it was associated with BAX inhibition and escape from apoptosis.APE1/Ref-1 is up-regulated in HCC and this over-expression correlates with cancer aggressiveness. The up-regulation occurs at the transcriptional level and it is present in the earliest phases of hepatocarcinogenesis. The APE-1/Ref-1 over-expression is associated with hepatocyte survival and inhibits BAX activation and apoptosis. These data suggest a possible role of APE1/Ref-1 over-expression both in hepatocyte survival and HCC development calling attention to this molecule as a promising marker for HCC diagnosis and treatment.

  7. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    Gwak, Jungsug; Song, Taeyun [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Jie-Young; Yun, Yeon-Sook [Laboratory of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Choi, Il-Whan [Department of Microbiology, Center for Viral Disease Research, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Jeong, Yongsu [Department of Genetic Engineering, and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 614-735 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2009-09-25

    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cell proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.

  8. UP-REGULATION OF HEPATIC RECEPTOR FOR GROWTH HORMONE IN THE FLOUNDER (PARALICHTHYS OLIVACEUS) AFTER ORAL ADMINISTRATION WITH EXOGENOUS GH

    2001-01-01

    The iodination efficiency of salmon GH(Sgh) was 38.82%,using a modification of the chloramine-T method. The specific activity of the 125I-Sgh was about 40 μCi/μg protein. The results of binding assay showed a single class of high affinity and low-capacity binding site in flounder liver. Long-term administration with exogenous GH can induce the up-regulation of hepatic GH receptor in total binding capacity though there was no significant difference of association constant among any groups. Considering that there was no significant difference in capacity of free binding sites of livers from control and experimental fish, this result also indicated that the liver from experimental fish, compared to that from control fish, had more occupied binding sites.

  9. Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of ΔFosB in mice.

    Sajja, Ravi Kiran; Rahman, Shafiqur

    2013-06-01

    Chronic administration of ethanol induces persistent accumulation of ΔFosB, an important transcription factor, in the midbrain dopamine system. This process underlies the progression to addiction. Previously, we have shown that cytisine, a neuronal nicotinic acetylcholine receptor (nAChR) partial agonist, reduces various ethanol-drinking behaviors and ethanol-induced striatal dopamine function. However, the effects of cytisine on chronic ethanol drinking and ethanol-induced up-regulation of striatal ΔFosB are not known. Therefore, we examined the effects of cytisine on chronic voluntary ethanol consumption and associated striatal ΔFosB up-regulation in C57BL/6J mice using behavioral and biochemical methods. Following the chronic voluntary consumption of 15% (v/v) ethanol under a 24-h two-bottle choice intermittent access (IA; 3 sessions/week) or continuous access (CA; 24 h/d and 7 d/week) paradigm, mice received repeated intraperitoneal injections of saline or cytisine (0.5 or 3.0 mg/kg). Ethanol and water intake were monitored for 24 h post-treatment. Pretreatment with cytisine (0.5 or 1.5 mg/kg) significantly reduced ethanol consumption and preference in both paradigms at 2 h and 24 h post-treatment. The ΔFosB levels in the ventral and dorsal striatum were determined by Western blotting 18-24 h after the last point of ethanol access. In addition, cytisine (0.5 mg/kg) significantly attenuated up-regulation of ΔFosB in the ventral and dorsal striatum following chronic ethanol consumption in IA and CA paradigms. The results indicate that cytisine modulates chronic voluntary ethanol consumption and reduces ethanol-induced up-regulation of striatal ΔFosB. Further, the data suggest a critical role of nAChRs in chronic ethanol-induced neurochemical adaptations associated with ethanol addiction.

  10. The Natural Antimicrobial Enzyme Lysozyme is Up-Regulated in Gastrointestinal Inflammatory Conditions

    Carlos A. Rubio

    2014-01-01

    Full Text Available The cells that line the mucosa of the human gastrointestinal tract (GI, that is, oral cavity, oesophagus, stomach, small intestine, large intestine, and rectum are constantly challenged by adverse micro-environmental factors, such as different pH, enzymes, and bacterial flora. With exception of the oral cavity, these microenvironments also contain remnant cocktails of secreted enzymes and bacteria from upper organs along the tract. The density of the GI bacteria varies, from 103/mL near the gastric outlet, to 1010/mL at the ileocecal valve, to 1011 to 1012/mL in the colon. The total microbial population (ca. 1014 exceeds the total number of cells in the tract. It is, therefore, remarkable that despite the prima facie inauspicious mixture of harmful secretions and bacteria, the normal GI mucosa retains a healthy state of cell renewal. To counteract the hostile microenvironment, the GI epithelia react by speeding cell exfoliation (the GI mucosa has a turnover time of two to three days, by increasing peristalsis, by eliminating bacteria through secretion of plasma cell-immunoglobulins and by increasing production of natural antibacterial compounds, such as defensin-5 and lysozyme. Only recently, lysozyme was found up-regulated in Barrett’s oesophagitis, chronic gastritis, gluten-induced atrophic duodenitis (coeliac disease, collagenous colitis, lymphocytic colitis, and Crohn’s colitis. This up-regulation is a response directed to the special types of bacteria recently detected in these diseases. The aim of lysozyme up-regulation is to protect individual mucosal segments to chronic inflammation. The molecular mechanisms connected to the crosstalk between the intraluminal bacterial flora and the production of lysozyme released by the GI mucosae, are discussed. Bacterial resistance continues to exhaust our supply of commercial antibiotics. The potential use of lysozyme to treat infectious diseases is receiving much attention.

  11. Up-regulation of the chemokine CCL21 in the skin of subjects exposed to irritants

    Kuznitzky Raquel

    2004-04-01

    Full Text Available Abstract Background Expression of murine CCL21 by dermal lymphatic endothelial cells (LEC has been demonstrated to be one of the most important steps in Langerhans cell emigration from skin. Previously, our group and others have found that this chemokine is up-regulated in different human inflammatory skin diseases mediated by diverse specific immune responses. This study was carried out to investigate the involvement of CCL21 in human skin after challenge with irritant agents responsible for inducing Irritant Contact Dermatitis (ICD. Results Eleven normal individuals were challenged with different chemical or physical irritants. Two patients with Allergic Contact Dermatitis (ACD were also challenged with the relevant antigen in order to have a positive control for CCL21 expression. Macroscopic as well as microscopic responses were evaluated. We observed typical ICD responses with mostly mononuclear cells in perivascular areas, but a predominance of polymorphonuclear cells away from the inflamed blood vessels and in the epidermis at 24 hours. Immunohistochemical studies showed up-regulation of CCL21 by lymphatic endothelial cells in all the biopsies taken from ICD and ACD lesions compared to normal skin. Kinetic study at 10, 48, 96 and 168 hours after contact with a classical irritant (sodium lauryl sulphate showed that the expression of CCL21 was increased in lymphatic vessels at 10 hours, peaked at 48 hours, and then gradually declined. There was a strong correlation between CCL21 expression and the macroscopic response (r = 0.69; p = 0.0008, but not between CCL21 and the number of infiltrating cells in the lesions. Conclusions These results provide new evidence for the role of CCL21 in inflammatory processes. Since the up-regulation of this chemokine was observed in ICD and ACD, it is tempting to speculate that this mechanism operates independently of the type of dermal insult, facilitating the emigration of CCR7+ cells.

  12. Up-regulation of nicotinic acetylcholine receptors in menthol cigarette smokers.

    Brody, Arthur L; Mukhin, Alexey G; La Charite, Jaime; Ta, Karen; Farahi, Judah; Sugar, Catherine A; Mamoun, Michael S; Vellios, Evan; Archie, Meena; Kozman, Maggie; Phuong, Jonathan; Arlorio, Franca; Mandelkern, Mark A

    2013-06-01

    One-third of smokers primarily use menthol cigarettes and usage of these cigarettes leads to elevated serum nicotine levels and more difficulty quitting in standard treatment programmes. Previous brain imaging studies demonstrate that smoking (without regard to cigarette type) leads to up-regulation of β(2)*-containing nicotinic acetylcholine receptors (nAChRs). We sought to determine if menthol cigarette usage results in greater nAChR up-regulation than non-menthol cigarette usage. Altogether, 114 participants (22 menthol cigarette smokers, 41 non-menthol cigarette smokers and 51 non-smokers) underwent positron emission tomography scanning using the α(4)β(2)* nAChR radioligand 2-[(18)F]fluoro-A-85380 (2-FA). In comparing menthol to non-menthol cigarette smokers, an overall test of 2-FA total volume of distribution values revealed a significant between-group difference, resulting from menthol smokers having 9-28% higher α(4)β(2)* nAChR densities than non-menthol smokers across regions. In comparing the entire group of smokers to non-smokers, an overall test revealed a significant between-group difference, resulting from smokers having higher α(4)β(2)* nAChR levels in all regions studied (36-42%) other than thalamus (3%). Study results demonstrate that menthol smokers have greater up-regulation of nAChRs than non-menthol smokers. This difference is presumably related to higher nicotine exposure in menthol smokers, although other mechanisms for menthol influencing receptor density are possible. These results provide additional information about the severity of menthol cigarette use and may help explain why these smokers have more trouble quitting in standard treatment programmes.

  13. Up-regulation of the adrenomedullin system mediates hypotension and hypoaldosteronism induced by simulated microgravity.

    Andreis, Paola G; Rossi, Gian Paolo; Bova, Sergio; Neri, Giuliano; Nussdorfer, Gastone G; Mazzocchi, Giuseppina

    2004-04-01

    We recently demonstrated that prolonged simulated microgravity (SMG) induced hypotension and hypoaldosteronism in rats, and gathered preliminary evidence for an involvement of circulating adrenomedullin (AM). Thus, we aimed to investigate whether short-term SMG elicits the same effects, and whether up-regulation of adrenal AM system plays a relevant role. Rats were exposed for 8 days to SMG in the form of hindlimb unweighting, and then, along with control animals, were given an intraperitoneal injection of AM22-52 and/or angiotensin-II (Ang-II) (100 nmoles/kg) or the saline vehicle. Systolic blood pressure (SBP) was measured by tail-cuff sphygmomanometry. The adrenal expression of AM was assayed by semiquantitative RT-PCR. The plasma concentrations of aldosterone (PAC) and AM, and adrenal AM content were measured by RIA. Short-term SMG induced significant decreases in SBP and PAC. Conversely, both the plasma and adrenal levels of AM, and adrenal AM mRNA were enhanced in SMG-exposed animals. The SMG-induced hypotension and hypoaldosteronism were reversed by AM22-52, an AM-receptor antagonist, thereby demonstrating a causal link between these effects and the up-regulation of AM system. SMG hampered SBP and PAC responses to Ang-II; the co-administration of AM22-52 restored these responses. These findings accord well with the known ability of AM to counteract the effects of Ang-II on both blood vessels and adrenocortical cells. Taken together, our findings allow us to conclude that up-regulation of the adrenal AM system i) occurs early and takes part in the adaptative changes occurring during SMG conditions; and ii) may account for both hypotension and hypoaldosteronism on returning to the normogravitational environment.

  14. Low level laser therapy reduces inflammation in activated Achilles tendinitis

    Bjordal, Jan M.; Iversen, Vegard; Lopes-Martins, Rodrigo Alvaro B.

    2006-02-01

    Objective: Low level laser therapy (LLLT) has been forwarded as therapy for osteoarthritis and tendinopathy. Results in animal and cell studies suggest that LLLT may act through a biological mechanism of inflammatory modulation. The current study was designed to investigate if LLLT has an anti-inflammatory effect on activated tendinitis of the Achilles tendon. Methods: Seven patients with bilateral Achilles tendonitis (14 tendons) who had aggravated symptoms by pain-inducing activity immediately prior to the study. LLLT (1.8 Joules for each of three points along the Achilles tendon with 904nm infrared laser) and placebo LLLT were administered to either Achilles tendons in a random order to which patients and therapist were blinded. Inflammation was examined by 1) mini-invasive microdialysis for measuring the concentration of inflammatory marker PGE II in the peritendinous tissue, 2) ultrasound with Doppler measurement of peri- and intratendinous blood flow, 3) pressure pain algometry and 4) single hop test. Results: PGE 2- levels were significantly reduced at 75, 90 and 105 minutes after active LLLT compared both to pre-treatment levels (p=0.026) and to placebo LLLT (p=0.009). Changes in pressure pain threshold (PPT) were significantly different (P=0.012) between groups. PPT increased by a mean value of 0.19 kg/cm2 [95%CI:0.04 to 0.34] after treatment in the active LLLT group, while pressure pain threshold was reduced by -0.20 kg/cm2 [95%CI:-0.45 to 0.05] after placebo LLLT. Conclusion: LLLT can be used to reduce inflammatory musculskeletal pain as it reduces inflammation and increases pressure pain threshold levels in activity-induced pain episodes of Achilles tendinopathy.

  15. Vegan proteins may reduce risk of cancer, obesity, and cardiovascular disease by promoting increased glucagon activity.

    McCarty, M F

    1999-12-01

    Amino acids modulate the secretion of both insulin and glucagon; the composition of dietary protein therefore has the potential to influence the balance of glucagon and insulin activity. Soy protein, as well as many other vegan proteins, are higher in non-essential amino acids than most animal-derived food proteins, and as a result should preferentially favor glucagon production. Acting on hepatocytes, glucagon promotes (and insulin inhibits) cAMP-dependent mechanisms that down-regulate lipogenic enzymes and cholesterol synthesis, while up-regulating hepatic LDL receptors and production of the IGF-I antagonist IGFBP-1. The insulin-sensitizing properties of many vegan diets--high in fiber, low in saturated fat--should amplify these effects by down-regulating insulin secretion. Additionally, the relatively low essential amino acid content of some vegan diets may decrease hepatic IGF-I synthesis. Thus, diets featuring vegan proteins can be expected to lower elevated serum lipid levels, promote weight loss, and decrease circulating IGF-I activity. The latter effect should impede cancer induction (as is seen in animal studies with soy protein), lessen neutrophil-mediated inflammatory damage, and slow growth and maturation in children. In fact, vegans tend to have low serum lipids, lean physiques, shorter stature, later puberty, and decreased risk for certain prominent 'Western' cancers; a vegan diet has documented clinical efficacy in rheumatoid arthritis. Low-fat vegan diets may be especially protective in regard to cancers linked to insulin resistance--namely, breast and colon cancer--as well as prostate cancer; conversely, the high IGF-I activity associated with heavy ingestion of animal products may be largely responsible for the epidemic of 'Western' cancers in wealthy societies. Increased phytochemical intake is also likely to contribute to the reduction of cancer risk in vegans. Regression of coronary stenoses has been documented during low-fat vegan diets

  16. Utilization of Wind Turbines for Up-regulation of Power Grids

    Juelsgaard, Morten; Bendtsen, Jan Dimon; Wisniewski, Rafal

    2013-01-01

    This work considers the use of wind turbines for aiding up-regulation of an electrical grid, by employing temporary overproduction with respect to available power. We present a simple model describing a turbine, and show how the possible period of overproduction can be maximized by solving a series...... of convex problems, where the load is distributed among several turbines in a farm. Thereafter, we present an optimization scheme that guarantees a lower limit for the overproduction period and subsequently propose an adaptive implementation that is robust against parameter uncertainties....

  17. Up-regulation of ALG-2 in hepatomas and lung cancer tissue

    la Cour, Jonas Marstrand; Mollerup, Jens; Winding, Pernille

    2003-01-01

    ALG-2 was isolated in a screen for proteins involved in programmed cell death and is the first Ca(2+)-binding protein found to be directly involved in apoptosis. We have generated polyclonal antibodies that are suitable for detecting ALG-2 using different immunological methods. Three commercial......, a result confirmed by immunohistochemical analysis. Staining of four different lung cancer tissue microarrays including specimens of 263 patients showed that ALG-2 is mainly localized to epithelial cells and significantly up-regulated in small-cell lung cancers and in non-small-cell lung cancers. Our...

  18. 16-Dehydropregnenolone lowers serum cholesterol by up-regulation of CYP7A1 in hyperlipidemic male hamsters.

    Ramakrishna, Rachumallu; Kumar, Durgesh; Bhateria, Manisha; Gaikwad, Anil Nilkanth; Bhatta, Rabi Sankar

    2017-04-01

    16-Dehydropregnenolone (DHP) has been developed and patented as a promising antihyperlipidemic agent by CSIR-Central Drug Research Institute (CSIR-CDRI), India. Although DHP is implicated in controlling cholesterol homeostasis, the mechanism underlying its pharmacological effect in hyperlipidemic disease models is poorly understood. In the present study, we postulated that DHP lowers serum lipids through regulating the key hepatic genes accountable for cholesterol metabolism. The hypothesis was tested on golden Syrian hamsters fed with high-fat diet (HFD) following oral administration of DHP at a dose of 72mg/kg body weight for a period of one week. The serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and total bile acids (TBA) in feces were measured. Real time comparative gene expression studies were performed for CYP7A1, LXRα and PPARα level in liver tissue of hamsters. The results revealed that the DHP profoundly decreased the levels of serum TC, TG, LDL-C and atherogenic index (AI), whilst elevated the HDL-C/TC ratio. Besides, DHP exhibited an anti-hyperlipidemic effect in the HFD induced hyperlipidemic hamsters by means of: (1) up-regulating the gene expression of CYP7A1 encoded cholesterol 7α-hydroxylase, that promotes the catabolism of cholesterol to bile acid; (2) inducing the gene expression of transcription factors LXRα and PPARα; (3) increasing the TBA excretion through feces. Collectively, the findings presented confer the hypolipidemic activity of DHP via up-regulation of hepatic CYP7A1 pathway that promotes cholesterol-to-bile acid conversion and bile acid excretion.

  19. LINE-1 family member GCRG123 gene is up-regulated in human gastric signet-ring cell carcinoma

    Gang-Shi Wang; Meng-Wei Wang; Ben-Yan Wu; Xin-Yan Yang; Wei-Hua Wang; Wei-Di You

    2008-01-01

    AIM:To analyze the expression profiles of a human gastric-cancer-related gene,GCRG123,in human gastric signet-ring cell carcinoma tissues,and to perform bioinformatics analysis on GCRG123.METHODS:In situ hybridization was used to explore the GCRG123 expression pattern in paraffin-embedded gastric tissues,including 15 cases of signet-ring cell carcinoma,15 of intestinal-type adenocarcinoma,and 15 of normal gastric mucosa.Northnem blotting was used to analyze the differences in GCRG123 expression between stomach signet-ring cell carcinoma and intestinal-type adenocarcinoma tissues.Online software,including BLAST,Multalin and BLAT,were applied for bioinformatics analysis.National Center for Biotechnology Information (NCBI) and the University of California Santa Cruz (UCSC) databases were used for the analyses.RESULTS:The in situ hybridization signal appeared as blue precipitates restricted to the cytoplasm.Ten out of 15 cases of gastric signet ring cell carcinoma,normal gastric mucosal epithelium and pyloric glands showed high GCRG123 expression.Low GCRG123 expressionv was observed in gastric intestinal-type adenocarcinoma and normal gastric glands.Northern blotting revealed that GCRG123 was up-regulated in signet-ring cell carcinoma tissue but down-regulated in intestinal-type adenocarcinoma tissue.BLAST and Multalin analyses revealed that the GCRG123 sequence had 92% similarity with the ORF2 sequence of human long interspersed nuclear element retrotransposons (LINE-1,L1).BLAT analysis indicated that GCRG123 mapped to all chromosomes.GCRG123 was found to integrate in the intron-17 and -23 of Rb,5' flanking region of IL-2 and clotting factor IX genes.CONCLUSION:GCRG123,an active member of the L1family,was up-regulated in human gastric signet-ring cell carcinoma.

  20. Plant stanols induce intestinal tumor formation by up-regulating Wnt and EGFR signaling in Apc Min mice.

    Marttinen, Maija; Päivärinta, Essi; Storvik, Markus; Huikko, Laura; Luoma-Halkola, Heli; Piironen, Vieno; Pajari, Anne-Maria; Mutanen, Marja

    2013-01-01

    The rate of APC mutations in the intestine increases in middle-age. At the same period of life, plant sterol and stanol enriched functional foods are introduced to diet to lower blood cholesterol. This study examined the effect of plant stanol enriched diet on intestinal adenoma formation in the Apc(Min) mouse. Apc(Min) mice were fed 0.8% plant stanol diet or control diet for nine weeks. Cholesterol, plant sterols and plant stanols were analyzed from the caecum content and the intestinal mucosa. Levels of β-catenin, cyclin D1, epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase 1/2 (ERK1/2) were measured from the intestinal mucosa by Western blotting. Gene expression was determined from the intestinal mucosa using Affymetrix and the data were analyzed for enriched categories and pathways. Plant stanols induced adenoma formation in the small intestine, however, the adenoma size was not affected. We saw increased levels of nuclear β-catenin, phosphorylated β-catenin (Ser675 and Ser552), nuclear cyclin D1, total and phosphorylated EGFR and phosphorylated ERK1/2 in the intestinal mucosa after plant stanol feeding. The Affymetrix data demonstrate that several enzymes of cholesterol synthesis pathway were up-regulated, although the cholesterol level in the intestinal mucosa was not altered. We show that plant stanols induce adenoma formation by activating Wnt and EGFR signaling. EGFR signaling seems to have promoted β-catenin phosphorylation and its translocation into the nucleus, where the expression of cyclin D1 was increased. Up-regulated cholesterol synthesis may partly explain the increased EGFR signaling in the plant stanol-fed mice.

  1. Up-regulation of syncytin-1 contributes to TNF-α-enhanced fusion between OSCC and HUVECs partly via Wnt/β-catenin-dependent pathway

    Yan, Ting-Lin; Wang, Meng; Xu, Zhi; Huang, Chun-Ming; Zhou, Xiao-Cheng; Jiang, Er-Hui; Zhao, Xiao-Ping; Song, Yong; Song, Kai; Shao, Zhe; Liu, Ke; Shang, Zheng-Jun

    2017-01-01

    Accumulating evidence implies that cell fusion is one of the driving forces of cancer invasion and metastasis. However, considerably less is still known about the triggering factors and underlying mechanisms associated with cancer-host cell fusion, particularly in inflammatory tumor microenvironment. In this study, we confirmed that inflammatory factor TNF-α could enhance fusion between squamous cell carcinoma cells 9 (SCC-9) and human umbilical vein endothelial cells (HUVEC). Further study revealed that TNF-α could promote up-regulation of syncytin-1 in SCC-9 and its receptor neutral amino acid transporter type 2 (ASCT-2) in HUVEC. Syncytin-1 acted as an important downstream effector in TNF-α-enhanced cancer-endothelial cell fusion. TNF-α treatment also led to the activation of Wnt/β-catenin signal pathway in SCC-9. The activation of Wnt/β-catenin signal pathway was closely associated with the up-regulation of syncytin-1 in SCC-9 and increased fusion between SCC-9 and HUVEC while blocking of Wnt/β-catenin signal pathway resulted in the corresponding down-regulation of syncytin-1 accompanied by sharp decrease of cancer-endothelial cell fusion. Taking together, our results suggest that Wnt/β-catenin signal pathway activation-dependent up-regulation of syncytin-1 contributes to the pro-inflammatory factor TNF-α-enhanced fusion between oral squamous cell carcinoma cells and endothelial cells. PMID:28112190

  2. Hepatitis C virus sensitizes host cells to TRAIL-induced apoptosis by up-regulating DR4 and DR5 via a MEK1-dependent pathway.

    Zhongfan Deng

    Full Text Available BACKGROUND: Hepatitis C virus (HCV is the leading cause of liver fibrosis, cirrhosis and hepatocellular carcinoma. It is believed that continuous liver cell apoptosis contributes to HCV pathogenesis. Recent studies have shown that HCV infection can sensitize host cells to TNF-related apoptosis-inducing ligand (TRAIL induced apoptosis, but the mechanism by which HCV regulates the TRAIL pathway remains unclear. METHODS AND RESULTS: Using a sub-genomic replicon and full length virus, JFH-1, we demonstrate that HCV can sensitize host cells to TRAIL-induced apoptosis by up-regulating two TRAIL receptors, death receptor 4 (DR4 and death receptor 5 (DR5. Furthermore, the HCV replicon enhanced transcription of DR5 via Sp1, and the HCV-mediated up-regulation of DR4 and DR5 required MEK1 activity. HCV infection also stimulated the activity of MEK1, and the inhibition of MEK1 activity or the knockdown of MEK1 increased the replication of HCV. CONCLUSIONS: Our studies demonstrate that HCV replication sensitizes host cells to TRAIL-induced apoptosis by up-regulating DR4 and DR5 via a MEK1 dependent pathway. These findings may help to further understand the pathogenesis of HCV infection and provide a therapeutic target.

  3. NFATC1 promotes cell growth and tumorigenesis in ovarian cancer up-regulating c-Myc through ERK1/2/p38 MAPK signal pathway.

    Xu, Wenwen; Gu, Junjie; Ren, Qingling; Shi, Yanqiu; Xia, Qinhua; Wang, Jing; Wang, Suli; Wang, Yingchun; Wang, Jinhua

    2016-04-01

    It has been reported that nuclear factor of activated T cells (NFATC1) was up-regulated in cancers mediating malignant behaviors. However, the role of NFATC1 in ovarian cancer has not been elucidated. In the present study, we undertook to explore the clinicopathological significance of NFATC1 expression and the mechanism by which NFATC1 works in ovarian cancer. Expression status of NFATC1 was examined using immunohistochemistry. Both knockdown and re-expression of NFATC1 on ovarian cancer cells were employed to observe the effect overgrowth. It was found that NFATC1 was significantly overexpressed in ovarian cancer tissues in comparison with paired normal control tissues and that overexpression of NFATC1 was significantly associated with metastasis and poor prognosis on clinical tissue level. In in vitro ovarian cancer cell lines, we found that NFATC1 can promote proliferation up-regulating c-myc through activation of ERK1/2/p38/MAPK signal pathway. Together, the results we obtained demonstrated that NFATC1 played oncogenic role in ovarian cancer. Mechanistically, NFATC1 promoted growth of ovarian cancer cells up-regulating c-myc through activation of ERK1/2/p38/MAPK signal pathway, suggesting that NFATC1 might be used as a therapeutic target for ovarian cancer.

  4. Mutagenic activation reduces carcinogenic activity of ortho-aminoazotoluene for mouse liver.

    Ovchinnikova, L P; Bogdanova, L A; Kaledin, V I

    2013-03-01

    Pentachlorophenol (aromatic amine and azo stain metabolic stimulation inhibitor) reduced the hepatocarcinogenic activity of 4-aminoazobenzene and reduced that of ortho-aminoazotoluene in suckling mice. Both 4-aminoazobenzene and ortho-aminoazotoluene exhibited mutagenic activity in Ames' test in vitro on S. typhimurium TA 98 strain with activation with liver enzymes; this mutagenic activity was similarly suppressed by adding pentachlorophenol into activation medium. Induction of xenobiotic metabolism enzymes, stimulating the mutagenic activity of ortho-aminoazotoluene, suppressed its carcinogenic effect on mouse liver. Hence, ortho-aminotoluene (the initial compound), but not its mutagenic metabolites, was the direct active hepatocarcinogen for mice.

  5. Low-chromium reduced-activation ferritic steels for fusion

    Klueh, R.L.; Alexander, D.J.; Kenik, E.A. [Oak Ridge National Laboratory, TN (United States)

    1996-04-01

    Development of reduced-activation ferritic steels has concentrated on high-chromium (8-10 wt% Cr) steels. However, there are advantages for a low-chromium steel, and initial ORNL studies on reduced-activation steels were on compositions with 2.25 to 12% Cr. Those studies showed an Fe-2.25Cr-2W-0.25V-0.1C (2 1/4Cr-2WV) steel to have the highest strenglth of the steels studied. Although this steel had the best strength, Charpy impact properties were inferior to those of an Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) and an Fe-2.25Cr-2W-0.1C (2 1/4Cr-2W) steel. Therefore, further development of the low-chromium Cr-W steels was required. These results indicate that it is possible to develop low-chromium reduced-activation ferritic steels that have tensile and impact properties as good or better than those of high-chromium (7-9% Cr) steels. Further improvement of properties should be possible by optimizing the composition.

  6. Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB Pathways.

    Bidya Dhar Sahu

    Full Text Available Acute renal failure is a serious complication of the anticancer drug cisplatin. The potential role of baicalein, a naturally occurring bioflavonoid on cisplatin-induced renal injury is unknown. Here, we assessed the effect of baicalein against a murine model of cisplatin-induced acute renal failure and investigated the underlying possible mechanisms. Renal function, kidney histology, inflammation, oxidative stress, renal mitochondrial function, proteins involved in apoptosis, nuclear translocation of Nrf2 and effects on intracellular signaling pathways such as MAPKs, and NF-κB were assessed. Pretreatment with baicalein ameliorated the cisplatin-induced renal oxidative stress, apoptosis and inflammation and improved kidney injury and function. Baicalein inhibited the cisplatin-induced expression of iNOS, TNF-α, IL-6 and mononuclear cell infiltration and concealed redox-sensitive transcription factor NF-κB activation via reduced DNA-binding activity, IκBα phosphorylation and p65 nuclear translocation in kidneys. Further studies demonstrated baicalein markedly attenuated cisplatin-induced p38 MAPK, ERK1/2 and JNK phosphorylation in kidneys. Baicalein also restored the renal antioxidants and increased the amount of total and nuclear accumulation of Nrf2 and downstream target protein, HO-1 in kidneys. Moreover, baicalein preserved mitochondrial respiratory enzyme activities and inhibited cisplatin-induced apoptosis by suppressing p53 expression, Bax/Bcl-2 imbalance, cytochrome c release and activation of caspase-9, caspase-3 and PARP. Our findings suggest that baicalein ameliorates cisplatin-induced renal damage through up-regulation of antioxidant defense mechanisms and down regulation of the MAPKs and NF-κB signaling pathways.

  7. Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB Pathways.

    Sahu, Bidya Dhar; Mahesh Kumar, Jerald; Sistla, Ramakrishna

    2015-01-01

    Acute renal failure is a serious complication of the anticancer drug cisplatin. The potential role of baicalein, a naturally occurring bioflavonoid on cisplatin-induced renal injury is unknown. Here, we assessed the effect of baicalein against a murine model of cisplatin-induced acute renal failure and investigated the underlying possible mechanisms. Renal function, kidney histology, inflammation, oxidative stress, renal mitochondrial function, proteins involved in apoptosis, nuclear translocation of Nrf2 and effects on intracellular signaling pathways such as MAPKs, and NF-κB were assessed. Pretreatment with baicalein ameliorated the cisplatin-induced renal oxidative stress, apoptosis and inflammation and improved kidney injury and function. Baicalein inhibited the cisplatin-induced expression of iNOS, TNF-α, IL-6 and mononuclear cell infiltration and concealed redox-sensitive transcription factor NF-κB activation via reduced DNA-binding activity, IκBα phosphorylation and p65 nuclear translocation in kidneys. Further studies demonstrated baicalein markedly attenuated cisplatin-induced p38 MAPK, ERK1/2 and JNK phosphorylation in kidneys. Baicalein also restored the renal antioxidants and increased the amount of total and nuclear accumulation of Nrf2 and downstream target protein, HO-1 in kidneys. Moreover, baicalein preserved mitochondrial respiratory enzyme activities and inhibited cisplatin-induced apoptosis by suppressing p53 expression, Bax/Bcl-2 imbalance, cytochrome c release and activation of caspase-9, caspase-3 and PARP. Our findings suggest that baicalein ameliorates cisplatin-induced renal damage through up-regulation of antioxidant defense mechanisms and down regulation of the MAPKs and NF-κB signaling pathways.

  8. Attenuating properties of Agastache rugosa leaf extract against ultraviolet-B-induced photoaging via up-regulating glutathione and superoxide dismutase in a human keratinocyte cell line.

    Oh, Yuri; Lim, Hye-Won; Huang, Yu-Hua; Kwon, Hee-Souk; Jin, Chang Duck; Kim, Kyunghoon; Lim, Chang-Jin

    2016-10-01

    Agastache rugosa Kuntze, known as a Korean mint, is an herbal medicine that has been used for the treatment of diverse kinds of symptoms in traditional medicine. This work was undertaken to assess the protective properties of A. rugosa leaves against UV-B-induced photoaging in HaCaT keratinocytes. They were evaluated via analyzing reactive oxygen species (ROS), promatrix metalloproteinase-2 (proMMP-2) and -9 (proMMP-9), total glutathione (GSH), total superoxide dismutase (SOD), cellular viability, flavonoid content and in vitro radical scavenging activity. Total flavonoid content of ARE, a hot water extract of A. rugosa leaves, was 22.8±7.6mg of naringin equivalent/g ARE. ARE exhibited ABTS(+) radical scavenging activity with an SC50 of 836.9μg/mL. ARE attenuated the UV-B-induced ROS generation. It diminished the UV-B-induced elevation of proMMP-2 and -9 at both activity and protein levels. On the contrary, ARE was able to enhance the UV-B-reduced total GSH and total SOD activity levels. ARE, at the used concentrations, was unable to interfere with the cellular viabilities of HaCaT keratinocytes under UV-B irradiation. Taken together, ARE possesses a protective potential against UV-B-induced photoaging in HaCaT keratinocytes, possibly based upon up-regulating antioxidant components, including total GSH and SOD. These findings reasonably suggest the use of A. rugosa leaves as a photoprotective resource in manufacturing functional cosmetics.

  9. ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana.

    Riboni, Matteo; Robustelli Test, Alice; Galbiati, Massimo; Tonelli, Chiara; Conti, Lucio

    2016-12-01

    One strategy deployed by plants to endure water scarcity is to accelerate the transition to flowering adaptively via the drought escape (DE) response. In Arabidopsis thaliana, activation of the DE response requires the photoperiodic response gene GIGANTEA (GI) and the florigen genes FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF). The phytohormone abscisic acid (ABA) is also required for the DE response, by promoting the transcriptional up-regulation of the florigen genes. The mode of interaction between ABA and the photoperiodic genes remains obscure. In this work we use a genetic approach to demonstrate that ABA modulates GI signalling and consequently its ability to activate the florigen genes. We also reveal that the ABA-dependent activation of FT, but not TSF, requires CONSTANS (CO) and that impairing ABA signalling dramatically reduces the expression of florigen genes with little effect on the CO transcript profile. ABA signalling thus has an impact on the core genes of photoperiodic signalling GI and CO by modulating their downstream function and/or activities rather than their transcript accumulation. In addition, we show that as well as promoting flowering, ABA simultaneously represses flowering, independent of the florigen genes. Genetic analysis indicates that the target of the repressive function of ABA is the flowering-promoting gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a transcription factor integrating floral cues in the shoot meristem. Our study suggests that variations in ABA signalling provide different developmental information that allows plants to co-ordinate the onset of the reproductive phase according to the available water resources.

  10. Up-regulation of -opioid receptors in the spinal cord of morphine-tolerant rats

    Subrata Basu Ray; Himanshu Gupta; Yogendra Kumar Gupta

    2004-03-01

    Though morphine remains the most powerful drug for treating pain, its effectiveness is limited by the development of tolerance and dependence. The mechanism underlying development of tolerance to morphine is still poorly understood. One of the factors could be an alteration in the number of m-receptors within specific parts of the nervous system. However, reports on changes in the -opioid receptor density in the spinal cord after chronic morphine administration are conflicting. Most of the studies have used subcutaneously implanted morphine pellets to produce tolerance. However, it does not simulate clinical conditions, where it is more common to administer morphine at intervals, either by injections or orally. In the present study, rats were made tolerant to morphine by injecting increasing doses of morphine (10–50 mg/kg, subcutaneously) for five days. In vitro tissue autoradiography for localization of -receptor in the spinal cord was done using [3H]-DAMGO. As compared to the spinal cord of control rats, the spinal cord of tolerant rats showed an 18.8% increase or up-regulation in the density of -receptors in the superficial layers of the dorsal horn. This up-regulation of -receptors after morphine tolerance suggests that a fraction of the receptors have been rendered desensitized, which in turn could lead to tolerance.

  11. Neural cell 3D microtissue formation is marked by cytokines' up-regulation.

    Yinzhi Lai

    Full Text Available Cells cultured in three dimensional (3D scaffolds as opposed to traditional two-dimensional (2D substrates have been considered more physiologically relevant based on their superior ability to emulate the in vivo environment. Combined with stem cell technology, 3D cell cultures can provide a promising alternative for use in cell-based assays or biosensors in non-clinical drug discovery studies. To advance 3D culture technology, a case has been made for identifying and validating three-dimensionality biomarkers. With this goal in mind, we conducted a transcriptomic expression comparison among neural progenitor cells cultured on 2D substrates, 3D porous polystyrene scaffolds, and as 3D neurospheres (in vivo surrogate. Up-regulation of cytokines as a group in 3D and neurospheres was observed. A group of 13 cytokines were commonly up-regulated in cells cultured in polystyrene scaffolds and neurospheres, suggesting potential for any or a combination from this list to serve as three-dimensionality biomarkers. These results are supportive of further cytokine identification and validation studies with cells from non-neural tissue.

  12. N-glycoprotein analysis discovers new up-regulated glycoproteins in colorectal cancer tissue.

    Nicastri, Annalisa; Gaspari, Marco; Sacco, Rosario; Elia, Laura; Gabriele, Caterina; Romano, Roberto; Rizzuto, Antonia; Cuda, Giovanni

    2014-11-07

    Colorectal cancer is one of the leading causes of death due to cancer worldwide. Therefore, the identification of high-specificity and -sensitivity biomarkers for the early detection of colorectal cancer is urgently needed. Post-translational modifications, such as glycosylation, are known to play an important role in cancer progression. In the present work, we used a quantitative proteomic technique based on (18)O stable isotope labeling to identify differentially expressed N-linked glycoproteins in colorectal cancer tissue samples compared with healthy colorectal tissue from 19 patients undergoing colorectal cancer surgery. We identified 54 up-regulated glycoproteins in colorectal cancer samples, therefore potentially involved in the biological processes of tumorigenesis. In particular, nine of these (PLOD2, DPEP1, SE1L1, CD82, PAR1, PLOD3, S12A2, LAMP3, OLFM4) were found to be up-regulated in the great majority of the cohort, and, interestingly, the association with colorectal cancer of four (PLOD2, S12A2, PLOD3, CD82) has not been hitherto described.

  13. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats

    Hoffman, Gloria E.; Koban, Michael

    2016-01-01

    A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC), would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD) because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness. PMID:27997552

  14. Blockade of mast cell activation reduces cutaneous scar formation.

    Lin Chen

    Full Text Available Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG, on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1α, IL-1β, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase β1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound.

  15. Blockade of mast cell activation reduces cutaneous scar formation.

    Chen, Lin; Schrementi, Megan E; Ranzer, Matthew J; Wilgus, Traci A; DiPietro, Luisa A

    2014-01-01

    Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG), on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1α, IL-1β, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase β1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound.

  16. The Vitamin E Analog Gamma-Tocotrienol (GT3 and Statins Synergistically Up-Regulate Endothelial Thrombomodulin (TM

    Rupak Pathak

    2016-11-01

    Full Text Available Statins; a class of routinely prescribed cholesterol-lowering drugs; inhibit 3-hydroxy-3-methylglutaryl-coenzymeA reductase (HMGCR and strongly induce endothelial thrombomodulin (TM; which is known to have anti-inflammatory; anti-coagulation; anti-oxidant; and radioprotective properties. However; high-dose toxicity limits the clinical use of statins. The vitamin E family member gamma-tocotrienol (GT3 also suppresses HMGCR activity and induces TM expression without causing significant adverse side effects; even at high concentrations. To investigate the synergistic effect of statins and GT3 on TM; a low dose of atorvastatin and GT3 was used to treat human primary endothelial cells. Protein-level TM expression was measured by flow cytometry. TM functional activity was determined by activated protein C (APC generation assay. Expression of Kruppel-like factor 2 (KLF2, one of the key transcription factors of TM, was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR. TM expression increased in a dose-dependent manner after both atorvastatin and GT3 treatment. A combined treatment of a low-dose of atorvastatin and GT3 synergistically up-regulated TM expression and functional activity. Finally; atorvastatin and GT3 synergistically increased KLF2 expression. These findings suggest that combined treatment of statins with GT3 may provide significant health benefits in treating a number of pathophysiological conditions; including inflammatory and cardiovascular diseases.

  17. NR4A orphan nuclear receptors influence retinoic acid and docosahexaenoic acid signaling via up-regulation of fatty acid binding protein 5

    Volakakis, Nikolaos; Joodmardi, Eliza [Ludwig Institute for Cancer Research Ltd., Box 240, S-17177 Stockholm (Sweden); Perlmann, Thomas, E-mail: thomas.perlmann@licr.ki.se [Ludwig Institute for Cancer Research Ltd., Box 240, S-17177 Stockholm (Sweden); The Department of Cell and Molecular Biology, Karolinska Institute, S-17177 Stockholm (Sweden)

    2009-12-25

    The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPAR{beta}/{delta} signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4A NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPAR{beta}/{delta} and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.

  18. DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-beta-inducing potential.

    Oshiumi, Hiroyuki; Sakai, Keisuke; Matsumoto, Misako; Seya, Tsukasa

    2010-04-01

    Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLR) are members of the DEAD box helicases, and recognize viral RNA in the cytoplasm, leading to IFN-beta induction through the adaptor IFN-beta promoter stimulator-1 (IPS-1) (also known as Cardif, mitochondrial antiviral signaling protein or virus-induced signaling adaptor). Since uninfected cells usually harbor a trace of RIG-I, other RNA-binding proteins may participate in assembling viral RNA into the IPS-1 pathway during the initial response to infection. We searched for proteins coupling with human IPS-1 by yeast two-hybrid and identified another DEAD (Asp-Glu-Ala-Asp) box helicase, DDX3 (DEAD/H BOX 3). DDX3 can bind viral RNA to join it in the IPS-1 complex. Unlike RIG-I, DDX3 was constitutively expressed in cells, and some fraction of DDX3 is colocalized with IPS-1 around mitochondria. The 622-662 a.a DDX3 C-terminal region (DDX3-C) directly bound to the IPS-1 CARD-like domain, and the whole DDX3 protein also associated with RLR. By reporter assay, DDX3 helped IPS-1 up-regulate IFN-beta promoter activation and knockdown of DDX3 by siRNA resulted in reduced IFN-beta induction. This activity was conserved on the DDX3-C fragment. DDX3 only marginally enhanced IFN-beta promoter activation induced by transfected TANK-binding kinase 1 (TBK1) or I-kappa-B kinase-epsilon (IKKepsilon). Forced expression of DDX3 augmented virus-mediated IFN-beta induction and host cell protection against virus infection. Hence, DDX3 is an antiviral IPS-1 enhancer.

  19. 21-Benzylidene Digoxin: A Proapoptotic Cardenolide of Cancer Cells That Up-Regulates Na,K-ATPase and Epithelial Tight Junctions

    Rocha, Sayonarah C.; Pessoa, Marco T. C.; Neves, Luiza D. R.; Alves, Silmara L. G.; Silva, Luciana M.; Santos, Herica L.; Oliveira, Soraya M. F.; Taranto, Alex G.; Comar, Moacyr; Gomes, Isabella V.; Santos, Fabio V.; Paixão, Natasha; Quintas, Luis E. M.; Noël, François; Pereira, Antonio F.; Tessis, Ana C. S. C.; Gomes, Natalia L. S.; Moreira, Otacilio C.; Rincon-Heredia, Ruth; Varotti, Fernando P.; Blanco, Gustavo; Villar, Jose A. F. P.; Contreras, Rubén G.; Barbosa, Leandro A.

    2014-01-01

    Cardiotonic steroids are used to treat heart failure and arrhythmia and have promising anticancer effects. The prototypic cardiotonic steroid ouabain may also be a hormone that modulates epithelial cell adhesion. Cardiotonic steroids consist of a steroid nucleus and a lactone ring, and their biological effects depend on the binding to their receptor, Na,K-ATPase, through which, they inhibit Na+ and K+ ion transport and activate of several intracellular signaling pathways. In this study, we added a styrene group to the lactone ring of the cardiotonic steroid digoxin, to obtain 21-benzylidene digoxin (21-BD), and investigated the effects of this synthetic cardiotonic steroid in different cell models. Molecular modeling indicates that 21-BD binds to its target Na,K-ATPase with low affinity, adopting a different pharmacophoric conformation when bound to its receptor than digoxin. Accordingly, 21-DB, at relatively high µM amounts inhibits the activity of Na,K-ATPase α1, but not α2 and α3 isoforms. In addition, 21-BD targets other proteins outside the Na,K-ATPase, inhibiting the multidrug exporter Pdr5p. When used on whole cells at low µM concentrations, 21-BD produces several effects, including: 1) up-regulation of Na,K-ATPase expression and activity in HeLa and RKO cancer cells, which is not found for digoxin, 2) cell specific changes in cell viability, reducing it in HeLa and RKO cancer cells, but increasing it in normal epithelial MDCK cells, which is different from the response to digoxin, and 3) changes in cell-cell interaction, altering the molecular composition of tight junctions and elevating transepithelial electrical resistance of MDCK monolayers, an effect previously found for ouabain. These results indicate that modification of the lactone ring of digoxin provides new properties to the compound, and shows that the structural change introduced could be used for the design of cardiotonic steroid with novel functions. PMID:25290152

  20. 21-Benzylidene digoxin: a proapoptotic cardenolide of cancer cells that up-regulates Na,K-ATPase and epithelial tight junctions.

    Sayonarah C Rocha

    Full Text Available Cardiotonic steroids are used to treat heart failure and arrhythmia and have promising anticancer effects. The prototypic cardiotonic steroid ouabain may also be a hormone that modulates epithelial cell adhesion. Cardiotonic steroids consist of a steroid nucleus and a lactone ring, and their biological effects depend on the binding to their receptor, Na,K-ATPase, through which, they inhibit Na+ and K+ ion transport and activate of several intracellular signaling pathways. In this study, we added a styrene group to the lactone ring of the cardiotonic steroid digoxin, to obtain 21-benzylidene digoxin (21-BD, and investigated the effects of this synthetic cardiotonic steroid in different cell models. Molecular modeling indicates that 21-BD binds to its target Na,K-ATPase with low affinity, adopting a different pharmacophoric conformation when bound to its receptor than digoxin. Accordingly, 21-DB, at relatively high µM amounts inhibits the activity of Na,K-ATPase α1, but not α2 and α3 isoforms. In addition, 21-BD targets other proteins outside the Na,K-ATPase, inhibiting the multidrug exporter Pdr5p. When used on whole cells at low µM concentrations, 21-BD produces several effects, including: 1 up-regulation of Na,K-ATPase expression and activity in HeLa and RKO cancer cells, which is not found for digoxin, 2 cell specific changes in cell viability, reducing it in HeLa and RKO cancer cells, but increasing it in normal epithelial MDCK cells, which is different from the response to digoxin, and 3 changes in cell-cell interaction, altering the molecular composition of tight junctions and elevating transepithelial electrical resistance of MDCK monolayers, an effect previously found for ouabain. These results indicate that modification of the lactone ring of digoxin provides new properties to the compound, and shows that the structural change introduced could be used for the design of cardiotonic steroid with novel functions.

  1. Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in Gluconacetobacter diazotrophicus.

    Alquéres, Sylvia M C; Oliveira, Jose Henrique M; Nogueira, Eduardo M; Guedes, Helma V; Oliveira, Pedro L; Câmara, Fernando; Baldani, Jose I; Martins, Orlando B

    2010-10-01

    Gluconacetobacter diazotrophicus, an endophyte isolated from sugarcane, is a strict aerobe that fixates N(2). This process is catalyzed by nitrogenase and requires copious amounts of ATP. Nitrogenase activity is extremely sensitive to inhibition by oxygen and reactive oxygen species (ROS). However, the elevated oxidative metabolic rates required to sustain biological nitrogen fixation (BNF) may favor an increased production of ROS. Here, we explored this paradox and observed that ROS levels are, in fact, decreased in nitrogen-fixing cells due to the up-regulation of transcript levels of six ROS-detoxifying genes. A cluster analyses based on common expression patterns revealed the existence of a stable cluster with 99.8% similarity made up of the genes encoding the α-subunit of nitrogenase Mo-Fe protein (nifD), superoxide dismutase (sodA) and catalase type E (katE). Finally, nitrogenase activity was inhibited in a dose-dependent manner by paraquat, a redox cycler that increases cellular ROS levels. Our data revealed that ROS can strongly inhibit nitrogenase activity, and G. diazotrophicus alters its redox metabolism during BNF by increasing antioxidant transcript levels resulting in a lower ROS generation. We suggest that careful controlled ROS production during this critical phase is an adaptive mechanism to allow nitrogen fixation.

  2. Reduced Arylsulfatase B Activity in Leukocytes from Cystic Fibrosis Patients

    Sharma, Girish; Burke, Jenifer; Bhattacharyya, Sumit; Sharma, Neha; Katyal, Shivani; Park, R. Lucy; Tobacman, Joanne

    2013-01-01

    Summary The enzyme Arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) removes 4-sulfate groups from chondroitin-4-sulfate and dermatan sulfate and is required for the degradation of these sulfated glycosaminoglycans (GAGs). Since these GAGs accumulate in patients with Cystic Fibrosis (CF), we investigated the activity of ARSB in leukocytes of patients with CF, to consider if reduced activity of ARSB might contribute to the pathophysiology of CF. Previous cell-based experiments had demonstrated that when the deficiency of the cystic fibrosis transmembrane regulator (CFTR) was corrected in bronchial epithelial cells, the ARSB activity increased significantly. De-identified, citrated blood samples were collected from 16 children with cystic fibrosis and 31 control subjects, seen in the Pediatric Clinic at Rush University Medical Center. Polymorphonuclear (PMN) and mononuclear cell (MC) populations were separated by density gradient, and blinded determinations of ARSB activity were performed using the exogenous substrate 4-methylumbilliferyl sulfate. Interleukin-6 was measured in the plasma samples by ELISA. ARSB activity was significantly less in the PMN and MC from the CF patients than controls (p<0.0001, unpaired t-test, two-tailed). Interleukin-6 levels in plasma were significantly greater in the CF population (p<0.001). Mean age, age range, and male:female ratio of CF patients and controls were similar, and no association of ARSB activity with age, gender, or CFTR genotype was evident. Since recombinant human ARSB is used successfully for replacement therapy in Mucopolysaccharidosis VI, it may be useful to restore ARSB activity to normal levels and increase degradation of sulfated GAGs in CF patients. PMID:22550062

  3. Neuronal changes resulting in up-regulation of alpha-1 adrenoceptors after peripheral nerve injury

    Peter D.Drummond

    2014-01-01

    Under normal conditions, the sympathetic neurotransmitter noradrenaline inhibits the pro-duction and release of pro-inlfammatory cytokines. However, after peripheral nerve and tissue injury, pro-inflammatory cytokines appear to induce the expression of the alpha1A-adreno-ceptor subtype on immune cells and perhaps also on other cells in the injured tissue. In turn, noradrenaline may act on up-regulated alpha1-adrenoceptors to increase the production of the pro-inflammatory cytokine interleukin-6. In addition, the release of inflammatory mediators and nerve growth factor from keratinocytes and other cells may augment the expression of al-pha1-adrenoceptors on peripheral nerve ifbers. Consequently, nociceptive afferents acquire an abnormal excitability to adrenergic agents, and inlfammatory processes build. These mechanisms could contribute to the development of sympathetically maintained pain in conditions such as post-herpetic neuralgia, cutaneous neuromas, amputation stump pain and complex regional pain syndrome.

  4. Knockdown of Litopenaeus vannamei HtrA2, an up-regulated gene in response to WSSV infection, leading to delayed shrimp mortality.

    Peepim, Termsri; Phiwsaiya, Kornsunee; Charoensapsri, Walaiporn; Khunrae, Pongsak; Senapin, Saengchan; Rattanarojpong, Triwit

    2016-02-10

    HtrA2 is an apoptosis-activating gene that enhances the apoptotic process by preventing the formation of the IAP-caspase complex, thereby freeing caspase to trigger the apoptosis pathway. In this study, we presented the full-length cDNA sequence of HtrA2 from Litopenaeus vannamei (LvHtrA2). The full-length LvHtrA2 was 1335 bp, encoding 444 amino acids. This deduced amino acid sequence contained five conserved domains: a mitochondrial targeting signal (MTS), a transmembrane (TM) domain, an IAP-binding motif (IBM), a trimerization motif, a serine protease domain, and a PDZ domain normally found in the HtrA2 proteins of other organisms. A phylogenetic analysis revealed that LvHtrA2 clustered with the HtrA2 from other invertebrates and was closely related to Penaeus monodon HtrA2 (PmHtrA2). RT-PCR with RNA extracts from L. vannamei revealed that LvHtrA2 expression was found in several tissues, including the lymphoid organs, the haemocytes, the hepatopancreas, the gill, and the stomach, with different expression levels. When determining the role of LvHtrA2 in WSSV infection, it was found that LvHtrA2 transcription was early up-regulated in the WSSV-infected shrimp at 8h post-infection (p.i.) and expression still remained high at 48 h p.i.. It also demonstrated that dsRNA specific to LvHtrA2 reduced the cumulative mortality in the WSSV-infected shrimp compared with the control group. Additionally, depletion of the LvHtrA2 transcripts reduced expression levels for caspase-3 (Cap-3) gene in shrimp. This result could suggest that LvHtrA2 may involved in apoptosis mediated mortality rather than providing immune protection during WSSV infection.

  5. Low-level laser irradiation stimulates tenocyte migration with up-regulation of dynamin II expression.

    Wen-Chung Tsai

    Full Text Available Low-level laser therapy (LLLT is commonly used to treat sports-related tendinopathy or tendon injury. Tendon healing requires tenocyte migration to the repair site, followed by proliferation and synthesis of the extracellular matrix. This study was designed to determine the effect of laser on tenocyte migration. Furthermore, the correlation between this effect and expression of dynamin 2, a positive regulator of cell motility, was also investigated. Tenocytes intrinsic to rat Achilles tendon were treated with low-level laser (660 nm with energy density at 1.0, 1.5, and 2.0 J/cm(2. Tenocyte migration was evaluated by an in vitro wound healing model and by transwell filter migration assay. The messenger RNA (mRNA and protein expressions of dynamin 2 were determined by reverse transcription/real-time polymerase chain reaction (real-time PCR and Western blot analysis respectively. Immunofluorescence staining was used to evaluate the dynamin 2 expression in tenocytes. Tenocytes with or without laser irradiation was treated with dynasore, a dynamin competitor and then underwent transwell filter migration assay. In vitro wound model revealed that more tenocytes with laser irradiation migrated across the wound border to the cell-free zone. Transwell filter migration assay confirmed that tenocyte migration was enhanced dose-dependently by laser. Real-time PCR and Western-blot analysis demonstrated that mRNA and protein expressions of dynamin 2 were up-regulated by laser irradiation dose-dependently. Confocal microscopy showed that laser enhanced the expression of dynamin 2 in cytoplasm of tenocytes. The stimulation effect of laser on tenocytes migration was suppressed by dynasore. In conclusion, low-level laser irradiation stimulates tenocyte migration in a process that is mediated by up-regulation of dynamin 2, which can be suppressed by dynasore.

  6. Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis.

    2005-09-01

    Full Text Available BACKGROUND: Idiopathic pulmonary fibrosis (IPF is a progressive and lethal disorder characterized by fibroproliferation and excessive accumulation of extracellular matrix in the lung. METHODS AND FINDINGS: Using oligonucleotide arrays, we identified osteopontin as one of the genes that significantly distinguishes IPF from normal lungs. Osteopontin was localized to alveolar epithelial cells in IPF lungs and was also significantly elevated in bronchoalveolar lavage from IPF patients. To study the fibrosis-relevant effects of osteopontin we stimulated primary human lung fibroblasts and alveolar epithelial cells (A549 with recombinant osteopontin. Osteopontin induced a significant increase of migration and proliferation in both fibroblasts and epithelial cells. Epithelial growth was inhibited by the pentapeptide Gly-Arg-Gly-Asp-Ser (GRGDS and antibody to CD44, while fibroproliferation was inhibited by GRGDS and antibody to alphavbeta3 integrin. Fibroblast and epithelial cell migration were inhibited by GRGDS, anti-CD44, and anti-alphavbeta3. In fibroblasts, osteopontin up-regulated tissue inhibitor of metalloprotease-1 and type I collagen, and down-regulated matrix metalloprotease-1 (MMP-1 expression, while in A549 cells it caused up-regulation of MMP-7. In human IPF lungs, osteopontin colocalized with MMP-7 in alveolar epithelial cells, and application of weakest link statistical models to microarray data suggested a significant interaction between osteopontin and MMP-7. CONCLUSIONS: Our results provide a potential mechanism by which osteopontin secreted from the alveolar epithelium may exert a profibrotic effect in IPF lungs and highlight osteopontin as a potential target for therapeutic intervention in this incurable disease.

  7. 125 INCOMPLETE COMPENSATORY UP-REGULATION OF X-LINKED GENES IN BOVINE GERMLINE, EARLY EMBRYOS, AND SOMATIC TISSUES.

    Duan, J; Jue, N K; Jiang, Z; O'Neill, R; Wolf, E; Blomberg, L A; Dong, H; Zheng, X; Chen, J; Tian, X

    2016-01-01

    The maintenance of a proper gene dosage is essential in cellular networks. To resolve the dosage imbalance between eutherian females (XX) and male (XY), X chromosome inactivation (XCI) occurs in females, while X-chromosome dosage compensation up-regulates the active X to balance its expression with that of autosome pairs [Ohno's hypothesis; Ohno 1967 Sex Chromosomes and Sex-linked Genes (Springer-Verlag), p. 99]. These phenomena have been well studied in humans and mice, despite many controversies over the existence of such up-regulation. Using RNA sequencing data, we determined X chromosome dosage compensation in the bovine by analysing the global expression profiles of germ cells, embryos, and somatic tissues. Eight bovine RNA-seq data sets were obtained in from the Gene Expression Omnibus, covering bovine immature/mature oocytes (GSE59186 and GSE52415), pre-implantation conceptuses (GSE59186, GSE52415, and GSE56513), extra-embryonic tissues (PRJNA229443), and male/female somatic tissues (GSE74076, GSE63509, PRJEB6377, and GSE65125). The RNAseq data were trimmed and non-uniquely (paralogs included) mapped to the bovine reference genome assembly UMD3.1.1 using Hisat2 (version 2.0.5) aligner. The mRNA level of each gene, estimated by transformed transcripts per kilobase million was quantified by IsoEM (version 1.1.5). These RNA-seq data sets represented 4 chromosome scenarios in cells: XXXX:AAAA (diploid immature oocyte with DNA duplication), XX:AA (haploid mature oocyte with DNA duplication), XX:AA and X:AA (gradual changed X status in bovine pre-implantation conceptuses), and X:AA (extra-embryonic tissues and somatic cells in female with one active X or XY male) were analysed for dosage compensation. A total of 959 X-linked genes and 20,316 autosome genes were used to calculate the relative X to autosomal gene (A) expression (RXE): log2 (X expression) - log2 (A expression). The following dosage determinations were made: RXE values ≥ 0: complete dosage

  8. Epstein-Barr Virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin.

    Lu, Jie; Murakami, Masanao; Verma, Subhash C; Cai, Qiliang; Haldar, Sabyasachi; Kaul, Rajeev; Wasik, Mariusz A; Middeldorp, Jaap; Robertson, Erle S

    2011-02-05

    Resistance to apoptosis is an important component of the overall mechanism which drives the tumorigenic process. EBV is a ubiquitous human gamma-herpesvirus which preferentially establishes latent infection in viral infected B-lymphocytes. EBNA1 is typically expressed in most forms of EBV-positive malignancies and is important for replication of the latent episome in concert with replication of the host cells. Here, we investigate the effects of EBNA1 on survivin up-regulation in EBV-infected human B-lymphoma cells. We present evidence which demonstrates that EBNA1 forms a complex with Sp1 or Sp1-like proteins bound to their cis-element at the survivin promoter. This enhances the activity of the complex and up-regulates survivin. Knockdown of survivin and EBNA1 showed enhanced apoptosis in infected cells and thus supports a role for EBNA1 in suppressing apoptosis in EBV-infected cells. Here, we suggest that EBV encoded EBNA1 can contribute to the oncogenic process by up-regulating the apoptosis suppressor protein, survivin in EBV-associated B-lymphoma cells.

  9. Up-regulation of fibroblast growth factor (FGF) 9 expression and FGF-WNT/β-catenin signaling in laser-induced wound healing.

    Zheng, Zhenlong; Kang, Hye-Young; Lee, Sunha; Kang, Shin-Wook; Goo, Boncheol; Cho, Sung Bin

    2014-01-01

    Fibroblast growth factor (FGF) 9 is secreted by both mesothelial and epithelial cells, and plays important roles in organ development and wound healing via WNT/β-catenin signaling. The aim of this study was to evaluate FGF9 expression and FGF-WNT/β-catenin signaling during wound healing of the skin. We investigated FGF9 expression and FGF-WNT/β-catenin signaling after laser ablation of mouse skin and adult human skin, as well as in cultured normal human epidermal keratinocytes (NHEKs) upon stimulation with recombinant human (rh) FGF9 and rh-transforming growth factor (TGF)-β1. Our results showed that laser ablation of both mouse skin and human skin leads to marked overexpression of FGF9 and FGF9 mRNA. Control NHEKs constitutively expressed FGF9, WNT7b, WNT2, and β-catenin, but did not show Snail or FGF receptor (FGFR) 2 expression. We also found that FGFR2 was significantly induced in NHEKs by rhFGF9 stimulation, and observed that FGFR2 expression was slightly up-regulated on particular days during the wound healing process after ablative laser therapy. Both WNT7b and WNT2 showed up-regulated protein expression during the laser-induced wound healing process in mouse skin; moreover, we discerned that the stimulatory effect of rhFGF9 and rhTGF-β1 activates WNT/β-catenin signaling via WNT7b in cultured NHEKs. Our data indicated that rhFGF9 and/or rhTGF-β1 up-regulate FGFR2, WNT7b, and β-catenin, but not FGF9 and Snail; pretreatment with rh dickkopf-1 significantly inhibited the up-regulation of FGFR2, WNT7b, and β-catenin. Our results suggested that FGF9 and FGF-WNT/β-catenin signaling may play important roles in ablative laser-induced wound healing processes.

  10. Human p38{delta} MAP kinase mediates UV irradiation induced up-regulation of the gene expression of chemokine BRAK/CXCL14

    Ozawa, Shigeyuki [Oral Health Science Research Center (Japan); Department of Biochemistry and Molecular Biology (Japan); Department of Oral and Maxillofacial Surgery, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka 238-8580 (Japan); Ito, Shin; Kato, Yasumasa [Oral Health Science Research Center (Japan); Department of Biochemistry and Molecular Biology (Japan); Kubota, Eiro [Department of Biochemistry and Molecular Biology (Japan); Department of Oral and Maxillofacial Surgery, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka 238-8580 (Japan); Hata, Ryu-Ichiro, E-mail: ryuhata@gmail.com [Oral Health Science Research Center (Japan); Department of Biochemistry and Molecular Biology (Japan)

    2010-06-11

    The mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38{alpha}, {beta}, {gamma} and {delta}. The UV stimulation of p38 phosphorylation was not inhibited by the presence of SB203580 or PD169316, inhibitors of p38{alpha} and {beta}, suggesting p38 phosphorylation was not dependent on these 2 isoforms and that p38{gamma} and/or {delta} was responsible for the phosphorylation. In fact, inhibition of each of these 4 p38 isoforms by the introduction of short hairpin (sh) RNAs for respective isoforms revealed that only shRNA for p38{delta} attenuated the UV-induced up-regulation of BRAK/CXCL14 gene expression. In addition, over-expression of p38 isoforms in the cells showed the association of p38{delta} with ERK1 and 2, concomitant with down-regulation of ERK phosphorylation. The usage of p38{delta} isoform by UV irradiation is not merely due to the abundance of this p38 isoform in the cells. Because serum deprivation of the cells also induced an increase in BRAK/CXCL14 gene expression, and in this case p38{alpha} and/or {beta} isoform is responsible for up-regulation of BRAK/CXCL14 gene expression. Taken together, the data indicate that the respective stress-dependent action of p38 isoforms is responsible for the up-regulation of the gene expression of the chemokine BRAK/CXCL14.

  11. OxLDL up-regulates Niemann-Pick type C1 expression through ERK1/2/COX-2/ PPARα-signaling pathway in macrophages

    Xiaohua yu; Chaoke Tang; Xiaoxu Li; Guojun Zhao; Ji Xiao; Zhongcheng Mo; Kai Yin; Zhisheng Jiang; Yuchang Fu; Xiaohui Zha

    2012-01-01

    The Niemann-Pick type C1 (NPC1) is located mainly in the membranes of the late endosome/lysosome and controls the intracellular cholesterol trafficking from the late endosome/lysosome to the plasma membrane.It has been reported that oxidized low-density lipoprotein (oxLDL) can up-regulate NPC1 expression.However,the detailed mechanisms are not fully understood.In this study,we investigated the effect of oxLDL stimulation on NPC1 expression in THP-1 macrophages.Our results showed that oxLDL up-regulated NPC1 expression at both mRNA and protein levels in a dose-dependent and time-dependent manner.In addition,oxLDL also induced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2).Treatment with oxLDL significantly increased cyclooxygenase-2 (COX-2)mRNA and protein expression in the macrophages,and these increases were suppressed by the ERK1/2 inhibitor PD98059 or ERK1/2 small interfering RNA (siRNA) treatment.OxLDL up-regulated the expression of peroxisome proliferator-activated receptor α (PPARα) at the mRNA and protein levels,which could be abolished by COX-2 siRNA or COX-2 inhibitor NS398 treatment in these macrophages.OxLDL dramatically elevated cellular cholesterol efflux,which was abrogated by inhibiting ERK1/2 and/or COX-2.In addition,oxLDL-induced NPC1 expression and cellular cholesterol effiux were reversed by PPARα siRNA or GW6471,an antagonist of PPARα.Taken together,these results provide the evidence that oxLDL can up-regulate the expression of the NPC1 through ERK1/2/COX-2/PPARα-signaling pathway in macrophages.

  12. Insecticide-Mediated Up-Regulation of Cytochrome P450 Genes in the Red Flour Beetle (Tribolium castaneum

    Xiao Liang

    2015-01-01

    Full Text Available Some cytochrome P450 (CYP genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively, permethrin (2.00- and 2.03-fold and lambda-cyhalothrin (1.73- and 1.81-fold, whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification.

  13. Insecticide-mediated up-regulation of cytochrome P450 genes in the red flour beetle (Tribolium castaneum).

    Liang, Xiao; Xiao, Da; He, Yanping; Yao, Jianxiu; Zhu, Guonian; Zhu, Kun Yan

    2015-01-19

    Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification.

  14. Platycodon grandiflorum extract represses up-regulated adipocyte fatty acid binding protein triggered by a high fat feeding in obese rats

    Yoon Shin Park; Yoosik Yoon; Hong Seok Ahn

    2007-01-01

    AIM: To investigate the effect of Platycodon grandiflorum extract (PGE) on lipid metabolism and FABP mRNA expression in subcutaneous adipose tissue of high fat diet-induced obese rats.METHODS: PGE was treated to investigate the inhibitory effect on the pre-adipocyte 3T3-L1 differentiation and pancreatic lipase activity. Male Sprague-Dawley rats with an average weight of 439.03 ± 7.61 g were divided into four groups: the control groups that fed an experimental diet alone (C and H group) and PGE treatment groups that administered PGE along with a control diet or HFD at a concentration of 150 mg/kg body weight (C + PGE and H + PGE group, respectively) for 7 wk. Plasma total cholesterol (TC) and triglycerol (TG) concentrations were measured from the tail vein of rats. Adipocyte cell area was measured from subcutaneous adipose tissue and the fatty acid binding protein (FABP) mRNA expression was analyzed by northern blot analysis.RESULTS: PGE treatment inhibited 3T3-L1 pre-adipocyte differentiation and fat accumulation, and also decreased pancreatic lipase activity. In this experiment, PGE significantly reduced plasma TC and TG concentrations as well as body weight and subcutaneous adipose tissue weight. PGE also significantly decreased the size of subcutaneous adipocytes. Furthermore, it significantly repressed the up-regulation of FABP mRNA expression induced by a high-fat feeding in subcutaneous adipose tissue.CONCLUSION: PGE has a plasma lipid lowering-effect and anti-obesity effect in obese rats fed a high fat diet.From these results, we can suggest the possibility that PGE can be used as a food ingredient or drug component to therapeutically control obesity.

  15. Metronomic Ceramide Analogs Inhibit Angiogenesis in Pancreatic Cancer through Up-regulation of Caveolin-1 and Thrombospondin-1 and Down-regulation of Cyclin D1

    Guido Bocci

    2012-09-01

    Full Text Available AIMS: To evaluate the antitumor and antiangiogenic activity of metronomic ceramide analogs and their relevant molecular mechanisms. METHODS: Human endothelial cells [human dermal microvascular endothelial cells and human umbilical vascular endothelial cell (HUVEC] and pancreatic cancer cells (Capan-1 and MIA PaCa-2 were treated with the ceramide analogs (C2, AL6, C6, and C8, at low concentrations for 144 hours to evaluate any antiproliferative and proapoptotic effects and inhibition of migration and to measure the expression of caveolin-1 (CAV-1 and thrombospondin-1 (TSP-1 mRNAs by real-time reverse transcription-polymerase chain reaction. Assessment of extracellular signal-regulated kinases 1 and 2 (ERK1/2 and Akt phosphorylation and of CAV-1 and cyclin D1 protein expression was performed by ELISA. Maximum tolerated dose (MTD gemcitabine was compared against metronomic doses of the ceramide analogs by evaluating the inhibition of MIA PaCa-2 subcutaneous tumor growth in nude mice. RESULTS: Metronomic ceramide analogs preferentially inhibited cell proliferation and enhanced apoptosis in endothelial cells. Low concentrations of AL6 and C2 caused a significant inhibition of HUVEC migration. ERK1/2 and Akt phosphorylation were significantly decreased after metronomic ceramide analog treatment. Such treatment caused the overexpression of CAV-1 and TSP-1 mRNAs and proteins in endothelial cells, whereas cyclin D1 protein levels were reduced. The antiangiogenic and antitumor impact in vivo of metronomic C2 and AL6 regimens was similar to that caused by MTD gemcitabine. CONCLUSIONS: Metronomic C2 and AL6 analogs have antitumor and antiangiogenic activity, determining the up-regulation of CAV-1 and TSP-1 and the suppression of cyclin D1.

  16. Vitamin K2-enhanced liver regeneration is associated with oval cell expansion and up-regulation of matrilin-2 expression in 2-AAF/PH rat model.

    Lin, M; Sun, P; Zhang, G; Xu, X; Liu, G; Miao, H; Yang, Y; Xu, H; Zhang, L; Wu, P; Li, M

    2014-03-01

    Normal liver has a great potential of regenerative capacity after partial hepatectomy. In clinic, however, most patients receiving partial hepatectomy are usually suffering from chronic liver diseases with severely damaged hepatocyte population. Under these conditions, activation of hepatic progenitor cell (oval cell in rodents) population might be considered as an alternative mean to enhance liver functional recovery. Vitamin K2 has been shown to promote liver functional recovery in patients with liver cirrhosis. In this study, we explored the possibility of vitamin K2 treatment in activating hepatic oval cell for liver regeneration with the classic 2-acetamido-fluorene/partial hepatectomy (2-AAF/PH) model in Sprague-Dawley rats. In 2-AAF/PH animals, vitamin K2 treatment induced a dose-dependent increase of liver regeneration as assessed by the weight ratio of remnant liver versus whole body and by measuring serum albumin level. In parallel, a drastic expansion of oval cell population as assessed by anti-OV6 and anti-CK19 immunostaining was noticed in the periportal zone of the remnant liver. Since matrilin-2 was linked to oval cell proliferation and liver regeneration after partial hepatectomy, we assessed its expression at both the mRNA and protein levels. The results revealed a significant increase after vitamin K2 treatment in parallel with the expansion of oval cell population. Consistently, knocking down matrilin-2 expression in vivo largely reduced vitamin K2-induced liver regeneration and oval cell proliferation in 2-AAF/PH animals. In conclusion, these data suggest that vitamin K2 treatment enhances liver regeneration after partial hepatectomy, which is associated with oval cell expansion and matrilin-2 up-regulation.

  17. Meditation leads to reduced default mode network activity beyond an active task.

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.

  18. Up-regulated expression of AOS-LOXa and increased eicosanoid synthesis in response to coral wounding.

    Helike Lõhelaid

    Full Text Available In octocorals, a catalase-like allene oxide synthase (AOS and an 8R-lipoxygenase (LOX gene are fused together encoding for a single AOS-LOX fusion protein. Although the AOS-LOX pathway is central to the arachidonate metabolism in corals, its biological function in coral homeostasis is unclear. Using an acute incision wound model in the soft coral Capnella imbricata, we here test whether LOX pathway, similar to its role in plants, can contribute to the coral damage response and regeneration. Analysis of metabolites formed from exogenous arachidonate before and after fixed time intervals following wounding indicated a significant increase in AOS-LOX activity in response to mechanical injury. Two AOS-LOX isoforms, AOS-LOXa and AOS-LOXb, were cloned and expressed in bacterial expression system as active fusion proteins. Transcription levels of corresponding genes were measured in normal and stressed coral by qPCR. After wounding, AOS-LOXa was markedly up-regulated in both, the tissue adjacent to the incision and distal parts of a coral colony (with the maximum reached at 1 h and 6 h post wounding, respectively, while AOS-LOXb was stable. According to mRNA expression analysis, combined with detection of eicosanoid product formation for the first time, the AOS-LOX was identified as an early stress response gene which is induced by mechanical injury in coral.

  19. Hemokinin-1(4-11-induced analgesia selectively up-regulates δ-opioid receptor expression in mice.

    Cai-Yun Fu

    Full Text Available Our previous studies have shown that an active fragment of human tachykinins (hHK-1(4-11 produced an opioid-independent analgesia after intracerebroventricular (i.c.v. injection in mice, which has been markedly enhanced by a δ OR antagonist, naltrindole hydrochloride (NTI. In this study, we have further characterized the in vivo analgesia after i.c.v. injection of hHK-1(4-11 in mouse model. Our qRT-PCR results showed that the mRNA levels of several ligands and receptors (e.g. PPT-A, PPT-C, KOR, PDYN and PENK have not changed significantly. Furthermore, neither transcription nor expression of NK1 receptor, MOR and POMC have changed noticeably. In contrast, both mRNA and protein levels of DOR have been up-regulated significantly, indicating that the enhanced expression of δ opioid receptor negatively modulates the analgesia induced by i.c.v. injection of hHK-1(4-11. Additionally, the combinatorial data from our previous and present experiments strongly suggest that the discriminable distribution sites in the central nervous system between hHK-1(4-11 and r/mHK-1 may be attributed to their discriminable analgesic effects. Altogether, our findings will not only contribute to the understanding of the complicated mechanisms regarding the nociceptive modulation of hemokinin-1 as well as its active fragments at supraspinal level, but may also lead to novel pharmacological interventions.

  20. HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation.

    González-Ramos, Marta; Calleros, Laura; López-Ongil, Susana; Raoch, Viviana; Griera, Mercedes; Rodríguez-Puyol, Manuel; de Frutos, Sergio; Rodríguez-Puyol, Diego

    2013-02-01

    The circulating levels of heat shock proteins (HSP) are increased in cardiovascular diseases; however, the implication of this for the fibrotic process typical of such diseases remains unclear. HSP70 can interact with the vascular smooth muscle cells (SMC), the major producer of extracellular matrix (ECM) proteins, through the Toll-like receptors 4 (TLR4). The transforming growth factor type-β1 (TGF-β1) is a well known vascular pro-fibrotic cytokine that is regulated in part by AP-1-dependent transcriptional mechanisms. We hypothesized that extracellular HSP70 could interact with SMCs, inducing TGF-β1 synthesis and subsequent changes in the vascular ECM. We demonstrate that extracellular HSP70 binds to human aorta SMC TLR4, which up-regulates the AP-1-dependent transcriptional activity of the TGF-β1 promoter. This is achieved through the mitogen activated protein kinases JNK and ERK, as demonstrated by the use of specific blockers and the knockdown of TLR4 with specific small interfering RNAs. The TGF-β1 upregulation increase the expression of the ECM proteins type I collagen and fibronectin. This novel observation may elucidate the mechanisms by which HSP70 contributes in the inflammation and fibrosis present in atherosclerosis and other fibrosis-related diseases.

  1. Lipoxin A4 induces apoptosis of renal interstitial fibroblasts via calcium-dependent up-regulation of calpain 10 and Smac expressions

    Shenghua Wu; Chao Lu; Ling Dong; Guoping Zhou; Ziqing Chen

    2005-01-01

    Objective: To examine whether lipoxin A4 (LXA4) induces apoptosis of renal interstitial fibroblasts and explore the mechanisms of signal pathway of LXA4. Methods: Rat renal interstitial fibroblasts (NRK-49F cells) were exposed to LXA4 at different concentrations. Prior to the experiment, the cells were transfected with Smac or calpain 10 antisense oligodeoxynucleotide (ODN), or treated with calcium channel inhibitor SK&F96365. Apoptosis of cells was recognized by double staining using acridine orange and ethidium bromide, observed in laser scanning confocal microscope, and counted by a flow cytometer. Caspase-3 activities were measured by colorimetric assay. The levels of free cytosolic calcium ([Ca2+ ]i) were analyzed in fura-2-loaded cells by laser scanning confocal microscopy. Expression of calpain 10 mRNA was determined by RT-PCR. Expressions of Smac protein and threonine phosphorylated Akt1 proteins at 308 site were determined by a Western blotting analysis. Activity of signal transducers and activators of transcription-3 (STAT3) was determined by electrophoretic mobility shift assay. Results: LXA4 at the concentrations of 0.1 and 1μmol/L induced 9.83% and 33.82% apoptosis of NRK-49F cells respectively, reduced at S and G2-M phase and increased the cells at G0-G1 phase in a dose-dependent manner. Treatment of the cells with LXA4 increased the expressions of calpain 10 and Smac, the levels of [Ca2+ ]i and activity of caspase-3. It also down-regulated the DNA-binding activity of STAT3 and expression of threonine phosphorylated Akt1. Transfection of the cells with calpain 10 antisense ODN inhibited the LXA4-induced apoptosis, activity of caspase-3 and expression of calpain 10, and ameliorated the decreased activity of STAT3. Transfection of the cells with Smac antisense ODN inhibited the LXA4-induced apoptosis, activity of caspase-3 and expression of Smac. Pretreatment of the cells with SK & F96365 inhibited the LXA4-induced apoptosis, levels of [Ca2+ ]i

  2. Human ApoD, an apolipoprotein up-regulated in neurodegenerative diseases, extends lifespan and increases stress resistance in Drosophila.

    Muffat, Julien; Walker, David W; Benzer, Seymour

    2008-05-13

    Apolipoprotein D (ApoD) expression increases in several neurological disorders and in spinal cord injury. We provide a report of a physiological role for human ApoD (hApoD): Flies overexpressing hApoD are long-lived and protected against stress conditions associated with aging and neurodegeneration, including hyperoxia, dietary paraquat, and heat stress. We show that the fly ortholog, Glial Lazarillo, is strongly up-regulated in response to these extrinsic stresses and also can protect in vitro-cultured cells in situations modeling Alzheimer's disease (AD) and Parkinson's disease (PD). In adult flies, hApoD overexpression reduces age-associated lipid peroxide accumulation, suggesting a proximal mechanism of action. Similar data obtained in the mouse [Ganfornina, M.D., et al., (2008) Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell 10.1111/j.1474-9726.2008.00395.] as well as in plants (Charron et al., personal communication) suggest that ApoD and its orthologs play an evolutionarily conserved role in response to stress, possibly managing or preventing lipid peroxidation.

  3. Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids.

    Zhang, Kun; Liu, Yu; Liu, Xiaoqiang; Chen, Jie; Cai, Qingqing; Wang, Jingfeng; Huang, Hui

    2015-09-22

    Cardiac remodeling is one of the most common cardiac abnormalities and associated with a high mortality in chronic renal failure (CRF) patients. Apocynin, a nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor, has been showed cardio-protective effects. However, whether apocynin can improve cardiac remodeling in CRF and what is the underlying mechanism are unclear. In the present study, we enrolled 94 participants. In addition, we used 5/6 nephrectomized rats to mimic cardiac remodeling in CRF. Serum levels of epoxyeicosatrienoic acids (EETs) and its mainly metabolic enzyme-soluble epoxide hydrolase (sEH) were measured. The results showed that the serum levels of EETs were significantly decreased in renocardiac syndrome participants (P < 0.05). In 5/6 nephrectomized CRF model, the ratio of left ventricular weight / body weight, left ventricular posterior wall thickness, and cardiac interstitial fibrosis were significantly increased while ejection fraction significantly decreased (P < 0.05). All these effects could partly be reversed by apocynin. Meanwhile, we found during the process of cardiac remodeling in CRF, apocynin significantly increased the reduced serum levels of EETs and decreased the mRNA and protein expressions of sEH in the heart (P < 0.05). Our findings indicated that the protective effect of apocynin on cardiac remodeling in CRF was associated with the up-regulation of EETs. EETs may be a new mediator for the injury of kidney-heart interactions.

  4. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine.

    Wang, Xuanbin; Wang, Ning; Li, Hongliang; Liu, Ming; Cao, Fengjun; Yu, Xianjun; Zhang, Jingxuan; Tan, Yan; Xiang, Longchao; Feng, Yibin

    2016-04-16

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death and its prognosis remains poor due to the high risk of tumor recurrence and metastasis. Berberine (BBR) is a natural compound derived from some medicinal plants, and accumulating evidence has shown its potent anti-tumor activity with diverse action on tumor cells, including inducing cancer cell death and blocking cell cycle and migration. Molecular targets of berberine involved in its inhibitory effect on the invasiveness remains not yet clear. In this study, we identified that berberine exhibits a potent inhibition on the invasion and migration of HCC cells. This was accompanied by a dose-dependent down-regulation of expression of Cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9 in berberine-treated HCC cells. Furthermore, berberine inactivated p38 and Erk1/2 signaling pathway in HCC cells. Primarily, this may be attributed to the up-regulation of plasminogen activator inhibitor-1 (PAI-1), a tumor suppressor that can antagonize uPA receptor and down-regulation of uPA. Blockade of uPA receptor-associated pathways leads to reduced invasiveness and motility of berberine-treated HCC cells. In conclusion, our findings identified for the first time that inactivation of uPA receptor by up-regulation of PAI-1 and down-regulation of uPA is involved in the inhibitory effect of berberine on HCC cell invasion and migration.

  5. Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate-glutathione cycle: Possible involvement of nitric oxide.

    Singh, Vijay Pratap; Singh, Samiksha; Kumar, Jitendra; Prasad, Sheo Mohan

    2015-06-01

    In plants, hydrogen sulfide (H2S) is an emerging novel signaling molecule that is involved in growth regulation and abiotic stress responses. However, little is known about its role in the regulation of arsenate (As(V)) toxicity. Therefore, hydroponic experiments were conducted to investigate whether sodium hydrosulfide (NaHS; a source of H2S) is involved in the regulation of As(V) toxicity in pea seedlings. Results showed that As(V) caused decreases in growth, photosynthesis (measured as chlorophyll fluorescence) and nitrogen content, which was accompanied by the accumulation of As. As(V) treatment also reduced the activities of cysteine desulfhydrase and nitrate reductase, and contents of H2S and nitric oxide (NO). However, addition of NaHS ameliorated As(V) toxicity in pea seedlings, which coincided with the increased contents of H2S and NO. The cysteine level was higher under As(V) treatment in comparison to all other treatments (As-free; NaHS; As(V)+NaHS). The content of reactive oxygen species (ROS) and damage to lipids, proteins and membranes increased by As(V) while NaHS alleviated these effects. Enzymes of the ascorbate-glutathione cycle (AsA-GSH cycle) showed inhibition of their activities following As(V) treatment while their activities were increased by application of NaHS. The redox status of ascorbate and glutathione was disturbed by As(V) as indicated by a steep decline in their reduced/oxidized ratios. However, simultaneous NaHS application restored the redox status of the ascorbate and glutathione pools. The results of this study demonstrated that H2S and NO might both be involved in reducing the accumulation of As and triggering up-regulation of the AsA-GSH cycle to counterbalance ROS-mediated damage to macromolecules. Furthermore, the results suggest a crucial role of H2S in plant priming, and in particular for pea seedlings in mitigating As(V) stress.

  6. High-frequency TRNS reduces BOLD activity during visuomotor learning.

    Catarina Saiote

    Full Text Available Transcranial direct current stimulation (tDCS and transcranial random noise stimulation (tRNS consist in the application of electrical current of small intensity through the scalp, able to modulate perceptual and motor learning, probably by changing brain excitability. We investigated the effects of these transcranial electrical stimulation techniques in the early and later stages of visuomotor learning, as well as associated brain activity changes using functional magnetic resonance imaging (fMRI. We applied anodal and cathodal tDCS, low-frequency and high-frequency tRNS (lf-tRNS, 0.1-100 Hz; hf-tRNS 101-640 Hz, respectively and sham stimulation over the primary motor cortex (M1 during the first 10 minutes of a visuomotor learning paradigm and measured performance changes for 20 minutes after stimulation ceased. Functional imaging scans were acquired throughout the whole experiment. Cathodal tDCS and hf-tRNS showed a tendency to improve and lf-tRNS to hinder early learning during stimulation, an effect that remained for 20 minutes after cessation of stimulation in the late learning phase. Motor learning-related activity decreased in several regions as reported previously, however, there was no significant modulation of brain activity by tDCS. In opposition to this, hf-tRNS was associated with reduced motor task-related-activity bilaterally in the frontal cortex and precuneous, probably due to interaction with ongoing neuronal oscillations. This result highlights the potential of lf-tRNS and hf-tRNS to differentially modulate visuomotor learning and advances our knowledge on neuroplasticity induction approaches combined with functional imaging methods.

  7. PTX3 is up-regulated in epithelial mammary cells during S. aureus intramammary infection in goat

    Joel Fernando Soares Filipe

    2015-07-01

    Full Text Available Pentraxins are a superfamily of conserved molecules with immune functions such as complement activation and opsonization. PTX3 is the prototypic long pentraxin and is produced by different cell populations after pro-inflammatory stimuli. Different studies have demonstrated the up-regulation of PTX3 during ruminant mastitis, but its role is still unknown.The aim of this study was to elucidate the role of PTX3 in the immune response to S. aureus intra-mammary infection (IMI. Given that no data are available on PTX3 expression in goat tissues, we first studied its pattern of expression  in goat normal tissues. Then we investigated the role of PTX3 during mammary infection, comparing its expression in healthy and infected blood, milk and tissues.Six healthy goats were infused with PBS in the right udder and with S. aureus in the left udder. Mammary biopsies from udders were collected 30h post infection, formalin fixed and routinely processed for microscopic evaluation or immediately stored in RNAlater.Tissue samples were collected at the slaughterhouse from healthy goats and were immediately stored in RNAlater.Blood and milk were collected from healthy and infected goats; cells from blood and milk were isolated and processed for RNA extraction or for cytospins; milk fat globules were obtained through milk centrifugation and immediately processed for RNA extraction.Total RNA from different organs, blood or milk cells, milk fat globules and mammary tissues was extracted and used as template in qPCR for PTX3.PTX3 expression was investigated by immunohistochemistry on formalin fixed paraffin embedded mammary tissue samples and on cytospins of isolated goat blood and milk cells.PTX3 mRNA was expressed with very high levels in bone marrow, mammary gland, aorta, pancreas, skin and lung. Given the high expression in the mammary gland, we investigated which cell population expressed PTX3. PTX3 was mainly expressed in the apical cytoplasmic portion of

  8. PPARd activation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference

    Feng, Y.; Nikolic, N.; Bakke, S.S.; Kersten, A.H.; Boekschoten, M.V.

    2014-01-01

    The role of peroxisome proliferator-activated receptor d (PPARd) activation on global gene expression and mitochondrial fuel utilization were investigated in human myotubes. Only 21 genes were up-regulated and 3 genes were down-regulated after activation by the PPARd agonist GW501516. Pathway analys

  9. Activated Sludge Ozonation to Reduce Sludge Production in MBR

    HE Sheng-bing; XUE Gang; WANG Bao-zhen

    2005-01-01

    The total experimental period was divided into two stages.At the first stage, a series of batch studies were carried out to get an understanding of the effect of ozonation on sludge properties. At the following stages, three MBRs with different amounts of activated sludge to be ozonated were run in parallel for a long period to evaluate the influence of sludge ozonation on sludge yield and permeate quality.Through batch study, it was found that ozone could disrupt the cell walls and caused the release of plasm from the cells,then the amounts of soluble organics in the solution increased with ozonation time. With the rise of soluble organics, the amount of soluble organics to be mineralized increased as well, which wonld reduce the soluble organics content. For the counteraction between these two aspects, a pseudo-balance could be achieved, and soluble organics would vary in a limited range. Sludge ozonation also increased the contents of nitrogen and phosphorus in the solution. In addition, ozonation was effective in improving sludge settling property. On the basis of batch study, a suitable ozone dosage of 0.16 kgO3/kgMLSS wasdetermined. Three systems were run in parallel for a total period of 39 days, it was demonstrated that a part of activated sludge ozonation could reduce sludge production significantly, and biological performance of mineralization and nitrification would not be inhibited due to sludge ozonation. Experimental results proved that the combination of ozonation unit with MBR unit could achieve an excellent quality of permeate as well as a small quantity of sludge production, and economic analysis indicated that an additional ozonation operating cost for treatment of both wastewater and sludge was only 0.096Yuan (US $0.011,5)/m3 wastewater.

  10. Baicalein reduces the invasion of glioma cells via reducing the activity of p38 signaling pathway.

    Zhenni Zhang

    Full Text Available Baicalein, one of the major flavonids in Scutellaria baicalensis, has historically been used in anti-inflammatory and anti-cancer therapies. However, the anti-metastatic effect and related mechanism(s in glioma are still unclear. In this study, we thus utilized glioma cell lines U87MG and U251MG to explore the effect of baicalein. We found that administration of baicalein significantly inhibited migration and invasion of glioma cells. In addition, after treating with baicalein for 24 h, there was a decrease in the levels of matrix metalloproteinase-2 (MMP-2 and MMP-9 expression as well as proteinase activity in glioma cells. Conversely, the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1 and TIMP-2 was increased in a dose-dependent manner. Moreover, baicalein treatment significantly decreased the phosphorylated level of p38, but not ERK1/2, JNK1/2 and PI3K/Akt. Combined treatment with a p38 inhibitor (SB203580 and baicalein resulted in the synergistic reduction of MMP-2 and MMP-9 expression and then increase of TIMP-1 and TIMP-2 expression; and the invasive capabilities of U87MG cells were also inhibited. However, p38 chemical activator (anisomycin could block these effects produced by baicalein, suggesting baicalein directly downregulate the p38 signaling pathway. In conclusion, baicalein inhibits glioma cells invasion and metastasis by reducing cell motility and migration via suppression of p38 signaling pathway, suggesting that baicalein is a potential therapeutic agent for glioma.

  11. A high-fat diet rich in corn oil reduces spontaneous locomotor activity and induces insulin resistance in mice.

    Wong, Chi Kin; Botta, Amy; Pither, Jason; Dai, Chuanbin; Gibson, William T; Ghosh, Sanjoy

    2015-04-01

    Over the last few decades, polyunsaturated fatty acid (PUFA), especially n-6 PUFA, and monounsaturated fatty acid content in 'Western diets' has increased manyfold. Such a dietary shift also parallels rising sedentary behavior and diabetes in the Western world. We queried if a shift in dietary fats could be linked to physical inactivity and insulin insensitivity in mice. Eight-week old female C57/Bl6 mice were fed either high-fat (HF) diets [40% energy corn oil (CO) or isocaloric olive oil (OO) diets] or chow (n=10/group) for 6 weeks, followed by estimation of spontaneous locomotor activity, body composition and in vivo metabolic outcomes. Although lean mass and resting energy expenditure stayed similar in both OO- and CO-fed mice, only CO-fed mice demonstrated reduced spontaneous locomotor activity. Such depressed activity in CO-fed mice was accompanied by a lower respiratory ratio, hyperinsulinemia and impaired glucose disposal following intraperitoneal glucose tolerance and insulin tolerance tests compared to OO-fed mice. Unlike the liver, where both HF diets increased expression of fat oxidation genes like PPARs, the skeletal muscle of CO-fed mice failed to up-regulate such genes, thereby supporting the metabolic insufficiencies observed in these mice. In summary, this study demonstrates a specific contribution of n-6 PUFA-rich oils like CO to the loss of spontaneous physical activity and insulin sensitivity in mice. If these data hold true for humans, this study could provide a novel link between recent increases in dietary n-6 PUFA to sedentary behavior and the development of insulin resistance in the Western world.

  12. ADAM9 up-regulates N-cadherin via miR-218 suppression in lung adenocarcinoma cells.

    Yuh-Pyng Sher

    Full Text Available Lung cancer is the leading cause of cancer death worldwide, and brain metastasis is a major cause of morbidity and mortality in lung cancer. CDH2 (N-cadherin, a mesenchymal marker of the epithelial-mesenchymal transition and ADAM9 (a type I transmembrane protein are related to lung cancer brain metastasis; however, it is unclear how they interact to mediate this metastasis. Because microRNAs regulate many biological functions and disease processes (e.g., cancer by down-regulating their target genes, microRNA microarrays were used to identify ADAM9-regulated miRNAs that target CDH2 in aggressive lung cancer cells. Luciferase assays and western blot analysis showed that CDH2 is a target gene of miR-218. MiR-218 was generated from pri-mir-218-1, which is located in SLIT2, in non-invasive lung adenocarcinoma cells, whereas its expression was inhibited in aggressive lung adenocarcinoma. The down-regulation of ADAM9 up-regulated SLIT2 and miR-218, thus down-regulating CDH2 expression. This study revealed that ADAM9 activates CDH2 through the release of miR-218 inhibition on CDH2 in lung adenocarcinoma.

  13. Endurance exercise and conjugated linoleic acid (CLA) supplementation up-regulate CYP17A1 and stimulate testosterone biosynthesis.

    Barone, Rosario; Macaluso, Filippo; Catanese, Patrizia; Marino Gammazza, Antonella; Rizzuto, Luigi; Marozzi, Paola; Lo Giudice, Giuseppe; Stampone, Tomaso; Cappello, Francesco; Morici, Giuseppe; Zummo, Giovanni; Farina, Felicia; Di Felice, Valentina

    2013-01-01

    A new role for fat supplements, in particular conjugated linoleic acid (CLA), has been delineated in steroidogenesis, although the underlying molecular mechanisms have not yet been elucidated. The aims of the present study were to identify the pathway stimulated by CLA supplementation using a cell culture model and to determine whether this same pathway is also stimulated in vivo by CLA supplementation associated with exercise. In vitro, Leydig tumour rat cells (R2C) supplemented with different concentrations of CLA exhibited increasing testosterone biosynthesis accompanied by increasing levels of CYP17A1 mRNA and protein. In vivo, trained mice showed an increase in free plasma testosterone and an up-regulation of CYP17A1 mRNA and protein. The effect of training on CYP17A1 expression and testosterone biosynthesis was significantly higher in the trained mice supplemented with CLA compared to the placebo. The results of the present study demonstrated that CLA stimulates testosterone biosynthesis via CYP17A1, and endurance training led to the synthesis of testosterone in vivo by inducing the overexpression of CYP17A1 mRNA and protein in the Leydig cells of the testis. This effect was enhanced by CLA supplementation. Therefore, CLA-associated physical activity may be used for its steroidogenic property in different fields, such as alimentary industry, human reproductive medicine, sport science, and anti-muscle wasting.

  14. Endurance exercise and conjugated linoleic acid (CLA supplementation up-regulate CYP17A1 and stimulate testosterone biosynthesis.

    Rosario Barone

    Full Text Available A new role for fat supplements, in particular conjugated linoleic acid (CLA, has been delineated in steroidogenesis, although the underlying molecular mechanisms have not yet been elucidated. The aims of the present study were to identify the pathway stimulated by CLA supplementation using a cell culture model and to determine whether this same pathway is also stimulated in vivo by CLA supplementation associated with exercise. In vitro, Leydig tumour rat cells (R2C supplemented with different concentrations of CLA exhibited increasing testosterone biosynthesis accompanied by increasing levels of CYP17A1 mRNA and protein. In vivo, trained mice showed an increase in free plasma testosterone and an up-regulation of CYP17A1 mRNA and protein. The effect of training on CYP17A1 expression and testosterone biosynthesis was significantly higher in the trained mice supplemented with CLA compared to the placebo. The results of the present study demonstrated that CLA stimulates testosterone biosynthesis via CYP17A1, and endurance training led to the synthesis of testosterone in vivo by inducing the overexpression of CYP17A1 mRNA and protein in the Leydig cells of the testis. This effect was enhanced by CLA supplementation. Therefore, CLA-associated physical activity may be used for its steroidogenic property in different fields, such as alimentary industry, human reproductive medicine, sport science, and anti-muscle wasting.

  15. Zirconium ions up-regulate the BMP/SMAD signaling pathway and promote the proliferation and differentiation of human osteoblasts.

    Yongjuan Chen

    Full Text Available Zirconium (Zr is an element commonly used in dental and orthopedic implants either as zirconia (ZrO2 or in metal alloys. It can also be incorporated into calcium silicate-based ceramics. However, the effects of in vitro culture of human osteoblasts (HOBs with soluble ionic forms of Zr have not been determined. In this study, primary culture of human osteoblasts was conducted in the presence of medium containing either ZrCl4 or Zirconium (IV oxynitrate (ZrO(NO32 at concentrations of 0, 5, 50 and 500 µM, and osteoblast proliferation, differentiation and calcium deposition were assessed. Incubation of human osteoblast cultures with Zr ions increased the proliferation of human osteoblasts and also gene expression of genetic markers of osteoblast differentiation. In 21 and 28 day cultures, Zr ions at concentrations of 50 and 500 µM increased the deposition of calcium phosphate. In addition, the gene expression of BMP2 and BMP receptors was increased in response to culture with Zr ions and this was associated with increased phosphorylation of SMAD1/5. Moreover, Noggin suppressed osteogenic gene expression in HOBs co-treated with Zr ions. In conclusion, Zr ions appear able to induce both the proliferation and the differentiation of primary human osteoblasts. This is associated with up-regulation of BMP2 expression and activation of BMP signaling suggesting this action is, at least in part, mediated by BMP signaling.

  16. Zirconium ions up-regulate the BMP/SMAD signaling pathway and promote the proliferation and differentiation of human osteoblasts.

    Chen, Yongjuan; Roohani-Esfahani, Seyed-Iman; Lu, ZuFu; Zreiqat, Hala; Dunstan, Colin R

    2015-01-01

    Zirconium (Zr) is an element commonly used in dental and orthopedic implants either as zirconia (ZrO2) or in metal alloys. It can also be incorporated into calcium silicate-based ceramics. However, the effects of in vitro culture of human osteoblasts (HOBs) with soluble ionic forms of Zr have not been determined. In this study, primary culture of human osteoblasts was conducted in the presence of medium containing either ZrCl4 or Zirconium (IV) oxynitrate (ZrO(NO3)2) at concentrations of 0, 5, 50 and 500 µM, and osteoblast proliferation, differentiation and calcium deposition were assessed. Incubation of human osteoblast cultures with Zr ions increased the proliferation of human osteoblasts and also gene expression of genetic markers of osteoblast differentiation. In 21 and 28 day cultures, Zr ions at concentrations of 50 and 500 µM increased the deposition of calcium phosphate. In addition, the gene expression of BMP2 and BMP receptors was increased in response to culture with Zr ions and this was associated with increased phosphorylation of SMAD1/5. Moreover, Noggin suppressed osteogenic gene expression in HOBs co-treated with Zr ions. In conclusion, Zr ions appear able to induce both the proliferation and the differentiation of primary human osteoblasts. This is associated with up-regulation of BMP2 expression and activation of BMP signaling suggesting this action is, at least in part, mediated by BMP signaling.

  17. Cinnamon and its Components Suppress Vascular Smooth Muscle Cell Proliferation by Up-Regulating Cyclin-Dependent Kinase Inhibitors.

    Kwon, Hyeeun; Lee, Jung-Jin; Lee, Ji-Hye; Cho, Won-Kyung; Gu, Min Jung; Lee, Kwang Jin; Ma, Jin Yeul

    2015-01-01

    Cinnamomum cassia bark has been used in traditional herbal medicine to treat a variety of cardiovascular diseases. However, the antiproliferative effect of cinnamon extract on vascular smooth muscle cells (VSMCs) and the corresponding restenosis has not been explored. Hence, after examining the effect of cinnamon extract on VSMC proliferation, we investigated the possible involvement of signal transduction pathways associated with early signal and cell cycle analysis, including regulatory proteins. Besides, to identify the active components, we investigated the components of cinnamon extract on VSMC proliferation. Cinnamon extract inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation and suppressed the PDGF-stimulated early signal transduction. In addition, cinnamon extract arrested the cell cycle and inhibited positive regulatory proteins. Correspondingly, the protein levels of p21 and p27 not only were increased in the presence of cinnamon extract, also the expression of proliferating cell nuclear antigen (PCNA) was inhibited by cinnamon extract. Besides, among the components of cinnamon extract, cinnamic acid (CA), eugenol (EG) and cinnamyl alcohol significantly inhibited the VSMC proliferation. Overall, the present study demonstrates that cinnamon extract inhibited the PDGF-BB-induced proliferation of VSMCs through a G0/G1 arrest, which down-regulated the expression of cell cycle positive regulatory proteins by up-regulating p21 and p27 expression.

  18. Azelastine hydrochloride (Azeptin) inhibits peplomycin (PLM)-induced pulmonary fibrosis by contradicting the up-regulation of signal transduction.

    Yoneda, K; Yamamoto, T; Ueta, E; Osaki, T

    1997-10-01

    Inhibition of peplomycin (PLM)-induced pulmonary fibrosis by azelastine hydrochloride (Azeptin) was examined using ICR mice, and the effects of both drugs on signal transduction were investigated. Microscopically, Azeptin (a total of 56 mg/kg for 28 days) suppressed pulmonary fibrosis in mice which received an i.p. injection of a total of 60 or 75 mg/kg PLM. In parallel with the microscopic findings, smaller amounts of collagen were synthesized in the lungs of Azeptin-injected mice. PLM enhanced the expression of interleukin-1 beta- and transforming growth factor-beta-mRNA in lungs. In contrast, Azeptin suppressed the expression. Compatible with these in vivo results, Azeptin and PLM contradictively regulated protein tyrosine phosphorylation and c-myc mRNA expression in human gingival and mouse pulmonary fibroblasts. In addition, NF-kappa B was activated by fibroblast treatment with 5 micrograms/ml PLM for 1 h, but intranuclear NF-kappa B was decreased by cell treatment with 10(-5) M Azeptin. From these results, it is concluded that Azeptin inhibits PLM-induced pulmonary fibrosis by antagonizing the up-regulation of signal transduction.

  19. Up-regulation of Na + expression in the area postrema of total sleep deprived rats by TOF-SIMS analysis

    Mai, Fu-Der; Chen, Bo-Jung; Ling, Yong-Chien; Wu, Un-In; Huang, Yi-Lun; Chang, Hung-Ming

    2008-12-01

    Area postrema (AP) is a circumventricular organ plays an important role in sodium homeostasis and cardiovascular regulation. Since sleep deficiency will cause cardiovascular dysfunction, the present study aims to determine whether sodium level would significantly alter in AP following total sleep deprivation (TSD). Sodium level was investigated in vivo by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Clinical manifestation of cardiovascular function was demonstrated by mean arterial pressure (MAP) values. Results indicated that in normal rats, TOF-SIMS spectrum revealed a major peak of sodium ion counting as 5.61 × 10 5 at m/ z 23. The sodium ions were homogeneous distributed in AP without specific localization. However, following TSD, the sodium intensity was relatively increased (6.73 × 10 5) and the signal for sodium image was strongly expressed throughout AP with definite spatial distribution. MAP of TSD rats is 138 ± 5 mmHg, which is significantly higher than that of normal ones (121 ± 3 mmHg). Regarding AP is an important area for sodium sensation and development of hypernatremic related sympatho-excitation; up-regulation of sodium expression following TSD suggests that high sodium level might over-activate AP, through complex neuronal networks involving in sympathetic regulation, which could lead to the formation of TSD relevant cardiovascular diseases.

  20. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases.

    Hagemann, Thorsten; Robinson, Stephen C; Schulz, Matthias; Trümper, Lorenz; Balkwill, Frances R; Binder, Claudia

    2004-08-01

    Apart from the neoplastic cells, malignant tumours consist of the extracellular matrix (ECM) and normal cells, in particular tumour-associated macrophages (TAM). To understand the mechanisms by which TAM can influence tumour cell invasion we co-cultured the human breast cancer cell lines MCF-7, SK-BR-3 and the benign mammary epithelial cell line hTERT-HME1 with macrophages. Co-incubation enhanced invasiveness of the tumour cells, while hTERT-HME1 remained non-invasive. Addition of the broad-spectrum matrix metalloprotease (MMP)-inhibitor FN 439, neutralizing MMP-9 or tumour necrosis factor-alpha (TNF-alpha) antibodies reduced invasiveness to basal levels. As shown by zymography, all cell lines produced low amounts of MMP-2, -3, -7 and -9 under control conditions. Basal MMP production by macrophages was significantly higher. Upon co-incubation, supernatant levels of MMPs -2, -3, -7 and -9 increased significantly, paralleled by an increase of MMP-2 activation. MMP-2 and -9 induction could be blocked by TNF-alpha antibodies. Co-culture of macrophages and hTERT-HME1 did not lead to MMP induction. In the co-cultures, mRNAs for MMPs and TNF-alpha were significantly up-regulated in macrophages, while the mRNA concentrations in the tumour cells remained unchanged. In summary, we have found that co-cultivation of tumour cells with macrophages leads to enhanced invasiveness of the malignant cells due to TNF-alpha dependent MMP induction in the macrophages.

  1. Protective Role of Ca Against NaCl Toxicity in Jerusalem Artichoke by Up-Regulation of Antioxidant Enzymes

    XUE Yan-Feng; LIU Ling; LIU Zhao-Pu; S. K.MEHTA; ZHAO Geng-Mao

    2008-01-01

    The ameliorative effect of external Ca2+ on Jerusalem artichoke (Helianthus tuberosus L.) under salt stress was studied through biochemical and physiological analyses of Jerusalem artichoke seedlings treated with or without 10 mol L-1 CaCl2, 150 mmol L-1 NaCl, and/or 5 mmol L-1 ethylene-bis(oxyethylenenitrilo)-tetraacetic acid (EGTA) for five days. Exposure to NaCl (150 mmol L-1) decreased growth, leaf chlorophyll content, and photosynthetic rate of Jerusalem artichoke seedlings. NaCl treatment showed 59% and 37% higher lipid peroxidation and electrolyte leakage, respectively, than the control. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were decreased by NaCl, indicating an impeded antioxidant defense mechanism of Jerusalem artichoke grown under salt stress. Addition of 10 mmol L-1 CaCl2 to the salt solutions significantly decreased the damaging effect of NaCl on growth and chlorophyll content and simultaneously restored the rate of photosynthesis almost to the level of the control. Ca2+ addition decreased the leaf malondialdehyde (MDA) content and electrolyte leakage from NaCl-treated seedlings by 47% and 24%, respectively, and significantly improved the activities of SOD, POD, and CAT in NaCl-treated plants. Addition of ECTA, a specific chelator of Ca2+, decreased the growth, chlorophyll content, and photosynthesis, and increased level of MDA and electrolyte leakage from NaCl-treated plants and from the control plants. ECTA addition to the growth medium also repressed the activities of SOD, POD, and CAT in NaCl-treated and control seedlings. External Ca2+ might protect Jerusalem artichoke against NaCl stress by up-regulating the activities of antioxidant enzymes and thereby decreasing the oxidative stress.

  2. The antidiabetic drug ciglitazone induces high grade bladder cancer cells apoptosis through the up-regulation of TRAIL.

    Marie-Laure Plissonnier

    Full Text Available BACKGROUND: Ciglitazone belongs to the thiazolidinediones class of antidiabetic drug family and is a high-affinity ligand for the Peroxisome Proliferator-Activated Receptor γ (PPARγ. Apart from its antidiabetic activity, this molecule shows antineoplastic effectiveness in numerous cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Using RT4 (derived from a well differentiated grade I papillary tumor and T24 (derived from an undifferentiated grade III carcinoma bladder cancer cells, we investigated the potential of ciglitazone to induce apoptotic cell death and characterized the molecular mechanisms involved. In RT4 cells, the drug induced G2/M cell cycle arrest characterized by an overexpression of p53, p21(waf1/CIP1 and p27(Kip1 in concomitance with a decrease of cyclin B1. On the contrary, in T24 cells, it triggered apoptosis via extrinsic and intrinsic pathways. Cell cycle arrest and induction of apoptosis occurred at high concentrations through PPARγ activation-independent pathways. We show that in vivo treatment of nude mice by ciglitazone inhibits high grade bladder cancer xenograft development. We identified a novel mechanism by which ciglitazone kills cancer cells. Ciglitazone up-regulated soluble and membrane-bound TRAIL and let TRAIL-resistant T24 cells to respond to TRAIL through caspase activation, death receptor signalling pathway and Bid cleavage. We provided evidence that TRAIL-induced apoptosis is partially driven by ciglitazone-mediated down-regulation of c-FLIP and survivin protein levels through a proteasome-dependent degradation mechanism. CONCLUSIONS/SIGNIFICANCE: Therefore, ciglitazone could be clinically relevant as chemopreventive or therapeutic agent for the treatment of TRAIL-refractory high grade urothelial cancers.

  3. ERβ-dependent neuroglobin up-regulation impairs 17β-estradiol-induced apoptosis in DLD-1 colon cancer cells upon oxidative stress injury.

    Fiocchetti, Marco; Camilli, Giulia; Acconcia, Filippo; Leone, Stefano; Ascenzi, Paolo; Marino, Maria

    2015-05-01

    Besides other mechanism(s) 17β-estradiol (E2) facilitates neuronal survival by increasing, via estrogen receptor β (ERβ), the levels of neuroglobin (NGB) an anti-apoptotic protein. In contrast, E2 could exert protective effects in cancer cells by activating apoptosis when the ERβ level prevails on that of ERα as in colon cancer cell lines. These apparently contrasting results raise the possibility that E2-induced NGB up-regulation could regulate the ERβ activities shunning this receptor subtype to trigger an apoptotic cascade in neurons but not in non-neuronal cells. Here, human colorectal adenocarcinoma cell line (DLD-1) that only expresses ERβ and HeLa cells transiently transfected with ERβ encoding vector has been used to verify this hypothesis. In addition, neuroblastoma SK-N-BE cells were used as positive control. Surprisingly, E2 also induced NGB up-regulation, in a dose- and time-dependent manner, in DLD-1 cells. The ERβ-mediated activation of p38/MAPK was necessary for this E2 effect. E2 induced NGB re-allocation in mitochondria where, subsequently to an oxidative stress injury (i.e., 100μM H2O2), NGB interacted with cytochrome c preventing its release into the cytosol and the activation of an apoptotic cascade. As a whole, these results demonstrate that E2-induced NGB up-regulation could act as an oxidative stress sensor, which does not oppose to the pro-apoptotic E2 effect in ERβ-containing colon cancer cells unless a rise of oxidative stress occurs. These results support the concept that oxidative stress plays a critical role in E2-induced carcinogenesis and further open an important scenario to develop novel therapeutic strategies that target NGB against E2-related cancers.

  4. Exercise-induced up-regulation of MMP-1 and IL-8 genes in endurance horses

    Silvestrelli Maurizio

    2009-06-01

    Full Text Available Abstract Background The stress response is a critical factor in the training of equine athletes; it is important for performance and for protection of the animal against physio-pathological disorders. In this study, the molecular mechanisms involved in the response to acute and strenuous exercise were investigated using peripheral blood mononuclear cells (PBMCs. Results Quantitative real-time PCR (qRT-PCR was used to detect modifications in transcription levels of the genes for matrix metalloproteinase-1 (MMP-1 and interleukin 8 (IL-8, which were derived from previous genome-wide expression analysis. Significant up-regulation of these two genes was found in 10 horses that had completed a race of 90–120 km in a time-course experimental design. Conclusion These results suggest that MMP-1 and IL-8 are both involved in the exercise-induced stress response, and this represents a starting point from which to understand the adaptive responses to this phenomenon.

  5. Schisandra polysaccharide increased glucose consumption by up-regulating the expression of GLUT-4.

    Jin, Dun; Zhao, Ting; Feng, Wei-Wei; Mao, Guang-Hua; Zou, Ye; Wang, Wei; Li, Qian; Chen, Yao; Wang, Xin-Tong; Yang, Liu-Qing; Wu, Xiang-Yang

    2016-06-01

    In our previous study, a polysaccharide was extracted from Schisandra Chinensis (Trucz.) Baill and found with anti-diabetic effects. The aim of this study was to investigate the anti-diabetic effects of the low weight molecular polysaccharide (SCPP11) purified from crude Schisandra polysaccharide and illustrate the underlying mechanism in buffalo rat liver cells. The insulin resistance model of BRL cells was established by incubating with insulin solution for 24h. The effects of SCPP11 on regulating related protein and mRNA expression in an insulin and AMPK signal pathway were investigated by western blot and RT-PCR analysis. SCPP11 showed no cytotoxicity to BRL cells and could improve the glucose consumption in BRL cells. SCPP11 increased the protein expression of Akt, p-AMPK and GLUT-4 in BRL cells. Moreover, SCPP11 could enhance the mRNA expression levels of IRS-1, PI3K, Akt, GLUT-4, AMPKα and PPAR-γ in BRL cells at the same time. In conclusion, SCPP11 possessed effects in improving glucose consumption by up-regulating the expression of GLUT-4 which might occur via insulin and AMPK signal pathway and could be a potential functional food to prevent and mitigate the insulin resistance condition.

  6. Cloning and characterization of an up-regulated GA 20-oxidase gene in hybrid maize

    Jinkun Du; Yingyin Yao; Zhongfu Ni; Qixin Sun

    2009-01-01

    Previous studies revealed that GA content and metabolism are positively correlated with a faster shoot growth rate of hybrid, and recently, genes participating in both GA biosynthesis and GA response pathways were also found to be differentially expressed between wheat hybrid and its parental inbreds. In this study, an up-regulated GA 20-oxidase gene in a maize hybrid, designated ZmGA20, was cloned. ZmGA20 contains an open reading frame (ORF) encoding 391 amino acid residues. BLASTX searches in GenBank revealed that the ZmGA20 is homologous to the sequences of GA20ox proteins from different species, and analysis also indicated that ZmGA20 had typical features of GA 20-oxidase proteins, including a "LPWKET" sequence. Semi-quantitative RT-PCR analysis showed that ZmGA20 was expressed in different tissues and/or organs. The expression level of ZmGA20 in the hybrid was higher than that in two parents (in roots, leaves, stems and embryo, and ears). The abundance of ZmGA20 transcript was equal to that of the highly expressed parents, which provided molecular evidence for the observed GA content heterosis in maize hybrids.

  7. Up-Regulation of CCR5 and CXCR4 Expression on Human Monocytes by Interferon Gamma

    陆韵; 刘祖强; 陈应华

    2003-01-01

    Chemokine receptors, mainly CCR5 and CXCR4, have been proved to be the important coreceptors in HIV-1 entry.HIV-1 disease progression is, in general, characterized by an initial predominance of CCR5 using macrophage tropic, non-syncytium-inducing (NSI) isolates, switching later to CXCR4 using T-cell tropic, syncytium-inducing (SI) isolates.How this shift occurs and how the shift can be controlled are still unclear.Since patients with rapid decline of T cell counts have constantly high levels of IFN-γ in the sera and lymphoid nodes, we investigated the influence of this cytokine on the expression of the HIV-1 coreceptors CCR5 and CXCR4 on the cell surfaces of human monocytic cell line U937 and promonocyte NB4.IFN-γ could intensively enhance the expression of both, while a low level of CCR5 expression was detected in two cell lines before stimulation.The results of semiquantitative RT-PCR also confirm the up-regulation.As the newly generated X4-strains have been demonstrated to be insensitive to chemokine in some reports, IFN-γ may play an important role in selecting CXCR4-used strains.

  8. The yeast PNC1 longevity gene is up-regulated by mRNA mistranslation.

    Raquel M Silva

    Full Text Available Translation fidelity is critical for protein synthesis and to ensure correct cell functioning. Mutations in the protein synthesis machinery or environmental factors that increase synthesis of mistranslated proteins result in cell death and degeneration and are associated with neurodegenerative diseases, cancer and with an increasing number of mitochondrial disorders. Remarkably, mRNA mistranslation plays critical roles in the evolution of the genetic code, can be beneficial under stress conditions in yeast and in Escherichia coli and is an important source of peptides for MHC class I complex in dendritic cells. Despite this, its biology has been overlooked over the years due to technical difficulties in its detection and quantification. In order to shed new light on the biological relevance of mistranslation we have generated codon misreading in Saccharomyces cerevisiae using drugs and tRNA engineering methodologies. Surprisingly, such mistranslation up-regulated the longevity gene PNC1. Similar results were also obtained in cells grown in the presence of amino acid analogues that promote protein misfolding. The overall data showed that PNC1 is a biomarker of mRNA mistranslation and protein misfolding and that PNC1-GFP fusions can be used to monitor these two important biological phenomena in vivo in an easy manner, thus opening new avenues to understand their biological relevance.

  9. Hypoxia Up-Regulates Galectin-3 in Mammary Tumor Progression and Metastasis.

    Joana T de Oliveira

    Full Text Available The tumor microenvironment encompasses several stressful conditions for cancer cells such as hypoxia, oxidative stress and pH alterations. Galectin-3, a well-studied member of the beta-galactoside-binding animal family of lectins has been implicated in multiple steps of metastasis as cell-cell and cell-ECM adhesion, promotion of angiogenesis, cell proliferation and resistance to apoptosis. However, both its aberrantly up- and down-regulated expression was observed in several types of cancer. Thus, the mechanisms that regulate galectin-3 expression in neoplastic settings are not clear. In order to demonstrate the putative role of hypoxia in regulating galectin-3 expression in canine mammary tumors (CMT, in vitro and in vivo studies were performed. In malignant CMT cells, hypoxia was observed to induce expression of galectin-3, a phenomenon that was almost completely prevented by catalase treatment of CMT-U27 cells. Increased galectin-3 expression was confirmed at the mRNA level. Under hypoxic conditions the expression of galectin-3 shifts from a predominant nuclear location to cytoplasmic and membrane expressions. In in vivo studies, galectin-3 was overexpressed in hypoxic areas of primary tumors and well-established metastases. Tumor hypoxia thus up-regulates the expression of galectin-3, which may in turn increase tumor aggressiveness.

  10. L-DOPA neurotoxicity is mediated by up-regulation of DMT1-IRE expression.

    Fang Du

    Full Text Available BACKGROUND: The mechanisms underlying neurotoxicity caused by L-DOPA are not yet completely known. Based on recent findings, we speculated that the increased expression of divalent metal transporter 1 without iron-response element (DMT1-IRE induced by L-DOPA might play a critical role in the development of L-DOPA neurotoxicity. To test this hypothesis, we investigated the effects of astrocyte-conditioned medium (ACM and siRNA DMT-IRE on L-DOPA neurotoxicity in cortical neurons. METHODS AND FINDINGS: We demonstrated that neurons treated with L-DOPA have a significant dose-dependent decrease in neuronal viability (MTT Assay and increase in iron content (using a graphite furnace atomic absorption spectrophotometer, DMT1-IRE expression (Western blot analysis and ferrous iron (55Fe(II uptake. Neurons incubated in ACM with or without L-DOPA had no significant differences in their morphology, Hoechst-33342 staining or viability. Also, ACM significantly inhibited the effects of L-DOPA on neuronal iron content as well as DMT1-IRE expression. In addition, we demonstrated that infection of neurons with siRNA DMT-IRE led to a significant decrease in DMT1-IRE expression as well as L-DOPA neurotoxicity. CONCLUSION: The up-regulation of DMT1-IRE and the increase in DMT1-IRE-mediated iron influx play a key role in L-DOPA neurotoxicity in cortical neurons.

  11. [Preliminary influence of 2015 cigarette excise tax up-regulation on cigarette retail price].

    Feng, G Z; Wang, C X; Yang, J Q; Jiang, Y

    2016-10-10

    Objective: To evaluate the impact of cigarette excise tax up-regulation on the retail price of cigarettes in 2015. Methods: Nominal and real price of selected cigarette varieties were calculated with data from Tobacco Retail Price Monitoring Project, which was conducted in 10 cities of China from 2013 to 2015. The trend of the cigarette prices changing was analyzed with annual data. Results: A total of 352 varieties of cigarettes were surveyed during the three years. The nominal price of these cigarettes did not change significantly from 2013 to 2014. Compared with nominal price of 2014, the price of 286 varieties increased and the price of 10 most popular varieties increased from 0.6% to 7.4% after cigarette excise tax increased, but the actual prices had both rise and fall compared with 2013. Conclusions: Cigarette excise tax raise in 2015 had influence on the retail price of cigarettes. But the increase in retail price was very limited, if factors including inflation and purchasing power are taken into consideration. Therefore, the influence of 2015 cigarette excise tax raise on tobacco control needs further evaluation.

  12. MicroRNA-15a/b are up-regulated in response to myocardial ischemia/reperfusion injury

    Li-Feng Liu; Zhuo Liang; Zhen-Rong Lv; Xiu-Hua Liu; Jing Bai; Jie Chen; Chen Chen; Yu Wang

    2012-01-01

    Objective Several studies have indicated that miR-15a,miR-15b and miR-16 may be the important regulators of apoptosis.Since attenuate apoptosis could protect myocardium and reduce infarction size,the present study was aimed to find out whether these miRNAs participate in regulating myocardial ischemia reperfusion (I/R) injury.Methods Apoptosis in mice hearts subjected to I/R was detected by TUNEL assay in vivo,while flow cytometry analysis followed by Annexin V/PI double stain in vitro was used to detect apoptosis in cultured cardiomyocytes which were subjected to hypoxia/reoxygenation (H/R).Taqman real-time quantitative PCR was used to confirm whether miR-15a/15b/16 were involved in the regulation of cardiac I/R and H/R.Results Compared to those of the controls,I/R or H/R induced apoptosis of cardiomyocytes was significantly iucreased both in vivo (24.4% ± 9.4% vs.2.2% ± 1.9%,P < 0.01,n =5) and in vitro (14.12% ±0.92% vs.2.22% ± 0.08%).The expression of miR-15a and miR-15b,but not miR-16,was increased in the mice I/R model,and the results were consistent in the H/R model.Conclusions Our data indicate miR-15 and miR-15b are up-regulated in response to cardiac I/R injury,therefore,down-regulation of miR- 15a/b may be a promising strategy to reduce myocardial apoptosis induced by cardiac I/R injury.

  13. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes.

    Zhao, Tian-Yong; Zou, Shi-Ping; Knapp, Pamela E

    2007-01-22

    The health effects of cell phone radiation exposure are a growing public concern. This study investigated whether expression of genes related to cell death pathways are dysregulated in primary cultured neurons and astrocytes by exposure to a working Global System for Mobile Communication (GSM) cell phone rated at a frequency of 1900MHz. Primary cultures were exposed to cell phone emissions for 2h. We used array analysis and real-time RT-PCR to show up-regulation of caspase-2, caspase-6 and Asc (apoptosis associated speck-like protein containing a card) gene expression in neurons and astrocytes. Up-regulation occurred in both "on" and "stand-by" modes in neurons, but only in "on" mode in astrocytes. Additionally, astrocytes showed up-regulation of the Bax gene. The effects are specific since up-regulation was not seen for other genes associated with apoptosis, such as caspase-9 in either neurons or astrocytes, or Bax in neurons. The results show that even relatively short-term exposure to cell phone radiofrequency emissions can up-regulate elements of apoptotic pathways in cells derived from the brain, and that neurons appear to be more sensitive to this effect than astrocytes.

  14. Nitrate and sulfate reducers-retrievable number of bacteria and their activities in Indian waters

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Culturable heterotrophic, nitrate reducing and sulfate reducing bacteria (HB, NRB and SRB) were enumerated from 25, 50, 100 and 200 m depths at 15 stations and their potential activities viz. Nitrate reducing (NRA) and Sulfate reducing (SRA) were...

  15. Unsaturated compounds induce up-regulation of CD86 on dendritic cells in the in vitro sensitization assay LCSA.

    Frohwein, Thomas Armin; Sonnenburg, Anna; Zuberbier, Torsten; Stahlmann, Ralf; Schreiner, Maximilian

    2016-04-01

    Unsaturated compounds are known to cause false-positive reactions in the local lymph node assay (LLNA) but not in the guinea pig maximization test. We have tested a panel of substances (succinic acid, undecylenic acid, 1-octyn-3-ol, fumaric acid, maleic acid, linoleic acid, oleic acid, alpha-linolenic acid, squalene, and arachidonic acid) in the loose-fit coculture-based sensitization assay (LCSA) to evaluate whether unspecific activation of dendritic cells is a confounder for sensitization testing in vitro. Eight out of 10 tested substances caused significant up-regulation of CD86 on dendritic cells cocultured with keratinocytes and would have been classified as sensitizers; only succinic acid was tested negative, and squalene had to be excluded from data analysis due to poor solubility in cell culture medium. Based on human data, only undecylenic acid can be considered a true sensitizer. The true sensitizing potential of 1-octyn-3-ol is uncertain. Fumaric acid and its isomer maleic acid are not known as sensitizers, but their esters are contact allergens. A group of 18- to 20-carbon chain unsaturated fatty acids (linoleic acid, oleic acid, alpha-linolenic acid, and arachidonic acid) elicited the strongest reaction in vitro. This is possibly due to the formation of pro-inflammatory lipid mediators in the cell culture causing nonspecific activation of dendritic cells. In conclusion, both the LLNA and the LCSA seem to provide false-positive results for unsaturated fatty acids. The inclusion of T cells in dendritic cell-based in vitro sensitization assays may help to eliminate false-positive results due to nonspecific dendritic cell activation. This would lead to more accurate prediction of sensitizers, which is paramount for consumer health protection and occupational safety.

  16. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand.

    Saralamma, Venu Venkatarame Gowda; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-09-18

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies' results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  17. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand

    Venu Venkatarame Gowda Saralamma

    2015-09-01

    Full Text Available Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma. The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose polymerase (PARP. Inhibitor studies’ results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm, pro-apoptotic proteins (Bax and Bak and anti-apoptotic protein (Bcl-xL in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  18. Up-regulation of GBP2 is Associated with Neuronal Apoptosis in Rat Brain Cortex Following Traumatic Brain Injury.

    Miao, Qi; Ge, Meihong; Huang, Lili

    2017-02-27

    Guanylate binding protein 2 (GBP2) is one member of GBP family. Recently, GBP2 has been proposed to be a novel target of anti-cancer drugs. However, the role of GBP2 in the traumatic brain injury (TBI) is very limited. In this study, we sought to define GBP2's role in brain injury. GBP2 protein levels were significantly increased in the brain 3 days after injury, suggesting a functional role for GBP2 in TBI. Neuronal cells overexpressing GBP2 exhibited up-regulation of co-location of GBP2 and NeuN following TBI, suggesting that GBP2 potentiates the neuron apoptosis. To confirm the role of GBP2 in neuron apoptosis process, we employed a highly potent inhibitor of GBP2 (GBP2 RNAi). In H2O2-stimulated PC12 cells, in vitro blockade of GBP2 activity using GBP2 RNAi markedly attenuated the neuron apoptosis number. GBP2 RNAi also inhibited the expression levels of active caspase3 and p-Stat1. Furthermore, we found the expression of p-Stat1 in line with GBP2 and GBP2 interacted with p-Stat1 following TBI. The Jak2 inhibitor, AG490 inhibited this interaction and decreased the active caspase3 expression as well as promoted the functional recovery. Taken together, these data suggest that GBP2 RNAi has a protective effect in a rat TBI. This study demonstrates that GBP2 is an important positive regulator of TBI and is a promising therapeutic target for brain injury.

  19. Up-regulation and time course of protein kinase C immunoreactivity during persistent inflammation of the rat spinal cord

    Liping Yang; Qingjun Li

    2008-01-01

    -immunoreactive particles, in the ipsi- and contralateral dorsal horn were investigated during different stages of inflammatory pain using immunohistochemistry. RESULTS: All 42 rats were included in the final analysis, without any loss. Pain reaction: consistent with previous findings, it was determined that a unilateral injection of formalin into the hind-paw resulted in significant edema and induced a series of nociceptive responses, such as licking, biting, or shaking the injected paw. The maximal inflammation change was observed 1 day after formalin injection and changes did not disappear until the day 7. Number of the PKC positive neurons: results demonstrated that the number of PKC immunoreactive neurons in the dorsal horn increased slightly after formalin injection at 1 hour, compared with the control group. PKC immunoreactivity was up-regulated at day 1, reduced at day 3, and appeared to recover at day 7. The number of PKC-positive neurons in the contralateral side was less than the ipsilateral side at each time sampled. Distribution of PKC immunoparticles over the neurons: PKC immunoreactivity was observed in the nucleus and cytoplasm, as well as on or near the membrane of neurons and synaptosomes in the spinal cord of the control group. PKC activated and translocated from nucleus to the membrane-associated site following formalin treatment. Significant changes were observed at 1 hour and 1 day. The intensity of staining was stronger in the ipsilateral side than the contralateral side at all time points following formalin injection (P < 0.01), whereas the expression patterns of PKC immunoreactivity in the nuclei were very similar in the right and left hemispheres.CONCLUSION: PKC expression in the dorsal horn of the spinal cord peaked at 1 hour and 24 hours, and was very obvious at 24 hours. Protein kinase C expression in the spinal cord increased bilaterally, although it was greater in the ipsilateral hemisphere. In addition, PKC expression at the neuronal membrane and synaptosome

  20. Materials design data for reduced activation martensitic steel type EUROFER

    Tavassoli, A.-A. F.; Alamo, A.; Bedel, L.; Forest, L.; Gentzbittel, J.-M.; Rensman, J.-W.; Diegele, E.; Lindau, R.; Schirra, M.; Schmitt, R.; Schneider, H. C.; Petersen, C.; Lancha, A.-M.; Fernandez, P.; Filacchioni, G.; Maday, M. F.; Mergia, K.; Boukos, N.; Baluc; Spätig, P.; Alves, E.; Lucon, E.

    2004-08-01

    Materials design limits derived so far from the data generated in Europe for the reduced activation ferritic/martensitic (RAFM) steel type Eurofer are presented. These data address the short-term needs of the ITER Test Blanket Modules and a DEMOnstration fusion reactor. Products tested include plates, bars, tubes, TIG and EB welds, as well as powder consolidated blocks and solid-solid HIP joints. Effects of thermal ageing and low dose neutron irradiation are also included. Results are sorted and screened according to design code requirements before being introduced in reference databases. From the physical properties databases, variations of magnetic properties, modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. From the tensile and creep properties databases design allowable stresses are derived. From the instrumented Charpy impact and fracture toughness databases, ductile to brittle transition temperature, toughness and behavior of materials in different fracture modes are evaluated. From the fatigue database, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves. Cyclic curves are also derived and compared with monotonic hardening curves. Finally, irradiated and aged materials data are compared to ensure that the safety margins incorporated in unirradiated design limits are not exceeded.

  1. Deformation behavior of reduced activation ferritic steel during tensile test

    Shiba, Kiyoyuki [Department of Material Science and Engineering, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibakaki 319-1195 (Japan)]. E-mail: shiba@realab01.tokai.jaeri.go.jp; Hirose, Takanori [Department of Fusion Engineering Research, Japan Atomic Energy Research Institute, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)

    2006-02-15

    Deformation behavior of reduced activation martensitic steel F82H during tensile tests were studied. True stress-true strain diagrams were calculated with minimum diameter determined from the specimen profile obtained by laser micro-gauge scanning the diameter along the longitudinal direction during tensile test. Cylindrical specimens of F82H were used for the measurement and test temperatures were room temperature (RT), 300, 400, 500 and 600 deg. C. Tensile tests were carried out with 1 x 10{sup -4} s{sup -1} of strain rate. Other strain rates (1 x 10{sup -3} and 1 x 10{sup -5} s{sup -1}) were applied for the tests at RT. Although uniform elongation of F82H is relatively small at elevated temperature, true stress increases to fracture after necking starts. True stress decreases temporarily after yielding at 600 deg. C, but it increases again to fracture like the specimens tested at lower temperatures. Influence of strain rate to true stress-true strain relationship at room temperature was small, but unstable deformation occurred in narrower area at higher strain rate.

  2. Type II VLDLR promotes cell migration by up-regulation of VEGF, MMP2 and MMP7 in breast cancer cells

    Lei He; Yanjun Lu; Jianli Guo

    2013-01-01

    Objective:Very low density lipoprotein receptor (VLDLR) has been considered as a multiple function receptor due to binding numerous ligands, causing endocytosis and regulating cel ular signaling. Our group previously reported that type II VLDLR overexpression in breast cancer tissues. The purpose of this study is to characterize type II VLDLR activities during cel migration using breast cancer cel lines. Methods:Western blotting was used to test protein expression. Cel migration was analyzed by Scratch wound assay. The mRNA expression was tested by realtime-PCR. Reporter assay was to test the transcription activity. Results:Scratch wound and Report assay indicated up-regulated VLDLR II expression promotes cel migration via activating Wnt/β-catenin pathway. The target genes such as VEGF, MMP2 and MMP7 were upregulated in VLDLR II overexpressed cel s. On the contrary, cel s treated with TFPI had an inhibition ef ect of cel migration response to down-regulation of VLDLR II. Conclusion:Type II VLDLR conferred a migration and invasion advantage by activating Wnt/β-catenin pathway, then up-regulating VEGF, MMP2 and MMP7 in breast cancer cel s.

  3. Intranasal deferoxamine attenuates synapse loss via up-regulating the P38/HIF-1α pathway on the brain of APP/PS1 transgenic mice

    Chuang eGuo

    2015-06-01

    Full Text Available AbstractThe widely recognized neuroprotective effect of iron chelators is contributed by their ability to prevent reactive oxygen species generation via the Fenton reaction, which sequesters redox-active Fe. An additional neuroprotective mechanism of iron-chelating compounds is to regulate the transcriptional activator hypoxia-inducible factor 1α (HIF-1α. In the present study, we observed that intranasal administration of deferoxamine decreased beta-amyloid (Aβ deposition and rescued synapse loss in the brain of Aβ precursor protein and presenilin-1 (APP/PS1 double transgenic mice. We found that DFO up-regulated HIF-1α mRNA expression and its protein level, and further induced the proteins that are encoded from HIF-1-adaptive genes, including transferrin receptor (TFR, divalent metal transporter 1 (DMT1, and brain-derived neurotrophic factor (BDNF. The effects of DFO on the induction and stabilization of HIF-1α were further confirmed in vitro. This was accompanied by a decrease of Fe in the CA3 region of the hippocampus. Western blotting studies revealed that DFO differentially enhanced the phosphorylation of mitogen-activated protein kinase (MAPK /P38 kinase in vitro and in vivo. The results suggest that the DFO may up-regulate several HIF-1-dependent neuroprotective-adaptive genes in AD via activating P38/HIF-1α pathway, which may serve as important therapeutic targets to the disease.

  4. Hormonally up-regulated neu-associated kinase: A novel target for breast cancer progression.

    Zambrano, Joelle N; Neely, Benjamin A; Yeh, Elizabeth S

    2017-02-09

    Hormonally up-regulated neu-associated Kinase (Hunk) is a protein kinase that was originally identified in the murine mammary gland and has been shown to be highly expressed in Human Epidermal Growth Factor Receptor 2 positive (HER2(+)/ErbB2(+)) breast cancer cell lines as well as MMTV-neu derived mammary tumor cell lines. However, the physiological role of Hunk has been largely elusive since its identification. Though Hunk is predicted to be a Serine/Threonine (Ser/Thr) protein kinase with homology to the SNF1/AMPK family of protein kinases, there are no known Hunk substrates that have been identified to date. Recent work demonstrates a role for Hunk in HER2(+)/ErbB2(+) breast cancer progression, including drug resistance to HER2/ErbB2 inhibitors, with Hunk potentially acting downstream of HER2/ErbB2 and the PI3K/Akt pathway. These studies have collectively shown that Hunk plays a vital role in promoting mammary tumorigenesis, as Hunk knockdown via shRNA in xenograft tumor models or crossing MMTV-neu or Pten-deficient genetically engineered mouse models into a Hunk knockout (Hunk-/-) background impairs mammary tumor growth in vivo. Because the majority of HER2(+)/ErbB2(+) breast cancer patients acquire drug resistance to HER2/ErbB2 inhibitors, the characterization of novel drug targets like Hunk that have the potential to simultaneously suppress tumorigenesis and potentially enhance efficacy of current therapeutics is an important facet of drug development. Therefore, work aimed at uncovering specific regulatory functions for Hunk that could contribute to this protein kinase's role in both tumorigenesis and drug resistance will be informative. This review focuses on what is currently known about this under-studied protein kinase, and how targeting Hunk may prove to be a potential therapeutic target for the treatment of breast cancer.

  5. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    Zhang, Yu [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Cheng, Jung-Chien [Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Huang, He-Feng, E-mail: huanghefg@hotmail.com [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Leung, Peter C.K., E-mail: peter.leung@ubc.ca [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada)

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  6. Up-regulation of Niacinamide in Intervertebral Disc Aggrecan in vitro

    2006-01-01

    The regulatory effects of niacinamide (Nia) on intervertebral disc (IVD) aggrecan in vitro was investigated. Chiba's 10 ng/mL interleukin-1 (IL-1)-induced rabbit IVD degeneration model in vitro was established. 0.5, 0.25 and 0.05 mg/mL Nia was added to normal and degenerated IVDs for intervention. On the first and second week after intervention, safranin O-fast green staining intensity and glycosaminoglycan (GS) content were measured. The expression of aggrecan core protein was detected by RT-PCR. The results showed: (1) After treatment with 0.5 mg/mL Nia for one week, the GS content in nucleus pulposus (NP) was increased by 44.8 % as compared with control group (P<0.01); The GS content in IL-1 induction groups was increased with the increase of Nia concentrations: After treatment with 0.5 mg/mL for one week, the GS content in NP was increased by 68.3 % as compared with control group (P<0.01). After two weeks, GS content in NP and fibrous rings was still higher than in control group at the same period (P<0.01)and untreated group (P<0.01). (2) Safranin O-fast green staining revealed that with the increase of Nia concentrations, staining density in NP and fibrous rings was increased and histological structure damage to IVDs by IL-1β was alleviated. (3) RT-PCR showed that the expression of core protein gene in IL-1β-induced degenerated IVDS was increased with the increase of Nia concentrations.It was concluded that under conditions in vitro, Nia could up-regulate the expression of aggrecan in IVDs and protect IVDs from IL-1β-induced degeneration at least partially, which offers a potential choice for IVD degeneration clinical therapy.

  7. Lysophosphatidic Acid Up-Regulates Hexokinase II and Glycolysis to Promote Proliferation of Ovarian Cancer Cells

    Abir Mukherjee

    2015-09-01

    Full Text Available Lysophosphatidic acid (LPA, a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2 was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1 and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells.

  8. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.

    Almeida, Tânia; Menéndez, Esther; Capote, Tiago; Ribeiro, Teresa; Santos, Conceição; Gonçalves, Sónia

    2013-01-15

    The molecular processes associated with cork development in Quercus suber L. are poorly understood. A previous molecular approach identified a list of genes potentially important for cork formation and differentiation, providing a new basis for further molecular studies. This report is the first molecular characterization of one of these candidate genes, QsMYB1, coding for an R2R3-MYB transcription factor. The R2R3-MYB gene sub-family has been described as being involved in the phenylpropanoid and lignin pathways, both involved in cork biosynthesis. The results showed that the expression of QsMYB1 is putatively mediated by an alternative splicing (AS) mechanism that originates two different transcripts (QsMYB1.1 and QsMYB1.2), differing only in the 5'-untranslated region, due to retention of the first intron in one of the variants. Moreover, within the retained intron, a simple sequence repeat (SSR) was identified. The upstream regulatory region of QsMYB1 was extended by a genome walking approach, which allowed the identification of the putative gene promoter region. The relative expression pattern of QsMYB1 transcripts determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that both transcripts were up-regulated in cork tissues; the detected expression was several times higher in newly formed cork harvested from trees producing virgin, second or reproduction cork when compared with wood. Moreover, the expression analysis of QsMYB1 in several Q. suber organs showed very low expression in young branches and roots, whereas in leaves, immature acorns or male flowers, no expression was detected. These preliminary results suggest that QsMYB1 may be related to secondary growth and, in particular, with the cork biosynthesis process with a possible alternative splicing mechanism associated with its regulatory function.

  9. Up-regulation of niacinamide in intervertebral disc aggrecan in vitro.

    Xiong, Xiaoqian; Yang, Shuhua; Shao, Zengwu; Liu, Xin; Zhan, Zirui; Duan, Deyu

    2006-01-01

    The regulatory effects of niacinamide (Nia) on intervertebral disc (IVD) aggrecan in vitro was investigated. Chiba's 10 ng/mL interleukin-1 (IL-1)-induced rabbit IVD degeneration model in vitro was established. 0.5, 0.25 and 0.05 mg/mL Nia was added to normal and degenerated IVDs for intervention. On the first and second week after intervention, safranin O-fast green staining intensity and glycosaminoglycan (GS) content were measured. The expression of aggrecan core protein was detected by RT-PCR. The results showed: (1) After treatment with 0.5 mg/mL Nia for one week, the GS content in nucleus pulposus (NP) was increased by 44.8% as compared with control group (P < 0 01); The GS content in IL-1 induction groups was increased with the increase of Nia concentrations: After treatment with 0.5 mg/mL for one week, the GS content in NP was increased by 68.3% as compared with control group (P < 0.01). After two weeks, GS content in NP and fibrous rings was still higher than in control group at the same period (P < 0.01) and untreated group (P < 0.01). (2) Safranin O-fast green staining revealed that with the increase of Nia concentrations, staining density in NP and fibrous rings was increased and histological structure damage to IVDs by IL-1beta was alleviated. (3) RT-PCR showed that the expression of core protein gene in IL-1beta-induced degenerated IVDS was increased with the increase of Nia concentrations. It was concluded that under conditions in vitro, Nia could up-regulate the expression of aggrecan in IVDs and protect IVDs from IL-1beta-induced degeneration at least partially, which offers a potential choice for IVD degeneration clinical therapy.

  10. IL-1β up-regulates expression of IL-8 in endometrial stromal cells in vitro

    Zhang Guiyu; Ren Shuwen; Zhang Youzhong; Yang Xingsheng

    2005-01-01

    Objective:To investigate the effects of interleukin-1beta (IL-1β) on expression of IL-8 in endometrial stromal cells (ESC) and evaluate the relationship between IL1 β and IL-8 ,and the significance of IL-1β in the development of endometriosis. Methods:The endometrial stromal cells obtained from patient with and without endometriosis cultured within 3 ~5 passage were exposed to various concentrations of IL-1β. The amount of IL-8 protein was assessed by ELISA. The expression of IL-8 mRNA was determined by RT-PCR. Results: 1. IL-8 protein was detected in culture supernatant of which the cells were not treated with IL-1β. The amount of IL-8 protein secretion increased obviously after stimulation with IL-1β at 1.0ng/ml for 4h and the peak of secretion was at 12h. 2. Expression of IL-8 mRNA was positive in unstimulated endometrial stromal cells. However, after stromal cells were incubated with IL-1β, the intensity of expression of IL-8 mRNA was obviously increased and demonstrated a dose-and timedependent manner. Increase of IL-8 mRNA was observed following stimulation with IL-1β for 4h ,and the peak at 12h. Conclusions:IL-1β induces endometrial stromal cell of endometriosis to express IL-8 not only at transcription level but also at post-transcription level. This up-regulation is dose-and time-dependent. IL-1β may play an important role in the onset of endometriosis.

  11. Up-regulation of Toll-like receptors 2, 3 and 4 in allergic rhinitis

    Uddman Rolf

    2005-09-01

    Full Text Available Abstract Background Toll-like receptors enable the host to recognize a large number of pathogen-associated molecular patterns such as bacterial lipopolysaccharide, viral RNA, CpG-containing DNA and flagellin. Toll-like receptors have also been shown to play a pivotal role in both innate and adaptive immune responses. The role of Toll-like receptors as a primary part of our microbe defense system has been shown in several studies, but their possible function as mediators in allergy and asthma remains to be established. The present study was designed to examine the expression of Toll-like receptors 2, 3 and 4 in the nasal mucosa of patients with intermittent allergic rhinitis, focusing on changes induced by exposure to pollen. Methods 27 healthy controls and 42 patients with seasonal allergic rhinitis volunteered for the study. Nasal biopsies were obtained before and during pollen season as well as before and after allergen challenge. The seasonal material was used for mRNA quantification of Toll-like receptors 2, 3 and 4 with real-time polymerase chain reaction, whereas specimens achieved in conjunction with allergen challenge were used for immunohistochemical localization and quantification of corresponding proteins. Results mRNA and protein representing Toll-like receptors 2, 3 and 4 could be demonstrated in all specimens. An increase in protein expression for all three receptors could be seen following allergen challenge, whereas a significant increase of mRNA only could be obtained for Toll-like receptor 3 during pollen season. Conclusion The up-regulation of Toll-like receptors 2, 3 and 4 in the nasal mucosa of patients with symptomatic allergic rhinitis supports the idea of a role for Toll-like receptors in allergic airway inflammation.

  12. Orphan receptor GPR15/BOB is up-regulated in rheumatoid arthritis.

    Cartwright, Alison; Schmutz, Caroline; Askari, Ayman; Kuiper, Jan-Herman; Middleton, Jim

    2014-06-01

    Chemokine receptors on leukocytes mediate the recruitment and accumulation of these cells within affected joints in chronic inflammatory diseases such as rheumatoid arthritis (RA). Identification of involved receptors offers potential for development of therapeutic interventions. The objective of this study was to investigate the expression of orphan receptor GPR15/BOB in the synovium of RA and non-RA patients and in peripheral blood of RA patients and healthy donors. GPR15/BOB protein and messenger RNA expression were examined in RA and non-RA synovium by immunofluorescence and reverse-transcription polymerase chain reaction (RT-PCR) respectively. GPR15/BOB expression on peripheral blood leukocytes was analysed by flow cytometry and GPR15/BOB messenger RNA was examined in peripheral blood monocytes by RT-PCR. GPR15/BOB protein was observed in CD68+ and CD14+ macrophages in synovia, with greater expression in RA synovia. GPR15/BOB protein was expressed in all patient synovia whereas in non-RA synovia expression was low or absent. Similarly GPR15/BOB messenger RNA was detected in all RA and a minority of non-RA synovia. GPR15/BOB protein was expressed on peripheral blood leukocytes from RA and healthy individuals with increased expression by monocytes and neutrophils in RA. GPR15/BOB messenger RNA expression was confirmed in peripheral blood monocytes. In conclusion GPR15/BOB is expressed by macrophages in synovial tissue and on monocytes and neutrophils in peripheral blood, and expression is up-regulated in RA patients compared to non-RA controls. This orphan receptor on monocytes/macrophages and neutrophils may play a role in RA pathophysiology.

  13. Up-regulated manganese superoxide dismutase expression increases apoptosis resistance in human esophageal squamous cell carcinomas

    HU Hai; WANG Ming-rong; LUO Man-li; DU Xiao-li; FENG Yan-bin; ZHANG Yu; SHEN Xiao-ming; XU Xin; CAI Yan; HAN Ya-ling

    2007-01-01

    Background Esophageal cancer is one of the most common malignancies in the world.In order to identify the proteins associated with esophageal squamous cell carcinomas(ESCC),we analyzed the protein profiles of ESCC cases with tumor and matched adjacent normal tissues.Methods Two-dimensional electrophoresis(2-DE)was carried out to analyze the protein profiles.Dysregulated protein spots were identified by Matrix-Assisted Laser Desorption Ionization Time-of-Flight(MALDI-TOF)and verified by liquid chromatography/electrospray ionization ion trap-mass spectrometry/mass spectrometry(LC-ESI-IT MS).RT-PCR and immunohistochemistry on tissue microarray were performed to confirm the gene dysregulation in esophageal cancerous tissues.RNA interference (RNAi)was used to knock down the gene expression in ESCC cell lines.Apoptosis assay with annexin V-FITC/PI staining was conducted and cells were analyzed by flow cytometry.Results 2-DE showed that two protein spots with approximate molecular weights and different pl were elevated in 12 out of 18 ESCCs as compared to the corresponding normal tissues.Both the two spots were identified as MnSOD by MALDI-TOF and were verified by LC-ESI-IT MS.MnSOD overexpression was detected in 14 tumors out of 24 cases by RT-PCR and 52 tumors out of 116 cases by immunohistochemistry comparing to normal epithelia.siRNA-mediated silencing of MnSOD in KYSE450 and KYSE150 cell lines revealed that MnSOD protected ESCC cells from apoptosis induced by ultraviolet(UV)and doxorubicin(DOX).Conclusions These findings suggest that there existed two isoforms of MnSOD protein in normal and tumor esophageal tissues.MnSOD was overexpressed in ESCC and its up-regulation in esophageal cancer cells was associated with apoptosis resistance.

  14. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    Jin, Yulan; Purohit, Sharad [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States); Chen, Xueqin; Yi, Bing [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); She, Jin-Xiong, E-mail: jshe@georgiahealth.edu [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.

  15. Radiation-induced cyclooxygenase 2 up-regulation is dependent on redox status in prostate cancer cells.

    Li, Lingyun; Steinauer, Kirsten K; Dirks, Amie J; Husbeck, Bryan; Gibbs, Iris; Knox, Susan J

    2003-12-01

    Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.

  16. Thromboxane A2 receptor antagonist SQ29548 reduces ischemic stroke-induced microglia/macrophages activation and enrichment, and ameliorates brain injury

    Yan, Aijuan; Zhang, Tingting; Yang, Xiao; Shao, Jiaxiang; Fu, Ningzhen; Shen, Fanxia; Fu, Yi; Xia, Weiliang

    2016-01-01

    Thromboxane A2 receptor (TXA2R) activation is thought to be involved in thrombosis/hemostasis and inflammation responses. We have previously shown that TXA2R antagonist SQ29548 attenuates BV2 microglia activation by suppression of ERK pathway, but its effect is not tested in vivo. The present study aims to explore the role of TXA2R on microglia/macrophages activation after ischemia/reperfusion brain injury in mice. Adult male ICR mice underwent 90-min transient middle cerebral artery occlusion (tMCAO). Immediately and 24 h after reperfusion, SQ29548 was administered twice to the ipsilateral ventricle (10 μl, 2.6 μmol/ml, per dose). Cerebral infarction volume, inflammatory cytokines release and microglia/macrophages activation were measured using the cresyl violet method, quantitative polymerase chain reaction (qPCR), and immunofluorescence double staining, respectively. Expression of TXA2R was significantly increased in the ipsilateral brain tissue after ischemia/reperfusion, which was also found to co-localize with activated microglia/macrophages in the infarct area. Administration of SQ29548 inhibited microglia/macrophages activation and enrichment, including both M1 and M2 phenotypes, and attenuated ischemia-induced IL-1ß, IL-6, and TNF-α up-regulation and iNOS release. TXA2R antagonist SQ29548 inhibited ischemia-induced inflammatory response and furthermore reduced microglia/macrophages activation and ischemic/reperfusion brain injury. PMID:27775054

  17. Up-regulation of Nrf2 is involved in FGF21-mediated fenofibrate protection against type 1 diabetic nephropathy.

    Cheng, Yanli; Zhang, Jingjing; Guo, Weiying; Li, Fengsheng; Sun, Weixia; Chen, Jing; Zhang, Chi; Lu, Xuemian; Tan, Yi; Feng, Wenke; Fu, Yaowen; Liu, Gilbert C; Xu, Zhonggao; Cai, Lu

    2016-04-01

    The lipid lowering medication, fenofibrate (FF), is a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, possessing beneficial effects for type 2 diabetic nephropathy (DN). We investigated whether FF can prevent the development of type 1 DN, and the underlying mechanisms. Diabetes was induced by a single intraperitoneal injection of streptozotocin in C57BL/6J mice. Mice were treated with oral gavage of FF at 100mg/kg every other day for 3 and 6 months. Diabetes-induced renal oxidative stress, inflammation, apoptosis, lipid and collagen accumulation, and renal dysfunction were accompanied by significant decrease in PI3K, Akt, and GSK-3β phosphorylation as well as an increase in the nuclear accumulation of Fyn [a negative regulator of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)]. All these adverse effects were significantly attenuated by FF treatment. FF also significantly increased fibroblast growth factor 21 (FGF21) expression and enhanced Nrf2 function in diabetic and non-diabetic kidneys. Moreover, FF-induced amelioration of diabetic renal damage, including the stimulation of PI3K/Akt/GSK-3β/Fyn pathway and the enhancement of Nrf2 function were abolished in FGF21-null mice, confirming the critical role of FGF21 in FF-induced renal protection. These results suggest for the first time that FF prevents the development of DN via up-regulating FGF21 and stimulating PI3K/Akt/GSK-3β/Fyn-mediated activation of the Nrf2 pathway.

  18. Six1 induces protein synthesis signaling expression in duck myoblasts mainly via up-regulation of mTOR

    Haohan Wang

    2016-03-01

    Full Text Available Abstract As a critical transcription factor, Six1 plays an important role in the regulation of myogenesis and muscle development. However, little is known about its regulatory mechanism associated with muscular protein synthesis. The objective of this study was to investigate the effects of overexpression ofSix1 on the expression of key protein metabolism-related genes in duck myoblasts. Through an experimental model where duck myoblasts were transfected with a pEGFP-duSix1 construct, we found that overexpression of duckSix1 could enhance cell proliferation activity and increase mRNA expression levels of key genes involved in the PI3K/Akt/mTOR signaling pathway, while the expression of FOXO1, MuRF1and MAFbx was not significantly altered, indicating thatSix1 could promote protein synthesis in myoblasts through up-regulating the expression of several related genes. Additionally, in duck myoblasts treated with LY294002 and rapamycin, the specific inhibitors ofPI3K and mTOR, respectively, the overexpression of Six1 could significantly ameliorate inhibitive effects of these inhibitors on protein synthesis. Especially, the mRNA expression levels of mTOR and S6K1 were observed to undergo a visible change, and a significant increase in protein expression of S6K1 was seen. These data suggested that Six1plays an important role in protein synthesis, which may be mainly due to activation of the mTOR signaling pathway.

  19. Murine BAFF expression is up-regulated by estrogen and interferons: implications for sex bias in the development of autoimmunity.

    Panchanathan, Ravichandran; Choubey, Divaker

    2013-01-01

    Systemic lupus erythematosus (SLE) in patients and certain mouse models exhibits a strong sex bias. Additionally, in most patients, increased serum levels of type I interferon (IFN-α) are associated with severity of the disease. Because increased levels of B cell activating factor (BAFF) in SLE patients and mouse models are associated with the development of SLE, we investigated whether the female sex hormone estrogen (E2) and/or IFNs (IFN-α or γ) could regulate the expression of murine BAFF. We found that steady-state levels of BAFF mRNA and protein were measurably higher in immune cells (CD11b(+), CD11c(+), and CD19(+)) isolated from C57BL/6 females than the age-matched male mice. Treatment of immune cells with IFN or E2 significantly increased levels of BAFF mRNA and protein and a deficiency of estrogen receptor-α, IRF5, or STAT1 expression in splenic cells decreased expression of BAFF. Moreover, treatment of RAW264.7 macrophage cells with IFN-α, IFN-γ, or E2 induced expression of BAFF. Interestingly, increased expression of p202, an IFN and estrogen-inducible protein, in RAW264.7 cells significantly increased the expression levels of BAFF and also stimulated the activity of the BAFF-luc-reporter. Accordingly, the increased expression of the p202 protein in lupus-prone B6.Nba2-ABC than non lupus-prone C57BL/6 and B6.Nba2-C female mice was associated with increased expression levels of BAFF. Together, our observations demonstrated that estrogen and IFN-induced increased levels of the p202 protein in immune cells contribute to sex bias in part through up-regulation of BAFF expression.

  20. Transcription factor Ets-1 inhibits glucose-stimulated insulin secretion of pancreatic β-cells partly through up-regulation of COX-2 gene expression.

    Zhang, Xiong-Fei; Zhu, Yi; Liang, Wen-Biao; Zhang, Jing-Jing

    2014-08-01

    Increased cyclooxygenase-2 (COX-2) expression is associated with pancreatic β-cell dysfunction. We previously demonstrated that the transcription factor Ets-1 significantly up-regulated COX-2 gene promoter activity. In this report, we used the pancreatic β-cell line INS-1 and isolated rat islets to investigate whether Ets-1 could induce β-cell dysfunction through up-regulating COX-2 gene expression. We investigated the effects of ETS-1 overexpression and the effects of ETS-1 RNA interference on endogenous COX-2 expression in INS-1 cells. We used site-directed mutagenesis and a dual luciferase reporter assay to study putative Ets-1 binding sites in the COX-2 promoter. The effect of ETS-1 1 overexpression on the insulin secretion function of INS-1 cells and rat islets and the potential reversal of these effects by a COX-2 inhibitor were determined in a glucose-stimulated insulin secretion (GSIS) assay. ETS-1 overexpression significantly induces endogenous COX-2 expression, but ETS-1 RNA interference has no effect on basal COX-2 expression in INS-1 cells. Ets-1 protein significantly increases COX-2 promoter activity through the binding site located in the -195/-186 region of the COX-2 promoter. ETS-1 overexpression significantly inhibited the GSIS function of INS-1 cells and islet cells and COX-2 inhibitor treatment partly reversed this effect. These findings indicated that ETS-1 overexpression induces β-cell dysfunction partly through up-regulation of COX-2 gene expression. Moreover, Ets-1, the transcriptional regulator of COX-2 expression, may be a potential target for the prevention of β-cell dysfunction mediated by COX-2.

  1. The peptidyl-prolyl isomerase Pin1 up-regulation and proapoptotic function in dopaminergic neurons: relevance to the pathogenesis of Parkinson disease.

    Ghosh, Anamitra; Saminathan, Hariharan; Kanthasamy, Arthi; Anantharam, Vellareddy; Jin, Huajun; Sondarva, Gautam; Harischandra, Dilshan S; Qian, Ziqing; Rana, Ajay; Kanthasamy, Anumantha G

    2013-07-26

    Parkinson disease (PD) is a chronic neurodegenerative disease characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra. The pathophysiological mechanisms underlying PD remain unclear. Pin1, a major peptidyl-prolyl isomerase, has recently been associated with certain diseases. Notably, Ryo et al. (Ryo, A., Togo, T., Nakai, T., Hirai, A., Nishi, M., Yamaguchi, A., Suzuki, K., Hirayasu, Y., Kobayashi, H., Perrem, K., Liou, Y. C., and Aoki, I. (2006) J. Biol. Chem. 281, 4117-4125) implicated Pin1 in PD pathology. Therefore, we sought to systematically characterize the role of Pin1 in PD using cell culture and animal models. To our surprise we observed a dramatic up-regulation of Pin1 mRNA and protein levels in dopaminergic MN9D neuronal cells treated with the parkinsonian toxicant 1-methyl-4-phenylpyridinium (MPP(+)) as well as in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Notably, a marked expression of Pin1 was also observed in the substantia nigra of human PD brains along with a high co-localization of Pin1 within dopaminergic neurons. In functional studies, siRNA-mediated knockdown of Pin1 almost completely prevented MPP(+)-induced caspase-3 activation and DNA fragmentation, indicating that Pin1 plays a proapoptotic role. Interestingly, multiple pharmacological Pin1 inhibitors, including juglone, attenuated MPP(+)-induced Pin1 up-regulation, α-synuclein aggregation, caspase-3 activation, and cell death. Furthermore, juglone treatment in the MPTP mouse model of PD suppressed Pin1 levels and improved locomotor deficits, dopamine depletion, and nigral dopaminergic neuronal loss. Collectively, our findings demonstrate for the first time that Pin1 is up-regulated in PD and has a pathophysiological role in the nigrostriatal dopaminergic system and suggest that modulation of Pin1 levels may be a useful translational therapeutic strategy in PD.

  2. Pancreatic stone protein/regenerating protein (PSP/reg): a novel secreted protein up-regulated in type 2 diabetes mellitus.

    Yang, Jiayue; Li, Ling; Raptis, Dimitri; Li, Xiaoshan; Li, Fengfei; Chen, Bijun; He, Jiajia; Graf, Rolf; Sun, Zilin

    2015-04-01

    Type 2 diabetes mellitus (T2DM) has insulin resistance (IR) or reduced β-cell mass, partially due to an increased β-cell apoptosis rate. Pancreatic stone protein/regenerating protein (PSP/reg) is a secretory protein produced in the pancreas and up-regulated dramatically during pancreatic disease. Recent studies revealed that β-cells undergoing apoptosis induce PSP/reg expression in surviving neighboring cells. Further experiments demonstrated that PSP/reg was elevated during disease progression in type 1 diabetes mellitus (T1DM). However, the association between PSP/reg and T2DM patients is unknown. The aim of this pilot study was to investigate PSP/reg in different clinical stages of T2DM and evaluate its correlation with chronic complications of diabetes. A total of 1,121 participants (479 males, 642 females; age range 23-80 years) were enrolled in this study. PSP/reg serum values were measured by a newly developed enzyme-linked immunosorbent assay (ELISA). We analyzed its correlation with clinical and biochemical parameters in subjects with T2DM at different clinical phases. Statistical analyses were conducted using SPSS 17.0 software. Correlations of PSP/reg and clinical parameters were performed using Spearman's rank correlation coefficient. Differences between groups were determined by Nemenyi test. PSP/reg was elevated in high-risk and impaired glucose regulation (IGR) patients (pPSP/reg was significantly up-regulated in newly diagnosed T2DM patients and long-term diabetes patients with complications (pPSP/reg levels correlated with the duration of diabetes (pPSP/reg is significantly up-regulated in T2DM patients, and PSP/reg levels are related to the duration of diabetes. Therefore, PSP/reg might be useful as a predictor of T2DM and disease progression.

  3. A novel brain-enriched E3 ubiquitin ligase RNF182 is up regulated in the brains of Alzheimer's patients and targets ATP6V0C for degradation

    Sikorska Marianna

    2008-02-01

    Full Text Available Abstract Background Alterations in multiple cellular pathways contribute to the development of chronic neurodegeneration such as a sporadic Alzheimer's disease (AD. These, in turn, involve changes in gene expression, amongst which are genes regulating protein processing and turnover such as the components of the ubiquitin-proteosome system. Recently, we have identified a cDNA whose expression was altered in AD brains. It contained an open reading frame of 247 amino acids and represented a novel RING finger protein, RNF182. Here we examined its biochemical properties and putative role in brain cells. Results RNF182 is a low abundance cytoplasmic protein expressed preferentially in the brain. Its expression was elevated in post-mortem AD brain tissue and the gene could be up regulated in vitro in cultured neurons subjected to cell death-inducing injuries. Subsequently, we have established that RNF182 protein possessed an E3 ubiquitin ligase activity and stimulated the E2-dependent polyubiquitination in vitro. Yeast two-hybrid screening, overexpression and co-precipitation approaches revealed, both in vitro and in vivo, an interaction between RNF182 and ATP6V0C, known for its role in the formation of gap junction complexes and neurotransmitter release channels. The data indicated that RNF182 targeted ATP6V0C for degradation by the ubiquitin-proteosome pathway. Overexpression of RNF182 reduced cell viability and it would appear that by itself the gene can disrupt cellular homeostasis. Conclusion Taken together, we have identified a novel brain-enriched RING finger E3 ligase, which was up regulated in AD brains and neuronal cells exposed to injurious insults. It interacted with ATP6V0C protein suggesting that it may play a very specific role in controlling the turnover of an essential component of neurotransmitter release machinery.

  4. A novel action mechanism for MPT0G013, a derivative of arylsulfonamide, inhibits tumor angiogenesis through up-regulation of TIMP3 expression.

    Wang, Chih-Ya; Liou, Jing-Ping; Tsai, An-Chi; Lai, Mei-Jung; Liu, Yi-Min; Lee, Hsueh-Yun; Wang, Jing-Chi; Pan, Shiow-Lin; Teng, Che-Ming

    2014-10-30

    Tissue inhibitors of metalloproteinases 3 (TIMP3) were originally characterized as inhibitors of matrix metalloproteinases (MMPs), acting as potent antiangiogenic proteins. In this study, we demonstrated that the arylsulfonamide derivative MPT0G013 has potent antiangiogenic activities in vitro and in vivo viainducing TIMP3 expression. Treatments with MPT0G013 significantly inhibited endothelial cell functions, such as cell proliferation, migration, and tube formation, as well as induced p21 and cell cycle arrest at the G0/G1 phase. Subsequent microarray analysis showed significant induction of TIMP3 gene expression by MPT0G013, and siRNA-mediated blockage of TIMP3 up-regulation abrogated the antiangiogenic activities of MPT0G013 and prevented inhibition of p-AKT and p-ERK proteins. Importantly, MPT0G013 exhibited antiangiogenic activities in in vivo Matrigel plug assays, inhibited tumor growth and up-regulated TIMP3 and p21 proteins in HCT116 mouse xenograft models. These data suggest potential therapeutic application of MPT0G013 for angiogenesis-related diseases such as cancer.

  5. Quantitative Glycoproteomic Analysis Identifies Platelet-Induced Increase of Monocyte Adhesion via the Up-Regulation of Very Late Antigen 5.

    Huang, Jiqing; Kast, Juergen

    2015-08-07

    Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.

  6. Fisetin inhibits osteoclastogenesis through prevention of RANKL-induced ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes.

    Sakai, Eiko; Shimada-Sugawara, Megumi; Yamaguchi, Yu; Sakamoto, Hiroshi; Fumimoto, Reiko; Fukuma, Yutaka; Nishishita, Kazuhisa; Okamoto, Kuniaki; Tsukuba, Takayuki

    2013-01-01

    Osteoclasts (OCLs) are multinucleated bone-resorbing cells that are differentiated by stimulation with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor. We recently demonstrated that regulation of heme-oxygenase 1 (HO-1), a stress-induced cytoprotective enzyme, also functions in OCL differentiation. In this study, we investigated effects of fisetin, a natural bioactive flavonoid that has been reported to induce HO-1 expression, on the differentiation of macrophages into OCLs. Fisetin inhibited the formation of OCLs in a dose-dependent manner and suppressed the bone-resorbing activity of OCLs. Moreover, fisetin-treated OCLs showed markedly decreased phosphorylation of extracellular signal-regulated kinase, Akt, and Jun N-terminal kinase, but fisetin did not inhibit p38 phosphorylation. Fisetin up-regulated mRNA expression of phase II antioxidant enzymes including HO-1 and interfered with RANKL-mediated reactive oxygen species (ROS) production. Studies with RNA interference showed that suppression of NF-E2-related factor 2 (Nrf2), a key transcription factor for phase II antioxidant enzymes, rescued fisetin-mediated inhibition of OCL differentiation. Furthermore, fisetin significantly decreased RANKL-induced nuclear translocation of cFos and nuclear factor of activated T cells cytoplasmic-1 (NFATc1), which is a transcription factor critical for osteoclastogenic gene regulation. Therefore, fisetin inhibits OCL differentiation through blocking RANKL-mediated ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes.

  7. Up-regulation of Raf kinase inhibitor protein enhances chemosensitivity of cervical cancer cell

    Xiao Chu; Xinqiang Ji; Mingcui Wang; Wenqing Zhang; Hui Ou; Chong Li

    2014-01-01

    Objective:The purpose of the study is to investigate the ef ects of up-regulation of Raf kinase inhibitor protein (RKlP) on the chemosensitivity of cervical cancer Hela cells. Methods:Eukaryotic expression plasmid pcDNA3.1(+)-ssRKIP containing human overal length RKIPcDNA was transfected into cervical cancer Hela cellby lipofectin assay, establishing a stable cellline containing a target gene by G418. Expression of RKIP in Hela cells was measured by Western blot analysis. After treatment with cisplatin of dif erent concentrations and intervals of time, the ef ect of RKIP on the proliferation of Hela cells was evaluated by MTT method. The flow cytometry was used to investigate whether the RKIP could inhibit apoptosis in Hela cells induced by cisplatin. Results:The expression of RKIP in Hela cells transfected with pcDNA3.1-ssRKIP was increased obviously. After dif erent concentrations of cisplatin treatment cells for 24, 48 and 72 h, the growth inhibition rate in Hela cells transfected with pcDNA3.1-ssRKIP was significantly higher than in control cells (P<0.05). With 5μg/mL cisplatin treatment for 24 h, pcDNA3.1-ssRKIP-transfected Hela cells had an obviously higher percentage of apoptosis (23.2 ± 0.24)%than non-transfected cells (12.4 ± 0.31)%and empty vector-transfected cells (13.4 ± 0.47)%. Without treatment of cisplatin, the percentage of apoptosis for Hela cells transfected with pcDNA3.1-ssRKIP was (5.7 ± 0.12)%, which was stil higher than those of the non-transfected cells (2.9 ± 0.21)%and empty vector-transfected cells (3 ± 0.08)%. Conclusion:Higher expres-sion of RKIP gene can improve chemosensitivitv of cervical cancer Hela cells to cisplatin.

  8. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    Mota, Alba, E-mail: amota@iib.uam.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Jiménez-Garcia, Lidia, E-mail: ljimenez@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Herránz, Sandra, E-mail: sherranz@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Heras, Beatriz de las, E-mail: lasheras@ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain)

    2015-08-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  9. Stress hormone epinephrine enhances adipogenesis in murine embryonic stem cells by up-regulating the neuropeptide Y system.

    Ruijun Han

    Full Text Available Prenatal stress, psychologically and metabolically, increases the risk of obesity and diabetes in the progeny. However, the mechanisms of the pathogenesis remain unknown. In adult mice, stress activates NPY and its Y2R in a glucocorticoid-dependent manner in the abdominal fat. This increased adipogenesis and angiogenesis, leading to abdominal obesity and metabolic syndrome which were inhibited by intra-fat Y2R inactivation. To determine whether stress elevates NPY system and accelerates adipogenic potential of embryo, here we "stressed" murine embryonic stem cells (mESCs in vitro with epinephrine (EPI during their adipogenic differentiation. EPI was added during the commitment stage together with insulin, and followed by dexamethasone in the standard adipogenic differentiation medium. Undifferentiated embryonic bodies (EBs showed no detectable expression of NPY. EPI markedly up-regulated the expression NPY and the Y1R at the commitment stage, followed by increased Y2R mRNA at the late of the commitment stage and the differentiation stage. EPI significantly increased EB cells proliferation and expression of the preadipocyte marker Pref-1 at the commitment stage. EPI also accelerated and amplified adipogenic differentiation detected by increasing the adipocyte markers FABP4 and PPARγ mRNAs and Oil-red O-staining at the end of the differentiation stage. EPI-induced adipogenesis was completely prevented by antagonists of the NPY receptors (Y1R+Y2R+Y5R, indicating that it was mediated by the NPY system in mESC's. Taken together, these data suggest that stress may play an important role in programming ESCs for accelerated adipogenesis by altering the stress induced hormonal regulation of the NPY system.

  10. Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression

    Hasegawa Shunsuke

    2009-03-01

    Full Text Available Abstract Background Previous studies have demonstrated essential roles for alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaMKII in learning, memory and long-term potentiation (LTP. However, previous studies have also shown that alpha-CaMKII (+/- heterozygous knockout mice display a dramatic decrease in anxiety-like and fearful behaviors, and an increase in defensive aggression. These findings indicated that alpha-CaMKII is important not only for learning and memory but also for emotional behaviors. In this study, to understand the roles of alpha-CaMKII in emotional behavior, we generated transgenic mice overexpressing alpha-CaMKII in the forebrain and analyzed their behavioral phenotypes. Results We generated transgenic mice overexpressing alpha-CaMKII in the forebrain under the control of the alpha-CaMKII promoter. In contrast to alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in anxiety-like behaviors in open field, elevated zero maze, light-dark transition and social interaction tests, and a decrease in locomotor activity in their home cages and novel environments; these phenotypes were the opposite to those observed in alpha-CaMKII (+/- heterozygous knockout mice. In addition, similarly with alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in aggression. However, in contrast to the increase in defensive aggression observed in alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in offensive aggression. Conclusion Up-regulation of alpha-CaMKII expression in the forebrain leads to an increase in anxiety-like behaviors and offensive aggression. From the comparisons with previous findings, we suggest that the expression levels of alpha-CaMKII are associated with the state of emotion; the expression level of alpha-CaMKII positively correlates with the anxiety state and strongly affects

  11. Wnt/β-catenin signaling regulates Helicoverpa armigera pupal development by up-regulating c-Myc and AP-4.

    Chen, Wei; Xu, Wei-Hua

    2014-10-01

    Seasonally changing environmental conditions perceived by insect brains can be converted into hormonal signals that prompt insects to make a decision to develop or enter developmental arrest (diapause). Diapause is a complex physiological response, and many signaling pathways may participate in its regulation. However, little is known about these regulatory pathways. In this study, we cloned four genes related to the Wnt/β-catenin signaling pathway from Helicoverpa armigera, a pupal diapause species. Western blotting shows that expression of Har-Wnt1, Har-β-catenin, and Har-c-Myc are higher in non-diapause pupal brains than in diapause-destined brains. Har-Wnt1 can promote the accumulation of Har-β-catenin in the nucleus, and Har-β-catenin in turn increases the expression of Har-c-Myc. The blockage of Wnt/β-catenin signaling by the inhibitor XAV939 significantly down-regulates Har-β-catenin and Har-c-Myc expression and delays pupal development, suggesting that the Wnt/β-catenin pathway functions in insect development. Furthermore, Har-c-Myc binds to the promoter of Har-AP-4 and regulates its expression. It has been reported that Har-AP-4 activates diapause hormone (DH) expression and that DH up-regulates the growth hormone ecdysteroid for pupal development. Thus, pupal development is regulated by Wnt/β-catenin signaling through the pathway Wnt-β-catenin-c-Myc-AP-4-DH-ecdysteroid. In contrast, the down-regulation of Wnt/β-catenin signaling is likely to induce insects to enter diapause.

  12. Tickling stimulation causes the up-regulation of the kallikrein family in the submandibular gland of the rat.

    Yamamuro, Takuya; Hori, Miyo; Nakagawa, Yoshimi; Hayashi, Takashi; Sakamoto, Shigeko; Ohnishi, Junji; Takeuchi, Shino; Mihara, Yuko; Shiga, Takashi; Murakami, Kazuo; Urayama, Osamu

    2013-01-01

    We recently showed that tactile stimulation (tickling) accompanied by positive emotion altered the expression of many genes in the rat hypothalamus (Hori et al., 2009 [15]). In this study, the effect of repeated tickling on gene expressions of the rat salivary gland was examined. After 4-week stimulation, several genes of the kallikrein (Klk) family were remarkably up-regulated and the alpha-amylase (amylase) gene was down-regulated in DNA microarray analysis. In quantitative analysis using real-time PCR of the submandibular gland of the rats tickled for 2 weeks, mRNAs of Klk1, Klk2 (Klk1c2, Tonin), Klk7 (Klk1l), Klk1b3 (Nerve growth factor, gamma), Klk1c10, Klks3 (Klk1c9) and GK11 were significantly 2-5-fold increased among 18 members of the Klk gene family examined and the submandibular amylase was decreased compared with the lightly touched and untouched control rats. In immunoblot analysis the increase in Klk7 protein was observed in the whole cell lysate fraction of the submandibular gland. In immunohistochemical analysis with anti-Klk7 polyclonal antibody, the immunostain was increased in duct cells of the submandibular gland of the tickled rat when compared with the lightly touched and untouched control rats. These results suggest that tactile sensory processing in the central nervous system affects the gene expression in the peripheral tissue probably via hormonal and/or autonomic neural activities. Submandibular Klks may be biochemical markers indicating positive emotional states.

  13. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma.

    Zha, S; Gage, W R; Sauvageot, J; Saria, E A; Putzi, M J; Ewing, C M; Faith, D A; Nelson, W G; De Marzo, A M; Isaacs, W B

    2001-12-15

    Cyclooxygenase-2 (COX-2) is the inducible isoform of the rate-limiting enzymes that convert arachidonic acid to proinflammatory prostaglandins as well as a primary target for nonsteroidal anti-inflammatory drugs. Accumulating evidence suggests that up-regulation of COX-2 is associated with carcinogenesis in multiple organ systems including the large bowel, lung, breast, and prostate. In this report, we examine the expression of COX-2 protein and mRNA in prostate tissue containing various lesions and in prostate cancer cell lines. In the cell lines, LNCaP, DU145, PC-3, and TSU, COX-2 protein expression was undetectable under basal conditions but could be induced transiently by phorbol ester treatment in PC-3 and TSU cells, but not in DU145 and LNCaP cells. Immunohistochemical analysis of 144 human prostate cancer cases suggested that, in contrast to several previous reports, there was no consistent overexpression of COX-2 in established prostate cancer or high-grade prostatic intraepithelial neoplasia, as compared with adjacent normal prostate tissue. Positive staining was seen only in scattered cells (prostatic carcinogenesis. Staining was also seen at times in macrophages. Western blotting and quantitative RT-PCR analyses confirmed these patterns of expression. These results suggest that if nonsteroidal anti-inflammatory drugs are indeed chemopreventive and/or chemotherapeutic for prostate cancer, their effects are likely to be mediated by modulating COX-2 activity in non-PCa cells (either inflammatory cells or atrophic epithelial cells) or by affecting a COX-2-independent pathway.

  14. Slug signaling is up-regulated by CCL21/CCR7 [corrected] to induce EMT in human chondrosarcoma.

    Li, Guosong; Yang, Yanjun; Xu, Siliang; Ma, Lifeng; He, Mingtang; Zhang, Ziqing

    2015-02-01

    In recent decades, the CXC chemokine receptor 7 (CCR7) [corrected] and its ligand CCL21 have been extensively reported to be associated with tumorigenesis. Meanwhile, Slug signaling induces the epithelial-mesenchymal transition (EMT) process in chondrosarcoma development. In the present study, we explored the functions of CCL21/CCR7 [corrected] in Slug-mediated EMT in the chondrosarcoma. We analyzed protein expression of CCR7 [corrected] and Slug in human chondrosarcoma samples. Effects of CCR7 [corrected] on chondrosarcoma cells were assessed by in vitro assays. Additionally, CCR7 [corrected] pathways were further investigated by pharmacological and genetic approaches. We found that the altered CCR7 [corrected] (81.7 %) and Slug (85.0 %) expression in human chondrosarcoma tissues were significantly associated with grade, recurrence, and 5-year overall survival. According to in vitro assays, CCL21 stimulation induced the expression of phosph-ERK, phosph-AKT, Slug and N-cadherin in SW1353 cells, while the expression of E-cadherin was down-regulated. Furthermore, Slug signaling modulated E- to N-cadherin switch, which was influenced by the kinase inhibitor PD98059 and LY294002. In addition, the genetic silencing of Slug inhibited the capacity of migration and invasion of SW1353 cells. In conclusion, CCL21/CCR7 [corrected] pathway activates ERK and PI3K/AKT signallings to up-regulate Slug pathway, leading to the occurrence of EMT process in human chondrosarcoma. This study lays a new foundation for molecule-targeted therapy of human chondrosarcoma.

  15. CXCR3 Requirement for the Interleukin-13-Mediated Up-Regulation of Interleukin-13Rα2 in Pulmonary Fibroblasts.

    Barnes, Jennifer C; Lumsden, Robert V; Worrell, Julie; Counihan, Ian P; O'Beirne, Sarah L; Belperio, John A; Fabre, Aurelie; Donnelly, Seamas C; Boylan, Denise; Kane, Rosemary; Keane, Michael P

    2015-08-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by fibrosis and abnormal vascularity. IL-13, a profibrotic cytokine that plays a role in IPF, functions through the Jak/STAT pathway after binding to the IL-13 receptor α1 (IL-13Rα1)/IL-4Rα complex. IL-13 also binds to IL-13Rα2, which has been thought to function as a nonsignaling decoy receptor, although possible signaling roles of this receptor have been proposed. CXCR3 and its IFN-inducible ligands-CXCL9, CXCL10, and CXCL11-have been implicated in vascular remodeling and fibroblast motility during the development of IPF. In this study, CXCR3 expression was demonstrated in cultured pulmonary fibroblasts from wild-type BALB/c mice and was found to be necessary for the IL-13-mediated gene and protein up-regulation of IL-13Rα2. In fibroblasts from CXCR3-deficient mice, STAT6 activation was prolonged. This study is the first to demonstrate the expression of CXCR3 in fibroblasts and its association with the expression of IL-13Rα2. Taken together, the results from this study point strongly to a requirement for CXCR3 for IL-13-mediated IL-13Rα2 gene expression. Understanding the function of CXCR3 in IL-13-mediated lung injury may lead to novel approaches to combat the development of pulmonary fibrosis, whether by limiting the effects of IL-13 or by manipulation of angiostatic pathways. The elucidation of the complex relationship between these antifibrotic receptors and manipulation of the CXCR3-mediated regulation of IL-13Rα2 may represent a novel therapeutic modality in cases of acute lung injury or chronic inflammation that may progress to fibrosis.

  16. Up-regulation of K{sub ir}2.1 by ER stress facilitates cell death of brain capillary endothelial cells

    Kito, Hiroaki [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Yamazaki, Daiju [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Biological Chemistry, Kyoto University, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Ohya, Susumu; Yamamura, Hisao [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2011-07-29

    Highlights: {yields} We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. {yields} The ER stress facilitated the expression of inward rectifier K{sup +} channel (K{sub ir}2.1) and induced sustained membrane hyperpolarization. {yields} The membrane hyperpolarization induced sustained Ca{sup 2+} entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. {yields} The K{sub ir}2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K{sup +} channel (K{sub ir}2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K{sub ir} channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca{sup 2+} concentration due to Ca{sup 2+} influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K{sub ir}2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.

  17. Heparins with reduced anti-coagulant activity reduce myocardial reperfusion injury.

    Barry, William H; Kennedy, Thomas P

    2011-05-01

    Heparin which is desulfated at the 2-O and 3-O positions (ODSH) has reduced anti-coagulant properties, and reduced interaction with heparin antibodies. Because of the reduced anti-coagulant effect, ODSH can be safely administered to animals and humans intravenously at doses up to 20 mg/kg, resulting in a serum concentration of up to 250µg/ml. Administration of ODSH causes a 35% reduction in infarct size in dogs and pigs subjected to coronary artery occlusion and reperfusion when given 5 min before reperfusion. ODSH has anti-inflamatory effects, manifest as a decrease in neutrophil infiltration into ischemic tissue at high doses, but this effect does not entirely account for the reduction in infarct size. ODSH decreases Na(+) and Ca(2+) loading in isolated cardiac myocytes subjected to simulated ischemia. This effect appears due to an ODSH-induced reduction in an enhanced Na(+) influx via the Na channel in the membrane of cardiac myocyes caused by oxygen radicals generated during ischemia and reperfusion. Reduction in Na(+) influx decreases Ca(2+) loading by reducing Ca2(+) influx via Na/Ca exchange, thus reducing Ca(2+) - dependent reperfusion injury. ODSH does not appear to interact with antibodies to the heparin/platelet factor 4 complex, and does not cause heparin-induced thrombocytopenia. Because of these therapeutic and safety considerations, ODSH would appear to be a promising heparin derivative for prevention of reperfusion injury in humans undergoing thrombolytic or catheter-based reperfusion for acute myocardial infarction. The review article discussed the use of heparin and the discussion of some of the important patents, including: US6489311; US7478358; PCTUS2008070836 and PCTUS2009037836.

  18. Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection

    Samuelian, S.; Kleine, M.; Spira, C.P.; Klein Lankhorst, R.M.; Jung, C.

    2004-01-01

    The cDNA-AFLP technique was used to isolate sugar beet genes up-regulated upon infection with the beet cyst nematode Heterodera schachtii. Hairy root cultures were obtained from resistant plants carrying a Beta procumbens translocation as well as from a non-resistant control. mRNA was isolated from

  19. Maternal obesity is associated with ovarian inflammation and up-regulation of early growth response factor 1

    Obesity impairs reproductive functions through multiple mechanisms, possibly through disruption of ovarian function. We hypothesized that increased adiposity will lead to a pro-inflammatory gene signature and up-regulation of Egr-1 protein in ovaries from obese (OB, n=7) compared to lean (LN, n=10) ...

  20. Safrole oxide induces apoptosis by up-regulating Fas and FasL instead of integrin beta4 in A549 human lung cancer cells.

    Du, AiYing; Zhao, BaoXiang; Miao, JunYing; Yin, DeLing; Zhang, ShangLi

    2006-04-01

    Previously, we found that 3,4-(methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) induced a typical apoptosis in A549 human lung cancer cells by activating caspase-3, -8, and -9. In this study, we further investigated which upstream pathways were activated by safrole oxide during the apoptosis. Immunofluorescence assay combined with laser scanning confocal microscopy revealed that both Fas and Fas ligand (FasL) were up-regulated by the small molecule. In addition, Fas protein distribution was altered, showing a clustering distribution instead of a homogeneous one. Subsequently, Western blot analysis confirmed the up-regulations of Fas and its membrane-binding form of FasL (m-FasL), as well as P53 protein. Conversely, safrole oxide hardly affected integrin beta4 subunit expression or distribution, which was reflected from the data obtained by immunofluorescence assay combined with laser scanning confocal microscopy. The results suggested that Fas/FasL pathway might be involved in safrole oxide-induced apoptosis of A549 cells, while integrin beta4 might be irrelevant to the apoptosis. Nevertheless, we first found the strong expression of integrin beta4 in A549 cells. The study first suggested that safrole oxide might be used as a small molecular promoter of Fas/FasL pathway to elicit apoptosis in A549 cells, which would lay the foundation for us to insight into the new strategies for lung cancer therapy.

  1. Up-Regulation of P21 Inhibits TRAIL-Mediated Extrinsic Apoptosis, Contributing Resistance to SAHA in Acute Myeloid Leukemia Cells

    Xing Wu

    2014-08-01

    Full Text Available Background/Aim: P21, a multifunctional cell cycle-regulatory molecule, regulates apoptotic cell death. In this study we examined the effect of altered p21 expression on the sensitivity of acute myeloid leukemia cells in response to HDAC inhibitor SAHA treatment and investigated the underlying mechanism. Methods: Stably transfected HL60 cell lines were established in RPMI-1640 with supplementation of G-418. Cell viability was measured by MTT assay. Western blot was applied to assess the protein expression levels of target genes. Cell apoptosis was monitored by AnnexinV-PE/7AAD assay. Results: We showed HL60 cells that that didn't up-regulate p21 expression were more sensitive to SAHA-mediated apoptosis than NB4 and U937 cells that had increased p21 level. Enforced expression of p21 in HL60 cells reduced sensitivity to SAHA and blocked TRAIL-mediated apoptosis. Conversely, p21 silencing in NB4 cells enhanced SAHA-mediated apoptosis and lethality. Finally, we found that combined treatment with SAHA and rapamycin down-regulated p21 and enhanced apoptosis in AML cells. Conclusion: We conclude that up-regulated p21 expression mediates resistance to SAHA via inhibition of TRAIL apoptotic pathway. P21 may serve as a candidate biomarker to predict responsiveness or resistance to SAHA-based therapy in AML patients. In addition, rapamycin may be an effective agent to override p21-mediated resistance to SAHA in AML patients.

  2. Piano Playing Reduces Stress More than Other Creative Art Activities

    Toyoshima, Kumiko; Fukui, Hajime; Kuda, Kiyoto

    2011-01-01

    Few studies have been conducted on the physiological effects of creative art activities. In this study, the effects of creative art activities on human stress were investigated, and their effects were compared in 57 healthy college students (27 males and 30 females). Subjects were divided into four groups, each of which participated in 30-minute…

  3. Bim, a proapoptotic protein, up-regulated via transcription factor E2F1-dependent mechanism, functions as a prosurvival molecule in cancer.

    Gogada, Raghu; Yadav, Neelu; Liu, Junwei; Tang, Shaohua; Zhang, Dianmu; Schneider, Andrea; Seshadri, Athul; Sun, Leimin; Aldaz, C Marcelo; Tang, Dean G; Chandra, Dhyan

    2013-01-04

    Proapoptotic Bcl-2 homology 3-only protein Bim plays an important role in Bax/Bak-mediated cytochrome c release and apoptosis. Here, we provide evidence for a novel prosurvival function of Bim in cancer cells. Bim was constitutively overexpressed in multiple prostate and breast cancer cells as well as in primary tumor cells. Quantitative real time PCR analysis showed that Bim was transcriptionally up-regulated. We have identified eight endogenous E2F1-binding sites on the Bim promoter using in silico analysis. Luciferase assay demonstrated that Bim expression was E2F1-dependent as mutation of the E2F1-binding sites on the Bim promoter inhibited luciferase activities. In support, E2F1 silencing led to the loss of Bim expression in cancer cells. Bim primarily localized to mitochondrial and cytoskeleton-associated fractions. Bim silencing or microinjection of anti-Bim antibodies into the cell cytoplasm resulted in cell rounding, detachment, and subsequent apoptosis. We observed up-regulation of prosurvival proteins Bcl-xL and Mcl-1, which sequester Bim in cancer cells. In addition, a phosphorylated form of Bim was also elevated in cancer cells. These findings suggest that the constitutively overexpressed Bim may function as a prosurvival molecule in epithelial cancer cells, and phosphorylation and association with Bcl-xL/Mcl-1 block its proapoptotic functions.

  4. Up-regulation of c-Jun inhibits proliferation and induces apoptosis via caspase-triggered c-Abl cleavage in human multiple myeloma.

    Podar, Klaus; Raab, Marc S; Tonon, Giovanni; Sattler, Martin; Barilà, Daniela; Zhang, Jing; Tai, Yu-Tzu; Yasui, Hiroshi; Raje, Noopur; DePinho, Ronald A; Hideshima, Teru; Chauhan, Dharminder; Anderson, Kenneth C

    2007-02-15

    Here we show the antimyeloma cytotoxicity of adaphostin and carried out expression profiling of adaphostin-treated multiple myeloma (MM) cells to identify its molecular targets. Surprisingly, c-Jun was the most up-regulated gene even at the earliest point of analysis (2 h). We also observed adaphostin-induced c-Abl cleavage in immunoblot analysis. Proteasome inhibitor bortezomib, but not melphalan or dexamethasone, induced similar effects, indicating unique agent-dependent mechanisms. Using caspase inhibitors, as well as caspase-resistant mutants of c-Abl (TM-c-Abl and D565A-Abl), we then showed that c-Abl cleavage in MM cells requires caspase activity. Importantly, both overexpression of the c-Abl fragment or c-Jun and knockdown of c-Abl and c-Jun expression by small interfering RNA confirmed that adaphostin-induced c-Jun up-regulation triggers downstream caspase-mediated c-Abl cleavage, inhibition of MM cell growth, and induction of apoptosis. Finally, our data suggest that this mechanism may not only be restricted to MM but may also be important in a broad range of malignancies including erythroleukemia and solid tumors.

  5. SDF-1/CXCR4 Axis Regulates Cell Cycle Progression and Epithelial-Mesenchymal Transition via Up-regulation of Survivin in Glioblastoma.

    Liao, Anyan; Shi, Ranran; Jiang, Yuliang; Tian, Suqing; Li, Panpan; Song, Fuxi; Qu, Yalan; Li, Jinna; Yun, Haiqin; Yang, Xiangshan

    2016-01-01

    Stromal cell-derived factor 1 (SDF-1)/CXCR4 ligand-receptor axis is widely recommended as an attractive target for cancer therapy. Meanwhile, epithelial-mesenchymal transition (EMT) process is linked to disease pathophysiology. As one of inhibitors of apoptosis proteins, survivin is implicated in the onset and development of cancer. In the present study, we tried to determine the cause-effect associations between SDF-1/CXCR4 axis and survivin expression in glioblastoma U-251 cell line. Survivin activation and inhibition were induced with exogenous SDF-1 and survivin small interfering RNA (survivin siRNA), respectively. Western blot was used to detect relevant proteins in SDF-1/CXCR4 axis. Western blot analysis revealed that survivin expression in U-251 increased in a dose- and time-dependent manner in response to SDF-1 treatment. However, the interference with MEK/ERK and PI3K/AKT pathway prohibited SDF-1-induced survivin up-regulation. Importantly, survivin knockdown abrogated cell cycle progression and the expression of snail and N-cadherin, compared with non-transfectants. In conclusion, the present study shows that SDF-1 up-regulates survivin via MEK/ERK and PI3K/AKT pathway, leading to cell cycle progression and EMT occurrence dependent on survivin. The blockade of survivin will allow for the treatment of glioblastoma.

  6. Impaired cognitive control and reduced cingulate activity during mental fatigue

    Lorist, MM; Boksem, MAS; Ridderinkhof, KR

    2005-01-01

    Neurocognitive mechanisms underlying the effects of mental fatigue are poorly understood. Here, we examined whether error-related brain activity, indexing performance monitoring by the anterior cingulate cortex (ACC), and strategic behavioural adjustments were modulated by mental fatigue, as induced

  7. Localization of a filarial phosphate permease that is up-regulated in response to depletion of essential Wolbachia endobacteria.

    Arumugam, Sridhar; Hoerauf, Achim; Pfarr, Kenneth M

    2014-03-01

    Wolbachia of filarial nematodes are essential, obligate endobacteria. When depleted by doxycycline worm embryogenesis, larval development and worm survival are inhibited. The molecular basis governing the endosymbiosis between Wolbachia and their filarial host is still being deciphered. In rodent filarial nematode Litomosoides sigmodontis, a nematode encoded phosphate permease gene (Ls-ppe-1) was up-regulated at the mRNA level in response to Wolbachia depletion and this gene promises to have an important role in Wolbachia-nematode endosymbiosis. To further characterize this gene, the regulation of phosphate permease during Wolbachia depletion was studied at the protein level in L. sigmodontis and in the human filaria Onchocerca volvulus. And the localization of phosphate permease (PPE) and Wolbachia in L. sigmodontis and O. volvulus was investigated in untreated and antibiotic treated worms. Depletion of Wolbachia by tetracycline (Tet) resulted in up-regulation of Ls-ppe-1 in L. sigmodontis. On day 36 of Tet treatment, compared to controls (Con), >98% of Wolbachia were depleted with a 3-fold increase in mRNA levels of Ls-ppe-1. Anti-Ls-PPE serum used in Western blots showed up-regulation of Ls-PPE at the protein level in Tet worms on day 15 and 36 of treatment. Immunohistology revealed the localization of Wolbachia and Ls-PPE in the embryos, microfilariae and hypodermis of L. sigmodontis female worms and up-regulation of Ls-PPE in response to Wolbachia depletion. Expression of O. volvulus phosphate permease (Ov-PPE) studied using anti-Ov-PPE serum, showed up-regulation of Ov-PPE at the protein level in doxycycline treated Wolbachia depleted O. volvulus worms and immunohistology revealed localization of Ov-PPE and Wolbachia and up-regulation of Ov-PPE in the hypodermis and embryos of doxycycline treated worms. Ls-PPE and Ov-PPE are upregulated upon Wolbachia depletion in same tissues and regions where Wolbachia are located in untreated worms, reinforcing a link

  8. Structural Basis for Reduced FGFR2 Activity in LADD Syndrome: Implications for FGFR Autoinhibition and Activation

    Lew,E.; Bae, J.; Rohmann, E.; Wollnik, B.; Schlessinger, J.

    2007-01-01

    Mutations in fibroblast growth factor receptor 2 (FGFR2) and its ligand, FGF10, are known to cause lacrimo-auriculo-dento-digital (LADD) syndrome. Multiple gain-of-function mutations in FGF receptors have been implicated in a variety of severe skeletal disorders and in many cancers. We aimed to elucidate the mechanism by which a missense mutation in the tyrosine kinase domain of FGFR2, described in the sporadic case of LADD syndrome, leads to reduced tyrosine kinase activity. In this report, we describe the crystal structure of a FGFR2 A628T LADD mutant in complex with a nucleotide analog. We demonstrate that the A628T LADD mutation alters the configuration of key residues in the catalytic pocket that are essential for substrate coordination, resulting in reduced tyrosine kinase activity. Further comparison of the structures of WT FGFR2 and WT FGFR1 kinases revealed that FGFR2 uses a less stringent mode of autoinhibition than FGFR1, which was also manifested in faster in vitro autophosphorylation kinetics. Moreover, the nearly identical conformation of WT FGFR2 kinase and the A628T LADD mutant to either the phosphorylated FGFR2 or FGFR2 harboring pathological activating mutations in the kinase hinge region suggests that FGFR autoinhibition and activation are better explained by changes in the conformational dynamics of the kinase rather than by static crystallographic snapshots of minor structural variations.

  9. Sensory stimuli reduce the dimensionality of cortical activity

    Mazzucato, Luca; Fontanini, Alfredo; La Camera, Giancarlo

    Neural ensembles in alert animals generate complex patterns of activity. Although cortical activity unfolds in a space whose dimension is equal to the number of neurons, it is often restricted to a lower dimensional subspace. Dimensionality is the minimal number of dimensions that accurately capture neural dynamics, and may be related to the computational tasks supported by the neural circuit. Here, we investigate the dimensionality of neural ensembles from the insular cortex of alert rats during periods of `ongoing' (spontaneous) and stimulus-evoked activity. We find that the dimensionality grows with ensemble size, and does so significantly faster during ongoing compared to evoked activity. We explain both results using a recurrent spiking network with clustered architecture, and obtain analytical results on the dependence of dimensionality on ensemble size, number of clusters, and pair-wise noise correlations. The theory predicts a characteristic scaling with ensemble size and the existence of an upper bound on dimensionality, which grows with the number of clusters and decreases with the amount of noise correlations. To our knowledge, this is the first mechanistic model of neural dimensionality in cortex during both spontaneous and evoked activity.

  10. Reduced PKC α Activity Induces Senescent Phenotype in Erythrocytes

    Rukmini B. Govekar

    2012-01-01

    Full Text Available The molecular mechanism mediating expression of senescent cell antigen-aggregated or cleaved band 3 and externalized phosphatidylserine (PS on the surface of aged erythrocytes and their premature expression in certain anemias is not completely elucidated. The erythrocytes with these surface modifications undergo macrophage-mediated phagocytosis. In this study, the role of protein kinase C (PKC isoforms in the expression of these surface modifications was investigated. Inhibition of PKC α by 30 μM rottlerin (R30 and 2.3 nM Gö 6976 caused expression of both the senescent cell marker-externalized PS measured by FACS analysis and aggregated band 3 detected by western blotting. In contrast to this observation, but in keeping with literature, PKC activation by phorbol-12-myristate-13-acetate (PMA also led to the expression of senescence markers. We explain this antithesis by demonstrating that PMA-treated cells show reduction in the activity of PKC α, thereby simulating inhibition. The reduction in PKC α activity may be attributed to the known downregulation of PMA-activated PKC α, caused by its membrane translocation and proteolysis. We demonstrate membrane translocation of PKC α in PMA-treated cells to substantiate this inference. Thus loss of PKC α activity either by inhibition or downregulation can cause surface modifications which can trigger erythrophagocytosis.

  11. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10

    Matsunaga, Toshiyuki, E-mail: matsunagat@gifu-pu.ac.jp [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Morikawa, Yoshifumi; Haga, Mariko; Endo, Satoshi [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Soda, Midori; Yamamura, Keiko [Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); El-Kabbani, Ossama [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Tajima, Kazuo [Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181 (Japan); Ikari, Akira [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Hara, Akira [Faculty of Engineering, Gifu University, Gifu 501-1193 (Japan)

    2014-07-15

    Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-L-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levels of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling. - Highlights: • 9,10-PQ promotes invasion, metastasis and tumorigenicity in lung cancer cells. • The 9,10-PQ-elicited promotion is possibly due to AKR1B10 up-regulation

  12. Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase.

    Park, Chan Sun; Bang, Bo-Ram; Kwon, Hyouk-Soo; Moon, Keun-Ai; Kim, Tae-Bum; Lee, Ki-Young; Moon, Hee-Bom; Cho, You Sook

    2012-12-15

    Recent reports have suggested that metformin has anti-inflammatory and anti-tissue remodeling properties. We investigated the potential effect of metformin on airway inflammation and remodeling in asthma. The effect of metformin treatment on airway inflammation and pivotal characteristics of airway remodeling were examined in a murine model of chronic asthma generated by repetitive challenges with ovalbumin and fungal-associated allergenic protease. To investigate the underlying mechanism of metformin, oxidative stress levels and AMP-activated protein kinase (AMPK) activation were assessed. To further elucidate the role of AMPK, we examined the effect of 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) as a specific activator of AMPK and employed AMPKα1-deficient mice as an asthma model. The role of metformin and AMPK in tissue fibrosis was evaluated using a bleomycin-induced acute lung injury model and in vitro experiments with cultured fibroblasts. Metformin suppressed eosinophilic inflammation and significantly reduced peribronchial fibrosis, smooth muscle layer thickness, and mucin secretion. Enhanced AMPK activation and decreased oxidative stress in lungs was found in metformin-treated asthmatic mice. Similar results were observed in the AICAR-treated group. In addition, the enhanced airway inflammation and fibrosis in heterozygous AMPKα1-deficient mice were induced by both allergen and bleomycin challenges. Fibronectin and collagen expression was diminished by metformin through AMPKα1 activation in cultured fibroblasts. Therefore metformin reduced both airway inflammation and remodeling at least partially through the induction of AMPK activation and decreased oxidative stress. These data provide insight into the beneficial role of metformin as a novel therapeutic drug for chronic asthma.

  13. Up-Regulation of microRNA-210 is Associated with Spermatogenesis by Targeting IGF2 in Male Infertility.

    Tang, Dongdong; Huang, Yuanyuan; Liu, Weiqun; Zhang, Xiansheng

    2016-08-18

    BACKGROUND MicroRNAs (miRNAs) play pivotal roles in spermatogenesis. MicroRNA-210 (miR-210) expression was up-regulated in the testes of sterile men with non-obstructive azoospermia (NOA). However, the underlying mechanisms of miR-210 involved in the spermatogenesis in patients with NOA are unknown. MATERIAL AND METHODS Expression of miR-210 and insulin-like growth factor II (IGF2) in the testes of NOA cases (only including maturation arrest and hypospermatogenesis) were detected in this study. We carried out in vitro experiments to determine if IGF2 was directly targeted by miR-210 in NT2 cells. RESULTS Compared with obstructive azoospermia (OA) as normal control, our results suggest that miR-210 was significantly up-regulated in testis of patients with NOA (Pspermatogenesis by targeting IGF2 in male infertility.

  14. Ischemic postconditioning protects against ischemic brain injury by up-regulation of acid-sensing ion channel 2a

    Wang-sheng Duanmu; Liu Cao; Jing-yu Chen; Hong-fei Ge; Rong Hu; Hua Feng

    2016-01-01

    Ischemic postconditioning renders brain tissue tolerant to brain ischemia, thereby alleviating ischemic brain injury. However, the exact mechanism of action is still unclear. In this study, a rat model of global brain ischemia was subjected to ischemic postconditioning treat-ment using the vessel occlusion method. After 2 hours of ischemia, the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds. This procedure was repeated six times. Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia, and up-regulate acid-sensing ion channel 2a expression at the mRNA and protein level. These ifndings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippo-campus after global brain ischemia, which promotes neuronal tolerance to ischemic brain injury.

  15. Reduced Frontal Activation with Increasing 2nd Language Proficiency

    Stein, Maria; Federspiel, Andrea; Koenig, Thomas; Wirth, Miranka; Lehmann, Christoph; Wiest, Roland; Strik, Werner; Brandeis, Daniel; Dierks, Thomas

    2009-01-01

    The factors influencing the degree of separation or overlap in the neuronal networks responsible for the processing of first and second language are still subject to investigation. This longitudinal study investigates how increasing second language proficiency influences activation differences during lexico-semantic processing of first and second…

  16. Vascular endothelial growth factor up-regulates the expression of intracellular adhesion molecule-1 in retinal endothelial cells via reactive oxygen species, but not nitric oxide

    ZHANG Xiao-ling; WEN Liang; CHEN Yan-jiong; ZHU Yi

    2009-01-01

    Background The vascular endothelial growth factor (VEGF) is involved in the initiation of retinal vascular leakage and nonperfusion in diabetes. The intracellular adhesion molecule-1 (ICAM-1) is the key mediator of the effect of VEGFs on retinal leukostasis. Although the VEGF is expressed in an early-stage diabetic retina, whether it directly up-regulates ICAM-1 in retinal endothelial cells (ECs) is unknown. In this study, we provided a new mechanism to explain that VEGF does up-regulate the expression of ICAM-1 in retinal ECs.Methods Bovine retinal ECs (BRECs) were isolated and cultured. Immunohistochemical staining was performed to identify BRECs. The cultured cells were divided into corresponding groups. Then, VEGF (100 ng/ml) and other inhibitors were used to treat the cells. Cell lysate and the cultured supernatant were collected, and then, the protein level of ICAM-1 and phosphorylation of the endothelial nitric oxide synthase (eNOS) were detected using Western blotting. Griess reaction was used to detect nitric oxide (NO).Results Western blotting showed that the VEGF up-regulated the expression of ICAM-1 protein and increased phosphorylation of the eNOS in retinal ECs. Neither the block of NO nor protein kinase C (PKC) altered the expression of ICAM-1 or the phosphorylation of eNOS. The result of the Western blotting also showed that inhibition of phosphatidylinositol 3-kinase (PI3K) or reactive oxygen species (ROS) significantly reduced the expression of ICAM-1. Inhibition of PI3K also reduced phosphorylation of eNOS. Griess reaction showed that VEGF significantly increased during NO production. When eNOS was blocked by L-NAME or PI3K was blocked by LY294002, the basal level of NO production and the increment of NO caused by VEGF could be significantly decreased.Conclusion ROS-NO coupling in the retinal endothelium may be a new mechanism that could help to explain why VEGF induces ICAM-1 expression and the resulting leukostasis in diabetic retinopathy.

  17. Elevated glutathione levels confer cellular sensitization to cisplatin toxicity by up-regulation of copper transporter hCtr1.

    Chen, Helen H W; Song, Im-Sook; Hossain, Anwar; Choi, Min-Koo; Yamane, Yoshiaki; Liang, Zheng D; Lu, Jia; Wu, Lily Y-H; Siddik, Zahid H; Klomp, Leo W J; Savaraj, Niramol; Kuo, Macus Tien

    2008-09-01

    Previous studies have demonstrated that treating cultured cells with cisplatin (CDDP) up-regulated the expression of glutathione (GSH) and its de novo rate-limiting enzyme glutamate-cysteine ligase (GCL), which consists of a catalytic (GCLC) and a modifier (GCLM) subunit. It has also been shown that many CDDP-resistant cell lines exhibit high levels of GCLC/GCLM and GSH. Because the GSH system is the major intracellular regulator of redox conditions that serve as an important detoxification cytoprotector, these results have been taken into consideration that elevated levels of GCL/GSH are responsible for the CDDP resistance. In contrast to this context, we demonstrated here that overexpression of GSH by transfection with an expression plasmid containing the GCLC cDNA conferred sensitization to CDDP through up-regulation of human copper transporter (hCtr) 1, which is also a transporter for CDDP. Depleting GSH levels in these transfected cells reversed CDDP sensitivity with concomitant reduction of hCtr1 expression. Although rates of copper transport were also up-regulated in the transfected cells, these cells exhibited biochemical signature of copper deficiency, suggesting that GSH functions as an intracellular copper-chelator and that overexpression of GSH can alter copper metabolism. More importantly, our results reveal a new role of GSH in the regulation of CDDP sensitivity. Overproduction of GSH depletes the bioavailable copper pool, leading to up-regulation of hCtr1 and sensitization of CDDP transport and cell killing. These findings also have important implications in that modulation of the intracellular copper pool may be a novel strategy for improving chemotherapeutic efficacy of platinum-based antitumor agents.

  18. Up-regulation of COX-2/PGE2 by endothelin-1 via MAPK-dependent NF-κB pathway in mouse brain microvascular endothelial cells

    Lin Chih-Chung

    2013-01-01

    Full Text Available Abstract Background Endothelin-1 (ET-1 is a proinflammatory mediator and elevated in the regions of several brain injury and inflammatory diseases. The deleterious effects of ET-1 on endothelial cells may aggravate brain inflammation mediated through the regulation of cyclooxygenase-2 (COX-2/prostaglandin E2 (PGE2 system in various cell types. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in brain microvascular endothelial cells remain unclear. Herein we investigated the effects of ET-1 in COX-2 regulation in mouse brain microvascular endothelial (bEnd.3 cells. Results The data obtained with Western blotting, RT-PCR, and immunofluorescent staining analyses showed that ET-1-induced COX-2 expression was mediated through an ETB-dependent transcriptional activation. Engagement of Gi- and Gq-protein-coupled ETB receptors by ET-1 led to phosphorylation of ERK1/2, p38 MAPK, and JNK1/2 and then activated transcription factor NF-κB. Moreover, the data of chromatin immunoprecipitation (ChIP and promoter reporter assay demonstrated that the activated NF-κB was translocated into nucleus and bound to its corresponding binding sites in COX-2 promoter, thereby turning on COX-2 gene transcription. Finally, up-regulation of COX-2 by ET-1 promoted PGE2 release in these cells. Conclusions These results suggested that in mouse bEnd.3 cells, activation of NF-κB by ETB-dependent MAPK cascades is essential for ET-1-induced up-regulation of COX-2/PGE2 system. Understanding the mechanisms of COX-2 expression and PGE2 release regulated by ET-1/ETB system on brain microvascular endothelial cells may provide rationally therapeutic interventions for brain injury or inflammatory diseases.

  19. Up-regulation and subcellular localization of hnRNP A2/B1 in the development of hepatocellular carcinoma

    Fan Guocai

    2010-07-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is one of the world's leading causes of death among cancer patients. It is important to find a new biomarker that diagnoses HCC and monitors its treatment. In our previous work, we screened a single-chain antibody (scFv N14, which could specifically recognize human HepG2 HCC cells but not human non-cancerous liver LO2 cells. However, the antigen it recognized in the cells remained unknown. Methods Recombinant scFv N14 antibody was expressed as an active antibody. Using this antibody with a combination of immunological and proteomic approaches, we identified the antigen of scFv N14 antibody as the heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1. The expression of hnRNP A2/B1 in HCC cells was then investigated by semi-quantitative RT-PCR and immunohistochemistry. Results We found that the up-regulation of hnRNP A2/B1 was measured at both transcriptional and translational levels in rat HCC cells but not in rat hepatic cells. We also found that in various human hepatic tissues, hnRNP A2/B1 was highly expressed in both human hepatitis virus positive liver tissues and human HCC tissues but not in normal liver tissues. Interestingly, we observed that the localization of hnRNP A2/B1 in HCC cells was altered during the development of HCC. In human hepatitis virus infected tissues hnRNP A2/B1 resides exclusively in the nuclei of hepatocytes. However, when the HCC progressed from a well differentiated to a poorly differentiated stage, hnRNP A2/B1 was increasingly localized in the cytoplasm. In contrast, the HCC tissues with hnRNP A2/B1 highly expressed in the nucleus decreased. Conclusions This work is the first to show that hnRNP A2/B1 is the antigen specifically recognized by the scFv N14 antibody in HCC cells. The over-expression of hnRNP A2/B1 was confirmed in cultured human and rat HCC cell lines, human virus related hepatitis liver tissues and human HCC tissues. The increased localization

  20. BDNF up-regulates TrkB protein and prevents the death of CA1 neurons following transient forebrain ischemia.

    Ferrer, I; Ballabriga, J; Martí, E; Pérez, E; Alberch, J; Arenas, E

    1998-04-01

    BDNF-producing fibroblasts two days before ischemia significantly and specifically prevented nerve cells from dying in the CA1 area of the ipsilateral hippocampus. Cell survival was associated with increased TrkB immunoreactivity as the majority of living cells were TrkB immunoreactive. Thus, our results show that BDNF is able to up-regulate the expression of TrkB in control and pathological states, and that BDNF prevention of neuronal death following transient forebrain ischemia is associated with increased expression of its specific receptor.

  1. Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells

    Omar, Shadia; Clarke, Rebecca; Abdullah, Haniah; Brady, Clare; Corry, John; Winter, Hanagh; Touzelet, Olivier; Power, Ultan F.; Lundy, Fionnuala; McGarvey, Lorcan P. A.

    2017-01-01

    Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough. PMID:28187208

  2. Protracted treatment with MDMA induces heteromeric nicotinic receptor up-regulation in the rat brain: an autoradiography study.

    Ciudad-Roberts, Andrés; Camarasa, Jorge; Pubill, David; Escubedo, Elena

    2014-08-04

    Previous studies indicate that 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) can induce a heteromeric nicotinic acetylcholine receptor (nAChR, mainly of α4β2 subtype) up-regulation. In this study we treated male Sprague-Dawley rats twice-daily for 10 days with either saline or MDMA (7 mg/kg) and sacrificed them the day after to perform [(125)I]Epibatidine binding autoradiograms on serial coronal slices. MDMA induced significant increases in nAChR density in the substantia nigra, ventral tegmental area, nucleus accumbens, olfactory tubercle, anterior caudate-putamen, somatosensory, motor, auditory and retrosplenial cortex, laterodorsal thalamus nuclei, amygdala, postsubiculum and pontine nuclei. These increases ranged from 3% (retrosplenial cortex) to 30 and 34% (amygdala and substantia nigra). No increased α4 subunit immunoreactivity was found in up-regulated areas compared with saline-treated rats, suggesting a post-translational mechanism as occurs with nicotine. The heteromeric nAChR up-regulation in certain areas could account, at least in part, for the reinforcing, sensitizing and psychiatric disorders observed after long-term consumption of MDMA.

  3. Eicosapentaenoic Acid Potentiates Brown Thermogenesis through FFAR4-dependent Up-regulation of miR-30b and miR-378.

    Kim, Jiyoung; Okla, Meshail; Erickson, Anjeza; Carr, Timothy; Natarajan, Sathish Kumar; Chung, Soonkyu

    2016-09-23

    Emerging evidence suggests that n-3 polyunsaturated fatty acids (PUFA) promote brown adipose tissue thermogenesis. However, the underlying mechanisms remain elusive. Here, we hypothesize that n-3 PUFA promotes brown adipogenesis by modulating miRNAs. To test this hypothesis, murine brown preadipocytes were induced to differentiate the fatty acids of palmitic, oleate, or eicosapentaenoic acid (EPA). The increases of brown-specific signature genes and oxygen consumption rate by EPA were concurrent with up-regulation of miR-30b and 378 but not by oleate or palmitic acid. Next, we hypothesize that free fatty acid receptor 4 (Ffar4), a functional receptor for n-3 PUFA, modulates miR-30b and 378. Treatment of Ffar4 agonist (GW9508) recapitulated the thermogenic activation of EPA by increasing oxygen consumption rate, brown-specific marker genes, and miR-30b and 378, which were abrogated in Ffar4-silenced cells. Intriguingly, addition of the miR-30b mimic was unable to restore EPA-induced Ucp1 expression in Ffar4-depleted cells, implicating that Ffar4 signaling activity is required for up-regulating the brown adipogenic program. Moreover, blockage of miR-30b or 378 by locked nucleic acid inhibitors significantly attenuated Ffar4 as well as brown-specific signature gene expression, suggesting the signaling interplay between Ffar4 and miR-30b/378. The association between miR-30b/378 and brown thermogenesis was also confirmed in fish oil-fed C57/BL6 mice. Interestingly, the Ffar4 agonism-mediated signaling axis of Ffar4-miR-30b/378-Ucp1 was linked with an elevation of cAMP in brown adipocytes, similar to cold-exposed or fish oil-fed brown fat. Taken together, our work identifies a novel function of Ffar4 in modulating brown adipogenesis partly through a mechanism involving cAMP activation and up-regulation of miR-30b and miR-378.

  4. Functionally Selective AT(1) Receptor Activation Reduces Ischemia Reperfusion Injury

    Hostrup, Anders; Christensen, Gitte Lund; Bentzen, Bo Hjort;

    2012-01-01

    of the physiological functions of AngII. The AT(1)R mediates its effects through both G protein-dependent and independent signaling, which can be separated by functionally selective agonists. In the present study we investigate the effect of AngII and the ß-arrestin biased agonist [SII]AngII on ischemia......-reperfusion injury in rat hearts. Isolated hearts mounted in a Langendorff perfused rat heart preparations showed that preconditioning with [SII]AngII reduced the infarct size induced by global ischemia from 46±8.4% to 22±3.4%. In contrast, neither preconditioning with AngII nor postconditioning with AngII or [SII...

  5. Recent progress of R and D activities on reduced activation ferritic/martensitic steels

    Huang, Q., E-mail: qunying.huang@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, P.O. Box 1135, Hefei, Anhui 230031 (China); Baluc, N. [CRPP-EPFL, ODGA C110 5232 Villigen PSI (Switzerland); Dai, Y. [LNM, PSI, 5232 Villigen PSI (Switzerland); Jitsukawa, S. [JAEA, 2-4 Shirakata, Tokai-Mura, Ibaraki-Ken 319-1195 (Japan); Kimura, A. [IAE, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Konys, J. [KIT, P.O. Box 3640, 76021 Karlsruhe (Germany); Kurtz, R.J. [PNNL, Richland, WA 99352 (United States); Lindau, R. [KIT, P.O. Box 3640, 76021 Karlsruhe (Germany); Muroga, T. [NIFS, Oroshi, Toki, Gifu 509-5292 (Japan); Odette, G.R. [UCSB, Santa Barbara, CA (United States); Raj, B. [IGCAR, Kalpakkam 603 102 (India); Stoller, R.E.; Tan, L. [ORNL, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Tanigawa, H. [JAEA, Naka, Ibaraki 311-0193 (Japan); Tavassoli, A.-A.F. [DMN/Dir, DEN, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Yamamoto, T. [UCSB, Santa Barbara, CA (United States); Wan, F. [DMPC, USTB, Beijing 100083 (China); Wu, Y. [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, P.O. Box 1135, Hefei, Anhui 230031 (China)

    2013-11-15

    Several types of reduced activation ferritic/martensitic (RAFM) steel have been developed over the past 30 years in China, Europe, India, Japan, Russia and the USA for application in ITER test blanket modules (TBMs) and future fusion DEMO and power reactors. The progress has been particularly important during the past few years with evaluation of mechanical properties of these steels before and after irradiation and in contact with different cooling media. This paper presents recent RAFM steel results obtained in ITER partner countries in relation to different TBM and DEMO options.

  6. Barriers associated with reduced physical activity in COPD patients

    Priscila Batista Amorim

    2014-10-01

    Full Text Available OBJECTIVE: To evaluate the ability of COPD patients to perform activities of daily living (ADL; to identify barriers that prevent these individuals from performing ADL; and to correlate those barriers with dyspnea severity, six-minute walk test (6MWT, and an ADL limitation score. METHODS: In COPD patients and healthy, age-matched controls, the number of steps, the distance walked, and walking time were recorded with a triaxial accelerometer, for seven consecutive days. A questionnaire regarding perceived barriers and the London Chest Activity of Daily Living (LCADL scale were used in order to identify the factors that prevent the performance of ADL. The severity of dyspnea was assessed with two scales, whereas submaximal exercise capacity was determined on the basis of the 6MWT. RESULTS: We evaluated 40 COPD patients and 40 controls. In comparison with the control values, the mean walk time was significantly shorter for COPD patients (68.5 ± 25.8 min/day vs. 105.2 ± 49.4 min/day; p < 0.001, as was the distance walked (3.9 ± 1.9 km/day vs. 6.4 ± 3.2 km/day; p < 0.001. The COPD patients also walked fewer steps/day. The most common self-reported barriers to performing ADL were lack of infrastructure, social influences, and lack of willpower. The 6MWT distance correlated with the results obtained with the accelerometer but not with the LCADL scale results. CONCLUSIONS: Patients with COPD are less active than are healthy adults of a comparable age. Physical inactivity and the barriers to performing ADL have immediate implications for clinical practice, calling for early intervention measures.

  7. Up-regulation of the transient A-type K+ current (IA) in the differentiation of neural stem cells of the early postnatal rat hippocampus

    GUO Hong-bo; HUANG Lian-yan; ZOU Yu-xi; ZOU Fei

    2010-01-01

    Background Neural stem cells (NSCs) not only are essential to cell replacement therapy and transplantation in clinical settings, but also provide a unique model for the research into neurogenesis and epigenesis. However, little attention has been paid to the electrophysiological characterization of NSC development. This work aimed to identify whether the morphological neuronal differentiation process in NSCs included changes in the electrophysiological properties of transient A-type K+ currents (IA).Methods NSCs were isolated from early postnatal rat hippocampus and were multiplied in basic serum-free medium containing basic fibroblast growth factor. Potassium currents were investigated and compared using whole-cell patch-clamp techniques and one-way analysis of variance (ANOVA), respectively.Results Compared with NSC-derived neurons, cloned NSCs (cNSCs) had a more positive resting membrane potential, a higher input resistance, and a lower membrane capacitance. Part of cNSCs and NSC-derived neurons possessed both delayed-rectifier K+ currents (IDR) and IA, steady-state activation of IA in cNSCs (half-maximal activation at (21.34±4.37) mV) occurred at a more positive voltage than in NSC-derived neurons at 1-6 days in vitro (half-maximal activation at (12.85±4.19) mV).Conclusions Our research revealed a developmental up-regulation of the IA component during differentiation of postnatal NSCs. Together with the marked developmental up-regulation of IDR in vitro neuronal differentiation we have previously found, the voltage-gated potassium channels may participate in neuronal maturation process.

  8. Tyrosine kinase Etk/BMX is up-regulated in human prostate cancer and its overexpression induces prostate intraepithelial neoplasia in mouse.

    Dai, Bojie; Kim, Oekyung; Xie, Yingqiu; Guo, Zhiyong; Xu, Kexin; Wang, Bin; Kong, Xiangtian; Melamed, Jonathan; Chen, Hegang; Bieberich, Charles J; Borowsky, Alexander D; Kung, Hsing-Jien; Wei, Guo; Ostrowski, Michael C; Brodie, Angela; Qiu, Yun

    2006-08-15

    The nonreceptor tyrosine kinase Etk/BMX was originally identified from the human prostate xenograft CWR22. Here, we report that Etk is up-regulated in human prostate tumor specimens surveyed. Knocking down Etk expression by a specific small interfering RNA (siRNA) in prostate cancer cells attenuates cell proliferation, suggesting an essential role of Etk for prostate cancer cell survival and growth. Targeted expression of Etk in mouse prostate epithelium results in pathologic changes resembling human prostatic intraepithelial neoplasia, indicating that up-regulation of Etk may contribute to prostate cancer development. A marked increase of luminal epithelial cell proliferation was observed in the Etk transgenic prostate, which may be attributed in part to the elevated activity of Akt and signal transducers and activators of transcription 3 (STAT3). More interestingly, the expression level of acetyltransferase cyclic AMP-responsive element binding protein-binding protein (CBP) is also increased in the Etk transgenic prostate as well as in a prostate cancer cell line overexpressing Etk, concomitant with elevated histone 3 acetylation at lysine 18 (H3K18Ac). Down-modulation of Etk expression by a specific siRNA leads to a decrease of H3 acetylation in prostate cancer cell lines. Our data suggest that Etk may also modulate chromatin remodeling by regulating the activity of acetyltransferases, such as CBP. Given that Etk may exert its effects in prostate through modulation of multiple signaling pathways altered in human prostate cancer, the Etk transgenic mouse model may be a useful tool for studying the functions of Etk and identification of new molecular markers and drug targets relevant to human diseases.

  9. Ellagic acid facilitates indomethacin-induced gastric ulcer healing via COX-2 up-regulation

    Ananya Chatterjee; Sirshendu Chatterjee; Smita Das; Arpita Saha; Subrata Chattopadhyay; Sandip K. Bandyopadhyay

    2012-01-01

    The mechanism of indomethacin-induced gastric ulcer healing by ellagic acid (EA) in experimental mice model is described in our study.Ulcer index (UI) and myeloperoxidase (MPO) activity of the stomach tissues showed maximum ulceration on the third day after indomethacin (18 mg/kg,single dose) administration.Preliminary observation of UI and MPO activity suggests that EA possesses ulcer-healing activity.Other anti-ulcer parameters such as the levels of prostaglandin E2,cyclooxygenase (COX) 1 and 2 enzymes,anti-inflammatory cytokines [interleukin (IL)-4 and -5J,pro-angiogenic factors,e.g.vascular endothelial growth factor,hepatocyte growth factor (HGF),and endothelial growth factor (EGF) were down-regulated by indomethacin.EA (7 mg/kg/day) treatment for 3 days shifted the indomethacin-induced pro-inflammatory biochemical parameters to the healing side.These activities were correlated with the ability of EA to alter the COX-2-dependent healing pathways.The ulcer-healing activity of EA was,however,compromised by pre-administration of the specific COX-2 inhibitor,celecoxib,and NS-398.Taken together,these results suggested that the EA treatment accelerates ulcer healing by inducing IL-4,EGF/HGF levds and enhances COX-2 expression.

  10. UP-REGULATION OF HEPATIC RECEPTOR FOR GROWTH HORMONE IN THE FLOUNDER (PARALICHTHYS OLIVACEUS) AFTER ORAL ADMINISTRATION WITH EXOGENOUS GH

    刘宗柱; 王金宝; 徐永立; 王勇; 张培军

    2001-01-01

    The iodination efficiency of salmon GH (sGH) was 38.82%,using a modification of the chloramine-T method. The specific activity of the 125I-sGH was about 40 μCi/μg protein. The results of binding assay showed a single class of high affinity and low-capacity binding site in flounder liver. Long-term administration with exogenous GH can induce the up-regulation of hepatic GH receptor in total binding capacity though there was no significant difference of association constant among any groups. Con-sidering that there was no significant difference in capacity of free binding sites of livers from control and experimental fish, this result also indicated that the liver from experimental fish, compared to that from control fish, had more occupied binding sites.

  11. Up-regulation of endothelin receptors induced by cigarette smoke--involvement of MAPK in vascular and airway hyper-reactivity

    Zhang, Yaping; Edvinsson, Lars; Xu, Cang-Bao

    2010-01-01

    and airway diseases. In the vasculature and airways, the main functional consequences of up-regulated endothelin receptors by cigarette smoke exposure are enhanced contraction and proliferation of the smooth muscle cells, which subsequently result in abnormal contraction (spasm) and adverse proliferation......Cigarette smoke exposure is well known to cause cardiovascular and airway diseases, both of which are leading causes of death and disability in the world. However, the molecular mechanisms that link cigarette smoke to cardiovascular and airway diseases are not fully understood. Vascular and airway...... (remodeling) of the vasculature and airways. The structural alteration by adverse remodeling involves changes in cell growth, cell death, cell migration, and production or degradation of the extracellular matrix. This review focuses on cigarette smoke exposure that induces activation of intracellular mitogen...

  12. UP-REGULATION OF ANTITHROMBOTIC ECTONUCLEOTIDASES BY ASPIRIN IN HUMAN ENDOTHELIAL-CELLS IN-VITRO

    CHEUNG, PK; VISSER, J; BAKKER, WW

    1994-01-01

    Ecto ATP-diphosphohydrolase (apyrase) activity of human endothelial cells following aspirin treatment has been studied in-vitro. It was shown by HPLC analysis of supernatant samples that pre-incubation of the cultures with aspirin resulted in a significantly increased turnover of supplemented ATP in

  13. TRICLOSAN ALTERS THYROID HORMONES HOMEOSTASIS VIA UP-REGULATION OF HEPATIC CATABOLISM.

    Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a chlorinated phenolic antibacterial compound used in household and hygiene products. The structural similarity of triclosan to thyroid hormones, in vitro studies demonstrating activation of the human pregnane X receptor (PXR)...

  14. The up-regulation of voltage-gated sodium channels subtypes coincides with an increased sodium current in hippocampal neuronal culture model.

    Guo, Feng; Xu, Xiaoxue; Cai, Jiqun; Hu, Huiyuan; Sun, Wei; He, Guilin; Shao, Dongxue; Wang, Lei; Chen, Tianbao; Shaw, Chris; Zhu, Tong; Hao, Liying

    2013-02-01

    Voltage-gated sodium channels (VGSC) have been linked to inherited forms of epilepsy. The expression and biophysical properties of VGSC in the hippocampal neuronal culture model have not been clarified. In order to evaluate mechanisms of epileptogenesis that are related to VGSC, we examined the expression and function of VGSC in the hippocampal neuronal culture model in vitro and spontaneously epileptic rats (SER) in vivo. Our data showed that the peak amplitude of transient, rapidly-inactivating Na(+) current (I(Na,T)) in model neurons was significantly increased compared with control neurons, and the activation curve was shifted to the negative potentials in model neurons in whole cell recording by patch-clamp. In addition, channel activity of persistent, non-inactivating Na(+) current (I(Na,P)) was obviously increased in the hippocampal neuronal culture model as judged by single-channel patch-clamp recording. Furthermore, VGSC subtypes Na(V)1.1, Na(V)1.2 and Na(V)1.3 were up-regulated at the protein expression level in model neurons and SER as assessed by Western blotting. Four subtypes of VGSC proteins in SER were clearly present throughout the hippocampus, including CA1, CA3 and dentate gyrus regions, and neurons expressing VGSC immunoreactivity were also detected in hippocampal neuronal culture model by immunofluorescence. These findings suggested that the up-regulation of voltage-gated sodium channels subtypes in neurons coincided with an increased sodium current in the hippocampal neuronal culture model, providing a possible explanation for the observed seizure discharge and enhanced excitability in epilepsy.

  15. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    Biver, Emmanuel, E-mail: ebiver@yahoo.fr [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Soubrier, Anne-Sophie [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Thouverey, Cyril [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Cortet, Bernard [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Broux, Odile [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Caverzasio, Joseph [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Hardouin, Pierre [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  16. BDNF Up-Regulates α7 Nicotinic Acetylcholine Receptor Levels on Subpopulations of Hippocampal Interneurons

    Massey, Kerri A; Zago, Wagner M.; Berg, Darwin K.

    2006-01-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of α7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the ef...

  17. Effects of over-expression of TLR2 in transgenic goats on pathogen clearance and role of up-regulation of lysozyme secretion and infiltration of inflammatory cells

    Deng Shoulong

    2012-10-01

    Full Text Available Abstract Background Toll-like receptor 2 (TLR2 is important to host recognition of invading gram-positive microbes. In goats, these microbes can cause serious mastitis, anthrax, tetanus, and other problems. Transgenic goats constitutively over-expressing TLR2 in many tissues serve as a suitable model for the study of the role of TLR2 over-expression in bacterial clearance. Results Capra hircus TLR2 over-expression vector (p3S-LoxP-TLR2 was used to generate transgenic goats by egg microinjection. The integration efficiency was 8.57%. Real-time PCR and immunohistochemical results confirmed that the goats over-expressing the TLR2 gene (Tg expressed more TLR2 than wild-type goats (WT. Monocyte-macrophages from the bloodstreams of transgenic goats were stimulated with synthetic bacterial lipoprotein (Pam3CSK4 and by the promotion of interleukin-6 (IL-6 and IL-10 expression in vitro. The oxidative damage was significantly reduced, and lysozyme (LZM secretion was found to be up-regulated. Ear tissue samples from transgenic goats that had been stimulated with Pam3CSK4 via hypodermic injection showed that transgenic individuals can undergo the inflammation response very quickly. Conclusions Over-expression of TLR2 was found to decrease radical damage to host cells through low-level production of NO and MDA and to promote the clearance of invasive bacteria by up-regulating lysozyme secretion and filtration of inflammatory cells to the infected site.

  18. Attenuation of progressive hearing loss in DBA/2J mice by reagents that affect epigenetic modifications is associated with up-regulation of the zinc importer Zip4.

    Hideki Mutai

    Full Text Available Various factors that are important for proper hearing have been identified, including serum levels of zinc. Here we investigated whether epigenetic regulatory pathways, which can be modified by environmental factors, could modulate hearing. RT-PCR detected expression of genes encoding DNA methyltransferase and histone deacetylase (Hdac in the postnatal as well as adult mouse auditory epithelium. DBA/2J mice, which are a model for progressive hearing loss, were injected subcutaneously with one or a combination of the following reagents: L-methionine as a methyl donor, valproic acid as a pan-Hdac inhibitor, and folic acid and vitamin B12 as putative factors involved in age-related hearing loss. The mice were treated from ages 4 to 12 weeks (N ≥ 5, and auditory brainstem response (ABR thresholds were measured at 8, 16, and 32 kHz. Treatment of the mice with a combination of L-methionine and valproic acid (M+V significantly reduced the increase in the ABR threshold at 32 kHz. Treatment with any of these reagents individually produced no such effect. Microarray analyses detected 299 gene probes that were significantly up- or down-regulated in the cochleae of mice treated with M+V compared with the control vehicle-treated mice. Quantitative RT-PCR confirmed significant up-regulation of a zinc importer gene, Zip4, in the cochleae of mice treated with M+V. Immunohistochemistry demonstrated an intense Zip4 signal in cochlear tissues such as the lateral wall, organ of Corti, and spiral ganglion. Finally, mice treated with the Zip4 inducer (--epigallocatechin-3-O-gallate showed a significant reduction in the increase of the ABR threshold at 32 kHz and up-regulation of Zip4 expression in the cochlea. This study suggests that epigenetic regulatory pathways can modify auditory function and that zinc intake in the cochlea via Zip4 mediates maintenance of mammalian hearing.

  19. Attenuation of progressive hearing loss in DBA/2J mice by reagents that affect epigenetic modifications is associated with up-regulation of the zinc importer Zip4.

    Mutai, Hideki; Miya, Fuyuki; Fujii, Masato; Tsunoda, Tatsuhiko; Matsunaga, Tatsuo

    2015-01-01

    Various factors that are important for proper hearing have been identified, including serum levels of zinc. Here we investigated whether epigenetic regulatory pathways, which can be modified by environmental factors, could modulate hearing. RT-PCR detected expression of genes encoding DNA methyltransferase and histone deacetylase (Hdac) in the postnatal as well as adult mouse auditory epithelium. DBA/2J mice, which are a model for progressive hearing loss, were injected subcutaneously with one or a combination of the following reagents: L-methionine as a methyl donor, valproic acid as a pan-Hdac inhibitor, and folic acid and vitamin B12 as putative factors involved in age-related hearing loss. The mice were treated from ages 4 to 12 weeks (N ≥ 5), and auditory brainstem response (ABR) thresholds were measured at 8, 16, and 32 kHz. Treatment of the mice with a combination of L-methionine and valproic acid (M+V) significantly reduced the increase in the ABR threshold at 32 kHz. Treatment with any of these reagents individually produced no such effect. Microarray analyses detected 299 gene probes that were significantly up- or down-regulated in the cochleae of mice treated with M+V compared with the control vehicle-treated mice. Quantitative RT-PCR confirmed significant up-regulation of a zinc importer gene, Zip4, in the cochleae of mice treated with M+V. Immunohistochemistry demonstrated an intense Zip4 signal in cochlear tissues such as the lateral wall, organ of Corti, and spiral ganglion. Finally, mice treated with the Zip4 inducer (-)-epigallocatechin-3-O-gallate showed a significant reduction in the increase of the ABR threshold at 32 kHz and up-regulation of Zip4 expression in the cochlea. This study suggests that epigenetic regulatory pathways can modify auditory function and that zinc intake in the cochlea via Zip4 mediates maintenance of mammalian hearing.

  20. Up-regulation of TRPV1 in mononuclear cells of end-stage kidney disease patients increases susceptibility to N-arachidonoyl-dopamine (NADA)-induced cell death.

    Saunders, Cassandra I; Fassett, Robert G; Geraghty, Dominic P

    2009-10-01

    Transient receptor potential vanilloid (TRPV) 1 channels function as sensors for a variety of noxious and inflammatory signals, including capsaicin, heat and protons, and are up-regulated under inflammatory conditions. As end-stage kidney disease (ESKD) is associated with chronic inflammation, impaired immunity and depressed lymphocyte numbers, we sought to determine whether altered TRPV1 (and related TRPV2) expression in immune cells might be a contributing factor. TRPV1 and TRPV2 mRNA expression in peripheral blood mononuclear cells (PBMC) was similar in controls and ESKD patients by quantitative real-time RT-PCR. However, using immunocytochemistry, TRPV1-immunoreactivity was significantly higher and TRPV2-immunoreactivity was significantly lower in PBMC from ESKD patients compared to controls. The plant-derived TRPV1 agonists, capsaicin and resiniferatoxin (RTX) and the putative endovanilloid/endocannabinoids, N-arachidonoyl-dopamine (NADA) and N-oleoyl-dopamine (OLDA), induced concentration-dependent death of PBMC from healthy donors with a rank order of potency of RTX>NADA>OLDA>capsaicin. TRPV1 (5'-iodoresiniferatoxin) and cannabinoid (CB2; AM630) receptor antagonists blocked the cytotoxic effect of NADA. In subsequent experiments, PBMC from ESKD patients exhibited significantly increased susceptibility to NADA-induced death compared to PBMC from controls. The apparent up-regulation of TRPV1 may be a response to the inflammatory milieu in which PBMC exist in ESKD and may be responsible for the increased susceptibility of these cells to NADA-induced death, providing a possible explanation as to why ESKD patients have reduced lymphocyte counts and impaired immune function. Thus, TRPV1 (and possibly CB2) antagonists may have potential for the treatment of immune dysfunction in ESKD.

  1. BDNF up-regulates alpha7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons.

    Massey, Kerri A; Zago, Wagner M; Berg, Darwin K

    2006-12-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing alpha7 subunits (alpha7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of alpha7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABA(A) receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased alpha7-nAChR clusters were most prominent on interneuron subtypes known to directly innervate excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling alpha7-nAChR levels.

  2. Retinoid X receptor alpha controls innate inflammatory responses through the up-regulation of chemokine expression.

    Núñez, Vanessa; Alameda, Daniel; Rico, Daniel; Mota, Rubén; Gonzalo, Pilar; Cedenilla, Marta; Fischer, Thierry; Boscá, Lisardo; Glass, Christopher K; Arroyo, Alicia G; Ricote, Mercedes

    2010-06-01

    The retinoid X receptor alpha (RXRalpha) plays a central role in the regulation of many intracellular receptor signaling pathways and can mediate ligand-dependent transcription by forming homodimers or heterodimers with other nuclear receptors. Although several members of the nuclear hormone receptor superfamily have emerged as important regulators of macrophage gene expression, the existence in vivo of an RXR signaling pathway in macrophages has not been established. Here, we provide evidence that RXRalpha regulates the transcription of the chemokines Ccl6 and Ccl9 in macrophages independently of heterodimeric partners. Mice lacking RXRalpha in myeloid cells exhibit reduced levels of CCL6 and CCL9, impaired recruitment of leukocytes to sites of inflammation, and lower susceptibility to sepsis. These studies demonstrate that macrophage RXRalpha plays key roles in the regulation of innate immunity and represents a potential target for immunotherapy of sepsis.

  3. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca{sup 2+} influx

    Moon, Dong-Oh [Department of Biology Education, Daegu University, Gyungsan, Gyeongbuk 712–714 (Korea, Republic of); Kang, Chang-Hee; Kang, Sang-Hyuck [Department of Marine Life Sciences, Jeju National University, Jeju 690–756 (Korea, Republic of); Choi, Yung-Hyun [Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614–054 (Korea, Republic of); Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree [School of Medicine, Jeju National University, Jeju-si 690–756 (Korea, Republic of); Kim, Gi-Young, E-mail: immunkim@jejunu.ac.kr [Department of Marine Life Sciences, Jeju National University, Jeju 690–756 (Korea, Republic of)

    2012-02-15

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.

  4. Protective effects of total flavonoids from Epimedium on the male mouse reproductive system against cyclophosphamide-induced oxidative injury by up-regulating the expressions of SOD3 and GPX1.

    Yuan, Ding; Wang, Hongwu; He, Haibo; Jia, Liangliang; He, Yumin; Wang, Ting; Zeng, Xiao; Li, Yuzhou; Li, Shouchao; Zhang, Changcheng

    2014-01-01

    Total flavonoids of Epimedium (TFE) is the main active composition of Epimedium that has been used to treat male reproductive problems. The present aim was to investigate the protective effects of TFE on male mice reproductive system against cyclophosphamide (CP)-induced oxidative injury. The animals were treated with CP to make testicular injury model and the protective effects of TFE were observed. In the CP-treated group, testicular and epididymal weights, sperm count and motility significantly decreased relative to the control group (P < 0.05 and P < 0.01, respectively). Compared with the CP-treated group, TFE (200 and 400 mg/kg) treated mice increased testicular weights by 21.6% and 28.4% (P < 0.05), sperm counts by 81.7% and 148.3% (P < 0.01) and sperm motility by 47.2% and 61.3% (P < 0.01). Meanwhile, the CP-treated group showed enhancement of lipid peroxidation leading to testicular reproductive toxicity. TFE restored these oxidative damages by up-regulating the expression of antioxidant enzymes, especially SOD3 and GPX1. TUNEL assay and histopathological observations provided supportive evidence for above results, and when the dose of TFE increased, the aforesaid improvement became more and more strong. These results demonstrated that TFE exerted beneficially protective effects on the structural and functional damage of male mice reproductive system and reduced apoptosis in spermatogenic cells by inhibiting CP-induced oxidative stress.

  5. All three classes of CpG ODNs up-regulate IP-10 gene in pigs.

    Dar, Arshud; Nichani, Anil; Lai, Ken; Potter, Andy; Gerdts, Volker; Babiuk, Lorne A; Mutwiri, George

    2010-04-01

    The analysis of CpG ODN induced innate immune responses in different animal species has shown substantial similarities and differences in levels and types of induced cytokines profile. The objectives of these studies were to identify innate immune biomarkers activated by three classes of CpG ODNs in pigs. For this purpose, we investigated the kinetics of innate immune responses in immune cells from pigs following in vitro and in vivo stimulation with CpG ODNs. The mRNA expression of cytokine and chemokine genes were assayed by SYBR green based quantitative real time PCR. A-class CpG ODN induced significant but transient levels of IFN-gamma, IL-12 (P40), IL-6, IL-4 and TNF-alpha mRNA, C-class CpG ODN induced significant level of IFN-gamma, IFN-alpha and IL-12 mRNA and the lowest level of IL-4 (Th-2 type) mRNA. A very low level of some cytokines stimulation was observed by GC ODNs. It is noteworthy, that IL-12 (P35) mRNA was significantly stimulated by B-class GpC ODN 7909. Interestingly, all classes of CpG ODNs induced significant level of IP-10 at 12h post stimulation. These in vitro and in vivo observations suggest that interferon-gamma inducible protein 10 (IP-10) may be a reliable biomarker for immune activity induced by CpG ODNs in pigs.

  6. Up-regulation of hexokinaseII in myeloma cells: targeting myeloma cells with 3-bromopyruvate.

    Nakano, Ayako; Miki, Hirokazu; Nakamura, Shingen; Harada, Takeshi; Oda, Asuka; Amou, Hiroe; Fujii, Shiro; Kagawa, Kumiko; Takeuchi, Kyoko; Ozaki, Shuji; Matsumoto, Toshio; Abe, Masahiro

    2012-02-01

    Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. However, HKII levels and its roles in ATP production and ATP-dependent cellular process have not been well studied in hematopoietic malignant cells including multiple myeloma (MM) cells.We demonstrate herein that HKII is constitutively over-expressed in MM cells. 3-bromopyruvate (3BrPA), an inhibitor of HKII, promptly and substantially suppresses ATP production and induces cell death in MM cells. Interestingly, cocultures with osteoclasts (OCs) but not bone marrow stromal cells (BMSCs) enhanced the phosphorylation of Akt along with an increase in HKII levels and lactate production in MM cells. The enhancement of HKII levels and lactate production in MM cells by OCs were mostly abrogated by the PI3K inhibitor LY294002, suggesting activation of glycolysis in MM cells by OCs via the PI3K-Akt-HKII pathway. Although BMSCs and OCs stimulate MM cell growth and survival, 3BrPA induces cell death in MM cells even in cocultures with OCs as well as BMSCs. Furthermore, 3BrPA was able to diminish ATP-dependent ABC transporter activity to restore drug retention in MM cells in the presence of OCs. These results may underpin possible clinical application of 3BrPA in patients with MM.

  7. STMN1 Promotes Progesterone Production Via StAR Up-regulation in Mouse Granulosa Cells

    Dou, Yun-De; Zhao, Han; Huang, Tao; Zhao, Shi-Gang; Liu, Xiao-Man; Yu, Xiao-Chen; Ma, Zeng-Xiang; Zhang, Yu-Chao; Liu, Tao; Gao, Xuan; Li, Lei; Lu, Gang; Chan, Wai-Yee; Gao, Fei; Liu, Hong-Bin; Chen, Zi-Jiang

    2016-01-01

    Stathmin 1 (STMN1) is a biomarker in several types of neoplasms. It plays an important role in cell cycle progression, mitosis, signal transduction and cell migration. In ovaries, STMN1 is predominantly expressed in granulosa cells (GCs). However, little is known about the role of STMN1 in ovary. In this study, we demonstrated that STMN1 is overexpressed in GCs in patients with polycystic ovary syndrome (PCOS). In mouse primary GCs, the overexpression of STMN1 stimulated progesterone production, whereas knockdown of STMN1 decreased progesterone production. We also found that STMN1 positively regulates the expression of Star (steroidogenic acute regulatory protein) and Cyp11a1 (cytochrome P450 family 11 subfamily A member 1). Promoter and ChIP assays indicated that STMN1 increased the transcriptional activity of Star and Cyp11a1 by binding to their promoter regions. The data suggest that STMN1 mediates the progesterone production by modulating the promoter activity of Star and Cyp11a1. Together, our findings provide novel insights into the molecular mechanisms of STMN1 in ovary GC steroidogenesis. A better understanding of this potential interaction between STMN1 and Star in progesterone biosynthesis in GCs will facilitate the discovery of new therapeutic targets in PCOS. PMID:27270953

  8. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Young-Whan [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Oh, Sangtaek [Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1

  9. Exposure to Cell Phone Radiation Up-Regulates Apoptosis Genes in Primary Cultures of Neurons and Astrocytes

    Zhao, Tian-Yong; Zou, Shi-Ping; Pamela E Knapp

    2006-01-01

    The health effects of cell phone radiation exposure are a growing public concern. This study investigated whether expression of genes related to cell death pathways are dysregulated in primary cultured neurons and astrocytes by exposure to a working GSM (Global System for Mobile Communication) cell phone rated at a frequency of 1900 MHz. Primary cultures were exposed to cell phone emissions for 2 hrs. We used array analysis and real-time RT-PCR to show up-regulation of caspase-2, caspase-6 an...

  10. Up-regulation of hepatoma-derived growth factor facilitates tumor progression in malignant melanoma [corrected].

    Han-En Tsai

    Full Text Available Cutaneous malignant melanoma is the fastest increasing malignancy in humans. Hepatoma-derived growth factor (HDGF is a novel growth factor identified from human hepatoma cell line. HDGF overexpression is correlated with poor prognosis in various types of cancer including melanoma. However, the underlying mechanism of HDGF overexpression in developing melanoma remains unclear. In this study, human melanoma cell lines (A375, A2058, MEL-RM and MM200 showed higher levels of HDGF gene expression, whereas human epidermal melanocytes (HEMn expressed less. Exogenous application of HDGF stimulated colony formation and invasion of human melanoma cells. Moreover, HDGF overexpression stimulated the degree of invasion and colony formation of B16-F10 melanoma cells whereas HDGF knockdown exerted opposite effects in vitro. To evaluate the effects of HDGF on tumour growth and metastasis in vivo, syngeneic mouse melanoma and metastatic melanoma models were performed by manipulating the gene expression of HDGF in melanoma cells. It was found that mice injected with HDGF-overexpressing melanoma cells had greater tumour growth and higher metastatic capability. In contrast, mice implanted with HDGF-depleted melanoma cells exhibited reduced tumor burden and lung metastasis. Histological analysis of excised tumors revealed higher degree of cell proliferation and neovascularization in HDGF-overexpressing melanoma. The present study provides evidence that HDGF promotes tumor progression of melanoma and targeting HDGF may constitute a novel strategy for the treatment of melanoma.

  11. Schistosomiasis differentially affects vasoconstrictor responses: up-regulation of 5-HT receptor-mediated aorta contraction

    Suellen D'Arc dos Santos Oliveira

    2011-06-01

    Full Text Available Schistosomiasis, classified by the World Health Organization as a neglected tropical disease, is an intravascular parasitic disease associated to a chronic inflammatory state. Evidence implicating inflammation in vascular dysfunction continues to mount, which, broadly defined, reflects a failure in the control of intracellular Ca2+ and consequently, vascular contraction. Therefore, we measured aorta contraction induced by 5-hydroxytryptamine (5-HT and endothelin-1 (ET-1, two important regulators of vascular contraction. Isometric aortic contractions were determined in control and Schistosoma mansoni-infected mice. In the infected animals, 5-HT induced a 50% higher contraction in relation to controls and we also observed an increased contraction in response to Ca2+ mobilisation from sarcoplasmic reticulum. Nevertheless, Rho kinase inhibition reduced the contraction in response to 5-HT equally in both groups, discarding an increase of the contractile machinery sensitivity to Ca2+. Furthermore, no alteration was observed for contractions induced by ET-1 in both groups. Our data suggest that an immune-vascular interaction occurs in schistosomiasis, altering vascular contraction outside the mesenteric portal system. More importantly, it affects distinct intracellular signalling involved in aorta contraction, in this case increasing 5-HT receptor signalling.

  12. Sonic Hedgehog Promotes Neurite Outgrowth of Primary Cortical Neurons Through Up-Regulating BDNF Expression.

    He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao

    2016-04-01

    Sonic hedgehog (Shh), a secreted glycoprotein factor, can activate the Shh pathway, which has been implicated in neuronal polarization involving neurite outgrowth. However, little evidence is available about the effect of Shh on neurite outgrowth in primary cortical neurons and its potential mechanism. Here, we revealed that Shh increased neurite outgrowth in primary cortical neurons, while the Shh pathway inhibitor (cyclopamine, CPM) partially suppressed Shh-induced neurite outgrowth. Similar results were found for the expressions of Shh and Patched genes in Shh-induced primary cortical neurons. Moreover, Shh increased the levels of brain-derived neurotrophic factor (BDNF) not only in lysates and in culture medium but also in the longest neurites of primary cortical neurons, which was partially blocked by CPM. In addition, blocking of BDNF action suppressed Shh-mediated neurite elongation in primary cortical neurons. In conclusion, these findings suggest that Shh promotes neurite outgrowth in primary cortical neurons at least partially through modulating BDNF expression.

  13. Up regulation in gene expression of chromatin remodelling factors in cervical intraepithelial neoplasia

    Van Niekerk Dirk

    2008-02-01

    Full Text Available Abstract Background The highest rates of cervical cancer are found in developing countries. Frontline monitoring has reduced these rates in developed countries and present day screening programs primarily identify precancerous lesions termed cervical intraepithelial neoplasias (CIN. CIN lesions described as mild dysplasia (CIN I are likely to spontaneously regress while CIN III lesions (severe dysplasia are likely to progress if untreated. Thoughtful consideration of gene expression changes paralleling the progressive pre invasive neoplastic development will yield insight into the key casual events involved in cervical cancer development. Results In this study, we have identified gene expression changes across 16 cervical cases (CIN I, CIN II, CIN III and normal cervical epithelium using the unbiased long serial analysis of gene expression (L-SAGE method. The 16 L-SAGE libraries were sequenced to the level of 2,481,387 tags, creating the largest SAGE data collection for cervical tissue worldwide. We have identified 222 genes differentially expressed between normal cervical tissue and CIN III. Many of these genes influence biological functions characteristic of cancer, such as cell death, cell growth/proliferation and cellular movement. Evaluation of these genes through network interactions identified multiple candidates that influence regulation of cellular transcription through chromatin remodelling (SMARCC1, NCOR1, MRFAP1 and MORF4L2. Further, these expression events are focused at the critical junction in disease development of moderate dysplasia (CIN II indicating a role for chromatin remodelling as part of cervical cancer development. Conclusion We have created a valuable publically available resource for the study of gene expression in precancerous cervical lesions. Our results indicate deregulation of the chromatin remodelling complex components and its influencing factors occur in the development of CIN lesions. The increase in SWI

  14. RUNX3-mediated up-regulation of miR-29b suppresses the proliferation and migration of gastric cancer cells by targeting KDM2A.

    Kong, Ye; Zou, Shuiyan; Yang, Fenghua; Xu, Xia; Bu, Wenhong; Jia, Jihui; Liu, Zhifang

    2016-10-10

    RUNX3 is a transcriptional factor that has been shown to regulate protein-coding gene expression at the transcriptional level. However, the regulation of RUNX3 on miRNAs is not fully understood. In this study, we used miRNA microarray to identify the miRNAs that are regulated by RUNX3 and found that miR-29b showed the most up-regulation in RUNX3 over-expressed cells compared with the control cells. We used qRT-PCR to confirm the miRNA microarray results in several gastric cancer cells and found that RUNX3 could bind to the miR-29b promoter directly and cooperate with Smad3 to increase the promoter activity of miR-29b. In the clinical setting, both RUNX3 and miR-29b are down-regulated significantly in human gastric cancer tissues. A positive correlation between miR-29b and RUNX3 was found in the gastric cancer tissues. Additionally, we found that miR-29b suppressed the proliferation and metastasis of gastric cancer cells by directly targeting KDM2A. The miR-29b/KDM2A axis was involved in the RUNX3-mediated inhibition of gastric cancer cell proliferation and metastasis. Taken together, our results suggested that RUNX3-mediated up-regulation of miR-29b inhibited the proliferation and migration of gastric cancer cells by targeting KDM2A, representing a novel molecular mechanism for the tumor suppression action of RUNX3.

  15. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants.

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-02-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

  16. The Protamine-like DNA-binding Protein P6.9 Epigenetically Up-regulates Autographa californica Multiple Nucleopolyhedrovirus Gene Transcription in the Late Infection Phase

    Ying Peng; Kun Li; Rong-juan Pei; Chun-chen Wu; Chang-yong Liang; Yun Wang; Xin-wen Chen

    2012-01-01

    Protamines are a group of highly basic proteins first discovered in spermatozoon that allow for denser packaging of DNA than histones and will result in down-regulation of gene transcription[1].It is well recognized that the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) encodes P6.9,a protamine-like protein that forms the viral subnucleosome through binding to the viral genome[29].Previous research demonstrates that P6.9 is essential for viral nucleocapsid assembly,while it has no influence on viral genome replication[31].In the present study,the role of P6.9 in viral gene transcription regulation is characterized.In contrast to protamines or other protamine-like proteins that usually down-regulate gene transcription,P6.9 appears to up-regulate viral gene transcription at 12-24 hours post infection (hpi),whereas it is non-essential for the basal level of viral gene transcription.Fluorescence microscopy reveals the P6.9's co-localization with DNA is temporally and spatially synchronized with P6.9's impact on viral gene transcription,indicating the P6.9-DNA association contributes to transcription regulation.Chromatin fractionation assay further reveals an unexpected co-existence of P6.9 and host RNA polymerase Ⅱ in the same transcriptionally active chromatin fraction at 24 hpi,which may probably contribute to viral gene transcription up-regulation in the late infection phase.

  17. Up Regulation of cystathione γ lyase and Hydrogen Sulphide in the Myocardium Inhibits the Progression of Isoproterenol-Caffeine Induced Left Ventricular Hypertrophy in Wistar Kyoto Rats.

    Ashfaq Ahmad

    Full Text Available Hydrogen sulphide (H2S is an emerging molecule in many cardiovascular complications but its role in left ventricular hypertrophy (LVH is unknown. The present study explored the effect of exogenous H2S administration in the regression of LVH by modulating oxidative stress, arterial stiffness and expression of cystathione γ lyase (CSE in the myocardium. Animals were divided into four groups: Control, LVH, Control-H2S and LVH-H2S. LVH was induced by administering isoprenaline (5mg/kg, every 72 hours, S/C and caffeine in drinking water (62mg/L for 2 weeks. Intraperitoneal NaHS, 56μM/kg/day for 5 weeks, was given as an H2S donor. Myocardial expression of Cystathione γ lyase (CSE mRNA was quantified using real time polymerase chain reaction (qPCR.There was a 3 fold reduction in the expression of myocardial CSE mRNA in LVH but it was up regulated by 7 and 4 fold in the Control-H2S and LVH-H2S myocardium, respectively. Systolic blood pressure, mean arterial pressure, pulse wave velocity were reduced (all P<0.05 in LVH-H2S when compared to the LVH group. Heart, LV weight, myocardial thickness were reduced while LV internal diameter was increased (all P<0.05 in the LVH-H2S when compared to the LVH group. Exogenous administration of H2S in LVH increased superoxide dismutase, glutathione and total antioxidant capacity but significantly reduced (all P<0.05 plasma malanodialdehyde in the LVH-H2S compared to the LVH group. The renal cortical blood perfusion increased by 40% in LVH-H2S as compared to the LVH group. Exogenous administration of H2S suppressed the progression of LVH which was associated with an up regulation of myocardial CSE mRNA/ H2S and a reduction in pulse wave velocity with a blunting of systemic hemodynamic. This CSE/H2S pathway exhibits an antihypertrophic role by antagonizing the hypertrophic actions of angiotensin II(Ang II and noradrenaline (NA but attenuates oxidative stress and improves pulse wave velocity which helps to suppress

  18. Absence of Hyperplasia in Gasp-1 Overexpressing Mice is Dependent on Myostatin Up-Regulation

    Caroline Brun

    2014-09-01

    Full Text Available Background/Aims: Overexpression of Gasp-1, an inhibitor of myostatin, leads to a hypermuscular phenotype due to hypertrophy rather than hyperplasia in mice. However to date, the cellular and molecular mechanisms underlying this phenotype are not investigated. Methods: Skeletal muscles of overexpressing Gasp-1 mice, called Tg(Gasp-1 mice, were analyzed by histological methods. Satellite cell-derived myoblasts from these mice were used to investigate the molecular mechanisms. Results: We demonstrated that hypertrophy in Tg(Gasp-1 mice was related to a myonuclear accretion during the first 3 postnatal weeks and an activation of the pro-hypertrophic Akt/mTORC/p70S6K signaling. In accordance with these results, we showed that overexpressing Gasp-1 primary myoblasts proliferated faster and myonuclei average per myotube was increased during differentiation. Molecular analysis revealed that Gasp-1 overexpression resulted in increased myostatin expression related to its auto-regulation. Despite its inhibition, myostatin led to Pax7 deregulation through its non-canonical Erk1/2 signaling pathway. Consistent with this, inhibition of Erk1/2 signaling pathway as well as neutralization of secreted myostatin rescue the Pax7 expression in overexpressing Gasp-1 myoblasts. Conclusion: Our study shows that myostatin is able to act independently of its canonical pathway to regulate the Pax7 expression. Altogether, our results indicate that myostatin could regulate muscle development despite its protein inhibition.

  19. Neutrophil-derived MRP-14 is up-regulated in infectious osteomyelitis and stimulates osteoclast generation.

    Dapunt, Ulrike; Giese, Thomas; Maurer, Susanne; Stegmaier, Sabine; Prior, Birgit; Hänsch, G Maria; Gaida, Matthias M

    2015-10-01

    Bone infections of patients with joint replacement by endoprosthesis (so called "periprosthetic joint infection") pose a severe problem in the field of orthopedic surgery. The diagnosis is often difficult, and treatment is, in most cases, complicated and prolonged. Patients often require an implant exchange surgery, as the persistent infection and the accompanying inflammation lead to tissue damage with bone degradation and consequently, to a loosening of the implant. To gain insight into the local inflammatory process, expression of the proinflammatory cytokine MRP-14, a major content of neutrophils, and its link to subsequent bone degradation was evaluated. We found MRP-14 prominently expressed in the affected tissue of patients with implant-associated infection, in close association with the chemokine CXCL8 and a dense infiltrate of neutrophils and macrophages. In addition, the number of MRP-14-positive cells correlated with the presence of bone-resorbing osteoclasts. MRP-14 plasma concentrations were significantly higher in patients with implant-associated infection compared with patients with sterile inflammation or healthy individuals, advocating MRP-14 as a novel diagnostic marker. A further biologic activity of MRP-14 was detected: rMRP-14 directly induced the differentiation of monocytes to osteoclasts, thus linking the inflammatory response in implant infections with osteoclast generation, bone degradation, and implant loosening.

  20. Retinol up-regulates the receptor for advanced glycation endproducts (RAGE) by increasing intracellular reactive species.

    Gelain, Daniel Pens; de Bittencourt Pasquali, Matheus Augusto; Caregnato, Fernanda Freitas; Zanotto-Filho, Alfeu; Moreira, José Cláudio Fonseca

    2008-08-01

    Retinol (vitamin A) and other retinoids have been suggested to exert an important antioxidant function in biological systems, besides their more established role as regulators of cell growth and differentiation. On the other hand, many authors have recently observed pro-oxidant activities of vitamin A and other retinoids in vitro and in vivo, resulting in cell death and/or transformation associated to increased oxidative damage. However, the mechanisms by which retinol causes oxidative stress are still not fully understood. Receptors for advanced glycation endproducts (RAGE) have been recently implied as promoters and/or amplifiers of oxidant-mediated cell death induced by diverse agents, and increased RAGE expression is observed in conditions related to unbalanced production of reactive species, such as in atherosclerosis and neurodegeneration. In the present work, we observed that retinol supplementation increases RAGE protein expression in cultured Sertoli cells, and antioxidant co-treatment reversed this effect. Retinol-increased RAGE expression was observed only at concentrations that induce intracellular reactive species production, as assessed by the DCFH assay. These results indicate that retinol is able to increase RAGE expression by an oxidant-dependent mechanism, and suggest that RAGE signaling may be involved in some of the deleterious effects observed in some retinol-supplementation therapies.

  1. The effects of natural antioxidants on oxidative processes and metmyoglobin reducing activity in beef patties

    Bekhit, A.E.D.; Geesink, G.H.; Ilian, M.A.; Morton, J.D.; Bickerstaffe, R.

    2003-01-01

    The effects of antioxidants on oxidative processes and metmyoglobin-reducing activity in beef patties were investigated in two experiments. In the first experiment colour, colour stability, TBA values and MetMb-reducing activity were measured during storage, at 2 oC, of raw beef patties treated with

  2. Mild caloric restriction up-regulates the expression of prohibitin: A proteome study

    Takahashi, Shoko; Masuda, Junko; Shimagami, Hiroshi [Department of Applied Biological Chemistry, The University of Tokyo, Tokyo (Japan); Ohta, Yutaka; Kanda, Tomomasa [Research Laboratories for Health and Gustatory Science, Asahi Breweries Limited, Ibaraki (Japan); Saito, Kenji [Department of Applied Biological Chemistry, The University of Tokyo, Tokyo (Japan); Corporate Sponsored Research Program ' Food for Life' , The University of Tokyo, Tokyo (Japan); Kato, Hisanori, E-mail: akatoq@mail.ecc.u-tokyo.ac.jp [Department of Applied Biological Chemistry, The University of Tokyo, Tokyo (Japan); Corporate Sponsored Research Program ' Food for Life' , The University of Tokyo, Tokyo (Japan)

    2011-02-18

    Research highlights: {yields} Proteomic analysis was performed to elucidate physiological alterations induced by mild CR. {yields} The results suggest good reproducibility and possibility to grasp the important response of CR. {yields} The increase in prohibitin abundance was observed in CR groups by proteomic analysis. {yields} We hypothesize that prohibitin might be involved in the longevity induced by CR. -- Abstract: Caloric restriction (CR) is well known to expand lifespan in a variety of species and to retard many age-related diseases. The effects of relatively mild CR on the proteome profile in relation to lifespan have not yet been reported, despite the more extensive studies of the stricter CR conditions. Thus, the present study was conducted to elucidate the protein profiles in rat livers after mild CR for a relatively short time. Young growing rats were fed CR diets (10% and 30% CR) for 1 month. We performed the differential proteomic analysis of the rat livers using two-dimensional electrophoresis combined with MALDI-TOF mass spectrometry. The most remarkable protein among the differentially expressed proteins was found to be prohibitin, the abundance of which was increased by 30% CR. Prohibitin is a ubiquitously expressed protein shown to suppress cell proliferation and to be related to longevity. The increase in prohibitin was observed both in 10% and 30% CR by Western blot analysis. Furthermore, induction of AMP-activated kinase (AMPK) protein, related to the actions of prohibitin in promoting longevity, was observed. The increased prohibitin level in response to subtle CR suggests that this increase may be one of the early events leading to the expansion of lifespan in response to CR.

  3. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice.

    Yoneda, Mitsugu; Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Tanigami