WorldWideScience

Sample records for activator regulates myeloid-cell

  1. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool...

  2. Complement regulates conventional DC-mediated NK-cell activation by inducing TGF-β1 in Gr-1+ myeloid cells.

    Science.gov (United States)

    Qing, Xiaoping; Koo, Gloria C; Salmon, Jane E

    2012-07-01

    Complement activation modulates DC-mediated T-cell activation, but whether complement affects DC-mediated priming of NK cells is unknown. Here, we demonstrated that conventional DCs (cDCs) from C3(-/-) and C5aR(-/-) mice are hyperresponsive to polyI:C, a TLR3 ligand, leading to enhanced NK-cell activation. We found that cDCs lack C5a receptor (C5aR) and do not respond to C5a directly. Depletion of Gr-1(+) myeloid cells augments polyI:C-induced cDC activation in WT but not in C3(-/-) or C5aR(-/-) mice, indicating that the effect of complement activation on cDCs is indirectly mediated through C5aR-expressing Gr-1(+) myeloid cells. We further demonstrated that the mechanism by which Gr-1(+) myeloid cells regulate the activity of cDCs involves C5a-dependent TGF-β1 production in Gr-1(+) myeloid cells. C5a enhances and blocking C5aR decreases TGF-β1 production in cultured bone marrow Gr-1(+) CD11b(+) cells. C5aR deficiency is associated with reduced circulating TGF-β1 levels, while depleting Gr-1(+) myeloid cells abrogates this difference between WT and C5aR(-/-) mice. Lastly, we showed that enhanced cDC-NK-cell activity in C3(-/-) mice led to delayed melanoma tumor growth. Thus, complement activation indirectly regulates cDC-NK-cell activation in response to inflammatory stimuli such as TLR3 by promoting TGF-β1 production in Gr-1(+) myeloid cells at steady state.

  3. Coordinated regulation of myeloid cells by tumours.

    Science.gov (United States)

    Gabrilovich, Dmitry I; Ostrand-Rosenberg, Suzanne; Bronte, Vincenzo

    2012-03-22

    Myeloid cells are the most abundant nucleated haematopoietic cells in the human body and are a collection of distinct cell populations with many diverse functions. The three groups of terminally differentiated myeloid cells - macrophages, dendritic cells and granulocytes - are essential for the normal function of both the innate and adaptive immune systems. Mounting evidence indicates that the tumour microenvironment alters myeloid cells and can convert them into potent immunosuppressive cells. Here, we consider myeloid cells as an intricately connected, complex, single system and we focus on how tumours manipulate the myeloid system to evade the host immune response.

  4. Role of Triggering Receptor Expressed on Myeloid Cells in the Activation of Innate Immunity

    Directory of Open Access Journals (Sweden)

    V. G. Matveyeva

    2011-01-01

    Full Text Available The innate immune system plays a key role in triggering a systemic inflammatory response (SIR. The triggering receptor expressed on myeloid cells (TREM-1, which is located on neutrophils and monocytes, is involved in SIR, by regulating the effector mechanisms of innate immunity. Hyperproduction of proinflammatory cytokines is a pathogenetic component of the hyperergic phase of acute systemic inflammation. The simultaneous activation of Toll-like receptors and TREM-1 increases the production of cytokines manifold. This is compensatory and adaptive, however, resulting in damage to organs and tissues during excessive production of cytokines. Key words: triggering receptor expressed on myeloid cells, Toll-like receptors, cytokines, inflammation.

  5. Bone marrow myeloid cells in regulation of multiple myeloma progression.

    Science.gov (United States)

    Herlihy, Sarah E; Lin, Cindy; Nefedova, Yulia

    2017-08-01

    Survival, growth, and response to chemotherapy of cancer cells depends strongly on the interaction of cancer cells with the tumor microenvironment. In multiple myeloma, a cancer of plasma cells that localizes preferentially in the bone marrow, the microenvironment is highly enriched with myeloid cells. The majority of myeloid cells are represented by mature and immature neutrophils. The contribution of the different myeloid cell populations to tumor progression and chemoresistance in multiple myeloma is discussed.

  6. Measurement of myeloid cell immune suppressive activity.

    Science.gov (United States)

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  7. Bisphenol A (BPA) stimulates the interferon signaling and activates the inflammasome activity in myeloid cells.

    Science.gov (United States)

    Panchanathan, Ravichandran; Liu, Hongzhu; Leung, Yuet-Kin; Ho, Shuk-mei; Choubey, Divaker

    2015-11-05

    Environmental factors contribute to the development of autoimmune diseases, including systemic lupus erythematosus (SLE), which exhibits a strong female bias (female-to-male ratio 9:1). However, the molecular mechanisms remain largely unknown. Because a feedforward loop between the female sex hormone estrogen (E2) and type I interferon (IFN-α/β)-signaling induces the expression of certain p200-family proteins (such as murine p202 and human IFI16) that regulate innate immune responses and modify lupus susceptibility, we investigated whether treatment of myeloid cells with bisphenol A (BPA), an environmental estrogen, could regulate the p200-family proteins and activate innate immune responses. We found that treatment of murine bone marrow-derived cells (BMCs) and human peripheral blood mononuclear cells with BPA induced the expression of ERα and IFN-β, activated the IFN-signaling, and stimulated the expression of the p202 and IFI16 proteins. Further, the treatment increased levels of the NLRP3 inflammasome and stimulated its activity. Accordingly, BPA-treatment of BMCs from non lupus-prone C57BL/6 and the lupus-prone (NZB×NZW)F1 mice activated the type I IFN-signaling, induced the expression of p202, and activated an inflammasome activity. Our study demonstrates that BPA-induced signaling in the murine and human myeloid cells stimulates the type I IFN-signaling that results in an induction of the p202 and IFI16 innate immune sensors for the cytosolic DNA and activates an inflammasome activity. These observations provide novel molecular insights into the role of environmental BPA exposures in potentiating the development of certain autoimmune diseases such as SLE.

  8. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer

    Science.gov (United States)

    Zhang, Yaqing; Velez-Delgado, Ashley; Mathew, Esha; Li, Dongjun; Mendez, Flor M; Flannagan, Kevin; Rhim, Andrew D; Simeone, Diane M; Beatty, Gregory L; Pasca di Magliano, Marina

    2017-01-01

    Background Pancreatic cancer is characterised by the accumulation of a fibro-inflammatory stroma. Within this stromal reaction, myeloid cells are a predominant population. Distinct myeloid subsets have been correlated with tumour promotion and unmasking of anti-tumour immunity. Objective The goal of this study was to determine the effect of myeloid cell depletion on the onset and progression of pancreatic cancer and to understand the relationship between myeloid cells and T cell-mediated immunity within the pancreatic cancer microenvironment. Methods Primary mouse pancreatic cancer cells were transplanted into CD11b-diphtheria toxin receptor (DTR) mice. Alternatively, the iKras* mouse model of pancreatic cancer was crossed into CD11b-DTR mice. CD11b+ cells (mostly myeloid cell population) were depleted by diphtheria toxin treatment during tumour initiation or in established tumours. Results Depletion of myeloid cells prevented KrasG12D-driven pancreatic cancer initiation. In pre-established tumours, myeloid cell depletion arrested tumour growth and in some cases, induced tumour regressions that were dependent on CD8+ T cells. We found that myeloid cells inhibited CD8+ T-cell anti-tumour activity by inducing the expression of programmed cell death-ligand 1 (PD-L1) in tumour cells in an epidermal growth factor receptor (EGFR)/mitogen-activated protein kinases (MAPK)-dependent manner. Conclusion Our results show that myeloid cells support immune evasion in pancreatic cancer through EGFR/MAPK-dependent regulation of PD-L1 expression on tumour cells. Derailing this crosstalk between myeloid cells and tumour cells is sufficient to restore anti-tumour immunity mediated by CD8+ T cells, a finding with implications for the design of immune therapies for pancreatic cancer. PMID:27402485

  9. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer.

    Science.gov (United States)

    Zhang, Yaqing; Velez-Delgado, Ashley; Mathew, Esha; Li, Dongjun; Mendez, Flor M; Flannagan, Kevin; Rhim, Andrew D; Simeone, Diane M; Beatty, Gregory L; Pasca di Magliano, Marina

    2017-01-01

    Pancreatic cancer is characterised by the accumulation of a fibro-inflammatory stroma. Within this stromal reaction, myeloid cells are a predominant population. Distinct myeloid subsets have been correlated with tumour promotion and unmasking of anti-tumour immunity. The goal of this study was to determine the effect of myeloid cell depletion on the onset and progression of pancreatic cancer and to understand the relationship between myeloid cells and T cell-mediated immunity within the pancreatic cancer microenvironment. Primary mouse pancreatic cancer cells were transplanted into CD11b-diphtheria toxin receptor (DTR) mice. Alternatively, the iKras* mouse model of pancreatic cancer was crossed into CD11b-DTR mice. CD11b(+) cells (mostly myeloid cell population) were depleted by diphtheria toxin treatment during tumour initiation or in established tumours. Depletion of myeloid cells prevented Kras(G12D)-driven pancreatic cancer initiation. In pre-established tumours, myeloid cell depletion arrested tumour growth and in some cases, induced tumour regressions that were dependent on CD8(+) T cells. We found that myeloid cells inhibited CD8(+) T-cell anti-tumour activity by inducing the expression of programmed cell death-ligand 1 (PD-L1) in tumour cells in an epidermal growth factor receptor (EGFR)/mitogen-activated protein kinases (MAPK)-dependent manner. Our results show that myeloid cells support immune evasion in pancreatic cancer through EGFR/MAPK-dependent regulation of PD-L1 expression on tumour cells. Derailing this crosstalk between myeloid cells and tumour cells is sufficient to restore anti-tumour immunity mediated by CD8(+) T cells, a finding with implications for the design of immune therapies for pancreatic cancer. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Metabolic regulation of suppressive myeloid cells in cancer.

    Science.gov (United States)

    Sica, Antonio; Strauss, Laura; Consonni, Francesca Maria; Travelli, Cristina; Genazzani, Armando; Porta, Chiara

    2017-06-01

    Cancer cells rewire their metabolism to promote growth, survival, proliferation and long-term maintenance. The common feature of this altered metabolism is the increased glucose uptake and fermentation of glucose to lactate, which is observed even in the presence of completely functioning mitochondria. This effect is known as the 'Warburg Effect' and its intensive investigation in the last decade has partially established either its causes or its functions. It is now emerging that a major side effect of the Warburg Effect is immunosuppression, which limits the immunogenicity of cancer cells and therefore restricts the therapeutic efficacy of anticancer immunotherapy. Here we discuss how the metabolic communication between cancer and infiltrating myeloid cells contributes to cancer immune evasion and how the understanding of these mechanisms may improve current immunotherapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. β-Catenin-regulated myeloid cell adhesion and migration determine wound healing.

    Science.gov (United States)

    Amini-Nik, Saeid; Cambridge, Elizabeth; Yu, Winston; Guo, Anne; Whetstone, Heather; Nadesan, Puviindran; Poon, Raymond; Hinz, Boris; Alman, Benjamin A

    2014-06-01

    A β-catenin/T cell factor-dependent transcriptional program is critical during cutaneous wound repair for the regulation of scar size; however, the relative contribution of β-catenin activity and function in specific cell types in the granulation tissue during the healing process is unknown. Here, cell lineage tracing revealed that cells in which β-catenin is transcriptionally active express a gene profile that is characteristic of the myeloid lineage. Mice harboring a macrophage-specific deletion of the gene encoding β-catenin exhibited insufficient skin wound healing due to macrophage-specific defects in migration, adhesion to fibroblasts, and ability to produce TGF-β1. In irradiated mice, only macrophages expressing β-catenin were able to rescue wound-healing deficiency. Evaluation of scar tissue collected from patients with hypertrophic and normal scars revealed a correlation between the number of macrophages within the wound, β-catenin levels, and cellularity. Our data indicate that β-catenin regulates myeloid cell motility and adhesion and that β-catenin-mediated macrophage motility contributes to the number of mesenchymal cells and ultimate scar size following cutaneous injury.

  12. A RAS oncogene imparts growth factor independence to myeloid cells that abnormally regulate protein kinase C: a nonautocrine transformation pathway.

    Science.gov (United States)

    Boswell, H S; Nahreini, T S; Burgess, G S; Srivastava, A; Gabig, T G; Inhorn, L; Srour, E F; Harrington, M A

    1990-06-01

    The factor-dependent cell line FDC-P1 has been utilized as a model of interleukin 3 (IL-3)-dependent myeloid cell proliferation. However, it has been recently observed that active phorbol esters (e.g., phorbol 12-myristate 13-acetate) may entirely replace IL-3 to promote its proliferation. These observations reveal abnormal regulation of protein kinase C (pkC) (absence of downregulation or overexpression). This property allowed a test of the hypothesis that the T24 RAS (codon 12) oncogene acts by constitutive and persistent pkC activation, driving proliferation. FDC-P1 cells were transfected by electroporation with the T24 RAS-containing vector pAL 8, or with a control vector pSVX Zip Neo, and neomycin-resistant clones were selected. Multiple RAS-transfectant clones were categorized for their growth factor requirement and incorporation of the 6.6-kb human mutant H-RAS genome. IL-3-independent clones had incorporated multiple (more than two) copies of the entire 6.6-kb RAS genome. The incorporation of multiple 6.6-kb RAS genomes was correlated with high-level p21 RAS expression. No evidence for autostimulatory growth factor production by clones containing the RAS oncogene was observed. Thus, acquisition of growth factor independence in myeloid cells by abundant expression of a RAS oncogene is linked, in part, to abnormal regulation of pkC, which acts as a collaborating oncogene.

  13. IFN-γ differentially regulates subsets of Gr-1(+)CD11b(+) myeloid cells in chronic inflammation.

    Science.gov (United States)

    Zhan, Xiaoxia; Fang, Yimin; Hu, Shengfeng; Wu, Yongjian; Yang, Kun; Liao, Chunxin; Zhang, Yuanqing; Huang, Xi; Wu, Minhao

    2015-08-01

    During chronic inflammation, prolonged over-reactive immune response may lead to tissue destruction, while immune suppression hinders tissue repair and pathogen elimination. Therefore, precise regulation of the immune response is needed to avoid immuno-pathology. Interferon-gamma (IFN-γ) is widely used in clinical treatment of inflammatory diseases. However, the underlying mechanism remains unclear. Here, we evaluated the role of IFN-γ on CD11b(+)Gr-1(+) myeloid cell differentiation and function, using a heat-killed Mycobacterium bovis BCG-induced chronic inflammation model. After challenge with heat-killed BCG, two subpopulations of CD11b(+)Gr-1(+) myeloid cells were generated in the mouse spleen. Phenotypical, morphological and functional analysis indicated that the CD11b(+)Gr-1(high) Ly6G(high) Ly6C(low) subset was neutrophil-like myeloid-derived inducer cells (N-MDICs), which promoted T cell activation, while the other subset was CD11b(+)Gr-1(low) Ly6G(neg) Ly6C(high) monocyte-like myeloid-derived suppressor cells (M-MDSCs) that displayed extensive suppressor function. IFN-γ treatment dampened N-MDICs-mediated T cell activation through up-regulating T cell suppressive mediators, reactive oxygen species (ROS) and arginase I. While for M-MDSCs, IFN-γ reduced their suppressing activity by decreasing the arginase activity. Our study provides evidence that IFN-γ balances the over-reactive vs compromised immune response through different regulation of distinct myeloid subsets, and therefore displays significant therapeutic potential for effective immuno-therapy of chronic inflammatory diseases.

  14. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8.

    Science.gov (United States)

    Ahn, G-One; Seita, Jun; Hong, Beom-Ju; Kim, Young-Eun; Bok, Seoyeon; Lee, Chan-Ju; Kim, Kwang Soon; Lee, Jerry C; Leeper, Nicholas J; Cooke, John P; Kim, Hak Jae; Kim, Il Han; Weissman, Irving L; Brown, J Martin

    2014-02-18

    Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel-Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1-activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.

  15. Characterizing Myeloid Cell Activation in NF1 Vasculopathy

    Science.gov (United States)

    2016-07-01

    Months NIH/NHLBI “ Epigenetic regulation of HDAC9 in obesity and atherosclerosis” Role: Principal Investigator 1R01AR070029-01 04/01/2016 – 03...Antigen Receptor for Chemokines Modulates Adipose Inflammation in Obesity Related Metabolic Disease, American Diabetes Association, Boston, MA 3...pathways of cardiovascular disease in obesity ” Role: Principal Investigator 1-16-IBS-196 01/01/2016 – 12/31/2018 0.36 Calendar Months American

  16. Distinct mechanisms of regulation of the ITGA6 and ITGB4 genes by RUNX1 in myeloid cells.

    Science.gov (United States)

    Phillips, Jessica L; Taberlay, Phillippa C; Woodworth, Alexandra M; Hardy, Kristine; Brettingham-Moore, Kate H; Dickinson, Joanne L; Holloway, Adele F

    2017-09-19

    Integrins are transmembrane adhesion receptors that play an important role in hematopoiesis by facilitating interactions between hematopoietic cells and extracellular matrix components of the bone marrow and hematopoietic tissues. These interactions are important in regulating the function, proliferation and differentiation of hematopoietic cells, as well as their homing and mobilization in the bone marrow. Not surprisingly altered expression and function of integrins plays a key role in the development and progression of cancer including leukemias. However, the regulation of integrin gene expression is not well characterized and the mechanisms by which integrin genes are disrupted in cancer remain unclear. Here we demonstrate for the first time that a key regulator of hematopoiesis, RUNX1, binds to and regulates the promoters of both the ITGA6 and ITGB4 genes in myeloid cells. The ITGA6 and ITGB4 integrin genes form the α6β4 integrin receptor. However our data indicates that RUNX1 functions differently at these two promoters. RUNX1 regulates ITGA6 through a consensus RUNX1 binding motif in its promoter. In contrast, although the ITGB4 promoter is also activated by RUNX1, it does so in the absence of a recognized consensus RUNX1 binding motif. Further, our data suggest that regulation of ITGB4 may involve interactions between the promoter and upstream regulatory elements. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases

    Directory of Open Access Journals (Sweden)

    Kristina S. Burrack

    2014-09-01

    Full Text Available When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS and arginase 1 (Arg1. Nitric oxide (NO production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections.

  18. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    -associated protein-sensitive, protease-activated receptor 2-dependent regulator of myeloid cell pro-inflammatory cytokine production.

  19. Activation of PPARγ in myeloid cells promotes lung cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Howard Li

    Full Text Available Activation of peroxisome proliferator-activated receptor-γ (PPARγ inhibits growth of cancer cells including non-small cell lung cancer (NSCLC. Clinically, use of thiazolidinediones, which are pharmacological activators of PPARγ is associated with a lower risk of developing lung cancer. However, the role of this pathway in lung cancer metastasis has not been examined well. The systemic effect of pioglitazone was examined in two models of lung cancer metastasis in immune-competent mice. In an orthotopic model, murine lung cancer cells implanted into the lungs of syngeneic mice metastasized to the liver and brain. As a second model, cancer cells injected subcutaneously metastasized to the lung. In both models systemic administration of pioglitazone increased the rate of metastasis. Examination of tissues from the orthotopic model demonstrated increased numbers of arginase I-positive macrophages in tumors from pioglitazone-treated animals. In co-culture experiments of cancer cells with bone marrow-derived macrophages, pioglitazone promoted arginase I expression in macrophages and this was dependent on the expression of PPARγ in the macrophages. To assess the contribution of PPARγ in macrophages to cancer progression, experiments were performed in bone marrow-transplanted animals receiving bone marrow from Lys-M-Cre+/PPARγ(flox/flox mice, in which PPARγ is deleted specifically in myeloid cells (PPARγ-Mac(neg, or control PPARγ(flox/flox mice. In both models, mice receiving PPARγ-Mac(neg bone marrow had a marked decrease in secondary tumors which was not significantly altered by treatment with pioglitazone. This was associated with decreased numbers of arginase I-positive cells in the lung. These data support a model in which activation of PPARγ may have opposing effects on tumor progression, with anti-tumorigenic effects on cancer cells, but pro-tumorigenic effects on cells of the microenvironment, specifically myeloid cells.

  20. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    Science.gov (United States)

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells.

  1. Constitutive activity of NF-kappa B in myeloid cells drives pathogenicity of monocytes and macrophages during autoimmune neuroinflammation

    Directory of Open Access Journals (Sweden)

    Ellrichmann Gisa

    2012-01-01

    Full Text Available Abstract The NF-κB/REL-family of transcription factors plays a central role in coordinating the expression of a wide variety of genes controlling immune responses including autoimmunity of the central nervous system (CNS. The inactive form of NF-κB consists of a heterodimer which is complexed with its inhibitor, IκB. Conditional knockout-mice for IκBα in myeloid cells (lysMCreIκBαfl/fl have been generated and are characterized by a constitutive activation of NF-κB proteins allowing the study of this transcription factor in myelin-oligodendrocyte-glycoprotein induced experimental autoimmune encephalomyelitis (MOG-EAE, a well established experimental model for autoimmune demyelination of the CNS. In comparison to controls, lysMCreIκBαfl/fl mice developed a more severe clinical course of EAE. Upon histological analysis on day 15 p.i., there was an over two fold increased infiltration of T-cells and macrophages/microglia. In addition, lysMCreIκBαfl/fl mice displayed an increased expression of the NF-κB dependent factor inducible nitric oxide synthase in inflamed lesions. These changes in the CNS are associated with increased numbers of CD11b positive splenocytes and a higher expression of Ly6c on monocytes in the periphery. Well in accordance with these changes in the myeloid cell compartment, there was an increased production of the monocyte cytokines interleukin(IL-12 p70, IL-6 and IL-1beta in splenocytes. In contrast, production of the T-cell associated cytokines interferon gamma (IFN-gamma and IL-17 was not influenced. In summary, myeloid cell derived NF-κB plays a crucial role in autoimmune inflammation of the CNS and drives a pathogenic role of monocytes and macrophages independently from T-cells.

  2. Roles Nrf2 Plays in Myeloid Cells and Related Disorders

    Directory of Open Access Journals (Sweden)

    Eri Kobayashi

    2013-01-01

    Full Text Available The Keap1-Nrf2 system protects animals from oxidative and electrophilic stresses. Nrf2 is a transcription factor that induces the expression of genes essential for detoxifying reactive oxygen species (ROS and cytotoxic electrophiles. Keap1 is a stress sensor protein that binds to and ubiquitinates Nrf2 under unstressed conditions, leading to the rapid proteasomal degradation of Nrf2. Upon exposure to stress, Keap1 is modified and inactivated, which allows Nrf2 to accumulate and activate the transcription of a battery of cytoprotective genes. Antioxidative and detoxification activities are important for many types of cells to avoid DNA damage and cell death. Accumulating lines of recent evidence suggest that Nrf2 is also required for the primary functions of myeloid cells, which include phagocytosis, inflammation regulation, and ROS generation for bactericidal activities. In fact, results from several mouse models have shown that Nrf2 expression in myeloid cells is required for the proper regulation of inflammation, antitumor immunity, and atherosclerosis. Moreover, several molecules generated upon inflammation activate Nrf2. Although ROS detoxification mediated by Nrf2 is assumed to be required for anti-inflammation, the entire picture of the Nrf2-mediated regulation of myeloid cell primary functions has yet to be elucidated. In this review, we describe the Nrf2 inducers characteristic of myeloid cells and the contributions of Nrf2 to diseases.

  3. Metalloproteinases: a Functional Pathway for Myeloid Cells.

    Science.gov (United States)

    Chou, Jonathan; Chan, Matilda F; Werb, Zena

    2016-04-01

    Myeloid cells have diverse roles in regulating immunity, inflammation, and extracellular matrix turnover. To accomplish these tasks, myeloid cells carry an arsenal of metalloproteinases, which include the matrix metalloproteinases and the adamalysins. These enzymes have diverse substrate repertoires, and are thus involved in mediating proteolytic cascades, cell migration, and cell signaling. Dysregulation of metalloproteinases contributes to pathogenic processes, including inflammation, fibrosis, and cancer. Metalloproteinases also have important nonproteolytic functions in controlling cytoskeletal dynamics during macrophage fusion and enhancing transcription to promote antiviral immunity. This review highlights the diverse contributions of metalloproteinases to myeloid cell functions.

  4. TISSUE FACTOR EXPRESSION BY MYELOID CELLS CONTRIBUTES TO PROTECTIVE IMMUNE RESPONSE AGAINST Mycobacterium tuberculosis INFECTION

    Science.gov (United States)

    Venkatasubramanian, Sambasivan; Tripathi, Deepak; Tucker, Torry; Paidipally, Padmaja; Cheekatla, Satyanarayana; Welch, Elwyn; Raghunath, Anjana; Jeffers, Ann; Tvinnereim, Amy R.; Schechter, Melissa E; Andrade, Bruno B; Mackman, Nizel; Idell, Steven; Vankayalapati, Ramakrishna

    2015-01-01

    Tissue Factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TFΔ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2 like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth. PMID:26471500

  5. VEGFR1 activity modulates myeloid cell infiltration in growing lung metastases but is not required for spontaneous metastasis formation.

    Directory of Open Access Journals (Sweden)

    Michelle R Dawson

    Full Text Available The role of vascular endothelial growth factor receptor 1 (VEGFR1/Flt1 in tumor metastasis remains incompletely characterized. Recent reports suggested that blocking VEGFR1 activity or the interaction with its ligands (VEGF and PlGF has anti-tumor effects. Moreover, several studies showed that VEGFR1 mediates tumor progression to distant metastasis. All these effects may be exerted indirectly by recruitment of bone marrow-derived cells (BMDCs, such as myeloid cells. We investigated the role of VEGFR1 activity in BMDCs during the pre-metastatic phase, i.e., prior to metastatic nodule formation in mice after surgical removal of the primary tumor. Using pharmacologic blockade or genetic deletion of the tyrosine kinase domain of VEGFR1, we demonstrate that VEGFR1 activity is not required for the infiltration of de novo myeloid BMDCs in the pre-metastatic lungs in two tumor models and in two mouse models. Moreover, in line with emerging clinical observations, we show that blockade of VEGFR1 activity neither prevents nor changes the rate of spontaneous metastasis formation after primary tumor removal. Prevention of metastasis will require further identification and exploration of cellular and molecular pathways that mediate the priming of the metastatic soil.

  6. In vivo inhibition of c-MYC in myeloid cells impairs tumor-associated macrophage maturation and pro-tumoral activities.

    Directory of Open Access Journals (Sweden)

    Oscar M Pello

    Full Text Available Although tumor-associated macrophages (TAMs are involved in tumor growth and metastasis, the mechanisms controlling their pro-tumoral activities remain largely unknown. The transcription factor c-MYC has been recently shown to regulate in vitro human macrophage polarization and be expressed in macrophages infiltrating human tumors. In this study, we exploited the predominant expression of LysM in myeloid cells to generate c-Myc(fl/fl LysM(cre/+ mice, which lack c-Myc in macrophages, to investigate the role of macrophage c-MYC expression in cancer. Under steady-state conditions, immune system parameters in c-Myc(fl/fl LysM(cre/+ mice appeared normal, including the abundance of different subsets of bone marrow hematopoietic stem cells, precursors and circulating cells, macrophage density, and immune organ structure. In a model of melanoma, however, TAMs lacking c-Myc displayed a delay in maturation and showed an attenuation of pro-tumoral functions (e.g., reduced expression of VEGF, MMP9, and HIF1α that was associated with impaired tissue remodeling and angiogenesis and limited tumor growth in c-Myc(fl/fl LysM(cre/+ mice. Macrophage c-Myc deletion also diminished fibrosarcoma growth. These data identify c-Myc as a positive regulator of the pro-tumoral program of TAMs and suggest c-Myc inactivation as an attractive target for anti-cancer therapy.

  7. Routes of allergic sensitization and myeloid cell IKKβ differentially regulate antibody responses and allergic airway inflammation in male and female mice.

    Science.gov (United States)

    Bonnegarde-Bernard, Astrid; Jee, Junbae; Fial, Michael J; Steiner, Haley; DiBartola, Stephanie; Davis, Ian C; Cormet-Boyaka, Estelle; Tomé, Daniel; Boyaka, Prosper N

    2014-01-01

    Gender influences the incidence and/or the severity of several diseases and evidence suggests a higher rate of allergy and asthma among women. Most experimental models of allergy use mice sensitized via the parenteral route despite the fact that the mucosal tissues of the gastrointestinal and respiratory tracts are major sites of allergic sensitization and/or allergic responses. We analyzed allergen-specific Ab responses in mice sensitized either by gavage or intraperitoneal injection of ovalbumin together with cholera toxin as adjuvant, as well as allergic inflammation and lung functions following subsequent nasal challenge with the allergen. Female mice sensitized intraperitoneally exhibited higher levels of serum IgE than their male counterparts. After nasal allergen challenge, these female mice expressed higher Th2 responses and associated inflammation in the lung than males. On the other hand, male and female mice sensitized orally developed the same levels of allergen-specific Ab responses and similar levels of lung inflammation after allergen challenge. Interestingly, the difference in allergen-specific Ab responses between male and female mice sensitized by the intraperitoneal route was abolished in IKKβΔMye mice, which lack IKKβ in myeloid cells. In summary, the oral or systemic route of allergic sensitization and IKKβ signaling in myeloid cells regulate how the gender influences allergen-specific responses and lung allergic inflammation.

  8. Neurons exhibit Lyz2 promoter activity in vivo: Implications for using LysM-Cre mice in myeloid cell research.

    Science.gov (United States)

    Orthgiess, Johannes; Gericke, Martin; Immig, Kerstin; Schulz, Angela; Hirrlinger, Johannes; Bechmann, Ingo; Eilers, Jens

    2016-06-01

    To characterize LysM-Cre mediated gene targeting in mice, we crossed LysM-Cre mice to two independent reporter-mouse lines (tdTomato or YFP). Surprisingly, we found that more than 90% of cells with LysM-Cre mediated recombination in the brain were neurons, rather than myeloid cells, such as microglia. Hence, by using the LysM-Cre mouse line for conditional knockout approaches, a significant neuronal recombination needs to be considered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Testing the Role of Myeloid Cell Glucose Flux in Inflammation and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Tomohiro Nishizawa

    2014-04-01

    Full Text Available Inflammatory activation of myeloid cells is accompanied by increased glycolysis, which is required for the surge in cytokine production. Although in vitro studies suggest that increased macrophage glucose metabolism is sufficient for cytokine induction, the proinflammatory effects of increased myeloid cell glucose flux in vivo and the impact on atherosclerosis, a major complication of diabetes, are unknown. We therefore tested the hypothesis that increased glucose uptake in myeloid cells stimulates cytokine production and atherosclerosis. Overexpression of the glucose transporter GLUT1 in myeloid cells caused increased glycolysis and flux through the pentose phosphate pathway but did not induce cytokines. Moreover, myeloid-cell-specific overexpression of GLUT1 in LDL receptor-deficient mice was ineffective in promoting atherosclerosis. Thus, increased glucose flux is insufficient for inflammatory myeloid cell activation and atherogenesis. If glucose promotes atherosclerosis by increasing cellular glucose flux, myeloid cells do not appear to be the key targets.

  10. Rho GTPase expression in human myeloid cells.

    Directory of Open Access Journals (Sweden)

    Suzanne F G van Helden

    Full Text Available Myeloid cells are critical for innate immunity and the initiation of adaptive immunity. Strict regulation of the adhesive and migratory behavior is essential for proper functioning of these cells. Rho GTPases are important regulators of adhesion and migration; however, it is unknown which Rho GTPases are expressed in different myeloid cells. Here, we use a qPCR-based approach to investigate Rho GTPase expression in myeloid cells.We found that the mRNAs encoding Cdc42, RhoQ, Rac1, Rac2, RhoA and RhoC are the most abundant. In addition, RhoG, RhoB, RhoF and RhoV are expressed at low levels or only in specific cell types. More differentiated cells along the monocyte-lineage display lower levels of Cdc42 and RhoV, while RhoC mRNA is more abundant. In addition, the Rho GTPase expression profile changes during dendritic cell maturation with Rac1 being upregulated and Rac2 downregulated. Finally, GM-CSF stimulation, during macrophage and osteoclast differentiation, leads to high expression of Rac2, while M-CSF induces high levels of RhoA, showing that these cytokines induce a distinct pattern. Our data uncover cell type specific modulation of the Rho GTPase expression profile in hematopoietic stem cells and in more differentiated cells of the myeloid lineage.

  11. Heterozygous inactivation of the Nf1 gene in myeloid cells enhances neointima formation via a rosuvastatin-sensitive cellular pathway.

    Science.gov (United States)

    Stansfield, Brian K; Bessler, Waylan K; Mali, Raghuveer; Mund, Julie A; Downing, Brandon; Li, Fang; Sarchet, Kara N; DiStasi, Matthew R; Conway, Simon J; Kapur, Reuben; Ingram, David A

    2013-03-01

    Mutations in the NF1 tumor suppressor gene cause Neurofibromatosis type 1 (NF1). Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity. Some NF1 patients develop cardiovascular disease, which represents an underrecognized disease complication and contributes to excess morbidity and mortality. Specifically, NF1 patients develop arterial occlusion resulting in tissue ischemia and sudden death. Murine studies demonstrate that heterozygous inactivation of Nf1 (Nf1(+/-)) in bone marrow cells enhances neointima formation following arterial injury. Macrophages infiltrate Nf1(+/-) neointimas, and NF1 patients have increased circulating inflammatory monocytes in their peripheral blood. Therefore, we tested the hypothesis that heterozygous inactivation of Nf1 in myeloid cells is sufficient for neointima formation. Specific ablation of a single copy of the Nf1 gene in myeloid cells alone mobilizes a discrete pro-inflammatory murine monocyte population via a cell autonomous and gene-dosage dependent mechanism. Furthermore, lineage-restricted heterozygous inactivation of Nf1 in myeloid cells is sufficient to reproduce the enhanced neointima formation observed in Nf1(+/-) mice when compared with wild-type controls, and homozygous inactivation of Nf1 in myeloid cells amplified the degree of arterial stenosis after arterial injury. Treatment of Nf1(+/-) mice with rosuvastatin, a stain with anti-inflammatory properties, significantly reduced neointima formation when compared with control. These studies identify neurofibromin-deficient myeloid cells as critical cellular effectors of Nf1(+/-) neointima formation and propose a potential therapeutic for NF1 cardiovascular disease.

  12. αB-Crystallin regulates expansion of CD11b⁺Gr-1⁺ immature myeloid cells during tumor progression.

    Science.gov (United States)

    Dieterich, Lothar C; Schiller, Petter; Huang, Hua; Wawrousek, Eric F; Loskog, Angelica; Wanders, Alkwin; Moons, Lieve; Dimberg, Anna

    2013-01-01

    The molecular chaperone αB-crystallin has emerged as a target for cancer therapy due to its expression in human tumors and its role in regulating tumor angiogenesis. αB-crystallin also reduces neuroinflammation, but its role in other inflammatory conditions has not been investigated. Here, we examined whether αB-crystallin regulates inflammation associated with tumors and ischemia. We found that CD45(+) leukocyte infiltration is 3-fold increased in tumors and ischemic myocardium in αB-crystallin-deficient mice. Notably, αB-crystallin is prominently expressed in CD11b(+) Gr-1(+) immature myeloid cells (IMCs), known as regulators of angiogenesis and immune responses, while lymphocytes and mature granulocytes show low αB-crystallin expression. αB-Crystallin deficiency results in a 3-fold higher accumulation of CD11b(+) Gr-1(+) IMCs in tumors and a significant rise in CD11b(+) Gr-1(+) IMCs in spleen and bone marrow. Similarly, we noted a 2-fold increase in CD11b(+) Gr-1(+) IMCs in chronically inflamed livers in αB-crystallin-deficient mice. The effect of αB-crystallin on IMC accumulation is limited to pathological conditions, as CD11b(+) Gr-1(+) IMCs are not elevated in naive mice. Through ex vivo differentiation of CD11b(+) Gr-1(+) cells, we provide evidence that αB-crystallin regulates systemic expansion of IMCs through a cell-intrinsic mechanism. Our study suggests a key role of αB-crystallin in limiting expansion of CD11b(+) Gr-1(+) IMCs in diverse pathological conditions.

  13. Regulation of Human Macrophage M1–M2 Polarization Balance by Hypoxia and the Triggering Receptor Expressed on Myeloid Cells-1

    Directory of Open Access Journals (Sweden)

    Federica Raggi

    2017-09-01

    Full Text Available Macrophages (Mf are a heterogeneous population of tissue-resident professional phagocytes and a major component of the leukocyte infiltrate at sites of inflammation, infection, and tumor growth. They can undergo diverse forms of activation in response to environmental factors, polarizing into specialized functional subsets. A common hallmark of the pathologic environment is represented by hypoxia. The impact of hypoxia on human Mf polarization has not been fully established. The objective of this study was to elucidate the effects of a hypoxic environment reflecting that occurring in vivo in diseased tissues on the ability of human Mf to polarize into classically activated (proinflammatory M1 and alternatively activated (anti-inflammatory M2 subsets. We present data showing that hypoxia hinders Mf polarization toward the M1 phenotype by decreasing the expression of T cell costimulatory molecules and chemokine homing receptors and the production of proinflammatory, Th1-priming cytokines typical of classical activation, while promoting their acquisition of phenotypic and secretory features of alternative activation. Furthermore, we identify the triggering receptor expressed on myeloid cells (TREM-1, a member of the Ig-like immunoregulatory receptor family, as a hypoxia-inducible gene in Mf and demonstrate that its engagement by an agonist Ab reverses the M2-polarizing effect of hypoxia imparting a M1-skewed phenotype to Mf. Finally, we provide evidence that Mf infiltrating the inflamed hypoxic joints of children affected by oligoarticular juvenile idiopatic arthritis express high surface levels of TREM-1 associated with predominant M1 polarization and suggest the potential of this molecule in driving M1 proinflammatory reprogramming in the hypoxic synovial environment.

  14. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity

    Science.gov (United States)

    Rodriguez, Paulo C.; Ochoa, Augusto C.; Al-Khami, Amir A.

    2017-01-01

    Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted.

  15. Increased Th17-inducing activity of CD14+ CD163 low myeloid cells in intestinal lamina propria of patients with Crohn's disease.

    Science.gov (United States)

    Ogino, Takayuki; Nishimura, Junichi; Barman, Soumik; Kayama, Hisako; Uematsu, Satoshi; Okuzaki, Daisuke; Osawa, Hideki; Haraguchi, Naotsugu; Uemura, Mamoru; Hata, Taishi; Takemasa, Ichiro; Mizushima, Tsunekazu; Yamamoto, Hirofumi; Takeda, Kiyoshi; Doki, Yuichiro; Mori, Masaki

    2013-12-01

    Abnormal activity of innate immune cells and T-helper (Th) 17 cells has been implicated in the pathogenesis of autoimmune and inflammatory diseases, including Crohn's disease (CD). Intestinal innate immune (myeloid) cells have been found to induce development of Th17 cells in mice, but it is not clear if this occurs in humans or in patients with CD. We investigated whether human intestinal lamina propria cells (LPCs) induce development of Th17 cells and whether these have a role in the pathogenesis of CD. Normal intestinal mucosa samples were collected from patients with colorectal cancer and noninflamed and inflamed regions of mucosa were collected from patients with CD. LPCs were isolated by enzymatic digestion and analyzed for expression of HLA-DR, lineage markers CD14 and CD163 using flow cytometry. Among HLA-DR(high) Lin(-) cells, we identified a subset of CD14(+) CD163(low) cells in intestinal LPCs; this subset expressed Toll-like receptor (TLR) 2, TLR4, and TLR5 mRNAs and produced interleukin (IL)-6, IL-1β, and tumor necrosis factor in response to lipopolysaccharide. In vitro co-culture with naïve T cells revealed that CD14(+) CD163(low) cells induced development of Th17 cells. CD14(+) CD163(low) cells from inflamed regions of mucosa of patients with CD expressed high levels of IL-6, IL-23p19, and tumor necrosis factor mRNAs, and strongly induced Th17 cells. CD14(+) CD163(low) cells from the noninflamed mucosa of patients with CD also had increased abilities to induce Th17 cells compared with those from normal intestinal mucosa. CD14(+) CD163(low) cells in intestinal LPCs from normal intestinal mucosa induce differentiation of naive T cells into Th17 cells; this activity is increased in mucosal samples from patients with CD. These findings show how intestinal myeloid cell types could contribute to pathogenesis of CD and possibly other Th17-associated diseases. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. Myeloid cell-derived HIF attenuates inflammation in UUO-induced kidney injury

    Science.gov (United States)

    Kobayashi, Hanako; Gilbert, Victoria; Liu, Qingdu; Kapitsinou, Pinelopi P.; Unger, Travis L.; Rha, Jennifer; Rivella, Stefano; Schlöndorff, Detlef; Haase, Volker H.

    2012-01-01

    Renal fibrosis and inflammation are associated with hypoxia, and tissue pO2 plays a central role in modulating the progression of chronic kidney disease. Key mediators of cellular adaptation to hypoxia are hypoxia-inducible factor (HIF)-1 and -2. In the kidney they are expressed in a cell type-specific manner; to what degree activation of each homolog modulates renal fibrogenesis and inflammation has not been established. To address this issue, we used Cre-loxP recombination to activate or to delete both Hif-1 and Hif-2 either globally or cell type-specifically in myeloid cells. Global activation of Hif suppressed inflammation and fibrogenesis in mice subjected to unilateral ureteral obstruction, while activation of Hif in myeloid cells suppressed inflammation only. Suppression of inflammatory cell infiltration was associated with down-regulation of CC chemokine receptors in renal macrophages. Conversely, global deletion or myeloid-specific inactivation of Hif promoted inflammation. Furthermore, prolonged hypoxia suppressed the expression of multiple inflammatory molecules in non-injured kidneys. Collectively, we provide experimental evidence that hypoxia and/or myeloid cell-specific HIF activation attenuates renal inflammation associated with chronic kidney injury. PMID:22490864

  17. A20 (Tnfaip3 deficiency in myeloid cells protects against influenza A virus infection.

    Directory of Open Access Journals (Sweden)

    Jonathan Maelfait

    Full Text Available The innate immune response provides the first line of defense against viruses and other pathogens by responding to specific microbial molecules. Influenza A virus (IAV produces double-stranded RNA as an intermediate during the replication life cycle, which activates the intracellular pathogen recognition receptor RIG-I and induces the production of proinflammatory cytokines and antiviral interferon. Understanding the mechanisms that regulate innate immune responses to IAV and other viruses is of key importance to develop novel therapeutic strategies. Here we used myeloid cell specific A20 knockout mice to examine the role of the ubiquitin-editing protein A20 in the response of myeloid cells to IAV infection. A20 deficient macrophages were hyperresponsive to double stranded RNA and IAV infection, as illustrated by enhanced NF-κB and IRF3 activation, concomitant with increased production of proinflammatory cytokines, chemokines and type I interferon. In vivo this was associated with an increased number of alveolar macrophages and neutrophils in the lungs of IAV infected mice. Surprisingly, myeloid cell specific A20 knockout mice are protected against lethal IAV infection. These results challenge the general belief that an excessive host proinflammatory response is associated with IAV-induced lethality, and suggest that under certain conditions inhibition of A20 might be of interest in the management of IAV infections.

  18. CDA-2, a urinary preparation, inhibits lung cancer development through the suppression of NF-kappaB activation in myeloid cell.

    Directory of Open Access Journals (Sweden)

    Xuan Wang

    Full Text Available CDA-2 (cell differentiation agent 2, a urinary preparation, has potent anti- proliferative and pro-apoptotic properties in cancer cells. However, the mechanisms of tumor inhibitory action of CDA-2 are far from clear, and especially there was no report on lung cancer. Here we demonstrate that CDA-2 and its main component phenylacetylglutamine (PG reduce the metastatic lung tumor growth, and increases survival time after inoculation with Lewis lung carcinoma (LLC cells in a dose-dependent manner in C57BL6 mice. Proliferative program analysis in cancer cells revealed a fundamental impact of CDA-2 and PG on proliferation and apoptosis, including Bcl-2, Bcl-XL, cIAP1, Survivin, PCNA, Ki-67 proteins and TUNEL assays. CDA-2 and PG significantly reduced NF-κB DNA-binding activity in lung cancer cells and in alveolar macrophages of tumor bearing mice and especially decreased the release of inflammatory factors including TNFα, IL-6, and KC. Furthermore, CDA-2 and PG decrease the expressions of TLR2, TLR6, and CD14, but not TLR1, TLR3, TLR4, and TLR9 in bone-marrow-derived macrophages (BMDM of mice stimulated by LLC-conditioned medium (LLC-CM. Over-expressing TLR2 in BMDM prevented CDA-2 and PG from inhibiting NF-κB activation, as well as induction of TNFα and IL-6. TLR2:TLR6 complexes mediate the effect of NF-κB inactivation by CDA-2. In conclusion, CDA-2 potently inhibits lung tumor development by reduction of the inflammation in lung through suppression of NF-κB activation in myeloid cells, associating with modulation of TLR2 signaling.

  19. A novel mouse model of conditional IRAK-M deficiency in myeloid cells: application in lung Pseudomonas aeruginosa infection.

    Science.gov (United States)

    Jiang, Di; Matsuda, Jennifer; Berman, Reena; Schaefer, Niccolette; Stevenson, Connor; Gross, James; Zhang, Bicheng; Sanchez, Amelia; Li, Liwu; Chu, Hong Wei

    2017-02-01

    Myeloid cells such as macrophages are critical to innate defense against infection. IL-1 receptor-associated kinase M (IRAK-M) is a negative regulator of TLR signaling during bacterial infection, but the role of myeloid cell IRAK-M in bacterial infection is unclear. Our goal was to generate a novel conditional knockout mouse model to define the role of myeloid cell IRAK-M during bacterial infection. Myeloid cell-specific IRAK-M knockout mice were generated by crossing IRAK-M floxed mice with LysM-Cre knock-in mice. The resulting LysM-Cre(+)/IRAK-M(fl/wt) and control (LysM-Cre(-)/IRAK-M(fl/wt)) mice were intranasally infected with Pseudomonas aeruginosa (PA). IRAK-M deletion, inflammation, myeloperoxidase (MPO) activity and PA load were measured in leukocytes, bronchoalveolar lavage (BAL) fluid and lungs. PA killing assay with BAL fluid was performed to determine mechanisms of IRAK-M-mediated host defense. IRAK-M mRNA and protein levels in alveolar and lung macrophages were significantly reduced in LysM-Cre(+)/IRAK-M(fl/wt) mice compared with control mice. Following PA infection, LysM-Cre(+)/IRAK-M(fl/wt) mice have enhanced lung neutrophilic inflammation, including MPO activity, but reduced PA load. The increased lung MPO activity in LysM-Cre(+)/IRAK-M(fl/wt) mouse BAL fluid reduced PA load. Generation of IRAK-M conditional knockout mice will enable investigators to determine precisely the function of IRAK-M in myeloid cells and other types of cells during infection and inflammation.

  20. Neurofibromin Deficient Myeloid Cells are Critical Mediators of Aneurysm Formation In Vivo

    Science.gov (United States)

    Li, Fang; Downing, Brandon D.; Smiley, Lucy C.; Mund, Julie A.; DiStasi, Matthew R.; Bessler, Waylan K.; Sarchet, Kara N.; Hinds, Daniel M.; Kamendulis, Lisa M.; Hingtgen, Cynthia M.; Case, Jamie; Clapp, D. Wade; Conway, Simon J.; Stansfield, Brian K.; Ingram, David A.

    2014-01-01

    Background Neurofibromatosis Type 1 (NF1) is a genetic disorder resulting from mutations in the NF1 tumor suppressor gene. Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity in circulating hematopoietic and vascular wall cells, which are critical for maintaining vessel wall homeostasis. NF1 patients have evidence of chronic inflammation resulting in development of premature cardiovascular disease, including arterial aneurysms, which may manifest as sudden death. However, the molecular pathogenesis of NF1 aneurysm formation is unknown. Method and Results Utilizing an angiotensin II-induced aneurysm model, we demonstrate that heterozygous inactivation of Nf1 (Nf1+/−) enhanced aneurysm formation with myeloid cell infiltration and increased oxidative stress in the vessel wall. Using lineage-restricted transgenic mice, we show loss of a single Nf1 allele in myeloid cells is sufficient to recapitulate the Nf1+/− aneurysm phenotype in vivo. Finally, oral administration of simvastatin or the antioxidant apocynin, reduced aneurysm formation in Nf1+/− mice. Conclusion These data provide genetic and pharmacologic evidence that Nf1+/− myeloid cells are the cellular triggers for aneurysm formation in a novel model of NF1 vasculopathy and provide a potential therapeutic target. PMID:24370551

  1. Myeloid cells in tumour-immune interactions.

    Science.gov (United States)

    Kareva, Irina; Berezovskaya, Faina; Castillo-Chavez, Carlos

    2010-07-01

    Despite highly developed specific immune responses, tumour cells often manage to escape recognition by the immune system, continuing to grow uncontrollably. Experimental work suggests that mature myeloid cells may be central to the activation of the specific immune response. Recognition and subsequent control of tumour growth by the cells of the specific immune response depend on the balance between immature (ImC) and mature (MmC) myeloid cells in the body. However, tumour cells produce cytokines that inhibit ImC maturation, altering the balance between ImC and MmC. Hence, the focus of this manuscript is on the study of the potential role of this inhibiting mechanism on tumour growth dynamics. A conceptual predator-prey type model that incorporates the dynamics and interactions of tumour cells, CD8(+) T cells, ImC and MmC is proposed in order to address the role of this mechanism. The prey (tumour) has a defence mechanism (blocking the maturation of ImC) that prevents the predator (immune system) from recognizing it. The model, a four-dimensional nonlinear system of ordinary differential equations, is reduced to a two-dimensional system using time-scale arguments that are tied to the maturation rate of ImC. Analysis shows that the model is capable of supporting biologically reasonable patterns of behaviour depending on the initial conditions. A range of parameters, where healing without external influences can occur, is identified both qualitatively and quantitatively.

  2. Saturated Fatty Acids Engage an IRE1α-Dependent Pathway to Activate the NLRP3 Inflammasome in Myeloid Cells.

    Science.gov (United States)

    Robblee, Megan M; Kim, Charles C; Porter Abate, Jess; Valdearcos, Martin; Sandlund, Karin L M; Shenoy, Meera K; Volmer, Romain; Iwawaki, Takao; Koliwad, Suneil K

    2016-03-22

    Diets rich in saturated fatty acids (SFAs) produce a form of tissue inflammation driven by "metabolically activated" macrophages. We show that SFAs, when in excess, induce a unique transcriptional signature in both mouse and human macrophages that is enriched by a subset of ER stress markers, particularly IRE1α and many adaptive downstream target genes. SFAs also activate the NLRP3 inflammasome in macrophages, resulting in IL-1β secretion. We found that IRE1α mediates SFA-induced IL-1β secretion by macrophages and that its activation by SFAs does not rely on unfolded protein sensing. We show instead that the ability of SFAs to stimulate either IRE1α activation or IL-1β secretion can be specifically reduced by preventing their flux into phosphatidylcholine (PC) or by increasing unsaturated PC levels. Thus, IRE1α is an unrecognized intracellular PC sensor critical to the process by which SFAs stimulate macrophages to secrete IL-1β, a driver of diet-induced tissue inflammation.

  3. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells*

    Science.gov (United States)

    Wittmann, Alexandra; Lamprinaki, Dimitra; Bowles, Kristian M.; Katzenellenbogen, Ewa; Knirel, Yuriy A.; Whitfield, Chris; Nishimura, Takashi; Matsumoto, Naoki; Yamamoto, Kazuo; Iwakura, Yoichiro; Saijo, Shinobu; Kawasaki, Norihito

    2016-01-01

    LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared with Salmonella enterica O66 LPS, which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-β1,3]GalNAc-α1,3-GalNAc-β1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognize H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-out BM-DCs failed to do so. This receptor cross-talk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several Gram-negative bacteria augment TLR4 responses through interaction with Dectin-2. PMID:27358401

  4. HIF-α/MIF and NF-κB/IL-6 axes contribute to the recruitment of CD11b+Gr-1+ myeloid cells in hypoxic microenvironment of HNSCC.

    Science.gov (United States)

    Zhu, Guiquan; Tang, Yaling; Geng, Ning; Zheng, Min; Jiang, Jian; Li, Ling; Li, Kaide; Lei, Zhengge; Chen, Wei; Fan, Yunlong; Ma, Xiangrui; Li, Longjiang; Wang, Xiaoyi; Liang, Xinhua

    2014-02-01

    CD11b+Gr-1+ myeloid cells have gained much attention due to their roles in tumor immunity suppression as well as promotion of angiogenesis, invasion, and metastases. However, the mechanisms by which CD11b+Gr-1+ myeloid cells recruit to the tumor site have not been well clarified. In the present study, we showed that hypoxia could stimulate the migration of CD11b+Gr-1+ myeloid cells through increased production of macrophage migration inhibitory factor (MIF) and interleukin-6 (IL-6) by head and neck squamous cell carcinoma (HNSCC) cells. Hypoxia-inducible factor-1α (HIF-1α)- and HIF-2α-dependent MIF regulated chemotaxis, differentiation, and pro-angiogenic function of CD11b+Gr-1+ myeloid cells through binding to CD74/CXCR2, and CD74/CXCR4 complexes, and then activating p38/mitogen-activated protein kinase (MAPK) and phosphatidylinositide 3-kinases (PI3K)/AKT signaling pathways. Knockdown (KD) of HIF-1α and HIF-2α in HNSCC cells decreased MIF level but failed to inhibit the CD11b+Gr-1+ myeloid cell migration, because HIF-1α/2α KD enhanced nuclear factor κB (NF-κB) activity that increased IL-6 secretion. Simultaneously blocking NF-κB and HIF-1α/HIF-2α had better inhibitory effect on CD11b+Gr-1+ myeloid cell recruitment in the hypoxic zone than individually silencing HIF-1α/2α or NF-κB. In conclusion, the interaction between HIF-α/MIF and NF-κB/IL-6 axes plays an important role in the hypoxia-induced accumulation of CD11b+Gr-1+ myeloid cells and tumor growth in HNSCC.

  5. Myeloid Cells in Infantile Hemangioma

    Science.gov (United States)

    Ritter, Matthew R.; Reinisch, John; Friedlander, Sheila Fallon; Friedlander, Martin

    2006-01-01

    Little is known about the pathogenesis of infantile hemangiomas despite the fact that they are relatively common tumors. These benign neoplasms occur in as many as 1 in 10 births, and although rarely life threatening, hemangiomas can pose serious concerns to the cosmetic and psychosocial development of the afflicted child. Ulceration, scarring, and disfigurement are significant problems as are encroachment of the ear and eye, which can threaten hearing and vision. The precise mechanisms controlling the rapid growth observed in the first months of life and the spontaneous involution that follows throughout the course of years remain unknown. In this report we demonstrate the presence of large numbers of hematopoietic cells of the myeloid lineage in proliferating hemangiomas and propose a mechanism for the observed evolution of these lesions that is triggered by hypoxia and involves the participation of myeloid cells. We report the results of experiments using myeloid markers (CD83, CD32, CD14, CD15) that unexpectedly co-labeled hemangioma endothelial cells, providing new evidence that these cells are distinct from normal endothelium. PMID:16436675

  6. Lack of PPARγ in myeloid cells confers resistance to Listeria monocytogenes infection.

    Directory of Open Access Journals (Sweden)

    Zeinab Abdullah

    Full Text Available The peroxisomal proliferator-activated receptor γ (PPARγ is a nuclear receptor that controls inflammation and immunity. Innate immune defense against bacterial infection appears to be compromised by PPARγ. The relevance of PPARγ in myeloid cells, that organize anti-bacterial immunity, for the outcome of immune responses against intracellular bacteria such as Listeria monocytogenes in vivo is unknown. We found that Listeria monocytogenes infection of macrophages rapidly led to increased expression of PPARγ. This prompted us to investigate whether PPARγ in myeloid cells influences innate immunity against Listeria monocytogenes infection by using transgenic mice with myeloid-cell specific ablation of PPARγ (LysMCre×PPARγ(flox/flox. Loss of PPARγ in myeloid cells results in enhanced innate immune defense against Listeria monocytogenes infection both, in vitro and in vivo. This increased resistance against infection was characterized by augmented levels of bactericidal factors and inflammatory cytokines: ROS, NO, IFNγ TNF IL-6 and IL-12. Moreover, myeloid cell-specific loss of PPARγ enhanced chemokine and adhesion molecule expression leading to improved recruitment of inflammatory Ly6C(hi monocytes to sites of infection. Importantly, increased resistance against Listeria infection in the absence of PPARγ was not accompanied by enhanced immunopathology. Our results elucidate a yet unknown regulatory network in myeloid cells that is governed by PPARγ and restrains both listeriocidal activity and recruitment of inflammatory monocytes during Listeria infection, which may contribute to bacterial immune escape. Pharmacological interference with PPARγ activity in myeloid cells might represent a novel strategy to overcome intracellular bacterial infection.

  7. DACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21{sup Cip1}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Woong; Kim, Hyeng-Soo; Kim, Seonggon; Hwang, Junmo; Kim, Young Hun; Lim, Ga Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Sohn, Wern-Joo [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Yoon, Suk-Ran [Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Jae-Young [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Park, Tae Sung [Department of Laboratory Medicine, Kyung Hee University School of Medicine, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-702 (Korea, Republic of); Park, Kwon Moo [Department of Anatomy, Kyungpook National University School of Medicine, Daegu 700-422 (Korea, Republic of); Ryoo, Zae Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Sanggyu, E-mail: slee@knu.ac.kr [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer DACH1 increases cyclin D, F and Cdk 1, 4, 6 in mouse myeloid progenitor cells. Black-Right-Pointing-Pointer The knockdown of DACH1 blocked the cell cycle progression of HL-60 cells. Black-Right-Pointing-Pointer The novel effect of DACH1 related with cell cycle regulation and leukemogenesis. -- Abstract: The cell-fate determination factor Dachshund, a component of the Retinal Determination Gene Network (RDGN), has a role in breast tumor proliferation through the repression of cyclin D1 and several key regulators of embryonic stem cell function, such as Nanog and Sox2. However, little is known about the role of DACH1 in a myeloid lineage as a cell cycle regulator. Here, we identified the differential expression levels of extensive cell cycle regulators controlled by DACH1 in myeloid progenitor cells. The forced expression of DACH1 induced p27{sup Kip1} and repressed p21{sup Cip1}, which is a pivotal characteristic of the myeloid progenitor. Furthermore, DACH1 significantly increased the expression of cyclin D1, D3, F, and Cdk 1, 4, and 6 in myeloid progenitor cells. The knockdown of DACH1 blocked the cell cycle progression of HL-60 promyeloblastic cells through the decrease of cyclin D1, D3, F, and Cdk 1, 4, and 6 and increase in p21{sup Cip1}, which in turn decreased the phosphorylation of the Rb protein. The expression of Sox2, Oct4, and Klf4 was significantly up-regulated by the forced expression of DACH1 in mouse myeloid progenitor cells.

  8. ATM facilitates mouse gammaherpesvirus reactivation from myeloid cells during chronic infection.

    Science.gov (United States)

    Kulinski, Joseph M; Darrah, Eric J; Broniowska, Katarzyna A; Mboko, Wadzanai P; Mounce, Bryan C; Malherbe, Laurent P; Corbett, John A; Gauld, Stephen B; Tarakanova, Vera L

    2015-09-01

    Gammaherpesviruses are cancer-associated pathogens that establish life-long infection in most adults. Insufficiency of Ataxia-Telangiectasia mutated (ATM) kinase leads to a poor control of chronic gammaherpesvirus infection via an unknown mechanism that likely involves a suboptimal antiviral response. In contrast to the phenotype in the intact host, ATM facilitates gammaherpesvirus reactivation and replication in vitro. We hypothesized that ATM mediates both pro- and antiviral activities to regulate chronic gammaherpesvirus infection in an immunocompetent host. To test the proposed proviral activity of ATM in vivo, we generated mice with ATM deficiency limited to myeloid cells. Myeloid-specific ATM deficiency attenuated gammaherpesvirus infection during the establishment of viral latency. The results of our study uncover a proviral role of ATM in the context of gammaherpesvirus infection in vivo and support a model where ATM combines pro- and antiviral functions to facilitate both gammaherpesvirus-specific T cell immune response and viral reactivation in vivo.

  9. IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Serkan I. Göktuna

    2014-06-01

    Full Text Available The recruitment of immune cells into solid tumors is an essential prerequisite of tumor development. Depending on the prevailing polarization profile of these infiltrating leucocytes, tumorigenesis is either promoted or blocked. Here, we identify IκB kinase α (IKKα as a central regulator of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKKα kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of interferon γ (IFNγ-expressing M1-like myeloid cells. In IKKα mutant mice, M1-like polarization is not controlled in a cell-autonomous manner but, rather, depends on the interplay of both IKKα mutant tumor epithelia and immune cells. Because therapies aiming at the tumor microenvironment rather than directly at the mutated cancer cell may circumvent resistance development, we suggest IKKα as a promising target for colorectal cancer (CRC therapy.

  10. A GPBAR1 (TGR5 small molecule agonist shows specific inhibitory effects on myeloid cell activation in vitro and reduces experimental autoimmune encephalitis (EAE in vivo.

    Directory of Open Access Journals (Sweden)

    Nuruddeen D Lewis

    Full Text Available GPBAR1 is a G protein-coupled receptor that is activated by certain bile acids and plays an important role in the regulation of bile acid synthesis, lipid metabolism, and energy homeostasis. Recent evidence suggests that GPBAR1 may also have important effects in reducing the inflammatory response through its expression on monocytes and macrophages. To further understand the role of GPBAR1 in inflammation, we generated a novel, selective, proprietary GPBAR1 agonist and tested its effectiveness at reducing monocyte and macrophage activation in vitro and in vivo. We have used this agonist, together with previously described agonists to study agonism of GPBAR1, and shown that they can all induce cAMP and reduce TLR activation-induced cytokine production in human monocytes and monocyte-derived macrophages in vitro. Additionally, through the usage of RNA sequencing (RNA-Seq, we identified a select set of genes that are regulated by GPBAR1 agonism during LPS activation. To further define the in vivo role of GPBAR1 in inflammation, we assessed GPBAR1 expression and found high levels on circulating mouse monocytes. Agonism of GPBAR1 reduced LPS-induced cytokine production in mouse monocytes ex vivo and serum cytokine levels in vivo. Agonism of GPBAR1 also had profound effects in the experimental autoimmune encephalomyelitis (EAE mouse model of multiple sclerosis, where monocytes play an important role. Mice treated with the GPBAR1 agonist exhibited a significant reduction in the EAE clinical score which correlated with reduced monocyte and microglial activation and reduced trafficking of monocytes and T cells into the CNS. These data confirm the importance of GPBAR1 in controlling monocyte and macrophage activation in vivo and support the rationale for selective agonists of GPBAR1 in the treatment of inflammatory diseases.

  11. Expression of val-12 mutant ras p21 in an IL-3-dependent murine myeloid cell line is associated with loss of serum-dependence and increases in membrane PIP2-specific phospholipase C activity.

    Science.gov (United States)

    Rizzo, M T; Boswell, H S; English, D; Gabig, T G

    1991-01-01

    We previously showed that the proliferative response of a serum- and interleukin-3 (IL-3)-dependent murine myeloid cell line, NFS/N1-H7, was partially inhibited by pertussis toxin as a result of toxin-induced increased adenylate cyclase activity. In the present studies, we examined the role of the phosphoinositide cycle in the proliferative response of these cells and demonstrated that there was no change in PIP (phosphatidylinositol bisphosphate)-specific phospholipase C activity in response to IL-3 alone. However, serum caused a pertussis toxin-insensitive increase in PIP2-specific phospholipase C activity as reflected by decreased cellular levels of 32P-labelled PIP2. Proliferation of a subline selected from val-12-mutant H-ras-transfected NFS-H7 cells, clone E5, was insensitive to pertussis toxin, occurred in the absence of serum but remained serum-stimulatable and absolutely dependent on IL-3. This val-12 mutant ras-expressing cell line showed an increase in 32P-labelled PIP (phosphatidylinositol phosphate) in response to serum whereas the parent cell line did not. Membrane fractions from 32P-labelled ras-transfected cells displayed higher GTP gamma S-, GTP-, or F(-)-stimulated PIP2-specific phospholipase C activity compared to membranes from the parent cell line. Thus serum-dependence and adenylate cyclase-mediated pertussis toxin-sensitivity of the parent cell line was bypassed by val-12 mutant ras p21, possibly as a result of increased PIP2-specific phospholipase C activity.

  12. Myeloid cells contribute to tumor lymphangiogenesis.

    Science.gov (United States)

    Zumsteg, Adrian; Baeriswyl, Vanessa; Imaizumi, Natsuko; Schwendener, Reto; Rüegg, Curzio; Christofori, Gerhard

    2009-09-17

    The formation of new blood vessels (angiogenesis) and lymphatic vessels (lymphangiogenesis) promotes tumor outgrowth and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC) can contribute to tumor angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in lymphatic vessel formation.

  13. Myeloid cells contribute to tumor lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Adrian Zumsteg

    Full Text Available The formation of new blood vessels (angiogenesis and lymphatic vessels (lymphangiogenesis promotes tumor outgrowth and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC can contribute to tumor angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in lymphatic vessel formation.

  14. The Influence of Programmed Cell Death in Myeloid Cells on Host Resilience to Infection with Legionella pneumophila or Streptococcus pyogenes

    Science.gov (United States)

    Gamradt, Pia; Xu, Yun; Gratz, Nina; Duncan, Kellyanne; Kobzik, Lester; Högler, Sandra; Decker, Thomas

    2016-01-01

    Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD) is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl)-2 protein in myeloid cells (CD68(bcl2tg), thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen. PMID:27973535

  15. PI3-kinase γ promotes Rap1a-mediated activation of myeloid cell integrin α4β1, leading to tumor inflammation and growth.

    Directory of Open Access Journals (Sweden)

    Michael C Schmid

    Full Text Available Tumor inflammation, the recruitment of myeloid lineage cells into the tumor microenvironment, promotes angiogenesis, immunosuppression and metastasis. CD11b+Gr1lo monocytic lineage cells and CD11b+Gr1hi granulocytic lineage cells are recruited from the circulation by tumor-derived chemoattractants, which stimulate PI3-kinase γ (PI3Kγ-mediated integrin α4 activation and extravasation. We show here that PI3Kγ activates PLCγ, leading to RasGrp/CalDAG-GEF-I&II mediated, Rap1a-dependent activation of integrin α4β1, extravasation of monocytes and granulocytes, and inflammation-associated tumor progression. Genetic depletion of PLCγ, CalDAG-GEFI or II, Rap1a, or the Rap1 effector RIAM was sufficient to prevent integrin α4 activation by chemoattractants or activated PI3Kγ (p110γCAAX, while activated Rap (RapV12 promoted constitutive integrin activation and cell adhesion that could only be blocked by inhibition of RIAM or integrin α4β1. Similar to blockade of PI3Kγ or integrin α4β1, blockade of Rap1a suppressed both the recruitment of monocytes and granulocytes to tumors and tumor progression. These results demonstrate critical roles for a PI3Kγ-Rap1a-dependent pathway in integrin activation during tumor inflammation and suggest novel avenues for cancer therapy.

  16. Myxoma virus lacking the pyrin-like protein M013 is sensed in human myeloid cells by both NLRP3 and multiple Toll-like receptors, which independently activate the inflammasome and NF-κB innate response pathways.

    Science.gov (United States)

    Rahman, Masmudur M; McFadden, Grant

    2011-12-01

    on sensing by the NLRP3 receptor in response to vMyxM013-KO infection of human myeloid cells.

  17. Myeloid Cell Prostaglandin E2 Receptor EP4 Modulates Cytokine Production but Not Atherogenesis in a Mouse Model of Type 1 Diabetes.

    Directory of Open Access Journals (Sweden)

    Sara N Vallerie

    Full Text Available Type 1 diabetes mellitus (T1DM is associated with cardiovascular complications induced by atherosclerosis. Prostaglandin E2 (PGE2 is often raised in states of inflammation, including diabetes, and regulates inflammatory processes. In myeloid cells, a key cell type in atherosclerosis, PGE2 acts predominately through its Prostaglandin E Receptor 4 (EP4; Ptger4 to modulate inflammation. The effect of PGE2-mediated EP4 signaling specifically in myeloid cells on atherosclerosis in the presence and absence of diabetes is unknown. Because diabetes promotes atherosclerosis through increased arterial myeloid cell accumulation, we generated a myeloid cell-targeted EP4-deficient mouse model (EP4M-/- of T1DM-accelerated atherogenesis to investigate the relationship between myeloid cell EP4, inflammatory phenotypes of myeloid cells, and atherogenesis. Diabetic mice exhibited elevated plasma PGE metabolite levels and elevated Ptger4 mRNA in macrophages, as compared with non-diabetic littermates. PGE2 increased Il6, Il1b, Il23 and Ccr7 mRNA while reducing Tnfa mRNA through EP4 in isolated myeloid cells. Consistently, the stimulatory effect of diabetes on peritoneal macrophage Il6 was mediated by PGE2-EP4, while PGE2-EP4 suppressed the effect of diabetes on Tnfa in these cells. In addition, diabetes exerted effects independent of myeloid cell EP4, including a reduction in macrophage Ccr7 levels and increased early atherogenesis characterized by relative lesional macrophage accumulation. These studies suggest that this mouse model of T1DM is associated with increased myeloid cell PGE2-EP4 signaling, which is required for the stimulatory effect of diabetes on IL-6, markedly blunts the effect of diabetes on TNF-α and does not modulate diabetes-accelerated atherogenesis.

  18. Deletion of caspase-8 in mouse myeloid cells blocks microglia pro-inflammatory activation and confers protection in MPTP neurodegeneration model.

    Science.gov (United States)

    Kavanagh, Edel; Burguillos, Miguel Angel; Carrillo-Jimenez, Alejandro; Oliva-Martin, María José; Santiago, Martiniano; Rodhe, Johanna; Joseph, Bertrand; Venero, Jose Luis

    2015-09-01

    Increasing evidence involves sustained pro-inflammatory microglia activation in the pathogenesis of different neurodegenerative diseases, particularly Parkinson's disease (PD). We recently uncovered a completely novel and unexpected role for caspase-8 and its downstream substrates caspase-3/7 in the control of microglia activation and associated neurotoxicity to dopaminergic cells. To demonstrate the genetic evidence, mice bearing a floxed allele ofCASP8 were crossed onto a transgenic line expressing Cre under the control of Lysozyme 2 gene. Analysis of caspase-8 gene deletion in brain microglia demonstrated a high efficiency in activated but not in resident microglia. Mice were challenged with lipopolysaccharide, a potent inducer of microglia activation, or with MPTP, which promotes specific dopaminergic cell damage and consequent reactive microgliosis. In neither of these models, CASP8 deletion appeared to affect the overall number of microglia expressing the pan specific microglia marker, Iba1. In contrast, CD16/CD32 expression, a microglial pro-inflammatory marker, was found to be negatively affected upon CASP8 deletion. Expression of additional proinflammatory markers were also found to be reduced in response to lipopolysaccharide. Of importance, reduced pro-inflammatory microglia activation was accompanied by a significant protection of the nigro-striatal dopaminergic system in the MPTP mouse model of PD.

  19. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells.

    Science.gov (United States)

    De Henau, Olivier; Rausch, Matthew; Winkler, David; Campesato, Luis Felipe; Liu, Cailian; Cymerman, Daniel Hirschhorn; Budhu, Sadna; Ghosh, Arnab; Pink, Melissa; Tchaicha, Jeremy; Douglas, Mark; Tibbitts, Thomas; Sharma, Sujata; Proctor, Jennifer; Kosmider, Nicole; White, Kerry; Stern, Howard; Soglia, John; Adams, Julian; Palombella, Vito J; McGovern, Karen; Kutok, Jeffery L; Wolchok, Jedd D; Merghoub, Taha

    2016-11-17

    Recent clinical trials using immunotherapy have demonstrated its potential to control cancer by disinhibiting the immune system. Immune checkpoint blocking (ICB) antibodies against cytotoxic-T-lymphocyte-associated protein 4 or programmed cell death protein 1/programmed death-ligand 1 have displayed durable clinical responses in various cancers. Although these new immunotherapies have had a notable effect on cancer treatment, multiple mechanisms of immune resistance exist in tumours. Among the key mechanisms, myeloid cells have a major role in limiting effective tumour immunity. Growing evidence suggests that high infiltration of immune-suppressive myeloid cells correlates with poor prognosis and ICB resistance. These observations suggest a need for a precision medicine approach in which the design of the immunotherapeutic combination is modified on the basis of the tumour immune landscape to overcome such resistance mechanisms. Here we employ a pre-clinical mouse model system and show that resistance to ICB is directly mediated by the suppressive activity of infiltrating myeloid cells in various tumours. Furthermore, selective pharmacologic targeting of the gamma isoform of phosphoinositide 3-kinase (PI3Kγ), highly expressed in myeloid cells, restores sensitivity to ICB. We demonstrate that targeting PI3Kγ with a selective inhibitor, currently being evaluated in a phase 1 clinical trial (NCT02637531), can reshape the tumour immune microenvironment and promote cytotoxic-T-cell-mediated tumour regression without targeting cancer cells directly. Our results introduce opportunities for new combination strategies using a selective small molecule PI3Kγ inhibitor, such as IPI-549, to overcome resistance to ICB in patients with high levels of suppressive myeloid cell infiltration in tumours.

  20. TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection.

    Science.gov (United States)

    Schleicher, Ulrike; Paduch, Katrin; Debus, Andrea; Obermeyer, Stephanie; König, Till; Kling, Jessica C; Ribechini, Eliana; Dudziak, Diana; Mougiakakos, Dimitrios; Murray, Peter J; Ostuni, Renato; Körner, Heinrich; Bogdan, Christian

    2016-05-01

    Neutralization or deletion of tumor necrosis factor (TNF) causes loss of control of intracellular pathogens in mice and humans, but the underlying mechanisms are incompletely understood. Here, we found that TNF antagonized alternative activation of macrophages and dendritic cells by IL-4. TNF inhibited IL-4-induced arginase 1 (Arg1) expression by decreasing histone acetylation, without affecting STAT6 phosphorylation and nuclear translocation. In Leishmania major-infected C57BL/6 wild-type mice, type 2 nitric oxide (NO) synthase (NOS2) was detected in inflammatory dendritic cells or macrophages, some of which co-expressed Arg1. In TNF-deficient mice, Arg1 was hyperexpressed, causing an impaired production of NO in situ. A similar phenotype was seen in L. major-infected BALB/c mice. Arg1 deletion in hematopoietic cells protected these mice from an otherwise lethal disease, although their disease-mediating T cell response (Th2, Treg) was maintained. Thus, deletion or TNF-mediated restriction of Arg1 unleashes the production of NO by NOS2, which is critical for pathogen control.

  1. TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection

    Directory of Open Access Journals (Sweden)

    Ulrike Schleicher

    2016-05-01

    Full Text Available Neutralization or deletion of tumor necrosis factor (TNF causes loss of control of intracellular pathogens in mice and humans, but the underlying mechanisms are incompletely understood. Here, we found that TNF antagonized alternative activation of macrophages and dendritic cells by IL-4. TNF inhibited IL-4-induced arginase 1 (Arg1 expression by decreasing histone acetylation, without affecting STAT6 phosphorylation and nuclear translocation. In Leishmania major-infected C57BL/6 wild-type mice, type 2 nitric oxide (NO synthase (NOS2 was detected in inflammatory dendritic cells or macrophages, some of which co-expressed Arg1. In TNF-deficient mice, Arg1 was hyperexpressed, causing an impaired production of NO in situ. A similar phenotype was seen in L. major-infected BALB/c mice. Arg1 deletion in hematopoietic cells protected these mice from an otherwise lethal disease, although their disease-mediating T cell response (Th2, Treg was maintained. Thus, deletion or TNF-mediated restriction of Arg1 unleashes the production of NO by NOS2, which is critical for pathogen control.

  2. Role of arginase 1 from myeloid cells in th2-dominated lung inflammation.

    Directory of Open Access Journals (Sweden)

    Luke Barron

    Full Text Available Th2-driven lung inflammation increases Arginase 1 (Arg1 expression in alternatively-activated macrophages (AAMs. AAMs modulate T cell and wound healing responses and Arg1 might contribute to asthma pathogenesis by inhibiting nitric oxide production, regulating fibrosis, modulating arginine metabolism and restricting T cell proliferation. We used mice lacking Arg1 in myeloid cells to investigate the contribution of Arg1 to lung inflammation and pathophysiology. In six model systems encompassing acute and chronic Th2-mediated lung inflammation we observed neither a pathogenic nor protective role for myeloid-expressed Arg1. The number and composition of inflammatory cells in the airways and lungs, mucus secretion, collagen deposition, airway hyper-responsiveness, and T cell cytokine production were not altered if AAMs were deficient in Arg1 or simultaneously in both Arg1 and NOS2. Our results argue that Arg1 is a general feature of alternative activation but only selectively regulates Th2 responses. Therefore, attempts to experimentally or therapeutically inhibit arginase activity in the lung should be examined with caution.

  3. Triggering receptor expressed on myeloid cells-1: New player in antiviral immunity?

    Directory of Open Access Journals (Sweden)

    Kelsey eRoe

    2014-11-01

    Full Text Available The triggering receptor expressed on myeloid cells (TREM family of protein receptors is quickly emerging as a critical regulator of a diverse array of cellular functions including amplification of inflammation. Although the ligand(s for TREMs have not yet been fully identified, circumstantial evidence indicates that danger- and pathogen-associated molecular patterns (DAMPs and PAMPs can induce cytokine production via TREM-1 activation. The discovery of novel functions of TREMs such as regulation of T cell proliferation and activation of antigen presenting cells suggests a larger role of TREM proteins in modulation of host immune responses to microbial pathogens such as bacteria and fungi. However, the significance of TREM signaling in innate immunity to virus infections and underlying mechanisms remains largely unclear. The nature and intensity of innate immune responses, specifically production of type I Interferon and inflammatory cytokines is a crucial event in dictating recovery versus adverse outcome of virus infections. In this review, we highlight the emerging roles of TREM-1, including synergy with classical pathogen recognition receptors. Based on the literature using viral PAMPs and other infectious disease models, we further discuss how TREM-1 may influence host-virus interactions and viral pathogenesis. A deeper conceptual understanding of the mechanisms associated with pathogenic and/or protective functions of TREM-1 in antiviral immunity is essential to develop novel therapeutic strategies for the control of virus infection by modulating innate immune signaling.

  4. Expression of the B-cell receptor component CD79a on immature myeloid cells contributes to their tumor promoting effects.

    Directory of Open Access Journals (Sweden)

    Dror Luger

    Full Text Available The role of myeloid derived suppressor cells (MDSCs in promoting tumorigenesis is well-established, and significant effort is being made to further characterize surface markers on MDSCs both for better diagnosis and as potential targets for therapy. Here we show that the B cell receptor adaptor molecule CD79a is unexpectedly expressed on immature bone marrow myeloid cells, and is upregulated on MDSCs generated in multiple different mouse models of metastatic but not non-metastatic cancer. CD79a on MDSCs is upregulated and activated in response to soluble factors secreted by tumor cells. Activation of CD79a on mouse MDSCs, by crosslinking with a specific antibody, maintained their immature phenotype (CD11b+Gr1+, enhanced their migration, increased their suppressive effect on T cell proliferation, and increased secretion of pro-tumorigenic cytokines such as IL-6 and CCL22. Furthermore, crosslinking CD79a on myeloid cells activated signaling through Syk, BLNK, ERK and STAT3 phosphorylation. In vivo, CD79+ myeloid cells showed enhanced ability to promote primary tumor growth and metastasis. Finally we demonstrate that CD79a is upregulated on circulating myeloid cells from lung cancer patients, and that CD79a+ myeloid cells infiltrate human breast tumors. We propose that CD79a plays a functional role in the tumor promoting effects of myeloid cells, and may represent a novel target for cancer therapy.

  5. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Tatiana I Novobrantseva

    2012-01-01

    Full Text Available Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP for durable and potent in vivo RNA interference (RNAi-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA. In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.

  6. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    Science.gov (United States)

    Novobrantseva, Tatiana I; Borodovsky, Anna; Wong, Jamie; Klebanov, Boris; Zafari, Mohammad; Yucius, Kristina; Querbes, William; Ge, Pei; Ruda, Vera M; Milstein, Stuart; Speciner, Lauren; Duncan, Rick; Barros, Scott; Basha, Genc; Cullis, Pieter; Akinc, Akin; Donahoe, Jessica S; Narayanannair Jayaprakash, K; Jayaraman, Muthusamy; Bogorad, Roman L; Love, Kevin; Whitehead, Katie; Levins, Chris; Manoharan, Muthiah; Swirski, Filip K; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G; de Fougerolles, Antonin; Nahrendorf, Matthias; Koteliansky, Victor

    2012-01-01

    Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells. PMID:23344621

  7. Attenuated Toxoplasma gondii Stimulates Immunity to Pancreatic Cancer by Manipulation of Myeloid Cell Populations.

    Science.gov (United States)

    Sanders, Kiah L; Fox, Barbara A; Bzik, David J

    2015-08-01

    Suppressive myeloid cells represent a significant barrier to the generation of productive antitumor immune responses to many solid tumors. Eliminating or reprogramming suppressive myeloid cells to abrogate tumor-associated immune suppression is a promising therapeutic approach. We asked whether treatment of established aggressive disseminated pancreatic cancer with the immunotherapeutic attenuated Toxoplasma gondii vaccine strain CPS would trigger tumor-associated myeloid cells to generate therapeutic antitumor immune responses. CPS treatment significantly decreased tumor-associated macrophages and markedly increased dendritic cell infiltration of the pancreatic tumor microenvironment. Tumor-resident macrophages and dendritic cells, particularly cells actively invaded by CPS, increased expression of costimulatory molecules CD80 and CD86 and concomitantly boosted their production of IL12. CPS treatment increased CD4(+) and CD8(+) T-cell infiltration into the tumor microenvironment, activated tumor-resident T cells, and increased IFNγ production by T-cell populations. CPS treatment provided a significant therapeutic benefit in pancreatic tumor-bearing mice. This therapeutic benefit depended on IL12 and IFNγ production, MyD88 signaling, and CD8(+) T-cell populations. Although CD4(+) T cells exhibited activated effector phenotypes and produced IFNγ, CD4(+) T cells as well as natural killer cells were not required for the therapeutic benefit. In addition, CD8(+) T cells isolated from CPS-treated tumor-bearing mice produced IFNγ after re-exposure to pancreatic tumor antigen, suggesting this immunotherapeutic treatment stimulated tumor cell antigen-specific CD8(+) T-cell responses. This work highlights the potency and immunotherapeutic efficacy of CPS treatment and demonstrates the significance of targeting tumor-associated myeloid cells as a mechanism to stimulate more effective immunity to pancreatic cancer.

  8. Identification of Extracellular Actin As a Ligand for Triggering Receptor Expressed on Myeloid Cells-1 Signaling

    Directory of Open Access Journals (Sweden)

    Lei Fu

    2017-08-01

    Full Text Available Triggering receptor expressed on myeloid cells-1 (TREM-1 is a potent amplifier of pro-inflammatory innate immune reactions, and it is an essential mediator of death in sepsis. However, the ligand for TREM-1 has not been fully identified. Previous research identified a natural ligand of TREM-1 distributed on platelets that contributed to the development of sepsis. However, the exact signal for TREM-1 recognition remains to be identified. Here, we identified actin as a TREM-1-interacting protein on platelets and found that recombinant actin could interact with recombinant TREM-1 extracellular domain directly. Furthermore, actin co-localized with TREM-1 on the surface of activated mouse macrophage RAW264.7 cells interacting with platelets. In addition, recombinant actin could enhance the inflammatory response of macrophages from wt mice but not from trem1−/− mice, and the enhancement could be inhibited by LP17 (a TREM-1 inhibitor in a dose-dependent manner. Importantly, extracellular actin showed co-localization with TREM-1 in lung tissue sections from septic mice, which suggested that TREM-1 recognized actin during activation in sepsis. Therefore, the present study identified actin as a new ligand for TREM-1 signaling, and it also provided a link between both essential regulators of death in sepsis.

  9. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Di Paolo, Julie A.; Huang, Tao; Balazs, Mercedesz; Barbosa, James; Barck, Kai H.; Bravo, Brandon J.; Carano, Richard A.D.; Darrow, James; Davies, Douglas R.; DeForge, Laura E.; Diehl, Lauri; Ferrando, Ronald; Gallion, Steven L.; Giannetti, Anthony M.; Gribling, Peter; Hurez, Vincent; Hymowitz, Sarah G.; Jones, Randall; Kropf, Jeffrey E.; Lee, Wyne P.; Maciejewski, Patricia M.; Mitchell, Scott A.; Rong, Hong; Staker, Bart L.; Whitney, J. Andrew; Yeh, Sherry; Young, Wendy B.; Yu, Christine; Zhang, Juan; Reif, Karin; Currie, Kevin S. (CGI); (Emerald); (Genentech)

    2011-09-20

    Bruton's tyrosine kinase (Btk) is a therapeutic target for rheumatoid arthritis, but the cellular and molecular mechanisms by which Btk mediates inflammation are poorly understood. Here we describe the discovery of CGI1746, a small-molecule Btk inhibitor chemotype with a new binding mode that stabilizes an inactive nonphosphorylated enzyme conformation. CGI1746 has exquisite selectivity for Btk and inhibits both auto- and transphosphorylation steps necessary for enzyme activation. Using CGI1746, we demonstrate that Btk regulates inflammatory arthritis by two distinct mechanisms. CGI1746 blocks B cell receptor-dependent B cell proliferation and in prophylactic regimens reduces autoantibody levels in collagen-induced arthritis. In macrophages, Btk inhibition abolishes Fc{gamma}RIII-induced TNF{alpha}, IL-1{beta} and IL-6 production. Accordingly, in myeloid- and Fc{gamma}R-dependent autoantibody-induced arthritis, CGI1746 decreases cytokine levels within joints and ameliorates disease. These results provide new understanding of the function of Btk in both B cell- or myeloid cell-driven disease processes and provide a compelling rationale for targeting Btk in rheumatoid arthritis.

  10. File list: ALL.Bld.05.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Myeloid_Cells mm9 All antigens Blood Myeloid Cells SRX093161,SRX20...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.05.AllAg.Myeloid_Cells.bed ...

  11. File list: ALL.Bld.20.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Myeloid_Cells mm9 All antigens Blood Myeloid Cells SRX658425,SRX08...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.20.AllAg.Myeloid_Cells.bed ...

  12. File list: Oth.Bld.05.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Myeloid_Cells mm9 TFs and others Blood Myeloid Cells SRX742697,SRX...021614,SRX021615,SRX021616,SRX742698,SRX742696,SRX021612,SRX021611,SRX742695 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.05.AllAg.Myeloid_Cells.bed ...

  13. File list: InP.Bld.20.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Myeloid_Cells mm9 Input control Blood Myeloid Cells SRX021617,SRX0...21613 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.20.AllAg.Myeloid_Cells.bed ...

  14. File list: InP.Bld.50.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Myeloid_Cells mm9 Input control Blood Myeloid Cells SRX021617,SRX0...21613 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.50.AllAg.Myeloid_Cells.bed ...

  15. File list: Oth.Bld.50.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Myeloid_Cells mm9 TFs and others Blood Myeloid Cells SRX021614,SRX...021615,SRX021616,SRX742696,SRX742697,SRX742698,SRX742695,SRX021612,SRX021611 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.50.AllAg.Myeloid_Cells.bed ...

  16. File list: InP.Bld.10.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Myeloid_Cells mm9 Input control Blood Myeloid Cells SRX021613,SRX0...21617 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.10.AllAg.Myeloid_Cells.bed ...

  17. File list: Oth.Bld.10.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Myeloid_Cells mm9 TFs and others Blood Myeloid Cells SRX021614,SRX...021616,SRX021615,SRX742697,SRX021612,SRX021611,SRX742698,SRX742696,SRX742695 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.10.AllAg.Myeloid_Cells.bed ...

  18. File list: ALL.Bld.10.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Myeloid_Cells mm9 All antigens Blood Myeloid Cells SRX203204,SRX09...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.10.AllAg.Myeloid_Cells.bed ...

  19. File list: Oth.Bld.20.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Myeloid_Cells mm9 TFs and others Blood Myeloid Cells SRX021614,SRX...021615,SRX021616,SRX021611,SRX021612,SRX742696,SRX742697,SRX742698,SRX742695 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.20.AllAg.Myeloid_Cells.bed ...

  20. File list: ALL.Bld.50.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Myeloid_Cells mm9 All antigens Blood Myeloid Cells SRX093161,SRX08...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.50.AllAg.Myeloid_Cells.bed ...

  1. CatacLysMic specificity when targeting myeloid cells?

    Science.gov (United States)

    Blank, Thomas; Prinz, Marco

    2016-06-01

    The antibacterial enzyme lysozyme M (LysM) encoded by the Lyz2 gene is broadly expressed in myeloblasts, macrophages, and neutrophils, and thus has been used for a long time as a cell-specific marker for myeloid cells in mice. In order to delete loxP-site flanked genes in myeloid cells, a Cre-recombinase (Cre) expressing mouse line was created by inserting Cre-coding sequence into the translational start site of the LysM gene. In this issue of the European Journal of Immunology [2016. 46: 1529-1532], Orthgiess et al. verify, with the help of tdTomato and YFP reporter mouse lines, LysM-driven recombination. Unexpectedly, the authors also describe major expression of the tdTomato reporter protein in brain neurons of the central nervous system (CNS), with only a very small percentage of gene recombination in myeloid cells of the brain, called microglia. These findings cause justified concerns regarding the efficient and specific targeting of microglia and peripheral myeloid cells using LysM-Cre mice and should stimulate thoughts on conclusions drawn from past experiments on the diseased CNS employing this Cre/loxP-deleter line. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Natural killer cells require monocytic Gr-1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells.

    Science.gov (United States)

    Baker, Gregory J; Chockley, Peter; Zamler, Daniel; Castro, Maria G; Lowenstein, Pedro R

    2016-06-01

    Malignant gliomas are resistant to natural killer (NK) cell immune surveillance. However, the mechanisms used by these cancers to suppress antitumor NK cell activity remain poorly understood. We have recently reported on a novel mechanism of innate immune evasion characterized by the overexpression of the carbohydrate-binding protein galectin-1 by both mouse and rat malignant glioma. Here, we investigate the cytokine profile of galectin-1-deficient GL26 cells and describe the process by which these tumors are targeted by the early innate immune system in RAG1(-/-) and C57BL/6J mice. Our data reveal that galectin-1 knockdown in GL26 cells heightens their inflammatory status leading to the rapid recruitment of Gr-1(+)/CD11b(+) myeloid cells and NK1.1(+) NK cells into the brain tumor microenvironment, culminating in tumor clearance. We show that immunodepletion of Gr-1(+) myeloid cells in RAG1(-/-) mice permits the growth of galectin-1-deficient glioma despite the presence of NK cells, thus demonstrating an essential role for myeloid cells in the clearance of galectin-1-deficient glioma. Further characterization of tumor-infiltrating Gr-1(+)/CD11b(+) cells reveals that these cells also express CCR2 and Ly-6C, markers consistent with inflammatory monocytes. Our results demonstrate that Gr-1(+)/CD11b(+) myeloid cells, often referred to as myeloid-derived suppressor cells (MDSCs), are required for antitumor NK cell activity against galectin-1-deficient GL26 glioma. We conclude that glioma-derived galectin-1 represents an important factor in dictating the phenotypic behavior of monocytic Gr-1(+)/CD11b(+) myeloid cells. Galectin-1 suppression may be a valuable treatment approach for clinical glioma by promoting their innate immune-mediated recognition and clearance through the concerted effort of innate myeloid and lymphoid cell lineages.

  3. EGFR in Tumor-Associated Myeloid Cells Promotes Development of Colorectal Cancer in Mice and Associates With Outcomes of Patients.

    Science.gov (United States)

    Srivatsa, Sriram; Paul, Mariel C; Cardone, Claudia; Holcmann, Martin; Amberg, Nicole; Pathria, Paulina; Diamanti, Michaela A; Linder, Markus; Timelthaler, Gerald; Dienes, Hans P; Kenner, Lukas; Wrba, Fritz; Prager, Gerald W; Rose-John, Stefan; Eferl, Robert; Liguori, Giuseppina; Botti, Gerardo; Martinelli, Erika; Greten, Florian R; Ciardiello, Fortunato; Sibilia, Maria

    2017-07-01

    Inhibitors of the epidermal growth factor receptor (EGFR) are the first-line therapy for patients with metastatic colorectal tumors without RAS mutations. However, EGFR inhibitors are ineffective in these patients, and tumor level of EGFR does not associate with response to therapy. We screened human colorectal tumors for EGFR-positive myeloid cells and investigated their association with patient outcome. We also performed studies in mice to evaluate how EGFR expression in tumor cells and myeloid cells contributes to development of colitis-associated cancer and Apc(Min)-dependent intestinal tumorigenesis. We performed immunohistochemical and immunofluorescent analyses of 116 colorectal tumor biopsies to determine levels of EGFR in tumor and stroma; we also collected information on tumor stage and patient features and outcomes. We used the Mann-Whitney U and Kruskal-Wallis tests to correlate tumor levels of EGFR with tumor stage, and the Kaplan-Meier method to estimate patients' median survival time. We performed experiments in mice lacking EGFR in intestinal epithelial cells (Villin-Cre; Egfr(f/f) and Villin-CreER(T2); Egfr(f/f) mice) or myeloid cells (LysM-Cre; Egfr(f/f) mice) on a mixed background. These mice were bred with Apc(Min/+) mice; colitis-associated cancer and colitis were induced by administration of dextran sodium sulfate (DSS), with or without azoxymethane (AOM), respectively. Villin-CreER(T2) was activated in developed tumors by administration of tamoxifen to mice. Littermates that expressed full-length EGFR were used as controls. Intestinal tissues were collected; severity of colitis, numbers and size of tumors, and intestinal barrier integrity were assessed by histologic, immunohistochemical, quantitative reverse transcription polymerase chain reaction, and flow cytometry analyses. We detected EGFR in myeloid cells in the stroma of human colorectal tumors; myeloid cell expression of EGFR associated with tumor metastasis and shorter patient

  4. Hedgehog signalling in myeloid cells impacts on body weight, adipose tissue inflammation and glucose metabolism.

    Science.gov (United States)

    Braune, Julia; Weyer, Ulrike; Matz-Soja, Madlen; Hobusch, Constance; Kern, Matthias; Kunath, Anne; Klöting, Nora; Kralisch, Susann; Blüher, Matthias; Gebhardt, Rolf; Zavros, Yana; Bechmann, Ingo; Gericke, Martin

    2017-05-01

    Recently, hedgehog (Hh) was identified as a crucial player in adipose tissue development and energy expenditure. Therefore, we tested whether Hh ligands are regulated in obesity. Further, we aimed at identifying potential target cells of Hh signalling and studied the functional impact of Hh signalling on adipose tissue inflammation and glucose metabolism. Hh ligands and receptors were analysed in adipose tissue or serum from lean and obese mice as well as in humans. To study the impact on adipose tissue inflammation and glucose metabolism, Hh signalling was specifically blocked in myeloid cells using a conditional knockout approach (Lys-Smo (-/-)). Desert Hh (DHH) and Indian Hh (IHH) are local Hh ligands, whereas Sonic Hh is not expressed in adipose tissue from mice or humans. In mice, obesity leads to a preferential upregulation of Hh ligands (Dhh) and signalling components (Ptch1, Smo and Gli1) in subcutaneous adipose tissue. Further, adipose tissue macrophages are Hh target cells owing to the expression of Hh receptors, such as Patched1 and 2. Conditional knockout of Smo (which encodes Smoothened, a mandatory Hh signalling component) in myeloid cells increases body weight and adipose tissue inflammation and attenuates glucose tolerance, suggesting an anti-inflammatory effect of Hh signalling. In humans, adipose tissue expression of DHH and serum IHH decrease with obesity and type 2 diabetes, which might be explained by the intake of metformin. Interestingly, metformin reduced Dhh and Ihh expression in mouse adipose tissue explants. Hh signalling in myeloid cells affects adipose tissue inflammation and glucose metabolism and may be a potential target to treat type 2 diabetes.

  5. Extramedullary Myeloid Cell Tumour Presenting As Leukaemia Cutis

    Directory of Open Access Journals (Sweden)

    Thappa Devinder Mohan

    2002-01-01

    Full Text Available We herewith report a case of extramedullary myeloid cell tumour presenting as leukaemia cutis for its rarity. It occurred in a 50 year old male patient who presented to us with a 40 days history of painless raised solid skin swellings over the trunk. Histopathological examination of the skin biopsy and bone marrow biopsy showed features suggestive of non-Hodgkin’s lymphoma. Immunophenotyping on skin biopsy specimens and bone marrow biopsy found tumour cells expressing CD43 and Tdt but were negative for CD3 and CD20. These features were consistent with extramedullary myeloid cell tumour involving skin and subcutis (cutaneous manifestation of acute myeloid leukaemia.

  6. Myeloid cells are capable of synthesizing aldosterone to exacerbate damage in muscular dystrophy.

    Science.gov (United States)

    Chadwick, Jessica A; Swager, Sarah A; Lowe, Jeovanna; Welc, Steven S; Tidball, James G; Gomez-Sanchez, Celso E; Gomez-Sanchez, Elise P; Rafael-Fortney, Jill A

    2016-12-01

    FDA-approved mineralocorticoid receptor (MR) antagonists are used to treat heart failure. We have recently demonstrated efficacy of MR antagonists for skeletal muscles in addition to heart in Duchenne muscular dystrophy mouse models and that mineralocorticoid receptors are present and functional in skeletal muscles. The goal of this study was to elucidate the underlying mechanisms of MR antagonist efficacy on dystrophic skeletal muscles. We demonstrate for the first time that infiltrating myeloid cells clustered in damaged areas of dystrophic skeletal muscles have the capacity to produce the natural ligand of MR, aldosterone, which in excess is known to exacerbate tissue damage. Aldosterone synthase protein levels are increased in leukocytes isolated from dystrophic muscles compared with controls and local aldosterone levels in dystrophic skeletal muscles are increased, despite normal circulating levels. All genes encoding enzymes in the pathway for aldosterone synthesis are expressed in muscle-derived leukocytes. 11β-HSD2, the enzyme that inactivates glucocorticoids to increase MR selectivity for aldosterone, is also increased in dystrophic muscle tissues. These results, together with the demonstrated preclinical efficacy of antagonists, suggest MR activation is in excess of physiological need and likely contributes to the pathology of muscular dystrophy. This study provides new mechanistic insight into the known contribution of myeloid cells to muscular dystrophy pathology. This first report of myeloid cells having the capacity to produce aldosterone may have implications for a wide variety of acute injuries and chronic diseases with inflammation where MR antagonists may be therapeutic. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Myeloid cell-derived hypoxia-inducible factor attenuates inflammation in unilateral ureteral obstruction-induced kidney injury.

    Science.gov (United States)

    Kobayashi, Hanako; Gilbert, Victoria; Liu, Qingdu; Kapitsinou, Pinelopi P; Unger, Travis L; Rha, Jennifer; Rivella, Stefano; Schlöndorff, Detlef; Haase, Volker H

    2012-05-15

    Renal fibrosis and inflammation are associated with hypoxia, and tissue pO(2) plays a central role in modulating the progression of chronic kidney disease. Key mediators of cellular adaptation to hypoxia are hypoxia-inducible factor (HIF)-1 and -2. In the kidney, they are expressed in a cell type-specific manner; to what degree activation of each homolog modulates renal fibrogenesis and inflammation has not been established. To address this issue, we used Cre-loxP recombination to activate or to delete both Hif-1 and Hif-2 either globally or cell type specifically in myeloid cells. Global activation of Hif suppressed inflammation and fibrogenesis in mice subjected to unilateral ureteral obstruction, whereas activation of Hif in myeloid cells suppressed inflammation only. Suppression of inflammatory cell infiltration was associated with downregulation of CC chemokine receptors in renal macrophages. Conversely, global deletion or myeloid-specific inactivation of Hif promoted inflammation. Furthermore, prolonged hypoxia suppressed the expression of multiple inflammatory molecules in noninjured kidneys. Collectively, we provide experimental evidence that hypoxia and/or myeloid cell-specific HIF activation attenuates renal inflammation associated with chronic kidney injury.

  8. Deletion of ADORA2B from myeloid cells dampens lung fibrosis and pulmonary hypertension.

    Science.gov (United States)

    Karmouty-Quintana, Harry; Philip, Kemly; Acero, Luis F; Chen, Ning-Yuan; Weng, Tingting; Molina, Jose G; Luo, Fayong; Davies, Jonathan; Le, Ngoc-Bao; Bunge, Isabelle; Volcik, Kelly A; Le, Thanh-Thuy T; Johnston, Richard A; Xia, Yang; Eltzschig, Holger K; Blackburn, Michael R

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal, fibroproliferative disease. Pulmonary hypertension (PH) can develop secondary to IPF and increase mortality. Alternatively, activated macrophages (AAMs) contribute to the pathogenesis of both IPF and PH. Here we hypothesized that adenosine signaling through the ADORA2B on AAMs impacts the progression of these disorders and that conditional deletion of ADORA2B on myeloid cells would have a beneficial effect in a model of these diseases. Conditional knockout mice lacking ADORA2B on myeloid cells (Adora2B(f/f)-LysM(Cre)) were exposed to the fibrotic agent bleomycin (BLM; 0.035 U/g body weight, i.p.). At 14, 17, 21, 25, or 33 d after exposure, SpO2, bronchoalveolar lavage fluid (BALF), and histologic analyses were performed. On day 33, lung function and cardiovascular analyses were determined. Markers for AAM and mediators of fibrosis and PH were assessed. Adora2B(f/f)-LysM(Cre) mice presented with attenuated fibrosis, improved lung function, and no evidence of PH compared with control mice exposed to BLM. These findings were accompanied by reduced expression of CD206 and arginase-1, markers for AAMs. A 10-fold reduction in IL-6 and a 5-fold decrease in hyaluronan, both linked to lung fibrosis and PH, were also observed. These data suggest that activation of the ADORA2B on macrophages plays an active role in the pathogenesis of lung fibrosis and PH.

  9. Deficiency of the Sialyltransferase St3Gal4 Reduces Ccl5-Mediated Myeloid Cell Recruitment and Arrest

    Science.gov (United States)

    Döring, Yvonne; Noels, Heidi; Mandl, Manuela; Kramp, Birgit; Neideck, Carlos; Lievens, Dirk; Drechsler, Maik; Megens, Remco T.A.; Tilstam, Pathricia V.; Langer, Marcella; Hartwig, Helene; Theelen, Wendy; Marth, Jamey D.; Sperandio, Markus; Soehnlein, Oliver; Weber, Christian

    2014-01-01

    Rationale Sialylation by α2,3-sialyltransferases has been shown to be a crucial glycosylation step in the generation of functional selectin ligands. Recent evidence suggests that sialylation also affects the binding of chemokines to their corresponding receptor. Objective Because the chemokine receptors for Ccl5 and Ccl2 are important in atherogenic recruitment of neutrophils and monocytes, we here investigated the role of α2,3-sialyltransferase IV (ST3Gal-IV) in Ccl5- and Ccl2-mediated myeloid cell arrest and further studied its relevance in a mouse model of atherosclerosis. Methods and Results St3Gal4-deficient myeloid cells showed a reduced binding of Ccl5 and an impaired Ccl5-triggered integrin activation. Correspondingly, Ccl5-induced arrest on tumor necrosis factor-α–stimulated endothelium was almost completely abrogated, as observed in flow chamber adhesion assays and during ex vivo perfusion or intravital microscopy of carotid arteries. Moreover, Ccl5-triggered neutrophil and monocyte extravasation into the peritoneal cavity was severely reduced in St3Gal4−/− mice. In contrast, St3Gal4 deficiency did not significantly affect Ccl2 binding and only marginally decreased Ccl2-induced flow arrest of myeloid cells. In agreement with the crucial role of leukocyte accumulation in atherogenesis, and the importance of Ccl5 chemokine receptors mediating myeloid cell recruitment to atherosclerotic vessels, St3Gal4 deficiency drastically reduced the size, stage, and inflammatory cell content of atherosclerotic lesions in Apoe−/− mice on high-fat diet. Conclusions In summary, these findings identify ST3Gal-IV as a promising target to reduce inflammatory leukocyte recruitment and arrest. PMID:24425712

  10. Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the NACHT-LRR (NLR) pattern recognition receptors.

    NARCIS (Netherlands)

    Netea, M.G.; Azam, T.; Ferwerda, G.; Girardin, S.E.; Kim, S.H.; Dinarello, C.A.

    2006-01-01

    Triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of a new family of myeloid receptors, encoded by a gene cluster linked to the MHC. Engagement of TREM-1 stimulates intracellular signals, resulting in activation of phagocytosis, neutrophil degranulation, and amplification of cyto

  11. Myeloid cell death associated with Toll-like receptor 7/8-mediated inflammatory response. Implication of ASK1, HIF-1 alpha, IL-1 beta and TNF-alpha.

    Science.gov (United States)

    Nicholas, Sally A; Oniku, Abraham E; Sumbayev, Vadim V

    2010-01-01

    Programmed cell death or apoptosis is an important part of the host innate immune defence, especially against ssRNA viruses (influenza virus, HIV-1, ebola virus, hepatitis C virus and many others). Viral ssRNA is recognised by endosomal Toll-like receptors 7 and 8 (TLR7/8) which induce further stages of immune defence against these pathogens. Some of the immune cells die because of inflammatory stress allowing for the selection of those cells which are resistant to stress-induced apoptosis and which are used in further stages of the host immune response. On the other hand, apoptosis could be used as an instrument to suppress the function of activated inflammatory cells. However, the mechanisms underlying death of the inflammatory cells associated with stress induced by ligands of TLR7/8 remain unclear. In this study we have found that programmed death of human myeloid cells from different cell lines associated with ligand-induced TLR7/8-mediated inflammatory stress depends on activation of apoptosis signal-regulating kinase 1 (ASK1). This enzyme is, however, not required for the production of pro-inflammatory cytokines - TNF-α and IL-1β. We have found that released IL-1β and TNF-α are involved in apoptosis of myeloid cells associated with TLR7/8-mediated inflammatory stress. The pro-apoptotic effect of released TNF-α in this case is much lower compared to that of IL-1β.

  12. Primary cerebellar extramedullary myeloid cell tumor mimicking oligodendroglioma.

    Science.gov (United States)

    Ho, D M; Wong, T T; Guo, W Y; Chang, K P; Yen, S H

    1997-10-01

    Extramedullary myeloid cell tumors (EMCTs) are tumors consisting of immature cells of the myeloid series that occur outside the bone marrow. Most of them are associated with acute myelogenous leukemia or other myeloproliferative disorders, and a small number occur as primary lesions, i.e., are not associated with hematological disorders. Occurrence inside the cranium is rare, and there has been only one case of primary EMCT involving the cerebellum reported in the literature. The case we report here is a blastic EMCT occurring in the cerebellum of a 3-year-old boy who had no signs of leukemia or any hematological disorder throughout the entire course. The cerebellar tumor was at first misdiagnosed as an "oligodendroglioma" because of the uniformity and "fried egg" artifact of the tumor cells. The tumor disappeared during chemotherapy consisting of 12 treatments. However, it recurred and metastasized to the cerebrospinal fluid (CSF) shortly after the therapy was completed. A diagnosis of EMCT was suspected because of the presence of immature myeloid cells in the CSF, and was confirmed by anti-myeloperoxidase and anti-lysozyme immunoreactivity of the cerebellar tumor. The patient succumbed 1 year and 3 months after the first presentation of the disease.

  13. Targeting DNA vaccines to myeloid cells using a small peptide.

    Science.gov (United States)

    Ye, Chunting; Choi, Jang Gi; Abraham, Sojan; Shankar, Premlata; Manjunath, N

    2015-01-01

    Targeting DNA vaccines to dendritic cells (DCs) greatly enhances immunity. Although several approaches have been used to target protein Ags to DCs, currently there is no method that targets DNA vaccines directly to DCs. Here, we show that a small peptide derived from the rabies virus glycoprotein fused to protamine residues (RVG-P) can target DNA to myeloid cells, including DCs, which results in enhanced humoral and T-cell responses. DCs targeted with a DNA vaccine encoding the immunodominant vaccinia B8R gene via RVG-P were able to restimulate vaccinia-specific memory T cells in vitro. Importantly, a single i.v. injection of B8R gene bound to RVG-P was able to prime a vaccinia-specific T-cell response that was able to rapidly clear a subsequent vaccinia challenge in mice. Moreover, delivery of DNA in DCs was enough to induce DC maturation and efficient Ag presentation without the need for adjuvants. Finally, immunization of mice with a DNA-vaccine encoding West Nile virus (WNV) prM and E proteins via RVG-P elicited high titers of WNV-neutralizing Abs that protected mice from lethal WNV challenge. Thus, RVG-P provides a reagent to target DNA vaccines to myeloid cells and elicit robust T-cell and humoral immune responses.

  14. Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response.

    Science.gov (United States)

    Ilinskaya, Olga N; Zelenikhin, Pavel V; Petrushanko, Irina Yu; Mitkevich, Vladimir A; Prassolov, Vladimir S; Makarov, Alexander A

    2007-10-01

    Microbial RNases along with such animal RNases as onconase and BS-RNase are a promising basis for developing new antitumor drugs. We have shown that the Bacillus intermedius RNase (binase) induces selective apoptosis of transformed myeloid cells. It attacks artificially expressing activated c-Kit myeloid progenitor FDC cells and chronic myelogenous leukemia cells K562. Binase did not induce apoptosis in leukocytes of healthy donors and in normal myeloid progenitor cells. The inability of binase to initiate expression of activation markers CD69 and IFN-gamma in CD4+ and CD8+ T-lymphocytes testifies that enzyme is devoid of superantigenic properties. Altogether, these results demonstrate that binase possesses therapeutic opportunities for treatment of genotyped human neoplasms expressing activated kit.

  15. Galactomutarotase and other galactose-related genes are rapidly induced by retinoic acid in human myeloid cells.

    Science.gov (United States)

    Pai, Tongkun; Chen, Qiuyan; Zhang, Yao; Zolfaghari, Reza; Ross, A Catharine

    2007-12-25

    Aldose-1-epimerase (mutarotase) catalyzes the interconversion of alpha and beta hexoses, which is essential for normal carbohydrate metabolism and the production of complex oligosaccharides. Galactose mutarotase (GALM) has been well characterized at the protein level, but information is lacking on the regulation of GALM gene expression. We report herein that all-trans-retinoic acid (RA), an active metabolite of vitamin A that is known to induce myeloid lineage cell differentiation into macrophage-like cells, induces a rapid and robust regulation of GALM mRNA expression in human myeloid cells. all-trans-RA at a physiological concentration (20 nM), or Am580, a ligand selective for the nuclear retinoid receptor RARalpha, increased GALM mRNA in THP-1 cells, with significantly increased expression in 2 h, increasing further to an approximately 8-fold elevation after 6-40 h (P < 0.005). In contrast, tumor necrosis factor-alpha did not increase GALM mRNA expression, although it is capable of inducing cell differentiation. RA also increased GALM mRNA in U937 and HL-60 cells. The increase in GALM mRNA by RA was blocked by pretreating THP-1 cells with actinomycin D but not by cycloheximide. GALM protein and mutarotase activity were also increased time dependently in RA-treated THP-1 cells. In addition to GALM, several other genes in the biosynthetic pathway of galactosyl-containing complex oligosaccharides were more highly expressed in RA-treated THP-1 cells, including B4GALT5, ST3GAL3, ST6GALNAC5, and GALNAC4S-6ST. Thus, the results of this study identify RA as a significant regulator of GALM and other galactose-related genes in myeloid-monocytic cells, which could affect energy utilization and synthesis of cell-surface glycoproteins or glycolipids involved in cell motility, adhesion, and/or functional properties.

  16. Instructive role of M-CSF on commitment of bipotent myeloid cells involves ERK-dependent positive and negative signaling.

    Science.gov (United States)

    Carras, Sylvain; Valayer, Alexandre; Moratal, Claudine; Weiss-Gayet, Michèle; Pages, Gilles; Morlé, François; Mouchiroud, Guy; Gobert, Stéphanie

    2016-02-01

    M-CSF and G-CSF are instructive cytokines that specifically induce differentiation of bipotent myeloid progenitors into macrophages and granulocytes, respectively. Through morphology and colony assay studies, flow cytometry analysis of specific markers, and expression of myeloid transcription factors, we show here that the Eger/Fms cell line is composed of cells whose differentiation fate is instructed by M-CSF and G-CSF, thus representing a good in vitro model of myeloid bipotent progenitors. Consistent with the essential role of ERK1/2 during macrophage differentiation and defects of macrophagic differentiation in native ERK1(-/-) progenitors, ERK signaling is strongly activated in Eger/Fms cells upon M-CSF-induced macrophagic differentiation but only to a very small extent during G-CSF-induced granulocytic differentiation. Previous in vivo studies indicated a key role of Fli-1 in myeloid differentiation and demonstrated its weak expression during macrophagic differentiation with a strong expression during granulocytic differentiation. Here, we demonstrated that this effect could be mediated by a differential regulation of protein kinase Cδ (PKCd) on Fli-1 expression in response to M-CSF and G-CSF. With the use of knockdown of PKCd by small interfering RNA, we demonstrated that M-CSF activates PKCd, which in turn, inhibits Fli-1 expression and granulocytic differentiation. Finally, we studied the connection between ERK and PKCd and showed that in the presence of the MEK inhibitor U0126, PKCd expression is decreased, and Fli-1 expression is increased in response to M-CSF. Altogether, we demonstrated that in bipotent myeloid cells, M-CSF promotes macrophagic over granulocytic differentiation by inducing ERK activation but also PKCd expression, which in turn, down-regulates Fli-1 expression and prevents granulocytic differentiation.

  17. Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis.

    Science.gov (United States)

    Wang, Zhihui; Liu, Jin-Qing; Liu, Zhenzhen; Shen, Rulong; Zhang, Guoqiang; Xu, Jianping; Basu, Sujit; Feng, Youmei; Bai, Xue-Feng

    2013-03-01

    IL-35 is a member of the IL-12 family of cytokines that is comprised of an IL-12 p35 subunit and an IL-12 p40-related protein subunit, EBV-induced gene 3 (EBI3). IL-35 functions through IL-35R and has a potent immune-suppressive activity. Although IL-35 was demonstrated to be produced by regulatory T cells, gene-expression analysis revealed that it is likely to have a wider distribution, including expression in cancer cells. In this study, we demonstrated that IL-35 is produced in human cancer tissues, such as large B cell lymphoma, nasopharyngeal carcinoma, and melanoma. To determine the roles of tumor-derived IL-35 in tumorigenesis and tumor immunity, we generated IL-35-producing plasmacytoma J558 and B16 melanoma cells and observed that the expression of IL-35 in cancer cells does not affect their growth and survival in vitro, but it stimulates tumorigenesis in both immune-competent and Rag1/2-deficient mice. Tumor-derived IL-35 increases CD11b(+)Gr1(+) myeloid cell accumulation in the tumor microenvironment and, thereby, promotes tumor angiogenesis. In immune-competent mice, spontaneous CTL responses to tumors are diminished. IL-35 does not directly inhibit tumor Ag-specific CD8(+) T cell activation, differentiation, and effector functions. However, IL-35-treated cancer cells had increased expression of gp130 and reduced sensitivity to CTL destruction. Thus, our study indicates novel functions for IL-35 in promoting tumor growth via the enhancement of myeloid cell accumulation, tumor angiogenesis, and suppression of tumor immunity.

  18. Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye

    Science.gov (United States)

    Gardner, Peter J.; Liyanage, Sidath E.; Cristante, Enrico; Sampson, Robert D.; Dick, Andrew D.; Ali, Robin R.; Bainbridge, James W.

    2017-01-01

    Hypoxia inducible factors (HIFs) are ubiquitously expressed transcription factors important for cell homeostasis during dynamic oxygen levels. Myeloid specific HIFs are crucial for aspects of myeloid cell function, including their ability to migrate into inflamed tissues during autoimmune disease. This contrasts with the concept that accumulation of myeloid cells at ischemic and hypoxic sites results from a lack of chemotactic responsiveness. Here we seek to address the role of HIFs in myeloid trafficking during inflammation in a mouse model of human uveitis. We show using mice with myeloid-specific Cre-deletion of HIFs that myeloid HIFs are dispensable for leukocyte migration into the inflamed eye. Myeloid-specific deletion of Hif1a, Epas1, or both together, had no impact on the number of myeloid cells migrating into the eye. Additionally, stabilization of HIF pathways via deletion of Vhl in myeloid cells had no impact on myeloid trafficking into the inflamed eye. Finally, we chemically induce hypoxemia via hemolytic anemia resulting in HIF stabilization within circulating leukocytes to demonstrate the dispensable role of HIFs in myeloid cell migration into the inflamed eye. These data suggest, contrary to previous reports, that HIF pathways in myeloid cells during inflammation and hypoxia are dispensable for myeloid cell tissue trafficking. PMID:28112274

  19. The rate of spontaneous mutations in human myeloid cells

    Energy Technology Data Exchange (ETDEWEB)

    Araten, David J., E-mail: david.araten@nyumc.org [Division of Hematology, Department of Veterans Affairs New York Harbor Healthcare System (United States); Division of Hematology, Department of Medicine, NYU School of Medicine and the NYU Langone Cancer Center (United States); Krejci, Ondrej [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); DiTata, Kimberly [Division of Hematology, Department of Medicine, NYU School of Medicine and the NYU Langone Cancer Center (United States); Wunderlich, Mark [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Sanders, Katie J.; Zamechek, Leah [Division of Hematology, Department of Medicine, NYU School of Medicine and the NYU Langone Cancer Center (United States); Mulloy, James C. [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2013-09-15

    Highlights: • We provide the first measurement of the mutation rate (μ) in human myeloid cells. • μ is measured to be 3.6–23 × 10{sup −7} per cell division. • The AML-ETO and MLL-AF9 fusions do not seem to increase μ. • Cooperating mutations in NRAS, FLT3 and p53 not seem to increase μ. • Hypermutability may be required to explain leukemogenesis. - Abstract: The mutation rate (μ) is likely to be a key parameter in leukemogenesis, but historically, it has been difficult to measure in humans. The PIG-A gene has some advantages for the detection of spontaneous mutations because it is X-linked, and therefore only one mutation is required to disrupt its function. Furthermore, the PIG-A-null phenotype is readily detected by flow cytometry. Using PIG-A, we have now provided the first in vitro measurement of μ in myeloid cells, using cultures of CD34+ cells that are transduced with either the AML-ETO or the MLL-AF9 fusion genes and expanded with cytokines. For the AML-ETO cultures, the median μ value was ∼9.4 × 10{sup −7} (range ∼3.6–23 × 10{sup −7}) per cell division. In contrast, few spontaneous mutations were observed in the MLL-AF9 cultures. Knockdown of p53 or introduction of mutant NRAS or FLT3 alleles did not have much of an effect on μ. Based on these data, we provide a model to predict whether hypermutability must occur in the process of leukemogenesis.

  20. The transcription factor Gfi1 regulates G-CSF signaling and neutrophil development through the Ras activator RasGRP1

    Science.gov (United States)

    de la Luz Sierra, Maria; Sakakibara, Shuhei; Gasperini, Paola; Salvucci, Ombretta; Jiang, Kan; McCormick, Peter J.; Segarra, Marta; Stone, Jim; Maric, Dragan; Zhu, Jinfang; Qian, Xiaolan; Lowy, Douglas R.

    2010-01-01

    The transcription factor growth factor independence 1 (Gfi1) and the growth factor granulocyte colony-stimulating factor (G-CSF) are individually essential for neutrophil differentiation from myeloid progenitors. Here, we provide evidence that the functions of Gfi1 and G-CSF are linked in the regulation of granulopoiesis. We report that Gfi1 promotes the expression of Ras guanine nucleotide releasing protein 1 (RasGRP1), an exchange factor that activates Ras, and that RasGRP1 is required for G-CSF signaling through the Ras/mitogen–activated protein/extracellular signal-regulated kinase (MEK/Erk) pathway. Gfi1-null mice have reduced levels of RasGRP1 mRNA and protein in thymus, spleen, and bone marrow, and Gfi1 transduction in myeloid cells promotes RasGRP1 expression. When stimulated with G-CSF, Gfi1-null myeloid cells are selectively defective at activating Erk1/2, but not signal transducer and activator of transcription 1 (STAT1) or STAT3, and fail to differentiate into neutrophils. Expression of RasGRP1 in Gfi1-deficient cells rescues Erk1/2 activation by G-CSF and allows neutrophil maturation by G-CSF. These results uncover a previously unknown function of Gfi1 as a regulator of RasGRP1 and link Gfi1 transcriptional control to G-CSF signaling and regulation of granulopoiesis. PMID:20203268

  1. CCR5 susceptibility to ligand-mediated down-modulation differs between human T lymphocytes and myeloid cells.

    Science.gov (United States)

    Fox, James M; Kasprowicz, Richard; Hartley, Oliver; Signoret, Nathalie

    2015-07-01

    CCR5 is a chemokine receptor expressed on leukocytes and a coreceptor used by HIV-1 to enter CD4(+) T lymphocytes and macrophages. Stimulation of CCR5 by chemokines triggers internalization of chemokine-bound CCR5 molecules in a process called down-modulation, which contributes to the anti-HIV activity of chemokines. Recent studies have shown that CCR5 conformational heterogeneity influences chemokine-CCR5 interactions and HIV-1 entry in transfected cells or activated CD4(+) T lymphocytes. However, the effect of CCR5 conformations on other cell types and on the process of down-modulation remains unclear. We used mAbs, some already shown to detect distinct CCR5 conformations, to compare the behavior of CCR5 on in vitro generated human T cell blasts, monocytes and MDMs and CHO-CCR5 transfectants. All human cells express distinct antigenic forms of CCR5 not detected on CHO-CCR5 cells. The recognizable populations of CCR5 receptors exhibit different patterns of down-modulation on T lymphocytes compared with myeloid cells. On T cell blasts, CCR5 is recognized by all antibodies and undergoes rapid chemokine-mediated internalization, whereas on monocytes and MDMs, a pool of CCR5 molecules is recognized by a subset of antibodies and is not removed from the cell surface. We demonstrate that this cell surface-retained form of CCR5 responds to prolonged treatment with more-potent chemokine analogs and acts as an HIV-1 coreceptor. Our findings indicate that the regulation of CCR5 is highly specific to cell type and provide a potential explanation for the observation that native chemokines are less-effective HIV-entry inhibitors on macrophages compared with T lymphocytes.

  2. Cystatin F regulates proteinase activity in IL-2-activated natural killer cells.

    Science.gov (United States)

    Maher, Katarina; Konjar, Spela; Watts, Colin; Turk, Boris; Kopitar-Jerala, Natasa

    2014-01-01

    Cystatin F is a unique member of the cystatin family of cysteine protease inhibitors, which is synthesized as an inactive dimer and it is activated by N-terminal cleavage in the endolysosomes. It is expressed in the cells of the immune system: myeloid cells and the cells involved in target cell killing: natural killer (NK) cells and cytotoxic T cells (CTLs). Upon activation of the NK cells with interleukin 2 (IL-2), cystatin F was found upregulated and co-localized in cytotoxic granules with cathepsin C (CatC) and CatV. However, cystatin F inhibits the CatC in cells only when its N-terminal part is processed. Although cystatin F could inhibit both CatV and CatC, the IL-2 stimulation of the YT cells resulted in an increased CatV activity, while the CatC activity was unchanged. The incubation of IL-2 activated NK cells with a cysteine proteinase inhibitor E-64d increased the cystatin F dimer formation. Our results suggest that cystatin F not only inhibits CatV, but it is processed by the CatV in order to inhibit the CatC activity in cytotoxic granules. The regulation of the CatC activity in the cytotoxic granules of the NK cells by the cystatin F could be important for the processing and activation of granule-associated serine proteases - granzymes.

  3. Myeloid Cells and Related Chronic Inflammatory Factors as Novel Predictive Markers in Melanoma Treatment with Ipilimumab

    National Research Council Canada - National Science Library

    Gebhardt, Christoffer; Sevko, Alexandra; Jiang, Huanhuan; Lichtenberger, Ramtin; Reith, Maike; Tarnanidis, Kathrin; Holland-Letz, Tim; Umansky, Ludmila; Beckhove, Philipp; Sucker, Antje; Schadendorf, Dirk; Utikal, Jochen; Umansky, Viktor

    2015-01-01

    .... We performed an analysis of myeloid cells in the peripheral blood of 59 stage IV melanoma patients before the treatment and at different time points upon the therapy using a clinical laboratory...

  4. T Cells Encountering Myeloid Cells Programmed for Amino Acid-dependent Immunosuppression Use Rictor/mTORC2 Protein for Proliferative Checkpoint Decisions.

    Science.gov (United States)

    Van de Velde, Lee-Ann; Subramanian, Chitra; Smith, Amber M; Barron, Luke; Qualls, Joseph E; Neale, Geoffrey; Alfonso-Pecchio, Adolfo; Jackowski, Suzanne; Rock, Charles O; Wynn, Thomas A; Murray, Peter J

    2017-01-06

    Modulation of T cell proliferation and function by immunoregulatory myeloid cells are an essential means of preventing self-reactivity and restoring tissue homeostasis. Consumption of amino acids such as arginine and tryptophan by immunoregulatory macrophages is one pathway that suppresses local T cell proliferation. Using a reduced complexity in vitro macrophage-T cell co-culture system, we show that macrophage arginase-1 is the only factor required by M2 macrophages to block T cells in G1, and this effect is mediated by l-arginine elimination rather than metabolite generation. Tracking how T cells adjust their metabolism when deprived of arginine revealed the significance of macrophage-mediated arginine deprivation to T cells. We found mTORC1 activity was unaffected in the initial G1 block. After 2 days of arginine deprivation, mTORC1 activity declined paralleling a selective down-regulation of SREBP target gene expression, whereas mRNAs involved in glycolysis, gluconeogenesis, and T cell activation were unaffected. Cell cycle arrest was reversible at any point by exogenous arginine, suggesting starved T cells remain poised awaiting nutrients. Arginine deprivation-induced cell cycle arrest was mediated in part by Rictor/mTORC2, providing evidence that this nutrient recognition pathway is a central component of how T cells measure environmental arginine. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells

    Science.gov (United States)

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C.; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; Rehli, Michael; Hume, David A.

    2015-01-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity. PMID:25717144

  6. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells.

    Science.gov (United States)

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Rehli, Michael; Hume, David A

    2015-05-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity.

  7. Triggering receptor expressed on myeloid cells-2 fine-tunes inflammatory responses in murine Gram-negative sepsis

    DEFF Research Database (Denmark)

    Schmidt Thøgersen, Mariane; Gawish, Riem; Martins, Rui;

    2015-01-01

    in bacterial phagocytosis. In line with this, TREM-2(-/-) peritoneal macrophages (PMs) exhibited augmented inflammation following TLR4 stimulation, demonstrating the presence and negative regulatory functionality of TREM-2 on primary PMs. Significantly, we identified a high turnover rate because TREM-2 RNA......During infections, TLR-mediated responses require tight regulation to allow for pathogen removal, while preventing overwhelming inflammation and immunopathology. The triggering receptor expressed on myeloid cells (TREM)-2 negatively regulates inflammation by macrophages and impacts on phagocytosis...... was followed by an accelerated resolution and ultimately improved survival, associated with the induction of the negative regulator A20. Upon infection with Escherichia coli, the otherwise beneficial effect of an exaggerated early immune response in TREM-2(-/-) animals was counteracted by a 50% reduction...

  8. Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+ cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+ Arg-1(+ myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+ Arg-1(+ phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain.

  9. Control of Both Myeloid Cell Infiltration and Angiogenesis by CCR1 Promotes Liver Cancer Metastasis Development in Mice

    Directory of Open Access Journals (Sweden)

    Mathieu Paul Rodero

    2013-06-01

    Full Text Available Expression of the CC chemokine receptor 1 (CCR1 by tumor cells has been associated with protumoral activity; however, its role in nontumoral cells during tumor development remains elusive. Here, we investigated the role of CCR1 deletion on stromal and hematopoietic cells in a liver metastasis tumor model. Metastasis development was strongly impaired in CCR1-deficient mice compared to control mice and was associated with reduced liver monocyte infiltration. To decipher the role of myeloid cells, sublethally irradiated mice were reconstituted with CCR1-deficient bone marrow (BM and showed better survival rates than the control reconstituted mice. These results point toward the involvement of CCR1 myeloid cell infiltration in the promotion of tumor burden. In addition, survival rates were extended in CCR1-deficient mice receiving either control or CCR1-deficient BM, indicating that host CCR1 expression on nonhematopoietic cells also supports tumor growth. Finally, we found defective tumor-induced neoangiogenesis (in vitro and in vivo in CCR1-deficient mice. Overall, our results indicate that CCR1 expression by both hematopoietic and nonhematopoietic cells favors tumor aggressiveness. We propose CCR1 as a potential therapeutical target for liver metastasis therapy.

  10. Myeloid Cell-Specific Knockout of NFI-A Improves Sepsis Survival.

    Science.gov (United States)

    McPeak, Melissa B; Youssef, Dima; Williams, Danielle A; Pritchett, Christopher; Yao, Zhi Q; McCall, Charles E; El Gazzar, Mohamed

    2017-04-01

    Myeloid progenitor-derived suppressor cells (MDSCs) arise from myeloid progenitors and suppress both innate and adaptive immunity. MDSCs expand during the later phases of sepsis in mice, promote immunosuppression, and reduce survival. Here, we report that the myeloid differentiation-related transcription factor nuclear factor I-A (NFI-A) controls MDSC expansion during sepsis and impacts survival. Unlike MDSCs, myeloid cells with conditional deletion of the Nfia gene normally differentiated into effector cells during sepsis, cleared infecting bacteria, and did not express immunosuppressive mediators. In contrast, ectopic expression of NFI-A in myeloid progenitors from NFI-A myeloid cell-deficient mice impeded myeloid cell maturation and promoted immune repressor function. Importantly, surviving septic mice with conditionally deficient NFI-A myeloid cells were able to respond to challenge with bacterial endotoxin by mounting an acute inflammatory response. Together, these results support the concept of NFI-A as a master molecular transcriptome switch that controls myeloid cell differentiation and maturation and that malfunction of this switch during sepsis promotes MDSC expansion that adversely impacts sepsis outcome. Copyright © 2017 American Society for Microbiology.

  11. Myeloid cell leukemia-1 is a key molecular target for mithramycin A-induced apoptosis in androgen-independent prostate cancer cells and a tumor xenograft animal model.

    Science.gov (United States)

    Choi, Eun-Sun; Jung, Ji-Youn; Lee, Jin-Seok; Park, Jong-Hwan; Cho, Nam-Pyo; Cho, Sung-Dae

    2013-01-01

    Mithramycin A (Mith) is a natural polyketide that has been used in multiple areas of research including apoptosis of various cancer cells. Here, we examined the critical role of Mith in apoptosis and its molecular mechanism in DU145 and PC3 prostate cancer cells and tumor xenografts. Mith decreased cell growth and induced apoptosis in DU145 and PC-3 cells. Myeloid cell leukemia-1 (Mcl-1) was over-expressed in both cell lines compared to RWPE1 cells. Mith inhibited Mcl-1 protein expression in both cells, but only altered Mcl-1 mRNA levels in PC-3 cells. We also found that Mith reduced Mcl-1 protein levels through both proteasome-dependent protein degradation and the inhibition of protein synthesis in DU145 cells. Studies using siRNA confirmed that the knockdown of Mcl-1 induced apoptosis. Mith significantly suppressed TPA-induced neoplastic cell transformation through the down-regulation of the Mcl-1 protein in JB6 cells, and suppressed the transforming activity of both cell types. Mith also inhibited tumor growth and Mcl-1 levels, in addition to inducing apoptosis, in athymic nude mice bearing DU145 cell xenografts without affecting five normal organs. Therefore, Mith inhibits cell growth and induces apoptosis by suppressing Mcl-1 in both prostate cancer cells and xenograft tumors, and thus is a potent anticancer drug candidate for prostate cancer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Establishing the flow cytometric assessment of myeloid cells in kidney ischemia/reperfusion injury.

    Science.gov (United States)

    Williams, Timothy M; Wise, Andrea F; Alikhan, Maliha A; Layton, Daniel S; Ricardo, Sharon D

    2014-03-01

    Polychromatic flow cytometry is a powerful tool for assessing populations of cells in the kidney through times of homeostasis, disease and tissue remodeling. In particular, macrophages have been identified as having central roles in these three settings. However, because of the plasticity of myeloid cells it has been difficult to define a specific immunophenotype for these cells in the kidney. This study developed a gating strategy for identifying and assessing monocyte and macrophage subpopulations, along with neutrophils and epithelial cells in the healthy kidney and following ischemia/reperfusion (IR) injury in mice, using antibodies against CD45, CD11b, CD11c, Ly6C, Ly6G, F4/80, CSF-1R (CD115), MHC class II, mannose receptor (MR or CD206), an alternatively activated macrophage marker, and the epithelial cell adhesion marker (EpCAM or CD326). Backgating analysis and assessment of autofluorescence was used to extend the knowledge of various cell types and the changes that occur in the kidney at various time-points post-IR injury. In addition, the impact of enzymatic digestion of kidneys on cell surface markers and cell viability was assessed. Comparisons of kidney myeloid populations were also made with those in the spleen. These results provide a useful reference for future analyses of therapies aimed at modulating inflammation and enhancing endogenous remodeling following kidney injury.

  13. Diagnostic value of soluble triggering receptor expressed on myeloid cells in paediatric sepsis: a systematic review.

    Science.gov (United States)

    Pontrelli, Giuseppe; De Crescenzo, Franco; Buzzetti, Roberto; Calò Carducci, Francesca; Jenkner, Alessandro; Amodio, Donato; De Luca, Maia; Chiurchiù, Sara; Davies, Elin Haf; Simonetti, Alessandra; Ferretti, Elena; Della Corte, Martina; Gramatica, Luca; Livadiotti, Susanna; Rossi, Paolo

    2016-04-27

    Differential diagnosis between sepsis and non-infectious inflammatory disorders demands improved biomarkers. Soluble Triggering Receptor Expression on Myeloid cells (sTREM-1) is an activating receptor whose role has been studied throughout the last decade. We performed a systematic review to evaluate the accuracy of plasma sTREM-1 levels in the diagnosis of sepsis in children with Systemic Inflammatory Response Syndrome (SIRS). A literature search of PubMed, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature (CINAHL) and ISI Web of Knowledge databases was performed using specific search terms. Studies were included if they assessed the diagnostic accuracy of plasma sTREM-1 for sepsis in paediatric patients with SIRS. Data on sensitivity, specificity, positive predictive value, negative predictive value, area under receiver operating characteristic curve were extracted. The methodological quality of each study was assessed using a checklist based on the Quality Assessment Tool for Diagnostic Accuracy Studies. Nine studies comprising 961 patients were included, four of which were in newborns, three in children and two in children with febrile neutropenia. Some data from single studies support a role of sTREM-1 as a diagnostic tool in pediatric sepsis, but cannot be considered conclusive, because a quantitative synthesis was not possible, due to heterogeneity in studies design. This systematic review suggests that available data are insufficient to support a role for sTREM in the diagnosis and follow-up of paediatric sepsis.

  14. Central nervous system myeloid cells as drug targets: current status and translational challenges.

    Science.gov (United States)

    Biber, Knut; Möller, Thomas; Boddeke, Erik; Prinz, Marco

    2016-02-01

    Myeloid cells of the central nervous system (CNS), which include parenchymal microglia, macrophages at CNS interfaces and monocytes recruited from the circulation during disease, are increasingly being recognized as targets for therapeutic intervention in neurological and psychiatric diseases. The origin of these cells in the immune system distinguishes them from ectodermal neurons and other glia and endows them with potential drug targets distinct from classical CNS target groups. However, despite the identification of several promising therapeutic approaches and molecular targets, no agents directly targeting these cells are currently available. Here, we assess strategies for targeting CNS myeloid cells and address key issues associated with their translation into the clinic.

  15. Soluble triggering receptor expressed on myeloid cells 1: a biomarker for bacterial meningitis

    NARCIS (Netherlands)

    R.M. Determann; M. Weisfelt; J. de Gans; A. van der Ende; M.J. Schultz; D. van de Beek

    2006-01-01

    Objective: To evaluate whether soluble triggering receptor expressed on myeloid cells 1 (sTREM-1) in CSF can serve as a biomarker for the presence of bacterial meningitis and outcome in patients with this disease. Design: Retrospective study of diagnostic accuracy. Setting and patients: CSF was coll

  16. Role of soluble triggering receptor expressed on myeloid cells in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Michalis Tzivras; Vassilios Koussoulas; Evangelos J Giamarellos-Bourboulis; Dimitrios Tzivras; Thomas Tsaganos; Pantelis Koutoukas; Helen Giamarellou; Athanasios Archimandritis

    2006-01-01

    AIM: To investigate the probable role of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in the pathogenesis of inflammatory bowel disease (IBD).METHODS: Fifty-eight patients were enrolled; nineteen healthy volunteers served as controls; 8 patients were diagnosed with Crohn's disease, and 31 with ulcerative colitis. Clinical and endoscopic activity indexes of patients with Crohn's disease and ulcerative colitis respectively were estimated. Upon admission blood was sampled;sTREM-1 and TNFα were measured by an immunoassay and malondialdehyde (MDA) by the thiobarbitourate assay, after passage through an HPLC system.RESULTS: Median ± SE of TNFα of controls, patients with Crohn's disease and patients with ulcerative colitis were 6.02 ± 3.94, 7.98 ± 5.08 (P = NS vs controls), and 8.45±4.15 ng/L (P = 0.018 vs controls) respectively.Respective values of sTREM-1 were 53.31 ± 32.93,735.10 ± 197.17 (P = 0.008 vs controls) and 435.82 ±279.71 ng/L (P = 0.049 vs controls), sTREM-1 was positively correlated with Crohn's disease activity index and clinical and endoscopic activity indexes of ulcerative colitis (P = 0.002, 0.001 and 0.009, respectively), sTREM-1 of patients with ulcerative colitis was positively correlated with TNFα (P = 0.001).CONCLUSION: sTREM-1 seems to behave as a novel mediator in IBD in correlation with the degree of the inflammatory reaction of the intestinal mucosa.

  17. HPV16-associated tumors control myeloid cell homeostasis in lymphoid organs, generating a suppressor environment for T cells.

    Science.gov (United States)

    Stone, Simone Cardozo; Rossetti, Renata Ariza Marques; Bolpetti, Aline; Boccardo, Enrique; Souza, Patricia Savio de Araujo; Lepique, Ana Paula

    2014-10-01

    Tumors are complex structures containing different types of cells and molecules. The importance of the tumor microenvironment in tumor progression, growth, and maintenance is well-established. However, tumor effects are not restricted to the tumor microenvironment. Molecules secreted by, as well as cells that migrate from tumors, may circulate and reach other tissues. This may cause a series of systemic effects, including modulation of immune responses, and in some cases, leukocytosis and metastasis promotion. Leukocytosis has been described as a poor prognostic factor in patients with cervical cancer. The main etiological factor for cervical cancer development is persistent infection with high oncogenic risk HPV. Our laboratory has been exploring the effects of high oncogenic risk, HPV-associated tumors on lymphoid organs of the host. In the present study, we observed an increase in myeloid cell proliferation and alteration in cell signaling in APCs in the spleen of tumor-bearing mice. In parallel, we characterized the cytokines secreted in the inflammatory and tumor cell compartments in the tumor microenvironment and in the spleen of tumor-bearing mice. We show evidence of constitutive activation of the IL-6/STAT3 signaling pathway in the tumor, including TAMs, and in APCs in the spleen. We also observed that IL-10 is a central molecule in the tolerance toward tumor antigens through control of NF-κB activation, costimulatory molecule expression, and T cell proliferation. These systemic effects over myeloid cells are robust and likely an important problem to be addressed when considering strategies to improve anti-tumor T cell responses.

  18. Lysophospholipid acyltransferases and eicosanoid biosynthesis in zebrafish myeloid cells.

    Science.gov (United States)

    Zarini, Simona; Hankin, Joseph A; Murphy, Robert C; Gijón, Miguel A

    2014-10-01

    Eicosanoids derived from the enzymatic oxidation of arachidonic acid play important roles in a large number of physiological and pathological processes in humans. Many animal and cellular models have been used to investigate the intricate mechanisms regulating their biosynthesis and actions. Zebrafish is a widely used model to study the embryonic development of vertebrates. It expresses homologs of the key enzymes involved in eicosanoid production, and eicosanoids have been detected in extracts from adult or embryonic fish. In this study we prepared cell suspensions from kidney marrow, the main hematopoietic organ in fish. Upon stimulation with calcium ionophore, these cells produced eicosanoids including PGE2, LTB4, 5-HETE and, most abundantly, 12-HETE. They also produced small amounts of LTB5 derived from eicosapentaenoic acid. These eicosanoids were also produced in kidney marrow cells stimulated with ATP, and this production was greatly enhanced by preincubation with thimerosal, an inhibitor of arachidonate reacylation into phospholipids. Microsomes from these cells exhibited acyltransferase activities consistent with expression of MBOAT5/LPCAT3 and MBOAT7/LPIAT1, the main arachidonoyl-CoA:lysophospholipid acyltransferases. In summary, this work introduces a new cellular model to study the regulation of eicosanoid production through a phospholipid deacylation-reacylation cycle from a well-established, versatile vertebrate model species.

  19. Tumor-conditioned Gr-1(+)CD11b(+) myeloid cells induce angiogenesis through the synergistic action of CCL2 and CXCL16 in vitro.

    Science.gov (United States)

    Han, Eun Chun; Lee, Jungwhoi; Ryu, Seung-Wook; Choi, Chulhee

    2014-01-24

    Gr-1(+)CD11b(+) cells can suppress innate and adaptive immunity, and the functional immunosuppressive characteristics of these cells can be modulated by the tumor microenvironment. Since Gr-1(+)CD11(+) cells are also involved in tumor-associated angiogenesis, we hypothesized that the angiogenic nature of Gr-1(+)CD11b(+) cells could be regulated by the tumor milieu. To address this hypothesis, we imitated a tumor microenvironment by exposing Gr-1(+)CD11b(+) cells isolated from spleen of 4T1 mammary carcinoma-bearing mice to tumor-conditioned medium. Supernatants from tumor-conditioned Gr-1(+)CD11b(+) cells significantly induced capillary-like tube formation and migration of human umbilical vein endothelial cells (HUVECs) compared to naive Gr-1(+)CD11b(+) cells. Incubation of Gr-1(+)CD11b(+) cells with tumor-conditioned medium induced production of pro-angiogenic chemokines CCL2 and CXCL16. Pretreatment with an anti-CCL2 antibody, but not an anti-CXCL16 antibody, suppressed the angiogenic effects of tumor-conditioned Gr-1(+)CD11b(+) cells on HUVECs. Simultaneous neutralization of CCL2 and CXCL16 significantly inhibited tube formation and migration of HUVECs compared to the sole neutralization against CCL2. Supernatants from tumor-conditioned Gr-1(+)CD11b(+) cells induced phosphorylation of ERK1/2 in HUVECs, and inhibition of the ERK pathway blocked angiogenic effects. ERK pathway activity was partially abrogated by neutralization of CCL2 and more suppressed by simultaneous neutralization of CCL2 and CXCL16. These results collectively indicate that CCL2 and CXCL16 chemokines produced by tumor-conditioned Gr-1(+)CD11b(+) myeloid cells synergistically induce angiogenesis in vitro by stimulating the ERK1/2 signaling pathway. Thus, regulation of Gr-1(+)CD11b(+) cells in the tumor microenvironment may contribute to angiogenesis through the secretion of pro-angiogenic chemokines.

  20. The normal flora may contribute to the quantitative preponderance of myeloid cells under physiological conditions.

    Science.gov (United States)

    Liang, Shi; LiHua, Hu

    2011-01-01

    Under physiological conditions, the innate immune cells derived from myeloid lineage absolutely outnumber the lymphoid cells. At present, two theories are attributed to the maintenance of haemopoiesis: the asymmetric cell division and the bone marrow hematopoietic microenvironment or "niche". However, the former only explains the self-renewal of haemopoietic stem cell (HSC) and the start of haemopoietic differentiation but fails to address the inducers of cell fate decisions; the latter has to admit that the hematopoietic cytokines, despite their significance in the maintenance of haemopoiesis, have no specific effect on lineage commitment. Given these flaws, the advantageous mechanism of myeloid haemopoiesis has not yet been uncovered in the current theories. The discoveries that bacterial components (lipopolysaccharide, LPS) and intestinal decontamination affect the mobilization of HSC trigger the interest in normal flora, which together with their components may have an effect on haemopoiesis. In the experiments in dogs and mice, researchers documented that the generation of myeloid cells has undergone changes in the bone marrow and periphery when antibiotics are used to regulate the normal intestinal flora and the concentration of its components. However, the same changes are not involved in lymphoid cells. Therefore, we hypothesize that in human body normal flora and its components are a driving force to maintain myeloid haemopoiesis under physiological conditions. To account for the selectiveness in haemopoiesis, these facts should be taken into consideration, such as HSC and mesenchymal stem cells (MSC) functionally expressed pattern recognition receptors (PRR), and both of them can self-migrate or be recruited by normal flora or its components into periphery. Dynamically monitoring the myeloid haemopoiesis may provide an important complementary program that precludes the abuse of antibiotics, which prevents diseases triggered by the imbalance of normal

  1. Targeting myeloid cells to the brain using non-myeloablative conditioning.

    Directory of Open Access Journals (Sweden)

    Chotima Böttcher

    Full Text Available Bone marrow-derived cells (BMDCs are able to colonize the central nervous system (CNS at sites of damage. This ability makes BMDCs an ideal cellular vehicle for transferring therapeutic genes/molecules to the CNS. However, conditioning is required for bone marrow-derived myeloid cells to engraft in the brain, which so far has been achieved by total body irradiation (TBI and by chemotherapy (e.g. busulfan treatment. Unfortunately, both regimens massively disturb the host's hematopoietic compartment. Here, we established a conditioning protocol to target myeloid cells to sites of brain damage in mice using non-myeloablative focal head irradiation (HI. This treatment was associated with comparatively low inflammatory responses in the CNS despite cranial radiation doses which are identical to TBI, as revealed by gene expression analysis of cytokines/chemokines such as CCL2, CXCL10, TNF-α and CCL5. HI prior to bone marrow transplantation resulted in much lower levels of blood chimerism defined as the percentage of donor-derived cells in peripheral blood ( 95% or busulfan treatment (> 50%. Nevertheless, HI effectively recruited myeloid cells to the area of motoneuron degeneration in the brainstem within 7 days after facial nerve axotomy. In contrast, no donor-derived cells were detected in the lesioned facial nucleus of busulfan-treated animals up to 2 weeks after transplantation. Our findings suggest that myeloid cells can be targeted to sites of brain damage even in the presence of very low levels of peripheral blood chimerism. We established a novel non-myeloablative conditioning protocol with minimal disturbance of the host's hematopoietic system for targeting BMDCs specifically to areas of pathology in the brain.

  2. Increased levels of circulating and tumor-infiltrating granulocytic myeloid cells in colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    Salman M Toor

    2016-12-01

    Full Text Available Increased levels of myeloid cells, especially myeloid-derived suppressor cells (MDSCs, have been reported to correlate with bad prognosis and reduced survival in cancer patients. However, limited data are available on their conclusive phenotypes and their correlation with clinical settings. The aim of this study was to investigate levels and phenotype of myeloid cells in peripheral blood and tumor microenvironment of colorectal cancer (CRC patients, compared to blood from healthy donors (HDs and paired, adjacent non-tumor colon tissue. Flow cytometric analysis was performed to examine the expression of different myeloid markers in fresh peripheral blood samples from CRC patients and HDs, and tissue-infiltrating immune cells from CRC patients. We found significantly higher levels of cells expressing myeloid markers and lacking the expression of MHC class II molecule HLA-DR in blood and tumor of CRC patients. Further analysis revealed that these cells were granulocytic and expressed Arginase 1 (ARG1, indicative of their suppressive phenotype. These expanded cells could be neutrophils or granulocytic MDSCs, and we refer to them as granulocytic myeloid cells (GMCs due to the phenotypical and functional overlap between these cell subsets. Interestingly, the expansion of peripheral GMCs correlated with higher stage and histological grade of cancer, thereby suggesting their role in cancer progression. Furthermore, an increase in CD33+CD11b+HLA-DR-CD14-CD15- immature myeloid cells (IMCs was also observed in CRC tumor tissue. Our work shows that GMCs are expanded in circulation and tumor microenvironment of CRC patients, which provides further insights for developing immunotherapeutic approaches targeting these cell subsets to enhance anti-tumor immune and clinical responses.

  3. Requiem: a novel zinc finger gene essential for apoptosis in myeloid cells.

    Science.gov (United States)

    Gabig, T G; Mantel, P L; Rosli, R; Crean, C D

    1994-11-25

    To identify genes mediating programmed cell death triggered by interleukin 3 (IL-3)-deprivation of myeloid cells, the IL-3-dependent murine myeloid cell line FDCP-1 was used to screen a mammalian cell expression library for cDNAs that would promote survival following withdrawal of IL-3. A unique 892-base pair cDNA was cloned that prevented the programmed cell death response following IL-3 deprivation by causing antisense suppression of an endogenous 2.4-kilobase (kb) mRNA. A 2.3-kb cDNA containing the identical 892-base pair over-lapping sequence was cloned that encoded a deduced 371-amino acid protein containing a single Kruppel-type zinc finger and a cluster of 4 cysteine/histidine-rich repeats resembling atypical zinc fingers. The 2.4-kb mRNA was found to be ubiquitously expressed in murine tissues and its abundance in FDCP-1 cells was not altered in response to IL-3 deprivation. Since expression of this 2.4-kb mRNA was a prerequisite for the apoptosis response following IL-3 deprivation, the gene encoding it was named requiem. Requiem is likely to encode a transcription factor required for the apoptosis response following survival factor withdrawal from myeloid cells.

  4. AMP-Activated Protein Kinase α2 in Neutrophils Regulates Vascular Repair via Hypoxia-Inducible Factor-1α and a Network of Proteins Affecting Metabolism and Apoptosis

    Science.gov (United States)

    Abdel Malik, Randa; Zippel, Nina; Frömel, Timo; Heidler, Juliana; Zukunft, Sven; Walzog, Barbara; Ansari, Nariman; Pampaloni, Francesco; Wingert, Susanne; Rieger, Michael A.; Wittig, Ilka; Fisslthaler, Beate

    2017-01-01

    Rationale: The AMP-activated protein kinase (AMPK) is stimulated by hypoxia, and although the AMPKα1 catalytic subunit has been implicated in angiogenesis, little is known about the role played by the AMPKα2 subunit in vascular repair. Objective: To determine the role of the AMPKα2 subunit in vascular repair. Methods and Results: Recovery of blood flow after femoral artery ligation was impaired (>80%) in AMPKα2−/− versus wild-type mice, a phenotype reproduced in mice lacking AMPKα2 in myeloid cells (AMPKα2ΔMC). Three days after ligation, neutrophil infiltration into ischemic limbs of AMPKα2ΔMC mice was lower than that in wild-type mice despite being higher after 24 hours. Neutrophil survival in ischemic tissue is required to attract monocytes that contribute to the angiogenic response. Indeed, apoptosis was increased in hypoxic neutrophils from AMPKα2ΔMC mice, fewer monocytes were recruited, and gene array analysis revealed attenuated expression of proangiogenic proteins in ischemic AMPKα2ΔMC hindlimbs. Many angiogenic growth factors are regulated by hypoxia-inducible factor, and hypoxia-inducible factor-1α induction was attenuated in AMPKα2-deficient cells and accompanied by its enhanced hydroxylation. Also, fewer proteins were regulated by hypoxia in neutrophils from AMPKα2ΔMC mice. Mechanistically, isocitrate dehydrogenase expression and the production of α-ketoglutarate, which negatively regulate hypoxia-inducible factor-1α stability, were attenuated in neutrophils from wild-type mice but remained elevated in cells from AMPKα2ΔMC mice. Conclusions: AMPKα2 regulates α-ketoglutarate generation, hypoxia-inducible factor-1α stability, and neutrophil survival, which in turn determine further myeloid cell recruitment and repair potential. The activation of AMPKα2 in neutrophils is a decisive event in the initiation of vascular repair after ischemia. PMID:27777247

  5. Non-myeloid Cells are Major Contributors to Innate Immune Responses via Production of Monocyte Chemoattractant Protein- 1(MCP-1/CCL2

    Directory of Open Access Journals (Sweden)

    Teizo eYoshimura

    2014-01-01

    Full Text Available Monocyte chemoattractant protein-1 (MCP-1/CCL2 is a chemokine regulating the recruitment of monocytes into sites of inflammation and cancer. MCP-1 can be produced by a variety of cell types, such as macrophages, neutrophils, fibroblasts, endothelial cells and epithelial cells. Notably, macrophages produce high levels of MCP-1 in response to proinflammatory stimuli in vitro, leading to the hypothesis that macrophages are the major source of MCP-1 during inflammatory responses in vivo. In stark contrast to the hypothesis, however, there was no significant reduction in MCP-1 protein or the number of infiltrating macrophages in the peritoneal inflammatory exudates of myeloid cell-specific MCP-1-deficient mice in response to i.p injection of thioglycollate or zymosan A. Furthermore, injection of LPS into skin air pouch also had no effect on local MCP-1 production in myeloid-specific MCP-1-deficient mice. Finally, myeloid-specific MCP-1-deficiency did not reduce MCP-1 mRNA expression or macrophage infiltration in LPS-induced lung injury. These results indicate that non-myeloid cells, in response to a variety of stimulants, play a previously unappreciated role in innate immune responses as the primary source of MCP-1.

  6. Identifying alemtuzumab as an anti-myeloid cell antiangiogenic therapy for the treatment of ovarian cancer

    Directory of Open Access Journals (Sweden)

    Coukos George

    2009-06-01

    Full Text Available Abstract Background Murine studies suggest that myeloid cells such as vascular leukocytes (VLC and Tie2+ monocytes play a critical role in tumor angiogenesis and vasculogenesis. Myeloid cells are a primary cause of resistance to anti-VEGF therapy. The elimination of these cells from the tumor microenvironment significantly restricts tumor growth in both spontaneous and xenograft murine tumor models. Thus animal studies indicate that myeloid cells are potential therapeutic targets for solid tumor therapy. Abundant VLC and Tie2+ monocytes have been reported in human cancer. Unfortunately, the importance of VLC in human cancer growth remains untested as there are no confirmed therapeutics to target human VLC. Methods We used FACS to analyze VLC in ovarian and non-ovarian tumors, and characterize the relationship of VLC and Tie2-monocytes. We performed qRT-PCR and FACS on human VLC to assess the expression of the CD52 antigen, the target of the immunotherapeutic Alemtuzumab. We assessed Alemtuzumab's ability to induce complement-mediated VLC killing in vitro and in human tumor ascites. Finally we assessed the impact of anti-CD52 immuno-toxin therapy on murine ovarian tumor growth. Results Human VLC are present in ovarian and non-ovarian tumors. The majority of VLC appear to be Tie2+ monocytes. VLC and Tie2+ monocytes express high levels of CD52, the target of the immunotherapeutic Alemtuzumab. Alemtuzumab potently induces complement-mediated lysis of VLC in vitro and ex-vivo in ovarian tumor ascites. Anti-CD52 immunotherapy targeting VLC restricts tumor angiogenesis and growth in murine ovarian cancer. Conclusion These studies confirm VLC/myeloid cells as therapeutic targets in ovarian cancer. Our data provide critical pre-clinical evidence supporting the use of Alemtuzumab in clinical trials to test its efficacy as an anti-myeloid cell antiangiogenic therapeutic in ovarian cancer. The identification of an FDA approved anti-VLC agent with a history

  7. Potential differentiation of tumor bearing mouse CD11b+Gr-1+ immature myeloid cells into both suppressor macrophages and immunostimulatory dendritic cells.

    Science.gov (United States)

    Narita, Yoshinori; Wakita, Daiko; Ohkur, Takayuki; Chamoto, Kenji; Nishimura, Takashi

    2009-02-01

    Evaluation of immunosuppressive tumor-escape mechanisms in tumor-bearing hosts is of great importance for the development of an efficient tumor immunotherapy. We document here the functional characteristics of CD11b(+)Gr-1(+) immature myeloid cells (ImC), which increase abnormally in tumor-bearing mice. Although it has been reported that ImC exhibit a strong immunosuppressive activity against T cell responses, we demonstrate that ImC derived from tumor-bearing mouse spleens (TB-SPL) did not exhibit a strong inhibitory activity against CTL generation in MLR. However, ImC isolated from TB-SPL and induced to differentiate into CD11b(+)Gr-1(+)F4/80(+) suppressor macrophages (MPhi) under the influence of tumor-derived factors were immunosuppressive. Furthermore, we also demonstrate that ImC isolated from TB-SPL had a capability of differentiating into immunostimulatory dendritic cells (DC1) supportive of the generation of IFN-gamma producing CTL if the ImC were cultured with Th1 cytokines plus GM-CSF and IL-3. Thus, our findings indicate that tumor bearing mouse-derived CD11b(+)Gr-1(+) ImC are not committed to development into immunosuppressor cells but have dual differentiation ability into both immunosuppressive myeloid cells and immunostimulatory DC1.

  8. Gr-1+CD11b+ myeloid cells efficiently home to site of injury after intravenous administration and enhance diabetic wound healing by neoangiogenesis.

    Science.gov (United States)

    Tong, Xiaozhe; Lv, Gang; Huang, Jianhua; Min, Yongfen; Yang, Li; Lin, Pengnian Charles

    2014-06-01

    Vascularization is an important factor that affects diabetic wound healing. There is increasing evidence that myeloid cell lineages play a role in neovascularization. In this study, the efficiency of Gr-1+CD11b+ myeloid cells to home to the site of injury and enhance diabetic wound healing by neoangiogenesis after intravenous administration was investigated. Gr-1+CD11b+ myeloid cells were injected into tail vein after establishment of dorsal window chamber, hindlimb ischaemia and ear-punch injury in diabetic or non-diabetic mice. The Gr-1+CD11b+ myeloid cells efficiently homed to the site of injury after intravenous administration and increased neoangiogenesis. The chemokine receptor type 4 (CXCR4) is robustly expressed by Gr-1+CD11b+ myeloid cells. Inhibition of CXCR4 decreases the homing ability of Gr-1+CD11b+ myeloid cells to the site of injury, which indicates that the CXCR4/SDF-1 axis plays an important role in the homing of Gr-1+CD11b+ myeloid cells to the site of injury. In addition, Gr-1+CD11b+ myeloid cells were found to improve blood flow recovery of ischaemic limb and enhance wound healing in diabetic mice by neoangiogenesis after intravenous administration. Taken together, the results of this study suggest that Gr-1+CD11b+ myeloid cells may serve as a potential cell therapy for diabetic wound healing.

  9. EPCR-dependent PAR2 activation by the blood coagulation initiation complex regulates LPS-triggered interferon responses in mice.

    Science.gov (United States)

    Liang, Hai Po H; Kerschen, Edward J; Hernandez, Irene; Basu, Sreemanti; Zogg, Mark; Botros, Fady; Jia, Shuang; Hessner, Martin J; Griffin, John H; Ruf, Wolfram; Weiler, Hartmut

    2015-04-30

    Infection and inflammation are invariably associated with activation of the blood coagulation mechanism, secondary to the inflammation-induced expression of the coagulation initiator tissue factor (TF) on innate immune cells. By investigating the role of cell-surface receptors for coagulation factors in mouse endotoxemia, we found that the protein C receptor (ProcR; EPCR) was required for the normal in vivo and in vitro induction of lipopolysaccharide (LPS)-regulated gene expression. In cultured bone marrow-derived myeloid cells and in monocytic RAW264.7 cells, the LPS-induced expression of functionally active TF, assembly of the ternary TF-VIIa-Xa initiation complex of blood coagulation, and the EPCR-dependent activation of protease-activated receptor 2 (PAR2) by the ternary TF-VIIa-Xa complex were required for the normal LPS induction of messenger RNAs encoding the TLR3/4 signaling adaptor protein Pellino-1 and the transcription factor interferon regulatory factor 8. In response to in vivo challenge with LPS, mice lacking EPCR or PAR2 failed to fully initiate an interferon-regulated gene expression program that included the Irf8 target genes Lif, Iigp1, Gbp2, Gbp3, and Gbp6. The inflammation-induced expression of TF and crosstalk with EPCR, PAR2, and TLR4 therefore appear necessary for the normal evolution of interferon-regulated host responses.

  10. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings......The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala...... is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control...

  11. DEXAMETHASONE DOWNREGULATES EXPRESSION OF TRIGGERING RECEPTOR EXPRESSED ON MYELOID CELLS (TREM-1: EVIDENCE FOR A TNFα-RELATED EFFECT

    Directory of Open Access Journals (Sweden)

    Ira eMihailidou

    2013-11-01

    Full Text Available Objectives To investigate the effect of dexamethasone on triggering receptor expressed on myeloid cells-1 (TREM-1.Methods Lethal infection was induced by Pseudomonas aeruginosa in 96 mice, both wild-type and TNF-/-; mice were pre-treated either with saline or with dexamethasone/hydrocortisone. TREM-1 on neutrophil membranes was measured after sacrifice. Monocytes of the U937 human cell line were challenged by LPS and heat-killed P.aeruginosa with the sequential addition of dexamethasone, hydrocortisone, TNFα and anti-TNF. Expression of TREM-1 and release of soluble TREM-1 (sTREM-1 in supernatants were measured.Results Pre-treatment with dexamethasone prolonged animal survival; this was not shown with hydrocortisone pre-treatment. Mice pre-treated with dexamethasone showed decreased expression of TREM-1 on neutrophils. LPS and P.aeruginosa induced the expression of TREM-1 and the release of sTREM-1 by U937 monocytes; that was decreased upon addition of dexamethasone but not of hydrocortisone. The effect of dexamethasone was enhanced upon addition of TNFα and lost in the presence of anti-TNF. The effect was also lost in TNF-/- mice. Gene expression of TREM-1 by U937 monocytes was decreased after treatment with dexamethasone.Conclusions TREM-1/sTREM-1 is a novel site of action of dexamethasone. This action is related with down-regulation of gene expression and is modulated by TNFα.

  12. Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice

    Directory of Open Access Journals (Sweden)

    Pauline Bannon

    2013-11-01

    Acute inflammation in response to injury is a tightly regulated process by which subsets of leukocytes are recruited to the injured tissue and undergo behavioural changes that are essential for effective tissue repair and regeneration. The diabetic wound environment is characterised by excessive and prolonged inflammation that is linked to poor progression of healing and, in humans, the development of diabetic foot ulcers. However, the underlying mechanisms contributing to excessive inflammation remain poorly understood. Here we show in a murine model that the diabetic environment induces stable intrinsic changes in haematopoietic cells. These changes lead to a hyper-responsive phenotype to both pro-inflammatory and anti-inflammatory stimuli, producing extreme M1 and M2 polarised cells. During early wound healing, myeloid cells in diabetic mice show hyperpolarisation towards both M1 and M2 phenotypes, whereas, at late stages of healing, when non-diabetic macrophages have transitioned to an M2 phenotype, diabetic wound macrophages continue to display an M1 phenotype. Intriguingly, we show that this population predominantly consists of Gr-1+ CD11b+ CD14+ cells that have been previously reported as ‘inflammatory macrophages’ recruited to injured tissue in the early stages of wound healing. Finally, we show that this phenomenon is directly relevant to human diabetic ulcers, for which M2 polarisation predicts healing outcome. Thus, treatments focused at targeting this inflammatory cell subset could prove beneficial for pathological tissue repair.

  13. The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion.

    Science.gov (United States)

    Hucke, Stephanie; Herold, Martin; Liebmann, Marie; Freise, Nicole; Lindner, Maren; Fleck, Ann-Katrin; Zenker, Stefanie; Thiebes, Stephanie; Fernandez-Orth, Juncal; Buck, Dorothea; Luessi, Felix; Meuth, Sven G; Zipp, Frauke; Hemmer, Bernhard; Engel, Daniel Robert; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-09-01

    Innate immune responses by myeloid cells decisively contribute to perpetuation of central nervous system (CNS) autoimmunity and their pharmacologic modulation represents a promising strategy to prevent disease progression in Multiple Sclerosis (MS). Based on our observation that peripheral immune cells from relapsing-remitting and primary progressive MS patients exhibited strongly decreased levels of the bile acid receptor FXR (farnesoid-X-receptor, NR1H4), we evaluated its potential relevance as therapeutic target for control of established CNS autoimmunity. Pharmacological FXR activation promoted generation of anti-inflammatory macrophages characterized by arginase-1, increased IL-10 production, and suppression of T cell responses. In mice, FXR activation ameliorated CNS autoimmunity in an IL-10-dependent fashion and even suppressed advanced clinical disease upon therapeutic administration. In analogy to rodents, pharmacological FXR activation in human monocytes from healthy controls and MS patients induced an anti-inflammatory phenotype with suppressive properties including control of effector T cell proliferation. We therefore, propose an important role of FXR in control of T cell-mediated autoimmunity by promoting anti-inflammatory macrophage responses.

  14. The Hematopoietic Differentiation and Production of Mature Myeloid Cells from Human Pluripotent Stem Cells

    OpenAIRE

    Choi, Kyung-Dal; Vodyanik, Maxim; Slukvin, Igor I.

    2011-01-01

    Here we describe a protocol for hematopoietic differentiation of human pluripotent stem cells (hPSCs) and generation of mature myeloid cells from hPSCs through expansion and differentiation of hPSC-derived lin-CD34+CD43+CD45+ multipotent progenitors. The protocol is comprised of three major steps: (i) induction of hematopoietic differentiation by coculture of hPSCs with OP9 bone marrow stromal cells, (ii) short-term expansion of multipotent myeloid progenitors with a high dose of GM-CSF, and ...

  15. HIV-related proteins prolong macrophage survival through induction of Triggering receptor expressed on myeloid cells-1

    Science.gov (United States)

    Yuan, Zhihong; Fan, Xian; Staitieh, Bashar; Bedi, Chetna; Spearman, Paul; Guidot, David M; Sadikot, Ruxana T

    2017-01-01

    Triggering receptor expressed on myeloid cells-1(TREM-1) is a member of the superimmunoglobulin receptor family. We have previously shown that TREM-1 prolongs survival of macrophages treated with lipoolysaccharide through Egr2-Bcl2 signaling. Recent studies suggest a role for TREM-1 in viral immunity. Human immunodeficiency virus-1 (HIV) targets the monocyte/macrophage lineage at varying stages of infection. Emerging data suggest that macrophages are key reservoirs for latent HIV even in individuals on antiretroviral therapy. Here, we investigated the potential role of TREM-1 in HIV latency in macrophages. Our data show that human macrophages infected with HIV show an increased expression of TREM-1. In parallel, direct exposure to the HIV-related proteins Tat or gp120 induces TREM-1 expression in macrophages and confers anti-apoptotic attributes.NF-κB p65 silencing identified that these proteins induce TREM-1 in p65-dependent manner. TREM-1 silencing in macrophages exposed to HIV-related proteins led to increased caspase 3 activation and reduced Bcl-2 expression, rendering them susceptible to apotosis. These novel data reveal that TREM-1 may play a critical role in establishing HIV reservoir in macrophages by inhibiting apoptosis. Therefore, targeting TREM-1 could be a novel therapeutic approach to enhance clearance of the HIV reservoir, at least within the macrophage pools. PMID:28181540

  16. Molecular regulation of osteoclast activity.

    Science.gov (United States)

    Bruzzaniti, Angela; Baron, Roland

    2006-06-01

    Osteoclasts are multinucleated cells derived from hematopoietic precursors that are primarily responsible for the degradation of mineralized bone during bone development, homeostasis and repair. In various skeletal disorders such as osteoporosis, hypercalcemia of malignancy, tumor metastases and Paget's disease, bone resorption by osteoclasts exceeds bone formation by osteoblasts leading to decreased bone mass, skeletal fragility and bone fracture. The overall rate of osteoclastic bone resorption is regulated either at the level of differentiation of osteoclasts from their monocytic/macrophage precursor pool or through the regulation of key functional proteins whose specific activities in the mature osteoclast control its attachment, migration and resorption. Thus, reducing osteoclast numbers and/or decreasing the bone resorbing activity of osteoclasts are two common therapeutic approaches for the treatment of hyper-resorptive skeletal diseases. In this review, several of the key functional players involved in the regulation of osteoclast activity will be discussed.

  17. Glycoprotein B cleavage is important for murid herpesvirus 4 to infect myeloid cells.

    Science.gov (United States)

    Glauser, Daniel L; Milho, Ricardo; Frederico, Bruno; May, Janet S; Kratz, Anne-Sophie; Gillet, Laurent; Stevenson, Philip G

    2013-10-01

    Glycoprotein B (gB) is a conserved herpesvirus virion component implicated in membrane fusion. As with many-but not all-herpesviruses, the gB of murid herpesvirus 4 (MuHV-4) is cleaved into disulfide-linked subunits, apparently by furin. Preventing gB cleavage for some herpesviruses causes minor infection deficits in vitro, but what the cleavage contributes to host colonization has been unclear. To address this, we mutated the furin cleavage site (R-R-K-R) of the MuHV-4 gB. Abolishing gB cleavage did not affect its expression levels, glycosylation, or antigenic conformation. In vitro, mutant viruses entered fibroblasts and epithelial cells normally but had a significant entry deficit in myeloid cells such as macrophages and bone marrow-derived dendritic cells. The deficit in myeloid cells was not due to reduced virion binding or endocytosis, suggesting that gB cleavage promotes infection at a postendocytic entry step, presumably viral membrane fusion. In vivo, viruses lacking gB cleavage showed reduced lytic spread in the lungs. Alveolar epithelial cell infection was normal, but alveolar macrophage infection was significantly reduced. Normal long-term latency in lymphoid tissue was established nonetheless.

  18. Derivation of a myeloid cell-binding adenovirus for gene therapy of inflammation.

    Directory of Open Access Journals (Sweden)

    Michael O Alberti

    Full Text Available The gene therapy field is currently limited by the lack of vehicles that permit efficient gene delivery to specific cell or tissue subsets. Native viral vector tropisms offer a powerful platform for transgene delivery but remain nonspecific, requiring elevated viral doses to achieve efficacy. In order to improve upon these strategies, our group has focused on genetically engineering targeting domains into viral capsid proteins, particularly those based on adenovirus serotype 5 (Ad5. Our primary strategy is based on deletion of the fiber knob domain, to eliminate broad tissue specificity through the human coxsackie-and-adenovirus receptor (hCAR, with seamless incorporation of ligands to re-direct Ad tropism to cell types that express the cognate receptors. Previously, our group and others have demonstrated successful implementation of this strategy in order to specifically target Ad to a number of surface molecules expressed on immortalized cell lines. Here, we utilized phage biopanning to identify a myeloid cell-binding peptide (MBP, with the sequence WTLDRGY, and demonstrated that MBP can be successfully incorporated into a knob-deleted Ad5. The resulting virus, Ad.MBP, results in specific binding to primary myeloid cell types, as well as significantly higher transduction of these target populations ex vivo, compared to unmodified Ad5. These data are the first step in demonstrating Ad targeting to cell types associated with inflammatory disease.

  19. Real-time imaging of myeloid cells dynamics in ApcMin/+ intestinal tumors by spinning disk confocal microscopy.

    Science.gov (United States)

    Bonnans, Caroline; Lohela, Marja; Werb, Zena

    2014-10-06

    Myeloid cells are the most abundant immune cells within tumors and have been shown to promote tumor progression. Modern intravital imaging techniques enable the observation of live cellular behavior inside the organ but can be challenging in some types of cancer due to organ and tumor accessibility such as intestine. Direct observation of intestinal tumors has not been previously reported. A surgical procedure described here allows direct observation of myeloid cell dynamics within the intestinal tumors in live mice by using transgenic fluorescent reporter mice and injectable tracers or antibodies. For this purpose, a four-color, multi-region, micro-lensed spinning disk confocal microscope that allows long-term continuous imaging with rapid image acquisition has been used. Apc(Min/+) mice that develop multiple adenomas in the small intestine are crossed with c-fms-EGFP mice to visualize myeloid cells and with ACTB-ECFP mice to visualize intestinal epithelial cells of the crypts. Procedures for labeling different tumor components, such as blood vessels and neutrophils, and the procedure for positioning the tumor for imaging through the serosal surface are also described. Time-lapse movies compiled from several hours of imaging allow the analysis of myeloid cell behavior in situ in the intestinal microenvironment.

  20. Haptoglobin is synthesized during granulocyte differentiation, stored in specific granules, and released by neutrophils in response to activation

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Jacobsen, Lars C; Nielsen, Marianne J

    2006-01-01

    Haptoglobin (Hp) is a plasma protein synthesized primarily by hepatocytes. It exerts a broad range of anti-inflammatory activities and acts indirectly as a bacteriostatic agent and an antioxidant by virtue of its ability to bind free hemoglobin (Hb) and to facilitate its immediate clearance......, these findings demonstrate that Hp is stored in specific granules and is released by neutrophils in response to activation. Hence, neutrophil-derived Hp might reduce tissue damage and bacterial growth at sites of infection or injury by propagating anti-inflammatory activities and Hb clearance....... granules binds to Hb. Finally, the CCAAT enhancer binding protein-epsilon (C/EBPepsilon) induced Hp transcription in a myeloid cell line, suggesting that Hp expression in myeloid cells, as in hepatocytes, is at least partially regulated by members of the C/EBP transcription factor family. Collectively...

  1. Myeloid cells in circulation and tumor microenvironment of breast cancer patients.

    Science.gov (United States)

    Toor, Salman M; Syed Khaja, Azharuddin Sajid; El Salhat, Haytham; Faour, Issam; Kanbar, Jihad; Quadri, Asif A; Albashir, Mohamed; Elkord, Eyad

    2017-06-01

    Pathological conditions including cancers lead to accumulation of a morphological mixture of highly immunosuppressive cells termed as myeloid-derived suppressor cells (MDSC). The lack of conclusive markers to identify human MDSC, due to their heterogeneous nature and close phenotypical and functional proximity with other cell subsets, made it challenging to identify these cells. Nevertheless, expansion of MDSC has been reported in periphery and tumor microenvironment of various cancers. The majority of studies on breast cancers were performed on murine models and hence limited literature is available on the relation of MDSC accumulation with clinical settings in breast cancer patients. The aim of this study was to investigate levels and phenotypes of myeloid cells in peripheral blood (n = 23) and tumor microenvironment of primary breast cancer patients (n = 7), compared with blood from healthy donors (n = 21) and paired non-tumor normal breast tissues from the same patients (n = 7). Using multicolor flow cytometric assays, we found that breast cancer patients had significantly higher levels of tumor-infiltrating myeloid cells, which comprised of granulocytes (P = 0.022) and immature cells that lack the expression of markers for fully differentiated monocytes or granulocytes (P = 0.016). Importantly, this expansion was not reflected in the peripheral blood. The immunosuppressive potential of these cells was confirmed by expression of Arginase 1 (ARG1), which is pivotal for T-cell suppression. These findings are important for developing therapeutic modalities to target mechanisms employed by immunosuppressive cells that generate an immune-permissive environment for the progression of cancer.

  2. Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species.

    Science.gov (United States)

    Kusmartsev, Sergei; Gabrilovich, Dmitry I

    2003-08-01

    It is well established that tumor growth is associated with accumulation of immature myeloid cells (ImC). They play an important role in tumor-associated immune suppression. ImC accumulate not only in tumor-bearing hosts but also in immunized, tumor-free hosts or hosts infected with bacterial pathogens. The kinetics of ImC in these mice is different. If in tumor-bearing mice, the number of ImC continues to increase with tumor progression in tumor-free mice after an initial spike, it decreases to the control level. Here, we have investigated the mechanisms of ImC accumulation in tumor-bearing hosts by comparing differentiation of ImC obtained from tumor-free and tumor-bearing mice. In the presence of appropriate growth factors, ImC isolated from tumor-free mice quickly differentiated in vitro into mature dendritic cells (DC), macrophages, and granulocytes. In contrast, differentiation of ImC from tumor-bearing mice was significantly delayed. Similar results were obtained in vivo after adoptive transfer of ImC into naïve, congeneic mice. ImC transferred into tumor-bearing recipients failed to differentiate into DC or macrophages. ImC from tumor-bearing mice had significantly higher levels of reactive oxygen species (ROS) than ImC obtained from tumor-free mice. Hydrogen peroxide (H(2)O(2)) but not superoxide radical anions was found to be the major part of this increased ROS production. In vitro experiments demonstrated that scavenging of H(2)O(2) with catalase induced differentiation of ImC from tumor-bearing mice into macrophages. Thus, this is a first demonstration that tumors may prevent differentiation of antigen-presenting cells by increasing the level of endogenous H(2)O(2) in immature myeloid cells.

  3. Attenuated inflammatory response in triggering receptor expressed on myeloid cells 2 (TREM2 knock-out mice following stroke.

    Directory of Open Access Journals (Sweden)

    Matthias W Sieber

    Full Text Available BACKGROUND: Triggering receptor expressed on myeloid cells-2 (TREM2 is a microglial surface receptor involved in phagocytosis. Clearance of apoptotic debris after stroke represents an important mechanism to re-attain tissue homeostasis and thereby ensure functional recovery. The role of TREM2 following stroke is currently unclear. METHODS AND RESULTS: As an experimental stroke model, the middle cerebral artery of mice was occluded for 30 minutes with a range of reperfusion times (duration of reperfusion: 6 h/12 h/24 h/2 d/7 d/28 d. Quantitative PCR (qPCR revealed a greatly increased transcription of TREM2 after stroke. We subsequently analyzed the expression of pro-inflammatory cytokines, chemokines and their receptors in TREM2-knockout (TREM2-KO mice via qPCR. Microglial activation (CD68, Iba1 and CD3-positive T-cell invasion were analyzed via qPCR and immunohistochemistry. Functional consequences of TREM2 knockout were assessed by infarct volumetry. The acute inflammatory response (12 h reperfusion was very similar between TREM2-KO mice and their littermate controls. However, in the sub-acute phase (7 d reperfusion following stroke, TREM2-KO mice showed a decreased transcription of pro-inflammatory cytokines TNFα, IL-1α and IL-1β, associated with a reduced microglial activity (CD68, Iba1. Furthermore, TREM2-KO mice showed a reduced transcription of chemokines CCL2 (MCP1, CCL3 (MIP1α and the chemokine receptor CX3CR1, followed by a diminished invasion of CD3-positive T-cells. No effect on the lesion size was observed. CONCLUSIONS: Although we initially expected an exaggerated pro-inflammatory response following ablation of TREM2, our data support a contradictory scenario that the sub-acute inflammatory reaction after stroke is attenuated in TREM2-KO mice. We therefore conclude that TREM2 appears to sustain a distinct inflammatory response after stroke.

  4. Attenuated Inflammatory Response in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Knock-Out Mice following Stroke

    Science.gov (United States)

    Brehm, Martin; Guenther, Madlen; Linnartz-Gerlach, Bettina; Neumann, Harald; Witte, Otto W.; Frahm, Christiane

    2013-01-01

    Background Triggering receptor expressed on myeloid cells-2 (TREM2) is a microglial surface receptor involved in phagocytosis. Clearance of apoptotic debris after stroke represents an important mechanism to re-attain tissue homeostasis and thereby ensure functional recovery. The role of TREM2 following stroke is currently unclear. Methods and Results As an experimental stroke model, the middle cerebral artery of mice was occluded for 30 minutes with a range of reperfusion times (duration of reperfusion: 6 h/12 h/24 h/2 d/7 d/28 d). Quantitative PCR (qPCR) revealed a greatly increased transcription of TREM2 after stroke. We subsequently analyzed the expression of pro-inflammatory cytokines, chemokines and their receptors in TREM2-knockout (TREM2-KO) mice via qPCR. Microglial activation (CD68, Iba1) and CD3-positive T-cell invasion were analyzed via qPCR and immunohistochemistry. Functional consequences of TREM2 knockout were assessed by infarct volumetry. The acute inflammatory response (12 h reperfusion) was very similar between TREM2-KO mice and their littermate controls. However, in the sub-acute phase (7 d reperfusion) following stroke, TREM2-KO mice showed a decreased transcription of pro-inflammatory cytokines TNFα, IL-1α and IL-1β, associated with a reduced microglial activity (CD68, Iba1). Furthermore, TREM2-KO mice showed a reduced transcription of chemokines CCL2 (MCP1), CCL3 (MIP1α) and the chemokine receptor CX3CR1, followed by a diminished invasion of CD3-positive T-cells. No effect on the lesion size was observed. Conclusions Although we initially expected an exaggerated pro-inflammatory response following ablation of TREM2, our data support a contradictory scenario that the sub-acute inflammatory reaction after stroke is attenuated in TREM2-KO mice. We therefore conclude that TREM2 appears to sustain a distinct inflammatory response after stroke. PMID:23301011

  5. TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells.

    Science.gov (United States)

    Haruta, M; Tomita, Y; Yuno, A; Matsumura, K; Ikeda, T; Takamatsu, K; Haga, E; Koba, C; Nishimura, Y; Senju, S

    2013-05-01

    We previously reported a method to generate dendritic cell (DC)-like antigen-presenting cells (APC) from human induced pluripotent stem (iPS) cells. However, the method is relatively complicated and laborious. In the current study, we attempted to establish a method through which we could obtain a large number of functional APC with a simple procedure. We transduced iPS cell-derived CD11b(+) myeloid cells with genes associated with proliferative or anti-senescence effects, enabling the cells to propagate for more than 4 months in a macrophage colony-stimulating factor (M-CSF)-dependent manner while retaining their capacity to differentiate into functional APC. We named these iPS cell-derived proliferating myeloid cells 'iPS-ML', and the iPS-ML-derived APC 'ML-DC'. In addition, we generated TAP2-deficient iPS cell clones by zinc finger nuclease-aided targeted gene disruption. TAP2-deficient iPS cells and iPS-ML avoided recognition by pre-activated allo-reactive CD8(+) T cells. TAP2-deficient ML-DC expressing exogenously introduced HLA-A2 genes stimulated HLA-A2-restricted MART-1-specific CD8(+) T cells obtained from HLA-A2-positive allogeneic donors, resulting in generation of MART-1-specific cytotoxic T lymphocyte (CTL) lines. TAP-deficient iPS-ML introduced with various HLA class I genes may serve as an unlimited source of APC for vaccination therapy. If administered into allogeneic patients, ML-DC with appropriate genetic modifications may survive long enough to stimulate antigen-specific CTL and, after that, be completely eliminated. Based on the present study, we propose an APC-producing system that is simple, safe and applicable to all patients irrespective of their HLA types.

  6. A mutant RAS gene acts through protein kinase C to augment interleukin-3 dependent proliferation in a fastidious immortal myeloid cell line.

    Science.gov (United States)

    Boswell, H S; Harrington, M A; Burgess, G S; Nahreini, T L; Derigs, H G; Hodges, T D; English, D; Crean, C D; Gabig, T G

    1989-09-01

    The functional role of a mutant RAS gene in immortal myeloid cell proliferation was examined in a fastidious interleukin-3 (IL-3) dependent cell line (NFS/N1.H7) formed by forced proliferation in IL-3 of marrow cells of the NFS/N mouse. The NFS/N1.H7 cell line was strictly dependent upon IL-3 for growth, and the cell line could be activated by phorbol esters (PMA) to augment IL-3 dependent proliferation, but when pKC was downregulated, diminished IL-3 proliferative response resulted. Transfection (electroporation) of the T24 RAS-containing vector pAL8 to NFS/N1.H7 led to clones (H7 NeoRas.F3, H7 NeoRas.E2) that had incorporated the entire 6.6 Kb human mutant H-RAS genome. The mutant RAS-containing clones demonstrated greater proliferation than parent cells or cells containing a control (neo-resistance) vector over a range of suboptimal IL-3 does and in optimal IL-3 concentrations had a faster doubling rate than parent cells. The clone H7 NeoRas.F3 was studied biochemically, and found to constitutively form 3-fold more 3H-diacylglycerol than the parent cell line upon exposure to 3H-glycerol. PMA could partially repair the proliferative defect of NFS/N1.H7 compared to the RAS-expressor. These studies affirm a secondary, accelerating role for a mutant RAS gene product acting through pKC to promote clonal expansion of immortal myeloid cells stimulated by IL-3.

  7. Multiple helminth infection of the skin causes lymphocyte hypo-responsiveness mediated by Th2 conditioning of dermal myeloid cells.

    Directory of Open Access Journals (Sweden)

    Peter C Cook

    2011-03-01

    Full Text Available Infection of the mammalian host by schistosome larvae occurs via the skin, although nothing is known about the development of immune responses to multiple exposures of schistosome larvae, and/or their excretory/secretory (E/S products. Here, we show that multiple (4x exposures, prior to the onset of egg laying by adult worms, modulate the skin immune response and induce CD4(+ cell hypo-responsiveness in the draining lymph node, and even modulate the formation of hepatic egg-induced granulomas. Compared to mice exposed to a single infection (1x, dermal cells from multiply infected mice (4x, were less able to support lymph node cell proliferation. Analysis of dermal cells showed that the most abundant in 4x mice were eosinophils (F4/80(+MHC-II(-, but they did not impact the ability of antigen presenting cells (APC to support lymphocyte proliferation to parasite antigen in vitro. However, two other cell populations from the dermal site of infection appear to have a critical role. The first comprises arginase-1(+, Ym-1(+ alternatively activated macrophage-like cells, and the second are functionally compromised MHC-II(hi cells. Through the administration of exogenous IL-12 to multiply infected mice, we show that these suppressive myeloid cell phenotypes form as a consequence of events in the skin, most notably an enrichment of IL-4 and IL-13, likely resulting from an influx of RELMα-expressing eosinophils. We further illustrate that the development of these suppressive dermal cells is dependent upon IL-4Rα signalling. The development of immune hypo-responsiveness to schistosome larvae and their effect on the subsequent response to the immunopathogenic egg is important in appreciating how immune responses to helminth infections are modulated by repeated exposure to the infective early stages of development.

  8. Immunotherapy against Metastatic Melanoma with Human iPS Cell-Derived Myeloid Cell Lines Producing Type I Interferons.

    Science.gov (United States)

    Miyashita, Azusa; Fukushima, Satoshi; Nakahara, Satoshi; Kubo, Yosuke; Tokuzumi, Aki; Yamashita, Junji; Aoi, Jun; Haruta, Miwa; Senju, Satoru; Nishimura, Yasuharu; Jinnin, Masatoshi; Ihn, Hironobu

    2016-03-01

    In recent years, immunotherapy for advanced melanoma has been gaining increased attention. The efficacy of anti-cytotoxic T-lymphocyte antigen 4 antibodies, anti-programmed cell death 1 antibodies, and the BRAF(V600E) kinase inhibitor has been proven in metastatic melanoma. At the same time, adoptive cell transfer has significant effects against metastatic melanoma; however, it is difficult to apply on a broad scale because of the problems related to cell preparation. To overcome these problems, we developed immune cell therapy using induced pluripotent stem (iPS) cells. The benefit of our method is that a large number of cells can be readily obtained. We focused on macrophages for immune cell therapy because macrophage infiltration is frequently observed in solid cancers. In this study, the efficacy of human iPS cell-derived myeloid cell lines (iPS-ML) genetically modified to express type I IFNs against human melanoma cells was examined. The morphology, phagocytic ability, and surface markers of iPS-ML were similar to those of macrophages. The iPS-ML that express type I IFNs (iPS-ML-IFN) showed significant effects in inhibiting the growth of disseminated human melanoma cells in SCID mice. The infiltration of iPS-ML into the tumor nests was confirmed immunohistologically. The iPS-ML-IFNs increased the expression of CD169, a marker of M1 macrophages that can activate antitumor immunity. The iPS-ML-IFNs could infiltrate into tumor tissue and exert anticancer effects in the local tumor tissue. In conclusion, this method will provide a new therapeutic modality for metastatic melanoma.

  9. Specific Inhibition of the VEGFR-3 Tyrosine Kinase by SAR131675 Reduces Peripheral and Tumor Associated Immunosuppressive Myeloid Cells

    Energy Technology Data Exchange (ETDEWEB)

    Espagnolle, Nicolas [UMR5273 INSERM U1031/CNRS/EFS StromaLab, Toulouse 31432 (France); Barron, Pauline; Mandron, Marie; Blanc, Isabelle; Bonnin, Jacques [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France); Agnel, Magali; Kerbelec, Erwan [Molecular Biology Unit, Biologics Department, Sanofi, Vitry-sur-Seine 94400 (France); Herault, Jean Pascal; Savi, Pierre; Bono, Françoise; Alam, Antoine, E-mail: antoine.alam@sanofi.com [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France)

    2014-02-28

    Myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) represent prominent components in cancer progression. We previously showed that inhibition of the VEGFR-3 pathway by SAR131675 leads to reduction of TAM infiltration and tumor growth. Here, we found that treatment with SAR131675 prevents the accumulation of immunosuppressive blood and splenic MDSCs which express VEGFR-3, in 4T1 tumor bearing mice. Moreover we showed that soluble factors secreted by tumor cells promote MDSCs proliferation and differentiation into M2 polarized F4/80+ macrophages. In addition, cell sorting and transcriptomic analysis of tumor infiltrating myeloid cells revealed the presence of a heterogeneous population that could be divided into 3 subpopulations: (i) immature cells with a MDSC phenotype (GR1+/CD11b+/F4/80{sup −}); (ii) “immuno-incompetent” macrophages (F4/80{sup high}/CD86{sup neg}/MHCII{sup Low}) strongly expressing M2 markers such as Legumain, CD206 and Mgl1/2 and (iii) “immuno-competent”-M1 like macrophages (F4/80{sup Low}/CD86{sup +}/MHCII{sup High}). SAR131675 treatment reduced MDSCs in lymphoid organs as well as F4/80{sup High} populations in tumors. Interestingly, in the tumor SAR131675 was able to increase the immunocompetent M1 like population (F4/80{sup low}). Altogether these results demonstrate that the specific VEGFR-3 inhibitor SAR131675 exerts its anti tumoral activity by acting on different players that orchestrate immunosuppression and cancer progression in a tumoral context: MDSCs in peripheral lymphoid organs and TAMs infiltrating the tumor.

  10. EVI1 inhibits apoptosis induced by antileukemic drugs via upregulation of CDKN1A/p21/WAF in human myeloid cells.

    Directory of Open Access Journals (Sweden)

    Anna Rommer

    Full Text Available Overexpression of ecotropic viral integration site 1 (EVI1 is associated with aggressive disease in acute myeloid leukemia (AML. Despite of its clinical importance, little is known about the mechanism through which EVI1 confers resistance to antileukemic drugs. Here, we show that a human myeloid cell line constitutively overexpressing EVI1 after infection with a retroviral vector (U937_EVI1 was partially resistant to etoposide and daunorubicin as compared to empty vector infected control cells (U937_vec. Similarly, inducible expression of EVI1 in HL-60 cells decreased their sensitivity to daunorubicin. Gene expression microarray analyses of U937_EVI1 and U937_vec cells cultured in the absence or presence of etoposide showed that 77 and 419 genes were regulated by EVI1 and etoposide, respectively. Notably, mRNA levels of 26 of these genes were altered by both stimuli, indicating that EVI1 regulated genes were strongly enriched among etoposide regulated genes and vice versa. One of the genes that were induced by both EVI1 and etoposide was CDKN1A/p21/WAF, which in addition to its function as a cell cycle regulator plays an important role in conferring chemotherapy resistance in various tumor types. Indeed, overexpression of CDKN1A in U937 cells mimicked the phenotype of EVI1 overexpression, similarly conferring partial resistance to antileukemic drugs.

  11. Deletion of Wntless in myeloid cells exacerbates liver fibrosis and the ductular reaction in chronic liver injury.

    Science.gov (United States)

    Irvine, Katharine M; Clouston, Andrew D; Gadd, Victoria L; Miller, Gregory C; Wong, Weng-Yew; Melino, Michelle; Maradana, Muralidhara Rao; MacDonald, Kelli; Lang, Richard A; Sweet, Matthew J; Blumenthal, Antje; Powell, Elizabeth E

    2015-01-01

    Macrophages play critical roles in liver regeneration, fibrosis development and resolution. They are among the first responders to liver injury and are implicated in orchestrating the fibrogenic response via multiple mechanisms. Macrophages are also intimately associated with the activated hepatic progenitor cell (HPC) niche or ductular reaction that develops in parallel with fibrosis. Among the many macrophage-derived mediators implicated in liver disease progression, a key role for macrophage-derived Wnt proteins in driving pro-regenerative HPC activation towards a hepatocellular fate has been suggested. Wnt proteins, in general, however, have been associated with both pro- and anti-fibrogenic activities in the liver and other organs. We investigated the role of macrophage-derived Wnt proteins in fibrogenesis and HPC activation in murine models of chronic liver disease by conditionally deleting Wntless expression, which encodes a chaperone essential for Wnt protein secretion, in LysM-Cre-expressing myeloid cells (LysM-Wls mice). Fibrosis and HPC activation were exacerbated in LysM-Wls mice compared to littermate controls, in the absence of an apparent increase in myofibroblast activation or interstitial collagen mRNA expression, in both the TAA and CDE models of chronic liver disease. Increased Epcam mRNA levels paralleled the increased HPC activation and more mature ductular reactions, in LysM-Wls mice. Increased Epcam expression in LysM-Wls HPC was also observed, consistent with a more cholangiocytic phenotype. No differences in the mRNA expression levels of key pro-inflammatory and pro-fibrotic cytokines or the macrophage-derived HPC mitogen, Tweak, were observed. LysM-Wls mice exhibited increased expression of Timp1, encoding the key Mmp inhibitor Timp1 that blocks interstitial collagen degradation, and, in the TAA model, reduced expression of the anti-fibrotic matrix metalloproteinases, Mmp12 and Mmp13, suggesting a role for macrophage-derived Wnt proteins

  12. Proteinase activity regulation by glycosaminoglycans

    Directory of Open Access Journals (Sweden)

    Tersariol I.L.S.

    2002-01-01

    Full Text Available There are few reports concerning the biological role and the mechanisms of interaction between proteinases and carbohydrates other than those involved in clotting. It has been shown that the interplay of enzymes and glycosaminoglycans is able to modulate the activity of different proteases and also to affect their structures. From the large number of proteases belonging to the well-known protease families and also the variety of carbohydrates described as widely distributed, only few events have been analyzed more deeply. The term "family" is used to describe a group of proteases in which every member shows an evolutionary relationship to at least one other protease. This relationship may be evident throughout the entire sequence, or at least in that part of the sequence responsible for catalytic activity. The majority of proteases belong to the serine, cysteine, aspartic or metalloprotease families. By considering the existing limited proteolysis process, in addition to the initial idea that the proteinases participate only in digestive processes, it is possible to conclude that the function of the enzymes is strictly limited to the cleavage of intended substrates since the destruction of functional proteins would result in normal tissue damage. In addition, the location as well as the eventual regulation of protease activity promoted by glycosaminoglycans can play an essential role in the development of several physiopathological conditions.

  13. Downregulation of microRNA-107 in intestinal CD11c(+) myeloid cells in response to microbiota and proinflammatory cytokines increases IL-23p19 expression.

    Science.gov (United States)

    Xue, Xiaochang; Cao, Anthony T; Cao, Xiaocang; Yao, Suxia; Carlsen, Eric D; Soong, Lynn; Liu, Chang-Gong; Liu, Xiuping; Liu, Zhanju; Duck, L Wayne; Elson, Charles O; Cong, Yingzi

    2014-03-01

    Commensal flora plays an important role in the development of the mucosal immune system and in maintaining intestinal homeostasis. However, the mechanisms involved in regulation of host-microbiota interaction are still not completely understood. In this study, we examined how microbiota and intestinal inflammatory conditions regulate host microRNA expression and observed lower microRNA-107 (miR-107) expression in the inflamed intestines of colitic mice, compared with that in normal control mice. miR-107 was predominantly reduced in epithelial cells and CD11c(+) myeloid cells including dendritic cells and macrophages in the inflamed intestines. We demonstrate that IL-6, IFN-γ, and TNF-α downregulated, whereas TGF-β promoted, miR-107 expression. In addition, miR-107 expression was higher in the intestines of germ-free mice than in mice housed under specific pathogen-free conditions, and the presence of microbiota downregulated miR-107 expression in DCs and macrophages in a MyD88- and NF-κB-dependent manner. We determined that the ectopic expression of miR-107 specifically repressed the expression of IL-23p19, a key molecule in innate immune responses to commensal bacteria. We concluded that regulation of miR-107 by intestinal microbiota and proinflammatory cytokine serve as an important pathway for maintaining intestinal homeostasis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. TLR polymorphisms in FMF: association of TLR-2 (Arg753Gln) and TLR-4 (Asp299Gly, Thre399Ile) polymorphisms and myeloid cell TLR-2 and TLR-4 expression with the development of secondary amyloidosis in FMF.

    Science.gov (United States)

    Soylu, Alper; Ateş, Halil; Cingöz, Sultan; Türkmen, Mehmet; Demir, Belde Kasap; Tunca, Mehmet; Sakızlı, Meral; Cirit, Mustafa; Ersoy, Rıfkı; Ulgenalp, Ayfer; Kavukçu, Salih

    2011-10-01

    Amyloidosis is the major complication of familial Mediterranean fever (FMF). Toll-like receptors (TLR) are involved in the activation of an innate immune system TLR-2 and TLR-4 recognize lipoteichoic acid and lipopolysaccharides (LPS), respectively. While TLR-2 Arg753Gln polymorphism upregulates, TLR-4 Asp299Gly and Thre399Ile polymorphisms downregulate inflammation. We investigated the effect of these polymorphisms on the development of amyloidosis in FMF patients. We also investigated myeloid cell TLR-2 and TLR-4 expressions in these patients. We studied 26 FMF patients and 13 FMF patients with amyloidosis. TLR-2 Arg753Gln and TLR-4 Asp299Gly and Thr399Ile polymorphisms were analyzed with the polymerase chain reaction-restriction fragment length polymorphism method. Myeloid cell baseline TLR-2 and TLR-4 and LPS-induced TLR-4 expressions were evaluated. The TLR-2 and TLR-4 polymorphism rate was compared with the results of 100 healthy subjects in our previous study. In addition, 13 healthy controls were enrolled for leukocyte TLR-2 and TLR-4 expressions. Serum amyloid A (SAA) levels were measured in these 13 control cases and in FMF patients during attack-free periods. The frequency of TLR-2 Arg753Gln, TLR-4 Asp299Gly, and Thr399Ile polymorphisms in healthy controls in our previous study were 1%, 3%, and 2%, respectively. The frequency of these polymorphisms were not different in FMF patients (with or without amyloidosis) compared to the control group. Likewise, myeloid cell TLR-2 and TLR-4 expressions were not different among the controls and FMF patients. However, LPS-induced TLR-4 expression in granulocytes was more prominent in FMF patients. There was no correlation between TLR-2 and TLR-4 expressions and SAA levels. Neither myeloid cell TLR-2 and TLR-4 expressions nor TLR-2 Arg753Gln, TLR-4 Asp299Gly, and Thr399Ile polymorphisms seem to affect the development of secondary amyloidosis in FMF patients in our study population.

  15. Over-Expression of Catalase in Myeloid Cells Confers Acute Protection Following Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    E. Bernadette Cabigas

    2014-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in the United States and new treatment options are greatly needed. Oxidative stress is increased following myocardial infarction and levels of antioxidants decrease, causing imbalance that leads to dysfunction. Therapy involving catalase, the endogenous scavenger of hydrogen peroxide (H2O2, has been met with mixed results. When over-expressed in cardiomyocytes from birth, catalase improves function following injury. When expressed in the same cells in an inducible manner, catalase showed a time-dependent response with no acute benefit, but a chronic benefit due to altered remodeling. In myeloid cells, catalase over-expression reduced angiogenesis during hindlimb ischemia and prevented monocyte migration. In the present study, due to the large inflammatory response following infarction, we examined myeloid-specific catalase over-expression on post-infarct healing. We found a significant increase in catalase levels following infarction that led to a decrease in H2O2 levels, leading to improved acute function. This increase in function could be attributed to reduced infarct size and improved angiogenesis. Despite these initial improvements, there was no improvement in chronic function, likely due to increased fibrosis. These data combined with what has been previously shown underscore the need for temporal, cell-specific catalase delivery as a potential therapeutic option.

  16. FLT3-regulated antigens as targets for leukemia-reactive cytotoxic T lymphocytes

    OpenAIRE

    Brackertz, B; Conrad, H.; Daniel, J.; Kast, B; Krönig, H; Busch, D.H.; Adamski, J.; C Peschel; Bernhard, H

    2011-01-01

    The FMS-like tyrosine kinase 3 (FLT3) is highly expressed in acute myeloid leukemia (AML). Internal tandem duplications (ITD) of the juxtamembrane domain lead to the constitutive activation of the FLT3 kinase inducing the activation of multiple genes, which may result in the expression of leukemia-associated antigens (LAAs). We analyzed the regulation of LAA in FLT3-wild-type (WT)- and FLT3-ITD+ myeloid cells to identify potential targets for antigen-specific immunotherapy for AML patients. A...

  17. Clinical Association of a Soluble Triggering Receptor Expressed on Myeloid Cells-1 (sTREM-1) in Patients with Systemic Lupus Erythematosus.

    Science.gov (United States)

    Bassyouni, Iman H; Fawzi, Samar; Gheita, Tamer A; Bassyouni, Rasha H; Nasr, Aml S; El Bakry, Samah A; Afifi, Naglaa

    2017-01-01

    A triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of the immunoglobulin superfamily with an established role in innate and adaptive immune response. We aimed to determine the plasma concentrations and clinical association of sTREM-1 in Systemic Lupus Erythematosus (SLE) patients. Plasma from 79 SLE patients and 35 normal healthy subjects were assayed for sTREM-1 and IL-6 levels using Enzyme Linked Immunosorbant Assay (ELISA). The clinical disease characteristics and serological data were prospectively assessed. Disease activity was scored using the SLE disease activity index. We detected significantly higher levels of sTREM-1 in plasma of SLE patients than the healthy control group. We also detected high sTREM-1 levels in subgroups of patients with neuropsychiatric manifestations (NPLE) and patients with the total high disease activity and NPLE activity. In addition, sTREM-l levels were significantly correlated with parameters of disease activity, i.e. SLEDAI score, IL-6, hypoalbuminemia. On the other hand, we did not find significant differences in sTREM-1 levels in relation to age, disease duration, medications, ESR, other organ system involvement, or the presence of anti-dsDNA. Our preliminary data indicated that sTREM-1 levels may be an additional useful marker of disease activity in SLE. It also highlights its importance in patients with NPLE. An additional prospective longitudinal study should be carried out to support these findings.

  18. Soluble triggering receptor expressed on myeloid cells-1 for diagnosing empyema.

    Science.gov (United States)

    Bishara, Jihad; Goldberg, Elad; Ashkenazi, Shai; Yuhas, Yael; Samra, Zmira; Saute, Milton; Shaked, Hila

    2009-01-01

    Studies have shown that soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) is upregulated by microbial products in the bronchoalveolar lavage fluid, and cerebrospinal fluid of patients with pneumonia and bacterial meningitis, respectively. Our goal was to evaluate whether sTREM-1 in pleural fluid can distinguish pleural empyema from postthoracotomy-related pleural effusion and effusions of other etiologies. Patients who presented with pleural effusion were identified through laboratory records. In addition to routine biochemical markers, differential white blood cells, cytology, Gram stain, and pleural fluid culture, pleural fluid sTREM-1 was measured by enzyme-linked immunosorbent assay using a commercial kit (R&D Systems, Minneapolis, MN). Eighty-nine patients were included in the study: 17 with empyema, 7 simple parapneumonic effusion, 18 transudate, 12 postthoracotomy pleural effusion, 22 malignancy, 1 connective tissue disease, and 12 with undetermined effusion. Mean levels of sTREM-1 were significantly higher in empyema than in postthoracotomy pleural effusion (687 +/- 479 pg/mL vs 34 +/- 81 pg/mL, p < 0.0001, respectively) and in effusions of other etiologies (15 +/- 54 pg/mL, p < 0.0001). A cutoff value of 114 pg/mL for pleural sTREM-1 achieved a sensitivity of 94% and a specificity of 93% in differentiating empyema from pleural effusions of other etiologies. The area under the receiver operating characteristic curve for pleural effusion sTREM-1 as a predictor for empyema was 0.966. Our findings suggest that sTREM-1 in the pleural fluid can potentially assist clinicians in the differentiation of bacterial from nonbacterial pleural effusion, particularly in postthoracotomy pleural effusion.

  19. Expression of soluble triggering receptor expression on myeloid cells-1 in pleural effusion

    Institute of Scientific and Technical Information of China (English)

    HUANG Lu-ying; SHI Huan-zhong; LIANG Qiu-li; WU Yan-bin; QIN Xue-jun; CHEN Yi-qiang

    2008-01-01

    Background Tdggedng receptors expressed on myeloid cells(TREM)proteins are a family of cell surface receptors expressed broadly by cells of the myeloid lineage.The aim of this study was to investigate the clinical significance of soluble TREM-1(sTREM-1)in pleural effusions,and to determine the effects of pneumonia on pleural sTREM-1 concentrations.Methods PleuraI fluid was collected from 109 patients who presented to the respiratory institute (35 with malignant pleural effusion,31 with tuberculous pleural effusion,21 with bacteriaI pleural effusion,and 22 with transudate).The concentrations of sTREM-1,tumor necrosis factor-o(TNF-α)and interleukin-1β(IL-1β)were determined jn effusion and serum samples by enzyme Iinked immunosorbent assay(ELISA).Results The concentrations of sTREM-1 in bacterial pleural effusion were significantly higher than those in malignant.tuberculous,and transudative groups(all P<0.001).An sTREM-1 cutoff value of 768.1 ng/L had a sensitivity of 86%and a specificity of 93%.Pleural sTREM-1 Ievels were positively correlated with Ievels of TNF-α and IL-1β.Patients with complicating bacterial pneumonia did not have elevated concentration of STREM-1 jn pleural effusion when compared with patients without pneumonia.Conclusions Determination of pleural sTREM-1 may improve the ability of clinicians to differentiate pleural effusion patients of bacterial origin from those with other etiologies.The occurrence of bacterial pneumonia did not affect pleural sTREM-1 concentrations.

  20. Triggering receptor expressed on myeloid cells-1 and 2 in bronchoalveolar lavage fluid in pulmonary sarcoidosis.

    Science.gov (United States)

    Suchankova, Magda; Bucova, Maria; Tibenska, Elena; Tedlova, Eva; Demian, Juraj; Majer, Ivan; Novosadova, Helena; Tedla, Miroslav; Paulovicova, Ema; Kantarova, Daniela

    2013-04-01

    Pulmonary sarcoidosis (PS) is characterized by the formation of granulomas in the lungs and has been associated with infection by microorganisms. Triggering receptor expressed on the surface of myeloid cells (TREM)-1 is overexpressed in response to infection while TREM-2 is involved in granuloma formation. We hypothesized that these receptors are overexpressed in PS and might be useful for diagnostic testing. Cell surface TREM-1 and TREM-2 expression in cells obtained at bronchoalveolar lavage (BAL) was measured in individuals with sarcoidosis (n = 26) and compared with that seen in individuals with other interstitial lung diseases (ILD) (n = 27). TREM-1 and TREM-2 expression was significantly increased in sarcoidosis compared with other ILD: total number of TREM-1, P = 0.0039 (23.81 vs 13.50 cells/μl), TREM-2, P < 0.0001 (32.81 vs 7.76 cells/μl); percentage of TREM-1: P = 0.0002 (41.30% vs 15.70%), TREM-2: P < 0.0001 (34% vs 9.60%); and mean fluorescence of TREM-1: P = 0.0005 (5.43 vs 1.96), TREM-2: P = 0.0011 (6.85 vs 2.77). Increase in both of these receptors seems to be typical for PS. In discriminating sarcoidosis from other ILD, the specificity (96%) and sensitivity (72%) of the combination of TREM-1 and TREM-2 was high. Increased TREM-1 and TREM-2 cell surface expression is observed in sarcoidosis. Evaluation of BAL cell expression of both of these receptors may serve as a diagnostic marker for sarcoidosis. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  1. Gr-1⁺CD11b⁺ immature myeloid cells (IMC) promote resistance of pro-inflammatory T cells to suppression by regulatory T cells in atherosclerotic Apo E- deficient mice.

    Science.gov (United States)

    Chen, Yulin; Jian, Ying; Liu, Minjie; Zhong, Liang; Zhang, Fang; Yang, Weifeng; Xu, Zhao; Chen, Guofan; Liu, Yuhua

    2014-01-01

    Accumulating evidence indicates that both defects in Treg numbers and/or function as well as resistance of effector T cells to suppression may contribute to the development of human chronic inflammatory diseases. However, which mechanism involved in the progression of atherosclerosis remains unclear. In this study, we evaluated the production and function of CD4⁺ inflammatory and regulatory T cells in atherosclerosis-prone mice. We found that the hyperactivity and unresponsiveness to Treg-mediated suppression of inflammatory CD4⁺ T cells occurred in the progression of atherosclerosis, though Treg cells were present in very large numbers and fully functional. We further found that Gr-1⁺CD11b⁺ immature myeloid cells were significantly accumulated in atherosclerotic Apo E⁻/⁻ mice, and they promoted resistance of inflammatory CD4⁺ T cells to Treg-mediated suppression in vitro and in vivo. we further confirmed that Gr-1⁺CD11b⁺ immature myeloid cells produced high level of interleukin 6 which was at least partially responsible for inducing unresponsiveness of inflammatory CD4⁺ T cells to suppression via activation of Jak/Stat signaling pathway. Taken together, these findings might provide new insights to explore potential targets for immune therapeutic intervention in atherosclerosis.

  2. A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection

    Directory of Open Access Journals (Sweden)

    Mukta Dutta

    2017-01-01

    Full Text Available The unprecedented 2013–2016 outbreak of Ebola virus (EBOV resulted in over 11,300 human deaths. Host resistance to RNA viruses requires RIG-I-like receptor (RLR signaling through the adaptor protein, mitochondrial antiviral signaling protein (MAVS, but the role of RLR-MAVS in orchestrating anti-EBOV responses in vivo is not known. Here we apply a systems approach to MAVS−/− mice infected with either wild-type or mouse-adapted EBOV. MAVS controlled EBOV replication through the expression of IFNα, regulation of inflammatory responses in the spleen, and prevention of cell death in the liver, with macrophages implicated as a major cell type influencing host resistance. A dominant role for RLR signaling in macrophages was confirmed following conditional MAVS deletion in LysM+ myeloid cells. These findings reveal tissue-specific MAVS-dependent transcriptional pathways associated with resistance to EBOV, and they demonstrate that EBOV adaptation to cause disease in mice involves changes in two distinct events, RLR-MAVS antagonism and suppression of RLR-independent IFN-I responses.

  3. Cardiac-Restricted IGF-1Ea Overexpression Reduces the Early Accumulation of Inflammatory Myeloid Cells and Mediates Expression of Extracellular Matrix Remodelling Genes after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Enrique Gallego-Colon

    2015-01-01

    Full Text Available Strategies to limit damage and improve repair after myocardial infarct remain a major therapeutic goal in cardiology. Our previous studies have shown that constitutive expression of a locally acting insulin-like growth factor-1 Ea (IGF-1Ea propeptide promotes functional restoration after cardiac injury associated with decreased scar formation. In the current study, we investigated the underlying molecular and cellular mechanisms behind the enhanced functional recovery. We observed improved cardiac function in mice overexpressing cardiac-specific IGF-1Ea as early as day 7 after myocardial infarction. Analysis of gene transcription revealed that supplemental IGF-1Ea regulated expression of key metalloproteinases (MMP-2 and MMP-9, their inhibitors (TIMP-1 and TIMP-2, and collagen types (Col 1α1 and Col 1α3 in the first week after injury. Infiltration of inflammatory cells, which direct the remodelling process, was also altered; in particular there was a notable reduction in inflammatory Ly6C+ monocytes at day 3 and an increase in anti-inflammatory CD206+ macrophages at day 7. Taken together, these results indicate that the IGF-1Ea transgene shifts the balance of innate immune cell populations early after infarction, favouring a reduction in inflammatory myeloid cells. This correlates with reduced extracellular matrix remodelling and changes in collagen composition that may confer enhanced scar elasticity and improved cardiac function.

  4. Hepatic ischemia and reperfusion injury in the absence of myeloid cell-derived COX-2 in mice.

    Directory of Open Access Journals (Sweden)

    Sergio Duarte

    Full Text Available Cyclooxygenase-2 (COX-2 is a mediator of hepatic ischemia and reperfusion injury (IRI. While both global COX-2 deletion and pharmacologic COX-2 inhibition ameliorate liver IRI, the clinical use of COX-2 inhibitors has been linked to increased risks of heart attack and stroke. Therefore, a better understanding of the role of COX-2 in different cell types may lead to improved therapeutic strategies for hepatic IRI. Macrophages of myeloid origin are currently considered to be important sources of the COX-2 in damaged livers. Here, we used a Cox-2flox conditional knockout mouse (COX-2-M/-M to examine the function of COX-2 expression in myeloid cells during liver IRI. COX-2-M/-M mice and their WT control littermates were subjected to partial liver ischemia followed by reperfusion. COX-2-M/-M macrophages did not express COX-2 upon lipopolysaccharide stimulation and COX-2-M/-M livers showed reduced levels of COX-2 protein post-IRI. Nevertheless, selective deletion of myeloid cell-derived COX-2 failed to ameliorate liver IRI; serum transaminases and histology were comparable in both COX-2-M/-M and WT mice. COX-2-M/-M livers, like WT livers, developed extensive necrosis, vascular congestion, leukocyte infiltration and matrix metalloproteinase-9 (MMP-9 expression post-reperfusion. In addition, myeloid COX-2 deletion led to a transient increase in IL-6 levels after hepatic reperfusion, when compared to controls. Administration of celecoxib, a selective COX-2 inhibitor, resulted in significantly improved liver function and histology in both COX-2-M/-M and WT mice post-reperfusion, providing evidence that COX-2-mediated liver IRI is caused by COX-2 derived from a source(s other than myeloid cells. In conclusion, these results support the view that myeloid COX-2, including myeloid-macrophage COX-2, is not responsible for the hepatic IRI phenotype.

  5. Mesenchymal Stem Cells (MSC Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC in Chronic Myeloid Leukemia Patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available It is well known that mesenchymal stem cells (MSC have a role in promotion of tumor growth, survival and drug-resistance in chronic myeloid leukemia (CML. Recent reports indicated that a subpopulation of myeloid cells, defined as granulocyte-like myeloid-derived suppressor cells (G-MDSC is increased in these patients. So far, the role of MSC in MDSC expansion and activation into the BM microenvironment remains unexplored. To address this question, here we use a specific experimental model in vitro, co-culturing MSC with peripheral blood mononucleated cells (PBMC from normal individuals, in order to generate MSC-educated G-MDSC. Although MSC of healthy donors (HD and CML patients were able to generate the same amount of MDSC, only CML-MSC-educated G-MDSC exhibited suppressive ability on autologous T lymphocytes. In addition, compared with HD-MSC, CML-MSC over-expressed some immunomodulatory factors including TGFβ, IL6 and IL10, that could be involved in MDSC activation. CML-MSC-educated G-MDSC expressed higher levels of ARG1, TNFα, IL1β, COX2 and IL6 than G-MDSC isolated from co-culture with HD-MSC. Our data provide evidence that CML-MSC may play a critical role in tumor microenvironment by orchestrating G-MDSC activation and regulating T lymphocytes-mediated leukemia surveillance, thus contributing to CML immune escape.

  6. GITR Activation Positively Regulates Immune Responses against Toxoplasma gondii

    Science.gov (United States)

    Costa, Frederico R. C.; Mota, Caroline M.; Santiago, Fernanda M.; Silva, Murilo V.; Ferreira, Marcela D.; Fonseca, Denise M.; Silva, João S.; Mineo, José R.; Mineo, Tiago W. P.

    2016-01-01

    Toxoplasma gondii is a widespread parasite responsible for causing clinical diseases especially in pregnant and immunosuppressed individuals. Glucocorticoid-induced TNF receptor (GITR), which is also known as TNFRS18 and belongs to the TNF receptor superfamily, is found to be expressed in various cell types of the immune system and provides an important costimulatory signal for T cells and myeloid cells. However, the precise role of this receptor in the context of T. gondii infection remains elusive. Therefore, the current study investigated the role of GITR activation in the immunoregulation mechanisms induced during the experimental infection of mice with T. gondii. Our data show that T. gondii infection slightly upregulates GITR expression in Treg cells and B cells, but the most robust increment in expression was observed in macrophages and dendritic cells. Interestingly, mice infected and treated with an agonistic antibody anti-GITR (DTA-1) presented a robust increase in pro-inflammatory cytokine production at preferential sites of parasite replication, which was associated with the decrease in latent brain parasitism of mice under treatment with DTA-1. Several in vivo and in vitro analysis were performed to identify the cellular mechanisms involved in GITR activation upon infection, however no clear alterations were detected in the phenotype/function of macrophages, Tregs and B cells under treatment with DTA-1. Therefore, GITR appears as a potential target for intervention during infection by the parasite Toxoplasma gondii, even though further studies are still necessary to better characterize the immune response triggered by GITR activation during T. gondii infection. PMID:27027302

  7. B Cell-Activating Factor Regulates Different Aspects of B Cell Functionality and Is Produced by a Subset of Splenic B Cells in Teleost Fish.

    Science.gov (United States)

    Tafalla, Carolina; González, Lucia; Castro, Rosario; Granja, Aitor G

    2017-01-01

    In mammals, B cell functionality is greatly influenced by cytokines released by innate cells, such as macrophages or dendritic cells, upon the early recognition of common pathogen patterns through invariant receptors. B cell-activating factor (BAFF) is one of these innate B cell-helper signals and plays a key role in the survival and differentiation of B cells. Although, evolutionarily, teleost fish constitute the first animal group in which adaptive immunity based on Ig receptors is present, fish still rely greatly on innate responses. In this context, we hypothesized that BAFF would play a key role in the control of B cell responses in fish. Supporting this, our results show that teleost BAFF recapitulates mammalian BAFF stimulating actions on B cells, upregulating the expression of membrane MHC II, improving the survival of fish naïve B cells and antibody-secreting cells, and increasing the secretion of IgM. Surprisingly, we also demonstrate that BAFF is not only produced in fish by myeloid cells but is also produced by a subset of splenic B cells. Thus, if this B cell-produced BAFF proves to be actively regulating this same B cell subset, our findings point to an ancient mechanism to control B cell differentiation and survival in lower vertebrates, which has been silenced in mammals in physiological conditions, but reemerges under pathological conditions, such as B cell lymphomas and autoimmune diseases.

  8. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity

    Science.gov (United States)

    Abooali, Maryam; Yasinska, Inna M.; Casely-Hayford, Maxwell A.; Berger, Steffen M.; Fasler-Kan, Elizaveta; Sumbayev, Vadim V.

    2015-01-01

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306

  9. Glycosylation regulates prestin cellular activity.

    Science.gov (United States)

    Rajagopalan, Lavanya; Organ-Darling, Louise E; Liu, Haiying; Davidson, Amy L; Raphael, Robert M; Brownell, William E; Pereira, Fred A

    2010-03-01

    Glycosylation is a common post-translational modification of proteins and is implicated in a variety of cellular functions including protein folding, degradation, sorting and trafficking, and membrane protein recycling. The membrane protein prestin is an essential component of the membrane-based motor driving electromotility changes (electromotility) in the outer hair cell (OHC), a central process in auditory transduction. Prestin was earlier identified to possess two N-glycosylation sites (N163, N166) that, when mutated, marginally affect prestin nonlinear capacitance (NLC) function in cultured cells. Here, we show that the double mutant prestin(NN163/166AA) is not glycosylated and shows the expected NLC properties in the untreated and cholesterol-depleted HEK 293 cell model. In addition, unlike WT prestin that readily forms oligomers, prestin(NN163/166AA) is enriched as monomers and more mobile in the plasma membrane, suggesting that oligomerization of prestin is dependent on glycosylation but is not essential for the generation of NLC in HEK 293 cells. However, in the presence of increased membrane cholesterol, unlike the hyperpolarizing shift in NLC seen with WT prestin, cells expressing prestin(NN163/166AA) exhibit a linear capacitance function. In an attempt to explain this finding, we discovered that both WT prestin and prestin(NN163/166AA) participate in cholesterol-dependent cellular trafficking. In contrast to WT prestin, prestin(NN163/166AA) shows a significant cholesterol-dependent decrease in cell-surface expression, which may explain the loss of NLC function. Based on our observations, we conclude that glycosylation regulates self-association and cellular trafficking of prestin(NN163/166AA). These observations are the first to implicate a regulatory role for cellular trafficking and sorting in prestin function. We speculate that the cholesterol regulation of prestin occurs through localization to and internalization from membrane microdomains by

  10. Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Wendy J van Zuylen

    Full Text Available BACKGROUND: The ten mouse and six human members of the Schlafen (Slfn gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. METHODOLOGY/PRINCIPAL FINDINGS: Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM by the Toll-like Receptor (TLR4 agonist lipopolysaccharide (LPS, the TLR3 agonist Poly(I∶C, and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1⁻/⁻ BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. CONCLUSIONS: Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the

  11. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology

    Science.gov (United States)

    Entwistle, Lewis J.; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R.; Ching-Cheng Huang, Stanley; Pearce, Edward J.; Pedro S. de Carvalho, Luiz; Ley, Steven C.

    2016-01-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8–/–mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8–/–M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  12. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology.

    Directory of Open Access Journals (Sweden)

    Yashaswini Kannan

    2016-08-01

    Full Text Available Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8-/-mice was observed in mice with myeloid cell-specific (LysM deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8-/-M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis.

  13. Regulation of p21ras activity

    DEFF Research Database (Denmark)

    Lowy, D R; Zhang, K; DeClue, J E

    1992-01-01

    The ras genes encode GTP/GDP-binding proteins that participate in mediating mitogenic signals from membrane tyrosine kinases to downstream targets. The activity of p21ras is determined by the concentration of GTP-p21ras, which is tightly regulated by a complex array of positive and negative control...... mechanisms. GAP and NF1 can negatively regulate p21ras activity by stimulating hydrolysis of GTP bound to p21ras. Other cellular factors can positively regulate p21ras by stimulating GDP/GTP exchange....

  14. [Molecular mechanisms regulating the activity of macrophages].

    Science.gov (United States)

    Onoprienko, L V

    2011-01-01

    This article reviews modern concepts of the most common types of macrophage activation: classical, alternative, and type II. Molecular mechanisms of induction and regulation of these three types of activation are discussed. Any population of macrophages was shown to change its properties depending on its microenvironment and concrete biological situation (the "functional plasticity of macrophages"). Many intermediate states of macrophages were described along with the most pronounced and well-known activation types (classical activation, alternative activation, and type II activation). These intermediate states are characterized by a variety of combinations of their biological properties, including elements of the three afore mentioned types of activation. Macrophage activity is regulated by a complex network of interrelated cascade mechanisms.

  15. Regulation of ROCK Activity in Cancer

    DEFF Research Database (Denmark)

    Morgan-Fisher, Marie; Wewer, Ulla M; Yoneda, Atsuko

    2013-01-01

    , these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer.......Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key...... regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active...

  16. Intestinal CX3C chemokine receptor 1(high) (CX3CR1(high)) myeloid cells prevent T-cell-dependent colitis.

    Science.gov (United States)

    Kayama, Hisako; Ueda, Yoshiyasu; Sawa, Yukihisa; Jeon, Seong Gyu; Ma, Ji Su; Okumura, Ryu; Kubo, Atsuko; Ishii, Masaru; Okazaki, Taku; Murakami, Masaaki; Yamamoto, Masahiro; Yagita, Hideo; Takeda, Kiyoshi

    2012-03-27

    Adequate activation of CD4(+) T lymphocytes is essential for host defense against invading pathogens; however, exaggerated activity of effector CD4(+) T cells induces tissue damage, leading to inflammatory disorders such as inflammatory bowel diseases. Several unique subsets of intestinal innate immune cells have been identified. However, the direct involvement of innate immune cell subsets in the suppression of T-cell-dependent intestinal inflammation is poorly understood. Here, we report that intestinal CX(3)C chemokine receptor 1(high) (CX(3)CR1(high)) CD11b(+) CD11c(+) cells are responsible for prevention of intestinal inflammation through inhibition of T-cell responses. These cells inhibit CD4(+) T-cell proliferation in a cell contact-dependent manner and prevent T-cell-dependent colitis. The suppressive activity is abrogated in the absence of the IL-10/Stat3 pathway. These cells inhibit T-cell proliferation by two steps. Initially, CX(3)CR1(high) CD11b(+) CD11c(+) cells preferentially interact with T cells through highly expressed intercellular adhesion molecule-1/vascular cell adhesion molecule-1; then, they fail to activate T cells because of defective expression of CD80/CD86. The IL-10/Stat3 pathway mediates the reduction of CD80/CD86 expression. Transfer of wild-type CX(3)CR1(high) CD11b(+) CD11c(+) cells prevents development of colitis in myeloid-specific Stat3-deficient mice. Thus, these cells are regulatory myeloid cells that are responsible for maintaining intestinal homeostasis.

  17. Intestinal CX3C chemokine receptor 1high (CX3CR1high) myeloid cells prevent T-cell-dependent colitis

    Science.gov (United States)

    Kayama, Hisako; Ueda, Yoshiyasu; Sawa, Yukihisa; Jeon, Seong Gyu; Ma, Ji Su; Okumura, Ryu; Kubo, Atsuko; Ishii, Masaru; Okazaki, Taku; Murakami, Masaaki; Yamamoto, Masahiro; Yagita, Hideo; Takeda, Kiyoshi

    2012-01-01

    Adequate activation of CD4+ T lymphocytes is essential for host defense against invading pathogens; however, exaggerated activity of effector CD4+ T cells induces tissue damage, leading to inflammatory disorders such as inflammatory bowel diseases. Several unique subsets of intestinal innate immune cells have been identified. However, the direct involvement of innate immune cell subsets in the suppression of T-cell-dependent intestinal inflammation is poorly understood. Here, we report that intestinal CX3C chemokine receptor 1high (CX3CR1high) CD11b+ CD11c+ cells are responsible for prevention of intestinal inflammation through inhibition of T-cell responses. These cells inhibit CD4+ T-cell proliferation in a cell contact-dependent manner and prevent T-cell-dependent colitis. The suppressive activity is abrogated in the absence of the IL-10/Stat3 pathway. These cells inhibit T-cell proliferation by two steps. Initially, CX3CR1high CD11b+ CD11c+ cells preferentially interact with T cells through highly expressed intercellular adhesion molecule-1/vascular cell adhesion molecule-1; then, they fail to activate T cells because of defective expression of CD80/CD86. The IL-10/Stat3 pathway mediates the reduction of CD80/CD86 expression. Transfer of wild-type CX3CR1high CD11b+ CD11c+ cells prevents development of colitis in myeloid-specific Stat3-deficient mice. Thus, these cells are regulatory myeloid cells that are responsible for maintaining intestinal homeostasis. PMID:22403066

  18. Conditional Knockout of Src Homology 2 Domain-containing Protein Tyrosine Phosphatase-2 in Myeloid Cells Attenuates Renal Fibrosis after Unilateral Ureter Obstruction

    Institute of Scientific and Technical Information of China (English)

    Jing-Fei Teng; Kai Wang; Yao Li; Fa-Jun Qu; Qing Yuan; Xin-Gang Cui; Quan-Xing Wang

    2015-01-01

    Background:Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) is a kind of intracellular protein tyrosine phosphatase.Studies have revealed its roles in various disease,however,whether SHP-2 involves in renal fibrosis remains unclear.The aim of this study was to explore the roles of myeloid cells SHP-2 in renal interstitial fibrosis.Methods:Myeloid cells SHP-2 gene was conditionally knocked-out (CKO) in mice using loxP-Cre system,and renal interstitial fibrosis was induced by unilateral ureter obstruction (UUO).The total collagen deposition in the renal interstitium was assessed using picrosirius red stain.F4/80 immunostaing was used to evaluate macrophage infiltration in renal tubular interstitium.Quantitative real-time polymerase chain reaction and enzyme linked immunosorbent assay were used to analyze the production of cytokines in the kidney.Transferase-mediated dUTP nick-end labeling stain was used to assess the apoptotic renal tubular epithelial cells.Results:Src homology 2 domain-containing protein tyrosine phosphatase-2 gene CKO in myeloid cells significantly reduced collagen deposition in the renal interstitium after UUO.Macrophage infiltration was evidently decreased in renal tubular interstitium of SHP-2 CKO mice.Meanwhile,the production of pro-inflammatory cytokines was significantly suppressed in SHP-2 CKO mice.However,no significant difference was observed in the number of apoptotic renal tubular epithelial cells between wild-type and SHP-2 CKO mice.Conclusions:Our observations suggested that SHP-2 in myeloid cells plays a pivotal role in the pathogenesis of renal fibrosis,and that silencing of SHP-2 gene in myeloid cells may protect renal from inflammatory damage and prevent renal fibrosis after renal injury.

  19. Plasticity of Myeloid Cells during Oral Barrier Wound Healing and the Development of Bisphosphonate-related Osteonecrosis of the Jaw.

    Science.gov (United States)

    Sun, Yujie; Kaur, Kawaljit; Kanayama, Keiichi; Morinaga, Kenzo; Park, Sil; Hokugo, Akishige; Kozlowska, Anna; McBride, William H; Li, Jun; Jewett, Anahid; Nishimura, Ichiro

    2016-09-23

    Injury to the barrier tissue initiates a rapid distribution of myeloid immune cells from bone marrow, which guide sound wound healing. Bisphosphonates, a widely used anti-bone resorptive drug with minimal systemic side effects, have been linked to an abnormal wound healing in the oral barrier tissue leading to, in some cases, osteonecrosis of the jaw (ONJ). Here we report that the development of ONJ may involve abnormal phenotypic plasticity of Ly6G+/Gr1+ myeloid cells in the oral barrier tissue undergoing tooth extraction wound healing. A bolus intravenous zoledronate (ZOL) injection to female C57Bl/6 mice followed by maxillary first molar extraction resulted in the development of ONJ-like lesion during the second week of wound healing. The multiplex assay of dissociated oral barrier cells exhibited the secretion of cytokines and chemokines, which was significantly modulated in ZOL mice. Tooth extraction-induced distribution of Ly6G+/Gr1+ cells in the oral barrier tissue increased in ZOL mice at week 2. ONJ-like lesion in ZOL mice contained Ly6G+/Gr1+ cells with abnormal size and morphology as well as different flow cytometric staining intensity. When anti-Ly6G (Gr1) antibody was intraperitoneally injected for 5 days during the second week of tooth extraction, CD11b+GR1(hi) cells in bone marrow and Ly6G+ cells in the oral barrier tissue were depleted, and the development of ONJ-like lesion was significantly attenuated. This study suggests that local modulation of myeloid cell plasticity in the oral barrier tissue may provide the basis for pathogenesis and thus therapeutic as well as preventive strategy of ONJ.

  20. Exogenous antigen targeted to FcgammaRI on myeloid cells is presented in association with MHC class I.

    Science.gov (United States)

    Wallace, P K; Tsang, K Y; Goldstein, J; Correale, P; Jarry, T M; Schlom, J; Guyre, P M; Ernstoff, M S; Fanger, M W

    2001-02-01

    Vaccine therapy is attractive for prostate cancer patients because the tumor is slow growing (allowing time to augment host responses) and occurs in an older population less likely to tolerate more toxic treatments. We have constructed an expression vector based on a monoclonal antibody (mAb) that targets the high affinity receptor for IgG (FcgammaRI, CD64) which is exclusively expressed on myeloid cells including dendritic cells (DC). The heavy chain of mAb H22 CH2 and CH3 domains were removed and replaced with the gene for prostate specific antigen (PSA). Using that vector, we have constructed and purified FPH22.PSA, a fusion protein that targets PSA to FcgammaRI on antigen presenting cells (APC). This fusion protein has an apparent molecular mass of 80-83 kDa, binds to FcgammaRI with high affinity and expresses PSA. We demonstrate that FPH22.PSA targeted PSA was internalized and processed by the human myeloid THP-1 cell line resulting in presentation of MHC class I-associated PSA peptides and lysis of THP-1 by PSA-specific human CTL. Moreover, pretreatment of THP-1 cells with antibodies to block either FcgammaRI or MHC class I, blocked lysis indicating that targeting to FcgammaRI results in presentation of exogenous antigen on MHC class I molecules. These data demonstrate that FPH22.PSA was processed in such a manner by the myeloid cell line to allow for presentation of immunodominant peptides in MHC class I molecules and suggests that uptake of antigen via FcgammaRI results in cross-priming.

  1. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species.

    Science.gov (United States)

    Kusmartsev, Sergei; Nefedova, Yulia; Yoder, Daniel; Gabrilovich, Dmitry I

    2004-01-15

    Tumor growth is associated with the accumulation of immature myeloid cells (ImC), which in mice are characterized by the expression of Gr-1 and CD11b markers. These cells suppress Ag-specific CD8+ T cells via direct cell-cell contact. However, the mechanism of immunosuppressive activity of tumor-derived ImC remains unclear. In this study we analyzed the function of ImC isolated from tumor-free control and tumor-bearing mice. Only ImC isolated from tumor-bearing mice, not those from their control counterparts, were able to inhibit the Ag-specific response of CD8+ T cells. ImC obtained from tumor-bearing mice had significantly higher levels of reactive oxygen species (ROS) than ImC isolated from tumor-free animals. Accumulation of H2O2, but not superoxide or NO, was a major contributor to this increased pool of ROS. It appears that arginase activity played an important role in H2O2 accumulation in these cells. Inhibition of ROS in ImC completely abrogated the inhibitory effect of these cells on T cells, indicating that ImC generated in tumor-bearing hosts suppress the CD8+ T cell response via production of ROS. Interaction of ImC with Ag-specific T cells in the presence of specific Ags resulted in a significant increase in ROS production compared with control Ags. That increase was independent of IFN-gamma production by T cells, but was mediated by integrins CD11b, CD18, and CD29. Blocking of these integrins with specific Abs abrogated ROS production and ImC-mediated suppression of CD8+ T cell responses. This study demonstrates a new mechanism of Ag-specific T cell inhibition mediated by ROS produced by ImCs in cancer.

  2. Molecular regulation of telomerase activity in aging

    Institute of Scientific and Technical Information of China (English)

    Craig Nicholls; He Li; Jian-Qiu Wang; Jun-Ping Liu

    2011-01-01

    The process of aging is mitigated by the maintenance and repair of chromosome ends (telomeres),resulting in extended lifespan.This review examines the molecular mechanisms underlying the actions and regulation of the enzyme telomerase reverse transcriptase (TERT),which functions as the primary mechanism of telomere maintenance and regulates cellular life expectancy.Underpinning increased cell proliferation,telomerase is also a key factor in facilitating cancer cell immortalization.The review focuses on aspects of hormonal regulations of telomerase,and the intraceilular pathways that converge to regulate telomerase activity with an emphasis on molecular interactions at protein and gene levels.In addition,the basic structure and function of two key telomerase enzyme components-the catalytic subunit TERT and the template RNA (TERC) are discussed briefly.

  3. Regulation of ROCK Activity in Cancer

    Science.gov (United States)

    Morgan-Fisher, Marie; Wewer, Ulla M.

    2013-01-01

    Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active conformation by the direct binding of guanosine triphosphate (GTP)–loaded Rho. In recent years, a number of ROCK isoform-specific binding partners have been found to modulate the kinase activity through direct interactions with the catalytic domain or via altered cellular localization of the kinases. Thus, these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer. PMID:23204112

  4. ZNF143 is an important regulator of the myeloid transcription factor C/EBPα.

    Science.gov (United States)

    Gonzalez, David; Luyten, Annouck; Bartholdy, Boris; Zhou, Qiling; Kardosova, Miroslava; Ebralidze, Alex; Swanson, Kenneth D; Radomska, Hanna; Zhang, Pu; Kobayashi, Susumu S; Welner, Robert S; Levantini, Elena; Steidl, Ulrich; Chong, Gilbert; Collombet, Samuel; Choi, Min Hee; Friedman, Alan D; Scott, Linda M; Alberich-Jorda, Meritxell; Tenen, Daniel G

    2017-09-12

    The transcription factor (TF) C/EBPα is essential for myeloid differentiation and is frequently dysregulated in acute myeloid leukemia (AML). While studied extensively, the precise regulation of its gene by upstream factors has remained largely elusive. Here, we investigated its transcriptional activation during myeloid differentiation. We identified an evolutionarily conserved octameric sequence, CCCAGCAG, approximately 100 bases upstream of the CEBPA transcription start site (TSS), and demonstrated through mutational analysis that this sequence is crucial for C/EBPα expression. This sequence is present in the genes encoding C/EBPα in humans, rodents, chicken and frog, and is also present in the promoters of other C/EBP family members. We identified that ZNF143, the human homolog of the Xenopus transcriptional activator STAF, specifically binds to this 8bp sequence to activate C/EBPα expression in myeloid cells through a mechanism that is distinct from that observed in liver cells and adipocytes. Altogether, our data suggests that ZNF143 plays an important role in the expression of C/EBPα in myeloid cells. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  5. Reciprocal Regulation between Enterovirus 71 and the NLRP3 Inflammasome

    Directory of Open Access Journals (Sweden)

    Hongbin Wang

    2015-07-01

    Full Text Available Enterovirus 71 (EV71 is the major etiological agent of hand, foot, and mouth disease (HFMD. Early studies showed that EV71-infected patients with severe complications exhibited elevated plasma levels of IL-1β, indicating that EV71 may activate inflammasomes. Our current study demonstrates that the NLRP3 inflammasome plays a protective role against EV71 infection of mice in vivo. EV71 replication in myeloid cells results in the activation of the NLRP3 inflammasome and secretion of IL-1β. Conversely, EV71 counteracts inflammasome activation through cleavage of NLRP3 by viral proteases 2A and 3C, which cleave NLRP3 protein at the G493-L494 or Q225-G226 junction, respectively. Moreover, EV71 3C interacts with NLRP3 and inhibits IL-1β secretion when expressed in mammalian cells. These results thus reveal a set of reciprocal regulations between enterovirus 71 and the NLRP3 inflammasome.

  6. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Di Paolo, Julie A; Huang, Tao; Balazs, Mercedesz; Barbosa, James; Barck, Kai H; Bravo, Brandon J; Carano, Richard A.D.; Darrow, James; Davies, Douglas R; DeForge, Laura E; Diehl, Lauri; Ferrando, Ronald; Gallion, Steven L; Giannetti, Anthony M; Gribling, Peter; Hurez, Vincent; Hymowitz, Sarah G; Jones, Randall; Kropf, Jeffrey E; Lee, Wyne P; Maciejewski, Patricia M; Mitchell, Scott A; Rong, Hong; Staker, Bart L; Whitney, J Andrew; Yeh, Sherry; Young, Wendy B; Yu, Christine; Zhang, Juan; Reif, Karin; Currie, Kevin S [CGI; (Emerald); (Genentech)

    2011-08-29

    Bruton's tyrosine kinase (Btk) is a therapeutic target for rheumatoid arthritis, but the cellular and molecular mechanisms by which Btk mediates inflammation are poorly understood. Here we describe the discovery of CGI1746, a small-molecule Btk inhibitor chemotype with a new binding mode that stabilizes an inactive nonphosphorylated enzyme conformation. CGI1746 has exquisite selectivity for Btk and inhibits both auto- and transphosphorylation steps necessary for enzyme activation. Using CGI1746, we demonstrate that Btk regulates inflammatory arthritis by two distinct mechanisms. CGI1746 blocks B cell receptor–dependent B cell proliferation and in prophylactic regimens reduces autoantibody levels in collagen-induced arthritis. In macrophages, Btk inhibition abolishes FcγRIII-induced TNFα, IL-1β and IL-6 production. Accordingly, in myeloid- and FcγR-dependent autoantibody-induced arthritis, CGI1746 decreases cytokine levels within joints and ameliorates disease. These results provide new understanding of the function of Btk in both B cell– or myeloid cell–driven disease processes and provide a compelling rationale for targeting Btk in rheumatoid arthritis.

  7. Development and trafficking function of haematopoietic stem cells and myeloid cells during fetal ontogeny

    NARCIS (Netherlands)

    Heinig, Kristina; Sage, Fanny; Robin, Catherine; Sperandio, Markus

    2015-01-01

    Fetal haematopoiesis is a highly regulated process in terms of time and location. It is characterized by the emergence of specific cell populations at different extra-and intraembryonic anatomical sites. Trafficking of haematopoietic stem cells (HSCs) between these supportive niches is regulated by

  8. Development and trafficking function of haematopoietic stem cells and myeloid cells during fetal ontogeny

    NARCIS (Netherlands)

    Heinig, Kristina; Sage, Fanny; Robin, Catherine; Sperandio, Markus

    2015-01-01

    Fetal haematopoiesis is a highly regulated process in terms of time and location. It is characterized by the emergence of specific cell populations at different extra- and intraembryonic anatomical sites. Trafficking of haematopoietic stem cells (HSCs) between these supportive niches is regulated by

  9. Regulators of Slc4 bicarbonate transporter activity

    Directory of Open Access Journals (Sweden)

    Ian M. Thornell

    2015-06-01

    Full Text Available The Slc4 family of transporters is comprised of anion exchangers (AE1-4, Na-coupled bicarbonate transporters (NCBTs including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2, electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2, and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE, as well as a borate transporter (BTR1. These transporters regulate intracellular pH (pHi and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO3– either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO3– transporter contributes to a cell’s ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s (e.g., Na+ or Cl–. In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both classical and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.

  10. Pathologic and Protective Roles for Microglial Subsets and Bone Marrow- and Blood-Derived Myeloid Cells in Central Nervous System Inflammation

    DEFF Research Database (Denmark)

    Wlodarczyk, Agnieszka; Cédile, Oriane; Jensen, Kirstine Nolling;

    2015-01-01

    and also immunoregulation and regenerative processes. Better understanding and characterization of myeloid cell heterogeneity is essential for future development of treatments controlling inflammation and inducing neuroprotection and neuroregeneration in diseased CNS. Here, we describe and compare three......Inflammation is a series of processes designed for eventual clearance of pathogens and repair of damaged tissue. In the context of autoimmune recognition, inflammatory processes are usually considered to be pathological. This is also true for inflammatory responses in the central nervous system...

  11. Evaluation of myeloid cells (tumor-associated tissue eosinophils and mast cells) infiltration in different grades of oral squamous cell carcinoma

    Science.gov (United States)

    Debta, Priyanka; Debta, Fakir Mohan; Chaudhary, Minal; Bussari, Smita

    2016-01-01

    Background: The multifunctional involvement and infiltration of myeloid cells (tumor-associated tissue eosinophils [TATE] and mast cells) can provide a unique opportunity to define relevant effectors functions that may represent novel, therapeutic options for modulation of tumor onset/growth. Aim: Our study aimed to evaluate infiltration of myeloid cells (TATE and Mast cells) infiltration in different grades (WHO grading) of oral squamous cell carcinoma (OSCC). Materials and Methods: Total 30 cases of OSCC were selected for this study. Hematoxylin and eosin stain and toluidine blue special stain, to evaluate TATE and the mast cells infiltration, were used. Three-year follow-up of OSCC cases was done. Result: Among 30 cases, 63.33% cases of OSCC showed TATE-positive and 36.66% cases showed TATE-negative. Regarding mast cells infiltration, 66.66% OSCC cases showed mast cells positive and 33.33% cases did not show significant mast cells infiltration. We found significant association of TATE and mast cells infiltration in OSCC cases. These myeloid cells infiltration significantly associated with age of patients but did not show any significant association with gender, site, and habit of cases. When we compared these cells infiltration with clinical stages and different histological grades of tumor, we found their infiltration is decreasing, from Stages 1 to Stage 3 of tumor and from well to poorly differentiated carcinoma. We have also found the less infiltration of these myeloid in recurrence cases of OSCC. Conclusion: As the infiltration of TATE and mast cells are correlated, along with evaluation of TATE, we should also evaluate the presence of mast cells infiltration in OSCC. The assessment of myeloid cells could become, in the future, useful for therapeutic approaches in this subset of the patient. PMID:27688609

  12. Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice

    Science.gov (United States)

    Liu, Shihui; Miller-Randolph, Sharmina; Crown, Devorah; Moayeri, Mahtab; Sastalla, Inka; Okugawa, Shu; Leppla, Stephen H.

    2010-01-01

    SUMMARY Bacillus anthracis kills through a combination of bacterial infection and toxemia. Anthrax toxin working via the CMG2 receptor mediates lethality late in infection, but its roles early in infection remain unclear. We generated myeloid-lineage specific CMG2-deficient mice to examine the roles of macrophages, neutrophils, and other myeloid cells in anthrax pathogenesis. Macrophages and neutrophils isolated from these mice were resistant to anthrax toxin. However, the myeloid-specific CMG2-deficient mice remained fully sensitive to both anthrax lethal and edema toxins, demonstrating that targeting of myeloid cells is not responsible for anthrax toxin-induced lethality. Surprisingly, the myeloid-specific CMG2-deficient mice were completely resistant to B. anthracis infection. Neutrophil depletion experiments suggest that B. anthracis relies on anthrax toxin secretion to evade the scavenging functions of neutrophils to successfully establish infection. This work demonstrates that anthrax toxin uptake through CMG2 and the resulting impairment of myeloid cells specifically neutrophils, is essential to anthrax infection. PMID:21075356

  13. Malaria parasite infection compromises control of concurrent systemic non-typhoidal Salmonella infection via IL-10-mediated alteration of myeloid cell function.

    Science.gov (United States)

    Lokken, Kristen L; Mooney, Jason P; Butler, Brian P; Xavier, Mariana N; Chau, Jennifer Y; Schaltenberg, Nicola; Begum, Ramie H; Müller, Werner; Luckhart, Shirley; Tsolis, Renée M

    2014-05-01

    Non-typhoidal Salmonella serotypes (NTS) cause a self-limited gastroenteritis in immunocompetent individuals, while children with severe Plasmodium falciparum malaria can develop a life-threatening disseminated infection. This co-infection is a major source of child mortality in sub-Saharan Africa. However, the mechanisms by which malaria contributes to increased risk of NTS bacteremia are incompletely understood. Here, we report that in a mouse co-infection model, malaria parasite infection blunts inflammatory responses to NTS, leading to decreased inflammatory pathology and increased systemic bacterial colonization. Blunting of NTS-induced inflammatory responses required induction of IL-10 by the parasites. In the absence of malaria parasite infection, administration of recombinant IL-10 together with induction of anemia had an additive effect on systemic bacterial colonization. Mice that were conditionally deficient for either myeloid cell IL-10 production or myeloid cell expression of IL-10 receptor were better able to control systemic Salmonella infection, suggesting that phagocytic cells are both producers and targets of malaria parasite-induced IL-10. Thus, IL-10 produced during the immune response to malaria increases susceptibility to disseminated NTS infection by suppressing the ability of myeloid cells, most likely macrophages, to control bacterial infection.

  14. Ack1: activation and regulation by allostery.

    Directory of Open Access Journals (Sweden)

    Ketan S Gajiwala

    Full Text Available The non-receptor tyrosine kinase Ack1 belongs to a unique multi-domain protein kinase family, Ack. Ack is the only family of SH3 domain containing kinases to have an SH3 domain following the kinase domain; others have their SH3 domains preceding the kinase domain. Previous reports have suggested that Ack1 does not require phosphorylation for activation and the enzyme activity of the isolated kinase domain is low relative to other kinases. It has been shown to dimerize in the cellular environment, which augments its enzyme activity. The molecular mechanism of activation, however, remains unknown. Here we present structural and biochemical data on Ack1 kinase domain, and kinase domain+SH3 domain that suggest that Ack1 in its monomeric state is autoinhibited, like EGFR and CDK. The activation of the kinase domain may require N-lobe mediated symmetric dimerization, which may be facilitated by the N-terminal SAM domain. Results presented here show that SH3 domain, unlike in Src family tyrosine kinases, does not directly control the activation state of the enzyme. Instead we speculate that the SH3 domain may play a regulatory role by facilitating binding of the MIG6 homologous region to the kinase domain. We postulate that features of Ack1 activation and regulation parallel those of receptor tyrosine kinase EGFR with some interesting differences.

  15. Discovery of Potent Myeloid Cell Leukemia 1 (Mcl-1) Inhibitors Using Fragment-Based Methods and Structure-Based Design

    Energy Technology Data Exchange (ETDEWEB)

    Friberg, Anders [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Vigil, Dominico [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Zhao, Bin [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Daniels, R. Nathan [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Burke, Jason P. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Garcia-Barrantes, Pedro M. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Camper, DeMarco [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Chauder, Brian A. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Lee, Taekyu [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Olejniczak, Edward T. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Fesik, Stephen W. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States)

    2012-12-17

    Myeloid cell leukemia 1 (Mcl-1), a member of the Bcl-2 family of proteins, is overexpressed and amplified in various cancers and promotes the aberrant survival of tumor cells that otherwise would undergo apoptosis. Here we describe the discovery of potent and selective Mcl-1 inhibitors using fragment-based methods and structure-based design. NMR-based screening of a large fragment library identified two chemically distinct hit series that bind to different sites on Mcl-1. Members of the two fragment classes were merged together to produce lead compounds that bind to Mcl-1 with a dissociation constant of <100 nM with selectivity for Mcl-1 over Bcl-xL and Bcl-2. Structures of merged compounds when complexed to Mcl-1 were obtained by X-ray crystallography and provide detailed information about the molecular recognition of small-molecule ligands binding Mcl-1. The compounds represent starting points for the discovery of clinically useful Mcl-1 inhibitors for the treatment of a wide variety of cancers.

  16. Divergent Neuroinflammatory Regulation of Microglial TREM Expression and Involvement of NF-κB

    Science.gov (United States)

    Owens, Rosie; Grabert, Kathleen; Davies, Claire L.; Alfieri, Alessio; Antel, Jack P.; Healy, Luke M.; McColl, Barry W.

    2017-01-01

    The triggering receptor expressed on myeloid cells (TREM) family of proteins are cell surface receptors with important roles in regulation of myeloid cell inflammatory activity. In the central nervous system, TREM2 is implicated in further roles in microglial homeostasis, neuroinflammation and neurodegeneration. Different TREM receptors appear to have contrasting roles in controlling myeloid immune activity therefore the relative and co-ordinated regulation of their expression is important to understand but is currently poorly understood. We sought to determine how microglial TREM expression is affected under neuroinflammatory conditions in vitro and in vivo. Our data show that microglial Trem1 and Trem2 gene expression are regulated in an opposing manner by lipopolysaccharide (LPS) in vitro in both adult murine and human microglia. LPS caused a significant induction of Trem1 and a contrasting suppression of Trem2 expression. We also observed similar divergent Trem1 and Trem2 responses in vivo in response to acute brain inflammation and acute cerebral ischaemia. Our data show that inhibition of NF-κB activation prevents the LPS-induced alterations in both Trem1 and Trem2 expression in vitro indicating NF-κB as a common signaling intermediate controlling these divergent responses. Distinct patterns of microglial Trem1 induction and Trem2 suppression to different Toll-like receptor (TLR) ligands were also evident, notably with Trem1 induction restricted to those ligands activating TLRs signaling via TRIF. Our data show co-ordinated but divergent regulation of microglial TREM receptor expression with a central role for NF-κB. Neuroinflammatory conditions that alter the balance in TREM expression could therefore be an important influence on microglial inflammatory and homeostatic activity with implications for neuroinflammatory and neurodegenerative disease. PMID:28303091

  17. Regulation of Aicda expression and AID activity.

    Science.gov (United States)

    Zan, Hong; Casali, Paolo

    2013-03-01

    Activation-induced cytidine deaminase (AID) is expressed in a B cell differentiation stage-specific fashion and is essential for immunoglobulin (Ig) gene class switch DNA recombination (CSR) and somatic hypermutation (SHM). CSR and SHM play a central role in the maturation of antibody and autoantibody responses. AID displays a mutagenic activity by catalyzing targeted deamination of deoxycytidine (dC) residues in DNA resulting in dU:dG mismatches, which are processed into point-mutations in SHM or double-strand breaks (DSBs) in CSR. Although AID specifically targets the Ig gene loci (IgH, Igκ and Igλ), it can also home into a wide array of non-Ig genes in B-and non-B-cell backgrounds. Aberrant expression of AID is associated with multiple diseases such as allergy, inflammation, autoimmunity and cancer. In autoimmune systemic lupus erythematosus, dysregulated AID expression underpins increased CSR, SHM and autoantibody production. As a potent mutator, AID is under stringent transcriptional, post-transcriptional and post-translational regulation. AID is also regulated in its targeting and enzymatic function. In resting naïve or memory B cells, AID transcripts and protein are undetectable. These, however, are readily and significantly up-regulated in B cells induced to undergo CSR and/or SHM. Transcription factors, such as HoxC4 and NF-κB, which are up-regulated in a B cell lineage-and/or differentiation stage-specific manner, regulate the induction of AID. HoxC4 induces AID expression by directly binding to the AID gene promoter through an evolutionarily conserved 5'-ATTT-3' motif. HoxC4 is induced by the same stimuli that induce AID and CSR. It is further up-regulated by estrogen through three estrogen responsive elements in its promoter region. The targeting of AID to switch (S) regions is mediated by 14-3-3 adaptor proteins, which specifically bind to 5'-AGCT-3' repeats that are exist at high frequency in S region cores. Like HoxC4, 14-3-3 adaptors are induced

  18. Modelling Proteasome and Proteasome Regulator Activities

    Directory of Open Access Journals (Sweden)

    Juliane Liepe

    2014-06-01

    Full Text Available Proteasomes are key proteases involved in a variety of processes ranging from the clearance of damaged proteins to the presentation of antigens to CD8+ T-lymphocytes. Which cleavage sites are used within the target proteins and how fast these proteins are degraded have a profound impact on immune system function and many cellular metabolic processes. The regulation of proteasome activity involves different mechanisms, such as the substitution of the catalytic subunits, the binding of regulatory complexes to proteasome gates and the proteasome conformational modifications triggered by the target protein itself. Mathematical models are invaluable in the analysis; and potentially allow us to predict the complex interactions of proteasome regulatory mechanisms and the final outcomes of the protein degradation rate and MHC class I epitope generation. The pioneering attempts that have been made to mathematically model proteasome activity, cleavage preference variation and their modification by one of the regulatory mechanisms are reviewed here.

  19. Phosphorylation regulates coilin activity and RNA association

    Directory of Open Access Journals (Sweden)

    Hanna J. Broome

    2013-02-01

    The Cajal body (CB is a domain of concentrated components found within the nucleus of cells in an array of species that is functionally important for the biogenesis of telomerase and small nuclear ribonucleoproteins. The CB is a dynamic structure whose number and size change during the cell cycle and is associated with other nuclear structures and gene loci. Coilin, also known as the marker protein for the CB, is a phosphoprotein widely accepted for its role in maintaining CB integrity. Recent studies have been done to further elucidate functional activities of coilin apart from its structural role in the CB in an attempt to explore the rationale for coilin expression in cells that have few CBs or lack them altogether. Here we show that the RNA association profile of coilin changes in mitosis with respect to that during interphase. We provide evidence of transcriptional and/or processing dysregulation of several CB-related RNA transcripts as a result of ectopic expression of both wild-type and phosphomutant coilin proteins. We also show apparent changes in transcription and/or processing of these transcripts upon coilin knockdown in both transformed and primary cell lines. Additionally, we provide evidence of specific coilin RNase activity regulation, on both U2 and hTR transcripts, by phosphorylation of a single residue, serine 489. Collectively, these results point to additional functions for coilin that are regulated by phosphorylation.

  20. Therapeutic Effects of Myeloid Cell Leukemia-1 siRNA on Human Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Hadi Karami

    2014-05-01

    Full Text Available Purpose: Up-regulation of Mcl-1, a known anti-apoptotic protein, is associated with the survival and progression of various malignancies including leukemia. The aim of this study was to explore the effect of Mcl-1 small interference RNA (siRNA on the proliferation and apoptosis of HL-60 acute myeloid leukemia (AML cells. Methods: siRNA transfection was performed using Lipofectamine™2000 reagent. Relative mRNA and protein expressions were quantified by quantitative real-time PCR and Western blotting, respectively. Trypan blue assay was performed to assess tumor cell proliferation after siRNA transfection. The cytotoxic effect of Mcl-1 siRNA on leukemic cells was measured using MTT assay. Apoptosis was detected using ELISA cell death assay. Results: Mcl-1 siRNA clearly lowered both Mcl-1 mRNA and protein levels in a time-dependent manner, leading to marked inhibition of cell survival and proliferation. Furthermore, Mcl-1 down-regulation significantly enhanced the extent of HL-60 apoptotic cells. Conclusion: Our results suggest that the down-regulation of Mcl-1 by siRNA can effectively trigger apoptosis and inhibit the proliferation of leukemic cells. Therefore, Mcl-1 siRNA may be a potent adjuvant in AML therapy.

  1. Cytokinins are central regulators of cambial activity.

    Science.gov (United States)

    Matsumoto-Kitano, Miho; Kusumoto, Takami; Tarkowski, Petr; Kinoshita-Tsujimura, Kaori; Václavíková, Katerina; Miyawaki, Kaori; Kakimoto, Tatsuo

    2008-12-16

    The roots and stems of dicotyledonous plants thicken by the cell proliferation in the cambium. Cambial proliferation changes in response to environmental factors; however, the molecular mechanisms that regulate cambial activity are largely unknown. The quadruple Arabidopsis thaliana mutant atipt1;3;5;7, in which 4 genes encoding cytokinin biosynthetic isopentenyltransferases are disrupted by T-DNA insertion, was unable to form cambium and showed reduced thickening of the root and stem. The atipt3 single mutant, which has moderately decreased levels of cytokinins, exhibited decreased root thickening without any other recognizable morphological changes. Addition of exogenously supplied cytokinins to atipt1;3;5;7 reactivated the cambium in a dose-dependent manner. When an atipt1;3;5;7 shoot scion was grafted onto WT root stock, both the root and shoot grew normally and trans-zeatin-type (tZ-type) cytokinins in the shoot were restored to WT levels, but isopentenyladenine-type cytokinins in the shoot remained unchanged. Conversely, when a WT shoot was grafted onto an atipt1;3;5;7 root, both the root and shoot grew normally and isopentenyladenine-type cytokinins in the root were restored to WT levels, but tZ-type cytokinins were only partially restored. Collectively, it can be concluded that cytokinins are important regulators of cambium development and that production of cytokinins in either the root or shoot is sufficient for normal development of both the root and shoot.

  2. Silencing of myeloid cell leukemia-1 by small interfering RNA improves chemosensitivity to etoposide in u-937 leukemic cells.

    Science.gov (United States)

    Jafarlou, M; Baradaran, B; Shanehbandi, D; Saedi, T A; Jafarlou, V; Karimi, P; Othman, F

    2016-01-01

    A key issue in the treatment of acute myeloid leukemia (AML) is the development of drug resistance to chemotherapeutic agents. Overexpression of myeloid cell leukemia-1 (Mcl-1), an anti-apoptotic protein, is associated with tumor progression and drug resistance in leukemia and several cancers. The purpose of this study was to investigate the effect of specific Mcl-1 small interference RNA (siRNA) on the proliferation and chemosensitivity of U-937 AML cell to etoposide. The siRNA transfection was conducted using Lipofectamine™ 2000. Quantitative real-time RT-PCR (qRT-PCR) and Western blot analysis were employed to measure the expression levels of mRNA and protein, respectively. To evaluate tumor cell growth after siRNA transfection, Trypan blue exclusion assay was conducted. The cytotoxic effects of siRNA and etoposide were determined using MTT assay on their own and in combination. DNA-histone ELISA and annexin-V/FITC assays were performed to study the apoptosis. Mcl-1 siRNA transfection significantly blocked the expression of Mcl-1 mRNA and protein in a time-dependent manner, leading to a strong growth inhibition and enhanced apoptosis (P less than 0.05). Furthermore, pretreatment with Mcl-1 siRNA, synergistically enhanced the cytotoxic and apoptotic effects of etoposide (P less than 0.05). Our results demonstrated that Mcl-1 plays a fundamental role in the survival and resistance of U-937 cells to etoposide. Therefore, Mcl-1 can be considered an attractive target in gene therapy of AML patients and siRNA-mediated silencing of this gene may be a novel strategy in AML treatment.

  3. Obesity accelerates Helicobacter felis-induced gastric carcinogenesis by enhancing immature myeloid cell trafficking and TH17 response.

    Science.gov (United States)

    Ericksen, Russell E; Rose, Shannon; Westphalen, Christoph Benedikt; Shibata, Wataru; Muthupalani, Sureshkumar; Tailor, Yagnesh; Friedman, Richard A; Han, Weiping; Fox, James G; Ferrante, Anthony W; Wang, Timothy C

    2014-03-01

    To investigate the role of obesity-associated inflammation and immune modulation in gastric carcinogenesis during Helicobacter-induced chronic gastric inflammation. C57BL/6 male mice were infected with H felis and placed on a high-fat diet (45% calories from fat). Study animals were analysed for gastric and adipose pathology, inflammatory markers in serum, stomach and adipose tissue, and immune responses in blood, spleen, stomach and adipose tissue. H felis-induced gastric carcinogenesis was accelerated in diet-induced obese mice compared with lean controls. Obesity increased bone marrow-derived immature myeloid cells in blood and gastric tissue of H felis-infected mice. Obesity also led to elevations in CD4 T cells, IL-17A, granulocyte macrophage colony-stimulating factor, phosphorylated STAT3 and prosurvival gene expression in gastric tissue of H felis-infected mice. Conversely, in adipose tissue of obese mice, H felis infection increased macrophage accumulation and expression of IL-6, C-C motif ligand 7 (CCL7) and leptin. Finally, the combination of obesity and gastric inflammation synergistically increased serum proinflammatory cytokines, including IL-6. Here, we have established a model to study the molecular mechanism by which obesity predisposes individuals to gastric cancer. In H felis-infected mice, obesity increased proinflammatory immune responses and accelerated gastric carcinogenesis. Interestingly, gastric inflammation augmented obesity-induced adipose inflammation and production of adipose-derived factors in obese, but not lean, mice. Our findings suggest that obesity accelerates Helicobacter-associated gastric cancer through cytokine-mediated cross-talk between inflamed gastric and adipose tissues, augmenting immune responses at both tissue sites, and thereby contributing to a protumorigenic gastric microenvironment.

  4. Association of Serum Soluble Triggering Receptor Expressed on Myeloid Cells Levels in Malignancy Febrile Neutropenic Patients with Bacteremia and Fungemia

    Directory of Open Access Journals (Sweden)

    Ahmad-Reza Shamshiri

    2011-09-01

    Full Text Available Objective:Infections are the major cause of morbidity and mortality in febrile neutropenic patients with malignancy. Rapid diagnostic tests are needed for prompt diagnosis and early treatment which is crucial for optimal management. We assessed the utility of soluble triggering receptor expressed on myeloid cells (sTREM-1 in the diagnosis of bacteremia and fungemia in febrile neutropenic patients. Methods:Sixty-five febrile neutropenic children with malignancy hospitalized in Mofid Children's Hospital during a period of one year from January 2007 were recruited for this cross sectional study (mean age 66.2± 37 months; 35 females and 30 males. Thirty patients (46.2% had acute lymphoblastic leukemia, 2 (3.1% acute myeloid leukemia, one (1.5% lymphoma and 32 (49.2% were under treatment for solid tumors. Simultaneous blood samples were collected for measurement of serum sTREM-1 levels and for blood cultures which were grown in BACTEC media. Gold standard for the presence of infection was a positive BACTEC culture as a more sensitive method compared to current blood culture techniques. Findings Blood cultures with BACTEC system were positive in 13(20% patients (12 bacterial and one fungal culture. The mean serum sTREM-1 level in BACTEC positive patients was 948.2±592.9 pg/ml but in BACTEC negative cases it was 76.3±118.8 pg/ml (P<0.001. The optimal cut-off point of sTREM-1 for detecting patients with positive result of BACTEC was 525 pg/ml with sensitivity and specificity of 84.6% and 100%, respectively. Conclusion:Our study revealed a significant association between serum sTREM-1 level and bacteremia and fungemia in febrile neutropenic patients suffering malignancy with acceptable sensitivity and specificity.

  5. SAMHD1 enhances nucleoside-analogue efficacy against HIV-1 in myeloid cells

    Science.gov (United States)

    Ordonez, Paula; Kunzelmann, Simone; Groom, Harriet C. T.; Yap, Melvyn W.; Weising, Simon; Meier, Chris; Bishop, Kate N.; Taylor, Ian A.; Stoye, Jonathan P.

    2017-01-01

    SAMHD1 is an intracellular enzyme that specifically degrades deoxynucleoside triphosphates into component nucleoside and inorganic triphosphate. In myeloid-derived dendritic cells and macrophages as well as resting T-cells, SAMHD1 blocks HIV-1 infection through this dNTP triphosphohydrolase activity by reducing the cellular dNTP pool to a level that cannot support productive reverse transcription. We now show that, in addition to this direct effect on virus replication, manipulating cellular SAMHD1 activity can significantly enhance or decrease the anti-HIV-1 efficacy of nucleotide analogue reverse transcription inhibitors presumably as a result of modulating dNTP pools that compete for recruitment by viral polymerases. Further, a variety of other nucleotide-based analogues, not normally considered antiretrovirals, such as the anti-herpes drugs Aciclovir and Ganciclovir and the anti-cancer drug Clofarabine are now revealed as potent anti-HIV-1 agents, under conditions of low dNTPs. This in turn suggests novel uses for nucleotide analogues to inhibit HIV-1 in differentiated cells low in dNTPs. PMID:28220857

  6. 76 FR 12364 - Agency Information Collection Activities: Bonded Warehouse Regulations

    Science.gov (United States)

    2011-03-07

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse... Bonded Warehouse Regulations. This request for comment is being made pursuant to the Paperwork Reduction... concerning the following information collection: Title: Bonded Warehouse Regulations. OMB Number:...

  7. Analysis of splenic Gr-1int immature myeloid cells in tumor-bearing mice.

    Science.gov (United States)

    Yamamoto, Yoshiko; Ishigaki, Hirohito; Ishida, Hideaki; Itoh, Yasushi; Noda, Yoichi; Ogasawara, Kazumasa

    2008-01-01

    It is known that the number of ImC, expressing myeloid markers, CD11b and Gr-1, increase with tumor growth and ImC play a role in the escape of tumor cells from immunosurveillance in tumor-bearing mice and cancer patients. However, the mechanisms by which ImC suppress immune responses in tumor-bearing mice have not been completely elucidated. In the present study, we investigated the function of splenic ImC freshly isolated from tumor-bearing mice and splenic ImC differentiated in vitro by GM-CSF. Freshly isolated splenic ImC were divided into two groups depending on Gr-1 expression, Gr-1 high (Gr-1hi) and intermediate (Gr-1int). Freshly isolated splenic Gr-1int ImC, but not Gr-1hi ImC, from tumor-bearing mice reduced production of IFN-gamma in CD8+ T cells, but neither splenic Gr-1int ImC nor Gr-1hi ImC isolated from naive mice did. Both Gr-1int and Gr-1hi ImC differentiated in vitro by GM-CSF inhibited production of IFN-gamma in both CD8+ and CD4+ T cells. In addition, the differentiated Gr-1int ImC, one-third of which were CD11c+F4/80+ cells, and their culture supernatants suppressed proliferative responses of T cells stimulated by CD3 ligation, but the differentiated Gr-1hi ImC and their culture supernatants did not. These results suggest that Gr-1int ImC are altered to immune-suppressive cells in tumor circumstances and that they are differentiated by GM-CSF progressively into CD11c+F4/80+ cells with further suppressive activity against T cells.

  8. Expression of triggering receptor on myeloid cell 1 and histocompatibility complex molecules in sepsis and major abdominal surgery

    Institute of Scientific and Technical Information of China (English)

    Nestor González-Roldán; Constantino López-Macías; Armando Isibasi; Eduardo Ferat-Osorio; Rosalía Aduna-Vicente; Isabel Wong-Baeza; Noemí Esquivel-Callejas; Horacio Astudillo-de la Vega; Patricio Sánchez-Fernández; Lourdes Arriaga-Pizano; Miguel Angel Villasís Keever

    2005-01-01

    AIM: To evaluate the surface expression of triggering receptor on myeloid cell 1 (TREM-1), class Ⅱ major histocompatibility complex molecules (HLA-DR), andthe expression of the splicing variant (svTREM-1) ofTREM-1 in septic patients and those subjected to major abdominal surgery.METHODS: Using flow cytometry, we examined the surface expression of TREM-1 and HLA-DR in peripheral blood monocytes from 11 septic patients, 7 elective gastrointestinal surgical patients, and 10 healthy volunteers. svTREM-1 levels were analyzed by RT-PCR. RESULTS: Basal expression of TREM-1 and HLA-DR in healthy volunteers was 35.91±14.75 MFI and75.8±18.3%, respectively. In septic patients, TREM-1 expression was 59.9±23.9 MFI and HLA-DR expression was 44.39±20.25%, with a significant differencebetween healthy and septic groups (P<0.05) for bothmolecules. In the surgical patients, TREM-1 and HLA-DR expressions were 56.8±20.85 MFI and 71±13.8% before surgery and 72.65±29.92 MlFI and 72.82±22.55% after surgery. TREM-1 expression was significantly different(P = 0.0087) between the samples before and aftersurgery and svTREM-1 expression was 0.8590±0.1451 MF1, 0.8820±0.1460 MF1, and 2.210±0.7873MF1 in the healthy, surgical (after surgery) and septic groups, respectively. There was a significant difference (P = 0.048) in svTREM-1 expression between the healthy and surgical groups and the septic group.CONCLUSION: TREM-1 expression is increased during systemic inflammatory conditions such as sepsis and the postoperative phase. Simultaneous low expression of HLA-DR molecules correlates with the severity of illness and increases susceptibility to infection. Additionally, TREM-1 expression is distinctly different in surgical patients at different stages of the inflammatory response before and after surgery. Thus, surface TREM-1 appears to be an endogenous signal during the course of the inflammatory response. svTREM-1 expression is significantly increased during sepsis, appearing to be

  9. Bcl-xL and Myeloid cell leukaemia-1 contribute to apoptosis resistance of colorectal cancer cells

    Institute of Scientific and Technical Information of China (English)

    Henning Schulze-Bergkamen; Steffen Heeger; Peter R Galle; Markus Moehler; Roland Ehrenberg; Lothar Hickmann; Binje Vick; Toni Urbanik; Christoph C Schimanski; Martin R Berger; Arno Schad; Achim Weber

    2008-01-01

    AIM: To explore the role of Bd-x,and Myeloid cell leukaemia (Mcl)-1 for the apoptosis resistance of colorectal carcinoma (CRC) cells towards current treatment modalities.METHODS: BCl-XL and Mcl-1 mRNA and protein expression were analyzed in CRC cell lines as well as human CRC tissue by Western blot,quantitative PCR and immunohistochemistry.Bcl-x,and Mcl-1 protein expression was knocked down or increased in CRC cell lines by applying specific siRNAs or expression plasmids,respectively.After modulation of protein expression,CRC cells were treated with chemotherapeutic agents,an antagonistic epidermal growth factor receptor (EGFR1) antibody,an EGFR1 tyrosine kinase inhibitor,or with the death receptor ligand TRAIL.Apoptosis induction and cell viability were analyzed.RESULTS: Here we show that in human CRC tissue and various CRC cell lines both Bcl-x,and Mcl-1 are expressed.Bcl-x,expression was higher in CRC tissue than in surrounding non-malignant tissue,both on protein and mRNA level.Mcl-1 mRNA expression was significantly lower in malignant tissues.However,protein expression was slightly higher.Viability rates of CRC cells were significantly decreased after knock down of Bcl-XL expression,and,to a lower extent,after knock down of Mcl-1 expression.Furthermore,cells with reduced Bcl-xL or Mcl-1 expression was more sensitive towards oxaliplatin- and irinotecan-induced apoptosis,and in the case of Bcl-xL also towards 5-FU-induced apoptosis.On the other hand,upregulation of Bcl-XL by transfection of an expression plasmid decreased chemotherapeutic drug-induced apoptosis.EGF treatment clearly induced Bcl-xL and Mcl-1 expression in CRC cells.Apoptosis induction upon EGFR1 blockage by cetuximab or PD168393 was increased by inhibiting Hcl-1 and Bcl-xL expression.More strikingly,CD95- and TRAIL-induced apoptosis was increased by Bcl-xL knock down.CONCLUSION: Our data suggest that Bcl-xL and,to a lower extent,Mcl-1,are important anti-apoptotic factors in CRC

  10. Transforming Growth Factor-Beta and Matrix Metalloproteinases: Functional Interactions in Tumor Stroma-Infiltrating Myeloid Cells

    Science.gov (United States)

    Santibanez, Juan F.

    2014-01-01

    Transforming growth factor-beta (TGF-β) is a pleiotropic factor with several different roles in health and disease. In tumorigenesis, it may act as a protumorigenic factor and have a profound impact on the regulation of the immune system response. Matrix metalloproteinases (MMPs) are a family that comprises more than 25 members, which have recently been proposed as important regulators acting in tumor stroma by regulating the response of noncellular and cellular microenvironment. Tumor stroma consists of several types of resident cells and infiltrating cells derived from bone marrow, which together play crucial roles in the promotion of tumor growth and metastasis. In cancer cells, TGF-β regulates MMPs expression, while MMPs, produced by either cancer cells or residents' stroma cells, activate latent TGF-β in the extracellular matrix, together facilitating the enhancement of tumor progression. In this review we will focus on the compartment of myeloid stroma cells, such as tumor-associated macrophages, neutrophils, and dendritic and mast cells, which are potently regulated by TGF-β and produce large amounts of MMPs. Their interplay and mutual implications in the generation of pro-tumorigenic cancer microenvironment will be analyzed. PMID:24578639

  11. Transforming Growth Factor-Beta and Matrix Metalloproteinases: Functional Interactions in Tumor Stroma-Infiltrating Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Jelena Krstic

    2014-01-01

    Full Text Available Transforming growth factor-beta (TGF-β is a pleiotropic factor with several different roles in health and disease. In tumorigenesis, it may act as a protumorigenic factor and have a profound impact on the regulation of the immune system response. Matrix metalloproteinases (MMPs are a family that comprises more than 25 members, which have recently been proposed as important regulators acting in tumor stroma by regulating the response of noncellular and cellular microenvironment. Tumor stroma consists of several types of resident cells and infiltrating cells derived from bone marrow, which together play crucial roles in the promotion of tumor growth and metastasis. In cancer cells, TGF-β regulates MMPs expression, while MMPs, produced by either cancer cells or residents’ stroma cells, activate latent TGF-β in the extracellular matrix, together facilitating the enhancement of tumor progression. In this review we will focus on the compartment of myeloid stroma cells, such as tumor-associated macrophages, neutrophils, and dendritic and mast cells, which are potently regulated by TGF-β and produce large amounts of MMPs. Their interplay and mutual implications in the generation of pro-tumorigenic cancer microenvironment will be analyzed.

  12. ECONOMIC ACTIVITY REGULATION AND COMPETITION ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Berinde Mihai

    2010-07-01

    Full Text Available In a broad sense, the term „competition” defines the relations between economic operators acting on the same market seeking attainment of certain interests in economic freedom conditions. The need for regulations in the area of competition stems from the nature of free, open market economy which is founded on the existence of fair competition between economic agents, competition which must be observed, maintained and protected by the law. Public authorities who issue various regulations should be cautious about how far this role is played in the economy and they way adopted regulations affect competition in the market. Hence, the need for prior assessment relating to the potential effect of a regulation on competition. It was proven in practice that some regulations may lead to measures that may affect competition directly or indirectly by: limiting the number or range of suppliers; limiting supplier capability to compete and reducing interests of suppliers to compete vigorously.

  13. Gi proteins regulate adenylyl cyclase activity independent of receptor activation.

    Science.gov (United States)

    Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen

    2014-01-01

    Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to G(i), some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. We used the Gs-selective (R,R)- and the Gs- and G(i)-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic G(i) and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents.

  14. Heterozygous inactivation of the Nf1 gene in myeloid cells enhances neointima formation via a rosuvastatin-sensitive cellular pathway

    OpenAIRE

    Stansfield, Brian K.; Bessler, Waylan K.; Mali, Raghuveer; Mund, Julie A.; Downing, Brandon; Li, Fang; Sarchet, Kara N.; Distasi, Matthew R.; Conway, Simon J; Kapur, Reuben; Ingram, David A.

    2012-01-01

    Mutations in the NF1 tumor suppressor gene cause Neurofibromatosis type 1 (NF1). Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity. Some NF1 patients develop cardiovascular disease, which represents an underrecognized disease complication and contributes to excess morbidity and mortality. Specifically, NF1 patients develop arterial occlusion resulting in tissue ischemia and sudden death. Murine studies demonstrate that heterozygous inactivation of Nf...

  15. Inflammation- and tumor-induced anorexia and weight loss require MyD88 in hematopoietic/myeloid cells but not in brain endothelial or neural cells.

    Science.gov (United States)

    Ruud, Johan; Wilhelms, Daniel Björk; Nilsson, Anna; Eskilsson, Anna; Tang, Yan-Juan; Ströhle, Peter; Caesar, Robert; Schwaninger, Markus; Wunderlich, Thomas; Bäckhed, Fredrik; Engblom, David; Blomqvist, Anders

    2013-05-01

    Loss of appetite is a hallmark of inflammatory diseases. The underlying mechanisms remain undefined, but it is known that myeloid differentiation primary response gene 88 (MyD88), an adaptor protein critical for Toll-like and IL-1 receptor family signaling, is involved. Here we addressed the question of determining in which cells the MyD88 signaling that results in anorexia development occurs by using chimeric mice and animals with cell-specific deletions. We found that MyD88-knockout mice, which are resistant to bacterial lipopolysaccharide (LPS)-induced anorexia, displayed anorexia when transplanted with wild-type bone marrow cells. Furthermore, mice with a targeted deletion of MyD88 in hematopoietic or myeloid cells were largely protected against LPS-induced anorexia and displayed attenuated weight loss, whereas mice with MyD88 deletion in hepatocytes or in neural cells or the cerebrovascular endothelium developed anorexia and weight loss of similar magnitude as wild-type mice. Furthermore, in a model for cancer-induced anorexia-cachexia, deletion of MyD88 in hematopoietic cells attenuated the anorexia and protected against body weight loss. These findings demonstrate that MyD88-dependent signaling within the brain is not required for eliciting inflammation-induced anorexia. Instead, we identify MyD88 signaling in hematopoietic/myeloid cells as a critical component for acute inflammatory-driven anorexia, as well as for chronic anorexia and weight loss associated with malignant disease.

  16. Therapeutic effect of human iPS-cell-derived myeloid cells expressing IFN-β against peritoneally disseminated cancer in xenograft models.

    Science.gov (United States)

    Koba, Chihiro; Haruta, Miwa; Matsunaga, Yusuke; Matsumura, Keiko; Haga, Eriko; Sasaki, Yuko; Ikeda, Tokunori; Takamatsu, Koutaro; Nishimura, Yasuharu; Senju, Satoru

    2013-01-01

    We recently developed a method to generate myeloid cells with proliferation capacity from human iPS cells. iPS-ML (iPS-cell-derived myeloid/macrophage line), generated by introducing proliferation and anti-senescence factors into iPS-cell-derived myeloid cells, grew continuously in an M-CSF-dependent manner. A large number of cells exhibiting macrophage-like properties can be readily obtained by using this technology. In the current study, we evaluated the possible application of iPS-ML in anti-cancer therapy. We established a model of peritoneally disseminated gastric cancer by intraperitoneally injecting NUGC-4 human gastric cancer cells into SCID mice. When iPS-ML were injected intraperitoneally into the mice with pre-established peritoneal NUGC-4 tumors, iPS-ML massively accumulated and infiltrated into the tumor tissues. iPS-ML expressing IFN-β (iPS-ML/IFN-β) significantly inhibited the intra-peritoneal growth of NUGC-4 cancer. Furthermore, iPS-ML/IFN-β also inhibited the growth of human pancreatic cancer MIAPaCa-2 in a similar model. iPS-ML are therefore a promising treatment agent for peritoneally disseminated cancers, for which no standard treatment is currently available.

  17. The Research Progress of Myeloid Cells Development and Differentiation%髓系细胞发育分化的研究进展

    Institute of Scientific and Technical Information of China (English)

    周庆; 郝璐(综述); 蔡志明; 贝锦新(审校)

    2016-01-01

    The differentiation of myeloid cells is very important to the establishment of immune system . Under the control of specific growth factors and cytokines, bone marrow hematopoietic stem cells could develop into the myeloblasts and further into the mature granulocytes .According to the molecular weight and cytospin staining,granulocytes can be divided into eosinophils,neutrophils and basophils.In recent years,sig-nificant breakthroughs have been made in the classification definition and developmental differentiation of myeloid cells,providing references for the diagnosis and treatment of blood and immune system diseases.%髓系细胞发育分化对于免疫系统的形成至关重要。在特定生长因子和细胞因子的调控下,骨髓造血干细胞先发育为原粒细胞,进而发育为成熟的粒细胞。根据粒细胞分子量大小和染色情况,可以分为嗜酸粒细胞,中性粒细胞和嗜碱粒细胞。近年来,髓系细胞发育过程的分级定义及其发育调控过程的研究取得了巨大进步,为血液及免疫系统疾病的诊治提供了参考。

  18. Activation and Regulation of Cellular Eicosanoid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Thomas G. Brock

    2007-01-01

    Full Text Available There is a growing appreciation for the wide variety of physiological responses that are regulated by lipid messengers. One particular group of lipid messengers, the eicosanoids, plays a central role in regulating immune and inflammatory responses in a receptor-mediated fashion. These mediators are related in that they are all derived from one polyunsaturated fatty acid, arachidonic acid. However, the various eicosanoids are synthesized by a wide variety of cell types by distinct enzymatic pathways, and have diverse roles in immunity and inflammation. In this review, the major pathways involved in the synthesis of eicosanoids, as well as key points of regulation, are presented.

  19. Myeloid-cell protein tyrosine phosphatase-1B deficiency in mice protects against high-fat diet and lipopolysaccharide-induced inflammation, hyperinsulinemia, and endotoxemia through an IL-10 STAT3-dependent mechanism.

    Science.gov (United States)

    Grant, Louise; Shearer, Kirsty D; Czopek, Alicja; Lees, Emma K; Owen, Carl; Agouni, Abdelali; Workman, James; Martin-Granados, Cristina; Forrester, John V; Wilson, Heather M; Mody, Nimesh; Delibegovic, Mirela

    2014-02-01

    Protein tyrosine phosphatase-1B (PTP1B) negatively regulates insulin and leptin signaling, rendering it an attractive drug target for treatment of obesity-induced insulin resistance. However, some studies suggest caution when targeting macrophage PTP1B, due to its potential anti-inflammatory role. We assessed the role of macrophage PTP1B in inflammation and whole-body metabolism using myeloid-cell (LysM) PTP1B knockout mice (LysM PTP1B). LysM PTP1B mice were protected against lipopolysaccharide (LPS)-induced endotoxemia and hepatic damage associated with decreased proinflammatory cytokine secretion in vivo. In vitro, LPS-treated LysM PTP1B bone marrow-derived macrophages (BMDMs) displayed increased interleukin (IL)-10 mRNA expression, with a concomitant decrease in TNF-α mRNA levels. These anti-inflammatory effects were associated with increased LPS- and IL-10-induced STAT3 phosphorylation in LysM PTP1B BMDMs. Chronic inflammation induced by high-fat (HF) feeding led to equally beneficial effects of macrophage PTP1B deficiency; LysM PTP1B mice exhibited improved glucose and insulin tolerance, protection against LPS-induced hyperinsulinemia, decreased macrophage infiltration into adipose tissue, and decreased liver damage. HF-fed LysM PTP1B mice had increased basal and LPS-induced IL-10 levels, associated with elevated STAT3 phosphorylation in splenic cells, IL-10 mRNA expression, and expansion of cells expressing myeloid markers. These increased IL-10 levels negatively correlated with circulating insulin and alanine transferase levels. Our studies implicate myeloid PTP1B in negative regulation of STAT3/IL-10-mediated signaling, highlighting its inhibition as a potential anti-inflammatory and antidiabetic target in obesity.

  20. Induction of IFN-beta and the innate antiviral response in myeloid cells occurs through an IPS-1-dependent signal that does not require IRF-3 and IRF-7.

    Directory of Open Access Journals (Sweden)

    Stephane Daffis

    2009-10-01

    Full Text Available Interferon regulatory factors (IRF-3 and IRF-7 are master transcriptional factors that regulate type I IFN gene (IFN-alpha/beta induction and innate immune defenses after virus infection. Prior studies in mice with single deletions of the IRF-3 or IRF-7 genes showed increased vulnerability to West Nile virus (WNV infection. Whereas mice and cells lacking IRF-7 showed reduced IFN-alpha levels after WNV infection, those lacking IRF-3 or IRF-7 had relatively normal IFN-b production. Here, we generated IRF-3(-/-x IRF-7(-/- double knockout (DKO mice, analyzed WNV pathogenesis, IFN responses, and signaling of innate defenses. Compared to wild type mice, the DKO mice exhibited a blunted but not abrogated systemic IFN response and sustained uncontrolled WNV replication leading to rapid mortality. Ex vivo analysis showed complete ablation of the IFN-alpha response in DKO fibroblasts, macrophages, dendritic cells, and cortical neurons and a substantial decrease of the IFN-beta response in DKO fibroblasts and cortical neurons. In contrast, the IFN-beta response was minimally diminished in DKO macrophages and dendritic cells. However, pharmacological inhibition of NF-kappaB and ATF-2/c-Jun, the two other known components of the IFN-beta enhanceosome, strongly reduced IFN-beta gene transcription in the DKO dendritic cells. Finally, a genetic deficiency of IPS-1, an adaptor involved in RIG-I- and MDA5-mediated antiviral signaling, completely abolished the IFN-beta response after WNV infection. Overall, our experiments suggest that, unlike fibroblasts and cortical neurons, IFN-beta gene regulation after WNV infection in myeloid cells is IPS-1-dependent but does not require full occupancy of the IFN-beta enhanceosome by canonical constituent transcriptional factors.

  1. The DC-HIL/syndecan-4 pathway regulates autoimmune responses through myeloid-derived suppressor cells.

    Science.gov (United States)

    Chung, Jin-Sung; Tamura, Kyoichi; Akiyoshi, Hideo; Cruz, Ponciano D; Ariizumi, Kiyoshi

    2014-03-15

    Having discovered that the dendritic cell (DC)-associated heparan sulfate proteoglycan-dependent integrin ligand (DC-HIL) receptor on APCs inhibits T cell activation by binding to syndecan-4 (SD-4) on T cells, we hypothesized that the DC-HIL/SD-4 pathway may regulate autoimmune responses. Using experimental autoimmune encephalomyelitis (EAE) as a disease model, we noted an increase in SD-4(+) T cells in lymphoid organs of wild-type (WT) mice immunized for EAE. The autoimmune disease was also more severely induced (clinically, histologically, and immunophenotypically) in mice knocked out for SD-4 compared with WT cohorts. Moreover, infusion of SD-4(-/-) naive T cells during EAE induction into Rag2(-/-) mice also led to increased severity of EAE in these animals. Similar to SD-4 on T cells, DC-HIL expression was upregulated on myeloid cells during EAE induction, with CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) as the most expanded population and most potent T cell suppressor among the myeloid cells examined. The critical role of DC-HIL was supported by DC-HIL gene deletion or anti-DC-HIL treatment, which abrogated T cell suppressor activity of MDSCs, and also by DC-HIL activation inducing MDSC expression of IFN-γ, NO, and reactive oxygen species. Akin to SD-4(-/-) mice, DC-HIL(-/-) mice manifested exacerbated EAE. Adoptive transfer of MDSCs from EAE-affected WT mice into DC-HIL(-/-) mice reduced EAE severity to the level of EAE-immunized WT mice, an outcome that was precluded by depleting DC-HIL(+) cells from the infused MDSC preparation. Our findings indicate that the DC-HIL/SD-4 pathway regulates autoimmune responses by mediating the T cell suppressor function of MDSCs.

  2. Pleural fluid soluble triggering receptor expressed on myeloid cells-1 as a marker of bacterial infection: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Jiang Hong-Ni

    2011-10-01

    Full Text Available Abstract Background Pleural infection is a common clinical problem. Its successful treatment depends on rapid diagnosis and early initiation of antibiotics. The measurement of soluble triggering receptor expressed in myeloid cells-1 (sTREM-1 level in pleural effusions has proven to be a valuable diagnostic tool for differentiating bacterial effusions from effusions of other etiologies. Herein, we performed a meta-analysis to assess the accuracy of pleural fluid sTREM-1 in the diagnosis of bacterial infection. Methods We searched Web of Knowledge and Medline from 1990 through March 2011 for studies reporting diagnostic accuracy data regarding the use of sTREM-1 in the diagnosis of bacterial pleural effusions. Pooled sensitivity and specificity and summary measures of accuracy and Q* were calculated. Results Overall, the sensitivity of sTREM-1was 78% (95% CI: 72%-83%; the specificity was 84% (95% CI: 80%-87%; the positive likelihood ratio was 6.0 (95% CI: 3.3-10.7; and the negative likelihood ratio was 0.22 (95% CI: 0.12-0.40. The area under the SROC curve for sTREM-1 was 0.92. Statistical heterogeneity and inconsistency were found for sensitivity (p = 0.015, χ2 = 15.73, I2 = 61.9%, specificity (p = 0.000, χ2 = 29.90, I2 = 79.9%, positive likelihood ratio (p = 0.000, χ2 = 33.09, I2 = 81.9%, negative likelihood ratio (p = 0.008, χ2 = 17.25, I2 = 65.2%, and diagnostic odds ratio (p = 0.000, χ2 = 28.49, I2 = 78.9%. A meta-regression analysis performed showed that the Quality Assessment of Diagnostic Accuracy Studies score (p = 0.3245; RDOR, 4.34; 95% CI, 0.11 to 164.01, the Standards for Reporting of Diagnostic Accuracy score (p = 0.3331; RDOR, 1.70; 95% CI, 0.44 to 6.52, lack of blinding (p = 0.7439; RDOR, 0.60; 95% CI, 0.01 to 33.80, and whether the studies were prospective or retrospective studies (p = 0.2068; RDOR, 7.44; 95% CI, 0.18 to 301.17 did not affect the test accuracy. A funnel plot for publication bias suggested a remarkable trend

  3. 50 CFR 404.7 - Regulated activities.

    Science.gov (United States)

    2010-10-01

    ... vessel engine cooling water, weather deck runoff, and vessel engine exhaust; (f) Discharging or... effluent, cooling water, and engine exhaust; (g) Touching coral, living or dead; (h) Possessing fishing... Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF...

  4. Activation of Triggering Receptor Expressed on Myeloid Cells-1 on Human Neutrophils by Marburg and Ebola Viruses

    Science.gov (United States)

    2006-04-21

    vitro interaction of human neutrophils with MARV and EBOV. We report that although productive filovirus replication was not observed in human neutrophils...supernatants. Where alphaviruses such as Venezuelan equine encephalitis virus (VEEV) were used as nonfilovirus controls, the viruses to be inactivated...viral replication in human neutrophils exposed to live MARV or EBOV (MOI 1), as measured by plaque assay of supernatants 1, 6, 24, or 48 h

  5. Myeloid Cell-specific Disruption of Period1 and Period2 Exacerbates Diet-induced Inflammation and Insulin Resistance*

    Science.gov (United States)

    Xu, Hang; Li, Honggui; Woo, Shih-Lung; Kim, Sam-Moon; Shende, Vikram R.; Neuendorff, Nichole; Guo, Xin; Guo, Ting; Qi, Ting; Pei, Ya; Zhao, Yan; Hu, Xiang; Zhao, Jiajia; Chen, Lili; Chen, Lulu; Ji, Jun-Yuan; Alaniz, Robert C.; Earnest, David J.; Wu, Chaodong

    2014-01-01

    The circadian clockworks gate macrophage inflammatory responses. Given the association between clock dysregulation and metabolic disorders, we conducted experiments to determine the extent to which over-nutrition modulates macrophage clock function and whether macrophage circadian dysregulation is a key factor linking over-nutrition to macrophage proinflammatory activation, adipose tissue inflammation, and systemic insulin resistance. Our results demonstrate that 1) macrophages from high fat diet-fed mice are marked by dysregulation of the molecular clockworks in conjunction with increased proinflammatory activation, 2) global disruption of the clock genes Period1 (Per1) and Per2 recapitulates this amplified macrophage proinflammatory activation, 3) adoptive transfer of Per1/2-disrupted bone marrow cells into wild-type mice potentiates high fat diet-induced adipose and liver tissue inflammation and systemic insulin resistance, and 4) Per1/2-disrupted macrophages similarly exacerbate inflammatory responses and decrease insulin sensitivity in co-cultured adipocytes in vitro. Furthermore, PPARγ levels are decreased in Per1/2-disrupted macrophages and PPARγ2 overexpression ameliorates Per1/2 disruption-associated macrophage proinflammatory activation, suggesting that this transcription factor may link the molecular clockworks to signaling pathways regulating macrophage polarization. Thus, macrophage circadian clock dysregulation is a key process in the physiological cascade by which diet-induced obesity triggers macrophage proinflammatory activation, adipose tissue inflammation, and insulin resistance. PMID:24770415

  6. Myeloid cell-specific disruption of Period1 and Period2 exacerbates diet-induced inflammation and insulin resistance.

    Science.gov (United States)

    Xu, Hang; Li, Honggui; Woo, Shih-Lung; Kim, Sam-Moon; Shende, Vikram R; Neuendorff, Nichole; Guo, Xin; Guo, Ting; Qi, Ting; Pei, Ya; Zhao, Yan; Hu, Xiang; Zhao, Jiajia; Chen, Lili; Chen, Lulu; Ji, Jun-Yuan; Alaniz, Robert C; Earnest, David J; Wu, Chaodong

    2014-06-06

    The circadian clockworks gate macrophage inflammatory responses. Given the association between clock dysregulation and metabolic disorders, we conducted experiments to determine the extent to which over-nutrition modulates macrophage clock function and whether macrophage circadian dysregulation is a key factor linking over-nutrition to macrophage proinflammatory activation, adipose tissue inflammation, and systemic insulin resistance. Our results demonstrate that 1) macrophages from high fat diet-fed mice are marked by dysregulation of the molecular clockworks in conjunction with increased proinflammatory activation, 2) global disruption of the clock genes Period1 (Per1) and Per2 recapitulates this amplified macrophage proinflammatory activation, 3) adoptive transfer of Per1/2-disrupted bone marrow cells into wild-type mice potentiates high fat diet-induced adipose and liver tissue inflammation and systemic insulin resistance, and 4) Per1/2-disrupted macrophages similarly exacerbate inflammatory responses and decrease insulin sensitivity in co-cultured adipocytes in vitro. Furthermore, PPARγ levels are decreased in Per1/2-disrupted macrophages and PPARγ2 overexpression ameliorates Per1/2 disruption-associated macrophage proinflammatory activation, suggesting that this transcription factor may link the molecular clockworks to signaling pathways regulating macrophage polarization. Thus, macrophage circadian clock dysregulation is a key process in the physiological cascade by which diet-induced obesity triggers macrophage proinflammatory activation, adipose tissue inflammation, and insulin resistance.

  7. Sequential Notch activation regulates ventricular chamber development

    OpenAIRE

    D'Amato, Gaetano

    2016-01-01

    Tesis doctoral inédita, leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Bioquímica. Fecha de lectura: 15 de enero de 2016 Ventricular chamber morphogenesis is a beautiful example of tissue interactions orchestrating a precise gene regulatory network essential for tissue patterning, cellular proliferation and differentiation that ultimately lead to a fully compacted and functional adult ventricle. The Notch signaling pathway is a crucial regulator ...

  8. Active Power Regulation based on Droop for AC Microgrid

    DEFF Research Database (Denmark)

    Li, Chendan; Coelho, Ernane A. A.; Firoozabadi, Mehdi Savaghebi

    2015-01-01

    In this paper, two different control strategies are proposed to address the active power regulation issue in AC microgrids. The principle of power regulation in the droop controller is firstly introduced. Frequency scheduling and droop gain scheduling on top of droop control is proposed to succes......In this paper, two different control strategies are proposed to address the active power regulation issue in AC microgrids. The principle of power regulation in the droop controller is firstly introduced. Frequency scheduling and droop gain scheduling on top of droop control is proposed...

  9. Modern aspects of tax regulation of investment activity

    Directory of Open Access Journals (Sweden)

    E.S. Podakov

    2016-03-01

    Full Text Available The article investigates the tax regulation of investment activity in modern conditions. Scientists studied different views about the impact of tax regulations on the investment activity in the country. The author determines that the tax regulation of investment activity involves the use of state mechanisms taxation of certain measures to improve investment conditions. The subject is the state tax regulations, and the object is the investment activity of individual and institutional investors of any form of ownership including organizational and legal forms. Such regulation is performed by using complex special tools. The possible methods of tax stimulation of investment processes are described. The article deals with the current results of tax reform in Ukraine and predicts its possible consequences for agricultural producers. The rating positions of Ukraine according to international organizations are showed. The systematic analysis has been carried out and the impact of differential tax rates, tax exemption for a specified period, reducing the tax base, elimination of double taxation on investment activity in certain areas have been researched. The special instruments of investment activity tax regulation are considered. The options for improving investment activity by introducing effective tax regulation are determined.

  10. Allosteric regulation of deubiquitylase activity through ubiquitination

    Directory of Open Access Journals (Sweden)

    Serena eFaggiano

    2015-02-01

    Full Text Available Ataxin-3, the protein responsible for spinocerebellar ataxia type-3, is a cysteine protease that specifically cleaves poly-ubiquitin chains and participates in the ubiquitin proteasome pathway. The enzymatic activity resides in the N-terminal Josephin domain. An unusual feature of ataxin-3 is its low enzymatic activity especially for mono-ubiquitinated substrates and short ubiquitin chains. However, specific ubiquitination at lysine 117 in the Josephin domain activates ataxin-3 through an unknown mechanism. Here, we investigate the effects of K117 ubiquitination on the structure and enzymatic activity of the protein. We show that covalently linked ubiquitin rests on the Josephin domain, forming a compact globular moiety and occupying a ubiquitin binding site previously thought to be essential for substrate recognition. In doing so, ubiquitination enhances enzymatic activity by locking the enzyme in an activated state. Our results indicate that ubiquitin functions both as a substrate and as an allosteric regulatory factor. We provide a novel example in which a conformational switch controls the activity of an enzyme that mediates deubiquitination.

  11. Identifying immunogenic CD4+ T-cell epitopes of Myeloid cell leukemia 1 using overlapping 20-mer peptides spanning the whole protein

    DEFF Research Database (Denmark)

    Woodworth, Joshua S.; Agger, Else Marie; Hansen, Paul Robert

    2015-01-01

    Myeloid cell leukemia 1 (Mcl-1) is an anti-apoptotic protein which is overexpressed in various leukemia and other cancers [1]. Mcl-1 has a very short half-life [2], which has been suggested as a molecular mechanism for cells to switch into either the survival or apoptotic pathways in response...... to different stresses [3]. Recently, it has been demonstrated that downregulation of Mcl-1 by various pharmacological agents or genetic approaches dramatically increases ABT-737 lethality in various malignant cell types [4]. Different strategies for targeting Mcl-1 include (i) small interfering RNA [5] (ii......) small-molecule inhibitors [6] and (iii) peptide inhibitors [7]. In recent years, therapeutic vaccination with synthetic peptides derived from anti-apoptotic proteins such as Mcl-1 has emerged as a promising strategy against hematological cancers. In this study, 34 overlapping 20-mer peptides, spanning...

  12. Triggering receptor expressed on myeloid cells-1 and respiratory disease%髓样细胞触发受体-1与呼吸系统疾病

    Institute of Scientific and Technical Information of China (English)

    李新胜; 陈绍平

    2013-01-01

    髓样细胞触发受体-1(triggering receptor expressed on myeloid cells-1,TREM-1)是表达于中性粒细胞和单核细胞表面的膜受体,属于免疫蛋白超家族,与未知配体结合有放大炎症反应的作用.近来研究发现可溶性髓样细胞触发受体-1作为生物标记物与呼吸系统多种疾病有密切的联系.本文就TREM-1的结构、表达及其与呼吸系统疾病的关系进行综述.

  13. Myeloid Cell Sirtuin-1 Expression Does Not Alter Host Immune Responses to Gram-Negative Endotoxemia or Gram-Positive Bacterial Infection

    Science.gov (United States)

    Crotty Alexander, Laura E.; Marsh, Brenda J.; Timmer, Anjuli M.; Lin, Ann E.; Zainabadi, Kayvan; Czopik, Agnieszka; Guarente, Leonard; Nizet, Victor

    2013-01-01

    The role of sirtuin-1 (SIRT1) in innate immunity, and in particular the influence of SIRT1 on antimicrobial defense against infection, has yet to be reported but is important to define since SIRT1 inhibitors are being investigated as therapeutic agents in the treatment of cancer, Huntington’s disease, and autoimmune diseases. Given the therapeutic potential of SIRT1 suppression, we sought to characterize the role of SIRT1 in host defense. Utilizing both pharmacologic methods and a genetic knockout, we demonstrate that SIRT1 expression has little influence on macrophage and neutrophil antimicrobial functions. Myeloid SIRT1 expression does not change mortality in gram-negative toxin-induced shock or gram-positive bacteremia, suggesting that therapeutic suppression of SIRT1 may be done safely without suppression of myeloid cell-specific immune responses to severe bacterial infections. PMID:24386389

  14. Myeloid cell sirtuin-1 expression does not alter host immune responses to Gram-negative endotoxemia or Gram-positive bacterial infection.

    Directory of Open Access Journals (Sweden)

    Laura E Crotty Alexander

    Full Text Available The role of sirtuin-1 (SIRT1 in innate immunity, and in particular the influence of SIRT1 on antimicrobial defense against infection, has yet to be reported but is important to define since SIRT1 inhibitors are being investigated as therapeutic agents in the treatment of cancer, Huntington's disease, and autoimmune diseases. Given the therapeutic potential of SIRT1 suppression, we sought to characterize the role of SIRT1 in host defense. Utilizing both pharmacologic methods and a genetic knockout, we demonstrate that SIRT1 expression has little influence on macrophage and neutrophil antimicrobial functions. Myeloid SIRT1 expression does not change mortality in gram-negative toxin-induced shock or gram-positive bacteremia, suggesting that therapeutic suppression of SIRT1 may be done safely without suppression of myeloid cell-specific immune responses to severe bacterial infections.

  15. Organization of Ca2+ stores in myeloid cells: association of SERCA2b and the type-1 inositol-1,4,5-trisphosphate receptor.

    Science.gov (United States)

    Favre, C J; Jerström, P; Foti, M; Stendhal, O; Huggler, E; Lew, D P; Krause, K H

    1996-05-15

    In this study, we have analysed the relationship between Ca2+ pumps and Ins(1,4,5)P3-sensitive Ca2+ channels in myeloid cells. To study whether sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA)-type Ca(2+)-ATPases are responsible for Ca2+ uptake into Ins(1,4,5)P3-sensitive Ca2+ stores, we used the three structurally unrelated inhibitors thapsigargin, 2,5-di-t-butylhydroquinone and cyclopiazonic acid. In HL-60 cells, all three compounds precluded formation of the phosphorylated intermediate of SERCA-type Ca(2+)-ATPases. They also decreased, in parallel, ATP-dependent Ca2+ accumulation and the amount of Ins(1,4,5)P3-releasable Ca2+. Immunoblotting with subtype-directed antibodies demonstrated that HL-60 cells contain the Ca2+ pump SERCA2 (subtype b), and the Ca(2+)-release-channel type-1 Ins(1,4,5)P3 receptor. In subcellular fractionation studies, SERCA2 and type-1 Ins(1,4,5)P3 receptor co-purified. Immunofluorescence studies demonstrated that both type-1 Ins(1,4,5)P3 receptor and SERCA2 were evenly distributed throughout the cell in moving neutrophils. During phagocytosis both proteins translocated to the periphagosomal space. Taken together, our results suggest that in myeloid cells (i) SERCA-type Ca(2+)-ATPases function as Ca2+ pumps of Ins(1,4,5)P3-sensitive Ca2+ stores, and (ii) SERCA2 and type-1 Ins(1,4,5)P3 receptor reside either in the same or two tightly associated subcellular compartments.

  16. Self-regulation as a type of managerial activity.

    Directory of Open Access Journals (Sweden)

    Anna Algazina

    2017-01-01

    Full Text Available УДК 342.9The subject. In the context of the ongoing administrative reform in the Russian Federation the issue of self-regulation is becoming increasingly important.Introduction of Institute of self-regulation is intended to reduce the degree of state intervention in private spheres of professional activity, to eliminate excessive administrative barriers, reduce government expenditures on regulation and control in their respective areas of operation, which is especially important in the current economic conditions.However, in Russian legal science is no recognized definition of "self-regulation", but a unity of views on the question of the relationship between self-regulation and state regulation of business relations.In this regard, the author attempts to examine the concept of "self-regulation" through the prism of knowledge about public administration.The purpose of the article is to identify the essential features and to articulate the concept of self-regulation by comparing it with other varieties of regulation.Methodology. The methodological basis for the study: general scientific methods (analysis, synthesis, comparison, description; private and academic (interpretation, formal-legal.Results, scope. Based on the analysis allocated in the science of administrative law approaches to the system of public administration justifies the conclusion that the notion "regulation" is specific in relation to the generic concept of "management" and is a kind of management, consisting in the drafting of rules of conduct and sanctions for non-compliance or inadequate performance.In addition, the article highlights the problem of the genesis of self-regulation, building a system of principles of self-regulation, comparison of varieties of self-regulatory organizations among themselves.Conclusions. The comparison of self-regulation other types of regulation (such as state regulation and co-regulation highlighted the essential features of this phenomenon

  17. Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function.

    Science.gov (United States)

    Sahakian, Eva; Powers, John J; Chen, Jie; Deng, Susan L; Cheng, Fengdong; Distler, Allison; Woods, David M; Rock-Klotz, Jennifer; Sodre, Andressa L; Youn, Je-In; Woan, Karrune V; Villagra, Alejandro; Gabrilovich, Dmitry; Sotomayor, Eduardo M; Pinilla-Ibarz, Javier

    2015-02-01

    Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells capable of suppressing anti-tumor T cell function in the tumor microenvironment, represent an imposing obstacle in the development of cancer immunotherapeutics. Thus, identifying elements essential to the development and perpetuation of these cells will undoubtedly improve our ability to circumvent their suppressive impact. HDAC11 has emerged as a key regulator of IL-10 gene expression in myeloid cells, suggesting that this may represent an important targetable axis through which to dampen MDSC formation. Using a murine transgenic reporter model system where eGFP expression is controlled by the HDAC11 promoter (Tg-HDAC11-eGFP), we provide evidence that HDAC11 appears to function as a negative regulator of MDSC expansion/function in vivo. MDSCs isolated from EL4 tumor-bearing Tg-HDAC11-eGFP display high expression of eGFP, indicative of HDAC11 transcriptional activation at steady state. In striking contrast, immature myeloid cells in tumor-bearing mice display a diminished eGFP expression, implying that the transition of IMC to MDSC's require a decrease in the expression of HDAC11, where we postulate that it acts as a gate-keeper of myeloid differentiation. Indeed, tumor-bearing HDAC11-knockout mice (HDAC11-KO) demonstrate a more suppressive MDSC population as compared to wild-type (WT) tumor-bearing control. Notably, the HDAC11-KO tumor-bearing mice exhibit enhanced tumor growth kinetics when compare to the WT control mice. Thus, through a better understanding of this previously unknown role of HDAC11 in MDSC expansion and function, rational development of targeted epigenetic modifiers may allow us to thwart a powerful barrier to efficacious immunotherapies.

  18. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  19. Endogenous methanol regulates mammalian gene activity.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis.

  20. Neuronal Activity Regulates Hippocampal miRNA Expression

    NARCIS (Netherlands)

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a re

  1. Cycloheximide Can Induce Bax/Bak Dependent Myeloid Cell Death Independently of Multiple BH3-Only Proteins.

    Science.gov (United States)

    Goodall, Katharine J; Finch-Edmondson, Megan L; van Vuuren, Joanne; Yeoh, George C; Gentle, Ian E; Vince, James E; Ekert, Paul G; Vaux, David L; Callus, Bernard A

    2016-01-01

    Apoptosis mediated by Bax or Bak is usually thought to be triggered by BH3-only members of the Bcl-2 protein family. BH3-only proteins can directly bind to and activate Bax or Bak, or indirectly activate them by binding to anti-apoptotic Bcl-2 family members, thereby relieving their inhibition of Bax and Bak. Here we describe a third way of activation of Bax/Bak dependent apoptosis that does not require triggering by multiple BH3-only proteins. In factor dependent myeloid (FDM) cell lines, cycloheximide induced apoptosis by a Bax/Bak dependent mechanism, because Bax-/-Bak-/- lines were profoundly resistant, whereas FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Addition of cycloheximide led to the rapid loss of Mcl-1 but did not affect the expression of other Bcl-2 family proteins. In support of these findings, similar results were observed by treating FDM cells with the CDK inhibitor, roscovitine. Roscovitine reduced Mcl-1 abundance and caused Bax/Bak dependent cell death, yet FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Therefore Bax/Bak dependent apoptosis can be regulated by the abundance of anti-apoptotic Bcl-2 family members such as Mcl-1, independently of several known BH3-only proteins.

  2. Insight into Nek2A activity regulation and its pharmacological ...

    African Journals Online (AJOL)

    Ambuj Kumar

    2012-11-28

    Nov 28, 2012 ... 3. Nek2A activity regulation and associated pathological outcomes . .... vide a detailed insight into how they coordinate the cell cycle .... the adenine subpocket creating steric hindrance in the plane of ... Three dimensional.

  3. Regulation of MDM2 Activity by Nucleolin

    Science.gov (United States)

    2007-06-01

    assistance with FACS analysis, Eric Rubin (UMDNJ) for providing the GST-nucleolin expression vectors, Cris- tina Cardoso for the pENeGFP RPA34 plasmid, and...formation, and functional char- acterization. J. Biol. Chem. 269:11121–11132. 25. Huang, W., and R. L. Erikson . 1994. Constitutive activation of Mek1

  4. Fragile phagocytes: FMRP positively regulates engulfment activity.

    Science.gov (United States)

    Logan, Mary A

    2017-03-06

    Defective immune system function is implicated in autism spectrum disorders, including Fragile X syndrome. In this issue, O'Connor et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201607093) demonstrate that phagocytic activity of systemic immune cells is compromised in a Drosophila melanogaster model of Fragile X, highlighting intriguing new mechanistic connections between FMRP, innate immunity, and abnormal development.

  5. Regulation of APC/C activators in mitosis and meiosis.

    Science.gov (United States)

    Pesin, Jillian A; Orr-Weaver, Terry L

    2008-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit E3 ubiquitin ligase that triggers the degradation of multiple substrates during mitosis. Cdc20/Fizzy and Cdh1/Fizzy-related activate the APC/C and confer substrate specificity through complex interactions with both the core APC/C and substrate proteins. The regulation of Cdc20 and Cdh1 is critical for proper APC/C activity and occurs in multiple ways: targeted protein degradation, phosphorylation, and direct binding of inhibitory proteins. During the specialized divisions of meiosis, the activity of the APC/C must be modified to achieve proper chromosome segregation. Recent studies show that one way in which APC/C activity is modified is through the use of meiosis-specific APC/C activators. Furthermore, regulation of the APC/C during meiosis is carried out by both mitotic regulators of the APC/C as well as meiosis-specific regulators. Here, we review the regulation of APC/C activators during mitosis and the role and regulation of the APC/C during female meiosis.

  6. A Small Group Activity About Bacterial Regulation And Complementation

    Directory of Open Access Journals (Sweden)

    Susan M. Merkel

    2010-11-01

    Full Text Available As teachers, we well understand the need for activities that help develop critical-thinking skills in microbiology. In our experience, one concept that students have difficulty understanding is transcriptional regulation of bacterial genes. To help with this, we developed and evaluated a paper-based activity to help students understand and apply the concepts of bacterial transcriptional regulation. While we don't identify it as such, we use a complementation experiment to assess student understanding of how regulation changes when new DNA is introduced. In Part 1 of this activity, students complete an open book, take-home assignment that asks them to define common terminology related to regulation, and draw the regulatory components of different scenarios involving positive and negative regulation. In Part 2, students work in small groups of 3-4 to depict the regulatory components for a different scenario. They are asked to explain the results of a complementation experiment based on this scenario. They then predict the results of a slightly different experiment. Students who completed the Regulation Activity did significantly better on post-test questions related to regulation, compared to pre-test questions.

  7. Regulation and activity of a zinc uptake regulator, Zur, in Corynebacterium diphtheriae.

    Science.gov (United States)

    Smith, Kelsy F; Bibb, Lori A; Schmitt, Michael P; Oram, Diana M

    2009-03-01

    Regulation of metal ion homeostasis is essential to bacterial cell survival, and in most species it is controlled by metal-dependent transcriptional regulators. In this study, we describe a Corynebacterium diphtheriae ferric uptake regulator-family protein, Zur, that controls expression of genes involved in zinc uptake. By measuring promoter activities and mRNA levels, we demonstrate that Zur represses transcription of three genes (zrg, cmrA, and troA) in zinc-replete conditions. All three of these genes have similarity to genes involved in zinc uptake. Transcription of zrg and cmrA was also shown to be regulated in response to iron and manganese, respectively, by mechanisms that are independent of Zur. We demonstrate that the activity of the zur promoter is slightly decreased under low zinc conditions in a process that is dependent on Zur itself. This regulation of zur transcription is distinctive and has not yet been described for any other zur. An adjacent gene, predicted to encode a metal-dependent transcriptional regulator in the ArsR/SmtB family, is transcribed from a separate promoter whose activity is unaffected by Zur. A C. diphtheriae zur mutant was more sensitive to peroxide stress, which suggests that zur has a role in protecting the bacterium from oxidative damage. Our studies provide the first evidence of a zinc specific transcriptional regulator in C. diphtheriae and give new insights into the intricate regulatory network responsible for regulating metal ion concentrations in this toxigenic human pathogen.

  8. Chromatin-mediated regulation of cytomegalovirus gene expression.

    Science.gov (United States)

    Reeves, Matthew B

    2011-05-01

    Following primary infection, whether Human cytomegalovirus (HCMV) enters either the latent or lytic lifecycle is dependent on the phenotype of the cell type infected. Multiple cell types are permissive for lytic infection with HCMV whereas, in contrast, well characterized sites of latency are restricted to a very specific population of CD34+ cells resident in the bone marrow and the immature myeloid cells they give rise to. It is becoming increasingly clear that one of the mechanisms that promote HCMV latency involves the recruitment of histone proteins to the major immediate early promoter (MIEP) which are subject to post-translational modifications that promote a transcriptionally inactive state. Integral to this, is the role of cellular transcriptional repressors that interact with histone modifying enzymes that promote and maintain this repressed state during latency. Crucially, the chromatin associated with the MIEP is dynamically regulated-myeloid cell differentiation triggers the acetylation of histones bound to the MIEP which is concomitant with the reactivation of IE gene expression and re-entry into lytic infection. Interestingly, this dynamic regulation of the MIEP by chromatin structure in latency extends not only into lytic infection but also for the regulation of multiple viral promoters in all phases of infection. HCMV lytic infection is characterised by a timely and co-ordinated pattern of gene expression that now has been shown to correlate with active post-translational modification of the histones associated with early and late promoters. These effects are mediated by the major IE products (IE72 and IE86) which physically and functionally interact with histone modifying enzymes resulting in the efficient activation of viral gene expression. Thus chromatin appears to play an important role in gene regulation in all phases of infection. Furthermore, these studies are highly suggestive that an intrinsic cellular anti-viral response to incoming viral

  9. The Ubiquitin Ligase Siah2 Regulates PPARγ Activity in Adipocytes

    OpenAIRE

    Kilroy, Gail; Kirk-Ballard, Heather; Carter, Lauren E.; Floyd, Z. Elizabeth

    2012-01-01

    Moderate reductions in peroxisome proliferator-activated receptor (PPAR)γ levels control insulin sensitivity as effectively as activation of PPARγ in adipocytes by the thiazolidinediones. That observation suggests that PPARγ activity can be regulated by modulating the amount of PPARγ protein in adipocytes. Activation of PPARγ in adipocytes is linked to changes in PPARγ protein levels via increased degradation of PPARγ proteins by the ubiquitin proteasome system. Identification of the ubiquiti...

  10. Differential effects of sumoylation on the activities of CCAAT enhancer binding protein alpha (C/EBPa p42 versus p30 may contribute in part, to aberrant C/EBPa activity in acute leukemias

    Directory of Open Access Journals (Sweden)

    William Hankey

    2011-05-01

    Full Text Available In this study, we have examined the role of post-translational modification of the myeloid master regulator C/EBP by small ubiquitin-related modifier (SUMO. We have used transient transfection analysis, oligonucleotide pulldown assays and chromatin immunoprecititation in all-trans retinoic acid (ATRA-inducible promyelocytic cell lines MPRO and NB4. We demonstrate that sumoylated wildtype p42-C/EBPis associated with negative regulation of the myeloid specific lactoferrin (LF gene in early myeloid cells and that a reduction in p42-C/EBP sumoylation coincides with expression of the LF gene in maturing myeloid cells. In the acute promyelocytic leukemia cell line NB4 however, sumoylated p42 remains persistently bound to the LF promoter following ATRA-induction. This correlates with lack of lactoferrin expression in these cells. Changes in sumoylation status of C/EBP thus appear to contribute to a switch that regulates transcriptional activity of this master regulator during normal neutrophil development. We also demonstrate that sumoylation of the AML associated dominant negative p30-C/EBP isoform does not alter transactivation activity of the LF promoter. This may be because the p30 C/EBP isoform binds to the LF promoter much less efficiently than its full length counterpart. Our data suggest that the activity of p42-C/EBP in the developing neutrophil is more sensitive to changes in sumoylation than the p30 isoform. This difference may contribute to the leukemogenic potential of p30-C/EBP.

  11. Regulation of Activation Induced Deaminase (AID) by Estrogen.

    Science.gov (United States)

    Pauklin, Siim

    2016-01-01

    Regulation of Activation Induced Deaminase (AID) by the hormone estrogen has important implications for understanding adaptive immune responses as well as the involvement of AID in autoimmune diseases and tumorigenesis. This chapter describes the general laboratory techniques for analyzing AID expression and activity induced by estrogen, focusing on the isolation and preparation of cells for hormone treatment and the subsequent analysis of AID responsiveness to estrogen at the RNA level and for determining the regulation of AID activity via estrogen by analyzing Ig switch circle transcripts and mutations in switch region loci.

  12. Absence of canonical active chromatin marks in developmentally regulated genes

    Science.gov (United States)

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  13. Estrogen receptors regulate innate immune cells and signaling pathways.

    Science.gov (United States)

    Kovats, Susan

    2015-04-01

    Humans show strong sex differences in immunity to infection and autoimmunity, suggesting sex hormones modulate immune responses. Indeed, receptors for estrogens (ERs) regulate cells and pathways in the innate and adaptive immune system, as well as immune cell development. ERs are ligand-dependent transcription factors that mediate long-range chromatin interactions and form complexes at gene regulatory elements, thus promoting epigenetic changes and transcription. ERs also participate in membrane-initiated steroid signaling to generate rapid responses. Estradiol and ER activity show profound dose- and context-dependent effects on innate immune signaling pathways and myeloid cell development. While estradiol most often promotes the production of type I interferon, innate pathways leading to pro-inflammatory cytokine production may be enhanced or dampened by ER activity. Regulation of innate immune cells and signaling by ERs may contribute to the reported sex differences in innate immune pathways. Here we review the recent literature and highlight several molecular mechanisms by which ERs regulate the development or functional responses of innate immune cells.

  14. Post-translational regulation of Oct4 transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Jonathan P Saxe

    Full Text Available Oct4 is a key component of the molecular circuitry which regulates embryonic stem cell proliferation and differentiation. It is essential for maintenance of undifferentiated, pluripotent cell populations, and accomplishes these tasks by binding DNA in multiple heterodimer and homodimer configurations. Very little is known about how formation of these complexes is regulated, or the mechanisms through which Oct4 proteins respond to complex extracellular stimuli which regulate pluripotency. Here, we provide evidence for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations. Point mutations of a putative phosphorylation site can specifically abrogate transcriptional activity of a specific homodimer assembly, with little effect on other configurations. Moreover, we performed bioinformatic predictions to identify a subset of Oct4 target genes which may be regulated by this specific assembly, and show that altering Oct4 protein levels affects transcription of Oct4 target genes which are regulated by this assembly but not others. Finally, we identified several signaling pathways which may mediate this phosphorylation and act in combination to regulate Oct4 transcriptional activity and protein stability. These results provide a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals.

  15. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    Sergiy; Kostenko; Gianina; Dumitriu; Kari; Jenssen; Lgreid; Ugo; Moens

    2011-01-01

    Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.

  16. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity

    Directory of Open Access Journals (Sweden)

    Lama Tarayrah

    2015-11-01

    Full Text Available Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid maintains germline stem cell (GSC mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities.

  17. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Jun-Ha Hwang

    Full Text Available Mesenchymal stem cell (MSC differentiation is regulated by the extracellular matrix (ECM through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ was identified as an effector protein for MSC differentiation. However, the detailed underlying mechanism regarding the role of ECM stiffness and TAZ in MSC differentiation is not yet fully understood. In this report, we showed that ECM stiffness regulates MSC fate through ERK or JNK activation. Specifically, a stiff hydrogel matrix stimulates osteogenic differentiation concomitant with increased nuclear localization of TAZ, but inhibits adipogenic differentiation. ERK and JNK activity was significantly increased in cells cultured on a stiff hydrogel. TAZ activation was induced by ERK or JNK activation on a stiff hydrogel because exposure to an ERK or JNK inhibitor significantly decreased the nuclear localization of TAZ, indicating that ECM stiffness-induced ERK or JNK activation is important for TAZ-driven osteogenic differentiation. Taken together, these results suggest that ECM stiffness regulates MSC differentiation through ERK or JNK activation.

  18. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation.

    Science.gov (United States)

    Hwang, Jun-Ha; Byun, Mi Ran; Kim, A Rum; Kim, Kyung Min; Cho, Hang Jun; Lee, Yo Han; Kim, Juwon; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2015-01-01

    Mesenchymal stem cell (MSC) differentiation is regulated by the extracellular matrix (ECM) through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ) was identified as an effector protein for MSC differentiation. However, the detailed underlying mechanism regarding the role of ECM stiffness and TAZ in MSC differentiation is not yet fully understood. In this report, we showed that ECM stiffness regulates MSC fate through ERK or JNK activation. Specifically, a stiff hydrogel matrix stimulates osteogenic differentiation concomitant with increased nuclear localization of TAZ, but inhibits adipogenic differentiation. ERK and JNK activity was significantly increased in cells cultured on a stiff hydrogel. TAZ activation was induced by ERK or JNK activation on a stiff hydrogel because exposure to an ERK or JNK inhibitor significantly decreased the nuclear localization of TAZ, indicating that ECM stiffness-induced ERK or JNK activation is important for TAZ-driven osteogenic differentiation. Taken together, these results suggest that ECM stiffness regulates MSC differentiation through ERK or JNK activation.

  19. THE EUROPEAN MODEL OF STATE REGULATION OF TOURISM ACTIVITIES

    Directory of Open Access Journals (Sweden)

    О. Davydova

    2013-11-01

    Full Text Available In the article the existing model of state regulation of the development of tourism. Expediency of the European model of state regulation of tourism development in Ukraine. It is noted that the European model of state regulation of tourism activities based on the coordination of marketing activities and the development of cooperation between the public and private sectors. The basic forms of public-private partnerships and the advantages of using cluster model of development of tourism, namely, contracts, production sharing agreement, lease, joint venture. Promising areas of application of the PPP identified the transport sector, housing and utilities, energy and tourism sector. The features of cluster formations in the country and the prospects for tourism clusters.

  20. Pentraxins in the activation and regulation of innate immunity.

    Science.gov (United States)

    Daigo, Kenji; Inforzato, Antonio; Barajon, Isabella; Garlanda, Cecilia; Bottazzi, Barbara; Meri, Seppo; Mantovani, Alberto

    2016-11-01

    Humoral fluid phase pattern recognition molecules (PRMs) are a key component of the activation and regulation of innate immunity. Humoral PRMs are diverse. We focused on the long pentraxin PTX3 as a paradigmatic example of fluid phase PRMs. PTX3 acts as a functional ancestor of antibodies and plays a non-redundant role in resistance against selected microbes in mouse and man and in the regulation of inflammation. This molecule interacts with complement components, thus modulating complement activation. In particular, PTX3 regulates complement-driven macrophage-mediated tumor progression, acting as an extrinsic oncosuppressor in preclinical models and selected human tumors. Evidence collected over the years suggests that PTX3 is a biomarker and potential therapeutic agent in humans, and pave the way to translation of this molecule into the clinic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Neural progenitor cells regulate microglia functions and activity.

    Science.gov (United States)

    Mosher, Kira I; Andres, Robert H; Fukuhara, Takeshi; Bieri, Gregor; Hasegawa-Moriyama, Maiko; He, Yingbo; Guzman, Raphael; Wyss-Coray, Tony

    2012-11-01

    We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.

  2. Active galactic nuclei activity: self-regulation from backflow

    Science.gov (United States)

    Antonuccio-Delogu, V.; Silk, Joseph

    2010-06-01

    We study the internal circulation within the cocoon carved out by the relativistic jet emanating from an active galactic nucleus (AGN) within the interstellar medium (ISM) of its host galaxy. First, we develop a model for the origin of the internal flow, noticing that a significant increase of large-scale velocity circulation within the cocoon arises as significant gradients in the density and entropy are created near the hotspot (a consequence of Crocco's vorticity generation theorem). We find simple and accurate approximate solutions for the large-scale flow, showing that a backflow towards the few inner parsec region develops. We solve the appropriate fluid dynamic equations, and we use these solutions to predict the mass inflow rates towards the central regions. We then perform a series of 2D simulations of the propagation of jets using FLASH 2.5, in order to validate the predictions of our model. In these simulations, we vary the mechanical input power between 1043 and 1045 ergs-1, and assume a Navarro-Frenk-White (NFW) density profile for the dark matter halo, within which an isothermal diffuse ISM is embedded. The backflows which arise supply the central AGN region with very low angular-momentum gas, at average rates of the order of , the exact value seen to be strongly dependent on the central ISM density (for fixed input jet power). The time-scales of these inflows are apparently weakly dependent on the jet/ISM parameters, and are of the order of . We then argue that these backflows could (at least partially) feed the AGN, and provide a self-regulatory mechanism of AGN activity, that is not directly controlled by, but instead controls, the star formation rate within the central circumnuclear disc.

  3. Signal integration by Ca2+ regulates intestinal stem cell activity

    Science.gov (United States)

    Deng, Hansong; Gerencser, Akos A.; Jasper, Heinrich

    2015-01-01

    Summary Somatic stem cells (SCs) maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here, we identify Ca2+ signaling as a central regulator of intestinal SC (ISC) activity in Drosophila. We find that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response and for an associated modulation of cytosolic Ca2+ oscillations that results in sustained high cytosolic Ca2+ concentrations. High cytosolic Ca2+ induces ISC proliferation by regulating Calcineurin and CREB - regulated transcriptional co-activator (CRTC). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca2+ oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca2+ levels allows effective integration of diverse mitogenic signals in ISCs to tailor their proliferative activity to the needs of the tissue. PMID:26633624

  4. How is AMPK activity regulated in skeletal muscles during exercise?

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Rose, Adam John

    2008-01-01

    discuss the influence of reactive oxygen species produced within the muscle as well as muscle glycogen and TAK1 in regulating AMPK during exercise. Currently, during intensive contraction, activation of alpha2-AMPK seems mainly to rely on AMP accumulating from ATP-hydrolysis whereas calcium signaling may...

  5. Role of PDI in regulating tissue factor: FVIIa activity.

    Science.gov (United States)

    Popescu, Narcis I; Lupu, Cristina; Lupu, Florea

    2010-04-01

    Cell exposed tissue factor (TF) is generally in a low procoagulant ("cryptic") state, and requires an activation step (decryption) to exhibit its full procoagulant potential. Recent data suggest that TF decryption may be regulated by the redox environment through the oxidoreductase activity of protein disulfide isomerase (PDI). In this article we review PDI contribution to different models of TF decryption, namely the disulfide switch model and the phosphatidylserine dynamics, and hypothesize on PDI contribution to TF self-association and association with lipid domains. Experimental evidence debate the disulfide switch model of TF decryption and its regulation by PDI. More recently we showed that PDI oxidoreductase activity regulates the phosphatidylserine equilibrium at the plasma membrane. Interestingly, PDI reductase activity could maintain TF in the reduced monomeric form, while also maintaining low exposure of PS, both states correlated with low procoagulant function. In contrast, PDI inhibition or oxidants may promote the adverse effects with a net increase in coagulation. The relative contribution of disulfide isomerization and PS exposure needs to be further analyzed to understand the redox control of TF procoagulant function. For the moment however TF regulation remains cryptic.

  6. Neuronal Activity Regulates Hippocampal miRNA Expression

    Science.gov (United States)

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control. PMID:21984899

  7. Neuronal activity regulates hippocampal miRNA expression.

    Directory of Open Access Journals (Sweden)

    Stephen M Eacker

    Full Text Available Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control.

  8. 76 FR 28801 - Agency Information Collection Activities: Bonded Warehouse Regulations

    Science.gov (United States)

    2011-05-18

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse... approval in accordance with the Paperwork Reduction Act: Bonded Warehouse Regulations. This is a proposed..., mechanical, or other technological techniques or other forms of information. Title: Bonded...

  9. Commission for Energy regulation (CRE) - Activity report June 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2004 activity report of CRE. Content: A - Opening of the gas and electricity markets for professional customers on 1 July 2004; B - Regulation of the gas market: Gas markets and players (The European environment, The French gas market); Regulation of the gas market (Implementing regulation, Works planned for the coming year; C - Regulation of the electricity market: The electricity markets and players (The European electricity markets, The French electricity market, Monitoring the electricity market); Regulation of the French electricity market (Access to public grid, Cross-border exchanges, Un-bundled accounting principles); The public electricity service in the regulated market (Content of the public service, Public service charges, Electricity production public service financing, Electricity sales tariffs) D - The working of CRE: How CRE exercises its jurisdiction, Tools; E - Appendices: Glossary, Units and conversions, Council of European Energy Regulators, Index of tables and figures.

  10. Myeloid cell nuclear differentiation antigen is expressed in a subset of marginal zone lymphomas and is useful in the differential diagnosis with follicular lymphoma.

    Science.gov (United States)

    Metcalf, Ryan A; Monabati, Ahmad; Vyas, Monika; Roncador, Giovanna; Gualco, Gabriela; Bacchi, Carlos E; Younes, Sheren F; Natkunam, Yasodha; Freud, Aharon G

    2014-08-01

    The diagnosis of marginal zone lymphomas (MZL) is challenged by the lack of specific markers that distinguish them from other low-grade non-Hodgkin B-cell lymphomas. Myeloid cell nuclear differentiation antigen (MNDA) is a nuclear protein that labels myelomonocytic cells as well as B lymphocytes that localize to the marginal zone areas of splenic white pulp. We evaluated MNDA expression in a large series of B-cell lymphomas to assess the sensitivity and specificity of this antigen for the characterization of MZL. A total of 440 tissue sections containing extramedullary B-cell lymphomas and 216 bone marrow biopsies containing atypical or neoplastic lymphoid infiltrates were stained for MNDA by immunohistochemistry. Among the extramedullary lymphoma cases, approximately 67% of nodal MZL, 61% of extranodal MZL, and 24% of splenic MZL expressed MNDA. MNDA was also infrequently expressed in other B-cell neoplasms including mantle cell lymphoma (6%), chronic lymphocytic leukemia/small lymphocytic lymphoma (13%), follicular lymphoma (FL) (4%), lymphoplasmacytic lymphoma (25%), and diffuse large B-cell lymphoma (3%). In contrast, MNDA was only expressed in 2.3% of all bone marrow biopsies involved by lymphoid infiltrates, including 2 cases of FL and one case of MZL. Collectively, these data support the inclusion of MNDA in the diagnostic evaluation of extramedullary B-cell lymphomas, particularly those in which the differential diagnosis is between low-grade FL and MZL.

  11. Bovine viral diarrhea virus type 2 in vivo infection modulates TLR4 responsiveness in differentiated myeloid cells which is associated with decreased MyD88 expression.

    Science.gov (United States)

    Schaut, Robert G; McGill, Jodi L; Neill, John D; Ridpath, Julia F; Sacco, Randy E

    2015-10-02

    Symptoms of bovine viral diarrhea virus (BVDV) infection range from subclinical to severe, depending on strain virulence. Several in vitro studies showed BVDV infection impaired leukocyte function. Fewer studies have examined the effects of in vivo BVDV infection on monocyte/macrophage function, especially with strains of differing virulence. We characterized cytokine production by bovine myeloid cells isolated early or late in high (HV) or low virulence (LV) BVDV2 infection. Given BVDV infection may enhance susceptibility to secondary bacterial infection, LPS responses were examined as well. Monocytes from HV and LV infected calves produced higher levels of cytokines compared to cells from controls. In contrast, monocyte-derived macrophage cytokine levels were generally reduced. Modulated cytokine expression in HV BVDV2 macrophages was associated with decreased MyD88 expression, likely due to its interaction with viral NS5A. These data and those of others, suggest that certain Flaviviridae may have evolved strategies for subverting receptor signaling pathways involving MyD88.

  12. Transcriptional regulation of mononuclear phagocyte development

    Directory of Open Access Journals (Sweden)

    Roxane eTussiwand

    2015-10-01

    Full Text Available IntroductionThe mononuclear-phagocyte system (MPS, which comprises dendritic cells (DCs, macrophages and monocytes, is a heterogeneous group of myeloid cells. The complexity of the MPS is equally reflected by the plasticity in function and phenotype that characterizes each subset depending on their location and activation state. Specialized subsets of Mononuclear Phagocytes (MP reside in defined anatomical locations, are critical for the homeostatic maintenance of tissues, and provide the link between innate and adaptive immune responses during infections. The ability of MP to maintain or to induce the correct tolerogenic or inflammatory milieu also resides in their complex subset specialization. Such subset heterogeneity is obtained through lineage diversification and specification, which is controlled by defined transcriptional networks and programs. Understanding the MP biology means to define their transcriptional signature, which is required during lineage commitment, and which characterizes each subset’s features. This review will focus on the transcriptional regulation of the MPS; in particular what determines lineage commitment and functional identity; we will emphasizes recent advances in the field of single cell analysis and highlight unresolved questions in the field.

  13. Complement system part I - molecular mechanisms of activation and regulation

    Directory of Open Access Journals (Sweden)

    Nicolas eMerle

    2015-06-01

    Full Text Available Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins and the membrane attack complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly we will discuss the development and benefits of therapies using complement inhibitors.

  14. Cyclin-dependent kinase 9 activity regulates neutrophil spontaneous apoptosis.

    Directory of Open Access Journals (Sweden)

    Keqing Wang

    Full Text Available Neutrophils are the most abundant leukocyte and play a central role in the immune defense against rapidly dividing bacteria. However, they are also the shortest lived cell in the blood with a lifespan in the circulation of 5.4 days. The mechanisms underlying their short lifespan and spontaneous entry into apoptosis are poorly understood. Recently, the broad range cyclin-dependent kinase (CDK inhibitor R-roscovitine was shown to increase neutrophil apoptosis, implicating CDKs in the regulation of neutrophil lifespan. To determine which CDKs were involved in regulating neutrophil lifespan we first examined CDK expression in human neutrophils and found that only three CDKs: CDK5, CDK7 and CDK9 were expressed in these cells. The use of CDK inhibitors with differing selectivity towards the various CDKs suggested that CDK9 activity regulates neutrophil lifespan. Furthermore CDK9 activity and the expression of its activating partner cyclin T1 both declined as neutrophils aged and entered apoptosis spontaneously. CDK9 is a component of the P-TEFb complex involved in transcriptional regulation and its inhibition will preferentially affect proteins with short half-lives. Treatment of neutrophils with flavopiridol, a potent CDK9 inhibitor, increased apoptosis and caused a rapid decline in the level of the anti-apoptotic protein Mcl-1, whilst Bcl2A was unaffected. We propose that CDK9 activity is a key regulator of neutrophil lifespan, preventing apoptosis by maintaining levels of short lived anti-apoptotic proteins such as Mcl-1. Furthermore, as inappropriate inhibition of neutrophil apoptosis contributes to chronic inflammatory diseases such as Rheumatoid Arthritis, CDK9 represents a novel therapeutic target in such diseases.

  15. Cbl negatively regulates JNK activation and cell death

    Institute of Scientific and Technical Information of China (English)

    Andrew A Sproul; Zhiheng Xu; Michael Wilhelm; Stephen Gire; Lloyd A Greene

    2009-01-01

    Here, we explore the role of Cbl proteins in regulation of neuronal apoptosis. In two paradigms of neuron apopto-sis--nerve growth factor (NGF) deprivation and DNA damage--cellular levels of c-Cbl and Cbl-b fell well before the onset of cell death. NGF deprivation also induced rapid loss of tyrosine phosphorylation (and most likely, activa-tion) of c-Cbl. Targeting e-Cbl and Cbl-b with siRNAs to mimic their loss/inactivation sensitized neuronal cells to death promoted by NGF deprivation or DNA damage. One potential mechanism by which Cbl proteins might affect neuronal death is by regulation of apoptotic c-Jun N-terminal kinase (JNK) signaling. We demonstrate that Cbl pro-teins interact with the JNK pathway components mixed lineage kinase (MLK) 3 and POSH and that knockdown of Cbl proteins is sufficient to increase JNK pathway activity. Furthermore, expression of c-Cbl blocks the ability of MLKs to signal to downstream components of the kinase cascade leading to JNK activation and protects neuronal cells from death induced by MLKs, but not from downstream JNK activators. On the basis of these findings, we propose that Cbls suppress cell death in healthy neurons at least in part by inhibiting the ability of MLKs to activate JNK signaling. Apoptotic stimuli lead to loss of Cbl protein/activity, thereby removing a critical brake on JNK acti-vation and on cell death.

  16. CYLD regulates RhoA activity by modulating LARG ubiquitination.

    Directory of Open Access Journals (Sweden)

    Yunfan Yang

    Full Text Available Rho family guanosine triphosphatases (GTPases, such as RhoA, Cdc42, and Rac1, play a fundamental role in various cellular processes. The activation of Rho proteins is catalyzed by guanine nucleotide-exchange factors (GEFs, which promote the exchange of GDP for GTP. The precise mechanisms regulating the activation of Rho proteins are not fully understood. Herein, we demonstrate that RhoA activity is regulated by cylindromatosis (CYLD, a deubiquitinase harboring multiple functions. In addition, we find that RhoA-mediated cytoskeletal rearrangement, chromosome separation, and cell polarization are altered in CYLD-depleted cells. Mechanistically, CYLD does not interact with RhoA; instead, it interacts with and deubiquitinates leukemia-associated RhoGEF (LARG. Our data further show that CYLD-mediated deubiquitination of LARG enhances its ability to stimulate the GDP/GTP exchange on RhoA. These data thus identify LARG as a new substrate of CYLD and provide novel insights into the regulation of RhoA activation. Our results also suggest that the LARG-RhoA signaling pathway may play a role in diverse CYLD-mediated cellular events.

  17. CYLD regulates RhoA activity by modulating LARG ubiquitination.

    Science.gov (United States)

    Yang, Yunfan; Sun, Lei; Tala; Gao, Jinmin; Li, Dengwen; Zhou, Jun; Liu, Min

    2013-01-01

    Rho family guanosine triphosphatases (GTPases), such as RhoA, Cdc42, and Rac1, play a fundamental role in various cellular processes. The activation of Rho proteins is catalyzed by guanine nucleotide-exchange factors (GEFs), which promote the exchange of GDP for GTP. The precise mechanisms regulating the activation of Rho proteins are not fully understood. Herein, we demonstrate that RhoA activity is regulated by cylindromatosis (CYLD), a deubiquitinase harboring multiple functions. In addition, we find that RhoA-mediated cytoskeletal rearrangement, chromosome separation, and cell polarization are altered in CYLD-depleted cells. Mechanistically, CYLD does not interact with RhoA; instead, it interacts with and deubiquitinates leukemia-associated RhoGEF (LARG). Our data further show that CYLD-mediated deubiquitination of LARG enhances its ability to stimulate the GDP/GTP exchange on RhoA. These data thus identify LARG as a new substrate of CYLD and provide novel insights into the regulation of RhoA activation. Our results also suggest that the LARG-RhoA signaling pathway may play a role in diverse CYLD-mediated cellular events.

  18. Lhx8 regulates primordial follicle activation and postnatal folliculogenesis.

    Science.gov (United States)

    Ren, Yu; Suzuki, Hitomi; Jagarlamudi, Krishna; Golnoski, Kayla; McGuire, Megan; Lopes, Rita; Pachnis, Vassilis; Rajkovic, Aleksandar

    2015-06-16

    The early stages of ovarian follicle formation-beginning with the breakdown of germ cell cysts and continuing with the formation of primordial follicles and transition to primary and secondary follicles-are critical in determining reproductive life span and fertility. Previously, we discovered that global knockouts of germ cell-specific transcriptional co-regulators Sohlh1, Sohlh2, Lhx8, and Nobox, cause rapid oocyte loss and ovarian failure. Also factors such as Nobox and Sohlh1 are associated with human premature ovarian failure. In this study, we developed a conditional knockout of Lhx8 to study oocyte-specific pathways in postnatal folliculogenesis. The conditional deficiency of Lhx8 in the oocytes of primordial follicles leads to massive primordial oocyte activation, in part, by indirectly interacting with the PI3K-AKT pathway, as shown by synergistic effects on FOXO3 nucleocytoplasmic translocation and rpS6 activation. However, LHX8 does not directly regulate members of the PI3K-AKT pathway; instead, we show that LHX8 represses Lin28a expression, a known regulator of mammalian metabolism and of the AKT/mTOR pathway. LHX8 can bind to the Lin28a promoter, and the depletion of Lin28a in Lhx8-deficient oocytes partially suppresses primordial oocyte activation. Moreover, unlike the PI3K-AKT pathway, LHX8 is critical beyond primordial follicle activation, and blocks the primary to secondary follicle transition. Our results indicate that the LHX8-LIN28A pathway is essential in the earliest stages of primordial follicle activation, and LHX8 is an important oocyte-specific transcription factor in the ovary for regulating postnatal folliculogenesis.

  19. Alexithymia influences brain activation during emotion perception but not regulation.

    Science.gov (United States)

    van der Velde, Jorien; Gromann, Paula M; Swart, Marte; Wiersma, Durk; de Haan, Lieuwe; Bruggeman, Richard; Krabbendam, Lydia; Aleman, André

    2015-02-01

    Alexithymia is a psychological construct that can be divided into a cognitive and affective dimension. The cognitive dimension is characterized by difficulties in identifying, verbalizing and analysing feelings. The affective dimension comprises reduced levels of emotional experience and imagination. Alexithymia is widely regarded to arise from an impairment of emotion regulation. This is the first functional magnetic resonance imaging (fMRI) study to critically evaluate this by investigating the neural correlates of emotion regulation as a function of alexithymia levels. The aim of the current study was to investigate the neural correlates underlying the two alexithymia dimensions during emotion perception and emotion regulation. Using fMRI, we scanned 51 healthy subjects while viewing, reappraising or suppressing negative emotional pictures. The results support the idea that cognitive alexithymia, but not affective alexithymia, is associated with lower activation in emotional attention and recognition networks during emotion perception. However, in contrast with several theories, no alexithymia-related differences were found during emotion regulation (neither reappraisal nor suppression). These findings suggest that alexithymia may result from an early emotion processing deficit rather than compromised frontal circuits subserving higher-order emotion regulation processes.

  20. Neuronal activity-induced regulation of Lingo-1.

    Science.gov (United States)

    Trifunovski, Alexandra; Josephson, Anna; Ringman, Andreas; Brené, Stefan; Spenger, Christian; Olson, Lars

    2004-10-25

    Axonal regeneration after injury can be limited in the adult CNS by the presence of inhibitory proteins such as Nogo. Nogo binds to a receptor complex that consists of Nogo receptor (NgR), p75NTR, and Lingo-1. Nogo binding activates RhoA, which inhibits axonal outgrowth. Here we assessed Lingo-1 and NgR mRNA levels after delivery of BDNF into the rat hippocampal formation, Lingo-1 mRNA levels in rats subjected to kainic acid (KA) and running in running wheels. Lingo-1 mRNA was not changed by running. However, we found that Lingo-1 mRNA was strongly up-regulated while NgR mRNA was down-regulated in the dentate gyrus in both the BDNF and the KA experiments. Our data demonstrate inverse regulation of NgR and Lingo-1 in these situations, suggesting that Lingo-1 up-regulation is one characteristic of activity-induced neural plasticity responses.

  1. Commission for Energy regulation (CRE) - Activity report June 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2007 activity report of CRE. Content: A - Towards a single European energy market: Birth of a single European energy market (Origins of Europe of Energy, Emergence of a European energy policy); Main European Community guiding lines (European governance as regards energy, Guiding principles for the internal energy market); European Community activities (European Commission reports, Electricity and gas Regional Initiatives); Organisation and coordination of European regulators (Joint organisation of European regulators, CRE's relations with European Community institutions); CRE's European activities (Regional integration of gas markets, Regional integration of electricity markets, Operation of the European interconnected electricity grid and security of supply, CRE's other European activities); B - CRE action at national level: Grids/networks and infrastructures (General information, Electricity grids, Regulation of gas networks and infrastructures); Markets (Changes in the regulatory and legislative contexts of electricity and natural gas markets, Electricity markets

  2. Regulation of burstiness by network-driven activation

    CERN Document Server

    García-Pérez, Guillermo; Serrano, M Ángeles

    2014-01-01

    We prove that complex networks of interactions have the capacity to regulate and buffer unpredictable fluctuations in production events. We show that non-bursty network-driven activation dynamics can effectively regulate the level of burstiness in the production of nodes, which can be enhanced or reduced. Burstiness can be induced even when the endogenous inter-event time distribution of nodes' production is non-bursty. We found that hubs tend to be less controllable than low degree nodes, which are more susceptible to the networked regulatory effects. Our results have important implications for the analysis and engineering of bursty activity in a range of systems, from telecommunication networks to transcription and translation of genes into proteins in cells.

  3. Shape regulation generates elastic interaction between active force dipoles

    CERN Document Server

    Golkov, Roman

    2016-01-01

    The organization of live cells to tissues is associated with the mechanical interaction between cells, which is mediated through their mechanical environment. We model live cells as spherical active force dipoles surrounded by an infinite elastic matrix, and analytically evaluate their elastic interaction energy for different scenarios of their regulatory behavior. For purely dilational eigenstrains the elastic interaction energy between any two bodies vanishes. We identify mechanical interactions between active cells applying non isotropic displacements with a regulation mechanism designed so that they will preserve their spherical shape. We express the resultant non-isotropic deformation field by a multipole expansion in terms of spherical harmonics. Mechanical self-regulation of live cells is not fully understood, and we compare homeostatic (set point) force applied by the cells on their environment versus homeostatic displacements on their surface. By including or excluding the first term of the expansion...

  4. A Rewriting Framework and Logic for Activities Subject to Regulations

    Science.gov (United States)

    2015-02-28

    Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Talcott. All About Maude: A High-Performance Logical Framework. Springer , 2007. R. Corin, S. Etalle, P. H...Under consideration for publication in Math. Struct. in Comp. Science A Rewriting Framework and Logic for Activities Subject to Regulations M A X K A...whenever applied. We present a formal semantics of our model based on focused proofs of linear logic with definitions. We also determine the

  5. Runx1 Regulates Myeloid Precursor Differentiation Into Osteoclasts Without Affecting Differentiation Into Antigen Presenting or Phagocytic Cells in Both Males and Females

    Science.gov (United States)

    Paglia, David N.; Yang, Xiaochuan; Kalinowski, Judith; Jastrzebski, Sandra

    2016-01-01

    Runt-related transcription factor 1 (Runx1), a master regulator of hematopoiesis, is expressed in preosteoclasts. Previously we evaluated the bone phenotype of CD11b-Cre Runx1fl/fl mice and demonstrated enhanced osteoclasts and decreased bone mass in males. However, an assessment of the effects of Runx1 deletion in female osteoclast precursors was impossible with this model. Moreover, the role of Runx1 in myeloid cell differentiation into other lineages is unknown. Therefore, we generated LysM-Cre Runx1fl/fl mice, which delete Runx1 equally (∼80% deletion) in myeloid precursor cells from both sexes and examined the capacity of these cells to differentiate into osteoclasts and phagocytic and antigen-presenting cells. Both female and male LysM-Cre Runx1fl/fl mice had decreased trabecular bone mass (72% decrease in bone volume fraction) and increased osteoclast number (2–3 times) (P LysM-Cre did not alter the number of myeloid precursor cells in bone marrow or their ability to differentiate into phagocytizing or antigen-presenting cells. This study demonstrates that abrogation of Runx1 in multipotential myeloid precursor cells significantly and specifically enhanced the ability of receptor activator of nuclear factor-κB ligand to stimulate osteoclast formation and fusion in female and male mice without affecting other myeloid cell fates. In turn, increased osteoclast activity in LysM-Cre Runx1fl/fl mice likely contributed to a decrease in bone mass. These dramatic effects were not due to increased osteoclast precursors in the deleted mutants and argue that inhibition of Runx1 in multipotential myeloid precursor cells is important for osteoclast formation and function. PMID:27267711

  6. Harvester ants use interactions to regulate forager activation and availability.

    Science.gov (United States)

    Pinter-Wollman, Noa; Bala, Ashwin; Merrell, Andrew; Queirolo, Jovel; Stumpe, Martin C; Holmes, Susan; Gordon, Deborah M

    2013-07-01

    Social groups balance flexibility and robustness in their collective response to environmental changes using feedback between behavioural processes that operate at different timescales. Here we examine how behavioural processes operating at two timescales regulate the foraging activity of colonies of the harvester ant, Pogonomyrmex barbatus, allowing them to balance their response to food availability and predation. Previous work showed that the rate at which foragers return to the nest with food influences the rate at which foragers leave the nest. To investigate how interactions inside the nest link the rates of returning and outgoing foragers, we observed outgoing foragers inside the nest in field colonies using a novel observation method. We found that the interaction rate experienced by outgoing foragers inside the nest corresponded to forager return rate, and that the interactions of outgoing foragers were spatially clustered. Activation of a forager occurred on the timescale of seconds: a forager left the nest 3-8 s after a substantial increase in interactions with returning foragers. The availability of outgoing foragers to become activated was adjusted on the timescale of minutes: when forager return was interrupted for more than 4-5 min, available foragers waiting near the nest entrance went deeper into the nest. Thus, forager activation and forager availability both increased with the rate at which foragers returned to the nest. This process was checked by negative feedback between forager activation and forager availability. Regulation of foraging activation on the timescale of seconds provides flexibility in response to fluctuations in food abundance, whereas regulation of forager availability on the timescale of minutes provides robustness in response to sustained disturbance such as predation.

  7. PLAP-1/Asporin Positively Regulates FGF-2 Activity.

    Science.gov (United States)

    Awata, T; Yamada, S; Tsushima, K; Sakashita, H; Yamaba, S; Kajikawa, T; Yamashita, M; Takedachi, M; Yanagita, M; Kitamura, M; Murakami, S

    2015-10-01

    PLAP-1 is an extracellular matrix protein that is predominantly expressed in the periodontal ligament within periodontal tissue. It was previously revealed that PLAP-1 negatively regulates bone morphogenetic protein 2 and transforming growth factor β activity through direct interactions. However, the interaction between PLAP-1 and other growth factors has not been defined. Here, we revealed that PLAP-1 positively regulates the activity of fibroblast growth factor 2 (FGF-2), a critical growth factor in tissue homeostasis and repair. In this study, we isolated mouse embryonic fibroblasts (MEFs) from Plap-1(-/-) mice generated in our laboratory. Interestingly, Plap-1(-/-) MEFs exhibited enhanced responses to bone morphogenetic protein 2 but defective responses to FGF-2, and Plap-1 transfection into Plap-1(-/-) MEFs rescued these defective responses. In addition, binding assays revealed that PLAP-1 promotes FGF-2-FGF receptor 1 (FGFR1) complex formation by direct binding to FGF-2. Immunocytochemistry analyses revealed colocalization of PLAP-1 and FGF-2 in wild-type MEFs and reduced colocalization of FGF-2 and FGFR1 in Plap-1(-/-) MEFs compared with wild-type MEFs. Taken together, PLAP-1 positively regulates FGF-2 activity through a direct interaction. Extracellular matrix-growth factor interactions have considerable effects; thus, this approach may be useful in several regenerative medicine applications.

  8. Length regulation of active biopolymers by molecular motors.

    Science.gov (United States)

    Johann, Denis; Erlenkämper, Christoph; Kruse, Karsten

    2012-06-22

    For biopolymers like cytoskeletal actin filaments and microtubules, assembly and disassembly are inherently dissipative processes. Molecular motors can affect the rates of subunit removal at filament ends. We introduce a driven lattice-gas model to study the effects of motor-induced depolymerization on the length of active biopolymers and find that increasing motor activity sharpens unimodal steady-state length distributions. Furthermore, for sufficiently fast moving motors, the relative width of the length distribution is determined only by the attachment rate of motors. Our results show how established molecular processes can be used to robustly regulate the size of cytoskeletal structures like mitotic spindles.

  9. Regulation of eNOS enzyme activity by posttranslational modification.

    Science.gov (United States)

    Heiss, Elke H; Dirsch, Verena M

    2014-01-01

    The regulation of endothelial NO synthase (eNOS) employs multiple different cellular control mechanisms impinging on level and activity of the enzyme. This review aims at summarizing the current knowledge on the posttranslational modifications of eNOS, including acylation, nitrosylation, phosphorylation, acetylation, glycosylation and glutathionylation. Sites, mediators and impact on enzyme localization and activity of the single modifications will be discussed. Moreover, interdependence, cooperativity and competition between the different posttranslational modifications will be elaborated with special emphasis on the susceptibility of eNOS to metabolic cues.

  10. Raf activation is regulated by tyrosine 510 phosphorylation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Fan Xia

    2008-05-01

    Full Text Available The proto-oncoprotein Raf is pivotal for mitogen-activated protein kinase (MAPK signaling, and its aberrant activation has been implicated in multiple human cancers. However, the precise molecular mechanism of Raf activation, especially for B-Raf, remains unresolved. By genetic and biochemical studies, we demonstrate that phosphorylation of tyrosine 510 is essential for activation of Drosophila Raf (Draf, which is an ortholog of mammalian B-Raf. Y510 of Draf is phosphorylated by the c-src homolog Src64B. Acidic substitution of Y510 promotes and phenylalanine substitution impairs Draf activation without affecting its enzymatic activity, suggesting that Y510 plays a purely regulatory role. We further show that Y510 regulates Draf activation by affecting the autoinhibitory interaction between the N- and C-terminal fragments of the protein. Finally, we show that Src64B is required for Draf activation in several developmental processes. Together, these results suggest a novel mechanism of Raf activation via Src-mediated tyrosine phosphorylation. Since Y510 is a conserved residue in the kinase domain of all Raf proteins, this mechanism is likely evolutionarily conserved.

  11. Regulation of Natural Killer Cell Function by STAT3

    Directory of Open Access Journals (Sweden)

    Nicholas eCacalano

    2016-04-01

    Full Text Available Natural killer (NK cells, key members of a distinct hempatopoietic lineage, innate lymphoid cells (ILCs, are critical effectors that mediate cytotoxicity toward tumor and virally-infected cells but also regulate inflammation, antigen presentation and the adaptive immune response. It has been shown that NK cells can regulate the development and activation of many other components of the immune response such as dendritic cells, which in turn, modulate the function of NK cells in multiple synergistic feed back loops driven by cell-cell contact and the secretion of cytokines and chemokines that control effector function and migration of cells to sites of immune activation. The Signal Transducer and Activator of Transcription (STAT-3 is involved in driving almost all of the pathways that control NK cytolytic activity as well as the reciprocal regulatory interactions between NK cells and other components of the immune system. In the context of tumor immunology, NK cells are a first line of defense that eliminates pre-cancerous and transformed cells early in the process of carcinogenesis, through a mechanism of immune surveillance. Even after tumors become established, NK cells are critical components of anti-cancer immunity: dysfunctional NK cells are often found in the peripheral blood of cancer patients and the lack of NK cells in the tumor microenvironment often correlates with poor prognosis. The pathways and soluble factors activated in tumor-associated NK cells, cancer cells, and regulatory myeloid cells which determine the outcome of cancer immunity are all critically regulated by STAT3. Using the tumor microenvironment as a paradigm, we present here an overview of the research that has revealed fundamental mechanisms through which STAT3 regulates all aspects of natural killer cell biology, including NK development, activation, target cell killing, and fine tuning of the innate and adaptive immune responses.

  12. ATPase activity of the cystic fibrosis transmembrane conductance regulator.

    Science.gov (United States)

    Li, C; Ramjeesingh, M; Wang, W; Garami, E; Hewryk, M; Lee, D; Rommens, J M; Galley, K; Bear, C E

    1996-11-08

    The gene mutated in cystic fibrosis codes for the cystic fibrosis transmembrane conductance regulator (CFTR), a cyclic AMP-activated chloride channel thought to be critical for salt and water transport by epithelial cells. Plausible models exist to describe a role for ATP hydrolysis in CFTR channel activity; however, biochemical evidence that CFTR possesses intrinsic ATPase activity is lacking. In this study, we report the first measurements of the rate of ATP hydrolysis by purified, reconstituted CFTR. The mutation CFTRG551D resides within a motif conserved in many nucleotidases and is known to cause severe human disease. Following reconstitution the mutant protein exhibited both defective ATP hydrolysis and channel gating, providing direct evidence that CFTR utilizes ATP to gate its channel activity.

  13. Diagnostic Performance of Soluble Triggering Receptor Expressed on Myeloid Cells-1 in Ventilator-Associated Pneumonia of Patients with Ischemic Stroke

    Science.gov (United States)

    Yu, Yuetian; Liu, Chunyan

    2017-01-01

    Objective. To investigate the effect of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in serum, bronchoalveolar lavage fluid (BALF), endotracheal aspiration (ETA), and exhaled breath condensate (EBC) samples as early biomarkers for the diagnosis of ventilator-associated pneumonia (VAP) in patients with ischemic stroke. Methods. One hundred and thirty-two patients with clinically suspected VAP were enrolled in this study. Bronchoscopy was performed on the day of clinically suspected VAP. sTREM-1 levels in serum, BALF, ETA, and EBC were measured. VAP was diagnosed by quantitative cultures of BALF (≥104 cfu/mL). Results. VAP was confirmed in 76 (57.58%) cases. Patients with VAP showed significantly higher sTREM-1 in BALF [32.35 (IQR, 30.08–41.72) versus 18.92 (11.89–31.72)] pg/mL and in EBC [1.57 (IQR, 1.02–2.61) versus 0.41 (0.19–1.61)] pg/mL than patients without VAP. The area under the curve was 0.813 (p < 0.001). The optimum cut-off value for sTREM-1 in BALF was 23.61 pg/mL, yielding sensitivity and specificity of 85.5% and 73.1%. sTREM-1 in BALF had excellent correlation with that in EBC (R2 = 0.78, p < 0.05). Conclusions. sTREM-1 in EBC and BALF had good diagnostic performance in differentiating patients with and without VAP.

  14. Deletion of gp130 in myeloid cells modulates IL-6-release and is associated with more severe liver injury of Con A hepatitis.

    Science.gov (United States)

    Lutz, H H; Sackett, S D; Kroy, D C; Gassler, N; Trautwein, C

    2012-01-01

    IL-6/gp130 dependent signaling plays an important role in modulating inflammation in acute and chronic diseases. The course of Concanavalin A- (Con A) induced hepatitis can be modulated by different immune-mediated mechanisms. IL-6/gp130-dependent signaling has been shown to be protective in hepatocytes. However, the role of this pathway in myeloid cells has not yet been studied. In our present study we used macrophage/neutrophil-specific gp130 knockout (gp130(ΔLys), KO) animals and analyzed its relevance in modulating Con A-induced hepatitis. Additionally, we performed in vitro studies with gp130(ΔLys)-macrophages. We demonstrate that gp130(ΔLys) animals are more susceptible to Con A-induced hepatitis. This is reflected by higher transaminases, higher lethality and more severe liver injury as shown by histological staining. Using flow cytometry analysis we further could show that increased liver injury of gp130(ΔLys) animals is associated with a stronger infiltration of CD11b/F4/80 double-positive cells compared to wild-type (gp130(flox/flox), WT) controls. To further characterize our observations we studied thioglycolate-elicited peritoneal macrophages from gp130(ΔLys) animals. Interestingly, the LPS-dependent IL-6 release in gp130(ΔLys) macrophages is significantly reduced (pCon A injection were significantly lower in gp130(ΔLys) animals compared to WT animals (pCon A-induced hepatitis.

  15. Prospective Evaluation of Procalcitonin, Soluble Triggering Receptor Expressed on Myeloid Cells-1 and C-Reactive Protein in Febrile Patients with Autoimmune Diseases

    Science.gov (United States)

    Lin, Chou-Han; Hsieh, Song-Chou; Keng, Li-Ta; Lee, Ho-Sheng; Chang, Hou-Tai; Liao, Wei-Yu; Ho, Chao-Chi; Yu, Chong-Jen

    2016-01-01

    Background Both procalcitonin (PCT) and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) have been investigated separately as indicators of infection in patients with autoimmune diseases. Our study simultaneously evaluated both PCT and sTREM-1 along with C-reactive protein (CRP) in febrile patients with autoimmune diseases. Methods Fifty-nine patients were enrolled in the study. The patients were categorized into the infection group (n = 24) or the disease flare group (n = 35). sTREM-1, PCT and CRP concentrations at fever onset were compared between the two groups of patients. Results sTREM-1 and CRP did not differ between the two groups. PCT [median (range), ng/ml] was higher in the infection group than in the disease flare group [0.53 (0.02–12.85) vs. 0.12 (0.02–19.23), p = 0.001]. The area under the receiver-operating characteristic (ROC) for diagnosis of infection was 0.75 for PCT (p = 0.001), 0.63 for CRP (p = 0.09) and 0.52 for sTREM-1 (p = 0.79). Using 0.2 ng/ml as the cutoff value for PCT, sensitivity was 0.75 and specificity was 0.77. Negative predictive values for PCT were 92%, 87% and 82% for a prevalence of infection of 20%, 30%, and 40%, respectively. Neither immunosuppressants nor biomodulators affected the level of the three biomarkers. However, in patients treated with corticosteroids, the levels of sTREM-1 and CRP were significantly decreased compared with the untreated patients. Conclusions Setting PCT at a lower cutoff value could provide useful information on excluding infection in febrile patients with autoimmune diseases. The possible effect of corticosteroids on the level of sTREM-1 as an infection marker deserves further study. PMID:27096761

  16. Diagnostic Performance of Soluble Triggering Receptor Expressed on Myeloid Cells-1 in Ventilator-Associated Pneumonia of Patients with Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Yuetian Yu

    2017-01-01

    Full Text Available Objective. To investigate the effect of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1 in serum, bronchoalveolar lavage fluid (BALF, endotracheal aspiration (ETA, and exhaled breath condensate (EBC samples as early biomarkers for the diagnosis of ventilator-associated pneumonia (VAP in patients with ischemic stroke. Methods. One hundred and thirty-two patients with clinically suspected VAP were enrolled in this study. Bronchoscopy was performed on the day of clinically suspected VAP. sTREM-1 levels in serum, BALF, ETA, and EBC were measured. VAP was diagnosed by quantitative cultures of BALF (≥104 cfu/mL. Results. VAP was confirmed in 76 (57.58% cases. Patients with VAP showed significantly higher sTREM-1 in BALF [32.35 (IQR, 30.08–41.72 versus 18.92 (11.89–31.72] pg/mL and in EBC [1.57 (IQR, 1.02–2.61 versus 0.41 (0.19–1.61] pg/mL than patients without VAP. The area under the curve was 0.813 (p<0.001. The optimum cut-off value for sTREM-1 in BALF was 23.61 pg/mL, yielding sensitivity and specificity of 85.5% and 73.1%. sTREM-1 in BALF had excellent correlation with that in EBC (R2 = 0.78, p<0.05. Conclusions. sTREM-1 in EBC and BALF had good diagnostic performance in differentiating patients with and without VAP.

  17. Methamphetamine Regulation of Firing Activity of Dopamine Neurons.

    Science.gov (United States)

    Lin, Min; Sambo, Danielle; Khoshbouei, Habibeh

    2016-10-05

    Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca(2+) homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca(2+)-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane.

  18. E3 ubiquitin ligases Pellinos as regulators of pattern recognition receptor signaling and immune responses.

    Science.gov (United States)

    Medvedev, Andrei E; Murphy, Michael; Zhou, Hao; Li, Xiaoxia

    2015-07-01

    Pellinos are a family of E3 ubiquitin ligases discovered for their role in catalyzing K63-linked polyubiquitination of Pelle, an interleukin-1 (IL-1) receptor-associated kinase homolog in the Drosophila Toll pathway. Subsequent studies have revealed the central and non-redundant roles of mammalian Pellino-1, Pellino-2, and Pelino-3 in signaling pathways emanating from IL-1 receptors, Toll-like receptors, NOD-like receptors, T- and B-cell receptors. While Pellinos ability to interact with many signaling intermediates suggested their scaffolding roles, recent findings in mice expressing ligase-inactive Pellinos demonstrated the importance of Pellino ubiquitin ligase activity. Cell-specific functions of Pellinos have emerged, e.g. Pellino-1 being a negative regulator in T lymphocytes and a positive regulator in myeloid cells, and details of molecular regulation of receptor signaling by various members of the Pellino family have been revealed. In this review, we summarize current information about Pellino-mediated regulation of signaling by pattern recognition receptors, T-cell and B-cell receptors and tumor necrosis factor receptors, and discuss Pellinos roles in sepsis and infectious diseases, as well as in autoimmune, inflammatory, and allergic disorders. We also provide our perspective on the potential of targeting Pellinos with peptide- or small molecule-based drug compounds as a new therapeutic approach for septic shock and autoimmune pathologies.

  19. Hsp90 regulation of fibroblast activation in pulmonary fibrosis

    Science.gov (United States)

    Sontake, Vishwaraj; Wang, Yunguan; Kasam, Rajesh K.; Sinner, Debora; Reddy, Geereddy B.; Naren, Anjaparavanda P.; McCormack, Francis X.; Jegga, Anil G.; Madala, Satish K.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease associated with fibroblast activation that includes excessive proliferation, tissue invasiveness, myofibroblast transformation, and extracellular matrix (ECM) production. To identify inhibitors that can attenuate fibroblast activation, we queried IPF gene signatures against a library of small-molecule-induced gene-expression profiles and identified Hsp90 inhibitors as potential therapeutic agents that can suppress fibroblast activation in IPF. Although Hsp90 is a molecular chaperone that regulates multiple processes involved in fibroblast activation, it has not been previously proposed as a molecular target in IPF. Here, we found elevated Hsp90 staining in lung biopsies of patients with IPF. Notably, fibroblasts isolated from fibrotic lesions showed heightened Hsp90 ATPase activity compared with normal fibroblasts. 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a small-molecule inhibitor of Hsp90 ATPase activity, attenuated fibroblast activation and also TGF-β–driven effects on fibroblast to myofibroblast transformation. The loss of the Hsp90AB, but not the Hsp90AA isoform, resulted in reduced fibroblast proliferation, myofibroblast transformation, and ECM production. Finally, in vivo therapy with 17-AAG attenuated progression of established and ongoing fibrosis in a mouse model of pulmonary fibrosis, suggesting that targeting Hsp90 represents an effective strategy for the treatment of fibrotic lung disease. PMID:28239659

  20. Commission for Energy regulation (CRE) - Activity report june 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2006 activity report of CRE. Content: A - Opening of the electricity and natural gas markets to household consumers on 1 July 2007: CRE at the service of eligible customers (Information for eligible customers, Improved knowledge of non-household customers); Monitoring of the non-discrimination, transparency and independence of system operators (Drafting and distribution of codes of good conduct for system operators, The necessary improvement of system operator independence); Preparing the practical methods of opening: GTE 2007 and GTG 2007 (The necessary simplification of relations between operators and customers, Achieving a greater level of consumer information and protection, The clearly defined stages of the 'customer pathway', Profiling and settlement mechanisms: turning experience feedback from 2004 to good account); Persisting uncertainties and hurdles (The need for a suitable regulatory and legislative platform, Hurdles to the opening of the household market); B - Regulation of the natural gas market: The gas market in the European context (Increasing weight of

  1. Regulation of NK Cell Activation and Effector Functions by the IL-12 Family of Cytokines: The Case of IL-27

    Science.gov (United States)

    Zwirner, Norberto Walter; Ziblat, Andrea

    2017-01-01

    Natural killer (NK) cells are characterized by their ability to detect and induce apoptosis of susceptible target cells and by secretion of immunoregulatory cytokines such as IFN-γ. Activation of these effector functions is triggered upon recognition of tumor and pathogen (mostly virus)-infected cells and because of a bidirectional cross talk that NK cells establish with other cells of myeloid origin such as dendritic cells (DC) and macrophages. A common characteristic of these myeloid cells is their ability to secrete different members of the IL-12 family of cytokines such as IL-12, IL-23, and IL-27 and cytokines such as IL-15 and IL-18. Although the effect of IL-12, IL-15, and IL-18 has been characterized, the effect of IL-23 and IL-27 on NK cells (especially human) remains ill-defined. Particularly, IL-27 is a cytokine with dual functions as it has been described as pro- and as anti-inflammatory in different experimental settings. Recent evidence indicates that this cytokine indeed promotes human NK cell activation, IFN-γ secretion, NKp46-dependent NK cell-mediated cytotoxicity, and antibody (Ab)-dependent NK cell-mediated cytotoxicity (ADCC) against monoclonal Ab-coated tumor cells. Remarkably, IL-27 also primes NK cells for IL-18 responsiveness, enhancing these functional responses. Consequently, IL-27 acts as a pro-inflammatory cytokine that, in concert with other DC-derived cytokines, hierarchically contributes to NK cells activation and effector functions, which likely contributes to foster the adaptive immune response in different physiopathological conditions. PMID:28154569

  2. Active pre-filters for dc/dc Boost regulators

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Ramos-Paja

    2014-07-01

    Full Text Available This paper proposes an active pre-filter to mitigate the current harmonics generated by classical dc/dc Boost regulators, which generate current ripples proportional to the duty cycle. Therefore, high output voltage conditions, i.e., high voltage conversion ratios, produce high current harmonics that must be filtered to avoid damage or source losses. Traditionally, these current components are filtered using electrolytic capacitors, which introduce reliability problems because of their high failure rate. The solution introduced in this paper instead uses a dc/dc converter based on the parallel connection of the Boost canonical cells to filter the current ripples generated by the Boost regulator, improving the system reliability. This solution provides the additional benefits of improving the overall efficiency and the voltage conversion ratio. Finally, the solution is validated with simulations and experimental results.

  3. Epigenetic regulation of hepatic stellate cell activation and liver fibrosis.

    Science.gov (United States)

    El Taghdouini, Adil; van Grunsven, Leo A

    2016-12-01

    Chronic liver injury to hepatocytes or cholangiocytes, when left unmanaged, leads to the development of liver fibrosis, a condition characterized by the excessive intrahepatic deposition of extracellular matrix proteins. Activated hepatic stellate cells constitute the predominant source of extracellular matrix in fibrotic livers and their transition from a quiescent state during fibrogenesis is associated with important alterations in their transcriptional and epigenetic landscape. Areas covered: We briefly describe the processes involved in hepatic stellate cell activation and discuss our current understanding of alterations in the epigenetic landscape, i.e DNA methylation, histone modifications and the functional role of non-coding RNAs that accompany this key event in the development of chronic liver disease. Expert commentary: Although great progress has been made, our understanding of the epigenetic regulation of hepatic stellate cell activation is limited and, thus far, insufficient to allow the development of epigenetic drugs that can selectively interrupt liver fibrosis.

  4. DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Cohen, Stephen Michael

    2017-01-01

    /TAZ, is regulated by ubiquitin mediated protein turnover and several ubiquitin ligase complexes have been implicated in human cancer. However, little is known about the deubiquitylating enzymes that counteract these ubiquitin ligases in regulation of the Hippo pathway. Here we identify the DUB3 family...... deubiquitylating enzymes as regulators of Hippo pathway activity. We provide evidence that DUB3 proteins regulate YAP/TAZ activity by controlling the stability of the E3 ligase ITCH, the LATS kinases and the AMOT family proteins. As a novel Hippo pathway regulator, DUB3 has the potential to act a tumor suppressor...

  5. [Polymethoxylated flavonoids activate cystic fibrosis transmembrane conductance regulator chloride channel].

    Science.gov (United States)

    Cao, Huan-Huan; Fang, Fang; Yu, Bo; Luan, Jian; Jiang, Yu; Yang, Hong

    2015-04-25

    Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent chloride channel, plays key roles in fluid secretion in serous epithelial cells. Previously, we identified two polymethoxylated flavonoids, 3',4',5,5',6,7-hexamethoxyflavone (HMF) and 5-hydroxy-6,7,3',4'-tetramethoxyflavone (HTF) which could potentiate CFTR chloride channel activities. The present study was aimed to investigate the potentiation effects of HMF and HTF on CFTR Cl(-) channel activities by using a cell-based fluorescence assay and the short circuit Ussing chamber assay. The results of cell-based fluorescence assay showed that both HMF and HTF could dose-dependently potentiate CFTR Cl(-) channel activities in rapid and reversible ways, and the activations could be reversed by the CFTR blocker CFTRinh-172. Notably, HMF showed the highest affinity (EC50 = 2 μmol/L) to CFTR protein among the flavonoid CFTR activators identified so far. The activation of CFTR by HMF or HTF was forskolin (FSK) dependent. Both compounds showed additive effect with FSK and 3-Isobutyl-1-methylx (IBMX) in the activation of CFTR, while had no additive effect with genistein (GEN). In ex vivo studies, HMF and HTF could stimulate transepithelial Cl(-) secretion in rat colonic mucosa and enhance fluid secretion in mouse trachea submucosal glands. These results suggest that HMF and HTF may potentiate CFTR Cl(-) channel activities through both elevation of cAMP level and binding to CFTR protein pathways. The results provide new clues in elucidating structure and activity relationship of flavonoid CFTR activators. HMF might be developed as a new drug in the therapy of CFTR-related diseases such as bronchiectasis and habitual constipation.

  6. 75 FR 5100 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Science.gov (United States)

    2010-02-01

    ... SECURITY Customs and Border Protection Agency Information Collection Activities: NAFTA Regulations and... collection requirement concerning the NAFTA Regulations and Certificate of Origin. This request for comment... CBP is soliciting comments concerning the following information collection: Title: NAFTA Regulations...

  7. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    Science.gov (United States)

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications.

  8. The cytoskeletal protein Ndel1 regulates dynamin 2 GTPase activity.

    Directory of Open Access Journals (Sweden)

    Mathieu Chansard

    Full Text Available Cytoskeleton dynamics, membranes trafficking and positioning are essential for the proper functioning of any mammalian cell. The identification of the molecules and mechanisms that allow these cellular processes to interface is vital for understanding cell behaviors. Ndel1, the mammalian homolog of the Aspergillus nidulans NudE, organizes the cytoskeleton and regulates molecular motors, thereby impacting on the positioning of membranes. Hypothetically, Ndel1 can act in concert with enzymes controlling membrane trafficking (vesicle-mediated transport per se, but this idea has never been investigated. We now report that a pool of Ndel1 associates directly with Dynamin 2 (Dyn2, a large cytosolic GTPase involved in the trafficking of the AMPA receptor subunit GluR1. In vitro, Ndel1 enhances Dyn2 GTPase activity in its unassembled and assembled forms, without promoting oligomerization of the enzyme. In cells, gain and loss of function of Ndel1 recapitulate the effects of overexpression of Dyn2 and Dyn2 dominant negative with reduced GTPase activity on the intracellular localization of GluR1, respectively, without affecting the stability of microtubules. Together, these results indicate that Ndel1 regulates Dyn2 GTPase activity and impacts GluR1-containing membranes distribution in a manner reminiscent of Dyn2.

  9. Fbxw7 controls angiogenesis by regulating endothelial Notch activity.

    Directory of Open Access Journals (Sweden)

    Nanae Izumi

    Full Text Available Notch signaling controls fundamental aspects of angiogenic blood vessel growth including the selection of sprouting tip cells, endothelial proliferation and arterial differentiation. The E3 ubiquitin ligase Fbxw7 is part of the SCF protein complex responsible for the polyubiquitination and thereby proteasomal degradation of substrates such as Notch, c-Myc and c-Jun. Here, we show that Fbxw7 is a critical regulator of angiogenesis in the mouse retina and the zebrafish embryonic trunk, which we attribute to its role in the degradation of active Notch. Growth of retinal blood vessel was impaired and the Notch ligand Dll4, which is also a Notch target, upregulated in inducible and endothelial cell-specific Fbxw7(iECKO mutant mice. The stability of the cleaved and active Notch intracellular domain was increased after siRNA knockdown of the E3 ligase in cultured human endothelial cells. Injection of fbxw7 morpholinos interfered with the sprouting of zebrafish intersegmental vessels (ISVs. Arguing strongly that Notch and not other Fbxw7 substrates are primarily responsible for these phenotypes, the genetic inactivation of Notch pathway components reversed the impaired ISV growth in the zebrafish embryo as well as sprouting and proliferation in the mouse retina. Our findings establish that Fbxw7 is a potent positive regulator of angiogenesis that limits the activity of Notch in the endothelium of the growing vasculature.

  10. Negative regulation of lymphocyte activation by the adaptor protein LAX.

    Science.gov (United States)

    Zhu, Minghua; Granillo, Olivia; Wen, Renren; Yang, Kaiyong; Dai, Xuezhi; Wang, Demin; Zhang, Weiguo

    2005-05-01

    The membrane-associated adaptor protein LAX is a linker for activation of T cells (LAT)-like molecule that is expressed in lymphoid tissues. Upon stimulation of T or B cells, it is phosphorylated and interacts with Grb2 and the p85 subunit of PI3K. LAX, however, is not capable of replacing LAT in the TCR signaling pathway. In this study we report that upon T or B cell activation, the LAX protein was up-regulated dramatically. Although disruption of the LAX gene by homologous recombination had no major impact on lymphocyte development, it caused a significant reduction in CD23 expression on mature B cells. Interestingly, naive LAX(-/-) mice had spontaneous germinal center formation. Compared with normal T and B cells, LAX(-/-) T and B cells were hyperresponsive and had enhanced calcium flux, protein tyrosine phosphorylation, MAPK and Akt activation, and cell survival upon engagement of the T or B AgRs. Our data demonstrate that LAX functions as a negative regulator in lymphocyte signaling.

  11. Dynamic regulation of Polycomb group activity during plant development.

    Science.gov (United States)

    Bemer, Marian; Grossniklaus, Ueli

    2012-11-01

    Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis.

  12. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    Science.gov (United States)

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-08

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators.

  13. Sugar-Modified Poly(propylene imine) Dendrimers Stimulate the NF-κB Pathway in a Myeloid Cell Line.

    Science.gov (United States)

    Jatczak-Pawlik, Izabela; Gorzkiewicz, Michal; Studzian, Maciej; Appelhans, Dietmar; Voit, Brigitte; Pulaski, Lukasz; Klajnert-Maculewicz, Barbara

    2017-01-01

    Fourth-generation poly(propylene imine) dendrimers fully surface-modified by maltose (dense shell, PPI-m DS) were shown to be biocompatible in cellular models, which is important for their application in drug delivery. We decided to verify also their inherent bioactivity, including immunomodulatory activity, for potential clinical applications. We tested their effects on the THP-1 monocytic cell line model of innate immunity effectors. To estimate the cytotoxicity of dendrimers the reasazurin assay was performed. The expression level of NF-κB targets: IGFBP3, TNFAIP3 and TNF was determined by quantitative real-time RT-PCR. Measurement of NF-κB p65 translocation from cytoplasm to nucleus was conducted with a high-content screening platform and binding of NF-κB to a consensus DNA probe was determined by electrophoretic mobility shift assay. The cytokine assay was performed to measure protein concentration of TNFalpha and IL-4. We found that PPI-m DS did not impact THP-1 viability and growth even at high concentrations (up to 100 μM). They also did not induce expression of genes for important signaling pathways: Jak/STAT, Keap1/Nrf2 and ER stress. However, high concentrations of 4th generation PPI-m DS (25-100 μM), but not their 3rd generation counterparts, induced nuclear translocation of p65 NF-κB protein and its DNA-binding activity, leading to NF-κB-dependent increased expression of mRNA for NF-κB targets: IGFBP3, TNFAIP3 and TNF. However, no increase in pro-inflammatory cytokine secretion was detected. We conclude that maltose-modified PPI dendrimers of specific size could exert a modest immunomodulatory effect, which may be advantageous in clinical applications (e.g. adjuvant effect in anti-cancer vaccines).

  14. Regulation of Noxa-mediated apoptosis in Helicobacter pylori–infected gastric epithelial cells

    OpenAIRE

    2014-01-01

    Helicobacter pylori induces the antiapoptotic protein myeloid cell leukemia 1 (Mcl1) in human gastric epithelial cells (GECs). Apoptosis of oncogenic protein Mcl1-expressing cells is mainly regulated by Noxa-mediated degradation of Mcl1. We wanted to elucidate the status of Noxa in H. pylori–infected GECs. For this, various GECs such as AGS, MKN45, and KATO III were either infected with H. pylori or left uninfected. The effect of infection was examined by immunoblotting, immunoprecipitation, ...

  15. Regulation of dopamine transporter activity by carboxypeptidase E

    Directory of Open Access Journals (Sweden)

    Zhang Heping

    2009-05-01

    Full Text Available Abstract Background The dopamine transporter (DAT plays a critical role in terminating the action of dopamine by rapid reuptake into the presynaptic neuron. Previous studies have revealed that the DAT carboxyl terminus (DAT-CT can directly interact with other cellular proteins and regulate DAT function and trafficking. Results Here, we have identified that carboxypeptidase E (CPE, a prohormone processing exopeptidase and sorting receptor for the regulated secretory pathway, interacts with the DAT-CT and affects DAT function. Mammalian cell lines coexpressing CPE and DAT exhibited increased DAT-mediated dopamine uptake activity compared to cells expressing DAT alone. Moreover, coexpression of an interfering DAT-CT minigene inhibited the effects of CPE on DAT. Functional changes caused by CPE could be attributed to enhanced DAT expression and subsequent increase in DAT cell surface localization, due to decreased DAT degradation. In addition, CPE association could reduce the phosphorylation state of DAT on serine residues, potentially leading to reduced internalization, thus stabilizing plasmalemmal DAT localization. Conclusion Taken together, our results reveal a novel role for CPE in the regulation of DAT trafficking and DAT-mediated DA uptake, which may provide a novel target in the treatment of dopamine-governed diseases such as drug addiction and obesity.

  16. SUMOylation of Argonaute-2 regulates RNA interference activity

    Science.gov (United States)

    Josa-Prado, Fernando; Henley, Jeremy M.; Wilkinson, Kevin A.

    2015-01-01

    Post-translational modification of substrate proteins by small ubiquitin-like modifier (SUMO) regulates a vast array of cellular processes. SUMOylation occurs through three sequential enzymatic steps termed E1, E2 and E3. Substrate selection can be determined through interactions between the target protein and the SUMO E2 conjugating enzyme Ubc9 and specificity can be enhanced by substrate interactions with E3 ligase enzymes. We used the putative substrate recognition (PINIT) domain from the SUMO E3 PIAS3 as bait to identify potential SUMO substrates. One protein identified was Argonaute-2 (Ago2), which mediates RNA-induced gene silencing through binding small RNAs and promoting degradation of complimentary target mRNAs. We show that Ago2 can be SUMOylated in mammalian cells by both SUMO1 and SUMO2. SUMOylation occurs primarily at K402, and mutation of the SUMO consensus site surrounding this lysine reduces Ago2-mediated siRNA-induced silencing in a luciferase-based reporter assay. These results identify SUMOylation as a potential regulator of Ago2 activity and open new avenues for research into the mechanisms underlying the regulation of RNA-induced gene silencing. PMID:26188511

  17. Erk1 positively regulates osteoclast differentiation and bone resorptive activity.

    Directory of Open Access Journals (Sweden)

    Yongzheng He

    Full Text Available The extracellular signal-regulated kinases (ERK1 and 2 are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1(-/- bone marrow mononuclear cells (BMMNCs demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2(-/- BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.

  18. Estrogen receptor β regulates endometriotic cell survival through serum and glucocorticoid-regulated kinase activation.

    Science.gov (United States)

    Monsivais, Diana; Dyson, Matthew T; Yin, Ping; Navarro, Antonia; Coon, John S; Pavone, Mary Ellen; Bulun, Serdar E

    2016-05-01

    To determine the expression and biological roles of serum and glucocorticoid-regulated kinase (SGK1) in tissues and cells from patients with endometriosis and from healthy control subjects. Case-control. University research setting. Premenopausal women. Endometriotic tissues were obtained from women with ovarian endometriosis, and normal endometrial tissues were obtained from women undergoing hysterectomy for benign conditions. Expression levels of SGK1, the role of SGK1 in endometriosis pathology, and regulation of SGK1 by estrogen receptor (ER) β. Transcript and protein levels of SGK1 were significantly higher in endometriotic tissues and cells compared with normal endometrium. SGK1 mRNA and protein levels were stimulated by E2, by the ERβ-selective agonist diarylpropionitrile, and by prostaglandin E2. SGK1 was transcriptionally regulated by ERβ based on small interfering RNA knockdown and chromatin immunoprecipitation of ERβ followed by quantitative polymerase chain reaction. SGK1 knockdown led to increased cleavage of poly(ADP-ribose) polymerase, and SGK1 activation was correlated with the phosphorylation of FOXO3a, a proapoptotic factor. ERβ leads to SGK1 overexpression in endometriosis, which contributes to the survival of endometriotic lesions through inhibition of apoptosis. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Microglia recapitulate a hematopoietic master regulator network in the aging human frontal cortex.

    Science.gov (United States)

    Wehrspaun, Claudia C; Haerty, Wilfried; Ponting, Chris P

    2015-08-01

    Microglia form the immune system of the brain. Previous studies in cell cultures and animal models suggest altered activation states and cellular senescence in the aged brain. Instead, we analyzed 3 transcriptome data sets from the postmortem frontal cortex of 381 control individuals to show that microglia gene markers assemble into a transcriptional module in a gene coexpression network. These markers predominantly represented M1 and M1/M2b activation phenotypes. Expression of genes in this module generally declines over the adult life span. This decrease was more pronounced in microglia surface receptors for microglia and/or neuron crosstalk than in markers for activation state phenotypes. In addition to these receptors for exogenous signals, microglia are controlled by brain-expressed regulatory factors. We identified a subnetwork of transcription factors, including RUNX1, IRF8, PU.1, and TAL1, which are master regulators (MRs) for the age-dependent microglia module. The causal contributions of these MRs on the microglia module were verified using publicly available ChIP-Seq data. Interactions of these key MRs were preserved in a protein-protein interaction network. Importantly, these MRs appear to be essential for regulating microglia homeostasis in the adult human frontal cortex in addition to their crucial roles in hematopoiesis and myeloid cell-fate decisions during embryogenesis.

  20. Microglia recapitulate a hematopoietic master regulator network in the aging human frontal cortex

    Science.gov (United States)

    Wehrspaun, Claudia C.; Haerty, Wilfried; Ponting, Chris P.

    2015-01-01

    Microglia form the immune system of the brain. Previous studies in cell cultures and animal models suggest altered activation states and cellular senescence in the aged brain. Instead, we analyzed 3 transcriptome data sets from the postmortem frontal cortex of 381 control individuals to show that microglia gene markers assemble into a transcriptional module in a gene coexpression network. These markers predominantly represented M1 and M1/M2b activation phenotypes. Expression of genes in this module generally declines over the adult life span. This decrease was more pronounced in microglia surface receptors for microglia and/or neuron crosstalk than in markers for activation state phenotypes. In addition to these receptors for exogenous signals, microglia are controlled by brain-expressed regulatory factors. We identified a subnetwork of transcription factors, including RUNX1, IRF8, PU.1, and TAL1, which are master regulators (MRs) for the age-dependent microglia module. The causal contributions of these MRs on the microglia module were verified using publicly available ChIP-Seq data. Interactions of these key MRs were preserved in a protein-protein interaction network. Importantly, these MRs appear to be essential for regulating microglia homeostasis in the adult human frontal cortex in addition to their crucial roles in hematopoiesis and myeloid cell-fate decisions during embryogenesis. PMID:26002684

  1. Type I NKT-cell-mediated TNF-α is a positive regulator of NLRP3 inflammasome priming.

    Science.gov (United States)

    Chow, Melvyn T; Duret, Helene; Andrews, Daniel M; Faveeuw, Christelle; Möller, Andreas; Smyth, Mark J; Paget, Christophe

    2014-07-01

    The NLRP3 inflammasome plays a crucial role in the innate immune response to pathogens and exogenous or endogenous danger signals. Its activity must be precisely and tightly regulated to generate tailored immune responses. However, the immune cell subsets and cytokines controlling NLRP3 inflammasome activity are still poorly understood. Here, we have shown a link between NKT-cell-mediated TNF-α and NLRP3 inflammasome activity. The NLRP3 inflammasome in APCs was critical to potentiate NKT-cell-mediated immune responses, since C57BL/6 NLRP3 inflammasome-deficient mice exhibited reduced responsiveness to α-galactosylceramide. Importantly, NKT cells were found to act as regulators of NLRP3 inflammasome signaling, as NKT-cell-derived TNF-α was required for optimal IL-1β and IL-18 production by myeloid cells in response to α-galactosylceramide, by acting on the NLRP3 inflammasome priming step. Thus, NKT cells play a role in the positive regulation of NLRP3 inflammasome priming by mediating the production of TNF-α, thus demonstrating another means by which NKT cells control early inflammation.

  2. HIV-1 Tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells.

    Directory of Open Access Journals (Sweden)

    Shao-Ming Lu

    Full Text Available Despite the ability of combination antiretroviral treatment (cART to reduce viral burden to nearly undetectable levels in cerebrospinal fluid and serum, HIV-1 associated neurocognitive disorders (HAND continue to persist in as many as half the patients living with this disease. There is growing consensus that the actual substrate for HAND is destruction of normal synaptic architecture but the sequence of cellular events that leads to this outcome has never been resolved. To address whether central vs. peripheral myeloid lineage cells contribute to synaptic damage during acute neuroinflammation we injected a single dose of the HIV-1 transactivator of transcription protein (Tat or control vehicle into hippocampus of wild-type or chimeric C57Bl/6 mice genetically marked to distinguish infiltrating and resident immune cells. Between 8-24 hr after injection of Tat, invading CD11b(+ and/or myeloperoxidase-positive leukocytes with granulocyte characteristics were found to engulf both microglia and synaptic structures, and microglia reciprocally engulfed invading leukocytes. By 24 hr, microglial processes were also seen ensheathing dendrites, followed by inclusion of synaptic elements in microglia 7 d after Tat injection, with a durable microgliosis lasting at least 28 d. Thus, central nervous system (CNS exposure to Tat induces early activation of peripheral myeloid lineage cells with phagocytosis of synaptic elements and reciprocal microglial engulfment of peripheral leukocytes, and enduring microgliosis. Our data suggest that a single exposure to a foreign antigen such as HIV-1 Tat can lead to long-lasting disruption of normal neuroimmune homeostasis with deleterious consequences for synaptic architecture, and further suggest a possible mechanism for enduring neuroinflammation in the absence of productive viral replication in the CNS.

  3. ROMK1 channel activity is regulated by monoubiquitination.

    Science.gov (United States)

    Lin, Dao-Hong; Sterling, Hyacinth; Wang, Zhijian; Babilonia, Elisa; Yang, Baofeng; Dong, Ke; Hebert, Steven C; Giebisch, Gerhard; Wang, Wen-Hui

    2005-03-22

    The ubiquitination of proteins can signal their degradation, modify their activity or target them to specific membranes or cellular organelles. Here, we show that monoubiquitination regulates the plasma membrane abundance and function of the potassium channel, ROMK. Immunoprecipitation of proteins obtained from renal cortex and outer medulla with ROMK antibody revealed that this channel was monoubiquitinated. To determine the ubiquitin binding site on ROMK1, all intracellular lysine (Lys) residues of ROMK1 were individually mutated to arginine (Arg), and a two-electrode voltage clamp was used to measure the ROMK1 channel activity in Xenopus oocytes. ROMK1 channel activity increased from 8.1 to 27.2 microA only when Lys-22 was mutated to Arg. Furthermore, Western blotting failed to detect the ubiquitinated ROMK1 in oocytes injected with R1K22R. Patch-clamp experiments showed that biophysical properties of R1K22R were identical to those of wild-type ROMK1. Although total protein expression levels of GFP-ROMK1 and GFP-R1K22R in oocytes were similar, confocal microscopy showed that the surface fluorescence intensity in oocytes injected with GFP-R1K22R was higher than that of GFP-ROMK1. In addition, biotin labeling of ROMK1 and R1K22R proteins expressed in HEK293 cells showed increased surface expression of the Lys-22 mutant channel. Finally, expression of R1K22R in COS7 cells significantly stimulated the surface expression of ROMK1. We conclude that ROMK1 can be monoubiquitinated and that Lys-22 is an ubiquitin-binding site. Thus, monoubiquitination of ROMK1 regulates channel activity by reducing the surface expression of channel protein. This finding implicates the linking of a single ubiquitin molecule to channels as an important posttranslational regulatory signal.

  4. The regulation of ant colony foraging activity without spatial information.

    Science.gov (United States)

    Prabhakar, Balaji; Dektar, Katherine N; Gordon, Deborah M

    2012-01-01

    Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus) colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.

  5. Regulated O2 activation in flavin-dependent monooxygenases.

    Science.gov (United States)

    Frederick, Rosanne E; Mayfield, Jeffery A; DuBois, Jennifer L

    2011-08-17

    Flavin-dependent monooxygenases (FMOs) are involved in important biosynthetic pathways in diverse organisms, including production of the siderophores used for the import and storage of essential iron in serious pathogens. We have shown that the FMO from Aspergillus fumigatus, an ornithine monooxygenase (Af-OMO), is mechanistically similar to its well-studied distant homologues from mammalian liver. The latter are highly promiscuous in their choice of substrates, while Af-OMO is unusually specific. This presents a puzzle: how do Af-OMO and other FMOs of the biosynthetic classes achieve such specificity? We have discovered substantial enhancement in the rate of O(2) activation in Af-OMO in the presence of L-arginine, which acts as a small molecule regulator. Such protein-level regulation could help explain how this and related biosynthetic FMOs manage to couple O(2) activation and substrate hydroxylation to each other and to the appropriate cellular conditions. Given the essentiality of Fe to Af and the avirulence of the Af-OMO gene knock out, inhibitors of Af-OMO are likely to be drug targets against this medically intractable pathogen.

  6. Osteoblast differentiation and migration are regulated by dynamin GTPase activity.

    Science.gov (United States)

    Eleniste, Pierre P; Huang, Su; Wayakanon, Kornchanok; Largura, Heather W; Bruzzaniti, Angela

    2014-01-01

    Bone formation is controlled by osteoblasts, but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0-21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased in osteoblasts over-expressing dynamin. Conversely, ALP activity was increased following shRNA-mediated knockdown of dynamin and in osteoblasts treated with the dynamin inhibitor, dynasore. Dynasore also reduced c-fos and osterix expression, markers of early osteoblasts, suggesting a role for dynamin in pre-osteoblast to osteoblast differentiation. Since dynamin GTPase activity is regulated by tyrosine phosphorylation, we examined the mechanism of dynamin dephosphorylation in osteoblasts. Dynamin formed a protein complex with the tyrosine phosphatase PTP-PEST and inhibition of phosphatase activity increased the level of phosphorylated dynamin. Further, PTP-PEST blocked the Src-mediated increase in the phosphorylation and GTPase activity of wild-type dynamin but not the phosphorylation mutant dynY231F/Y597F. Although ALP activity was increased in osteoblasts expressing GTPase-defective dynK44A, and to a lesser extent dynY231F/Y597F, osteoblast migration was significantly inhibited by dynK44A and dynY231F/Y597F. These studies demonstrate a novel role for dynamin GTPase activity and phosphorylation in osteoblast differentiation and migration, which may be important for bone formation.

  7. Activating transcription factor 4 regulates osteoclast differentiation in mice

    Science.gov (United States)

    Cao, Huiling; Yu, Shibing; Yao, Zhi; Galson, Deborah L.; Jiang, Yu; Zhang, Xiaoyan; Fan, Jie; Lu, Binfeng; Guan, Youfei; Luo, Min; Lai, Yumei; Zhu, Yibei; Kurihara, Noriyoshi; Patrene, Kenneth; Roodman, G. David; Xiao, Guozhi

    2010-01-01

    Activating transcription factor 4 (ATF4) is a critical transcription factor for osteoblast (OBL) function and bone formation; however, a direct role in osteoclasts (OCLs) has not been established. Here, we targeted expression of ATF4 to the OCL lineage using the Trap promoter or through deletion of Atf4 in mice. OCL differentiation was drastically decreased in Atf4–/– bone marrow monocyte (BMM) cultures and bones. Coculture of Atf4–/– BMMs with WT OBLs or a high concentration of RANKL failed to restore the OCL differentiation defect. Conversely, Trap-Atf4-tg mice displayed severe osteopenia with dramatically increased osteoclastogenesis and bone resorption. We further showed that ATF4 was an upstream activator of the critical transcription factor Nfatc1 and was critical for RANKL activation of multiple MAPK pathways in OCL progenitors. Furthermore, ATF4 was crucial for M-CSF induction of RANK expression on BMMs, and lack of ATF4 caused a shift in OCL precursors to macrophages. Finally, ATF4 was largely modulated by M-CSF signaling and the PI3K/AKT pathways in BMMs. These results demonstrate that ATF4 plays a direct role in regulating OCL differentiation and suggest that it may be a therapeutic target for treating bone diseases associated with increased OCL activity. PMID:20628199

  8. GARP regulates the bioavailability and activation of TGFβ.

    Science.gov (United States)

    Wang, Rui; Zhu, Jianghai; Dong, Xianchi; Shi, Minlong; Lu, Chafen; Springer, Timothy A

    2012-03-01

    Glycoprotein-A repetitions predominant protein (GARP) associates with latent transforming growth factor-β (proTGFβ) on the surface of T regulatory cells and platelets; however, whether GARP functions in latent TGFβ activation and the structural basis of coassociation remain unknown. We find that Cys-192 and Cys-331 of GARP disulfide link to the TGFβ1 prodomain and that GARP with C192A and C331A mutations can also noncovalently associate with proTGFβ1. Noncovalent association is sufficiently strong for GARP to outcompete latent TGFβ-binding protein for binding to proTGFβ1. Association between GARP and proTGFβ1 prevents the secretion of TGFβ1. Integrin α(V)β(6) and to a lesser extent α(V)β(8) are able to activate TGFβ from the GARP-proTGFβ1 complex. Activation requires the RGD motif of latent TGFβ, disulfide linkage between GARP and latent TGFβ, and membrane association of GARP. Our results show that GARP is a latent TGFβ-binding protein that functions in regulating the bioavailability and activation of TGFβ.

  9. Physical Activity Plays an Important Role in Body Weight Regulation

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Chaput

    2011-01-01

    Full Text Available Emerging literature highlights the need to incorporate physical activity into every strategy intended to prevent weight gain as well as to maintain weight loss over time. Furthermore, physical activity should be part of any plan to lose weight. The stimulus of exercise provides valuable metabolic adaptations that improve energy and macronutrient balance regulation. A tight coupling between energy intake and energy expenditure has been documented at high levels of physical exercise, suggesting that exercise may improve appetite control. The regular practice of physical activity has also been reported to reduce the risk of stress-induced weight gain. A more personalized approach is recommended when planning exercise programs in a clinical weight loss setting in order to limit the compensatory changes associated to exercise-induced weight loss. With modern environment promoting overeating and sedentary behavior, there is an urgent need for a concerted action including legislative measures to promote healthy active living in order to curb the current epidemic of chronic diseases.

  10. Activating transcription factor 4 regulates osteoclast differentiation in mice.

    Science.gov (United States)

    Cao, Huiling; Yu, Shibing; Yao, Zhi; Galson, Deborah L; Jiang, Yu; Zhang, Xiaoyan; Fan, Jie; Lu, Binfeng; Guan, Youfei; Luo, Min; Lai, Yumei; Zhu, Yibei; Kurihara, Noriyoshi; Patrene, Kenneth; Roodman, G David; Xiao, Guozhi

    2010-08-01

    Activating transcription factor 4 (ATF4) is a critical transcription factor for osteoblast (OBL) function and bone formation; however, a direct role in osteoclasts (OCLs) has not been established. Here, we targeted expression of ATF4 to the OCL lineage using the Trap promoter or through deletion of Atf4 in mice. OCL differentiation was drastically decreased in Atf4-/- bone marrow monocyte (BMM) cultures and bones. Coculture of Atf4-/- BMMs with WT OBLs or a high concentration of RANKL failed to restore the OCL differentiation defect. Conversely, Trap-Atf4-tg mice displayed severe osteopenia with dramatically increased osteoclastogenesis and bone resorption. We further showed that ATF4 was an upstream activator of the critical transcription factor Nfatc1 and was critical for RANKL activation of multiple MAPK pathways in OCL progenitors. Furthermore, ATF4 was crucial for M-CSF induction of RANK expression on BMMs, and lack of ATF4 caused a shift in OCL precursors to macrophages. Finally, ATF4 was largely modulated by M-CSF signaling and the PI3K/AKT pathways in BMMs. These results demonstrate that ATF4 plays a direct role in regulating OCL differentiation and suggest that it may be a therapeutic target for treating bone diseases associated with increased OCL activity.

  11. Neuroligin-1 links neuronal activity to sleep-wake regulation

    Science.gov (United States)

    El Helou, Janine; Bélanger-Nelson, Erika; Freyburger, Marlène; Dorsaz, Stéphane; Curie, Thomas; La Spada, Francesco; Gaudreault, Pierre-Olivier; Beaumont, Éric; Pouliot, Philippe; Lesage, Frédéric; Frank, Marcos G.; Franken, Paul; Mongrain, Valérie

    2013-01-01

    Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation. PMID:23716671

  12. Activation of epithelial STAT3 regulates intestinal homeostasis.

    Science.gov (United States)

    Neufert, Clemens; Pickert, Geethanjali; Zheng, Yan; Wittkopf, Nadine; Warntjen, Moritz; Nikolaev, Alexei; Ouyang, Wenjun; Neurath, Markus F; Becker, Christoph

    2010-02-15

    The intestinal epithelium that lines the mucosal surface along the GI-tract is a key player for the intestinal homeostasis of the healthy individual. In case of a mucosal damage or a barrier defect as seen in patients with inflammatory bowel disease, the balance is disturbed, and translocation of intestinal microbes to the submucosa is facilitated. We recently demonstrated a pivotal role of STAT3 activation in intestinal epithelial cells (IEC) for the restoration of the balance at the mucosal surface of the gut in an experimental colitis model. STAT3 was rapidly induced in intestinal epithelial cells upon challenge of mice in both experimental colitis and intestinal wound healing models. STAT3 activation was found to be dispensable in the steady-state conditions but was important for efficient regeneration of the epithelium in response to injury. Here, we extend our previous findings by showing epithelial STAT3 activation in human patients suffering from IBD and provide additional insights how the activation of epithelial STAT3 by IL-22 regulates intestinal homeostasis and mucosal wound healing. We also demonstrate that antibody-mediated neutralization of IL-22 has little impact on the development of experimental colitis in mice, but significantly delays recovery from colitis. Thus, our data suggest that targeting the STAT3 signaling pathway in IEC is a promising therapeutic approach in situations when the intestinal homeostasis is disturbed, e.g., as seen in Crohn's disease or Ulcerative colitis.

  13. Protein kinase C-associated kinase regulates NF-κB activation through inducing IKK activation.

    Science.gov (United States)

    Kim, Sang-Woo; Schifano, Matthew; Oleksyn, David; Jordan, Craig T; Ryan, Daniel; Insel, Richard; Zhao, Jiyong; Chen, Luojing

    2014-10-01

    Activation of the transcription factor NF-κB induced by extracellular stimuli requires IKKα and IKKβ kinase activity. How IKKα and IKKβ are activated by various upstream signaling molecules is not fully understood. We previously showed that protein kinase C-associated kinase (PKK, also known as DIK/RIP4), which belongs to the receptor-interacting protein (RIP) kinase family, mediates the B cell activating factor of the TNF family (BAFF)-induced NF-κB activation in diffuse large B cell lymphoma (DLBCL) cell lines. Here we have investigated the mechanism underlying NF-κB activation regulated by PKK. Our results suggest that PKK can activate both the classical and the alternative NF-κB activation pathways. PKK associates with IKKα and IKKβ in mammalian cells and induces activation of both IKKα and IKKβ via phosphorylation of their serine residues 176/180 and 177/181, respectively. Unlike other members of the RIP family that activate NF-κB through a kinase-independent pathway, PKK appears to activate IKK and NF-κB mainly in a kinase-dependent manner. Suppression of PKK expression by RNA interference inhibits phosphorylation of IKKα and IKKβ as well as activation of NF-κB in human cancer cell lines. Thus, PKK regulates NF-κB activation by modulating activation of IKKα and IKKβ in mammalian cells. We propose that PKK may provide a critical link between IKK activation and various upstream signaling cascades, and may represent a potential target for inhibiting abnormal NF-κB activation in human cancers.

  14. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...(.csml) Show Receptor tyrosine kinases and the regulation of macrophage activation. PubmedID 14726496 Title ...Receptor tyrosine kinases and the regulation of macrophage activation. Authors Co

  15. The Expression of Human Cytomegalovirus MicroRNA MiR-UL148D during Latent Infection in Primary Myeloid Cells Inhibits Activin A-triggered Secretion of IL-6.

    Science.gov (United States)

    Lau, Betty; Poole, Emma; Krishna, Benjamin; Sellart, Immaculada; Wills, Mark R; Murphy, Eain; Sinclair, John

    2016-08-05

    The successful establishment and maintenance of human cytomegalovirus (HCMV) latency is dependent on the expression of a subset of viral genes. Whilst the exact spectrum and functions of these genes are far from clear, inroads have been made for protein-coding genes. In contrast, little is known about the expression of non-coding RNAs. Here we show that HCMV encoded miRNAs are expressed de novo during latent infection of primary myeloid cells. Furthermore, we demonstrate that miR-UL148D, one of the most highly expressed viral miRNAs during latent infection, directly targets the cellular receptor ACVR1B of the activin signalling axis. Consistent with this, we observed upregulation of ACVR1B expression during latent infection with a miR-UL148D deletion virus (ΔmiR-UL148D). Importantly, we observed that monocytes latently infected with ΔmiR-UL148D are more responsive to activin A stimulation, as demonstrated by their increased secretion of IL-6. Collectively, our data indicates miR-UL148D inhibits ACVR1B expression in latently infected cells to limit proinflammatory cytokine secretion, perhaps as an immune evasion strategy or to postpone cytokine-induced reactivation until conditions are more favourable. This is the first demonstration of an HCMV miRNA function during latency in primary myeloid cells, implicating that small RNA species may contribute significantly to latent infection.

  16. Spatial regulation and the rate of signal transduction activation.

    Directory of Open Access Journals (Sweden)

    Nizar N Batada

    2006-05-01

    Full Text Available Of the many important signaling events that take place on the surface of a mammalian cell, activation of signal transduction pathways via interactions of cell surface receptors is one of the most important. Evidence suggests that cell surface proteins are not as freely diffusible as implied by the classic fluid mosaic model and that their confinement to membrane domains is regulated. It is unknown whether these dynamic localization mechanisms function to enhance signal transduction activation rate or to minimize cross talk among pathways that share common intermediates. To determine which of these two possibilities is more likely, we derive an explicit equation for the rate at which cell surface membrane proteins interact based on a Brownian motion model in the presence of endocytosis and exocytosis. We find that in the absence of any diffusion constraints, cell surface protein interaction rate is extremely high relative to cytoplasmic protein interaction rate even in a large mammalian cell with a receptor abundance of a mere two hundred molecules. Since a larger number of downstream signaling events needs to take place, each occurring at a much slower rate than the initial activation via association of cell surface proteins, we conclude that the role of co-localization is most likely that of cross-talk reduction rather than coupling efficiency enhancement.

  17. Ribosomal Protein S14 Negatively Regulates c-Myc Activity*

    Science.gov (United States)

    Zhou, Xiang; Hao, Qian; Liao, Jun-ming; Liao, Peng; Lu, Hua

    2013-01-01

    The ribosomal gene RPS14 is associated with the cancer-prone 5q-syndrome, which is caused by an interstitial deletion of the long arm of human chromosome 5. Previously, we found that ribosomal protein S14 (RPS14) binds to and inactivates MDM2, consequently leading to p53-dependent cell-cycle arrest and growth inhibition. However, it remains elusive whether RPS14 regulates cell proliferation in a p53-independent manner. Here, we show that RPS14 interacts with the Myc homology box II (MBII) and the C-terminal basic helix-loop-helix leucine zipper (bHLH-LZ) domains of the oncoprotein c-Myc. Further, RPS14 inhibited c-Myc transcriptional activity by preventing the recruitment of c-Myc and its cofactor, TRRAP, to the target gene promoters, as thus suppressing c-Myc-induced cell proliferation. Also, siRNA-mediated RPS14 depletion elevated c-Myc transcriptional activity determined by its target gene, Nucleolin, expression. Interestingly, RPS14 depletion also resulted in the induction of c-Myc mRNA and subsequent protein levels. Consistent with this, RPS14 promoted c-Myc mRNA turnover through an Argonaute 2 (Ago2)- and microRNA-mediated pathway. Taken together, our study demonstrates that RPS14 negates c-Myc functions by directly inhibiting its transcriptional activity and mediating its mRNA degradation via miRNA. PMID:23775087

  18. Regulation of nucleus accumbens activity by the hypothalamic neuropeptide MCH

    Science.gov (United States)

    Sears, Robert M.; Liu, Rong-Jian; Narayanan, Nandakumar S.; Sharf, Ruth; Yeckel, Mark F.; Laubach, Mark; Aghajanian, George K.; DiLeone, Ralph J.

    2010-01-01

    The lateral hypothalamus (LH) and the nucleus accumbens shell (AcbSh) are brain regions important for food intake. The AcbSh contains high levels of receptor for melanin-concentrating hormone (MCH), a lateral hypothalamic peptide critical for feeding and metabolism. MCH receptor (MCHR1) activation in the AcbSh increases food intake while AcbSh MCHR1 blockade reduces feeding. Here biochemical and cellular mechanisms of MCH action in the rodent AcbSh are described. A reduction of phosphorylation of GluR1 at Serine 845 (pSer845) is shown to occur after both pharmacological and genetic manipulations of MCHR1 activity. These changes depend upon signaling through Gi/o, and result in decreased surface expression of GluR1-containing AMPA receptors (AMPARs). Electrophysiological analysis of medium spiny neurons (MSNs) in the AcbSh revealed decreased amplitude of AMPAR-mediated synaptic events (mEPSC) with MCH treatment. In addition, MCH suppressed action potential firing MSNs through K+ channel activation. Finally, in vivo recordings confirmed that MCH reduces neuronal cell firing in the AcbSh in freely moving animals. The ability of MCH to reduce cell firing in the AcbSh is consistent with a general model from other pharmacological and electrophysiological studies whereby reduced AcbSh neuronal firing leads to food intake. The current work integrates the hypothalamus into this model, providing biochemical and cellular mechanisms whereby metabolic and limbic signals converge to regulate food intake. PMID:20554878

  19. Substrate regulation of ascorbate transport activity in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.X.; Jaworski, E.M.; Kulaga, A.; Dixon, S.J. (Univ. of Western Ontario, London (Canada))

    1990-10-01

    Astrocytes possess a concentrative L-ascorbate (vitamin C) uptake mechanism involving a Na(+)-dependent L-ascorbate transporter located in the plasma membrane. The present experiments examined the effects of deprivation and supplementation of extracellular L-ascorbate on the activity of this transport system. Initial rates of L-ascorbate uptake were measured by incubating primary cultures of rat astrocytes with L-(14C)ascorbate for 1 min at 37 degrees C. We observed that the apparent maximal rate of uptake (Vmax) increased rapidly (less than 1 h) when cultured cells were deprived of L-ascorbate. In contrast, there was no change in the apparent affinity of the transport system for L-(14C)ascorbate. The increase in Vmax was reversed by addition of L-ascorbate, but not D-isoascorbate, to the medium. The effects of external ascorbate on ascorbate transport activity were specific in that preincubation of cultures with L-ascorbate did not affect uptake of 2-deoxy-D-(3H(G))glucose. We conclude that the astroglial ascorbate transport system is modulated by changes in substrate availability. Regulation of transport activity may play a role in intracellular ascorbate homeostasis by compensating for regional differences and temporal fluctuations in external ascorbate levels.

  20. BAK1 Directly Regulates Brassinosteroid Perception and BRI1 Activation

    Institute of Scientific and Technical Information of China (English)

    Kai He; Shengbao Xu; Jia Li

    2013-01-01

    Plants utilize plasma membrane-localized receptor-like kinases (RLKs) to sense extracellular signals to coordinate growth, development, and innate immune responses. BAK1 regulates multiple signaling pathways acting as a co-receptor of several distinct ligand-binding RLKs. It has been debated whether BAK1 serves as an essential regulatory component or only a signal amplifier without pathway specificity. This issue has been clarified recently. Genetic and structural analyses indicated that BAK1 and its homologs play indispensible roles in mediating brassinosteroid (BR) signaling pathway by directly perceiving the ligand BR and activating the receptor of BR, BRI1. The mechanism revealed by these studies now serves as a paradigm for how a pair of RLKs can function together in ligand binding and subsequent initiation of signaling.

  1. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    Science.gov (United States)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  2. Effects of Online Self-Regulation Activities on Physical Activity Among Pregnant and Early Postpartum Women.

    Science.gov (United States)

    Kim, Hye Kyung; Niederdeppe, Jeff; Graham, Meredith; Olson, Christine; Gay, Geri

    2015-01-01

    Physical and psychological changes that occur during pregnancy present a unique challenge for women's physical activity. Using a theory-based prospective design, this study examines the effects of pregnant women's (a) physical activity cognitions (self-efficacy, outcome expectancy, and safety beliefs) and (b) online self-regulation activities (goal-setting and self-monitoring) on subsequent changes in their physical activity intentions and behavior during pregnancy and immediately postpartum. The authors used data from three panel surveys administered to pregnant women enrolled in a web-based intervention to promote healthy pregnancy and postpartum weight, as well as log data on their use of self-regulatory features on the intervention website. Perceived self-efficacy and perceived safety of physical activity in pregnancy enhanced subsequent intentions to be physically active. Repeated goal-setting and monitoring of those goals helped to maintain positive intentions during pregnancy, but only repeated self-monitoring transferred positive intentions into actual behavior. Theoretically, this study offers a better understanding of the roles of self-regulation activities in the processes of goal-striving. The authors also discuss practical implications for encouraging physical activity among pregnant and early postpartum women.

  3. Regulation of ALF promoter activity in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Dan Li

    Full Text Available BACKGROUND: In this report we evaluate the use of Xenopus laevis oocytes as a matched germ cell system for characterizing the organization and transcriptional activity of a germ cell-specific X. laevis promoter. PRINCIPAL FINDINGS: The promoter from the ALF transcription factor gene was cloned from X. laevis genomic DNA using a PCR-based genomic walking approach. The endogenous ALF gene was characterized by RACE and RT-PCR for transcription start site usage, and by sodium bisulfite sequencing to determine its methylation status in somatic and oocyte tissues. Homology between the X. laevis ALF promoter sequence and those from human, chimpanzee, macaque, mouse, rat, cow, pig, horse, dog, chicken and X. tropicalis was relatively low, making it difficult to use such comparisons to identify putative regulatory elements. However, microinjected promoter constructs were very active in oocytes and the minimal promoter could be narrowed by PCR-mediated deletion to a region as short as 63 base pairs. Additional experiments using a series of site-specific promoter mutants identified two cis-elements within the 63 base pair minimal promoter that were critical for activity. Both elements (A and B were specifically recognized by proteins present in crude oocyte extracts based on oligonucleotide competition assays. The activity of promoter constructs in oocytes and in transfected somatic Xenopus XLK-WG kidney epithelial cells was quite different, indicating that the two cell types are not functionally equivalent and are not interchangeable as assay systems. CONCLUSIONS: Overall the results provide the first detailed characterization of the organization of a germ cell-specific Xenopus promoter and demonstrate the feasibility of using immature frog oocytes as an assay system for dissecting the biochemistry of germ cell gene regulation.

  4. FLT3-regulated antigens as targets for leukemia-reactive cytotoxic T lymphocytes.

    Science.gov (United States)

    Brackertz, B; Conrad, H; Daniel, J; Kast, B; Krönig, H; Busch, D H; Adamski, J; Peschel, C; Bernhard, H

    2011-03-01

    The FMS-like tyrosine kinase 3 (FLT3) is highly expressed in acute myeloid leukemia (AML). Internal tandem duplications (ITD) of the juxtamembrane domain lead to the constitutive activation of the FLT3 kinase inducing the activation of multiple genes, which may result in the expression of leukemia-associated antigens (LAAs). We analyzed the regulation of LAA in FLT3-wild-type (WT)- and FLT3-ITD(+) myeloid cells to identify potential targets for antigen-specific immunotherapy for AML patients. Antigens, such as PR-3, RHAMM, Survivin, WT-1 and PRAME, were upregulated by constitutively active FLT3-ITD as well as FLT3-WT activated by FLT3 ligand (FL). Cytotoxic T-cell (CTL) clones against PR-3, RHAMM, Survivin and an AML-directed CTL clone recognized AML cell lines and primary AML blasts expressing FLT3-ITD, as well as FLT3-WT(+) myeloid dendritic cells in the presence of FL. Downregulation of FLT3 led to the abolishment of CTL recognition. Comparing our findings concerning LAA upregulation by the FLT3 kinase with those already made for the Bcr-Abl kinase, we found analogies in the LAA expression pattern. Antigens upregulated by both FLT3 and Bcr-Abl may be promising targets for the development of immunotherapeutical approaches against myeloid leukemia of different origin.

  5. Tpl2 kinase regulates FcγR signaling and immune thrombocytopenia in mice.

    Science.gov (United States)

    Kyrmizi, Irene; Ioannou, Marianna; Hatziapostolou, Maria; Tsichlis, Philip N; Boumpas, Dimitrios T; Tassiulas, Ioannis

    2013-10-01

    The MAPK3 Tpl2 controls innate and adaptive immunity by regulating TLR, TNF-α, and GPCR signaling in a variety of cell types. Its ablation gives rise to an anti-inflammatory phenotype characterized by resistance to LPS-induced endotoxin shock, DSS-induced colitis, and TNF-α-induced IBD. Here, we address the role of Tpl2 in autoimmunity. Our data show that the ablation and the pharmacological inhibition of Tpl2 protect mice from antiplatelet antibody-induced thrombocytopenia, a model of ITP. Thrombocytopenia in this model and in ITP is caused by phagocytosis of platelets opsonized with antiplatelet antibodies and depends on FcγR activation in splenic and hepatic myeloid cells. Further studies explained how Tpl2 inhibition protects from antibody-induced thrombocytopenia, by showing that Tpl2 is activated by FcγR signals in macrophages and that its activation by these signals is required for ERK activation, cytoplasmic Ca(2+) influx, the induction of cytokine and coreceptor gene expression, and phagocytosis.

  6. Carry-over of self-regulation for physical activity to self-regulating eating in women with morbid obesity.

    Science.gov (United States)

    Annesi, James J; Porter, Kandice J; Johnson, Ping H

    2015-01-01

    Poor outcomes from behavioral treatments of severe obesity have led to a dependence on invasive medical interventions, including surgery for morbidly obese individuals. Improved methods to self-regulate eating will be required to reduce obesity. The use of self-regulation methods for completing physical activity may carry over to increased self-regulation for eating through improved feelings of competence (self-efficacy) and mood. The study recruited women (Meanage = 43 years) with morbid obesity (MeanBMI = 44 kg/m(2)) to participate in 26 weeks of cognitive-behavioral support of physical activity paired with either nutrition education (n = 51) or cognitive-behavioral nutrition (n = 51) methods. Data collected were from 2011 and 2012. Significant improvements in self-regulation for physical activity, self-regulation for eating, overall mood, and self-efficacy for eating, with greater improvement in self-regulation for eating, were observed in the cognitive-behavioral nutrition group. Changes in mood and self-efficacy for eating significantly mediated the relationship between changes in self-regulation for physical activity and self-regulation for eating. When subscales of overall mood and self-efficacy were entered into separate regression equations as mediators, the only significant mediators were vigor, and controlling eating when socially pressured and when increased cues to overeat were present.

  7. After the slippery slope: Dutch experiences on regulating active euthanasia.

    Science.gov (United States)

    Boer, Theo A

    2003-01-01

    "When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward." If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery slope argument, however, is by definition limited by its reference to future developments which cannot empirically be sustained. Experience in the Netherlands--where a law regulating active euthanasia was accepted in April 2001--may shed light on the strengths as well as the weaknesses of the slippery slope argument in the context of the euthanasia debate. This paper consists of three parts. First, it clarifies the Dutch legislation on euthanasia and explains the cultural context in which it originated. Second, it looks at the argument of the slippery slope. A logical and an empirical version are distinguished, and the latter, though philosophically less interesting, proves to be most relevant in the discussion on euthanasia. Thirdly, it addresses the question whether Dutch experiences in the process of legalizing euthanasia justify the fear of the slippery slope. The conclusion is that Dutch experiences justify some caution.

  8. Activated Type 2 Innate Lymphoid Cells regulate Beige Fat Biogenesis

    Science.gov (United States)

    Lee, Min-Woo; Odegaard, Justin I.; Mukundan, Lata; Qiu, Yifu; Molofsky, Ari B.; Nussbaum, Jesse C.; Yun, Karen; Locksley, Richard M.; Chawla, Ajay

    2014-01-01

    SUMMARY Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5 and -13, participate in the maintenance of tissue homeostasis. Although type 2 immunity is critically important for mediating metabolic adaptations to environmental cold, the functions of ILC2s in beige or brown fat development are poorly defined. We report here that activation of ILC2s by IL-33 is sufficient to promote the growth of functional beige fat in thermoneutral mice. Mechanistically, ILC2 activation results in the proliferation of bipotential adipocyte precursors (APs) and their subsequent commitment to the beige fat lineage. Loss- and gain-of-function studies reveal that ILC2-and eosinophil-derived type 2 cytokines stimulate signaling via the IL-4Rα in PDGFRα+ APs to promote beige fat biogenesis. Together, our results highlight a critical role for ILC2s and type 2 cytokines in the regulation of adipocyte precursor numbers and fate, and as a consequence, adipose tissue homeostasis. PMID:25543153

  9. Sucking pump activity in feeding behaviour regulation in carpenter ants.

    Science.gov (United States)

    Falibene, Agustina; Gontijo, Alberto de Figueiredo; Josens, Roxana

    2009-06-01

    Modulation of liquid feeding-rate would allow insects to ingest more food in the same time when this was required. Ants can vary nectar intake rate by increasing sucking pump frequency according to colony requirements. We analysed electrical signals generated by sucking pump activity of ants during drinking solutions of different sucrose concentrations and under different carbohydrate-deprivation levels. Our aim was to define parameters that characterize the recordings and analyse their relationship with feeding behaviour. Signals showed that the initial and final frequencies of sucking pump activity, as well as the difference between them were higher in sugar-deprived ants. However, these parameters were not influenced by sucrose solution concentration, which affected the number of pump contractions and the volume per contraction. Unexpectedly, we found two different responses in feeding behaviour of starved and non-starved ants depending on concentration. Starved ants drank dilute solutions for the same length of time as non-starved ants but ingested higher volumes. While drinking the concentrated solutions, starved ants drank the same volume, but did so in a shorter time than the non-starved ones. Despite these differences, for each analysed concentration the total number of pump contractions remained constant independently of sugar-deprivation level. These results are discussed in the frame of feeding regulation and decision making in ant foraging behaviour.

  10. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity

    Directory of Open Access Journals (Sweden)

    Jeon Hyejin

    2012-06-01

    Full Text Available Abstract Background Plasminogen activator inhibitor type 1 (PAI-1 is the primary inhibitor of urokinase type plasminogen activators (uPA and tissue type plasminogen activators (tPA, which mediate fibrinolysis. PAI-1 is also involved in the innate immunity by regulating cell migration and phagocytosis. However, little is known about the role of PAI-1 in the central nervous system. Methods In this study, we identified PAI-1 in the culture medium of mouse mixed glial cells by liquid chromatography and tandem mass spectrometry. Secretion of PAI-1 from glial cultures was detected by ELISA and western blotting analysis. Cell migration was evaluated by in vitro scratch-wound healing assay or Boyden chamber assay and an in vivo stab wound injury model. Phagocytic activity was measured by uptake of zymosan particles. Results The levels of PAI-1 mRNA and protein expression were increased by lipopolysaccharide and interferon-γ stimulation in both microglia and astrocytes. PAI-1 promoted the migration of microglial cells in culture via the low-density lipoprotein receptor-related protein (LRP 1/Janus kinase (JAK/signal transducer and activator of transcription (STAT1 axis. PAI-1 also increased microglial migration in vivo when injected into mouse brain. PAI-1-mediated microglial migration was independent of protease inhibition, because an R346A mutant of PAI-1 with impaired PA inhibitory activity also promoted microglial migration. Moreover, PAI-1 was able to modulate microglial phagocytic activity. PAI-1 inhibited microglial engulfment of zymosan particles in a vitronectin- and Toll-like receptor 2/6-dependent manner. Conclusion Our results indicate that glia-derived PAI-1 may regulate microglial migration and phagocytosis in an autocrine or paracrine manner. This may have important implications in the regulation of brain microglial activities in health and disease.

  11. Notch1 regulated autophagy controls survival and suppressor activity of activated murine T-regulatory cells

    Science.gov (United States)

    Marcel, Nimi; Sarin, Apurva

    2016-01-01

    Cell survival is one of several processes regulated by the Notch pathway in mammalian cells. Here we report functional outcomes of non-nuclear Notch signaling to activate autophagy, a conserved cellular response to nutrient stress, regulating survival in murine natural T-regulatory cells (Tregs), an immune subset controlling tolerance and inflammation. Induction of autophagy required ligand-dependent, Notch intracellular domain (NIC) activity, which controlled mitochondrial organization and survival of activated Tregs. Consistently, NIC immune-precipitated Beclin and Atg14, constituents of the autophagy initiation complex. Further, ectopic expression of an effector of autophagy (Atg3) or recombinant NIC tagged to a nuclear export signal (NIC-NES), restored autophagy and suppressor function in Notch1-/- Tregs. Furthermore, Notch1 deficiency in the Treg lineage resulted in immune hyperactivity, implicating Notch activity in Treg homeostasis. Notch1 integration with autophagy, revealed in these experiments, holds implications for Notch regulated cell-fate decisions governing differentiation. DOI: http://dx.doi.org/10.7554/eLife.14023.001 PMID:27267497

  12. Hyperphosphorylation regulates the activity of SREBP1 during mitosis.

    Science.gov (United States)

    Bengoechea-Alonso, Maria T; Punga, Tanel; Ericsson, Johan

    2005-08-16

    The sterol regulatory element-binding protein (SREBP) family of transcription factors controls the biosynthesis of cholesterol and other lipids, and lipid synthesis is critical for cell growth and proliferation. We were, therefore, interested in the expression and activity of SREBPs during the cell cycle. We found that the expression of a number of SREBP-responsive promoter-reporter genes were induced in a SREBP-dependent manner in cells arrested in G2/M. In addition, the mature forms of SREBP1a and SREBP1c were hyperphosphorylated in mitotic cells, giving rise to a phosphoepitope recognized by the mitotic protein monoclonal-2 (MPM-2) antibody. In contrast, SREBP2 was not hyperphosphorylated in mitotic cells and was not recognized by the MPM-2 antibody. The MPM-2 epitope was mapped to the C terminus of mature SREBP1, and the mitosis-specific hyperphosphorylation of SREBP1 depended on this domain of the protein. The transcriptional and DNA-binding activity of SREBP1 was enhanced in cells arrested in G2/M, and these effects depended on the C-terminal domain of the protein. In part, these effects could be explained by our observation that mature SREBP1 was stabilized in G2/M. In agreement with these observations, we found that the synthesis of cholesterol was increased in G2/M-arrested cells. Thus, our results demonstrate that the activity of mature SREBP1 is regulated by phosphorylation during the cell cycle, suggesting that SREBP1 may provide a link between lipid synthesis, proliferation, and cell growth.

  13. 22 CFR 143.2 - To what programs or activities do these regulations apply?

    Science.gov (United States)

    2010-04-01

    ... what programs or activities do these regulations apply? These regulations apply to each foreign affairs... 22 Foreign Relations 1 2010-04-01 2010-04-01 false To what programs or activities do these regulations apply? 143.2 Section 143.2 Foreign Relations DEPARTMENT OF STATE CIVIL RIGHTS NONDISCRIMINATION ON...

  14. Circulating soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) as diagnostic and prognostic marker in neonatal sepsis.

    Science.gov (United States)

    Adly, Amira A M; Ismail, Eman A; Andrawes, Nevine G; El-Saadany, Marwa A

    2014-02-01

    Triggering receptor expressed on myeloid cells-1 (TREM-1) is an important receptor involved in the innate inflammatory response and sepsis. We assessed soluble TREM-1 (sTREM-1) in 112 septic neonates (63 culture-positive and 49 culture-negative) and 40 healthy controls as a potential early diagnostic and prognostic marker for neonatal sepsis (NS). Studied neonates were evaluated for early- or late-onset sepsis using clinical and laboratory indicators upon admission. sTREM-1 was measured on initial sepsis evaluation and at 48h after antibiotic therapy. For ethical reasons, cord blood samples were collected from control neonates and only samples from neonates that proved to be healthy by clinical examination and laboratory analysis were further analyzed for sTREM-1. Baseline sTREM-1 levels were significantly elevated in culture-proven (1461.1±523pg/mL) and culture-negative sepsis (1194±485pg/mL) compared to controls (162.2±61pg/mL) with no significant difference between both septic groups. Culture-positive or negative septic preterm neonates had significantly higher sTREM-1 compared to full term neonates. sTREM-1 was significantly higher in neonates with early sepsis than late sepsis and was associated with high mortality. sTREM-1 was significantly decreased 48h after antibiotic therapy compared to baseline or levels in neonates with persistently positive cultures. sTREM-1 was positively correlated to white blood cells (WBCs), absolute neutrophil count, immature/total neutrophil (I/T) ratio, C-reactive protein (hs-CRP) and sepsis score while negatively correlated to gestational age and weight. hs-CRP and sepsis score were independently related to sTREM-1 in multiregression analysis. sTREM-1 cutoff value of 310pg/mL could be diagnostic for NS with 100% sensitivity and specificity (AUC, 1.0 and 95% confidence interval [CI], 0.696-1.015) while the cutoff value 1100pg/mL was predictive of survival with 100% sensitivity and 97% specificity (AUC, 0.978 and 95% CI, 0

  15. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock

    Institute of Scientific and Technical Information of China (English)

    Kairui Mao; Shuzhen Chen; Mingkuan Chen; Yonglei Ma; Yan Wang; Bo Huang; Zhengyu He

    2013-01-01

    Inflammasomes are multi-protein complexes that trigger the activation of caspase-1 and the maturation of interleukin-1β (IL-1β),yet the regulation of these complexes remains poorly characterized.Here we show that nitric oxide (NO) inhibited the NLRP3-mediated ASC pyroptosome formation,caspase-1 activation and IL-1β secretion in myeloid cells from both mice and humans.Meanwhile,endogenous NO derived from iNOS (inducible form of NO synthase) also negatively regulated NLRP3 inflammasome activation.Depletion of iNOS resulted in increased accumulation of dysfunctional mitochondria in response to LPS and ATP,which was responsible for the increased IL-1βproduction and caspase-1 activation,iNOS deficiency or pharmacological inhibition of NO production enhanced NL-RP3-dependent cytokine production in vivo,thus increasing mortality from LPS-induced sepsis in mice,which was prevented by NLRP3 deficiency.Our results thus identify NO as a critical negative regulator of the NLRP3 inflammasome via the stabilization of mitochondria.This study has important implications for the design of new strategies to control NLRP3-related diseases.

  16. Energy metabolism regulated by HDAC inhibitor attenuates cardiac injury in hemorrhagic rat model.

    Science.gov (United States)

    Kuai, Qiyuan; Wang, Chunyan; Wang, Yanbing; Li, Weijing; Zhang, Gongqing; Qiao, Zhixin; He, Min; Wang, Xuanlin; Wang, Yu; Jiang, Xingwei; Su, Lihua; He, Yuezhong; Ren, Suping; Yu, Qun

    2016-12-02

    A disturbance of energy metabolism reduces cardiac function in acute severe hemorrhagic patients. Alternatively, adequate energy supply reduces heart failure and increases survival. However, the approach to regulating energy metabolism conductive to vital organs is limited, and the underlying molecular mechanism remains unknown. This study assesses the ability of histone deacetylase inhibitors (HDACIs) to preserve cardiac energy metabolism during lethal hemorrhagic injury. In the lethally hemorrhagic rat and hypoxic myocardial cells, energy metabolism and heart function were well maintained following HDACI treatment, as evident by continuous ATP production with normal cardiac contraction. Valproic acid (VPA) regulated the energy metabolism of hemorrhagic heart by reducing lactate synthesis and protecting the mitochondrial ultrastructure and respiration, which were attributable to the inhibition of lactate dehydrogenase A activity and the increased myeloid cell leukemia-1 (mcl-1) gene expression, ultimately facilitating ATP production and consumption. MCL-1, the key target of VPA, mediated this cardioprotective effect under acute severe hemorrhage conditions. Our results suggest that HDACIs promote cardioprotection by improving energy metabolism during hemorrhagic injury and could therefore be an effective strategy to counteract this process in the clinical setting.

  17. V-1 regulates capping protein activity in vivo.

    Science.gov (United States)

    Jung, Goeh; Alexander, Christopher J; Wu, Xufeng S; Piszczek, Grzegorz; Chen, Bi-Chang; Betzig, Eric; Hammer, John A

    2016-10-25

    Capping Protein (CP) plays a central role in the creation of the Arp2/3-generated branched actin networks comprising lamellipodia and pseudopodia by virtue of its ability to cap the actin filament barbed end, which promotes Arp2/3-dependent filament nucleation and optimal branching. The highly conserved protein V-1/Myotrophin binds CP tightly in vitro to render it incapable of binding the barbed end. Here we addressed the physiological significance of this CP antagonist in Dictyostelium, which expresses a V-1 homolog that we show is very similar biochemically to mouse V-1. Consistent with previous studies of CP knockdown, overexpression of V-1 in Dictyostelium reduced the size of pseudopodia and the cortical content of Arp2/3 and induced the formation of filopodia. Importantly, these effects scaled positively with the degree of V-1 overexpression and were not seen with a V-1 mutant that cannot bind CP. V-1 is present in molar excess over CP, suggesting that it suppresses CP activity in the cytoplasm at steady state. Consistently, cells devoid of V-1, like cells overexpressing CP described previously, exhibited a significant decrease in cellular F-actin content. Moreover, V-1-null cells exhibited pronounced defects in macropinocytosis and chemotactic aggregation that were rescued by V-1, but not by the V-1 mutant. Together, these observations demonstrate that V-1 exerts significant influence in vivo on major actin-based processes via its ability to sequester CP. Finally, we present evidence that V-1's ability to sequester CP is regulated by phosphorylation, suggesting that cells may manipulate the level of active CP to tune their "actin phenotype."

  18. Phosphorylation regulates NCC stability and transporter activity in vivo.

    Science.gov (United States)

    Yang, Sung-Sen; Fang, Yu-Wei; Tseng, Min-Hua; Chu, Pei-Yi; Yu, I-Shing; Wu, Han-Chung; Lin, Shu-Wha; Chau, Tom; Uchida, Shinichi; Sasaki, Sei; Lin, Yuh-Feng; Sytwu, Huey-Kang; Lin, Shih-Hua

    2013-10-01

    A T60M mutation in the thiazide-sensitive sodium chloride cotransporter (NCC) is common in patients with Gitelman's syndrome (GS). This mutation prevents Ste20-related proline and alanine-rich kinase (SPAK)/oxidative stress responsive kinase-1 (OSR1)-mediated phosphorylation of NCC and alters NCC transporter activity in vitro. Here, we examined the physiologic effects of NCC phosphorylation in vivo using a novel Ncc T58M (human T60M) knock-in mouse model. Ncc(T58M/T58M) mice exhibited typical features of GS with a blunted response to thiazide diuretics. Despite expressing normal levels of Ncc mRNA, these mice had lower levels of total Ncc and p-Ncc protein that did not change with a low-salt diet that increased p-Spak. In contrast to wild-type Ncc, which localized to the apical membrane of distal convoluted tubule cells, T58M Ncc localized primarily to the cytosolic region and caused an increase in late distal convoluted tubule volume. In MDCK cells, exogenous expression of phosphorylation-defective NCC mutants reduced total protein expression levels and membrane stability. Furthermore, our analysis found diminished total urine NCC excretion in a cohort of GS patients with homozygous NCC T60M mutations. When Wnk4(D561A/+) mice, a model of pseudohypoaldosteronism type II expressing an activated Spak/Osr1-Ncc, were crossed with Ncc(T58M/T58M) mice, total Ncc and p-Ncc protein levels decreased and the GS phenotype persisted over the hypertensive phenotype. Overall, these data suggest that SPAK-mediated phosphorylation of NCC at T60 regulates NCC stability and function, and defective phosphorylation at this residue corrects the phenotype of pseudohypoaldosteronism type II.

  19. Citrullination regulates pluripotency and histone H1 binding to chromatin

    Science.gov (United States)

    Christophorou, Maria A.; Castelo-Branco, Gonçalo; Halley-Stott, Richard P.; Oliveira, Clara Slade; Loos, Remco; Radzisheuskaya, Aliaksandra; Mowen, Kerri A.; Bertone, Paul; Silva, José C. R.; Zernicka-Goetz, Magdalena; Nielsen, Michael L.; Gurdon, John B.; Kouzarides, Tony

    2014-03-01

    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.

  20. Ubiquitin chain conformation regulates recognition and activity of interacting proteins.

    Science.gov (United States)

    Ye, Yu; Blaser, Georg; Horrocks, Mathew H; Ruedas-Rama, Maria J; Ibrahim, Shehu; Zhukov, Alexander A; Orte, Angel; Klenerman, David; Jackson, Sophie E; Komander, David

    2012-12-13

    Mechanisms of protein recognition have been extensively studied for single-domain proteins, but are less well characterized for dynamic multidomain systems. Ubiquitin chains represent a biologically important multidomain system that requires recognition by structurally diverse ubiquitin-interacting proteins. Ubiquitin chain conformations in isolation are often different from conformations observed in ubiquitin-interacting protein complexes, indicating either great dynamic flexibility or extensive chain remodelling upon binding. Using single-molecule fluorescence resonance energy transfer, we show that Lys 63-, Lys 48- and Met 1-linked diubiquitin exist in several distinct conformational states in solution. Lys 63- and Met 1-linked diubiquitin adopt extended 'open' and more compact 'closed' conformations, and ubiquitin-binding domains and deubiquitinases (DUBs) select pre-existing conformations. By contrast, Lys 48-linked diubiquitin adopts predominantly compact conformations. DUBs directly recognize existing conformations, but may also remodel ubiquitin chains to hydrolyse the isopeptide bond. Disruption of the Lys 48-diubiquitin interface changes conformational dynamics and affects DUB activity. Hence, conformational equilibria in ubiquitin chains provide an additional layer of regulation in the ubiquitin system, and distinct conformations observed in differently linked polyubiquitin may contribute to the specificity of ubiquitin-interacting proteins.

  1. German National Galileo Public Regulated Service (PRS) Testing Activities

    Science.gov (United States)

    Habrich, Heinz; Söhne, Wolfgang

    2013-04-01

    The European Global Navigation System (GNSS) Galileo is going to be established in the near future. Currently, four satellites are in place forming the In-Orbit-Testing (IOT) phase. Within the next years, the constellation will be filled. Full Operational Capability (FOC) will be reached 2019. Beside the Open Service (OS) which is comparable to other OS of existing GNSS, e.g., GPS C/A, there is a so-called Public Regulated Service (PRS) included in the IOT satellites already. The PRS will have improved robustness, i.e. robust signals which will be resistant against involuntary interferences, jamming and spoofing. The PRS signal is encrypted and there will be a restricted access to authorized users, e.g. safety and emergency services, authorities with security task, critical infrastructure organizations etc. The access to the PRS which will be controlled through a special key management will be managed and supervised within the European Union (EU) Member States (MS) by national authorities, the Competent PRS Authority (CPA). But a set of Common Minimum Standards (CMS) will define the minimum requirements applicable to each PRS participant. Nevertheless, each MS is responsible for its national key management. This presentation will inform about the testing activities for Galileo PRS in Germany. The coarse concept for the testing is explained, the schedule is outlined. Finally, the paper will formulate some expectations to the Galileo PRS, e.g. for international cooperation.

  2. AMP-activated protein kinase (AMPK) activity negatively regulates chondrogenic differentiation.

    Science.gov (United States)

    Bandow, Kenjiro; Kusuyama, Joji; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2015-05-01

    Chondrocytes are derived from mesenchymal stem cells, and play an important role in cartilage formation. Sex determining region Y box (Sox) family transcription factors are essential for chondrogenic differentiation, whereas the intracellular signal pathways of Sox activation have not been clearly elucidated. AMP-activated protein kinase (AMPK) is a serine-threonine kinase generally regarded as a key regulator of cellular energy homeostasis. It is known that the catalytic alpha subunit of AMPK is activated by upstream AMPK kinases (AMPKKs) including liver kinase B1 (LKB1). We have previously reported that AMPK is a negative regulator of osteoblastic differentiation. Here, we have explored the role of AMPK in chondrogenic differentiation using in vitro culture models. The phosphorylation level of the catalytic AMPK alpha subunit significantly decreased during chondrogenic differentiation of primary chondrocyte precursors as well as ATDC-5, a well-characterized chondrogenic cell line. Treatment with metformin, an activator of AMPK, significantly reduced cartilage matrix formation and inhibited gene expression of sox6, sox9, col2a1 and aggrecan core protein (acp). Thus, chondrocyte differentiation is functionally associated with decreased AMPK activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The Hematopoietic Transcription Factor AML1 (RUNX1) Is Negatively Regulated by the Cell Cycle Protein Cyclin D3

    Science.gov (United States)

    Peterson, Luke F.; Boyapati, Anita; Ranganathan, Velvizhi; Iwama, Atsushi; Tenen, Daniel G.; Tsai, Schickwann; Zhang, Dong-Er

    2005-01-01

    The family of cyclin D proteins plays a crucial role in the early events of the mammalian cell cycle. Recent studies have revealed the involvement of AML1 transactivation activity in promoting cell cycle progression through the induction of cyclin D proteins. This information in combination with our previous observation that a region in AML1 between amino acids 213 and 289 is important for its function led us to investigate prospective proteins associating with this region. We identified cyclin D3 by a yeast two-hybrid screen and detected AML1 interaction with the cyclin D family by both in vitro pull-down and in vivo coimmunoprecipitation assays. Furthermore, we demonstrate that cyclin D3 negatively regulates the transactivation activity of AML1 in a dose-dependent manner by competing with CBFβ for AML1 association, leading to a decreased binding affinity of AML1 for its target DNA sequence. AML1 and its fusion protein AML1-ETO have been shown to shorten and prolong the mammalian cell cycle, respectively. In addition, AML1 promotes myeloid cell differentiation. Thus, our observations suggest that the direct association of cyclin D3 with AML1 functions as a putative feedback mechanism to regulate cell cycle progression and differentiation. PMID:16287839

  4. Collagen I-induced dendritic cells activation is regulated by TNF- production through down-regulation of IRF4

    Indian Academy of Sciences (India)

    Barun Poudel; Hyeon-Hui Ki; Young-Mi Lee; Dae-Ki Kim

    2015-03-01

    Previously we have shown that collagen I enhances the maturation and function of dendritic cells (DCs). Inflammatory mediators such as tumour necrosis factor (TNF)-, interleukin (IL)-1 and lipopolysaccharide (LPS) are also known to activate DCs. Here we investigated the involvement of TNF- on the collagen I-induced DCs activation. TNF-a neutralization inhibited collagen I-induced IL-12 secretions by DCs. Additionally, we observed suppression of collagen I-induced costimulatory molecules expression along with down-regulation of genes involved in DCs activation pathway. Furthermore, TNF- inhibition upon collagen Istimulation up-regulated the expression of interferon regulatory transcription factor IRF4, when compared to collagen I only treated cells. Collectively, our data demonstrate that collagen I induce TNF- production, which is crucial for the activation and function of DCs, through down-regulation of IRF4, and implicates the importance in development of anti- TNF- therapeutics for several inflammatory diseases.

  5. Arabidopsis TTG2 regulates TRY expression through enhancement of activator complex-triggered activation.

    Science.gov (United States)

    Pesch, Martina; Dartan, Burcu; Birkenbihl, Rainer; Somssich, Imre E; Hülskamp, Martin

    2014-10-01

    Trichome patterning in Arabidopsis thaliana is regulated by a regulatory feedback loop of the trichome promoting factors TRANSPARENT TESTA GLABRA1 (TTG1), GLABRA3 (GL3)/ENHANCER OF GL3 (EGL3), and GL1 and a group of homologous R3MYB proteins that act as their inhibitors. Together, they regulate the temporal and spatial expression of GL2 and TTG2, which are considered to control trichome cell differentiation. In this work, we show that TTG2 is a specific activator of TRY (but not CPC or GL2). The WRKY protein TTG2 binds to W-boxes in a minimal promoter fragment of TRY, and these W-boxes are essential for rescue of the try mutant phenotype. We further show that TTG2 alone is not able to activate TRY expression, but rather drastically enhances the activation by TTG1 and GL3. As TTG2 physically interacts with TTG1 and because TTG2 can associate with GL3 through its interaction with TTG1, we propose that TTG2 enhances the activity of TTG1 and GL3 by forming a protein complex.

  6. NMDA receptor activation regulates sociability by its effect on mTOR signaling activity

    Science.gov (United States)

    Burket, Jessica A.; Benson, Andrew D.; Tang, Amy H.; Deutsch, Stephen I.

    2017-01-01

    Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORCl in neurons (e.g., cerebellar Purkinje cells). mTORCl is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORCl, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORCl overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORCl activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are “drivers” of mTORCl activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders. PMID:25703582

  7. NMDA receptor activation regulates sociability by its effect on mTOR signaling activity.

    Science.gov (United States)

    Burket, Jessica A; Benson, Andrew D; Tang, Amy H; Deutsch, Stephen I

    2015-07-01

    Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORC1 in neurons (e.g., cerebellar Purkinje cells). mTORC1 is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORC1, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORC1 overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORC1 activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are "drivers" of mTORC1 activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders.

  8. Regulator of complement activation (RCA) gene cluster in Xenopus tropicalis.

    Science.gov (United States)

    Oshiumi, Hiroyuki; Suzuki, Yuzuru; Matsumoto, Misako; Seya, Tsukasa

    2009-05-01

    Genome and expressed sequence tag information of Xenopus tropicalis suggested that short-consensus repeat (SCR)-containing proteins are encoded by three genes that are mapped within a 300-kb downstream of PFKFB2, which is a marker gene for the regulator of complement activation (RCA) loci in human and chicken. Based on this observation, we cloned the three cDNAs of these proteins using 3'- or 5'-RACE technique. Since their primary structures and locations of the proximity to the PFKFB2 locus, we named them amphibian RCA protein (ARC) 1, 2, and 3. Expression in human HEK293 or CHO cells suggested that ARC1 is a soluble protein of Mr approximately 67 kDa, ARC2 is a membrane protein with Mr 44 kDa, and ARC3 a secretary protein with a putative transmembrane region. They were N-glycosylated during maturation. In human and chicken RCA clusters, the order in which genes for soluble, GPI-anchored, and membrane forms of SCR proteins are arranged is from the distant to proximity to the PFKFB2 gene. However, the amphibian ARC1, 2, and 3 resembled one another and did not reflect the same order found in human and chicken RCA genes. This may be due to self-duplication of ARCs to form a family, and it evolved after the amphibia separated from the ancestor of the amniotes, which possessed soluble, GPI-anchored, and membrane forms of SCR protein members. Taken together, frog possesses a RCA locus, but the constitution of the ARC proteins differs from that of the amniotes with a unique self-resemblance.

  9. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize.

    Science.gov (United States)

    Schmelz, Eric A; Kaplan, Fatma; Huffaker, Alisa; Dafoe, Nicole J; Vaughan, Martha M; Ni, Xinzhi; Rocca, James R; Alborn, Hans T; Teal, Peter E

    2011-03-29

    Phytoalexins constitute a broad category of pathogen- and insect-inducible biochemicals that locally protect plant tissues. Because of their agronomic significance, maize and rice have been extensively investigated for their terpenoid-based defenses, which include insect-inducible monoterpene and sesquiterpene volatiles. Rice also produces a complex array of pathogen-inducible diterpenoid phytoalexins. Despite the demonstration of fungal-induced ent-kaur-15-ene production in maize over 30 y ago, the identity of functionally analogous maize diterpenoid phytoalexins has remained elusive. In response to stem attack by the European corn borer (Ostrinia nubilalis) and fungi, we observed the induced accumulation of six ent-kaurane-related diterpenoids, collectively termed kauralexins. Isolation and identification of the predominant Rhizopus microsporus-induced metabolites revealed ent-kaur-19-al-17-oic acid and the unique analog ent-kaur-15-en-19-al-17-oic acid, assigned as kauralexins A3 and B3, respectively. Encoding an ent-copalyl diphosphate synthase, fungal-induced An2 transcript accumulation precedes highly localized kauralexin production, which can eventually exceed 100 μg · g(-1) fresh weight. Pharmacological applications of jasmonic acid and ethylene also synergize the induced accumulation of kauralexins. Occurring at elevated levels in the scutella of all inbred lines examined, kauralexins appear ubiquitous in maize. At concentrations as low as 10 μg · mL(-1), kauralexin B3 significantly inhibited the growth of the opportunistic necrotroph R. microsporus and the causal agent of anthracnose stalk rot, Colletotrichum graminicola. Kauralexins also exhibited significant O. nubilalis antifeedant activity. Our work establishes the presence of diterpenoid defenses in maize and enables a more detailed analysis of their biosynthetic pathways, regulation, and crop defense function.

  10. Akt1 is the principal Akt isoform regulating apoptosis in limiting cytokine concentrations.

    Science.gov (United States)

    Green, B D; Jabbour, A M; Sandow, J J; Riffkin, C D; Masouras, D; Daunt, C P; Salmanidis, M; Brumatti, G; Hemmings, B A; Guthridge, M A; Pearson, R B; Ekert, P G

    2013-10-01

    The activation of the Akt signalling in response to cytokine receptor signalling promotes protein synthesis, cellular growth and proliferation. To determine the role of Akt in interleukin-3 (IL-3) signalling, we generated IL-3-dependent myeloid cell lines from mice lacking Akt1, Akt2 or Akt3. Akt1 deletion resulted in accelerated apoptosis at low concentrations of IL-3. Expression of constitutively active Akt1 was sufficient to delay apoptosis in response to IL-3 withdrawal, but not sufficient to induce proliferation in the absence of IL-3. Akt1 prolonged survival of Bim- or Bad-deficient cells, but not cells lacking Puma, indicating that Akt1-dependent repression of apoptosis was in part dependent on Puma and independent of Bim or Bad. Our data show that a key role of Akt1 during IL-3 signalling is to repress p53-dependent apoptosis pathways, including transcriptional upregulation of Puma. Moreover, our data indicate that regulation of BH3-only proteins by Akt is dispensable for Akt-dependent cell survival.

  11. Termination of the Activating NK Cell Immunological Synapse Is an Active and Regulated Process.

    Science.gov (United States)

    Netter, Petra; Anft, Moritz; Watzl, Carsten

    2017-08-23

    Cellular cytotoxicity is essential for the elimination of virus-infected and cancerous cells by NK cells. It requires a direct cellular contact through the establishment of an immunological synapse (IS) between the NK cell and the target cell. In this article, we show that not only the establishment of the IS, but also its maintenance is a highly regulated process. Ongoing receptor-proximal signaling events from activating NK cell receptors and actin dynamics were necessary to maintain a stable contact in an energy-dependent fashion, even after the IS was formed successfully. More importantly, the initiation of a contact to a new susceptible target cell resulted in accelerated detachment from an old target cell. We propose that the maintenance of an existing IS is a dynamic and regulated process to allow for effective serial killing of NK cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. 75 FR 28276 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Science.gov (United States)

    2010-05-20

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: NAFTA Regulations and... approval in accordance with the Paperwork Reduction Act: NAFTA Regulations and Certificate of Origin. This.... Title: NAFTA Regulations and Certificate of Origin. OMB Number: 1651-0098. Form Numbers: CBP Forms 434...

  13. 76 FR 76983 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Science.gov (United States)

    2011-12-09

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: NAFTA Regulations and... the NAFTA Regulations and Certificate of Origin. This request for comment is being made pursuant to... CBP is soliciting comments concerning the following information collection: Title: NAFTA Regulations...

  14. Nitric oxide regulates neuronal activity via calcium-activated potassium channels.

    Directory of Open Access Journals (Sweden)

    Lei Ray Zhong

    Full Text Available Nitric oxide (NO is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during the hyper-retraction phase of the feeding motor program and is located in the vicinity of NO-producing neurons in the buccal ganglion. Here, we asked whether B19 neurons might serve as direct targets of NO signaling. Previous work established NO as a key regulator of growth cone motility and neuronal excitability in another buccal neuron involved in feeding, the B5 neuron. This raised the question whether NO might modulate the electrical activity and neuronal excitability of B19 neurons as well, and if so whether NO acted on the same or a different set of ion channels in both neurons. To study specific responses of NO on B19 neurons and to eliminate indirect effects contributed by other cells, the majority of experiments were performed on single cultured B19 neurons. Addition of NO donors caused a prolonged depolarization of the membrane potential and an increase in neuronal excitability. The effects of NO could mainly be attributed to the inhibition of two types of calcium-activated potassium channels, apamin-sensitive and iberiotoxin-sensitive potassium channels. NO was found to also cause a depolarization in B19 neurons in situ, but only after NO synthase activity in buccal ganglia had been blocked. The results suggest that NO acts as a critical modulator of neuronal excitability in B19 neurons, and that calcium-activated potassium channels may serve as a common target of NO in neurons.

  15. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    Science.gov (United States)

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal

  16. Robust, synergistic regulation of human gene expression using TALE activators.

    Science.gov (United States)

    Maeder, Morgan L; Linder, Samantha J; Reyon, Deepak; Angstman, James F; Fu, Yanfang; Sander, Jeffry D; Joung, J Keith

    2013-03-01

    Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.

  17. 26 CFR 1.145-2 - Application of private activity bond regulations.

    Science.gov (United States)

    2010-04-01

    ... of the private business use test and the private security or payment test mean “5 percent” and “net... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Application of private activity bond regulations... Bonds § 1.145-2 Application of private activity bond regulations. (a) In general. Except as provided...

  18. Soft Matter-Regulated Active Nanovalves Locally Self-Assembled in Femtoliter Nanofluidic Channels.

    Science.gov (United States)

    Xu, Yan; Shinomiya, Misato; Harada, Atsushi

    2016-03-16

    Well-tailored thermoresponsive polymer brushes locally self-assembled in tiny nanofluidic channels enable the active regulation of femtoliter-scale fluids. Such soft-matter-regulated active nanovalves within nanofluidic channels can be extended to build well-controlled functional nanofluidic systems, allowing complex fluidic processes to be performed at the nanometer scales.

  19. Self-Regulated Learning and Perceived Health among University Students Participating in Physical Activity Classes

    Science.gov (United States)

    McBride, Ron E.; Altunsöz, Irmak Hürmeriç; Su, Xiaoxia; Xiang, Ping; Demirhan, Giyasettin

    2016-01-01

    The purpose of this study was to explore motivational indicators of self-regulated learning (SRL) and the relationship between self-regulation (SR) and perceived health among university students enrolled in physical activity (PA) classes. One hundred thirty-one Turkish students participating in physical education activity classes at two…

  20. Physical Activity, Self-Regulation, and Early Academic Achievement in Preschool Children

    Science.gov (United States)

    Becker, Derek R.; McClelland, Megan M.; Loprinzi, Paul; Trost, Stewart G.

    2014-01-01

    Research Findings: The present study investigated whether active play during recess was associated with self-regulation and academic achievement in a prekindergarten sample. A total of 51 children in classes containing approximately half Head Start children were assessed on self-regulation, active play, and early academic achievement. Path…

  1. Plasma thymus and activation-regulated chemokine as an early response marker in classical Hodgkin's lymphoma

    NARCIS (Netherlands)

    Plattel, Wouter J.; van den Berg, Anke; Visser, Lydia; van der Graaf, Anne-Marijn; Pruim, Jan; Vos, Hans; Hepkema, Bouke; Diepstra, Arjan; van Imhoff, Gustaaf W.

    2012-01-01

    BACKGROUND: Plasma thymus and activation-regulated chemokine is a potential biomarker for classical Hodgkin's lymphoma. To define its value as a marker to monitor treatment response, we correlated serial plasma thymus and activation-regulated chemokine levels with clinical response in newly diagnose

  2. Dynamics of study strategies and teacher regulation in virtual patient learning activities: a cross sectional survey.

    Science.gov (United States)

    Edelbring, Samuel; Wahlström, Rolf

    2016-04-23

    Students' self-regulated learning becomes essential with increased use of exploratory web-based activities such as virtual patients (VPs). The purpose was to investigate the interplay between students' self-regulated learning strategies and perceived benefit in VP learning activities. A cross-sectional study (n = 150) comparing students' study strategies and perceived benefit of a virtual patient learning activity in a clinical clerkship preparatory course. Teacher regulation varied among three settings and was classified from shared to strong. These settings were compared regarding their respective relations between regulation strategies and perceived benefit of the virtual patient activity. Self-regulation learning strategy was generally associated with perceived benefit of the VP activities (rho 0.27, p study strategies can increase the value of flexible web-based learning resources to students.

  3. Phosphorylation networks regulating JNK activity in diverse genetic backgrounds

    DEFF Research Database (Denmark)

    Bakal, Chris; Linding, Rune; Llense, Flora;

    2008-01-01

    Cellular signaling networks have evolved to enable swift and accurate responses, even in the face of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that regulate different biological processes. Moreover, although classical screening approaches have suc...

  4. LEGISLATIVE AND LEGAL REGULATION OF ACTIVITY INTERNATIONAL FINANCIAL CENTER

    Directory of Open Access Journals (Sweden)

    Ju. N. Gusev

    2012-01-01

    Full Text Available What is needed: to improve legislative base of Russian financial markets taking into account the changes brought about by the global crisis; to form coordinated regulation system for financial markets; to create effective judicial system; to strengthen currency and financial cooperation with leading foreign trade partners of Russia.

  5. Polyphosphate - an ancient energy source and active metabolic regulator

    Directory of Open Access Journals (Sweden)

    Achbergerová Lucia

    2011-08-01

    Full Text Available Abstract There are a several molecules on Earth that effectively store energy within their covalent bonds, and one of these energy-rich molecules is polyphosphate. In microbial cells, polyphosphate granules are synthesised for both energy and phosphate storage and are degraded to produce nucleotide triphosphate or phosphate. Energy released from these energetic carriers is used by the cell for production of all vital molecules such as amino acids, nucleobases, sugars and lipids. Polyphosphate chains directly regulate some processes in the cell and are used as phosphate donors in gene regulation. These two processes, energetic metabolism and regulation, are orchestrated by polyphosphate kinases. Polyphosphate kinases (PPKs can currently be categorized into three groups (PPK1, PPK2 and PPK3 according their functionality; they can also be divided into three groups according their homology (EcPPK1, PaPPK2 and ScVTC. This review discusses historical information, similarities and differences, biochemical characteristics, roles in stress response regulation and possible applications in the biotechnology industry of these enzymes. At the end of the review, a hypothesis is discussed in view of synthetic biology applications that states polyphosphate and calcium-rich organelles have endosymbiotic origins from ancient protocells that metabolized polyphosphate.

  6. Gibberellins negatively regulate light-induced nitrate reductase activity in Arabidopsis seedlings.

    Science.gov (United States)

    Zhang, Yongqiang; Liu, Zhongjuan; Liu, Rongzhi; Wang, Liguang; Bi, Yurong

    2011-12-15

    In the present study, the role of phytohormone gibberellins (GAs) on regulating the nitrate reductase (NR) activity was tested in Arabidopsis seedlings. The NR activity in light-grown Col-0 seedlings was reduced by exogenous GA₃ (an active form of GAs), but enhanced by exogenous paclobutrazol (PAC, a gibberellin biosynthesis inhibitor), suggesting that GAs negatively regulate the NR activity in light-grown seedlings. Light is known to influence the NR activity through both photosynthesis and phytochromes. When etiolated seedlings were transferred to white or red light, both exogenously applied GA₃ and PAC were found to function on the NR activity only in the presence of sucrose, implying that GAs are not involved in light signaling-induced but negatively regulate photoproducts-induced NR activity. NR is regulated by light mainly at two levels: transcript level and post-translational level. Our reverse transcription (RT)-PCR assays showed that GAs did not affect the transcript levels of NIA1 and NIA2, two genes that encode NR proteins. But the divalent cations (especially Mg²⁺) were required for GAs negative regulation of NR activity, in view of the importance of divalent cations during the process of post-translational regulation of NR activity, which indicates that GAs very likely regulate the NR activity at the post-translational level. In the following dark-light shift analyses, GAs were found to accelerate dark-induced decrease, but retard light-induced increase of the NR activity. Furthermore, it was observed that application of G₃ or PAC could impair diurnal variation of the NR activity. These results collectively indicate that GAs play a negative role during light regulation of NR activity in nature.

  7. mTORC1-Induced HK1-Dependent Glycolysis Regulates NLRP3 Inflammasome Activation

    Directory of Open Access Journals (Sweden)

    Jong-Seok Moon

    2015-07-01

    Full Text Available The mammalian target of rapamycin complex 1 (mTORC1 regulates activation of immune cells and cellular energy metabolism. Although glycolysis has been linked to immune functions, the mechanisms by which glycolysis regulates NLRP3 inflammasome activation remain unclear. Here, we demonstrate that mTORC1-induced glycolysis provides an essential mechanism for NLRP3 inflammasome activation. Moreover, we demonstrate that hexokinase 1 (HK1-dependent glycolysis, under the regulation of mTORC1, represents a critical metabolic pathway for NLRP3 inflammasome activation. Downregulation of glycolysis by inhibition of Raptor/mTORC1 or HK1 suppressed both pro-IL-1β maturation and caspase-1 activation in macrophages in response to LPS and ATP. These results suggest that upregulation of HK1-dependent glycolysis by mTORC1 regulates NLRP3 inflammasome activation.

  8. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity[S

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-01-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  9. The Impact of ATRA on Shaping Human Myeloid Cell Responses to Epithelial Cell-Derived Stimuli and on T-Lymphocyte Polarization

    Directory of Open Access Journals (Sweden)

    Arunima Chatterjee

    2015-01-01

    Full Text Available Vitamin A plays an essential role in the maintenance of gut homeostasis but its interplay with chemokines has not been explored so far. Using an in vitro model system we studied the effects of human colonic epithelial cells (Caco2, HT-29, and HCT116 derived inflammatory stimuli on monocyte-derived dendritic cells and macrophages. Unstimulated Caco2 and HT-29 cells secreted CCL19, CCL21, and CCL22 chemokines, which could attract dendritic cells and macrophages and induced CCR7 receptor up-regulation by retinoic-acid resulting in dendritic cell migration. The chemokines Mk, CXCL16, and CXCL7 were secreted by all the 3 cell lines tested, and upon stimulation by IL-1β or TNF-α this effect was inhibited by ATRA but had no impact on CXCL1, CXCL8, and CCL20 secretion in response to IL-1β. In the presence of ATRA the supernatants of these cells induced CD103 expression on monocyte-derived dendritic cells and when conditioned by ATRA and cocultured with CD4+ T-lymphocytes they reduced the proportion of Th17 T-cells. However, in the macrophage-T-cell cocultures the number of these effector T-cells was increased. Thus cytokine-activated colonic epithelial cells trigger the secretion of distinct combinations of chemokines depending on the proinflammatory stimulus and are controlled by retinoic acid, which also governs dendritic cell and macrophage responses.

  10. Astragaloside Ⅱ triggers T cell activation through regulation of CD45 protein tyrosine phosphatase activity

    Institute of Scientific and Technical Information of China (English)

    Chun-ping WAN; Li-xin GAO; Li-fei HOU; Xiao-qian YANG; Pei-lan HE; Yi-fu YANG; Wei TANG

    2013-01-01

    Aim:To investigate the immunomodulating activity of astragalosides,the active compounds from a traditional tonic herb Astragalus membranaceus Bge,and to explore the molecular mechanisms underlying the actions,focusing on CD45 protein tyrosine phosphatase (CD45 PTPase),which plays a critical role in T lymphocyte activation.Methods:Primary splenocytes and T cells were prepared from mice.CD45 PTPase activity was assessed using a colorimetric assay.Cell proliferation was measured using a [3H]-thymidine incorporation assay.Cytokine proteins and mRNAs were examined with ELISA and RT-PCR,respectively.Activation markers,including CD25 and CD69,were analyzed using flow cytometry.Activation of LCK (Tyr505) was detected using Western blot analysis.Mice were injected with the immunosuppressant cyclophosphamide (CTX,80 mg/kg),and administered astragaloside Ⅱ (50 mg/kg).Results:Astragaloside Ⅰ,Ⅱ,Ⅲ,and Ⅳ concentration-dependently increased the CD45-mediated of pNPP/OMFP hydrolysis with the EC50 values ranged from 3.33 to 10.42 μg/mL.Astragaloside Ⅱ (10 and 30 μg/mL) significantly enhanced the proliferation of primary splenocytes induced by ConA,alloantigen or anti-CD3.Astragaloside Ⅱ (30 μg/mL) significantly increased IL-2 and IFN-y secretion,upregulated the mRNA levels of IFN-y and T-bet in primary splenocytes,and promoted CD25 and CD69 expression on primary CD4+T cells upon TCR stimulation.Furthermore,astragaloside Ⅱ (100 ng/mL) promoted CD45-mediated dephosphorylation of LCK (Tyr505) in primary T cells,which could be blocked by a specific CD45 PTPase inhibitor.In CTX-induced immunosuppressed mice,oral administration of astragaloside Ⅱ restored the proliferation of splenic T cells and the production of IFN-Y and IL-2.However,astragaloside Ⅱ had no apparent effects on B cell proliferation.Conclusion:Astragaloside Ⅱ enhances T cell activation by regulating the activity of CD45 PTPase,which may explain why Astragalus membranaceus Bge is used as a tonic

  11. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  12. Examining "Active" Procrastination from a Self-Regulated Learning Perspective

    Science.gov (United States)

    Cao, Li

    2012-01-01

    This study examined the notion that active procrastinators are a positive type of procrastinators who possess desirable characteristics similar to non-procrastinators, but different from the traditional passive procrastinators. A two-step procedure was followed to categorise university students (N = 125) as active procrastinators, passive…

  13. Gene program-specific regulation of PGC-1{alpha} activity

    DEFF Research Database (Denmark)

    Schmidt, Søren F; Mandrup, Susanne

    2011-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1 α (PGC-1α) activation coordinates induction of the hepatic fasting response through coactivation of numerous transcription factors and gene programs. In the June 15, 2011, issue of Genes & Development, Lustig and colleagues (pp...

  14. BicaudalD actively regulates microtubule motor activity in lipid droplet transport.

    Directory of Open Access Journals (Sweden)

    Kristoffer S Larsen

    Full Text Available BACKGROUND: A great deal of sub-cellular organelle positioning, and essentially all minus-ended organelle transport, depends on cytoplasmic dynein, but how dynein's function is regulated is not well understood. BicD is established to play a critical role in mediating dynein function-loss of BicD results in improperly localized nuclei, mRNA particles, and a dispersed Golgi apparatus-however exactly what BicD's role is remains unknown. Nonetheless, it is widely believed that BicD may act to tether dynein to cargos. Here we use a combination of biophysical and biochemical studies to investigate BicD's role in lipid droplet transport during Drosophila embryogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Functional loss of BicD impairs the embryo's ability to control the net direction of droplet transport; the developmentally controlled reversal in transport is eliminated. We find that minimal BicD expression (near-BicD(null decreases the average run length of both plus and minus end directed microtubule (MT based transport. A point mutation affecting the BicD N-terminus has very similar effects on transport during cellularization (phase II, but in phase III (gastrulation motion actually appears better than in the wild-type. CONCLUSIONS/SIGNIFICANCE: In contrast to a simple static tethering model of BicD function, or a role only in initial dynein recruitment to the cargo, our data uncovers a new dynamic role for BicD in actively regulating transport. Lipid droplets move bi-directionally, and our investigations demonstrate that BicD plays a critical-and temporally changing-role in balancing the relative contributions of plus-end and minus-end motors to control the net direction of transport. Our results suggest that while BicD might contribute to recruitment of dynein to the cargo it is not absolutely required for such dynein localization, and it clearly contributes to regulation, helping activation/inactivation of the motors.

  15. Simulated shift work in rats perturbs multiscale regulation of locomotor activity

    Science.gov (United States)

    Hsieh, Wan-Hsin; Escobar, Carolina; Yugay, Tatiana; Lo, Men-Tzung; Pittman-Polletta, Benjamin; Salgado-Delgado, Roberto; Scheer, Frank A. J. L.; Shea, Steven A.; Buijs, Ruud M.; Hu, Kun

    2014-01-01

    Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation. PMID:24829282

  16. Substrate stiffness regulates filopodial activities in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Ren Liou

    Full Text Available Microenvironment stiffening plays a crucial role in tumorigenesis. While filopodia are generally thought to be one of the cellular mechanosensors for probing environmental stiffness, the effects of environmental stiffness on filopodial activities of cancer cells remain unclear. In this work, we investigated the filopodial activities of human lung adenocarcinoma cells CL1-5 cultured on substrates of tunable stiffness using a novel platform. The platform consists of an optical system called structured illumination nano-profilometry, which allows time-lapsed visualization of filopodial activities without fluorescence labeling. The culturing substrates were composed of polyvinyl chloride mixed with an environmentally friendly plasticizer to yield Young's modulus ranging from 20 to 60 kPa. Cell viability studies showed that the viability of cells cultured on the substrates was similar to those cultured on commonly used elastomers such as polydimethylsiloxane. Time-lapsed live cell images were acquired and the filopodial activities in response to substrates with varying degrees of stiffness were analyzed. Statistical analyses revealed that lung cancer cells cultured on softer substrates appeared to have longer filopodia, higher filopodial densities with respect to the cellular perimeter, and slower filopodial retraction rates. Nonetheless, the temporal analysis of filopodial activities revealed that whether a filopodium decides to extend or retract is purely a stochastic process without dependency on substrate stiffness. The discrepancy of the filopodial activities between lung cancer cells cultured on substrates with different degrees of stiffness vanished when the myosin II activities were inhibited by treating the cells with blebbistatin, which suggests that the filopodial activities are closely modulated by the adhesion strength of the cells. Our data quantitatively relate filopodial activities of lung cancer cells with environmental stiffness and

  17. Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB.

    Directory of Open Access Journals (Sweden)

    Wei-Chun Huang

    Full Text Available Remodelling of the extracellular matrix (ECM and cell surface by matrix metalloproteinases (MMPs is an important function of monocytes and macrophages. Recent work has emphasised the diverse roles of classically and alternatively activated macrophages but the consequent regulation of MMPs and their inhibitors has not been studied comprehensively. Classical activation of macrophages derived in vitro from un-fractionated CD16(+/- or negatively-selected CD16(- macrophages up-regulated MMP-1, -3, -7, -10, -12, -14 and -25 and decreased TIMP-3 steady-state mRNA levels. Bacterial lipopolysaccharide, IL-1 and TNFα were more effective than interferonγ except for the effects on MMP-25, and TIMP-3. By contrast, alternative activation decreased MMP-2, -8 and -19 but increased MMP -11, -12, -25 and TIMP-3 steady-state mRNA levels. Up-regulation of MMPs during classical activation depended on mitogen activated protein kinases, phosphoinositide-3-kinase and inhibitor of κB kinase-2. Effects of interferonγ depended on janus kinase-2. Where investigated, similar effects were seen on protein concentrations and collagenase activity. Moreover, activity of MMP-1 and -10 co-localised with markers of classical activation in human atherosclerotic plaques in vivo. In conclusion, classical macrophage activation selectively up-regulates several MMPs in vitro and in vivo and down-regulates TIMP-3, whereas alternative activation up-regulates a distinct group of MMPs and TIMP-3. The signalling pathways defined here suggest targets for selective modulation of MMP activity.

  18. Deubiquitylating enzyme USP9x regulates hippo pathway activity by controlling angiomotin protein turnover

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Andrejeva, Diana; Gupta, Rajat;

    2016-01-01

    The Hippo pathway has been identified as a key barrier for tumorigenesis, acting through downregulation of YAP/TAZ activity. Elevated YAP/TAZ activity has been documented in many human cancers. Ubiquitylation has been shown to play a key role in regulating YAP/TAZ activity through downregulation....../TAZ activity. We demonstrate that USPx regulates ubiquitin-mediated turnover of the YAP inhibitor, Angiomotin. USP9x acts to deubiquitylate Angiomotin at lysine 496, resulting in stabilization of Angiomotin and lower YAP/TAZ activity. USP9x mRNA levels were reduced in several cancers. Clinically, USP9x m...

  19. Pancreatic tumors and immature immunosuppressive myeloid cells in blood and spleen: role of inhibitory co-stimulatory molecules PDL1 and CTLA4. An in vivo and in vitro study.

    Directory of Open Access Journals (Sweden)

    Daniela Basso

    Full Text Available BACKGROUND: Blood and spleen expansion of immature myeloid cells (IMCs might compromise the immune response to cancer. We studied in vivo circulating and splenic T lymphocyte and IMC subsets in patients with benign and malignant pancreatic diseases. We ascertained in vitro whether pancreatic adenocarcinoma (PDAC-associated IMC subsets are induced by tumor-derived soluble factors and whether they are immunosuppressive focusing on the inhibitory co-stimulatory molecules PDL1 and CTLA4. METHODOLOGY AND PRINCIPAL FINDINGS: 103 pancreatic and/or splenic surgical patients were enrolled including 52 PDAC, 10 borderline and 10 neuroendocrine tumors (NETs. Lymphocytes and IMCs were analysed by flow cytometry in blood, in spleen and in three PDAC cell conditioned (CM or non conditioned PBMC. PDL1 and CTLA4 were studied in 30 splenic samples, in control and conditioned PBMC. IMCs were FACS sorted and co-coltured with allogenic T lymphocytes. In PDAC a reduction was found in circulating CD8(+ lymphocytes (p = 0.004 and dendritic cells (p = 0.01, which were reduced in vitro by one PDAC CM (Capan1; p = 0.03. Blood myeloid derived suppressive cells (MDSCs CD33(+CD14(-HLA-DR(- were increased in PDAC (p = 0.022 and were induced in vitro by BxPC3 CM. Splenic dendritic cells had a higher PDL1 expression (p = 0.007, while CD33(+CD14(+HLA-DR(- IMCs had a lower CTLA4 expression (p = 0.029 in PDAC patients. In vitro S100A8/A9 complex, one of the possible inflammatory mediators of immune suppression in PDAC, induced PDL1 (p = 0.018 and reduced CTLA4 expression (p = 0.028 among IMCs. IMCs not expressing CTLA4 were demonstrated to be immune suppressive. CONCLUSION: In PDAC circulating dendritic and cytotoxic T cells are reduced, while MDSCs are increased and this might favour tumoral growth and progression. The reduced CTLA4 expression found among splenic IMCs of PDAC patients was demonstrated to characterize an immune suppressive phenotype and to be consequent to the

  20. Light-induced regulation of ligand-gated channel activity.

    Science.gov (United States)

    Bregestovski, Piotr; Maleeva, Galyna; Gorostiza, Pau

    2017-08-31

    The control of ligand-gated receptors with light using photochromic compounds has evolved from the first handcrafted examples to accurate, engineered receptors, whose development is supported by rational design, high-resolution protein structures, comparative pharmacology and molecular biology manipulations. Photoswitchable regulators have been designed and characterized for a large number of ligand-gated receptors in the mammalian nervous system, including nicotinic acetylcholine, glutamate and GABA receptors. They provide a well-equipped toolbox to investigate synaptic and neuronal circuits in all-optical experiments. This focused review discusses the design and properties of these photoswitches, their applications and shortcomings and future perspectives in the field. © 2017 The British Pharmacological Society.

  1. Assessing brain activations associated with emotional regulation during virtual reality mood induction procedures

    NARCIS (Netherlands)

    Rodriguez, A.; Rey, B.; Clemente, M.; Wrzesien, M.; Alcañiz, M.

    2015-01-01

    Emotional regulation strategies are used by people to influence their emotional responses to external or internal emotional stimuli. The aim of this study is to evaluate the brain activations that are associated with the application of two different emotional regulation strategies (cognitive reappra

  2. Hypothalamic-Pituitary-Adrenal and Sympathetic Nervous System Activity and Children's Behavioral Regulation

    Science.gov (United States)

    Lisonbee, Jared A.; Pendry, Patricia; Mize, Jacquelyn; Gwynn, Eugenia Parrett

    2010-01-01

    Self-regulation ability is an important component of children's academic success. Physiological reactivity may relate to brain activity governing attention and behavioral regulation. Saliva samples collected from 186 preschool children (101 boys, mean age = 53 months, 34% minority) before and after a series of mildly challenging games and again 30…

  3. Hypothalamic-Pituitary-Adrenal and Sympathetic Nervous System Activity and Children's Behavioral Regulation

    Science.gov (United States)

    Lisonbee, Jared A.; Pendry, Patricia; Mize, Jacquelyn; Gwynn, Eugenia Parrett

    2010-01-01

    Self-regulation ability is an important component of children's academic success. Physiological reactivity may relate to brain activity governing attention and behavioral regulation. Saliva samples collected from 186 preschool children (101 boys, mean age = 53 months, 34% minority) before and after a series of mildly challenging games and again 30…

  4. 78 FR 76851 - Agency Information Collection Activities: BP Regulations Pertaining to Customs Brokers

    Science.gov (United States)

    2013-12-19

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: BP Regulations Pertaining to Customs Brokers AGENCY: U.S. Customs and Border Protection (CBP), Department of Homeland... requirement concerning the CBP Regulations Pertaining to Customs Brokers (19 CFR Part 111). This request...

  5. 75 FR 67094 - Agency Information Collection Activities: CBP Regulations Pertaining to Customs Brokers

    Science.gov (United States)

    2010-11-01

    ... SECURITY Customs and Border Protection Agency Information Collection Activities: CBP Regulations Pertaining to Customs Brokers AGENCY: U.S. Customs and Border Protection, Department of Homeland Security... concerning the: CBP Regulations Pertaining to Customs Brokers (19 CFR Part 111). This request for comment...

  6. What can Prudent Public Regulators Learn from the United Kingdom Government’s Nanotechnological Regulatory Activities?

    NARCIS (Netherlands)

    Dorbeck-Jung, Bärbel

    2007-01-01

    This contribution discusses the United Kingdom (UK) government’s regulatory activities related to nanotechnological development. The central question is what other prudent public regulation can learn from the UK government’s regulatory strategy, its regulatory attitude and its large variety of regul

  7. Design for mood: Twenty activity-based opportunities to design for mood regulation

    NARCIS (Netherlands)

    Desmet, P.M.A.

    2015-01-01

    This paper introduces a theory-based approach to design for mood regulation. The main proposition is that design can best influence mood by enabling and stimulating people to engage in a broad range of mood-regulating activities. The first part of the manuscript reviews state-of-the art mood-focused

  8. Study on the Model for Regulation of the Allosteric Enzyme Activity

    Institute of Scientific and Technical Information of China (English)

    LI,Qian-Zhong(李前忠); LUO,Liao-Fu(罗辽复); ZHANG,Li-Rong(张利绒)

    2002-01-01

    The effects of activator molecule and repressive molecule on binding process between allosteric enzyme and substrate are disused by considering the heterotropic effect of the regulating molecule that binds to allosteric enzyme. A model of allosteric enzyme with heterotropic effect is presented. The cooperativity and anticooperativity in the regulation process are studied.

  9. Evidence for differential human slow-wave activity regulation across the brain

    NARCIS (Netherlands)

    Zavada, Andrei; Strijkstra, Arjen M.; Boerema, Ate S.; Daan, Serge; Beersma, Domien G. M.

    2009-01-01

    The regulation of the timing of sleep is thought to be linked to the temporal dynamics of slow-wave activity [SWA, electroencephalogram (EEG) spectral power in the similar to 0.75-4.5 Hz range] in the cortical non-rapid eye movement (NREM) sleep EEG. In the two-process model of sleep regulation, SWA

  10. The Plasmid-Encoded Regulator Activates Factors Conferring Lysozyme Resistance on Enteropathogenic Escherichia coli Strains▿

    Science.gov (United States)

    Salinger, Nina; Kokona, Bashkim; Fairman, Robert; Okeke, Iruka N.

    2009-01-01

    We demonstrate that enhanced lysozyme resistance of enteropathogenic Escherichia coli requires the plasmid-encoded regulator, Per, and is mediated by factors outside the locus for enterocyte effacement. EspC, a Per-activated serine protease autotransporter protein, conferred enhanced resistance on nonpathogenic E. coli, and a second Per-regulated, espC-independent lysozyme resistance mechanism was identified. PMID:18997020

  11. The plasmid-encoded regulator activates factors conferring lysozyme resistance on enteropathogenic Escherichia coli strains.

    Science.gov (United States)

    Salinger, Nina; Kokona, Bashkim; Fairman, Robert; Okeke, Iruka N

    2009-01-01

    We demonstrate that enhanced lysozyme resistance of enteropathogenic Escherichia coli requires the plasmid-encoded regulator, Per, and is mediated by factors outside the locus for enterocyte effacement. EspC, a Per-activated serine protease autotransporter protein, conferred enhanced resistance on nonpathogenic E. coli, and a second Per-regulated, espC-independent lysozyme resistance mechanism was identified.

  12. Assessing brain activations associated with emotional regulation during virtual reality mood induction procedures

    NARCIS (Netherlands)

    Rodriguez, A.; Rey, B.; Clemente, M.; Wrzesien, M.; Alcañiz, M.

    2015-01-01

    Emotional regulation strategies are used by people to influence their emotional responses to external or internal emotional stimuli. The aim of this study is to evaluate the brain activations that are associated with the application of two different emotional regulation strategies (cognitive

  13. 77 FR 9954 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Science.gov (United States)

    2012-02-21

    ...., Mexico and Canada entered into an agreement, ``The North American Free Trade Agreement'' (NAFTA). The... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: NAFTA Regulations and... review and approval in accordance with the Paperwork Reduction Act: NAFTA Regulations and Certificate of...

  14. Threonine 788 in integrin subunit beta1 regulates integrin activation

    DEFF Research Database (Denmark)

    Nilsson, Stina; Kaniowska, Dorota; Brakebusch, Cord

    2006-01-01

    was identified as a site with major influence on integrin function. The mutation to A788 strongly reduced beta1-dependent cell attachment and exposure of the extracellular 9EG7 epitope, whereas replacement of T789 with alanine did not interfere with the ligand-binding ability. Talin has been shown to mediate......In the present study, the functional role of suggested phosphorylation of the conserved threonines in the cytoplasmic domain of integrin subunit beta1 was investigated. Mutants mimicking phosphorylated and unphosphorylated forms of beta1 were expressed in beta1 deficient GD25 cells. T788 in beta1...... integrin activation, but the talin head domain bound equally well to the wild-type beta1 and the mutants indicating that the T788A mutation caused defect integrin activation by another mechanism. The phosphorylation-mimicking mutation T788D was fully active in promoting cell adhesion. GD25 cells expressing...

  15. [Regulation of G protein-coupled receptor kinase activity].

    Science.gov (United States)

    Haga, T; Haga, K; Kameyama, K; Nakata, H

    1994-09-01

    Recent progress on the activation of G protein-coupled receptor kinases is reviewed. beta-Adrenergic receptor kinase (beta ARK) is activated by G protein beta gamma -subunits, which interact with the carboxyl terminal portion of beta ARK. Muscarinic receptor m2-subtypes are phosphorylated by beta ARK1 in the central part of the third intracellular loop (I3). Phosphorylation of I3-GST fusion protein by beta ARK1 is synergistically stimulated by the beta gamma -subunits and mastoparan or a peptide corresponding to portions adjacent to the transmembrane segments of m2-receptors or by beta gamma -subunits and the agonist-bound I3-deleted m2 variant. These results indicate that agonist-bound receptors serve as both substrates and activators of beta ARK.

  16. Symbiotic gut commensal bacteria act as host cathepsin S activity regulators.

    Science.gov (United States)

    Steimle, Alex; Gronbach, Kerstin; Beifuss, Brigitte; Schäfer, Andrea; Harmening, Robin; Bender, Annika; Maerz, Jan Kevin; Lange, Anna; Michaelis, Lena; Maurer, Andreas; Menz, Sarah; McCoy, Kathy; Autenrieth, Ingo B; Kalbacher, Hubert; Frick, Julia-Stefanie

    2016-12-01

    Cathepsin S (CTSS) is a lysosomal protease whose activity regulation is important for MHC-II signaling and subsequent activation of CD4(+) T cell mediated immune responses. Dysregulation of its enzymatic activity or enhanced secretion into extracellular environments is associated with the induction or progression of several autoimmune diseases. Here we demonstrate that commensal intestinal bacteria influence secretion rates and intracellular activity of host CTSS and that symbiotic bacteria, i.e. Bacteroides vulgatus mpk, may actively regulate this process and help to maintain physiological levels of CTSS activities in order to prevent from induction of pathological inflammation. The symbiont-controlled regulation of CTSS activity is mediated by anticipating reactive oxygen species induction in dendritic cells which, in turn, maintains cystatin C (CysC) monomer binding to CTSS. CysC monomers are potent endogenous CTSS inhibitors. This Bacteroides vulgatus caused and CysC dependent CTSS activity regulation is involved in the generation of tolerant intestinal dendritic cells contributing to prevention of T-cell mediated induction of colonic inflammation. Taken together, we demonstrate that symbionts of the intestinal microbiota regulate host CTSS activity and secretion and might therefore be an attractive approach to deal with CTSS associated autoimmune diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Protease-activated receptor 2 activation of myeloid dendritic cells regulates allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Dienger Krista

    2011-09-01

    Full Text Available Abstract Background A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2; however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear. Methods Mice (wild type and PAR-2-deficient were sensitized using German cockroach (GC feces (frass, the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production, serum IgE levels and airway hyperresponsiveness (AHR were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry. Results Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice

  18. Signal integration by Ca(2+) regulates intestinal stem-cell activity.

    Science.gov (United States)

    Deng, Hansong; Gerencser, Akos A; Jasper, Heinrich

    2015-12-10

    Somatic stem cells maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here we identify Ca(2+) signalling as a central regulator of intestinal stem cell (ISC) activity in Drosophila. We show that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response, and for an associated modulation of cytosolic Ca(2+) oscillations that results in sustained high cytosolic Ca(2+) concentrations. High cytosolic Ca(2+) concentrations induce ISC proliferation by regulating Calcineurin and CREB-regulated transcriptional co-activator (Crtc). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca(2+) oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca(2+) levels allows effective integration of diverse mitogenic signals in ISCs to adapt their proliferative activity to the needs of the tissue.

  19. Effect of histone acetylate modification on the plasminogen activator inhibitor 1 gene regulation in mesangial cells

    Institute of Scientific and Technical Information of China (English)

    刘念

    2013-01-01

    Objective To investigate the effect of histone acetylation change on the transforming growth factor β1(TGF-β1)-associated plasminogen activator inhibitor 1(PAI-1)regulation in mesangial cells(MCs). Methods MCs were

  20. 76 FR 81916 - Agency Information Collection Activities: Notice of Intent To Renew Collection, Regulations...

    Science.gov (United States)

    2011-12-29

    ... From the Federal Register Online via the Government Publishing Office COMMODITY FUTURES TRADING COMMISSION Agency Information Collection Activities: Notice of Intent To Renew Collection, Regulations Governing Bankruptcies of Commodity Brokers AGENCY: Commodity Futures Trading Commission. ACTION:...

  1. Effect of plant growth regulators and activated charcoal on in vitro ...

    African Journals Online (AJOL)

    Administrator

    2011-07-15

    Jul 15, 2011 ... Key words: Activated charcoal, oil palm, plant growth regulators, zygotic embryo. ... all the essential mineral ions, carbon source, vitamins and other organic supplements .... (2010), where MS medium fortified with a low level of ...

  2. Tsc1 is a Critical Regulator of Macrophage Survival and Function

    Directory of Open Access Journals (Sweden)

    Chunmin Fang

    2015-07-01

    Full Text Available Background/Aims: Tuberous sclerosis complex 1 (Tsc1 has been shown to regulate M1/M2 polarization of macrophages, but the precise roles of Tsc1 in the function and stability of macrophages are not fully understood. Here we show that Tsc1 is required for regulating the survival, migration and phagocytosis of macrophages. Methods: Mice with Tsc1 homozygous deletion in myeloid cells (LysMCreTsc1flox/flox; Tsc1 KO were obtained by crossing Tsc1flox/flox mice with mice expressing Cre recombinase under the control of Lysozyme promoter (LysMCre. The apoptosis and growth of macrophages were determined by flow cytometry and Real-time PCR (RT-PCR. The phagocytosis was determined using a Vybrant™ phagocytosis assay kit. The migration of macrophages was determined using transwell migration assay. Results: Peritoneal macrophages of Tsc1 KO mice exhibited increased apoptosis and enlarged cell size. Both M1 and M2 phenotypes in Tsc1-deficient macrophages were elevated in steady-state as well as in inflammatory conditions. Tsc1-deficient macrophages demonstrated impaired migration and reduced expression of chemokine receptors including CCR2 and CCR5. Phagocytosis activity and ROS production were enhanced in Tsc1-deficient macrophages. Furthermore, pharmacological inhibition of the mammalian target of rapamycin complex 1 (mTORC1 partially reversed the aberrance of Tsc1-deficient macrophages. Conclusion: Tsc1 plays a critical role in regulating macrophage survival, function and polarization via inhibition of mTORC1 activity.

  3. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins

    Science.gov (United States)

    Yang, Peng; Subbaiah, Papasani V.

    2015-01-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. PMID:26193433

  4. After the Slippery Slope: Dutch Experiences on Regulating Active Euthanasia

    NARCIS (Netherlands)

    Boer, Th.A.

    2003-01-01

    “When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward.” If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery-slope argument, however, is by

  5. After the Slippery Slope: Dutch Experiences on Regulating Active Euthanasia

    NARCIS (Netherlands)

    Boer, Th.A.

    2003-01-01

    “When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward.” If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery-slope argument, however, is by definit

  6. After the Slippery Slope: Dutch Experiences on Regulating Active Euthanasia

    NARCIS (Netherlands)

    Boer, Th.A.

    2003-01-01

    “When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward.” If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery-slope argument, however, is by definit

  7. Palmitoylation of caspase-6 by HIP14 regulates its activation

    DEFF Research Database (Denmark)

    Skotte, Niels H; Sanders, Shaun S; Singaraja, Roshni R

    2016-01-01

    Caspase-6 (CASP6) has an important role in axonal degeneration during neuronal apoptosis and in the neurodegenerative diseases Alzheimer and Huntington disease. Decreasing CASP6 activity may help to restore neuronal function in these and other diseases such as stroke and ischemia, where increased...

  8. Endothelial PI 3-kinase activity regulates lymphocyte diapedesis.

    Science.gov (United States)

    Nakhaei-Nejad, Maryam; Hussain, Amer M; Zhang, Qiu-Xia; Murray, Allan G

    2007-12-01

    Lymphocyte recruitment to sites of inflammation involves a bidirectional series of cues between the endothelial cell (EC) and the leukocyte that culminate in lymphocyte migration into the tissue. Remodeling of the EC F-actin cytoskeleton has been observed after leukocyte adhesion, but the signals to the EC remain poorly defined. We studied the dependence of peripheral blood lymphocyte transendothelial migration (TEM) through an EC monolayer in vitro on EC phosphatidylinositol 3-kinase (PI 3-kinase) activity. Lymphocytes were perfused over cytokine-activated EC using a parallel-plate laminar flow chamber. Inhibition of EC PI 3-kinase activity using LY-294002 or wortmannin decreased lymphocyte TEM (48 +/- 6 or 34 +/- 7%, respectively, vs. control; mean +/- SE; P structure" after intercellular adhesion molecule-1 ligation, whereas this was inhibited by jasplakinolide treatment. A similar fraction of lymphocytes migrated on control or LY-294002-treated EC and localized to interendothelial junctions. However, lymphocytes failed to extend processes below the level of vascular endothelial (VE)-cadherin on LY-294002-treated EC. Together these observations indicate that EC PI 3-kinase activity and F-actin remodeling are required during lymphocyte diapedesis and identify a PI 3-kinase-dependent step following initial separation of the VE-cadherin barrier.

  9. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation.

    Science.gov (United States)

    Karimpour, Shervin; Lou, Junyang; Lin, Lilie L; Rene, Luis M; Lagunas, Lucio; Ma, Xinrong; Karra, Sreenivasu; Bradbury, C Matthew; Markovina, Stephanie; Goswami, Prabhat C; Spitz, Douglas R; Hirota, Kiichi; Kalvakolanu, Dhananjaya V; Yodoi, Junji; Gius, David

    2002-09-12

    A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.

  10. Microglial Immunoreceptor Tyrosine-Based Activation and Inhibition Motif Signaling in Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Bettina Linnartz

    2010-01-01

    Full Text Available Elimination of extracellular aggregates and apoptotic neural membranes without inflammation is crucial for brain tissue homeostasis. In the mammalian central nervous system, essential molecules in this process are the Fc receptors and the DAP12-associated receptors which both trigger the microglial immunoreceptor tyrosine-based activation motif- (ITAM- Syk-signaling cascade. Microglial triggering receptor expressed on myeloid cells-2 (TREM2, signal regulatory protein-1, and complement receptor-3 (CD11b/CD18 signal via the adaptor protein DAP12 and activate phagocytic activity of microglia. Microglial ITAM-signaling receptors are counter-regulated by immunoreceptor tyrosine-based inhibition motif- (ITIM- signaling molecules such as sialic acid-binding immunoglobulin superfamily lectins (Siglecs. Siglecs can suppress the proinflammatory and phagocytic activity of microglia via ITIM signaling. Moreover, microglial neurotoxicity is alleviated via interaction of Siglec-11 with sialic acids on the neuronal glycocalyx. Thus, ITAM- and ITIM-signaling receptors modulate microglial phagocytosis and cytokine expression during neuroinflammatory processes. Their dysfunction could lead to impaired phagocytic clearance and neurodegeneration triggered by chronic inflammation.

  11. Redox regulation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Yingying Han

    Full Text Available Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death.The aim of this study is to determine if AMP-activated protein kinase (AMPK, a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC.Bovine aortic endothelial cells (BAEC were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation.In BAEC, Berberine caused a dose- and time-dependent increase in the phosphorylation of AMPK at Thr172 and acetyl CoA carboxylase (ACC at Ser79, a well characterized downstream target of AMPK. Concomitantly, Berberine increased peroxynitrite, a potent oxidant formed by simultaneous generation of superoxide and nitric oxide. Pre-incubation of BAEC with anti-oxidants markedly attenuated Berberine-enhanced phosphorylation of both AMPK and ACC. Consistently, adenoviral expression of superoxide dismutase and pretreatment of L-N(G-Nitroarginine methyl ester (L-NAME; a non-selective NOS inhibitor blunted Berberine-induced phosphorylation of AMPK. Furthermore, mitochondria-targeted tempol (mito-tempol pretreatment or expression of uncoupling protein attenuated AMPK activation caused by Berberine. Depletion of mitochondria abolished the effects of Berberine on AMPK in EC. Finally, Berberine significantly increased the phosphorylation of LKB1 at Ser307 and gene silencing of LKB1 attenuated Berberine-enhanced AMPK Thr172 phosphorylation in BAEC.Our results suggest that mitochondria-derived superoxide anions and peroxynitrite are required for Berberine-induced AMPK activation in endothelial cells.

  12. Regulator of G-Protein Signalling-14 (RGS14 Regulates the Activation of αMβ2 Integrin during Phagocytosis.

    Directory of Open Access Journals (Sweden)

    Jenson Lim

    Full Text Available Integrin-mediated phagocytosis, an important physiological activity undertaken by professional phagocytes, requires bidirectional signalling to/from αMβ2 integrin and involves Rap1 and Rho GTPases. The action of Rap1 and the cytoskeletal protein talin in activating αMβ2 integrins, in a RIAM-independent manner, has been previously shown to be critical during phagocytosis in mammalian phagocytes. However, the events downstream of Rap1 are not clearly understood. Our data demonstrate that one potential Rap1 effector, Regulator of G-Protein Signalling-14 (RGS14, is involved in activating αMβ2. Exogenous expression of RGS14 in COS-7 cells expressing αMβ2 results in increased binding of C3bi-opsonised sheep red blood cells. Consistent with this, knock-down of RGS14 in J774.A1 macrophages results in decreased association with C3bi-opsonised sheep red blood cells. Regulation of αMβ2 function occurs through the R333 residue of the RGS14 Ras/Rap binding domain (RBD and the F754 residue of β2, residues previously shown to be involved in binding of H-Ras and talin1 head binding prior to αMβ2 activation, respectively. Surprisingly, overexpression of talin2 or RAPL had no effect on αMβ2 regulation. Our results establish for the first time a role for RGS14 in the mechanism of Rap1/talin1 activation of αMβ2 during phagocytosis.

  13. Prudential regulation and surveillance - essential elements of the banking activity

    Directory of Open Access Journals (Sweden)

    Gheorghe, C. A.

    2012-01-01

    Full Text Available Without being an exhaustive study, the analysis aims to identify the intrinsic correlations of essential notions for the banking field - prudence, prudential supervision, international publishing and sanctions, quartered obviously in risk area. We mention that risk, as related to surveillance and caution, represents the possibility of potential, expected or unexpected events to have a negative impact on the bank capital or the bank revenue. We will not use the notion of control, which seems included in that broader surveillance, but we remind that a prudential supervision aims at preventing internal or external risk at a credit institution level, and at avoiding their spread. Macroeconomic prudential supervision is an internal management activity, given the evolution of constraints that come from outside, the change of activity place or the redefinition of prudential rules at national and international level.

  14. Polyphenol derivatives – potential regulators of neutrophil activity

    OpenAIRE

    2012-01-01

    The study provides new information on the effect of natural polyphenols (derivatives of stilbene – resveratrol, pterostilbene, pinosylvin and piceatannol and derivatives of ferulic acid – curcumin, N-feruloylserotonin) on the activity of human neutrophils in influencing oxidative burst. All the polyphenols tested were found to reduce markedly the production of reactive oxygen species released by human neutrophils on extra-and intracellular levels as well as in cell free system. Moreover, pino...

  15. Nuclear factor Y regulates ancient budgerigar hepadnavirus core promoter activity.

    Science.gov (United States)

    Shen, Zhongliang; Liu, Yanfeng; Luo, Mengjun; Wang, Wei; Liu, Jing; Liu, Wei; Pan, Shaokun; Xie, Youhua

    2016-09-16

    Endogenous viral elements (EVE) in animal genomes are the fossil records of ancient viruses and provide invaluable information on the origin and evolution of extant viruses. Extant hepadnaviruses include avihepadnaviruses of birds and orthohepadnaviruses of mammals. The core promoter (Cp) of hepadnaviruses is vital for viral gene expression and replication. We previously identified in the budgerigar genome two EVEs that contain the full-length genome of an ancient budgerigar hepadnavirus (eBHBV1 and eBHBV2). Here, we found eBHBV1 Cp and eBHBV2 Cp were active in several human and chicken cell lines. A region from nt -85 to -11 in eBHBV1 Cp was critical for the promoter activity. Bioinformatic analysis revealed a putative binding site of nuclear factor Y (NF-Y), a ubiquitous transcription factor, at nt -64 to -50 in eBHBV1 Cp. The NF-Y core binding site (ATTGG, nt -58 to -54) was essential for eBHBV1 Cp activity. The same results were obtained with eBHBV2 Cp and duck hepatitis B virus Cp. The subunit A of NF-Y (NF-YA) was recruited via the NF-Y core binding site to eBHBV1 Cp and upregulated the promoter activity. Finally, the NF-Y core binding site is conserved in the Cps of all the extant avihepadnaviruses but not of orthohepadnaviruses. Interestingly, a putative and functionally important NF-Y core binding site is located at nt -21 to -17 in the Cp of human hepatitis B virus. In conclusion, our findings have pinpointed an evolutionary conserved and functionally critical NF-Y binding element in the Cps of avihepadnaviruses.

  16. Osteoblast differentiation and migration are regulated by Dynamin GTPase activity

    OpenAIRE

    2013-01-01

    Bone formation is controlled by osteoblasts but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0–21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased...

  17. Who watches the watchmen? Regulation of the expression and activity of sirtuins.

    Science.gov (United States)

    Buler, Marcin; Andersson, Ulf; Hakkola, Jukka

    2016-12-01

    Sirtuins (SIRT1-7) are a family of nicotine adenine dinucleotide (NAD(+))-dependent enzymes that catalyze post-translational modifications of proteins. Together, they regulate crucial cellular functions and are traditionally associated with aging and longevity. Dysregulation of sirtuins plays an important role in major diseases, including cancer and metabolic, cardiac, and neurodegerative diseases. They are extensively regulated in response to a wide range of stimuli, including nutritional and metabolic challenges, inflammatory signals or hypoxic and oxidative stress. Each sirtuin is regulated individually in a tissue- and cell-specific manner. The control of sirtuin expression involves all the major points of regulation, including transcriptional and post-translational mechanisms and microRNAs. Collectively, these mechanisms control the protein levels, localization, and enzymatic activity of sirtuins. In many cases, the regulators of sirtuin expression are also their substrates, which lead to formation of intricate regulatory networks and extensive feedback loops. In this review, we highlight the mechanisms mediating the physiologic and pathologic regulation of sirtuin expression and activity. We also discuss the consequences of this regulation on sirtuin function and cellular physiology.-Buler, M., Andersson, U., Hakkola, J. Who watches the watchmen? Regulation of the expression and activity of sirtuins. © FASEB.

  18. Phospholipase A2 regulates eicosanoid class switching during inflammasome activation.

    Science.gov (United States)

    Norris, Paul C; Gosselin, David; Reichart, Donna; Glass, Christopher K; Dennis, Edward A

    2014-09-02

    Initiation and resolution of inflammation are considered to be tightly connected processes. Lipoxins (LX) are proresolution lipid mediators that inhibit phlogistic neutrophil recruitment and promote wound-healing macrophage recruitment in humans via potent and specific signaling through the LXA4 receptor (ALX). One model of lipoxin biosynthesis involves sequential metabolism of arachidonic acid by two cell types expressing a combined transcellular metabolon. It is currently unclear how lipoxins are efficiently formed from precursors or if they are directly generated after receptor-mediated inflammatory commitment. Here, we provide evidence for a pathway by which lipoxins are generated in macrophages as a consequence of sequential activation of toll-like receptor 4 (TLR4), a receptor for endotoxin, and P2X7, a purinergic receptor for extracellular ATP. Initial activation of TLR4 results in accumulation of the cyclooxygenase-2-derived lipoxin precursor 15-hydroxyeicosatetraenoic acid (15-HETE) in esterified form within membrane phospholipids, which can be enhanced by aspirin (ASA) treatment. Subsequent activation of P2X7 results in efficient hydrolysis of 15-HETE from membrane phospholipids by group IVA cytosolic phospholipase A2, and its conversion to bioactive lipoxins by 5-lipoxygenase. Our results demonstrate how a single immune cell can store a proresolving lipid precursor and then release it for bioactive maturation and secretion, conceptually similar to the production and inflammasome-dependent maturation of the proinflammatory IL-1 family cytokines. These findings provide evidence for receptor-specific and combinatorial control of pro- and anti-inflammatory eicosanoid biosynthesis, and potential avenues to modulate inflammatory indices without inhibiting downstream eicosanoid pathways.

  19. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators.

    Science.gov (United States)

    Moreno-Arriola, Elizabeth; El Hafidi, Mohammed; Ortega-Cuéllar, Daniel; Carvajal, Karla

    2016-01-01

    Cellular energy regulation relies on complex signaling pathways that respond to fuel availability and metabolic demands. Dysregulation of these networks is implicated in the development of human metabolic diseases such as obesity and metabolic syndrome. In Caenorhabditis elegans the AMP-activated protein kinase, AAK, has been associated with longevity and stress resistance; nevertheless its precise role in energy metabolism remains elusive. In the present study, we find an evolutionary conserved role of AAK in oxidative metabolism. Similar to mammals, AAK is activated by AICAR and metformin and leads to increased glycolytic and oxidative metabolic fluxes evidenced by an increase in lactate levels and mitochondrial oxygen consumption and a decrease in total fatty acids and lipid storage, whereas augmented glucose availability has the opposite effects. We found that these changes were largely dependent on the catalytic subunit AAK-2, since the aak-2 null strain lost the observed metabolic actions. Further results demonstrate that the effects due to AAK activation are associated to SBP-1 and NHR-49 transcriptional factors and MDT-15 transcriptional co-activator, suggesting a regulatory pathway that controls oxidative metabolism. Our findings establish C. elegans as a tractable model system to dissect the relationship between distinct molecules that play a critical role in the regulation of energy metabolism in human metabolic diseases.

  20. Regulation of localization and activity of the microtubule depolymerase MCAK.

    Science.gov (United States)

    Tanenbaum, Marvin E; Medema, René H; Akhmanova, Anna

    2011-03-01

    Mitotic Centromere Associated Kinesin (MCAK) is a potent microtubule depolymerizing and catastrophe-inducing factor, which uses the energy of ATP hydrolysis to destabilize microtubule ends. MCAK is localized to inner centromeres, kinetochores and spindle poles of mitotic cells, and is also present in the cytoplasm. Both in interphase and in mitosis, MCAK can specifically accumulate at the growing microtubule ends. Here we discuss the mechanisms, which modulate subcellular localization and activity of MCAK through the interaction with the End Binding (EB) proteins and phosphorylation.

  1. Longitudinal relationships between perceived stress, exercise self-regulation and exercise involvement among physically active adolescents.

    Science.gov (United States)

    Gerber, Markus; Lindwall, Magnus; Brand, Serge; Lang, Christin; Elliot, Catherine; Pühse, Uwe

    2015-01-01

    Stress exposure may undermine exercisers' capability to self-regulate their exercise behaviour. This longitudinal study examined the interplay between perceived stress, exercise self-regulation (assessment of action and coping planning) and participation in vigorous exercise in vocational students. Moreover, this study examined whether high exercise self-regulation moderates the assumed negative relationship between stress and exercise. A sample of 580 physically active vocational students ([Formula: see text] ± s 17.8 ± 1.3 years, 33.8% girls) was assessed. All participants completed two identical validated questionnaires assessing stress, exercise self-regulation and exercise with a span of 10 months in between survey completion periods. The cross-sectional analyses show that high exercise self-regulation attenuated the assumed negative relationship between stress and exercise. In the longitudinal analyses, however, only a non-significant trend was found. Significant longitudinal relationships existed between exercise self-regulation and exercise involvement. Latent difference score models revealed that a drop in the exercise self-regulation was associated with a concurrent decrease in exercise participation. Cross-lagged panel analyses showed that high exercise self-regulation levels positively predicted exercise behaviour, but an inverse relationship was not supported. The findings suggested that higher exercise self-regulation levels were positively associated with future exercise involvement in currently active adolescents. While partial support was found that exercise self-regulation moderated the influence of stress on exercise, the findings demonstrated that higher exercise self-regulation levels had a positive impact on future exercise involvement in already active individuals.

  2. DMPD: Regulation of arachidonic acid release and cytosolic phospholipase A2activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10080535 Regulation of arachidonic acid release and cytosolic phospholipase A2activ...ation. Gijon MA, Leslie CC. J Leukoc Biol. 1999 Mar;65(3):330-6. (.png) (.svg) (.html) (.csml) Show Regulation... of arachidonic acid release and cytosolic phospholipase A2activation. PubmedID 10080535 Title Regulation

  3. DMPD: Genetic regulation of macrophage priming/activation: the Lsh gene story. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1757110 Genetic regulation of macrophage priming/activation: the Lsh gene story. Bl... (.svg) (.html) (.csml) Show Genetic regulation of macrophage priming/activation: the Lsh gene story. Pubmed...ID 1757110 Title Genetic regulation of macrophage priming/activation: the Lsh gen

  4. RKIP regulates MAP kinase signaling in cells with defective B-Raf activity.

    Science.gov (United States)

    Zeng, Lingchun; Ehrenreiter, Karin; Menon, Jyotsana; Menard, Ray; Kern, Florian; Nakazawa, Yoko; Bevilacqua, Elena; Imamoto, Akira; Baccarini, Manuela; Rosner, Marsha Rich

    2013-05-01

    MAP kinase (MAPK) signaling results from activation of Raf kinases in response to external or internal stimuli. Here, we demonstrate that Raf kinase inhibitory protein (RKIP) regulates the activation of MAPK when B-Raf signaling is defective. We used multiple models including mouse embryonic fibroblasts (MEFs) and primary keratinocytes from RKIP- or Raf-deficient mice as well as allografts in mice to investigate the mechanism. Loss of B-Raf protein or activity significantly reduces MAPK activation in these cells. We show that RKIP depletion can rescue the compromised ERK activation and promote proliferation, and this rescue occurs through a Raf-1 dependent mechanism. These results provide formal evidence that RKIP is a bona fide regulator of Raf-1. We propose a new model in which RKIP plays a key role in regulating the ability of cells to signal through Raf-1 to ERK in B-Raf compromised cells.

  5. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner.

    Science.gov (United States)

    Sjöqvist, Marika; Antfolk, Daniel; Ferraris, Saima; Rraklli, Vilma; Haga, Cecilia; Antila, Christian; Mutvei, Anders; Imanishi, Susumu Y; Holmberg, Johan; Jin, Shaobo; Eriksson, John E; Lendahl, Urban; Sahlgren, Cecilia

    2014-04-01

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick central nervous system and in cultured myoblasts, Notch-stimulated cells were allowed to undergo differentiation. PKCζ phosphorylates membrane-tethered forms of Notch and regulates two distinct routing steps, depending on the Notch activation state. When Notch is activated, PKCζ promotes re-localization of Notch from late endosomes to the nucleus and enhances production of the Notch intracellular domain, which leads to increased Notch activity. In the non-activated state, PKCζ instead facilitates Notch receptor internalization, accompanied with increased ubiquitylation and interaction with the endosomal sorting protein Hrs. Collectively, these data identify PKCζ as a key regulator of Notch trafficking and demonstrate that distinct steps in intracellular routing are differentially modulated depending on Notch signaling status.

  6. PDI regulates seizure activity via NMDA receptor redox in rats.

    Science.gov (United States)

    Kim, Ji Yang; Ko, Ah-Rhem; Hyun, Hye-Won; Min, Su-Ji; Kim, Ji-Eun

    2017-02-15

    Redox modulation of cysteine residues is one of the post-translational modifications of N-methyl-D-aspartate receptor (NMDAR). Protein disulfide isomerases (PDI), an endoplasmic reticulum (ER) chaperone, plays a crucial role in catalyzing disulfide bond formation, reduction, and isomerization. In the present study, we found that PDI bound to NMDAR in the normal hippocampus, and that this binding was increased in chronic epileptic rats. In vitro thiol reductase assay revealed that PDI increased the amount of thiols on full-length recombinant NR1 protein. PDI siRNA, 5-5'-dithio-bis(2-nitrobenzoic acid) (DTNB), bacitracin and PDI antibody reduced seizure susceptibility in response to pilocarpine. In addition, PDI knockdown effectively ameliorated spontaneous seizure activity in chronic epileptic rats. Anticonvulsive effects of PDI siRNA were correlated to the reduction of the amount of free- and nitrosothiols on NMDAR, accompanied by the inhibition of PDI activity. However, PDI knockdown did not lead to alteration in basal neurotransmission or ER stress under physiological condition. These findings provide mechanistic insight into sulfhydration of disulfide bonds on NMDAR by PDI, and suggest that PDI may represent a target of potential therapeutics for epilepsy, which avoids a possible side effect on physiological receptor functionality.

  7. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  8. Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal β-oxidation deficiency.

    Science.gov (United States)

    Geric, Ivana; Tyurina, Yulia Y; Krysko, Olga; Krysko, Dmitri V; De Schryver, Evelyn; Kagan, Valerian E; Van Veldhoven, Paul P; Baes, Myriam; Verheijden, Simon

    2017-09-22

    Macrophage activation is characterized by pronounced metabolic adaptation. Classically activated macrophages show decreased rates of mitochondrial fatty acid oxidation and oxidative phosphorylation and acquire a glycolytic state together with their pro-inflammatory phenotype. In contrast, alternatively activated macrophages require oxidative phosphorylation and mitochondrial fatty acid oxidation for their anti-inflammatory function. Although it is evident that mitochondrial metabolism is regulated during macrophage polarization and essential for macrophage function, little is known on the regulation and role of peroxisomal β-oxidation during macrophage activation. In this study, we show that peroxisomal β-oxidation is strongly decreased in classically activated bone marrow derived macrophages (BMDM) and mildly induced in alternatively activated BMDM. To examine the role of peroxisomal β-oxidation in macrophages, we used Mfp2(-/-) BMDM lacking the key enzyme of this pathway. Impairment of peroxisomal β-oxidation in Mfp2(-/-) BMDM did not cause lipid accumulation but rather an altered distribution of lipid species with very long chain fatty acids accumulating in the triglyceride and phospholipid fraction. These lipid alterations in Mfp2(-/-) macrophages led to decreased inflammatory activation of Mfp2(-/-) BMDM and peritoneal macrophages evidenced by impaired production of several inflammatory cytokines and chemokines, but did not affect anti-inflammatory polarization. The disturbed inflammatory responses of Mfp2(-/-) macrophages did not affect immune cell infiltration, as mice with selective elimination of MFP2 from myeloid cells showed normal monocyte and neutrophil influx upon challenge with zymosan. Together, these data demonstrate that peroxisomal β-oxidation is involved in fine-tuning the phenotype of macrophages, likely by influencing the dynamic lipid profile during macrophage polarization. This article is protected by copyright. All rights reserved

  9. Legal Instruments of Regulation of Development of Banking Activity in Ukraine

    Directory of Open Access Journals (Sweden)

    Senyshch Pavlo M.

    2014-03-01

    Full Text Available The article considers main approaches to identification of essence of legal instruments of regulation of development of the banking activity, identifies the mechanism of legal regulation of the banking activity and its elements and justifies the system and form of legal regulation of the banking activity in Ukraine. It describes subjects of legal regulation of the banking activity at the international level, which are the Basel Committee on Banking Supervision, European Central Bank, IMF, International Financial Reporting Standards Foundation and others. The article considers specific features of the regulatory requirements of Basel II and Basel III and specific features of their introduction into the banking activity. It describes anti-cyclic measures offered by the Basel Committee, which should facilitate formation of such conditions, under which the banking sector could have a lower level of leverage and stability with respect to influence of system risks. Significant attention is paid to international instruments of regulation of the banking activity, which include the following legal acts: Uniform Rules for Collections, Uniform Customs and Practice for Documentary Credits, and Unified Rules for Loan Guarantees. The article shows that the share of subordinate legal acts is significant in the Ukrainian system of banking regulatory and legal acts since the state cannot operatively react to the changing processes in banking at the legislative level and, that is why, basic provisions on carrying out banking activity should be fixed in law.

  10. Regulation and activity of secretory leukoprotease inhibitor (SLPI) is altered in smokers.

    Science.gov (United States)

    Meyer, Megan; Bauer, Rebecca N; Letang, Blanche D; Brighton, Luisa; Thompson, Elizabeth; Simmen, Rosalia C M; Bonner, James; Jaspers, Ilona

    2014-02-01

    A hallmark of cigarette smoking is a shift in the protease/antiprotease balance, in favor of protease activity. However, it has recently been shown that smokers have increased expression of a key antiprotease, secretory leukoprotease inhibitor (SLPI), yet the mechanisms involved in SLPI transcriptional regulation and functional activity of SLPI remain unclear. We examined SLPI mRNA and protein secretion in differentiated nasal epithelial cells (NECs) and nasal lavage fluid (NLF) from nonsmokers and smokers and demonstrated that SLPI expression is increased in NECs and NLF from smokers. Transcriptional regulation of SLPI expression was confirmed using SLPI promoter reporter assays followed by chromatin immunoprecipitation. The role of STAT1 in regulating SLPI expression was further elucidated using WT and stat1(-/-) mice. Our data demonstrate that STAT1 regulates SLPI transcription in epithelial cells and slpi protein in the lungs of mice. Additionally, we reveal that NECs from smokers have increased STAT1 mRNA/protein expression. Finally, we demonstrate that SLPI contained in the nasal mucosa of smokers is proteolytically cleaved but retains functional activity against neutrophil elastase. These results demonstrate that smoking enhances expression of SLPI in NECs in vitro and in vivo, and that this response is regulated by STAT1. In addition, despite posttranslational cleavage of SLPI, antiprotease activity against neutrophil elastase is enhanced in smokers. Together, our findings show that SLPI regulation and activity is altered in the nasal mucosa of smokers, which could have broad implications in the context of respiratory inflammation and infection.

  11. Reciprocal regulation of LXRα activity by ASXL1 and ASXL2 in lipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ui-Hyun; Seong, Mi-ran [Department of Bioscience and Biotechnology, Institute of Bioscience, BK21 Graduate Program, Sejong University, Seoul 143-747 (Korea, Republic of); Kim, Eun-Joo; Hur, Wonhee; Kim, Sung Woo [Department of Molecular Biology, BK21 Graduate Program, Dankook University, Gyeonggi-do 448-701 (Korea, Republic of); Yoon, Seung Kew [The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, The Catholic University, College of Medicine, Seoul 137-701 (Korea, Republic of); Um, Soo-Jong, E-mail: umsj@sejong.ac.kr [Department of Bioscience and Biotechnology, Institute of Bioscience, BK21 Graduate Program, Sejong University, Seoul 143-747 (Korea, Republic of)

    2014-01-10

    Highlights: •ASXL1 and ASXL2 directly interact with ligand-bound LXRα. •Ligand-induced LXRα activity is repressed by ASXL1 and activated by ASXL2. •ASXL1 and ASXL2 bind to the LXRE of the LXRα target promoter. •ASXL1 and ASXL2 reciprocally regulate lipogenesis in liver cells. -- Abstract: Liver X receptor alpha (LXRα), a member of the nuclear receptor superfamily, plays a pivotal role in hepatic cholesterol and lipid metabolism, regulating the expression of genes associated with hepatic lipogenesis. The additional sex comb-like (ASXL) family was postulated to regulate chromatin function. Here, we investigate the roles of ASXL1 and ASXL2 in regulating LXRα activity. We found that ASXL1 suppressed ligand-induced LXRα transcriptional activity, whereas ASXL2 increased LXRα activity through direct interaction in the presence of the ligand. Chromatin immunoprecipitation (ChIP) assays showed ligand-dependent recruitment of ASXLs to ABCA1 promoters, like LXRα. Knockdown studies indicated that ASXL1 inhibits, while ASXL2 increases, lipid accumulation in H4IIE cells, similar to their roles in transcriptional regulation. We also found that ASXL1 expression increases under fasting conditions, and decreases in insulin-treated H4IIE cells and the livers of high-fat diet-fed mice. Overall, these results support the reciprocal role of the ASXL family in lipid homeostasis through the opposite regulation of LXRα.

  12. The protease inhibitor HAI-2, but not HAI-1, regulates matriptase activation and shedding through prostasin.

    Science.gov (United States)

    Friis, Stine; Sales, Katiuchia Uzzun; Schafer, Jeffrey Martin; Vogel, Lotte K; Kataoka, Hiroaki; Bugge, Thomas H

    2014-08-01

    The membrane-anchored serine proteases, matriptase and prostasin, and the membrane-anchored serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2, are critical effectors of epithelial development and postnatal epithelial homeostasis. Matriptase and prostasin form a reciprocal zymogen activation complex that results in the formation of active matriptase and prostasin that are targets for inhibition by HAI-1 and HAI-2. Conflicting data, however, have accumulated as to the existence of auxiliary functions for both HAI-1 and HAI-2 in regulating the intracellular trafficking and activation of matriptase. In this study, we, therefore, used genetically engineered mice to determine the effect of ablation of endogenous HAI-1 and endogenous HAI-2 on endogenous matriptase expression, subcellular localization, and activation in polarized intestinal epithelial cells. Whereas ablation of HAI-1 did not affect matriptase in epithelial cells of the small or large intestine, ablation of HAI-2 resulted in the loss of matriptase from both tissues. Gene silencing studies in intestinal Caco-2 cell monolayers revealed that this loss of cell-associated matriptase was mechanistically linked to accelerated activation and shedding of the protease caused by loss of prostasin regulation by HAI-2. Taken together, these data indicate that HAI-1 regulates the activity of activated matriptase, whereas HAI-2 has an essential role in regulating prostasin-dependent matriptase zymogen activation.

  13. Feedback regulation of NEUROG2 activity by MTGR1 is required for progression of neurogenesis.

    Science.gov (United States)

    Aaker, Joshua D; Patineau, Andrea L; Yang, Hyun-Jin; Ewart, David T; Gong, Wuming; Li, Tongbin; Nakagawa, Yasushi; McLoon, Steven C; Koyano-Nakagawa, Naoko

    2009-12-01

    The sequential steps of neurogenesis are characterized by highly choreographed changes in transcription factor activity. In contrast to the well-studied mechanisms of transcription factor activation during neurogenesis, much less is understood regarding how such activity is terminated. We previously showed that MTGR1, a member of the MTG family of transcriptional repressors, is strongly induced by a proneural basic helix-loop-helix transcription factor, NEUROG2 in developing nervous system. In this study, we describe a novel feedback regulation of NEUROG2 activity by MTGR1. We show that MTGR1 physically interacts with NEUROG2 and represses transcriptional activity of NEUROG2. MTGR1 also prevents DNA binding of the NEUROG2/E47 complex. In addition, we provide evidence that proper termination of NEUROG2 activity by MTGR1 is necessary for normal progression of neurogenesis in the developing spinal cord. These results highlight the importance of feedback regulation of proneural gene activity in neurodevelopment.

  14. Emotion Regulation and Excess Weight: Impaired Affective Processing Characterized by Dysfunctional Insula Activation and Connectivity.

    Directory of Open Access Journals (Sweden)

    Trevor Steward

    Full Text Available Emotion-regulation strategies are understood to influence food intake. This study examined the neurophysiological underpinnings of negative emotion processing and emotion regulation in individuals with excess weight compared to normal-weight controls. Fifteen participants with excess-weight (body mass index >25 and sixteen normal-weight controls (body mass index 18-25 performed an emotion-regulation task during functional magnetic resonance imaging. Participants were exposed to 24 negative affective or neutral pictures that they were instructed to Observe (neutral pictures, Maintain (sustain the emotion elicited by negative pictures or Regulate (down-regulate the emotion provoked by negative pictures through previously trained reappraisal techniques. When instructed to regulate negative emotions by means of cognitive reappraisal, participants with excess weight displayed persistently heightened activation in the right anterior insula. Decreased responsivity was also found in right anterior insula, the orbitofrontal cortex and cerebellum during negative emotion experience in participants with excess weight. Psycho-physiological interaction analyses showed that excess-weight participants had decreased negative functional coupling between the right anterior insula and the right dlPFC, and the bilateral dmPFC during cognitive reappraisal. Our findings support contentions that excess weight is linked to an abnormal pattern of neural activation and connectivity during the experience and regulation of negative emotions, with the insula playing a key role in these alterations. We posit that ineffective regulation of emotional states contributes to the acquisition and preservation of excess weight.

  15. Emotion Regulation and Excess Weight: Impaired Affective Processing Characterized by Dysfunctional Insula Activation and Connectivity

    Science.gov (United States)

    Mata, Fernanda; Martínez-Zalacaín, Ignacio; Cano, Marta; Contreras-Rodríguez, Oren; Fernández-Aranda, Fernando; Yucel, Murat; Soriano-Mas, Carles; Verdejo-García, Antonio

    2016-01-01

    Emotion-regulation strategies are understood to influence food intake. This study examined the neurophysiological underpinnings of negative emotion processing and emotion regulation in individuals with excess weight compared to normal-weight controls. Fifteen participants with excess-weight (body mass index >25) and sixteen normal-weight controls (body mass index 18–25) performed an emotion-regulation task during functional magnetic resonance imaging. Participants were exposed to 24 negative affective or neutral pictures that they were instructed to Observe (neutral pictures), Maintain (sustain the emotion elicited by negative pictures) or Regulate (down-regulate the emotion provoked by negative pictures through previously trained reappraisal techniques). When instructed to regulate negative emotions by means of cognitive reappraisal, participants with excess weight displayed persistently heightened activation in the right anterior insula. Decreased responsivity was also found in right anterior insula, the orbitofrontal cortex and cerebellum during negative emotion experience in participants with excess weight. Psycho-physiological interaction analyses showed that excess-weight participants had decreased negative functional coupling between the right anterior insula and the right dlPFC, and the bilateral dmPFC during cognitive reappraisal. Our findings support contentions that excess weight is linked to an abnormal pattern of neural activation and connectivity during the experience and regulation of negative emotions, with the insula playing a key role in these alterations. We posit that ineffective regulation of emotional states contributes to the acquisition and preservation of excess weight. PMID:27003840

  16. Autaptic regulation of electrical activities in neuron under electromagnetic induction

    Science.gov (United States)

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar

    2017-01-01

    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation. PMID:28240314

  17. Autaptic regulation of electrical activities in neuron under electromagnetic induction

    Science.gov (United States)

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar

    2017-02-01

    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation.

  18. Rubisco activity and regulation as targets for crop improvement.

    Science.gov (United States)

    Parry, Martin A J; Andralojc, P John; Scales, Joanna C; Salvucci, Michael E; Carmo-Silva, A Elizabete; Alonso, Hernan; Whitney, Spencer M

    2013-01-01

    Rubisco (ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase) enables net carbon fixation through the carboxylation of RuBP. However, some characteristics of Rubisco make it surprisingly inefficient and compromise photosynthetic productivity. For example, Rubisco catalyses a wasteful reaction with oxygen that leads to the release of previously fixed CO(2) and NH(3) and the consumption of energy during photorespiration. Furthermore, Rubisco is slow and large amounts are needed to support adequate photosynthetic rates. Consequently, Rubisco has been studied intensively as a prime target for manipulations to 'supercharge' photosynthesis and improve both productivity and resource use efficiency. The catalytic properties of Rubiscos from diverse sources vary considerably, suggesting that changes in turnover rate, affinity, or specificity for CO(2) can be introduced to improve Rubisco performance in specific crops and environments. While attempts to manipulate plant Rubisco by nuclear transformation have had limited success, modifying its catalysis by targeted changes to its catalytic large subunit via chloroplast transformation have been much more successful. However, this technique is still in need of development for most major food crops including maize, wheat, and rice. Other bioengineering approaches for improving Rubisco performance include improving the activity of its ancillary protein, Rubisco activase, in addition to modulating the synthesis and degradation of Rubisco's inhibitory sugar phosphate ligands. As the rate-limiting step in carbon assimilation, even modest improvements in the overall performance of Rubisco pose a viable pathway for obtaining significant gains in plant yield, particularly under stressful environmental conditions.

  19. Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator.

    Directory of Open Access Journals (Sweden)

    Avery G Frey

    Full Text Available The Zap1 transcription factor of Saccharomyces cerevisiae plays a central role in zinc homeostasis by controlling the expression of genes involved in zinc metabolism. Zap1 is active in zinc-limited cells and repressed in replete cells. At the transcriptional level, Zap1 controls its own expression via positive autoregulation. In addition, Zap1's two activation domains are regulated independently of each other by zinc binding directly to those regions and repressing activation function. In this report, we show that Zap1 DNA binding is also inhibited by zinc. DMS footprinting showed that Zap1 target gene promoter occupancy is regulated with or without transcriptional autoregulation. These results were confirmed using chromatin immunoprecipitation. Zinc regulation of DNA binding activity mapped to the DNA binding domain indicating other parts of Zap1 are unnecessary for this control. Overexpression of Zap1 overrode DNA binding regulation and resulted in constitutive promoter occupancy. Under these conditions of constitutive binding, both the zinc dose response of Zap1 activity and cellular zinc accumulation were altered suggesting the importance of DNA binding control to zinc homeostasis. Thus, our results indicated that zinc regulates Zap1 activity post-translationally via three independent mechanisms, all of which contribute to the overall zinc responsiveness of Zap1.

  20. miR-153 regulates apoptosis and autophagy of cardiomyocytes by targeting Mcl-1.

    Science.gov (United States)

    Zou, Yuhai; Liu, Wenting; Zhang, Jinxia; Xiang, Dingcheng

    2016-07-01

    MicroRNAs (miRs) are a class of important regulators, which are involved in the regulation of apoptosis. Oxidative stress‑induced apoptosis is the predominant factor accounting for cardiac ischemia‑reperfusion injury. miR‑153 has been previously shown to have an antitumor effect in cancer. However, whether miR‑153 is involved in oxidative stress‑induced apoptosis in the heart remains to be elucidated. To this end, the present study used reverse transcription‑quantitative polymerase chain reaction to detect miR-153 levels upon oxidative stress, and evaluated apoptosis, autophagy and expression of critical genes by western blotting. A luciferase assay was also used to confirm the potential target gene. In the present study, it was found that the expression of miR‑153 was significantly increased upon H2O2 stimulation, and the inhibition of endogenous miR‑153 decreased apoptosis. To further identify the mechanism underlying the pro‑apoptotic effect of miR‑153, the present study analyzed the 3'untranslated region of myeloid cell leukemia‑1 (Mcl‑1), and found that Mcl‑1 was potentially targeted by miR‑153. The forced expression of miR‑153 inhibited the expression of Mcl‑1 and luciferase activity, which was reversed by its antisense inhibitor. Furthermore, it was shown that the inhibition of miR‑153 induced autophagy during oxidative stress, and that its effects of autophagy induction and apoptosis inhibition were efficiently abrogated by Mcl‑1 small interfering RNA. In conclusion, the results of the present study elucidated a novel mechanism by which miR‑153 regulates the survival of cardimyocytes during oxidative stress through the modulation of apoptosis and autophagy. These effects may be mediated directly by targeting Mcl‑1. These finding revealed the potential clinical value of miR‑153 in the treatment of cardiovascular disease.

  1. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids

    Directory of Open Access Journals (Sweden)

    Azevedo R.B.

    2001-01-01

    Full Text Available Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180%. Removal of the gonads in both males and females (comparison between castrated groups increased the difference in SOD activity from 83 to 138% and reduced the difference in CAT activity from 180 to 86%. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48% CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle.

  2. 78 FR 19632 - Special Local Regulations; St. Thomas Carnival Watersport Activities, Charlotte Amalie Harbor; St...

    Science.gov (United States)

    2013-04-02

    ... SECURITY Coast Guard 33 CFR Part 100 RIN 1625-AA08 Special Local Regulations; St. Thomas Carnival... waters of Charlotte Amalie Harbor in St Thomas, USVI during the St. Thomas Carnival Watersport Activities... navigable waters of the United States during the St Thomas Carnival Watersport Activities. On April 21, 2013...

  3. The peroxisome proliferator-activated receptor alpha regulates amino acid metabolism

    NARCIS (Netherlands)

    Kersten, S.; Mandard, S.; Escher, P.; Gonzalez, F.J.; Tafuri, S.; Desvergne, B.; Wahli, W.

    2001-01-01

    The peroxisome proliferator-activated receptor is a ligand-activated transcription factor that plays an important role in the regulation of lipid homeostasis. PPAR mediates the effects of fibrates, which are potent hypolipidemic drugs, on gene expression. To better understand the biological effects

  4. P2X7 receptors regulate engulfing activity of non-stimulated resting astrocytes.

    Science.gov (United States)

    Yamamoto, Mina; Kamatsuka, Yosuke; Ohishi, Akihiro; Nishida, Kentaro; Nagasawa, Kazuki

    2013-09-13

    We previously demonstrated that P2X7 receptors (P2X7Rs) expressed by cultured mouse astrocytes were activated without any exogenous stimuli, but its roles in non-stimulated resting astrocytes remained unknown. It has been reported that astrocytes exhibit engulfing activity, and that the basal activity of P2X7Rs regulates the phagocytic activity of macrophages. In this study, therefore, we investigated whether P2X7Rs regulate the engulfing activity of mouse astrocytes. Uptake of non-opsonized beads by resting astrocytes derived from ddY-mouse cortex time-dependently increased, and the uptaken beads were detected in the intracellular space. The bead uptake was inhibited by cytochalasin D (CytD), an F-actin polymerization inhibitor, and agonists and antagonists of P2X7Rs apparently decreased the uptake. Spontaneous YO-PRO-1 uptake by ddY-mouse astrocytes was reduced by the agonists and antagonists of P2X7Rs, but not by CytD. Down-regulation of P2X7Rs using siRNA decreased the bead uptake by ddY-mouse astrocytes. In addition, compared to in the case of ddY-mouse astrocytes, SJL-mouse astrocytes exhibited higher YO-PRO-1 uptake activity, and their bead uptake was significantly greater. These findings suggest that resting astrocytes exhibit engulfing activity and that the activity is regulated, at least in part, by their P2X7Rs.

  5. Resveratrol inhibits Cdk5 activity through regulation of p35 expression

    Directory of Open Access Journals (Sweden)

    Kulkarni Ashok B

    2011-07-01

    Full Text Available Abstract Background We have previously reported that cyclin-dependent kinase 5 (Cdk5 participates in the regulation of nociceptive signaling. Through activation of the ERK1/2 pathway, Tumor Necrosis Factor-α (TNF-α induces expression of Egr-1. This results in the sustained and robust expression of p35, a coactivator of Cdk5, in PC12 cells, thereby increasing Cdk5 kinase activity. The aim of our present study was to test whether resveratrol, a polyphenolic compound with known analgesic activity, can regulate Cdk5/p35 activity. Results Here we used a cell-based assay in which a p35 promoter-luciferase construct was stably transfected in PC12 cells. Our studies demonstrate that resveratrol inhibits p35 promoter activity and also blocks the TNF-α mediated increase in Cdk5 activity in PC12 cells. Resveratrol also inhibits p35 expression and blocks the TNF-α mediated increase in Cdk5 activity in DRG neurons. In the presence of resveratrol, the MEK inhibitor decreased p35 promoter activity, whereas the inhibitors of p38 MAPK, JNK and NF-κB increased p35 promoter activity, indicating that these pathways regulate p35 expression differently. The TNF-α-mediated increase in Egr-1 expression was decreased by resveratrol treatment with a concomitant reduction in p35 expression and protein levels, resulting in reduced Cdk5 kinase activity. Conclusions We demonstrate here that resveratrol regulates p35 promoter activity in PC12 cells and DRG neurons. Most importantly, resveratrol blocks the TNF-α-mediated increase in p35 promoter activity, thereby reducing p35 expression and subsequent Cdk5 kinase activity. This new molecular mechanism adds to the known analgesic effects of resveratrol and confirms the need for identifying new analgesics based on their ability to inhibit Cdk5 activity for effective treatment of pain.

  6. Microglial Immunoreceptor Tyrosine-Based Activation and Inhibition Motif Signaling in Neuroinflammation

    OpenAIRE

    Bettina Linnartz; Yiner Wang; Harald Neumann

    2010-01-01

    Elimination of extracellular aggregates and apoptotic neural membranes without inflammation is crucial for brain tissue homeostasis. In the mammalian central nervous system, essential molecules in this process are the Fc receptors and the DAP12-associated receptors which both trigger the microglial immunoreceptor tyrosine-based activation motif- (ITAM-) Syk-signaling cascade. Microglial triggering receptor expressed on myeloid cells-2 (TREM2), signal regulatory protein- 1, and complement re...

  7. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation.

    Science.gov (United States)

    Sharma, Deepika; Kanneganti, Thirumala-Devi

    2016-06-20

    Over the past decade, numerous advances have been made in the role and regulation of inflammasomes during pathogenic and sterile insults. An inflammasome complex comprises a sensor, an adaptor, and a zymogen procaspase-1. The functional output of inflammasome activation includes secretion of cytokines, IL-1β and IL-18, and induction of an inflammatory form of cell death called pyroptosis. Recent studies have highlighted the intersection of this inflammatory response with fundamental cellular processes. Novel modulators and functions of inflammasome activation conventionally associated with the maintenance of homeostatic biological functions have been uncovered. In this review, we discuss the biological processes involved in the activation and regulation of the inflammasome.

  8. Characterization of Adapter Protein NRBP as a Negative Regulator of T Cell Activation

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; LIN Zhi-xin; WU Jun

    2008-01-01

    Adapter proteins can regulate the gene transcriptions in disparate signaling pathway by interacting with multiple signaling molecules, including T cell activation signaling. Nuclear receptor binding protein (NRBP), a novel adapter protein, represents a small family of evolutionarily conserved proteins with homologs in Caenorhabditis elegans (C. elegans), Drosophila melanogaster (D.melanogaster), mouse and human. Here, we demonstrated that overexpression of NRBP in Jurkat TAg cells specifically impairs T cell receptor (TCR) or phorbol myristate acetate (PMA)/ionomycin-mediated signaling leading to nuclear factor of activated T cells (NFAT) promoter activation. Furthermore, the N-terminal of NRBP is necessary for its regulation of NFAT activation. Finally, we showed that NRBP has minimal effect on both TCR- and PMA-induced CD69 up-regulation in Jurkat TAg cells, which suggests that NRBP may function downstream of protein kinase C (PKC)/Ras pathway.

  9. Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2.

    Science.gov (United States)

    Jerrell, Rachel J; Parekh, Aron

    2016-04-01

    ROCK activity increases due to ECM rigidity in the tumor microenvironment and promotes a malignant phenotype via actomyosin contractility. Invasive migration is facilitated by actin-rich adhesive protrusions known as invadopodia that degrade the ECM. Invadopodia activity is dependent on matrix rigidity and contractile forces suggesting that mechanical factors may regulate these subcellular structures through ROCK-dependent actomyosin contractility. However, emerging evidence indicates that the ROCK1 and ROCK2 isoforms perform different functions in cells suggesting that alternative mechanisms may potentially regulate rigidity-dependent invadopodia activity. In this study, we found that matrix rigidity drives ROCK signaling in cancer cells but that ROCK1 and ROCK2 differentially regulate invadopodia activity through separate signaling pathways via contractile (NM II) and non-contractile (LIMK) mechanisms. These data suggest that the mechanical rigidity of the tumor microenvironment may drive ROCK signaling through distinct pathways to enhance the invasive migration required for cancer progression and metastasis.

  10. Monocytes from cystic fibrosis patients are locked in an LPS tolerance state: down-regulation of TREM-1 as putative underlying mechanism.

    Directory of Open Access Journals (Sweden)

    Carlos del Fresno

    Full Text Available Cystic Fibrosis (CF is an inherited pleiotropic disease that results from abnormalities in the gene that codes for the chloride channel, Cystic Fibrosis Transmembrane Conductance Regulator (CFTR. CF patients are frequently colonized by several pathogens, but the mechanisms that allow colonization in spite of apparently functional immune systems are incompletely understood. In this paper we show that blood peripheral monocytes isolated from CF patients are found in an endotoxin tolerance state, yet this is not due to a deficient TLR activation. On the other hand, levels of the amplifier of inflammatory responses, TREM-1 (Triggering Receptor Expressed on Myeloid cells, are notably down-regulated in monocytes from patients, in comparison to those extracted from healthy volunteers. Furthermore, the soluble form of TREM-1 (sTREM-1 was not detected in the sera of patients. Additionally, and in strict contrast to patients who suffer from Chronic Obstructive Pulmonary Disease (COPD, CF monocytes challenged ex vivo with LPS neither up-regulated membrane-anchored TREM-1 nor sTREM-1. Finally, similar levels of PGE(2 expression and p65 translocation into the nucleus were found in both patients and healthy volunteers, thus suggesting that TREM-1 regulation is neither controlled by PGE(2 levels nor by p65 activation in this case. However, PU.1 translocation into the nucleus was significantly higher in CF monocytes than in controls, suggesting a role for this transcription factor in the control of TREM-1 expression. We conclude that down-regulation of TREM-1 expression in cystic fibrosis patients is at least partly responsible for the endotoxin tolerance state in which their monocytes are locked.

  11. Protein C inhibitor (PCI) binds to phosphatidylserine exposing cells with implications in the phagocytosis of apoptotic cells and activated platelets.

    Science.gov (United States)

    Rieger, Daniela; Assinger, Alice; Einfinger, Katrin; Sokolikova, Barbora; Geiger, Margarethe

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10-30% of cells). PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal.

  12. Protein C inhibitor (PCI binds to phosphatidylserine exposing cells with implications in the phagocytosis of apoptotic cells and activated platelets.

    Directory of Open Access Journals (Sweden)

    Daniela Rieger

    Full Text Available Protein C Inhibitor (PCI is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10-30% of cells. PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with t