WorldWideScience

Sample records for activation regulates caspase-3

  1. Uterine Endoplasmic Reticulum Stress and Its Unfolded Protein Response May Regulate Caspase 3 Activation in the Pregnant Mouse Uterus

    Science.gov (United States)

    Suresh, Arvind; Subedi, Kalpana; Kyathanahalli, Chandrashekara; Jeyasuria, Pancharatnam; Condon, Jennifer C.

    2013-01-01

    We have previously proposed that uterine caspase-3 may modulate uterine contractility in a gestationally regulated fashion. The objective of this study was to determine the mechanism by which uterine caspase-3 is activated and consequently controlled in the pregnant uterus across gestation. Utilizing the mouse uterus as our gestational model we examined the intrinsic and extrinsic apoptotic signaling pathways and the endoplasmic reticulum stress response as potential activators of uterine caspase-3 at the transcriptional and translational level. Our study revealed robust activation of the uterine myocyte endoplasmic reticulum stress response and its adaptive unfolded protein response during pregnancy coinciding respectively with increased uterine caspase-3 activity and its withdrawal to term. In contrast the intrinsic and extrinsic apoptotic signaling pathways remained inactive across gestation. We speculate that physiological stimuli experienced by the pregnant uterus likely potentiates the uterine myocyte endoplasmic reticulum stress response resulting in elevated caspase-3 activation, which is isolated to the pregnant mouse myometrium. However as term approaches, activation of an elevated adaptive unfolded protein response acts to limit the endoplasmic reticulum stress response inhibiting caspase-3 resulting in its decline towards term. We speculate that these events have the capacity to regulate gestational length in a caspase-3 dependent manner. PMID:24058658

  2. Uterine endoplasmic reticulum stress and its unfolded protein response may regulate caspase 3 activation in the pregnant mouse uterus.

    Directory of Open Access Journals (Sweden)

    Arvind Suresh

    Full Text Available We have previously proposed that uterine caspase-3 may modulate uterine contractility in a gestationally regulated fashion. The objective of this study was to determine the mechanism by which uterine caspase-3 is activated and consequently controlled in the pregnant uterus across gestation. Utilizing the mouse uterus as our gestational model we examined the intrinsic and extrinsic apoptotic signaling pathways and the endoplasmic reticulum stress response as potential activators of uterine caspase-3 at the transcriptional and translational level. Our study revealed robust activation of the uterine myocyte endoplasmic reticulum stress response and its adaptive unfolded protein response during pregnancy coinciding respectively with increased uterine caspase-3 activity and its withdrawal to term. In contrast the intrinsic and extrinsic apoptotic signaling pathways remained inactive across gestation. We speculate that physiological stimuli experienced by the pregnant uterus likely potentiates the uterine myocyte endoplasmic reticulum stress response resulting in elevated caspase-3 activation, which is isolated to the pregnant mouse myometrium. However as term approaches, activation of an elevated adaptive unfolded protein response acts to limit the endoplasmic reticulum stress response inhibiting caspase-3 resulting in its decline towards term. We speculate that these events have the capacity to regulate gestational length in a caspase-3 dependent manner.

  3. Uterine Endoplasmic Reticulum Stress and Its Unfolded Protein Response May Regulate Caspase 3 Activation in the Pregnant Mouse Uterus

    OpenAIRE

    Suresh, Arvind; Subedi, Kalpana; Kyathanahalli, Chandrashekara; Jeyasuria, Pancharatnam; Condon, Jennifer C.

    2013-01-01

    We have previously proposed that uterine caspase-3 may modulate uterine contractility in a gestationally regulated fashion. The objective of this study was to determine the mechanism by which uterine caspase-3 is activated and consequently controlled in the pregnant uterus across gestation. Utilizing the mouse uterus as our gestational model we examined the intrinsic and extrinsic apoptotic signaling pathways and the endoplasmic reticulum stress response as potential activators of uterine cas...

  4. Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    Guomin Niu; Songmei Yin; Shuangfeng Xie; Yiqing Li; Danian Nie; Liping Ma; Xiuju Wang; Yudan Wu

    2011-01-01

    Quercetin is one of the naturally occurring dietary flavo-nol compounds. It is present abundantly in plants and has chemopreventive and anticancer effects. To investigate its anticancer mechanism, we examined the activity of quercetin against acute leukemia cell line, HL-60. Our results showed that quercetin inhibited cell proliferation and induced apoptosis in a time- and dose-dependent manner. Furthermore, quercetin down-regulated the expression of anti-apoptosis protein Bcl-2 and up-regulated the expression of pro-apoptosis protein Bax. Caspase-3 was also activated by quercetin, which started a caspase-3-depended mitochodrial pathway to induce apoptosis. It was also found that quercetin inhibited the expression of the cycloocygenase-2 (Cox-2) mRNA and Cox-2 protein. Taken together, these findings suggested that quercetin induces apoptosis in a caspase-3-dependent pathway by inhibiting Cox-2 expression and regulates the expression of downstream apoptotic components, including Bcl-2 and Bax. Quercetin can be a potent and promising medicine which might be safely used in leukemia therapy.

  5. Differential Activity of Caspase-3 Regulates Susceptibility of Lung and Breast Tumor Cell Lines to Paclitaxel

    OpenAIRE

    Odonkor, Charles Amoatey; Achilefu, Samuel

    2008-01-01

    Recent development of tumor resistance to paclitaxel presents a major problem to cancer treatment. An unsettled controversy in the cancer chemotherapy field, however, is whether caspases play a prominent role in paclitaxel-induced death in tumors. Previous studies suggest that cleavage of caspase-3 is not instrumental for the execution of death in tumors treated with paclitaxel, while other reports indicate that caspase-dependent pathways may be critical for paclitaxel cytotoxicity. In this s...

  6. Negative regulation of caspase 3-cleaved PAK2 activity by protein phosphatase 1

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1α). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1α can act directly on phosphorylated Thr-402 in the activation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modification but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.

  7. Negative regulation of caspase 3-cleaved PAK2 activity by protein phosphatase 1

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1α). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1α can act directly on phosphorylated Thr-402 in the acti-vation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modifica-tion but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.

  8. Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression.

    Science.gov (United States)

    Zhang, Xiaolin; Yu, Hao

    2016-01-01

    The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tumor cells. Western blot analysis of p53, Bax, cleaved caspase-3 and myosin light chain kinase (MLCK) revealed that matrine induced tumor cell apoptosis by controlling anoikis. It activated p53, Bax-dependent caspase-3 and blocked the ECM-integrin mediated cell survival pathway through down-regulating MLCK over-expression in the liver of rats with diethyl nitrosamine (DENA)-induced HCC. Our results suggest that matrine can inhibit the proliferation of HCC cells through inducing tumor cell apoptosis via activation of the p53 pathway and inhibition of MLCK overexpression. Matrine may thus be used as a potentially promising reagent to inhibit HCC cell proliferation and MLCK may be a novel target for the treatment of HCC. PMID:27642320

  9. Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression.

    Science.gov (United States)

    Zhang, Xiaolin; Yu, Hao

    2016-01-01

    The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tumor cells. Western blot analysis of p53, Bax, cleaved caspase-3 and myosin light chain kinase (MLCK) revealed that matrine induced tumor cell apoptosis by controlling anoikis. It activated p53, Bax-dependent caspase-3 and blocked the ECM-integrin mediated cell survival pathway through down-regulating MLCK over-expression in the liver of rats with diethyl nitrosamine (DENA)-induced HCC. Our results suggest that matrine can inhibit the proliferation of HCC cells through inducing tumor cell apoptosis via activation of the p53 pathway and inhibition of MLCK overexpression. Matrine may thus be used as a potentially promising reagent to inhibit HCC cell proliferation and MLCK may be a novel target for the treatment of HCC.

  10. Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

    Science.gov (United States)

    Zhang, Xiaolin; Yu, Hao

    2016-01-01

    The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tumor cells. Western blot analysis of p53, Bax, cleaved caspase-3 and myosin light chain kinase (MLCK) revealed that matrine induced tumor cell apoptosis by controlling anoikis. It activated p53, Bax-dependent caspase-3 and blocked the ECM-integrin mediated cell survival pathway through down-regulating MLCK over-expression in the liver of rats with diethyl nitrosamine (DENA)-induced HCC. Our results suggest that matrine can inhibit the proliferation of HCC cells through inducing tumor cell apoptosis via activation of the p53 pathway and inhibition of MLCK overexpression. Matrine may thus be used as a potentially promising reagent to inhibit HCC cell proliferation and MLCK may be a novel target for the treatment of HCC. PMID:27642320

  11. Resveratrol and clofarabine induces a preferential apoptosis-activating effect on malignant mesothelioma cells by Mcl-1 down-regulation and caspase-3 activation.

    Science.gov (United States)

    Lee, Yoon-Jin; Lee, Yong-Jin; Lee, Sang-Han

    2015-03-01

    We previously demonstrated that resveratrol and clofarabine elicited a marked cytotoxicity on malignant mesothelioma (MM) MSTO-211H cells but not on the corresponding normal mesothelial MeT-5A cells. Little is known of the possible molecules that could be used to predict preferential chemosensitivity on MSTO-211H cells. Resveratrol and clofarabine induced down-regulation of Mcl-1 protein level in MSTO-211H cells. Treatment of cells with cycloheximide in the presence of proteasome inhibitor MG132 suggested that Mcl-1 protein levels were regulated at the post-translational step. The siRNA-based knockdown of Mcl-1 in MSTO-211H cells triggered more growth-inhibiting and apoptosis-inducing effects with the resultant cleavages of procaspase-3 and its substrate PARP, increased caspase-3/7 activity, and increased percentage of apoptotic propensities. However, the majority of the observed changes were not shown in MeT-5A cells. Collectively, these studies indicate that the preferential activation of caspase cascade in malignant cells might have important applications as a therapeutic target for MM. PMID:24924397

  12. MSX2 overexpression inhibits gemcitabine-induced caspase-3 activity in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Shin Hamada; Kennichi Satoh; Kenji Kimura; Atsushi Kanno; Atsushi Masamune; Tooru Shimosegawa

    2005-01-01

    AIM: To evaluate the effect of MSX2 on gemcitabineinduced caspase-3 activation in pancreatic cancer cell line Panc-1.METHODS: Using V5-tagged MSX2 expression vector,stable transfectant of MSX2 was generated from Panc-1cells (Px14 cells). Cell viability under gemcitabine administration was determined by MTT assay relative to control cell line (empty-vector transfected Panc-1 cells;P-3EV cells). Hoechst staining was used for the detection of apoptotic cell. Activation of caspase-3 was assessed using Western blotting analysis and direct measurement of caspase-3 specific activities.RESULTS: MSX2 overexpression in Panc-1 cells resulted in decreased gemcitabine-induced caspase-3 activation and increased cell viability under gemcitabine treatment in Px14 cells.CONCLUSION: MSX2 exerts repressive effects on gemcitabine-induced apoptotic pathway. This novel apoptosis-regulating function of MSX2 may provide a new therapeutic target for pancreatic cancer.

  13. Caspase-3 activation as a bifurcation point between plasticity and cell death

    Institute of Scientific and Technical Information of China (English)

    Shikha Snigdha; Erica D Smith; G Aleph Prieto; Carl W Cotman

    2012-01-01

    Death-mediating proteases such as caspases and caspase-3 in particular,have been implicated in neurodegenerative processes,aging and Alzheimer's disease.However,emerging evidence suggests that in addition to their classical role in cell death,caspases play a key role in modulating synaptic function.It is remarkable that active caspases-3,which can trigger widespread damage and degeneration,aggregates in structures as delicate as synapses and persists in neurons without causing acute cell death.Here,we evaluate this dichotomy,and discuss the hypothesis that caspase-3 may be a bifurcation point in cellular signaling,able to orient the neuronal response to stress down either pathological/apoptotic pathways or towards physiological cellular remodeling.We propose that temporal,spatial and other regulators of caspase activity are key determinants of the ultimate effect of caspase-3 activation in neurons.This concept has implications for differential roles of caspase-3 activation across the lifespan.Specifically,we propose that limited caspase-3 activation is critical for synaptic function in the healthy adult brain while chronic activation is involved in degenerative processes in the aging brain.

  14. IMMUNOHISTOCHEMICAL ANALYSIS OF CASPASE-3 ACTIVITY IN LIVER BIOPSIES OF PATIENTS WITH MONO AND MIXED INFECTIONS

    Directory of Open Access Journals (Sweden)

    I. I. Tokin

    2015-01-01

    Full Text Available Objective: to study the activity of proapoptotic signal protein caspase-3 for determination of peculiarities of apoptosis regulation under liver chronic diseases.Subjects and methods. The immunohistochemical analysis of caspase-3 activity in 5 liver biopsies of the patients with mono infection of chronic hepatitis B and 5 liver biopsies of the patients with mixed infection of tuberculosis, chronic hepatitis C and human immunodeficiency virus was fulfilled. Morphological and morphometric analysis of serial microphotographs was performed using an image analysis system (microscope Leica DM 2500, digital camera Leica DFC320 R2 and a computer.Results. The activity of caspase-3 as dark brown granularity was revealed in all tis-sue components of liver (hepatocytes, epithelium of bile ducts, endotheliocytes, Kupffer cells of sinusoids, in compositions of lymphohistiocyte infiltrations. The maximal activity was discovered in hepatocytes nuclei. The expression of caspase-3 was significantly higher in liver biopsies of the patients with mixed infection. It is typical that the immunoreactive hepatocytes had not any morphological marks of apoptosis.Conclusion. The caspase-3 expression of proapoptotic signal protein caspase-3 may serve as an early marker of liver damage including the possibilities of apoptosis development.

  15. CONSTRUCTION OF ACTIVE RECOMBINANT CASPASE-3 EUKARYOTIC EXPRESSION PLA SMID AND EFFECT OF r-CASPASE-3 ON APOPTOSIS OF PANCREATIC CARCINOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To construct active recombinant cas pa ses-3 gene(r-caspases-3)eukaryotic expression plasmid and observe the apoptos is inducing activity of r-caspase-3 in pancreatic carcinoma cells. Methods pcDNA3.1(+)/r-caspase-3 was constructed and pan creatic carcinoma cells(PC-Ⅱ)were transfected with the pcDNA3.1(+)/r-caspases -3 by liposomes(LipofectAMINE).The expression of r-Caspase-3 mRNA in pancreat ic carcinoma cells was detected by reverse transcription process of the polymera se chain reaction(RT-PCR), and the signs of apoptosis were examined in pancreat ic carcinoma cells by the methods of the DNA electrophoresis and flow cytometry analysis(FACS).Results The sequence inserted in pBlueSKM/r-Caspase-3 p lasmid was coincident with that of the r-caspases-3. The evaluation result of pcDNA3.1(+)/r-caspases-3 through enzyme cutting was correct. A 894bp strap was observed by RT-PCR after pancreatic carcinoma cells being transfected with the pcDNA3.1(+)/r-caspases-3 by liposomes. No strap was found in control groups. A characteristic DNA ladder was observed in pancreatic carcinoma cells DNA elect r ophoresis, and transparent hypodiploid karyotype peak was found by FACS. Conclusion The plasmid of pcDNA3.1(+)/r-Caspase-3 was c onstructed successfully, the expression of r-Caspase-3 mRMA in pancreatic carc inoma cells was confirmed by RT-PCR, and pcDNA3.1(+)/r-Caspase-3 can induce a poptosis in pancreatic carcinoma cells.

  16. Cytoprotection against Hypoxic and/or MPP+ Injury: Effect of δ–Opioid Receptor Activation on Caspase 3

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2016-08-01

    Full Text Available The pathological changes of Parkinson’s disease (PD are, at least partially, associated with the dysregulation of PTEN-induced putative kinase 1 (PINK1 and caspase 3. Since hypoxic and neurotoxic insults are underlying causes of PD, and since δ-opioid receptor (DOR is neuroprotective against hypoxic/ischemic insults, we sought to determine whether DOR activation could protect the cells from damage induced by hypoxia and/or MPP+ by regulating PINK1 and caspase 3 expressions. We exposed PC12 cells to either severe hypoxia (0.5%–1% O2 for 24–48 h or to MPP+ at different concentrations (0.5, 1, 2 mM and then detected the levels of PINK1 and cleaved caspase 3. Both hypoxia and MPP+ reduced cell viability, progressively suppressed the expression of PINK1 and increased the cleaved caspase 3. DOR activation using UFP-512, effectively protected the cells from hypoxia and/or MPP+ induced injury, reversed the reduction in PINK1 protein and significantly attenuated the increase in the cleaved caspase 3. On the other hand, the application of DOR antagonist, naltrindole, greatly decreased cell viability and increased cleaved caspase 3. These findings suggest that DOR is cytoprotective against both hypoxia and MPP+ through the regulation of PINK1 and caspase 3 pathways.

  17. Resveratrol and clofarabine induces a preferential apoptosis-activating effect on malignant mesothelioma cells by Mcl-1 down-regulation and caspase-3 activation

    OpenAIRE

    Lee, Yoon-Jin; Lee, Yong-Jin; LEE, SANG-HAN

    2015-01-01

    We previously demonstrated that resveratrol and clofarabine elicited a marked cytotoxicity on malignant mesothelioma (MM) MSTO-211H cells but not on the corresponding normal mesothelial MeT-5A cells. Little is known of the possible molecules that could be used to predict preferential chemosensitivity on MSTO-211H cells. Resveratrol and clofarabine induced down-regulation of Mcl-1 protein level in MSTO-211H cells. Treatment of cells with cycloheximide in the presence of proteasome inhibitor MG...

  18. Peripheral neuropathy in the Twitcher mouse involves the activation of axonal caspase 3

    Directory of Open Access Journals (Sweden)

    Ernesto R Bongarzone

    2011-10-01

    Full Text Available Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine, demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein isoforms showed unexpected increases of the 14, 17 and 18.5 kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice, suggesting an abnormal regulation of the myelination process during early postnatal life in this mutant. Our studies showed an elevated activation of the pro-apoptotic protease caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher mice, in parallel with increasing demyelination. Interestingly, while active caspase 3 was clearly contained in peripheral axons at all ages, we found no evidence of caspase accumulation in the soma of corresponding mutant spinal cord motor neurons. Furthermore, active caspase 3 was found not only in unmyelinated axons, but also in myelinated axons of the mutant sciatic nerve. These results suggest that axonal caspase activation occurs before demyelination and following a dying-back pattern. Finally, we showed that psychosine was sufficient to activate caspase 3 in motor neuronal cells in vitro in the absence of myelinating glia. Taken together, these findings indicate that degenerating mechanisms actively and specifically mediate axonal dysfunction in Krabbe disease and support the idea that psychosine is a pathogenic sphingolipid sufficient to cause axonal defects independently of demyelination.

  19. Gamma secretase activating protein is a substrate for caspase-3: implications for Alzheimer’s disease

    Science.gov (United States)

    Chu, Jin; Li, Jian-Guo; Joshi, Yash B.; Giannopoulos, Phillip F.; Hoffman, Nicholas E.; Madesh, Muniswamy; Praticò, Domenico

    2014-01-01

    SUMMARY Background A major hallmark feature of Alzheimer’s disease (AD) is the accumulation of amyloid β (Aβ), whose formation is regulated by the γ-secretase complex and its activating protein (also known as GSAP). Because GSAP interacts with the γ-secretase without affecting the cleavage of Notch, it is an ideal target for a viable anti-Aβ therapy. However, despite much interest in this protein, the mechanisms involved in its neurobiology are not known. Methods Post-mortem brain tissues from AD patients, transgenic mouse models of AD and neuronal cells were used to investigate the molecular mechanism involved in GSAP formation and subsequent amyloidogenesis. Results We identify a caspase-3 processing domain in the GSAP sequence and provide experimental evidence that this caspase is essential for GSAP activation and biogenesis of Aβ peptides. Furthermore, we demonstrate that caspase-3-dependent GSAP formation occurs in brains of individuals with AD and two different mouse models of AD, and that the process is biologically relevant since its pharmacological blockade reduces Aβ pathology in vivo. Interpretation Our data by identifying caspase-3 as the endogenous modulator of GSAP and Aβ production establish it as a novel, attractive and viable Aβ lowering therapeutic target for AD. PMID:25052851

  20. Allitridi induces apoptosis by affecting Bcl-2 expression and caspase-3 activity in human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Hong LAN; You-yong LU

    2004-01-01

    AIM: To investigate the mechanism of allitridi-induced apoptosis in human gastric cancer cell line BGC823.METHODS: Growth inhibition by allitridi was analyzed using cell growth curve and MTT assay. Apoptotic cells were detected using staining with Hoechst 33342, and confirmed by flow cytometric analysis and DNA fragmentation analysis. The protein expression affected by allitridi was determined using Western blot. The activity of caspase-3 was measured using a fluorescence assay. RESULTS: Allitridi induced apoptosis, and then inhibited cells proliferation in human gastric cancer cell line BGC823. The protein level of Bcl-2 was decreased dramatically,while Bax and p53 were not significantly affected by allitridi. The expression and activity of caspase-3 started to increase after allitridi treatment for 72 h. CONCLUSION: Allitridi induced apoptosis through down-regulation of Bcl-2, and increased caspase-3 expression and its activity.

  1. 13-methyltetradecanoic acid exhibits anti-tumor activity on T-cell lymphomas in vitro and in vivo by down-regulating p-AKT and activating caspase-3.

    Directory of Open Access Journals (Sweden)

    Qingqing Cai

    Full Text Available 13-Methyltetradecanoic acid (13-MTD, a saturated branched-chain fatty acid purified from soy fermentation products, induces apoptosis in human cancer cells. We investigated the inhibitory effects and mechanism of action of 13-MTD on T-cell non-Hodgkin's lymphoma (T-NHL cell lines both in vitro and in vivo. Growth inhibition in response to 13-MTD was evaluated by the cell counting kit-8 (CCK-8 assay in three T-NHL cell lines (Jurkat, Hut78, EL4 cells. Flow cytometry analyses were used to monitor the cell cycle and apoptosis. Proteins involved in 13-MTD-induced apoptosis were examined in Jurkat cells by western blotting. We found that 13-MTD inhibited proliferation and induced the apoptosis of T-NHL cell lines. 13-MTD treatment also induced a concentration-dependent arrest of Jurkat cells in the G1-phase. During 13-MTD-induced apoptosis in Jurkat cells, the cleavage of caspase-3 and poly ADP-ribose polymerase (PARP, a caspase enzymolysis product were detected after incubation for 2 h, and increased after extending the incubation time. However, there was no change in the expression of Bcl-2 or c-myc proteins. The appearance of apoptotic Jurkat cells was accompanied by the inhibition of AKT and nuclear factor-kappa B (NF-κB phosphorylation. In addition, 13-MTD could also effectively inhibit the growth of T-NHL tumors in vivo in a xenograft model. The tumor inhibition rate in the experimental group was 40%. These data indicate that 13-MTD inhibits proliferation and induces apoptosis through the down-regulation of AKT phosphorylation followed by caspase activation, which may provide a new approach for treating T-cell lymphomas.

  2. Radiolabeled isatin binding to caspase-3 activation induced by anti-Fas antibody

    International Nuclear Information System (INIS)

    Introduction: Noninvasive imaging methods that can distinguish apoptosis from necrosis may be useful in furthering our understanding of diseases characterized by apoptotic dysregulation as well as aiding drug development targeting apoptotic pathways. We evaluated the ability of radiolabeled isatins to quantify caspase-3 activity induced by the activation of the extrinsic apoptotic pathway by the anti-Fas antibody in mice. Methods: The behavior of three different radiolabeled isatins ([18F]WC-II-89, [18F]WC-IV-3 and [11C]WC-98) was characterized in mice with and without anti-Fas antibody treatment by microPET imaging and biodistribution studies. The activity of [18F]WC-II-89 was also compared with [99mTc]mebrofenin. The effect of pan-caspase inhibition with quinolyl-valyl-O-methylaspartyl-[2,6-difluorophenoxy]-methyl ketone (Q-VD-OPh) on [18F]WC-II-89 uptake was studied. Caspase-3 activity was confirmed by a fluorometric enzyme assay. Results: All three tracers behaved similarly in microPET and biodistribution studies. Increased retention of all tracers was observed in the livers of treated animals and several other organs, all of which demonstrated increased caspase-3 enzyme activity; however, impaired hepatobiliary excretion made attribution of these findings to caspase-3 activity difficult. The isatin [18F]WC-II-89 was retained at statistically significantly higher levels in the organs after anti-Fas antibody treatment while [99mTc]mebrofenin activity cleared, suggesting specific binding to activated caspase-3, but the magnitude of increased binding was still relatively low. Caspase inhibition with Q-VD-OPh partially blocked [18F]WC-II-89 retention but completely blocked caspase-3 enzyme activity in the liver. Conclusions: The radiolabeled isatins appear to bind specifically to caspase-3 in vivo, but their sensitivity is limited. Further optimization is required for these tracers to be useful for clinical applications.

  3. Elevated Levels of Uterine Anti-Apoptotic Signaling May Activate NFKB and Potentially Confer Resistance to Caspase 3-Mediated Apoptotic Cell Death During Pregnancy in Mice1

    Science.gov (United States)

    Jeyasuria, Pancharatnam; Subedi, Kalpana; Suresh, Arvind; Condon, Jennifer C.

    2011-01-01

    Preserving the uterus in a state of relative quiescence is vital to the maintenance of a successful pregnancy. Elevated cytoplasmic levels of uterine caspase 3 during pregnancy have been proposed as a potential regulator of uterine quiescence through direct targeting and disabling of the uterine contractile architecture. However, despite highly elevated levels of uterine caspase 3 during pregnancy, there is minimal evidence of apoptosis. This current study defines the mechanism whereby the pregnant uterine myocyte may harness the tocolytic activity of active caspases while avoiding apoptotic cell death. Using the pregnant mouse model, we have analyzed the uterus for changes in pro- and antiapoptotic signaling patterns associated with the advancing stages of pregnancy. Briefly, we have found that members of the IAP family, such as SURVIVIN and XIAP, and the Bcl2 family members, such as MCL1, are elevated in the uterine myocyte during late gestation. The IAP family members are the only endogenous inhibitors of active caspase 3, and MCL1 limits activation of caspase 3 by suppressing proapoptotic signaling. Elevated XIAP levels partner with SURVIVIN, resulting in increased levels of the antiapoptotic MCL1 via NFKB activation; these together have the potential to limit both the activity and level of active caspase 3 in the pregnant uterus as term approaches. We propose that modification of these antiapoptotic signaling partners allows the pregnant uterus to escape the apoptotic action of elevated active caspase 3 levels but also functions to limit the levels of active uterine caspase 3 near term. PMID:21566000

  4. Phorbol esters from Jatropha meal triggered apoptosis, activated PKC-δ, caspase-3 proteins and down-regulated the proto-oncogenes in MCF-7 and HeLa cancer cell lines.

    Science.gov (United States)

    Oskoueian, Ehsan; Abdullah, Norhani; Ahmad, Syahida

    2012-01-01

    Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs). The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7) and cervical (HeLa) cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell lines with the IC₅₀ of 128.6 ± 2.51 and 133.0 ± 1.96 µg PMA equivalents/mL respectively, while the values for the phorbol 12-myristate 13-acetate (PMA) as positive control were 114.7 ± 1.73 and 119.6 ± 3.73 µg/mL, respectively. Microscopic examination showed significant morphological changes that resemble apoptosis in both cell lines when treated with PEs and PMA at IC₅₀ concentration after 24 h. Flow cytometry analysis and DNA fragmentation results confirmed the apoptosis induction of PEs and PMA in both cell lines. The PEs isolated from Jatropha meal activated the PKC-δ and down-regulated the proto-oncogenes (c-Myc, c-Fos and c-Jun). These changes probably led to the activation of Caspase-3 protein and apoptosis cell death occurred in MCF-7 and HeLa cell lines upon 24 h treatment with PEs and PMA. Phorbol esters of Jatropha meal were found to be promising as an alternative to replace the chemotherapeutic drugs for cancer therapy. PMID:22964499

  5. Phorbol Esters from Jatropha Meal Triggered Apoptosis, Activated PKC-δ, Caspase-3 Proteins and Down-Regulated the Proto-Oncogenes in MCF-7 and HeLa Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Syahida Ahmad

    2012-09-01

    Full Text Available Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs. The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7 and cervical (HeLa cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell lines with the IC50 of 128.6 ± 2.51 and 133.0 ± 1.96 µg PMA equivalents/mL respectively, while the values for the phorbol 12-myristate 13-acetate (PMA as positive control were 114.7 ± 1.73 and 119.6 ± 3.73 µg/mL, respectively. Microscopic examination showed significant morphological changes that resemble apoptosis in both cell lines when treated with PEs and PMA at IC50 concentration after 24 h. Flow cytometry analysis and DNA fragmentation results confirmed the apoptosis induction of PEs and PMA in both cell lines. The PEs isolated from Jatropha meal activated the PKC-δ and down-regulated the proto-oncogenes (c-Myc, c-Fos and c-Jun. These changes probably led to the activation of Caspase-3 protein and apoptosis cell death occurred in MCF-7 and HeLa cell lines upon 24 h treatment with PEs and PMA. Phorbol esters of Jatropha meal were found to be promising as an alternative to replace the chemotherapeutic drugs for cancer therapy.

  6. Phorbol esters from Jatropha meal triggered apoptosis, activated PKC-δ, caspase-3 proteins and down-regulated the proto-oncogenes in MCF-7 and HeLa cancer cell lines.

    Science.gov (United States)

    Oskoueian, Ehsan; Abdullah, Norhani; Ahmad, Syahida

    2012-09-10

    Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs). The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7) and cervical (HeLa) cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell lines with the IC₅₀ of 128.6 ± 2.51 and 133.0 ± 1.96 µg PMA equivalents/mL respectively, while the values for the phorbol 12-myristate 13-acetate (PMA) as positive control were 114.7 ± 1.73 and 119.6 ± 3.73 µg/mL, respectively. Microscopic examination showed significant morphological changes that resemble apoptosis in both cell lines when treated with PEs and PMA at IC₅₀ concentration after 24 h. Flow cytometry analysis and DNA fragmentation results confirmed the apoptosis induction of PEs and PMA in both cell lines. The PEs isolated from Jatropha meal activated the PKC-δ and down-regulated the proto-oncogenes (c-Myc, c-Fos and c-Jun). These changes probably led to the activation of Caspase-3 protein and apoptosis cell death occurred in MCF-7 and HeLa cell lines upon 24 h treatment with PEs and PMA. Phorbol esters of Jatropha meal were found to be promising as an alternative to replace the chemotherapeutic drugs for cancer therapy.

  7. Dual Role of Caspase-11 in Mediating Activation of Caspase-1 and Caspase-3 under Pathological Conditions

    OpenAIRE

    Kang, Shin-Jung; Wang, Suyue; Hara, Hideaki; Peterson, Erin P.; Namura, Shobu; Amin-Hanjani, Sepideh; Huang, Zhihong; Srinivasan, Anu; Tomaselli, Kevin J.; Thornberry, Nancy A.; Moskowitz, Michael A; Yuan, Junying

    2000-01-01

    Caspase-11, a member of the murine caspase family, has been shown to be an upstream activator of caspase-1 in regulating cytokine maturation. We demonstrate here that in addition to its defect in cytokine maturation, caspase-11–deficient mice have a reduced number of apoptotic cells and a defect in caspase-3 activation after middle cerebral artery occlusion (MCAO), a mouse model of stroke. Recombinant procaspase-11 can autoprocess itself in vitro. Purified active recombinant caspase-11 cleave...

  8. 龙葵碱调控Bcl-2与Bax蛋白表达及caspase-3活性诱导HepG2细胞凋亡的研究%Induction of solanine on HepG2 cell apoptosis by regulation of Bcl-2/Bax expression and caspase-3 activity

    Institute of Scientific and Technical Information of China (English)

    高世勇; 徐丽丽; 季宇彬

    2009-01-01

    目的 探讨龙葵碱诱导HepG2细胞凋亡的作用机制.方法 透射电镜观察凋亡细胞形态变化,原位缺口末端榆测法(TUNEL法)检测DNA断裂情况,流式细胞术检测细胞凋亡率,间接免疫荧光法激光共聚焦扫描显微术检测Bcl-2与Bax蛋白表达,比色法检测caspase-3活性的变化.结果 在透射电镜下观察,龙葵碱组细胞出现细胞固缩,染色质致密,核凝聚固缩,染色体断裂形成核碎块,凋亡小体形成等细胞凋亡特征形态.TUNEL法发现龙葵碱高、中、低剂量组HepG2细胞均有绿色荧光,阴性对照组无荧光.流式细胞术分析表明0.4、2、10μmol/L龙葵碱作用HepG2细胞24 h凋亡率分别为4.0%、8.5%、20.1%.同时,龙葵碱升高caspase-3活性,下调Bcl-2蛋白表达,上调Bax蛋白表达.结论 龙葵碱通过降低Bcl-2/Bax的值,激活caspase-3酶活性诱导HepG2细胞凋亡.

  9. Oridonin induces apoptosis of HeLa cells via altering expres sion of Bcl-2/Bax and activating caspase-3/ICAD pathway

    Institute of Scientific and Technical Information of China (English)

    Chun-ling ZHANG; Li-jun WU; Shin-ichi TASHIRO; Satoshi ONODERA; Takashi IKEJIMA

    2004-01-01

    AIM: To study the mechanisms by which oridonin inhibited HeLa cell growth in vitro. METHODS: Viability of oridonin-induced HeLa cells was measured by MTT assay. Apoptotic cells with condensed nuclei were visualized by phase contrast microscopy. Nucleosomal DNA fragmentation was assayed by agarose gel electrophoresis.Caspase activity was assayed using fiuorometric protease assay. ICAD, Bcl-2, and Bax proteins expression were detected by Western blot analysis. RESULTS: Oridonin induced oligonucleosomal fragmentation of DNA and increased caspase-3 activity, on the other hand, reduced the expression of inhibitor of caspase-3-activated DNase (ICAD), a caspase-3 substrate, at 12 h in HeLa cells. Oridonin-induced DNA fragmentation, caspase-3 activation and down-regulation of ICAD expression were effectively inhibited by a caspase-3 inhibitor, z-DEVD-fmk (z-AspGlu-Val-Asp-fmk). However, pretreatment with an inhibitor of poly (ADP-ribose) polymerase (PARP), 3, 4-dihydro5-[4-(1-piperidinyl)butoxy]-1 (2H)-isoquinolinone (DPQ), did not suppress oridonin-induced HeLa cell death. In addition, oridonin-induced apoptosis was associated with an increase in the expression of the apoptosis inducer Bax, and a significant reduction in expression of the apoptosis suppressor Bcl-2 in mitochondria. CONCLUSION:Oridonin induces HeLa cells apoptosis by altering balance of Bcl-2 and Bax protein expression and activation of caspase-3/ICAD pathway.

  10. Ginsenoside Rg1 Attenuates Isoflurane-induced Caspase-3 Activation via Inhibiting Mitochondrial Dysfunction

    Institute of Scientific and Technical Information of China (English)

    MIAO Hui Hui; ZHEN Yu; DING Guan Nan; HONG Fang Xiao; XIE Zhong Cong; TIAN Ming

    2015-01-01

    Objective The inhalation anesthetic isoflurane has been shown to induce mitochondrial dysfunction and caspase activation, which may lead to learning and memory impairment. Ginsenoside Rg1 is reported to be neuroprotective. We therefore set out to determine whether ginsenoside Rg1 can attenuate isoflurane-induced caspase activation via inhibiting mitochondrial dysfunction. Methods We investigated the effects of ginsenoside Rg1 at concentrations of 12.5, 25, and 50 µmol/L and pretreatment times of 12 h and 24 h on isoflurane-induced caspase-3 activation in H4 naïve and stably transfected H4 human neuroglioma cells that express full-length human amyloid precursor protein (APP) (H4-APP cells). For mitochondrial dysfunction, we assessed mitochondrial permeability transition pore (mPTP) and adenosine-5’-triphosphate (ATP) levels. We employed Western blot analysis, chemiluminescence, and flowcytometry. Results Here we show that pretreatment with 50 µmol/L ginsenoside Rg1 for 12 h attenuated isoflurane-induced caspase-3 activation and mitochondrial dysfunction in H4-APP cells, while pretreatment with 25 and 50 µmol/L ginsenoside Rg1 for 24 h attenuated isoflurane-induced caspase-3 activation and mitochondrial dysfunction in both H4 naïve and H4-APP cells. Conclusion These data suggest that ginsenoside Rg1 may ameliorate isoflurane-induced caspase-3 activation by inhibiting mitochondrial dysfunction. Pending further studies, these findings might recommend the use of ginsenoside Rg1 in preventing and treating isoflurane-induced neurotoxicity.

  11. Artemisinin induces ROS-mediated caspase3 activation in ASTC-a-1 cells

    Science.gov (United States)

    Xiao, Feng-Lian; Chen, Tong-Sheng; Qu, Jun-Le; Liu, Cheng-Yi

    2010-02-01

    Artemisinin (ART), an antimalarial phytochemical from the sweet wormwood plant or a naturally occurring component of Artemisia annua, has been shown a potential anticancer activity by apoptotic pathways. In our report, cell counting kit (CCK-8) assay showed that treatment of human lung adenocarcinoma (ASTC-a-1) cells with ART effectively increase cell death by inducing apoptosis in a time- and dose-dependent fashion. Hoechst 33258 staining was used to detect apoptosis as well. Reactive oxygen species (ROS) generation was observed in cells exposed to ART at concentrations of 400 μM for 48 h. N-acetyl-L-cysteine (NAC), an oxygen radical scavenger, suppressed the rate of ROS generation and inhibited the ART-induced apoptosis. Moreover, AFC assay (Fluorometric assay for Caspase3 activity) showed that ROS was involved in ART-induced caspase3 acitvation. Taken together, our data indicate that ART induces ROS-mediated caspase3 activation in a time-and dose-dependent way in ASCT-a-1 cells.

  12. Caspase-3-mediated degradation of condensin Cap-H regulates mitotic cell death.

    Science.gov (United States)

    Lai, S-K; Wong, C-H; Lee, Y-P; Li, H-Y

    2011-06-01

    Mitotic death is a major form of cell death in cancer cells that have been treated with chemotherapeutic drugs. However, the mechanisms underlying this form of cell death is poorly understood. Here, we report that the loss of chromosome integrity is an important determinant of mitotic death. During prolonged mitotic arrest, caspase-3 is activated and it cleaves Cap-H, a subunit of condensin I. The depletion of Cap-H results in the loss of condensin I complex at the chromosomes, thus affecting the integrity of the chromosomes. Consequently, DNA fragmentation by caspase-activated DNase is facilitated, thus driving the cell towards mitotic death. By expressing a caspase-resistant form of Cap-H, mitotic death is abrogated and the cells are able to reenter interphase after a long mitotic delay. Taken together, we provide new insights into the molecular events that occur during mitotic death.

  13. Continuous monitoring of caspase-3 activation induced by propofol in developing mouse brain.

    Science.gov (United States)

    Konno, Ayumi; Nishimura, Akiko; Nakamura, Shiro; Mochizuki, Ayako; Yamada, Atsushi; Kamijo, Ryutaro; Inoue, Tomio; Iijima, Takehiko

    2016-06-01

    The neurotoxicity of anesthetics on the developing brain has drawn the attention of anesthesiologists. Several studies have shown that apoptosis is enhanced by exposure to anesthesia during brain development. Although apoptosis is a physiological developmental step occurring before the maturation of neural networks and the integration of brain function, pathological damage also involves apoptosis. Previous studies have shown that prolonged exposure to anesthetics causes apoptosis. Exactly when the apoptotic cascade starts in the brain remains uncertain. If it starts during the early stage of anesthesia, even short-term anesthesia could harm the brain. Therefore, apoptogenesis should be continuously monitored to elucidate when the apoptotic cascade is triggered by anesthesia. Here, we describe the development of a continuous monitoring system to detect caspase-3 activation using an in vivo model. Brain slices from postnatal days 0-4 SCAT3 transgenic mice with a heterozygous genotype (n=20) were used for the monitoring of caspase-3 cleavage. SCAT3 is a fusion protein of ECFP and Venus connected by a caspase-3 cleavable peptide, DEVD. A specimen from the hippocampal CA1 sector was mounted on a confocal laser microscope and was continuously superfused with artificial cerebrospinal fluid, propofol (2,6-diisopropylphenol, 1μM or 10μM), and dimethyl sulfoxide. Images were obtained every hour for five hours. A pixel analysis of the ECFP/Venus ratio images was performed using a histogram showing the number of pixels with each ratio. In the histogram of the ECFP/Venus ratio, an area with a ratio>1 indicated the number of pixels from caspase-3-activated CA1 neurons. We observed a shift in the histogram toward the right over time, indicating caspase-3 activation. This right-ward shift dramatically changed at five hours in the propofol 1μM and 10μM groups and was obviously different from that in the control group. Thus, real-time fluorescence energy transfer (FRET) imaging

  14. Study on HepG-2 apoptosis induced by saponins isolated from Asparagus and the effects on the activities of caspase-3,8,9

    Institute of Scientific and Technical Information of China (English)

    JI Yu-bin; XU He; JI Chen-feng

    2008-01-01

    Objective To study the effect of saponins of asparagus on apoptosis and the variations of caspaseS, caspase-9 and caspase-3 activity in the process of asparagus induced apoptosis in HepG-2, to investigate the apoptosis mechanism further. Methods Asparagus on apoptosis effects on tumor cells cultured-HepG-2 with different concentrations at different time, IC50 value was measured by MTT assay, the apoptosis rate was determined by FCM with AnnexinV/PI staining, their apoptotic morphology were observed by electron microscopy and Colorimetric method was used to measure caspase-8,9 and caspase-3 activities. Results Experiments of antitumour in vivo showed that saponins of asparagus can inhibit the growth of tumor cell of HepG-2 in evidence, IC50 was 101.15 mg·L-1. Cultured for 72 h, the apoptosis rate had positive increased with concentrations. Apoptotic morphology was observed by electron microscopy. The activities of caspase-8, easpase-9 and caspase-3 had positive increased with concentrations. And have significant difference compared with negative control group(P<0.01). The activities of caspase-8 were high at 24 h, but the activities of caspase-9 and caspase-3 is high at 48 h. Conclusions Aaponins of asparagus can inhibit the growth of tumor cell of HepG2, and the underlying mechanism might be related to up regulation of caspase-8, 9 activity which subsequently transforms caspase-3 into its active form.

  15. miR-155 targets Caspase-3 mRNA in activated macrophages.

    Science.gov (United States)

    De Santis, Rebecca; Liepelt, Anke; Mossanen, Jana C; Dueck, Anne; Simons, Nadine; Mohs, Antje; Trautwein, Christian; Meister, Gunter; Marx, Gernot; Ostareck-Lederer, Antje; Ostareck, Dirk H

    2016-01-01

    To secure the functionality of activated macrophages in the innate immune response, efficient life span control is required. Recognition of bacterial lipopolysaccharides (LPS) by toll-like receptor 4 (TLR4) induces downstream signaling pathways, which merge to induce the expression of cytokine genes and anti-apoptotic genes. MicroRNAs (miRNAs) have emerged as important inflammatory response modulators, but information about their functional impact on apoptosis is scarce. To identify miRNAs differentially expressed in response to LPS, cDNA libraries from untreated and LPS-activated murine macrophages were analyzed by deep sequencing and regulated miRNA expression was verified by Northern blotting and qPCR. Employing TargetScan(TM) we identified CASPASE-3 (CASP-3) mRNA that encodes a key player in apoptosis as potential target of LPS-induced miR-155. LPS-dependent primary macrophage activation revealed TLR4-mediated enhancement of miR-155 expression and CASP-3 mRNA reduction. Endogenous CASP-3 and cleaved CASP-3 protein declined in LPS-activated macrophages. Accumulation of miR-155 and CASP-3 mRNA in miRNA-induced silencing complexes (miRISC) was demonstrated by ARGONAUTE 2 (AGO2) immunoprecipitation. Importantly, specific antagomir transfection effectively reduced mature miR-155 and resulted in significantly elevated CASP-3 mRNA levels in activated macrophages. In vitro translation assays demonstrated that the target site in the CASP-3 mRNA 3'UTR mediates miR-155-dependent Luciferase reporter mRNA destabilization. Strikingly, Annexin V staining of macrophages transfected with antagomir-155 and stimulated with LPS prior to staurosporine (SSP) treatment implied that LPS-induced miR-155 prevents apoptosis through CASP-3 mRNA down-regulation. In conclusion, we report that miR-155-mediated CASP-3 mRNA destabilization in LPS-activated RAW 264.7 macrophages suppresses apoptosis, as a prerequisite to maintain their crucial function in inflammation. PMID:26574931

  16. Triptolide (PG-490) induces apoptosis of dendritic cells through sequential p38 MAP kinase phosphorylation and caspase 3 activation

    Institute of Scientific and Technical Information of China (English)

    Liu Q; Chen T; Chen H; Zhang M; Li N; Lu Z; Ma P; Cao X

    2004-01-01

    Dendritic cells (DCs) are the most potent antigen-presenting cells that play crucial roles in the regulation of immune response. Triptolide, an active component purified from the medicinal plant Tripterygium wilfordii Hook F. , has been demonstrated to act as a potent immunosuppressive drug capable of inhibiting T cell activation and proliferation. However, little is known about the effects of triptolide on DCs. The present study shows that triptolide does not affect phenotypic differentiation and LPS-induced maturation of murine DCs. But triptolide can dramatically reduce cell recovery by inducing apoptosis of DCs at concentration as low as 10 ng/ml, as demonstrated by phosphatidylserine exposure, mitochondria potential decrease, and nuclear DNA condensation. Triptolide induces activation of p38 in DCs, which precedes the activation of caspase 3. SB203580, a specific kinase inhibitor for p38, can block the activation of caspase 3 and inhibit the resultant apoptosis of DCs. Our results suggest that the anti-inflammatory and immunosuppressive activities of triptolide may be due, in part,to its apoptosis-inducing effects on DCs.

  17. Large-scale preparation of active caspase-3 in E. coli by designing its thrombin-activatable precursors

    Directory of Open Access Journals (Sweden)

    Park Sung

    2008-12-01

    Full Text Available Abstract Background Caspase-3, a principal apoptotic effector that cleaves the majority of cellular substrates, is an important medicinal target for the treatment of cancers and neurodegenerative diseases. Large amounts of the protein are required for drug discovery research. However, previous efforts to express the full-length caspase-3 gene in E. coli have been unsuccessful. Results Overproducers of thrombin-activatable full-length caspase-3 precursors were prepared by engineering the auto-activation sites of caspase-3 precursor into a sequence susceptible to thrombin hydrolysis. The engineered precursors were highly expressed as soluble proteins in E. coli and easily purified by affinity chromatography, to levels of 10–15 mg from 1 L of E. coli culture, and readily activated by thrombin digestion. Kinetic evaluation disclosed that thrombin digestion enhanced catalytic activity (kcat/KM of the precursor proteins by two orders of magnitude. Conclusion A novel method for a large-scale preparation of active caspase-3 was developed by a strategic engineering to lack auto-activation during expression with amino acid sequences susceptible to thrombin, facilitating high-level expression in E. coli. The precursor protein was easily purified and activated through specific cleavage at the engineered sites by thrombin, generating active caspase-3 in high yields.

  18. Glucosidase II β-subunit, a novel substrate for caspase-3-like activity in rice, plays as a molecular switch between autophagy and programmed cell death

    Science.gov (United States)

    Cui, Jing; Chen, Bing; Wang, Hongjuan; Han, Yue; Chen, Xi; Zhang, Wei

    2016-01-01

    Endoplasmic reticulum (ER) stress activates unfolded protein response (UPR) and autophagy. However, prolonged, severe stresses activate programmed cell death (PCD) in both animal and plant cells. Compared to the well-studied UPR pathway, the molecular mechanisms of ER-stress-induced PCD are less understood. Here, we report the identification of Gas2, the glucosidase II β subunit in the ER, as a potential switch between PCD and autophagy in rice. MS analysis identified Gas2, GRP94, and HSP40 protein in a purified caspase-3-like activity from heat stressed rice cell suspensions. The three corresponding genes were down-regulated under DTT-induced ER stress. Gas2 and GRP94 were localized to the ER, while HSP40 localized to the cytoplasm. Compared to wild-type, a Gas2 RNAi cell line was much sensitive to DTT treatment and had high levels of autophagy. Both caspase-3 and heat-stressed cell suspension lysate could cleave Gas2, producing a 14 kDa N-terminal fragment. Conditional expression of corresponding C-terminal fragment resulted in enhanced caspase-3-like activity in the protoplasts under heat stress. We proposed that mild ER stress causes down-regulation of Gas2 and induces autophagy, while severe stress results in Gas2 cleavage by caspase-3-like activity and the cleavage product amplifies this activity, possibly participating in the initiation of PCD. PMID:27538481

  19. Glucosidase II β-subunit, a novel substrate for caspase-3-like activity in rice, plays as a molecular switch between autophagy and programmed cell death.

    Science.gov (United States)

    Cui, Jing; Chen, Bing; Wang, Hongjuan; Han, Yue; Chen, Xi; Zhang, Wei

    2016-01-01

    Endoplasmic reticulum (ER) stress activates unfolded protein response (UPR) and autophagy. However, prolonged, severe stresses activate programmed cell death (PCD) in both animal and plant cells. Compared to the well-studied UPR pathway, the molecular mechanisms of ER-stress-induced PCD are less understood. Here, we report the identification of Gas2, the glucosidase II β subunit in the ER, as a potential switch between PCD and autophagy in rice. MS analysis identified Gas2, GRP94, and HSP40 protein in a purified caspase-3-like activity from heat stressed rice cell suspensions. The three corresponding genes were down-regulated under DTT-induced ER stress. Gas2 and GRP94 were localized to the ER, while HSP40 localized to the cytoplasm. Compared to wild-type, a Gas2 RNAi cell line was much sensitive to DTT treatment and had high levels of autophagy. Both caspase-3 and heat-stressed cell suspension lysate could cleave Gas2, producing a 14 kDa N-terminal fragment. Conditional expression of corresponding C-terminal fragment resulted in enhanced caspase-3-like activity in the protoplasts under heat stress. We proposed that mild ER stress causes down-regulation of Gas2 and induces autophagy, while severe stress results in Gas2 cleavage by caspase-3-like activity and the cleavage product amplifies this activity, possibly participating in the initiation of PCD. PMID:27538481

  20. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release

    Directory of Open Access Journals (Sweden)

    Zhang YueMei

    2005-02-01

    absence of 17β-estradiol or Δ8, 17β-estradiol (10 nM-10 μM resulted in the prevention of cell death and was associated with a significant dose-dependent decrease in caspase-3 protein levels, with Δ8, 17β-E2 being more potent than 17β-E2. Protein levels of Fas receptor remained unchanged in the presence of glutamate. In contrast, treatment with glutamate induced, in a time-dependent manner, the release of cytochrome c into the cytosol. Cytosolic cytochrome c increased as early as 1.5 h after glutamate treatment and these levels were 5 fold higher after 6 h, compared to levels in the untreated cells. Concomitant with these changes, the levels of cytochrome c in mitochondria decreased significantly. Both 17β-E2 and Δ8, 17β-E2 reduced the release of cytochrome c from mitochondria into the cytosol and this decrease in cytosolic cytochrome c was associated with inhibition of glutamate-induced cell death. Conclusion In the primary cortical cells, glutamate-induced apoptosis is accompanied by up-regulation of caspase-3 and its activity is blocked by caspase protease inhibitors. These effects of glutamate on caspase-3 appear to be independent of changes in Fas receptor, but are associated with the rapid release of mitochondrial cytochrome c, which precedes changes in caspase-3 protein levels leading to apoptotic cell death. This process was differentially inhibited by estrogens with the novel equine estrogen Δ8, 17β-E2 being more potent than 17β-E2. To our knowledge, this is the first study to demonstrate that equine estrogens can prevent glutamate-induced translocation of cytochrome c from mitochondria to cytosol in rat primary cortical cells.

  1. A facile method to prepare large quantities of active caspase-3 overexpressed by auto-induction in the C41(DE3) strain.

    Science.gov (United States)

    Hwang, Dohyeon; Kim, Sang Ah; Yang, Eun Gyeong; Song, Hyun Kyu; Chung, Hak Suk

    2016-10-01

    Since human Caspase-3, a member of the cysteine protease family, plays important roles not only in the apoptosis pathway as an executioner protein, but also in neurological disorders as a critical factor, biomedical researchers have been interested in the development of modulators of caspase-3 activity. Such studies require large quantities of purified active caspase-3. So far, purification of soluble caspase-3 from full-length human caspase-3 in Escherichia coli (E. coli) yields only several mg from a liter of culture media. Therefore, a number of alternative strategies to purify active caspase-3 have been described in the literature, including refolding and protein engineering. In this study, we systematically study the effects of host E. coli strains and growth conditions on purifications of active caspase-3 from full-length human caspase-3. Using a combination of conditions that include use of the C41(DE3) strain, low-temperature expression, and auto-induction that induces caspase-3 expression depending on metabolic state of the individual host cell, we are able to obtain 14-17 mg caspase-3 per liter of culture, an amount that is about 7 times larger than published results. This optimized expression and purification method for caspase-3 can be easily scaled up to facilitate the demand for active enzyme. PMID:27320415

  2. Caspase-3 activation and increased procollagen type I in irradiated hearts

    Directory of Open Access Journals (Sweden)

    Samara C. Ferreira-Machado

    2013-03-01

    Full Text Available The caspase-3-cleaved presence was evaluated in this study in the heart of irradiated rats, during the decline of ventricular function. Female Wistar rats were irradiated with a single dose of radiation (15 Gy delivered directly to the heart and the molecular, histological and physiological evaluations were performed at thirteen months post-irradiation. The expressions of procollagen type I, TGF-ß1 and caspase-3-cleaved were analyzed using Western blotting. Cardiac structural and functional alterations were investigated by echocardiography and electron microscopy. In the irradiated group, the levels of procollagen type I, TGF-ß1 and caspase-3-cleaved are increased. Significant histological changes (degeneration of heart tissue and collagen deposition and functional (reduced ejection fraction were observed. Data suggest that the cardiac function decline after exposure to ionizing radiation is related, in part, to increased collagen and increased caspase-3-cleaved.

  3. Complementary optical and nuclear imaging of caspase-3 activity using combined activatable and radio-labeled multimodality molecular probe

    Science.gov (United States)

    Lee, Hyeran; Akers, Walter J.; Cheney, Philip P.; Edwards, W. Barry; Liang, Kexian; Culver, Joseph P.; Achilefu, Samuel

    2009-07-01

    Based on the capability of modulating fluorescence intensity by specific molecular events, we report a new multimodal optical-nuclear molecular probe with complementary reporting strategies. The molecular probe (LS498) consists of tetraazacyclododecanetetraacetic acid (DOTA) for chelating a radionuclide, a near-infrared fluorescent dye, and an efficient quencher dye. The two dyes are separated by a cleavable peptide substrate for caspase-3, a diagnostic enzyme that is upregulated in dying cells. LS498 is radiolabeled with 64Cu, a radionuclide used in positron emission tomography. In the native form, LS498 fluorescence is quenched until caspase-3 cleavage of the peptide substrate. Enzyme kinetics assay shows that LS498 is readily cleaved by caspase-3, with excellent enzyme kinetic parameters kcat and KM of 0.55+/-0.01 s-1 and 1.12+/-0.06 μM, respectively. In mice, the initial fluorescence of LS498 is ten-fold less than control. Using radiolabeled 64Cu-LS498 in a controlled and localized in-vivo model of caspase-3 activation, a time-dependent five-fold NIR fluorescence enhancement is observed, but radioactivity remains identical in caspase-3 positive and negative controls. These results demonstrate the feasibility of using radionuclide imaging for localizing and quantifying the distribution of molecular probes and optical imaging for reporting the functional status of diagnostic enzymes.

  4. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore

    Directory of Open Access Journals (Sweden)

    Zhang Yiying

    2012-08-01

    Full Text Available Abstract Background The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening. Methods We investigated the effects of magnesium sulfate (Mg2+, propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP (H4 APP cells and in six day-old wild-type mice, employing Western blot analysis and flowcytometry. Results Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells. Conclusion These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity.

  5. Inhibition of Corydalis decumbens Alkaloids on Hydrogen Peroxideinduced Apoptosis of PC12 Cells through Down-regulating Caspase-3 Expression

    Institute of Scientific and Technical Information of China (English)

    YAN Ren-jie; YANG Yi-fang; LUO Yong-ming; WU Chun-zhen

    2011-01-01

    Objective To extract alkaloids from Corydalis decumbens (AsCD) by supercritical CO2 fluid extraction (SFE) and to evaluate protective effects of AsCD against hydrogen peroxide (H2O2)-induced apoptosis in rat PC12 cells.Methods AsCD were extracted by SFE and oxidative damage PC12 cells model was induced by H2O2.The survival rate of the cells was determined by MTT assay; Lactate dehydrogenase release was determined by ultraviolet spectrophotometry; Flow cytometry was used to detect apoptosis; Caspase-3 mRNA and protein were determined by real-time PCR and Western blotting assay,respectively.Results AsCD remarkably reduced the cytotoxicity,prevented membrane damage,and inhibited cell apoptosis.AsCD inhibited Caspase-3 mRNA and protein expression induced by H2O2 in PC12 cells.Conclusion AsCD possess protective effects against H2O2-induced apoptosis in PC12 cells,and the mechanism of AsCD responsible to the inhibition of apoptosis is possibly attributed to thedown-regulating Caspase-3 expression.AsCD might be useful in the treatment of oxidative stress-related neurodegenerative diseases.

  6. Study on the enzymatic activity of Caspase-3 in response to alginic acid decomposing bacteria in Laminaria japonica Aresch.(Phaeophyta)

    Institute of Scientific and Technical Information of China (English)

    Wang Gaoge; Lin Wei; Yan Xiaojun; Duan Delin

    2005-01-01

    Caspase-3 is the major factor in apoptosis triggered by various stimuli, and plays a critical role during the apoptosis process. By using CaspGLOWTM fluorescein active caspase-3 staining method, caspase-3 enzymatic activities were detected in response to alginic acid bacteria in Laminaria japonica sporophytic tissues. Results showed that caspase-3 enzymatic activities were observed at 5 min after the infection. Caspase-3 enzymatic activity increased with the infection time, and had a tendency of moving from the infection site to outside. By applying caspase-specific peptide inhibitor Z-VAD-FMK, caspase-3 activation could be effectively abolished in the infected tissues. Our results indicate that programmed cell death (PCD) may be involved in the infected Laminaria japonica sporophytic tissues, and provide the evidence that defense mechanisms in algae may have similar caspase cascade events in animals.

  7. Homocysteine thiolactone induces apoptotic DNA damage mediated by increased intracellular hydrogen peroxide and caspase 3 activation in HL-60 cells.

    Science.gov (United States)

    Huang, R F; Huang, S M; Lin, B S; Wei, J S; Liu, T Z

    2001-05-11

    The cytotoxicity of homocysteine derivatives on chromosomal damage in somatic cells is not well established. The present study used reactive homocysteine derivative of homocysteine thiolactone (Hcy) to investigate its causal effect on apoptotic DNA injury in human promyeloid HL-60 cells. Our results demonstrated that Hcy induced cell death and features of apoptosis including increased phosphotidylserine exposure on the membrane surface, increased apoptotic cells with hypoploid DNA contents, and internucleosomal DNA fragmentation, all of which occurred in a time- and concentration-dependent manner. Hcy treatment also significantly increased intracellular reactive oxygen species H2O2, which coincided with the elimination of caspase 3 proenzyme levels and increased caspase 3 activity at the time of the appearance of apoptotic DNA fragmentation. Preincubation of Hcy-treated HL-60 cells with catalase completely scavenged intracellular H2O2, thus inhibiting caspase 3 activity and protecting cells from apoptotic DNA damage. In contrast, superoxide dismutase failed to inhibit Hcy-induced DNA damage. Taken together, these results demonstrate that Hcy exerted its genotoxic effects on HL-60 cells through an apoptotic pathway, which is mediated by the activation of caspase 3 activity induced by an increase in intracellular hydrogen peroxide. PMID:11432446

  8. Isolation and characterization of a Solanum tuberosum subtilisin-like protein with caspase-3 activity (StSBTc-3).

    Science.gov (United States)

    Fernández, María Belén; Daleo, Gustavo Raúl; Guevara, María Gabriela

    2015-01-01

    Plant proteases with caspase-like enzymatic activity have been widely studied during the last decade. Previously, we have reported the presence and induction of caspase-3 like activity in the apoplast of potato leaves during Solanum tuberosum- Phytophthora infestans interaction. In this work we have purified and identified a potato extracellular protease with caspase-3 like enzymatic activity from potato leaves infected with P. infestans. Results obtained from the size exclusion chromatography show that the isolated protease is a monomeric enzyme with an estimated molecular weight of 70 kDa approximately. Purified protease was analyzed by MALDI-TOF MS, showing a 100% of sequence identity with the deduced amino acid sequence of a putative subtilisin-like protease from S. tuberosum (Solgenomics protein ID: PGSC0003DMP400018521). For this reason the isolated protease was named as StSBTc-3. This report constitutes the first evidence of isolation and identification of a plant subtilisin-like protease with caspase-3 like enzymatic activity. In order to elucidate the possible function of StSBTc-3 during plant pathogen interaction, we demonstrate that like animal caspase-3, StSBTc-3 is able to produce in vitro cytoplasm shrinkage in plant cells and to induce plant cell death. This result suggest that, StSBTc-3 could exert a caspase executer function during potato- P. infestans interaction, resulting in the restriction of the pathogen spread during plant-pathogen interaction. PMID:25486023

  9. Regulation of Caspase-3 and Bcl-2 Expression in Dalton's Lymphoma Ascites Cells by Abrin

    Directory of Open Access Journals (Sweden)

    V. Ramnath

    2009-01-01

    Full Text Available The role of abrin, a toxic lectin isolated from seeds of Abrus precatorius Linn in inducing apoptosis in murine Dalton's Lymphoma Ascites (DLA cells was evaluated. Abrin when incubated at the concentration of 10 ng per million DLA cells could bring about cell death as typical morphological changes with apoptosis. However, necrotic cell death dominated when a higher dose of abrin was used. DNA samples, isolated from DLA cells treated with abrin showed fragmentation. Abrin brought about induction of apoptosis by stimulating the expression of pro-apoptotic Caspase-3, at the same time blocking the expression of Bcl-2, which is an anti apoptotic gene. However, the expression of tumor suppressor gene p53 has not been observed in control and abrin-treated DLA cells. Results suggested that abrin effectively induced apoptotic changes in the tumor cells that led to cellular death.

  10. Dioscin-induced apoptosis of human LNCaP prostate carcinoma cells through activation of caspase-3 and modulation of Bcl-2 protein family.

    Science.gov (United States)

    Chen, Jing; Li, Hui-min; Zhang, Xue-nong; Xiong, Chao-mei; Ruan, Jin-lan

    2014-02-01

    Dioscin is a natural steroid saponin derived from several plants, showing potent anti-cancer effect against a variety of tumor cell lines. In the present study, we investigated the anti-cancer activity of dioscin against human LNCaP cells, and evaluated the possible mechanism involved in its antineoplastic action. It was found that dioscin (1, 2 and 4 μmol/L) could significantly inhibit the viability of LNCaP cells in a time- and concentration-dependent manner. Flow cytometry revealed that the apoptosis rate was increased after treatment of LNCaP cells with dioscin for 24 h, indicating that apoptosis was an important mechanism by which dioscin inhibited cancer. Western blotting was employed to detect the expression of caspase-3, Bcl-2 and Bax in LNCaP cells. The expression of cleaved caspase-3 was significantly increased, and meanwhile procaspase-3 was markedly decreased. The expression of anti-apoptotic protein Bcl-2 was down-regulated, whereas the pro-apoptotic protein Bax was up-regulated. Moreover, the Bcl-2/Bax ratio was drastically decreased. These results suggested that dioscin possessed potential anti-tumor activity in human LNCaP cells through the apoptosis pathway, which might be associated with caspase-3 and Bcl-2 protein family. PMID:24496691

  11. Caspase-3 dependent nitrergic neuronal apoptosis following cavernous nerve injury is mediated via RhoA and ROCK activation in major pelvic ganglion.

    Science.gov (United States)

    Hannan, Johanna L; Matsui, Hotaka; Sopko, Nikolai A; Liu, Xiaopu; Weyne, Emmanuel; Albersen, Maarten; Watson, Joseph W; Hoke, Ahmet; Burnett, Arthur L; Bivalacqua, Trinity J

    2016-01-01

    Axonal injury due to prostatectomy leads to Wallerian degeneration of the cavernous nerve (CN) and erectile dysfunction (ED). Return of potency is dependent on axonal regeneration and reinnervation of the penis. Following CN injury (CNI), RhoA and Rho-associated protein kinase (ROCK) increase in penile endothelial and smooth muscle cells. Previous studies indicate that nerve regeneration is hampered by activation of RhoA/ROCK pathway. We evaluated the role of RhoA/ROCK pathway in CN regulation following CNI using a validated rat model. CNI upregulated gene and protein expression of RhoA/ROCK and caspase-3 mediated apoptosis in the major pelvic ganglion (MPG). ROCK inhibitor (ROCK-I) prevented upregulation of RhoA/ROCK pathway as well as activation of caspase-3 in the MPG. Following CNI, there was decrease in the dimer to monomer ratio of neuronal nitric oxide synthase (nNOS) protein and lowered NOS activity in the MPG, which were prevented by ROCK-I. CNI lowered intracavernous pressure and impaired non-adrenergic non-cholinergic-mediated relaxation in the penis, consistent with ED. ROCK-I maintained the intracavernous pressure and non-adrenergic non-cholinergic-mediated relaxation in the penis following CNI. These results suggest that activation of RhoA/ROCK pathway mediates caspase-3 dependent apoptosis of nitrergic neurons in the MPG following CNI and that ROCK-I can prevent post-prostatectomy ED. PMID:27388816

  12. Safrole oxide induces apoptosis by activating caspase-3, -8, and -9 in A549 human lung cancer cells.

    Science.gov (United States)

    Du, Aiying; Zhao, Baoxiang; Yin, Deling; Zhang, Shangli; Miao, Junying

    2006-01-01

    Previously we found that 3,4-(methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) induced a typical apoptosis in A549 human lung cancer cells. In this study, we further investigated which caspases were activated by safrole oxide during the apoptosis. The data showed that the activity of caspase-3, -8, and -9 was significantly enhanced by the compound, which suggested that safrole oxide might be used as a caspase promoter to initiate lung cancer cell apoptosis.

  13. Colorimetric Detection of Caspase 3 Activity and Reactive Oxygen Derivatives: Potential Early Indicators of Thermal Stress in Corals

    Directory of Open Access Journals (Sweden)

    Mickael Ros

    2016-01-01

    Full Text Available There is an urgent need to develop and implement rapid assessments of coral health to allow effective adaptive management in response to coastal development and global change. There is now increasing evidence that activation of caspase-dependent apoptosis plays a key role during coral bleaching and subsequent mortality. In this study, a “clinical” approach was used to assess coral health by measuring the activity of caspase 3 using a commercial kit. This method was first applied while inducing thermal bleaching in two coral species, Acropora millepora and Pocillopora damicornis. The latter species was then chosen to undergo further studies combining the detection of oxidative stress-related compounds (catalase activity and glutathione concentrations as well as caspase activity during both stress and recovery phases. Zooxanthellae photosystem II (PSII efficiency and cell density were measured in parallel to assess symbiont health. Our results demonstrate that the increased caspase 3 activity in the coral host could be detected before observing any significant decrease in the photochemical efficiency of PSII in the algal symbionts and/or their expulsion from the host. This study highlights the potential of host caspase 3 and reactive oxygen species scavenging activities as early indicators of stress in individual coral colonies.

  14. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7.

    Science.gov (United States)

    Ruocco, Nadia; Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G; Somma, Domenico; Leonardi, Antonio; Mellone, Stefano; Zuppa, Antonio; Costantini, Maria

    2016-07-01

    Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments. PMID:27130972

  15. Differential regulation of spontaneous and immune complex-induced neutrophil apoptosis by proinflammatory cytokines. Role of oxidants, Bax and caspase-3.

    Science.gov (United States)

    Ottonello, Luciano; Frumento, Guido; Arduino, Nicoletta; Bertolotto, Maria; Dapino, Patrizia; Mancini, Marina; Dallegri, Franco

    2002-07-01

    Neutrophil apoptosis represents a crucial step in the mechanisms governing the resolution of neutrophilic inflammation. Several soluble mediators of inflammation modulate neutrophil survival, retarding their apoptosis, whereas neutrophil activation by immune complexes (IC) results in the acceleration of apoptosis. To investigate neutrophil fate at the site of inflammation, we studied the effects of interleukin (IL)-2, IL-6, IL-8, IL-15, GM-CSF, and fMLP on spontaneous and IC-induced neutrophil apoptosis and the mechanisms regulating the survival of these cells. Spontaneous apoptosis was inhibited by GM-CSF, IL-6, and IL-15, but only GM-CSF overturned IC-induced apoptosis. No role of oxidants on the modulation of IC-dependent apoptosis was found. Indeed, fMLP or GM-CSF augmented the IC-dependent oxidative response, whereas the other compounds were ineffective. CGD neutrophils showed low levels of spontaneous apoptosis, but when exposed to IC, underwent a sharp increment of the apoptotic rate in a GM-CSF-inhibitable manner. Conversely, the expression of the proapoptotic protein Bax in 18-h aged neutrophils was down-regulated by GM-CSF, IL-6, and IL-15. Furthermore, IC induced a nearly threefold Bax up-regulation, which was completely reversed only by GM-CSF. Accordingly, the spontaneous activity of caspase-3 was inhibited by GM-CSF, IL-6, and IL-15. Furthermore, IC induced a sharp increment of enzymatic activity, and only GM-CSF inhibited the IC-dependent acceleration. Our results show that apoptosis of resting and IC-activated neutrophils is regulated differently, GM-CSF being the most potent neutrophil antiapoptotic factor. The results also unveil the existence of an oxidant-independent, Bax- and caspase-3-dependent, intracellular pathway regulating neutrophil apoptosis.

  16. Kaposi's Sarcoma Herpesvirus microRNAs Target Caspase 3 and Regulate Apoptosis

    OpenAIRE

    Guillaume Suffert; Georg Malterer; Jean Hausser; Johanna Viiliäinen; Aurélie Fender; Maud Contrant; Tomi Ivacevic; Vladimir Benes; Frédéric Gros; Olivier Voinnet; Mihaela Zavolan; Ojala, Päivi M.; Haas, Juergen G.; Sébastien Pfeffer

    2011-01-01

    Kaposi's sarcoma herpesvirus (KSHV) encodes a cluster of twelve micro (mi)RNAs, which are abundantly expressed during both latent and lytic infection. Previous studies reported that KSHV is able to inhibit apoptosis during latent infection; we thus tested the involvement of viral miRNAs in this process. We found that both HEK293 epithelial cells and DG75 cells stably expressing KSHV miRNAs were protected from apoptosis. Potential cellular targets that were significantly down-regulated upon KS...

  17. Elevated Levels of Uterine Anti-Apoptotic Signaling May Activate NFKB and Potentially Confer Resistance to Caspase 3-Mediated Apoptotic Cell Death During Pregnancy in Mice1

    OpenAIRE

    Jeyasuria, Pancharatnam; Subedi, Kalpana; Suresh, Arvind; Condon, Jennifer C.

    2011-01-01

    Preserving the uterus in a state of relative quiescence is vital to the maintenance of a successful pregnancy. Elevated cytoplasmic levels of uterine caspase 3 during pregnancy have been proposed as a potential regulator of uterine quiescence through direct targeting and disabling of the uterine contractile architecture. However, despite highly elevated levels of uterine caspase 3 during pregnancy, there is minimal evidence of apoptosis. This current study defines the mechanism whereby the pr...

  18. Thimerosal induces DNA breaks, caspase-3 activation, membrane damage, and cell death in cultured human neurons and fibroblasts.

    Science.gov (United States)

    Baskin, David S; Ngo, Hop; Didenko, Vladimir V

    2003-08-01

    Thimerosal is an organic mercurial compound used as a preservative in biomedical preparations. Little is known about the reactions of human neuronal and skin cells to its micro- and nanomolar concentrations, which can occur after using thimerosal-containing products. A useful combination of fluorescent techniques for the assessment of thimerosal toxicity is introduced. Short-term thimerosal toxicity was investigated in cultured human cerebral cortical neurons and in normal human fibroblasts. Cells were incubated with 125-nM to 250-microM concentrations of thimerosal for 45 min to 24 h. A 4', 6-diamidino-2-phenylindole dihydrochloride (DAPI) dye exclusion test was used to identify nonviable cells and terminal transferase-based nick-end labeling (TUNEL) to label DNA damage. Detection of active caspase-3 was performed in live cell cultures using a cell-permeable fluorescent caspase inhibitor. The morphology of fluorescently labeled nuclei was analyzed. After 6 h of incubation, the thimerosal toxicity was observed at 2 microM based on the manual detection of the fluorescent attached cells and at a 1-microM level with the more sensitive GENios Plus Multi-Detection Microplate Reader with Enhanced Fluorescence. The lower limit did not change after 24 h of incubation. Cortical neurons demonstrated higher sensitivity to thimerosal compared to fibroblasts. The first sign of toxicity was an increase in membrane permeability to DAPI after 2 h of incubation with 250 microM thimerosal. A 6-h incubation resulted in failure to exclude DAPI, generation of DNA breaks, caspase-3 activation, and development of morphological signs of apoptosis. We demonstrate that thimerosal in micromolar concentrations rapidly induce membrane and DNA damage and initiate caspase-3-dependent apoptosis in human neurons and fibroblasts. We conclude that a proposed combination of fluorescent techniques can be useful in analyzing the toxicity of thimerosal.

  19. Active caspase-3 detection to evaluate apoptosis induced by Verbena officinalis essential oil and citral in chronic lymphocytic leukaemia cells

    Directory of Open Access Journals (Sweden)

    Laura De Martino

    2011-10-01

    Full Text Available Verbena officinalis L., Verbenaceae, commonly known as vervain, is a plant widely used in medicine. Despite of its widespread use in different traditional practices, the mechanisms of pharmacological actions of the plant and its volatile oil are still unclear. We evaluated the pro-apoptotic activity of V. officinalis essential oil and of its main component, citral, on lymphocytes collected from ten patients with chronic lymphocytic leukaemia (CLL, a disease in which a faulty apoptotic mechanism is still retained one of the primary pathogenic events, by adding to treated mononuclear cells, annexin-V, propidium iodide, and CD19. Apoptosis was also evaluated using anti-active-caspase-3 monoclonal antibody after permeabilization of the cells. Both V. officinalis essential oil and citral were found able to induce apoptosis in CLL cells and to activate caspase-3, which is considered the way by means they active apoptosis in B neoplastic cells. This data further support evidences that indicate natural compounds as possible lead structure to develop new therapeutic agents for CLL.

  20. Emission spectral analysis of caspase-3 activation during artesunate (ART)-induced apoptosis of human lung adenocarcinoma cell

    Science.gov (United States)

    Pan, Wen-liang; Chen, Tong-sheng; Qu, Junle

    2009-02-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. Artemisinin-derivative combination chemotherapy is recommended by WHO since it acts rapidly and is well tolerated and particularly effective. In present investigation, we used CKK-8 assay to assess the inhibitory effects of ART on human lung adenocarcinoma (ASTC-a-1) cells. Apoptotic activity of ART in ASTC-a-1 cells was detected by means of nuclear staining with Hoechst33258. In order to monitor the activity of caspase-3 during ART-induced ASTC-a-1 cells apoptosis, the dynamical emission spectra of SCAT3, a FRET plasmid based on GFPs, were performed inside living cell expressed stably with SCAT3 after ART treatment. The results showed that (1) ART could inhibit ASTC-a-1 cells proliferation in a dose-dependent manner; (2) chromatin condensation was observed after ART treatment for 48 h; (3) the SCAT3 inside living cells were cleaved after ART treatment for 48 h, implying that caspase-3 was involved in the ART-induced apoptosis.

  1. Paroxetine-induced apoptosis in human osteosarcoma cells: Activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation

    International Nuclear Information System (INIS)

    Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are generally used for treatment of various mood and anxiety disorders. There has been much research showing the anti-tumor and cytotoxic activities of some antidepressants; but the detailed mechanisms were unclear. In cultured human osteosarcoma cells (MG63), paroxetine reduced cell viability in a concentration- and time-dependent manner. Paroxetine caused apoptosis as assessed by propidium iodide-stained cells and increased caspase-3 activation. Although immunoblotting data revealed that paroxetine could activate the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Paroxetine also induced [Ca2+]i increases which involved the mobilization of intracellular Ca2+ stored in the endoplasmic reticulum and Ca2+ influx from extracellular medium. However, pretreatment with BAPTA/AM, a Ca2+ chelator, to prevent paroxetine-induced [Ca2+]i increases did not protect cells from death. The results suggest that in MG63 cells, paroxetine caused Ca2+-independent apoptosis via inducing p38 MAPK-associated caspase-3 activation

  2. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR

    Energy Technology Data Exchange (ETDEWEB)

    Russe, Otto Quintus, E-mail: quintus@russe.eu; Möser, Christine V., E-mail: chmoeser@hotmail.com; Kynast, Katharina L., E-mail: katharina.kynast@googlemail.com; King, Tanya S., E-mail: tanya.sarah.king@googlemail.com; Olbrich, Katrin, E-mail: Katrin.olbrich@gmx.net; Grösch, Sabine, E-mail: groesch@em.uni-frankfurt.de; Geisslinger, Gerd, E-mail: geisslinger@em.uni-frankfurt.de; Niederberger, Ellen, E-mail: e.niederberger@em.uni-frankfurt.de

    2014-05-09

    Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.

  3. The caspase 3 sensor Phiphilux G2D2 is activated non-specifically in S1 renal proximal tubules

    Science.gov (United States)

    Hato, Takashi; Sandoval, Ruben; Dagher, Pierre C

    2016-01-01

    Tubular cell apoptosis is a major phenotype of cell death in various forms of acute kidney injury. Quantifying apoptosis in fixed tissues is problematic because apoptosis evolves over time and dead cells are rapidly cleared by the phagocytic system. Phiphilux is a fluorescent probe that is activated specifically by caspase 3 and does not inhibit the subsequent activity of this effector caspase. It has been used successfully to quantify apoptosis in cell culture. Here we examined the feasibility of using Phiphilux to measure renal tubular apoptosis progression over time in live animals using intravital 2-photon microscopy. Our results show that Phiphilux can detect apoptosis in S2 tubules but is activated non-specifically in S1 tubules.

  4. Proteolytic activation of latent TGF-beta precedes caspase-3 activation and enhances apoptotic death of lung epithelial cells.

    Science.gov (United States)

    Solovyan, Victor T; Keski-Oja, Jorma

    2006-05-01

    Transforming growth factors beta (TGF-betas) are multifunctional cytokines, which are secreted in latent forms in large latent TGF-beta complexes (LL-TGF-beta) with subsequent deposition to the extracellular matrix (ECM). While a variety of mechanisms capable of activating latent TGF-beta in vitro have been described, the physiological conditions, which promote the activation of TGF-beta in vivo are poorly understood. Mink lung epithelial cells (Mv1Lu) are a widely used model for evaluation of the effects of exogenous TGF-beta both in transcriptional and growth inhibitor assays. We find here that apoptosis of Mv1Lu cells, induced either by staurosporine or serum deprivation, is accompanied by proteolytic processing of LL-TGF-beta and the activation of endogenous TGF-beta. Activation of TGF-beta preceded caspase-3 activation and was almost completely suppressed by the serine protease inhibitor, AEBSF. Both exogenous and endogenously activated TGF-betas were able to enhance the apoptotic response of Mv1Lu cells leading to potentiation of cell death. Potentiation of cell death by activated TGF-beta was associated with downregulation of Akt and p38 MAPK, which were both activated at the initial stages of Mv1Lu apoptosis and were suppressed by exogenous TGF-beta. Pharmacological interruption of either phosphoinositide-3-kinase (PI-3K)/Akt or p38 MAPK signaling by the specific inhibitors mimicked the effect of TGF-beta leading to potentiation of cell death. Current results suggest that proteolytic activation of endogenous TGF-beta is a component of the apoptotic response, capable of modulating the death of Mv1Lu cells by inhibition of both PI-3K/Akt and p38 MAPK-dependent survival pathways. PMID:16447253

  5. Expression of second mitochondria-derived activator of caspases, X-linked inhibitor of apoptosis protein, and caspase-3 in pituitary adenomas

    Institute of Scientific and Technical Information of China (English)

    Dong Li; Gang Huo; Liang Wang; Qinglin Feng; Maoyuan Tang

    2011-01-01

    Studies concerning correlations between pituitary adenomas and cell apoptosis have mainly focused on upstream apoptosis signaling, but seldom on downstream mediators. In the present study, second mitochondria-derived activator of caspases (Smac), X-linked inhibitor of apoptosis protein (XIAP), and caspase-3 protein were qualitatively analyzed using imrnunohistochemistry, and quantified by western blot. Smac, XIAP, and caspase-3 mRNA expressions were detected by reverse transcription-PCR. Results showed that XIAP protein and mRNA expressions were greater in the invasive pituitary adenoma group compared with the noninvasive pituitary adenoma group. However, Smac and caspase-3 protein and mRNA expressions were lower in the invasive pituitary adenoma group compared with the noninvasive pituitary adenoma group. In the invasive pituitary adenomas, Smac expression was positively correlated with caspase-3 protein and mRNA expression (Protein: r=0.55, P<0.01;mRNA: r=0.50, P<0.01). Smac and caspase-3 expressions were negatively correlated with XIAP protein and mRNA expression (Protein: r=-0.56, -0.64, P<0.01;mRNA:r=-0.69,-0.67,P<0.01). However, no significant differences in correlation among Srnac, XIAP, and caspase-3 were detectable in noninvasive pituitary adenomas. These data indicated that high expression of XIAP and low expression of Smac and caspase-3 suppressed cell apoptosis and led to enhanced invasiveness of pituitary adenomas. Thus, Smac, XIAP, and caspase-3 may be useful markers in determining the invasive behavior of pituitary adenomas.

  6. Highly sensitive detection of caspase-3 activities via a nonconjugated gold nanoparticle-quantum dot pair mediated by an inner-filter effect.

    Science.gov (United States)

    Li, Jingwen; Li, Xinming; Shi, Xiujuan; He, Xuewen; Wei, Wei; Ma, Nan; Chen, Hong

    2013-10-01

    We describe here a simple fluorometric assay for the highly sensitive detection of caspase-3 activities on the basis of the inner-filter effect of gold nanoparticles (AuNPs) on CdTe quantum dots (QDs). The method takes advantage of the high molar absorptivity of the plasmon band of gold nanoparticles as well as the large absorption band shift from 520 to 680 nm upon nanoparticle aggregation. When labeled with a peptide possessing the caspase-3 cleavage sequence (DEVD), the monodispersed Au-Ps (peptide-modified AuNPs) exhibited a tendency to aggregate when exposed to caspase-3, which induced the absorption band transition from 520 to 680 nm and turned on the fluorescence of the CdTe QDs for caspase-3 sensing. Under optimum conditions, a high sensitivity towards caspase-3 was achieved with a detection limit as low as 18 pM, which was much lower than the corresponding assays based on absorbance or other approaches. Overall, we demonstrated a facile and sensitive approach for caspase-3 detection, and we expected that this method could be potentially generalized to design more fluorescent assays for sensing other bioactive entities. PMID:24015837

  7. CYP24A1 exacerbated activity during diabetes contributes to kidney tubular apoptosis via caspase-3 increased expression and activation.

    Directory of Open Access Journals (Sweden)

    Alexandre Tourigny

    Full Text Available Decreases in circulating 25,hydroxyl-vitamin D3 (25 OH D3 and 1,25,dihydroxyl-vitamin D3 (1,25 (OH2 D3 have been extensively documented in patients with type 2 diabetes. Nevertheless, the molecular reasons behind this drop, and whether it is a cause or an effect of disease progression is still poorly understood. With the skin and the liver, the kidney is one of the most important sites for vitamin D metabolism. Previous studies have also shown that CYP24A1 (an enzyme implicated in vitamin D metabolism, might play an important role in furthering the progression of kidney lesions during diabetic nephropathy. In this study we show a link between CYP24A1 increase and senescence followed by apoptosis induction in the renal proximal tubules of diabetic kidneys. We show that CYP24A1 expression was increased during diabetic nephropathy progression. This increase derived from protein kinase C activation and increased H(2O(2 cellular production. CYP24A1 increase had a major impact on cellular phenotype, by pushing cells into senescence, and later into apoptosis. Our data suggest that control of CYP24A1 increase during diabetes has a beneficial effect on senescence induction and caspase-3 increased expression. We concluded that diabetes induces an increase in CYP24A1 expression, destabilizing vitamin D metabolism in the renal proximal tubules, leading to cellular instability and apoptosis, and thereby accelerating tubular injury progression during diabetic nephropathy.

  8. Punicalagin attenuated cerebral ischemia-reperfusion insult via inhibition of proinflammatory cytokines, up-regulation of Bcl-2, down-regulation of Bax, and caspase-3.

    Science.gov (United States)

    Yaidikar, Lavanya; Thakur, Santhrani

    2015-04-01

    Punicalagin (PG) is a hydrolysable tannin compound found in Punica granatum L. The purpose of the present work is to explore the neuroprotective mechanism of PG against ischemia-reperfusion (I/R) injury in rat model of middle cerebral artery occlusion (MCAO). Rats were randomly divided into sham, MCAO, and PG-treated groups. PG (15 and 30 mg/kg), the vehicle was administered orally for 7 days prior to MCAO. Rats were anesthetised with ketamine (100 mg/kg/im), xylazine (10 mg/kg/im) and subjected to 2 h occlusion and 22 h reperfusion. The effects of PG on behavioral deficit and infarct volume, the levels of glutamate and calcium as well as the levels of inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were evaluated. Moreover, the expressions of caspase-3, Bcl-2, and Bax were detected by Western blotting. As compared with MCAO group, PG-treated rats showed dose-dependent reduction in infarct volume and substantial improvement in behavioral deficit. The levels of glutamate, calcium, TNF-α, IL-1β, and IL-6 were restored significantly. The Western blotting results revealed that the expression of Bcl-2 was up-regulated and that of caspase-3, Bax were down-regulated when exposed to PG. From our results, it can be concluded that PG showed an ameliorative effect against cerebral I/R injury in rats through its anti-inflammatory, antioxidant actions besides it inhibits excitotoxicity. It also suppresses apoptosis through regulating, Bcl-2, caspase-3, and Bax protein expressions, perhaps another mechanism by which PG employs its neuroprotective action. PMID:25555468

  9. Brazilein from Caesalpinia sappan L. Antioxidant Inhibits Adipocyte Differentiation and Induces Apoptosis through Caspase-3 Activity and Anthelmintic Activities against Hymenolepis nana and Anisakis simplex

    Directory of Open Access Journals (Sweden)

    Chia-Hua Liang

    2013-01-01

    Full Text Available Brazilein, a natural, biologically active compound from Caesalpinia sappan L., has been shown to exhibit anti-inflammatory and antioxidant properties and to inhibit the growth of several cancer cells. This study verifies the antioxidant and antitumor characteristics of brazilein in skin cancer cells and is the first time to elucidate the inhibition mechanism of adipocyte differentiation, cestocidal activities against Hymenolepis nana, and reduction of spontaneous movement in Anisakis simplex. Brazilein exhibits an antioxidant capacity as well as the ability to scavenge DPPH• and ABTS•+ free radicals and to inhibit lipid peroxidation. Brazilein inhibited intracellular lipid accumulation during adipocyte differentiation in 3T3-L1 cells and suppressed the induction of peroxisome proliferator-activated receptor γ (PPARγ, the master regulator of adipogenesis, suggesting that brazilein presents the antiobesity effects. The toxic effects of brazilein were evaluated in terms of cell viability, induction of apoptosis, and the activity of caspase-3 in BCC cells. The inhibition of the growth of skin cancer cells (A431, BCC, and SCC25 by brazilein is greater than that of human skin malignant melanoma (A375 cells, mouse leukemic monocyte macrophage (RAW 264.7 cells, and noncancerous cells (HaCaT and BNLCL2 cells. The anthelmintic activities of brazilein against Hymenolepis nana are better than those of Anisakis simplex.

  10. Effects of recombinant human erythropoietin on expression of Bid mRNA and caspase-3 activity in the brain of newborn rats subjected to cerebral hypoxia-ischemia%重组人促红细胞生成素对新生大鼠缺氧缺血时脑组织Bid mRNA表达及caspase-3活性的影响

    Institute of Scientific and Technical Information of China (English)

    崔德荣; 许涛; 江伟

    2008-01-01

    determination of Bid mRNA expression(by RT-PCR)and caspase-3 activity(by colorimetric method).Results The expression of Bid mRNA was up-regulated and caspase-3 activity was significantly increased in the brain at T1-5 in HIBD group(group Ⅱ)as compared with sham operation group.rh-EPO administration significantly reduced the increase in Bid mRNA expression and caspase-3 activity in the brain induced by hypoxia-ischemia.The expression of Bid mRNA was positively correlated with the caspase-3 activity.Conclusion rh-EPO has protective effects on the brain against hypoxia and ischemia by decreasing the expression of Bid mRNA and caspase-3 activity in the brain.

  11. Mercury-Induced Externalization of Phosphatidylserine and Caspase 3 Activation in Human Liver Carcinoma (HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2006-03-01

    Full Text Available Apoptosis arises from the active initiation and propagation of a series of highly orchestrated specific biochemical events leading to the demise of the cell. It is a normal physiological process, which occurs during embryonic development as well as in the maintenance of tissue homeostasis. Diverse groups of molecules are involved in the apoptosis pathway and it functions as a mechanism to eliminate unwanted or irreparably damaged cells. However, inappropriate induction of apoptosis by environmental agents has broad ranging pathologic implications and has been associated with several diseases including cancer. The toxicity of several heavy metals such as mercury has been attributed to their high affinity to sulfhydryl groups of proteins and enzymes, and their ability to disrupt cell cycle progression and/or apoptosis in various tissues. The aim of this study was to assess the potential for mercury to induce early and late-stage apoptosis in human liver carcinoma (HepG2 cells. The Annexin-V and Caspase 3 assays were performed by flow cytometric analysis to determine the extent of phosphatidylserine externalization and Caspase 3 activation in mercury-treated HepG2 cells. Cells were exposed to mercury for 10 and 48 hours respectively at doses of 0, 1, 2, and 3 μg/mL based on previous cytotoxicity results in our laboratory indicating an LD50 of 3.5 ± 0.6 μg/mL for mercury in HepG2 cells. The study data indicated a dose response relationship between mercury exposure and the degree of early and late-stage apoptosis in HepG2 cells. The percentages of cells undergoing early apoptosis were 0.03 ± 0.03%, 5.19 ± 0.04%, 6.36 ± 0.04%, and 8.84 ± 0.02% for 0, 1, 2, and 3 μg/mL of mercury respectively, indicating a gradual increase in apoptotic cells with increasing doses of mercury. The percentages of Caspase 3 positive cells undergoing late apoptosis were 3.58 ± 0.03%, 17.06 ± 0

  12. Anti-apoptotic Activity of Ginsenoside Rb1 in Hydrogen Peroxide-treated Chondrocytes: Stabilization of Mitochondria and the Inhibition of Caspase-3.

    Science.gov (United States)

    Na, Ji-Young; Kim, Sokho; Song, Kibbeum; Lim, Kyu-Hee; Shin, Gee-Wook; Kim, Jong-Hoon; Kim, Bumseok; Kwon, Young-Bae; Kwon, Jungkee

    2012-07-01

    Chondrocyte apoptosis has been recognized as an important factor in the pathogenesis of osteoarthritis (OA). Hydrogen peroxide (H2O2), which produces reactive oxygen species, reportedly induces apoptosis in chondrocytes. The ginsenoside Rb1 (GRb1) is the principal component in ginseng and has been shown to have a variety of biological activities, such as anti-arthritis, anti-inflammation, and anti-tumor activities. In this study, we evaluated the effects of G-Rb1 on the mitochondrial permeability transition (MPT) and caspase-3 activity of chondrocyte apoptosis induced by H2O2. Cultured rat articular chondrocytes were exposed to H2O2 with or without G-Rb1 and assessed for viability, MPT, Bcl-xL/Bax expression, caspase-3 activity, and apoptosis. The co-treatment with G-Rb1 showed an inhibition of MPT, caspase-3 activity, and cell death. Additionally, the levels of the apoptotic protein Bax were significantly lower and the levels of the anti-apoptotic protein Bcl-xL were higher compared with H2O2 treatment alone. The results of this study demonstrate that G-Rb1 protects chondrocytes against H2O2-induced apoptosis, at least in part via the inhibition of MPT and caspase-3 activity. These results demonstrate that G-Rb1 is a potentially useful drug for the treatment of OA patients. PMID:23717124

  13. TNF-alpha-induced mitochondrial alterations in human T cells requires FADD and caspase-8 activation but not RIP and caspase-3 activation.

    Science.gov (United States)

    Shakibaei, Mehdi; Sung, Bokyung; Sethi, Gautam; Aggarwal, Bharat B

    2010-09-15

    Although much is known about how TNF-alpha induces apoptosis in the presence of inhibitors of protein synthesis, little is known about how it induces apoptosis without these inhibitors. In this report we investigated temporal sequence of events induced by TNF-alpha in the absence of protein synthesis. Regardless of whether we measured the effects by plasma membrane phosphotidylserine accumulation, by DNA strand breaks, or activation of caspases, significant changes were observed only between 12-24 h of TNF-alpha treatment. One of the earliest changes observed after TNF-alpha treatment was mitochondrial swelling at 10 min; followed by cytochrome c and Smac release at 10-30 min, and then heterochromatin clumping occurred at 60 min. While genetic deletion of receptor-interaction protein (RIP) had no effect on TNF-alpha-induced mitochondrial damage, deletion of Fas-associated death domain (FADD) abolished the TNF-induced mitochondrial swelling. Since pan-caspase inhibitor z-VAD-fmk abolished the TNF-alpha-induced mitochondrial changes, z-DEVD-fmk, an inhibitor of caspase-3 had no effect, suggesting that TNF-alpha-induced mitochondrial changes or cytochrome c and Smac release requires caspase-8 but not caspase-3 activation. Overall, our results indicated that mitochondrial changes are early events in TNF-alpha-induced apoptosis and that these mitochondrial changes require recruitment of FADD and caspase-8 activation, but not caspase-3 activation or RIP recruitment. PMID:20136500

  14. Deficiency of caspase 3 in tumor xenograft impairs therapeutic effect of measles virus Edmoston strain.

    Science.gov (United States)

    Wang, Biao; Yan, Xu; Guo, Qingguo; Li, Yan; Zhang, Haiyan; Xie, Ji Sheng; Meng, Xin

    2015-06-30

    The oncolytic measles virus Edmonston (MV-Edm) strain shows considerable oncolytic activity against a variety of human tumors. In this study, we report MV-Edm is able to trigger apoptosis pathways in infected tumor cells and elucidate the roles of cellular apoptosis in the whole oncolytic process. We also show that activated caspase 3, a key executioner of apoptosis, plays key roles in the oncolytic virotherapy. Activated caspase 3 can accelerate viral replication in cervical cancer cells and enhance the killing effects of the virus. Deficiency of caspase 3 either in tumor cells or in tumor xenograft significantly desensitized tumor to oncolysis with MV-Edm. In the infected cells, caspase 3 regulates interferon α release, which can inhibit viral replication in neighboring tumor cells. We propose that caspase-3 activation enhances the oncolytic effects of MV-Edm, thus inhibiting tumor growth in mice. PMID:25909216

  15. Study on Caspase-3 activity on trichloroethylene-induced human keratinocyte apoptosis%三氯乙烯诱导人角质形成细胞凋亡中Caspase-3活力的研究

    Institute of Scientific and Technical Information of China (English)

    汪立杰; 叶良平; 沈彤; 朱启星

    2009-01-01

    目的 观察三氯乙烯(TCE)诱导离体培养的人角质形成细胞(KC)Caspase-3活力变化及细胞凋亡情况,探讨TCE诱导KC凋亡的可能信号通路.方法 以不同浓度(0.125、0.250、0.500、1.000、2.000 mmol/L)TCE对离体分离培养的KC分别染毒至4、8、12、24 h;Caspase-3抑制剂(Z-DEVD-FMK)预处理组,先用100 μmol/L Z-DEVD-FMK预处理细胞1 h,然后再用2.000 mmol/L TCE染毒12 h.用分光光度法检测细胞Caspase-3活力变化,借助Annexin-V/PI双染和流式细胞仪检测细胞凋亡情况.结果 与空白对照相比,TCE染毒4 h,各TCE剂量组Caspase-3活力无明显变化(P>0.05);染毒8 h,1.000 mmol/LTCE组Caspase-3活力和2.000 mmol/LTCE组Caspase-3活力,与对照组相比差异有显著性(P0.01).结论 在TCE诱导离体培养的KC凋亡中,Caspase-3的活化可能发挥了重要的作用.

  16. Parthenolide protects human lens epithelial cells from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and caspase-9

    Institute of Scientific and Technical Information of China (English)

    Hangping Yao; Xiajing Tang; Xueting Shao; Lei Feng; Nanping Wu; Ke Yao

    2007-01-01

    The apoptosis of lens epithelial cells has been proposed as the common basis of cataract formation, with oxidative stress as the major cause. This study was performed to investigate the protective effect of the herbal constituent parthenolide against oxidative stress-induced apoptosis of human lens epithelial (HLE) cells and the possible molecular mechanisms involved. HLE cells (SRA01-04) were incubated with 50 μM H2O2 in the absence or presence of different doses of parthenolide (10, 20 and 50μM). To study apoptosis, the cells were assessed by morphologic examination and Annexin V-propidium iodide double staining flow cytometry; to investigate the underlying molecular mechanisms, the expression of caspase-3 and caspase-9 were assayed by Western blot and quantitative RT-PCR, and the activities of caspase-3 and caspase-9 were measured by a Chemicon caspase colorimetric activity assay kit. Stimulated with H2O2 for 18h, a high fraction of HLE cells underwent apoptosis, while in the presence of parthenolide of different concentrations, dose-dependent blocking of HLE cell apoptosis was observed. The expression of caspase-3 and caspase-9 induced by H2O2 in HLE cells was significantly reduced by parthenolide both at the protein and mRNA levels, and the activation of caspase-3 and caspase-9 was also suppressed by parthenolide in a dose-dependent manner. In conclusion, parthenolide prevents HLE cells from oxidative stress-induced apoptosis through inhibition of the activation of caspase-3 and caspase-9, suggesting a potential protective effect against cataract formation.

  17. Activation of caspase-3 noninvolved in the bystander effect of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system.

    Science.gov (United States)

    Zhang, Zhihong; Lin, Juqiang; Chu, Jun; Ma, Yan; Zeng, Shaoqun; Luo, Qingming

    2008-01-01

    Use of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system is one of the promising approaches in the rapidly growing area of gene therapy. The "bystander effect," a phenomenon in which HSV-tk+ cells exposed to GCV are toxic to adjacent HSV-tk- cells, was reported to play an important role in suicide gene therapy. However, the mechanism by which HSV-tk/GCV induces the bystander effect is poorly understood. We monitored the activation of caspase-3 in living cells induced by the HSV-tk/GCV system using a genetically encoded fluorescence resonance energy transfer (FRET) probe CD3, , a caspase-3 recognition site fused with a cyan fluorescent protien (CFP) and a red fluorescent protein (DsRed) which we reported and named in a previous paper. Fluorescence protein (FP)-based multicolor cellular labeling, combined with the multichannel fluorescence imaging and FRET imaging techniques, provides a novel and improved approach to directly determine whether the activation of caspase-3 involved in the HSV-tk/GCV system induces cell apoptosis in tk gene-expressing cells and their neighboring cells. FRET ratio images of CD3, and fluorescence images of the fusion protein of thymidine kinase linked with green fluorescent protein (TK-GFP), indicated that HSV-tk/GCV system-induced apoptosis in human adenoid cystic carcinoma (ACC-M) cells was via a caspase-3 pathway, and the activation of caspase-3 was not involved in the bystander effect of HSV-tk/GCV system. PMID:18601533

  18. Activation of caspase-3 noninvolved in the bystander effect of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system.

    Science.gov (United States)

    Zhang, Zhihong; Lin, Juqiang; Chu, Jun; Ma, Yan; Zeng, Shaoqun; Luo, Qingming

    2008-01-01

    Use of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system is one of the promising approaches in the rapidly growing area of gene therapy. The "bystander effect," a phenomenon in which HSV-tk+ cells exposed to GCV are toxic to adjacent HSV-tk- cells, was reported to play an important role in suicide gene therapy. However, the mechanism by which HSV-tk/GCV induces the bystander effect is poorly understood. We monitored the activation of caspase-3 in living cells induced by the HSV-tk/GCV system using a genetically encoded fluorescence resonance energy transfer (FRET) probe CD3, , a caspase-3 recognition site fused with a cyan fluorescent protien (CFP) and a red fluorescent protein (DsRed) which we reported and named in a previous paper. Fluorescence protein (FP)-based multicolor cellular labeling, combined with the multichannel fluorescence imaging and FRET imaging techniques, provides a novel and improved approach to directly determine whether the activation of caspase-3 involved in the HSV-tk/GCV system induces cell apoptosis in tk gene-expressing cells and their neighboring cells. FRET ratio images of CD3, and fluorescence images of the fusion protein of thymidine kinase linked with green fluorescent protein (TK-GFP), indicated that HSV-tk/GCV system-induced apoptosis in human adenoid cystic carcinoma (ACC-M) cells was via a caspase-3 pathway, and the activation of caspase-3 was not involved in the bystander effect of HSV-tk/GCV system.

  19. IGF-I activates caspases 3/7, 8 and 9 but does not induce cell death in colorectal cancer cells

    International Nuclear Information System (INIS)

    Colorectal cancer is the third most common cancer in the western world. Chemotherapy is often ineffective to treat the advanced colorectal cancers due to the chemo-resistance. A major contributor to chemo-resistance is tumour-derived inhibition or avoidance of apoptosis. Insulin-like growth factor I (IGF-I) has been known to play a prominent role in colorectal cancer development and progression. The role of IGF-I in cancer cell apoptosis is not completely understood. Using three colorectal cancer cell lines and one muscle cell line, associations between IGF-I and activities of caspase 3/7, 8 and 9 have been examined; the role of insulin-like growth factor I receptor (IGF-IR) in the caspase activation has been investigated. The results show that exogenous IGF-I significantly increases activity of caspases 3/7, 8 and 9 in all cell lines used; blocking IGF-I receptor reduce IGF-I-induced caspase activation. Further studies demonstrate that IGF-I induced caspase activation does not result in cell death. This is the first report to show that while IGF-I activates caspases 3/7, 8 and 9 it does not cause colorectal cancer cell death. The study suggests that caspase activation is not synonymous with apoptosis and that activation of caspases may not necessarily induce cell death

  20. Anti-apoptotic mechanism of Bacoside rich extract against reactive nitrogen species induced activation of iNOS/Bax/caspase 3 mediated apoptosis in L132 cell line.

    Science.gov (United States)

    Anand, T; Pandareesh, M D; Bhat, Pratiksha V; Venkataramana, M

    2014-10-01

    Nitric oxide is a highly reactive free radical gas that reacts with a wide range of bio-molecules to produce reactive nitrogen species and exerts nitrative stress. Bacopa monniera is a traditional folk and ayurvedic medicine known to alleviate a variety of disorders. Aim of the present study is to evaluate the protective propensity of Bacopa monniera extract (BME) through its oxido-nitrosative and anti-apoptotic mechanism to attenuate sodium nitroprusside (SNP)-induced apoptosis in a human embryonic lung epithelial cell line (L132). Our results elucidate that pre-treatment of L132 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by SNP as evidenced by MTT and LDH leakage assays. BME pre-treatment inhibited NO generation by down-regulating inducible nitric oxide synthase expression. BME exhibited potent antioxidant activity by up-regulating the antioxidant enzymes. SNP-induced damage to cellular, nuclear and mitochondrial integrity was also restored by BME, which was confirmed by ROS estimation, comet assay and mitochondrial membrane potential assays respectively. BME pre-treatment efficiently attenuated the SNP-induced apoptotic biomarkers such as Bax, cytochrome-c and caspase-3, which orchestrate the proteolytic damage of the cell. By considering all these findings, we report that BME protects L132 cells against SNP-induced toxicity via its free radical scavenging and anti-apoptotic mechanism.

  1. Hexavalent chromium targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent caspase-3 activation in L-02 hepatocytes.

    Science.gov (United States)

    Xiao, Fang; Li, Yanhong; Dai, Lu; Deng, Yuanyuan; Zou, Yue; Li, Peng; Yang, Yuan; Zhong, Caigao

    2012-09-01

    Hexavalent chromium [Cr(VI)], which is used for various industrial applications, such as leather tanning and chroming, can cause a number of human diseases including inflammation and cancer. Cr(VI) exposure leads to severe damage to the liver, but the mechanisms involved in Cr(VI)-mediated toxicity in the liver are unclear. The present study provides evidence that Cr(VI) enhances reactive oxygen species (ROS) accumulation by inhibiting the mitochondrial respiratory chain complex (MRCC) I. Cr(VI) did not affect the expression levels of antioxidative proteins such as superoxide dismutase (SOD), catalase and thioredoxin (Trx), indicating that the antioxidative system was not involved in Cr(VI)-induced ROS accumulation. We found that ROS mediated caspase-3 activation partially depends on the downregulation of the heat shock protein (HSP) 70 and 90. In order to confirm our hypothesis that ROS plays a key role in Cr(VI)-mediated cytotoxicity, we used N-acetylcysteine (NAC) to inhibit the accumulation of ROS. NAC successfully blocked the inhibition of HSP70 and HSP90 as well as the activation of caspase-3, suggesting that ROS is essential in Cr(VI)-induced caspase-3 activation. By applying different MRCC substrates as electron donors, we also confirmed that Cr(VI) could accept the electrons leaked from MRCC I and the reduction occurs at MRCC I. In conclusion, the present study demonstrates that Cr(VI) induces ROS-dependent caspase-3 activation by inhibiting MRCC I activity, and MRCC I has been identified as a new target and a new mechanism for the apoptosis-inducing activity displayed by Cr(VI). PMID:22710416

  2. A short caspase-3 isoform inhibits chemotherapy-induced apoptosis by blocking apoptosome assembly.

    Directory of Open Access Journals (Sweden)

    Frédérique Végran

    Full Text Available Alternative splicing of caspase-3 produces a short isoform caspase-3s that antagonizes caspase-3 apoptotic activity. However, the mechanism of apoptosis inhibition by caspase-3s remains unknown. Here we show that exogenous caspase-3 sensitizes MCF-7 and HBL100 breast cancers cells to chemotherapeutic treatments such as etoposide and methotrexate whereas co-transfection with caspase-3s strongly inhibits etoposide and methotrexate-induced apoptosis underlying thus the anti-apoptotic role of caspase-3s. In caspase-3 transfected cells, lamin-A and α-fodrin were cleaved when caspase-3 was activated by etoposide or methotrexate. When caspase-3s was co-transfected, this cleavage was strongly reduced. Depletion of caspase-3 by RNA interference in HBL100 containing endogenous caspase-3s caused reduction in etoposide and methotrexate-induced apoptosis, whereas the depletion of caspase-3s sensitized cells to chemotherapy. In the presence of caspase-3s, a lack of interaction between caspase-3 and caspase-9 was observed. Immunoprecipitation assays showed that caspase-3s binds the pro-forms of caspase-3. This result suggested that the absence of interaction with caspase-9 when both variants of caspase-3 are present contribute to block the apoptosome assembly and inhibit apoptosis. These data support that caspases-3s negatively interferes with caspase-3 activation and apoptosis in breast cancer, and that it can play key roles in the modulation of response to chemotherapeutic treatments.

  3. Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro produced pre-implantation embryos

    DEFF Research Database (Denmark)

    Gjørret, Jakob O.; Fabian, Dusan; Avery, Birthe;

    2007-01-01

    In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced...... staining for detection of apoptotic nuclear morphology, and subjected to fluorescence microscopy. Additionally, treated and untreated blastocysts were fixed and processed for ultrastructural identification of apoptosis. Untreated embryos revealed no apoptotic features at 2- and 4-cell stages. However......, active caspase-3 and apoptotic nuclear morphology were observed in an untreated 8-cell stage, and TUNEL-labeling was observed from the 16-cell stage. Blastomeres concurrently displaying all apoptotic features were present in a few embryos at 16-cell and morula stages and in all blastocysts. All three...

  4. Copper exposure induces toxicity to the antioxidant system via the destruction of Nrf2/ARE signaling and caspase-3-regulated DNA damage in fish muscle: Amelioration by myo-inositol

    International Nuclear Information System (INIS)

    time that Cu exposure caused oxidative damage to the muscle by decreasing the antioxidant enzyme activities via the down-regulation of the expression of genes related to the disruption of the Nrf2/ARE signaling, and this down-regulation was partially caused by caspase-3-regulated DNA fragmentation. Finally, MI protects fish against Cu toxicity

  5. Copper exposure induces toxicity to the antioxidant system via the destruction of Nrf2/ARE signaling and caspase-3-regulated DNA damage in fish muscle: Amelioration by myo-inositol

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei-Dan; Liu, Yang [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Jiang, Jun [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Wu, Pei [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Feng, Lin, E-mail: fenglin@sicau.edu.cn [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Zhou, Xiao-Qiu, E-mail: zhouxq@sicau.edu.cn [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China)

    2015-02-15

    time that Cu exposure caused oxidative damage to the muscle by decreasing the antioxidant enzyme activities via the down-regulation of the expression of genes related to the disruption of the Nrf2/ARE signaling, and this down-regulation was partially caused by caspase-3-regulated DNA fragmentation. Finally, MI protects fish against Cu toxicity.

  6. Saponin-rich fraction from Clematis chinensis Osbeck roots protects rabbit chondrocytes against nitric oxide-induced apoptosis via preventing mitochondria impairment and caspase-3 activation.

    Science.gov (United States)

    Wu, Wenjun; Gao, Xinghua; Xu, Xianxiang; Luo, Yubin; Liu, Mei; Xia, Yufeng; Dai, Yue

    2013-03-01

    Our previous study reported that the saponin-rich fraction from Clematis chinensis Osbeck roots (SFC) could effectively alleviate experimental osteoarthritis induced by monosodium iodoacetate in rats through protecting articular cartilage and inhibiting local inflammation. The present study was performed to investigate the preventive effects of SFC on articular chondrocyte, and explore the underlying mechanisms. Primary rabbit chondrocytes were cultured and exposed to sodium nitroprusside (SNP), a NO donor. After treatment with different concentrations of SFC (30, 100, 300, 1,000 μg/ml) for 24 h, nucleic morphology, apoptotic rate, mitochondrial function and caspase-3 activity of chondrocytes were examined. The results showed that SNP induced remarkable apoptosis of rabbit chondrocytes evidenced by Hoechst 33258 staining and flow cytometry analysis, and SFC prevented the apoptosis in a concentration-dependent manner. Further studies indicated that SFC could prevent the depolarization of mitochondrial membrane potential (∆ψm) in SNP-treated chondrocytes and suppress the activation of caspase-3. It can be concluded that the protection of SFC on articular chondrocytes is associated with the anti-apoptosis effects via inhibiting the mitochondrion impairment and caspase-3 activation. PMID:22821055

  7. Genetically Encoded FRET-Sensor Based on Terbium Chelate and Red Fluorescent Protein for Detection of Caspase-3 Activity

    Directory of Open Access Journals (Sweden)

    Alexander S. Goryashchenko

    2015-07-01

    Full Text Available This article describes the genetically encoded caspase-3 FRET-sensor based on the terbium-binding peptide, cleavable linker with caspase-3 recognition site, and red fluorescent protein TagRFP. The engineered construction performs two induction-resonance energy transfer processes: from tryptophan of the terbium-binding peptide to Tb3+ and from sensitized Tb3+ to acceptor—the chromophore of TagRFP. Long-lived terbium-sensitized emission (microseconds, pulse excitation source, and time-resolved detection were utilized to eliminate directly excited TagRFP fluorescence and background cellular autofluorescence, which lasts a fraction of nanosecond, and thus to improve sensitivity of analyses. Furthermore the technique facilitates selective detection of fluorescence, induced by uncleaved acceptor emission. For the first time it was shown that fluorescence resonance energy transfer between sensitized terbium and TagRFP in the engineered construction can be studied via detection of microsecond TagRFP fluorescence intensities. The lifetime and distance distribution between donor and acceptor were calculated using molecular dynamics simulation. Using this data, quantum yield of terbium ions with binding peptide was estimated.

  8. Activity identification of chimeric anti-caspase-3 mRNA hammerhead ribozyme in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    XU; Renhuan; (

    2001-01-01

    [1]Andrew, F., Gerard, E., A license to kill, Cell, 1996, 85: 781-784.[2]Thornberry, N. A., Lazebnik, Y., Caspases: Enemies within, Science, 1998, 281: 1312-1316.[3]Kijima, H., Ishida, H., Ohkawa, T. et al., Therapeutic application of ribozymes, Pharmacol. Ther., 1995, 68: 247-264.[4]Phylactou, L. A., Kilpatrick, M. W., Wood, M. J., Ribozymes as therapeutic tools for genetic disease, Hum. Mol. Genet., 1998, 7(10): 1649-1653.[5]Bettrand, E., Pictet, R ., Grange, T., Can heamerhead ribozymes be efficient tools inactivate gene function? Nucleic Acids Res., 1994, 22: 293-300.[6]Lieber, A., Strauss, M., Selection of efficient cleavage sites in target RNAs by using a ribozyme expression library, Mol. Cell Biol., 1995, 15: 540-551.[7]Xu, R. H., Zhou, X. Q., Xie, Q. et al., Preparation and identification of hammerhead ribozyme in vitro against rat caspase-3 mRNA fragment, Chin. J. Hepatol., 2000,8: 361-363.[8]Liu, J., Jin, Y. X., Wang, D. B., A novel vector for abundant expression of antisense RNA, triplex-forming RNA and ribozyme in vivo, High Technology Letters, 2000, 6: 84-88.[9]Sambrook, J., Fritsch, E. F., Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press, 1989.[10]Porter, A. G., J?nicke, R. U., Emerging roles of caspase-3 in apoptosis, Cell Death Differ, 1999, 6: 99-104.[11]Cryns, V., Yuan, J., Proteases to die for, Genes Dev., 1998, 12: 1551-1570.[12]Narendra, K. V., Anikumar, R. K., Fritz, E., Recent developments in the hammerhead ribozyme field, Nucleic Acids Research, 1998, 26: 5237-5242.

  9. Two new glycosides isolated from Sapindus mukorossi fruits: effects on cell apoptosis and caspase-3 activation in human lung carcinoma cells.

    Science.gov (United States)

    Zhang, Xuan-Ming; Yang, De-Po; Xie, Zhi-Yong; Li, Qing; Zhu, Long-Ping; Zhao, Zhi-Min

    2016-07-01

    Two new glycosides (1, 2) and two saponins (3, 4) were isolated from the fruits of Sapindus mukorossi Gaertn. The two glycosides were designated as sapindoside G (1) and 4'',4'''''-O-diacetylmukurozioside IIa (2). All four compounds exhibited inhibitory effects against A549 human lung adenocarcinoma cells with inhibition rates up to 69.2-83.3% at a concentration of 100 μg/mL. Flow cytometric analysis revealed that compounds 1-4 could suppress A549 cell growth by promoting cell apoptosis, which was related to the activation of caspase-3. PMID:26158392

  10. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet.

    Science.gov (United States)

    Batistela, Emanuele; Pereira, Mayara Peron; Siqueira, Juliany Torres; Paula-Gomes, Silvia; Zanon, Neusa Maria; Oliveira, Eduardo Brandt; Navegantes, Luiz Carlos Carvalho; Kettelhut, Isis C; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda; Baviera, Amanda Martins

    2014-06-01

    The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.

  11. Regional differences in the temporal expression of nonapoptotic caspase-3-positive Bergmann glial cells in the developing rat cerebellum

    Directory of Open Access Journals (Sweden)

    VelvetLee Finckbone

    2009-05-01

    Full Text Available Although caspases have been intimately linked to apoptotic events, some of the pro-apoptotic caspases also may regulate differentiation. We previously demonstrated that active caspase-3 is expressed and has an apparent non-apoptotic function during the development of cerebellar Bergmann glia. The current study seeks to further correlate active/cleaved caspase-3 expression with the developmental phenotype of Bergmann glia by examining regional differences in the temporal pattern of expression of cleaved caspase-3 immunoreactivity in lobules of the cerebellar vermis. In general, we found that the expression pattern of cleaved caspase-3 corresponds to the reported developmental temporal profile of the lobes and that its levels peak at 15 days and declines thereafter. Compared to intermediate or late maturing lobules, early maturing lobules had higher levels of active caspase-3 at earlier postnatal times. This period of postnatal development is precisely the time during which Bergmann glia initiate differentiation.

  12. Linoleic acid derivative DCP-LA protects neurons from oxidative stress-induced apoptosis by inhibiting caspase-3/-9 activation.

    Science.gov (United States)

    Yaguchi, Takahiro; Fujikawa, Hirokazu; Nishizaki, Tomoyuki

    2010-05-01

    The present study aimed at understanding the effect of the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) on oxidative stress-induced neuronal death. Sodium nitroprusside (SNP; 1 mM) reduced viability of cultured rat cerebral cortical neurons to 50% of basal levels, but DCP-LA significantly prevented the SNP effect in a concentration (1-100 nM)-dependent manner. In addition, DCP-LA (100 nM) rescued neurons from SNP-induced degradation. SNP (1 mM) activated caspase-3 and -9 in cultured rat cerebral cortical neurons, but DCP-LA (100 nM) abolished the caspase activation. For a mouse model of middle cerebral artery occlusion, oral administration with DCP-LA (1 mg/kg) significantly diminished degraded area due to cerebral infarction. The results of the present study, thus, demonstrate that DCP-LA protects neurons at least in part from oxidative stress-induced apoptosis by inhibiting activation of caspase-3/-9. PMID:20099079

  13. Linoleic acid derivative DCP-LA protects neurons from oxidative stress-induced apoptosis by inhibiting caspase-3/-9 activation.

    Science.gov (United States)

    Yaguchi, Takahiro; Fujikawa, Hirokazu; Nishizaki, Tomoyuki

    2010-05-01

    The present study aimed at understanding the effect of the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) on oxidative stress-induced neuronal death. Sodium nitroprusside (SNP; 1 mM) reduced viability of cultured rat cerebral cortical neurons to 50% of basal levels, but DCP-LA significantly prevented the SNP effect in a concentration (1-100 nM)-dependent manner. In addition, DCP-LA (100 nM) rescued neurons from SNP-induced degradation. SNP (1 mM) activated caspase-3 and -9 in cultured rat cerebral cortical neurons, but DCP-LA (100 nM) abolished the caspase activation. For a mouse model of middle cerebral artery occlusion, oral administration with DCP-LA (1 mg/kg) significantly diminished degraded area due to cerebral infarction. The results of the present study, thus, demonstrate that DCP-LA protects neurons at least in part from oxidative stress-induced apoptosis by inhibiting activation of caspase-3/-9.

  14. Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro.

    Science.gov (United States)

    Ale, Marcel Tutor; Maruyama, Hiroko; Tamauchi, Hidekazu; Mikkelsen, Jørn D; Meyer, Anne S

    2011-12-01

    Fucose-containing sulfated polysaccharides (FCSPs) extracted from seaweeds, especially brown macro-algae, are known to possess essential bioactive properties, notably growth inhibitory effects on tumor cells. In this work, we conducted a series of in vitro studies to examine the influence of FCSPs products from Sargassumhenslowianum C. Agardh (FSAR) and Fucus vesiculosus (FVES), respectively, on proliferation of melanoma B16 cells and to investigate the underlying apoptosis promoting mechanisms. Cell viability analysis showed that both FCSPs products, i.e., FSAR and FVES, decreased the proliferation of the melanoma cells in a dose-response fashion, with FSAR being more potent at lower dosages, and FVES being relatively more anti-proliferative than FSAR at higher dosages. Flow cytometric analysis by Annexin V staining of the melanoma cells exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. The FCSPs-induced apoptosis was evidenced by loss of plasma membrane asymmetry and translocation of the cell membrane phospholipids and was accompanied by the activation of caspase-3. The FCSPs bioactivity is proposed to be attributable to distinct structural features of the FCSPs, particularly the presence of sulfated galactofucans (notably in S.henslowianum) and sulfated fucans (notably in F. vesiculosus). This study thus indicates that unfractionated FCSPs may exert bioactive effects on skin cancer cells via induction of apoptosis through cascades of reactions that involve activation of caspase-3.

  15. Coxsackievirus B3-induced apoptosis and Caspase-3

    Institute of Scientific and Technical Information of China (English)

    JIAN PING YUAN; WEI ZHAO; HONG TAO WANG; KAI YU WU; TAO LI; XIAO KUI GUO; SHAN QING TONG

    2003-01-01

    Cell death can be classified into two categories: apoptosis and necrosis. Apoptotic pathway can beeither caspase-dependent or caspase-independent. Caspase-independent cytopathic effect (CPE) has beendescribed. In order to evaluate the pattern of HeLa cell death induced by Coxsackievirus B3 (CVB3)and whether apoptosis involves caspase activation, we co-cultivated HeLa cells with CVB3 and detectedthe cytopathic changes, the alteration of mRNA and protein expression of caspase-3 gene plus caspase-3activity, as well as analyzing DNA fragmentation before and after caspase-3 activity inhibition. Accordingto the results, we propose that CVB3 may induce apoptosis and necrosis in HeLa cells, the latter appearingmuch earlier. Caspase-3 is activated at the levels of both transcription and translation, and procaspase-3 isproteolytically cleaved, thus leading to the continuous increasing of both caspase-3 precursor protein and itssubunit. However, besides CPE, apoptosis induced by CVB3 is not a direct consequence of the activationof caspase-3, or caspase-3 is not the only effector molecule in apoptotic cell death, for caspase-3 inhibitorcan not decrease DNA fragmentation. Some other biochemical mechanisms may participate in the process,whose role weakens the effect of inhibiting caspase-3 activity.

  16. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.; Wu, J.P. [Fudan University, Jinshan Hospital, Department of Orthopaedics, Shanghai, China, Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai (China); Xu, G. [Fudan University, Jinshan Hospital, Center Laboratory, Shanghai, China, Center Laboratory, Jinshan Hospital, Fudan University, Shanghai (China); Zhu, B.; Zeng, Q.M.; Li, D.F.; Lu, W. [Fudan University, Jinshan Hospital, Department of Orthopaedics, Shanghai, China, Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai (China)

    2014-05-09

    Current studies find that degenerated cartilage endplates (CEP) of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA) was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.

  17. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    Directory of Open Access Journals (Sweden)

    L. Ding

    2014-06-01

    Full Text Available Current studies find that degenerated cartilage endplates (CEP of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.

  18. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    International Nuclear Information System (INIS)

    Current studies find that degenerated cartilage endplates (CEP) of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA) was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis

  19. Effect of Soybean Isoflavones Active-extracts on Activities of ChAT and Caspase-3 in AD Rats%大豆异黄酮对阿茨海默病大鼠ChAT和caspase-3活性影响

    Institute of Scientific and Technical Information of China (English)

    汪新华

    2013-01-01

    目的:探讨大豆异黄酮(soybean isoflavones,SIF)改善阿茨海默病(Alzheimer's disease,AD)大鼠学习记忆能力的作用机制.方法:采用右侧杏仁核注射β-淀粉样肽(β-amyloid peptide,Aβ)制备AD大鼠模型,给予不同剂量的SIF,观察其对大鼠海马胆碱乙酰转移酶(choline acetyltransferase,ChAT)活性和半胱天冬氨酸特异性蛋白酶3(cysteinyl aspartate-specific protease3,caspase-3)活性的影响.结果:大豆异黄酮显著升高AD大鼠海马ChAT活性,降低AD大鼠海马caspase-3活性.结论:大豆异黄酮对中枢胆碱能神经细胞损伤及脑细胞凋亡具有保护作用,能改善AD大鼠学习记忆能力.%Objective: To investigate the mechanism about learning and memory abilities of soybean isoflavones ( SIF ) on AD rat. Methods : The AD rat model was established by injecting amyl-beta protein ( A (3 25-35 ) into the right amygdalate, observing the influence on ChAT and caspase-3 in hippocampus of AD rats by different doses of soybean isoflavones. Results: The results showed that SIF could increase activities of ChAT and reduce activities of caspase-3. Conclusion : The effect of SIF could against the injuries of the cholinergic system and apoptosis, and improve the learning and memory ability in AD rats.

  20. 筋脉通含药血清对高糖培养施万细胞8-羟基脱氧鸟苷和活化的caspase-3表达的影响%Effects of Medicated Serum Containing Jinmaitong on 8-OHdG and Active Caspase-3 of Schwann Cells in High Glucose Medium

    Institute of Scientific and Technical Information of China (English)

    朴元林; 粱晓春; 赵丽; 张宏; 李伯武; 黄文智

    2011-01-01

    Objective To investigate the effects of medicated serum containing Jinmaitong (JMT) on the secretion level of 8 -OHdG and the expression of active caspase - 3( 17kDa) protein and Mrna of Schwann cells( SCs) in high glucose medium. Methods Cultured SCs were divided into high - glucose group, JMT group ( adding JMT - containing serum) , vitamin C group ( adding vitamin C -containing serum) and normal control group. The concentration of 8 - OHdG in the supernatant of cultured SCs was detected by enzyme -linked immunosorbent assay. The expression of active caspase - 3 (17kDa) protein was detected by immunofluorescence. The expression of active caspase -3 Mrna in SCs was detected by real - time fluorescence quantitative PCR. Results Compared with normal control group, the secretion level of 8 -OHdG in the supernatant and the expression of the intracellular active caspase -3(17kDa) protein and Mrna were significantly increased in high - glucose group ( P < 0. 01 ) ; Compared with high - glucose group, the secretion level of 8 -OHdG in the supernatant and the expression of the intracellular active caspase -3 (17kDa) protein and Mrna were significantly decreased in JMT group ( P <0. 01) . Conclusion The medicated serum containing JMT can improve high - glucose induced oxidative injury of DNA and apoptosis in SCs, suggesting JMT might improve oxidative injury and apoptosis in diabetic neuropathy.%目的 探讨筋脉通含药血清对高糖培养施万细胞8-羟基脱氧鸟苷(8-hydoxydeoxyguanosine,8-OHdG)水平及活化的半胱氨酸天冬氨酸酶3(cysteine aspartase-3,caspase-3,)(17kDa)蛋白及mRNA表达的影响.方法 将体外培养的施万细胞分为高糖组、筋脉通组(加入筋脉通含药血清)、维生素C组(加入维生素C含药血清)及正常对照组,采用酶联免疫吸附法检测施万细胞上清液中8-OHdG的分泌量,免疫荧光法检测活化的caspase-3(17kDa)蛋白表达,实时荧光定量PCR法检测活化的caspase-3(17k

  1. Structurally related antitumor effects of flavanones in vitro and in vivo: involvement of caspase 3 activation, p21 gene expression, and reactive oxygen species production

    International Nuclear Information System (INIS)

    Flavonoids exist extensively in plants and Chinese herbs, and several biological effects of flavonoids have been demonstrated. The antitumor effects in colorectal carcinoma cells (HT29, COLO205, and COLO320HSR) of eight flavanones including flavanone, 2'-OH flavanone, 4'-OH flavanone, 6-OH flavanone, 7-OH flavanone, naringenin, nargin, and taxifolin were investigated. Results of the MTT assay indicate that 2'-OH flavanone showed the most potent cytotoxic effect on these three cells, and cell death induced by 2'-OH flavanone was via the occurrence of DNA ladders, apoptotic bodies, and hypodiploid cells, all characteristics of apoptosis. Induction of caspase 3 protein processing and enzyme activity associated with cleavage of poly(ADP-ribose) polymerase (PARP) was identified in 2'-OH flavanone-treated cells, and a peptidyl inhibitor (Ac-DEVD-FMK) of caspase 3 attenuated the cytotoxicity of 2'-OH flavanone in COLO205 and HT-29 cells. Elevation of p21 (but not p53) and a decrease in Mcl-1 protein were found in 2'-OH flavanone-treated COLO205 and HT-29 cells. Elevation of intracellular reactive oxygen species (ROS) was detected in 2'-OH flavanone-treated cells by the 2',7'-dichlorodihydrofluorescein diacetate (DCHF-DA) assay, and ROS scavengers including 4,5-dihydro-1,3-benzene disulfonic acid (tiron), catalase, superoxide dismutase (SOD), and pyrrolidine dithiocarbamate (PDTC) suppressed the 2'-OH flavanone-induced cytotoxic effect. Subcutaneous injection of COLO205 induced tumor formation in nude mice, and 2'-OH flavanone showed a significant inhibitory effect on tumor formation. The appearance of apoptotic cells with H and E staining, and an increase in p21, but not p53, protein by immunohistochemistry were observed in tumor tissues under 2'-OH flavanone treatment. Primary tumor cells (COLO205-X) derived from a tumor specimen elicited by COLO205 were established, and 2'-OH flavanone showed an significant apoptotic effect in COLO205-X cells in accordance with the

  2. Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation.

    Directory of Open Access Journals (Sweden)

    Amy V Pointon

    Full Text Available BACKGROUND: Doxorubicin is one of the most effective anti-cancer drugs but its use is limited by cumulative cardiotoxicity that restricts lifetime dose. Redox damage is one of the most accepted mechanisms of toxicity, but not fully substantiated. Moreover doxorubicin is not an efficient redox cycling compound due to its low redox potential. Here we used genomic and chemical systems approaches in vivo to investigate the mechanisms of doxorubicin cardiotoxicity, and specifically test the hypothesis of redox cycling mediated cardiotoxicity. METHODOLOGY/PRINCIPAL FINDINGS: Mice were treated with an acute dose of either doxorubicin (DOX (15 mg/kg or 2,3-dimethoxy-1,4-naphthoquinone (DMNQ (25 mg/kg. DMNQ is a more efficient redox cycling agent than DOX but unlike DOX has limited ability to inhibit gene transcription and DNA replication. This allowed specific testing of the redox hypothesis for cardiotoxicity. An acute dose was used to avoid pathophysiological effects in the genomic analysis. However similar data were obtained with a chronic model, but are not specifically presented. All data are deposited in the Gene Expression Omnibus (GEO. Pathway and biochemical analysis of cardiac global gene transcription and mRNA translation data derived at time points from 5 min after an acute exposure in vivo showed a pronounced effect on electron transport chain activity. This led to loss of ATP, increased AMPK expression, mitochondrial genome amplification and activation of caspase 3. No data gathered with either compound indicated general redox damage, though site specific redox damage in mitochondria cannot be entirely discounted. CONCLUSIONS/SIGNIFICANCE: These data indicate the major mechanism of doxorubicin cardiotoxicity is via damage or inhibition of the electron transport chain and not general redox stress. There is a rapid response at transcriptional and translational level of many of the genes coding for proteins of the electron transport chain

  3. 丹参注射液对缺氧神经干细胞凋亡和Caspase-3活性的影响%Effects of salvia miltiorrhizae injection on hypoxia-induced apoptosis or cultured rat neuronal stem cells and activity of Caspase-3

    Institute of Scientific and Technical Information of China (English)

    黄涛; 韩富; 张志强; 谭齐家; 谢才军; 谢绍盈; 朱灿辉

    2008-01-01

    Objective To explore the effects of salvia miltiorrhizae (SM) injection on the apoptosis of cultured rat neuronal stem cells induced by hypoxia and the activity of Caspase-3, in order to provide the further evidence for the molecular mechanism of neuroprotection of SM injection. Methods The neuronal stem cells from neonatal rat hippocampus were cultured and divided randomly into normal control group, hypoxia group and SM treatment group. After Hoechst staining, the apoptotic morphological change and apoptosis percentage were observed under fluorescence microscope. The activities of Caspase-3 in the 3 groups were evaluated by the colorimetric assay. Results Compared with normal control group [(2.75±0.28)%, 1.16±0.07], the percentage of apoptosis and the activity of Caspase-3 were increased significantly in neuronal stem cells cultured in hypoxia [(30.12%±2.09)%,3.85±0.41, P<0.05). Application of SM injection reduced markedly the percentage of apoptosis and the activity of Caspase-3 of the neuronal stem cells cultured in hypoxia [(9.16±1.34)%, 1.50±0.09, P<0.05].Conclusion SM injection can depress the apoptosis of the rat neuronal stem cells induced by hypoxia,so as to exert the neuroprotection.%目的 探讨丹参注射液对缺氧培养大鼠神经干细胞的凋亡及Caspase-3活性的影响,以进一步明确丹参注射液神经保护作用的分子机制.方法 体外培养新生大鼠海马神经干细胞,将其分为正常对照组,缺氧培养组及丹参注射液处理组.Hoechst染色后荧光显微镜下观察并计算细胞凋亡率:比色法检测各组细胞Caspase-3的相对活性.结果 缺氧培养大鼠神经干细胞的细胞凋亡率(30.12%±2.09%)及Caspase-3活性(3.85±0.41)均较正常对照组(2.75%±0.28%,1.16±0.07)明显升高,差异有统计学意义(P<0.05);施加丹参注射液后,大鼠神经干细胞的细胞凋亡率(9.16%±1.34%)和Caspase-3活性(1.50±0.09)均较缺氧培养组明显下降,差异有统计学意义(P<0

  4. Antitumor effect of beta2-microglobulin in leukemic cell-bearing mice via apoptosis-inducing activity: activation of caspase-3 and nuclear factor-kappaB.

    Science.gov (United States)

    Mori, M; Terui, Y; Tanaka, M; Tomizuka, H; Mishima, Y; Ikeda, M; Kasahara, T; Uwai, M; Ueda, M; Inoue, R; Itoh, T; Yamada, M; Hayasawa, H; Furukawa, Y; Ishizaka, Y; Ozawa, K; Hatake, K

    2001-06-01

    We have reported previously that beta2-microglobulin (beta2m) induces apoptosis in leukemic cells in vitro, and that an interaction between beta2m and HLA class I antigen induces apoptosis. Here we examined whether beta2m can induce apoptosis in leukemic cells in vivo and whether it has an antitumor effect in tumor-bearing mice. Daily administration of 50 or 250 microg of beta2m induced apoptosis and an antitumor effect on K562 leukemia cell-bearing mice in the same manner as tumor necrosis factor-alpha. In tumor tissues in beta2m-treated mice, both caspase-3 and nuclear factor-kappaB (NF-kappaB) were stained more strongly than in control mice by anti-caspase-3 and anti-NF-kappaB p65/Rel A polyclonal antibodies. We also observed the in vivo immunological effects of beta2m on lymphoid and hematopoietic organs, such as thymus, bone marrow, Peyer's patches, liver, and spleen in normal mice. Using antibodies against caspase-3 and NF-kappaB, immunohistochemical staining showed that no specific tissues were damaged or stained in normal mice. We conclude that beta2m stimulates caspase-3 and NF-kappaB pathways to induce apoptosis, making it a useful approach to a new therapy for leukemia.

  5. Tubeimoside-1 induces glioma apoptosis through regulation of Bax/Bcl-2 and the ROS/Cytochrome C/Caspase-3 pathway

    Directory of Open Access Journals (Sweden)

    Jia G

    2015-01-01

    Full Text Available Geng Jia,1,* Qiang Wang,2,* Rong Wang,2,* Danni Deng,2 Lian Xue,2 Naiyuan Shao,1 Yi Zhang,1 Xiwei Xia,1 Feng Zhi,2 Yilin Yang1,2 1Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Jiangsu, People’s Republic of China; 2Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Jiangsu, People’s Republic of China * These authors contributed equally to this workBackground: Tubeimoside-1 (TBMS1 is a natural compound isolated from tubeimoside, which has been widely used as a traditional Chinese herbal medicine. The purpose of the present study is to investigate the anti-tumor effect and the underling mechanism of TBMS1 on glioma cancer cells.Methods: The MTT assay was performed to evaluate the effect of TBMS1 on glioma cell proliferation. The fluorescent microscopy and flow cytometry analysis were performed to evaluate the effect of TBMS1 on glioma cell apoptosis. The Western blot analysis was used to evaluate the protein change.Results: TBMS1 inhibited glioma cancer cell proliferation in a dose- and time-dependent manner. Fluorescent microscopy and flow cytometry analysis demonstrated that TBMS1 induced glioma cell apoptosis in a concentration-dependent manner. Western blotting showed that TBMS1 induced apoptosis by increasing the expression of Bax and downregulating the level of Bcl-2. Furthermore, we found that TBMS1 induced apoptosis by increasing the concentration of reactive oxygen species through the release of Cytochrome C and activation of Caspase-3.Conclusion: These findings indicate that TBMS1 may be developed as a possible therapeutic agent for the management of glioma. Keywords: Tubeimoside-1, glioma, proliferation, apoptosis

  6. Combination of the histone deacetylase inhibitor depsipeptide and 5-fluorouracil upregulates major histocompatibility complex class II and p21 genes and activates caspase-3/7 in human colon cancer HCT-116 cells.

    Science.gov (United States)

    Okada, Kouji; Hakata, Shuko; Terashima, Jun; Gamou, Toshie; Habano, Wataru; Ozawa, Shogo

    2016-10-01

    Epigenetic anticancer drugs such as histone deacetylase (HDAC) inhibitors have been combined with existing anticancer drugs for synergistic or additive effects. In the present study, we found that a very low concentration of depsipeptide, an HDAC inhibitor, potentiated the antitumor activity of 5-fluorouracil (5-FU) in a human colon cancer cell model using HCT-116, HT29, and SW48 cells via the inhibition of colony formation ability or cellular viability. Exposure to a combination of 5-FU (1.75 µM) and 1 nM depsipeptide for 24 and 48 h resulted in a 3- to 4-fold increase in activated caspase-3/7, while 5-FU alone failed to activate caspase-3/7. Microarray and subsequent gene ontology analyses revealed that compared to 5-FU or depsipeptide alone, the combination treatment of 5-FU and depsipeptide upregulated genes related to cell death and the apoptotic process consistent with the inhibition of colony formation and caspase-3/7 activation. These analyses indicated marked upregulation of antigen processing and presentation of peptide or polysaccharide antigen via major histocompatibility complex (MHC) class (GO:0002504) and MHC protein complex (GO:0042611). Compared with vehicle controls, the cells treated with the combination of 5-FU and depsipeptide showed marked induction (3- to 8.5-fold) of expression of MHC class II genes, but not of MHC class I genes. Furthermore, our global analysis of gene expression, which was focused on genes involved in the molecular regulation of MHC class II genes, showed enhancement of pro-apoptotic PCAF and CIITA after the combination of 5-FU and depsipeptide. These results may indicate a closer relationship between elevation of MHC class II expression and cellular apoptosis induced by the combination of depsipeptide and 5-FU. To the best of our knowledge, this is the first study to report that the combination of 5-FU and depsipeptide induces human colon cancer cell apoptosis in a concerted manner with the induction of MHC

  7. Induction of Apoptosis by Green Synthesized Gold Nanoparticles Through Activation of Caspase-3 and 9 in Human Cervical Cancer Cells

    Science.gov (United States)

    Baharara, Javad; Ramezani, Tayebe; Divsalar, Adeleh; Mousavi, Marzieh; Seyedarabi, Arefeh

    2016-01-01

    Background: Gold Nanoparticles (GNPs) are used in imaging and molecular diagnostic applications. As the development of a novel approach in the green synthesis of metal nanoparticles is of great importance and a necessity, a simple and safe method for the synthesis of GNPs using plant extracts of Zataria multiflora leaves was applied in this study and the results on GNPs’ anticancer activity against HeLa cells were reported. Methods: The GNPs were characterized by UV-visible spectroscopy, FTIR, TEM, DLS and Zeta-potential measurements. In addition, the cellular up-take of nanoparticles was investigated using Dark Field Microscopy (DFM). Induction of apoptosis by high dose of GNPs in HeLa cells was assessed by MTT assay, Acridin orange, DAPI staining, Annexin V/PI double-labeling flow cytometry and caspase activity assay. Results: UV-visible spectroscopy results showed a surface plasmon resonance band for GNPs at 530 nm. FTIR results demonstrated an interaction between plant extract and nanoparticles. TEM images revealed different shapes for GNPs and DLS results indicated that the GNPs range in size from 10 to 42 nm. The Zeta potential values of the synthesized GNPs were between 30 to 50 Mev, indicating the formation of stable particles. As evidenced by MTT assay, GNPs inhibit proliferation of HeLa cells in dose-dependent GNPs and cytotoxicity of GNPs in Bone Marrow Mesenchymal Stem Cell (BMSCs) was lower than cancerous cells. At nontoxic concentrations, the cellular up-take of the nanoparticles took place. Acridin orange and DAPI staining showed morphological changes in the cell’s nucleus due to apoptosis. Finally, caspase activity assay demonstrated HeLa cell’s apoptosis through caspase activation. Conclusion: The results showed that GNPs have the ability to induce apoptosis in HeLa cells. PMID:27141266

  8. Berry anthocyanins reduce proliferation of human colorectal carcinoma cells by inducing caspase-3 activation and p21 upregulation.

    Science.gov (United States)

    Anwar, Sirajudheen; Fratantonio, Deborah; Ferrari, Daniela; Saija, Antonella; Cimino, Francesco; Speciale, Antonio

    2016-08-01

    Colorectal cancer is the fourth most common type of cancer worldwide, and adenocarcinoma cells that form the majority of colorectal tumors are markedly resistant to antineoplastic agents. Epidemiological studies have demonstrated that consumption of fruits and vegetables that are rich in polyphenols, is linked to reduced risk of colorectal cancer. In the present study, the effect of a standardized anthocyanin (ACN)‑rich extract on proliferation, apoptosis and cell cycle in the Caco-2 human colorectal cancer cell line was evaluated by trypan blue and clonogenic assays and western blot analysis of cleaved caspase‑3 and p21Waf/Cif1. The results of the current study demonstrated that the ACN extract markedly decreased Caco‑2 cell proliferation, induced apoptosis by activating caspase‑3 cleavage, and upregulated cyclin‑dependent kinase inhibitor 1 (p21Waf/Cif1) expression in a dose dependent manner. Furthermore, ACN extract was able to produce a dose‑dependent increase of intracellular reactive oxygen species (ROS) in Caco‑2 cells, together with a light increase of the cell total antioxidant status. In conclusion, the present study demonstrated that a standardized berry anthocyanin rich extract inhibited proliferation of Caco‑2 cells by promoting ROS accumulation, inducing caspase‑3 activation, and upregulating the expression of p21Waf/Cif1. PMID:27314273

  9. Fragment N2, a caspase-3-generated RasGAP fragment, inhibits breast cancer metastatic progression.

    Science.gov (United States)

    Barras, David; Lorusso, Girieca; Lhermitte, Benoît; Viertl, David; Rüegg, Curzio; Widmann, Christian

    2014-07-01

    The p120 RasGAP protein negatively regulates Ras via its GAP domain. RasGAP carries several other domains that modulate several signaling molecules such as Rho. RasGAP is also a caspase-3 substrate. One of the caspase-3-generated RasGAP fragments, corresponding to amino acids 158-455 and called fragment N2, was previously reported to specifically sensitize cancer cells to death induced by various anticancer agents. Here, we show that fragment N2 inhibits migration in vitro and that it impairs metastatic progression of breast cancer to the lung. Hence, stress-activated caspase-3 might contribute to the suppression of metastasis through the generation of fragment N2. These results indicate that the activity borne by fragment N2 has a potential therapeutic relevance to counteract the metastatic process.

  10. Linkage between PTK Signaling Pathway “Crosstalking” and Caspase-3/ CPP32-1ike Proteases Activation in Signaling Transduction of CD4+ T Lymphocytes Apoptosis Induced by Superantigen SEB

    Institute of Scientific and Technical Information of China (English)

    熊世勤; 朱锡华

    2003-01-01

    Exposure of naive murine CD4+ T lymphocytes to superantigen such as staphylococcal enterotoxin B (SEB) induces a strong proliferative response. Prolonged exposure or subsequent restimulation of the responding T cell population with SEB leads to the apoptotic events of activation-induced cell death (AICD). The signaling mechanism responsible for the AICD is a target of intensive investigation. However, the precise downstream signahng pathways of SEB-induced AICD remains unclear. Our results here show that the sequential activation of caspase-1/ICE-hke and caspase-3/CPP32-hke cysteine proteases probably plays a role in the signaling transduction of SEB-induced AICD, but caspase-3/CPP32-hke proteases activation does not depend on caspase-1-like proteases activation. Herbimycin A, a specific inhibitor of protein tyresine kinases,inhibit caspase-3/CPP32-1ike cysteine proteases activation. However, it does not prevent DNA fragmentation of CD4+ Tcells apoptosis induced by SEB. These results indicate that protein tyrosine kinases pathway is probably involved in the signaling transduction of CD4+ T cells apoptosis induced by SEB and “crosstalks” with the pathway of caspase-3/CPP32-1ike proteases activation.

  11. The effects of the Reinforcing Kidney and Activating Blood Recipe Affecting the Value of bcl-2, bax and caspase-3 in the Tissue of Corpus Cavernosum Smooth Muscle of DMED- Rats%补肾活血合剂对糖尿病阳痿大鼠阴茎平滑肌组织中Bcl-2 Bax和Caspase-3表达的影响

    Institute of Scientific and Technical Information of China (English)

    张国豪; 方再军; 黄青松

    2011-01-01

    目的:观察补肾活血合剂对糖尿病阳痿(DMED)大鼠阴茎平滑肌组织中Bcl-2、Bax、Caspase-3表达的影响.方法:将实验小鼠用2%链脲佐菌素液(STZ)接60mg/kg,腹腔注射建立糖尿病模型,然后在每只糖尿病模型大鼠颈项处注射阿朴吗啡(APOsigma公司)80μg/kg,录相记录阴茎勃起次数.筛选DMED模型,将造成DMED模型随机分为正常组、模型组、中药高、低剂量组、达美康组、达美康+安雄组.除正常组外,其余各组连续给药12周,然后处死测定阴茎平滑肌组织中Bcl-2,Bax,Caspase-3的表达情况.结果:补肾活血合剂对Bc1-2,Bax,Caspase-3有改善作用.结论:补肾活血合剂对糖尿病阳痿大鼠阴茎平滑肌组织中Bcl-2,Bax,Caspase-3有调控效果.%Objective: Observing the effects of reinforcing kidney and activating blood recipe affecting the value of bcl - 2, bax and caspase - 3 in the tissue of corpus cavernosum Smooth muscle of DMED - rats. Methods: An animal model of diabetes was induced by a single intravenous dose of streptozotocin (STZ, 60mg/kg body weight) in Wistar rats. Recording the numbers of penile erection of each rat by camera after subcutaneous inject of apomorphine (80mg/kg).Screening the model of STZ - rats with erectile dysfunction and grouping into 6 groups: control group, model group, Chinese Medicine group, low- dosage group, Diamicron group, Diamicron combined Testosterone Undecanoate group. After administrating 12 weeks, observed the value of bcl -2, bax and caspase-3 in the tissue of corpus cavernosum smooth muscle of DMED - rats. Results: The reinforcing kidney and activating blood recipe can improve the vulue of bcl - 2,bax and caspase -3. Conclusion: The reinforcing kidney and activating blood recipe has regulatory function for bcl -2,bax and caspase - 3 in the tissue of corpus cavernosum smooth muscle of DMED - rats.

  12. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Zhai, Zhifang [Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Gang Huang [Department of Medical Genetics, Third Military Medical University, Chongqing 430038 (China); Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Hou, Weiping, E-mail: hwp0518@aliyun.com [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China)

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade

  13. 不同模式间歇低氧对大鼠血糖、血清胰岛素及胰腺组织Caspase-3活性及其表达的影响%Effects of Different Patterns of Intermittent Hypoxia on Glucose, Insulin and Activity and Expression of Pancre-as Caspase-3 in Rats

    Institute of Scientific and Technical Information of China (English)

    王东亮; 卢巍; 刘练达; 林雪娇; 康健

    2014-01-01

    目的:探讨两种模式间歇低氧对大鼠血糖、胰岛素及胰腺组织Caspase-3活性及其表达的影响。方法将63只SD大鼠随机分为常氧对照组、间歇低氧1组(高频轻度)、间歇低氧2组(低频重度),3组又各自随机分为暴露1、2、4周组,每组7只。3个暴露4周组分别于0周及暴露1、2、4周检测空腹血糖;3组大鼠分别于暴露1、2、4周检测胰岛素水平,胰腺组织Caspase-3活性及其mRNA和蛋白表达水平。结果间歇低氧1组暴露4周组血糖从暴露2周开始升高,暴露4周与暴露2周比较差异无统计学意义( P>0.05);间歇低氧2组暴露4周组血糖从暴露1周即出现升高,随着暴露时间的延长进行性增高,暴露4周较间歇低氧1组暴露4周增高( P0. 05);group B was exposured for 4 weeks, and glucose level was increased after exposure for 1 week, and glucose level was progressively increased with prolonging exposure time, and the level after exposure for 4 weeks was significantly higher than that in group A (P0. 05). The levels of Caspase-3 activity and mRNA in group B were progressively increased with prolonging time (P<0. 05, P<0. 01). Conclusion Low frequence and severe degree of intermittent hypoxia can cause severe damage on pancreas tis- sues than that by high frequence and mild degree of intermittent hypoxia, and the damage is progressive aggravation.

  14. Cdk5 Kinase Activity, Caspase-3 Expression and Synaptic Structural Plasticity in Infra-limbic Cortex of Rats with Conditioned Fear%条件性恐惧大鼠边缘下区Cdk5激酶活性、caspase-3表达以及突触结构的变化

    Institute of Scientific and Technical Information of China (English)

    李培培; 张丽丽; 韦美; 李敏

    2011-01-01

    Classical fear conditioning is a behavioral paradigm that is widely used to study the neuronal mechanisms of post-traumatic stress disorder. Previous studies have clearly identified the medial prefrontal cortex as a key brain area for fear memory traces, but the molecules involving are poorly understood. Recently, the neuronal cyclin dependent kinase 5 (Cdk5) has been implicated in both functional and structural plasticity through affecting ion channel conductance, dendritic spine formation. protein expressions and transcriptions in the postsynaptic neurons. Importantly, dysregulation of Cdk5 has been linked to cell apoptosis, which involves perturbation in synaptic function. How the kinase activity, expression of caspase-3 and synaptic structure have changed in infra-limbic cortex (IL) of conditioned fear? The present study is aimed to answer this question by two experiments.Male adult SD rats were randomly divided into fear group and naive group. Conditioned fear model of rats was established by tone paired foot shock. At the 2nd, 4th and 8th days after fear conditioning, the Cdk5 activity,and expressions of P35 or P25 and caspase-3 in IL area were studied by immunoprecipitation and kinase assay,Western blotting and immunnohistochemical assay. Then the change of synaptic structure at the 8th and 22nd days after conditioned fear was observed with electron microscopy. The results of our experiment 1 showed that Cdk5 activity and expressions of P25 and caspase-3 were all higher in fear group than naive group. In experiment 2, the postsynaptic density (PSD) was thinner in fear group than naive group at the 8th and 22nd days after fear conditioning, but the numerical densities of IL synapse was decreased in fear group at the 22nd day after fear conditioning.Our date suggested that at 8th days after conditioned fear established, the expression of P25 and Cdk5 activity in fear group were higher than naive group, which may lead to the change of synaptic structural

  15. Phyllanthus amarus inhibits cell growth and induces apoptosis in Dalton's lymphoma ascites cells through activation of caspase-3 and downregulation of Bcl-2.

    Science.gov (United States)

    Harikumar, Kuzhuvelil B; Kuttan, Girija; Kuttan, Ramadasan

    2009-06-01

    The authors found in an earlier study that Phyllanthus amarus extract could significantly inhibit the solid and ascites tumor development in mice induced by Dalton's lymphoma ascites (DLA) cells. In the present study, the apoptotic effects of P. amarus against DLA cells in culture was evaluated. P. amarus produced significant reduction in cell viability as determined by the MTT assay. It also induces the formation of apoptotic bodies with characteristic features like plasma membrane invagination, elongation, fragmentation, and chromatin condensation. P. amarus at concentrations of 100 and 200 microg/mL is shown to induce DNA fragmentation. Gene expression analysis reveals that P. amarus induces the expression of caspase-3 and inhibits the expression of Bcl-2, which is an antiapoptotic protein. So the present study provides some insights into the possible mechanism by which P. amarus brings about apoptosis and growth inhibition in DLA cells. PMID:19223368

  16. Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway.

    Science.gov (United States)

    Zhang, Xuecheng; Zhu, Yong; Duan, Wei; Feng, Chen; He, Xuan

    2015-04-01

    Gastric cancer is one of the most common forms of malignant tumor, and the development of anti‑gastric cancer drugs with minimal toxicity is of clinical importance. Allicin is extracted from Allium sativum (garlic). Recent research, including clinical experiments, has shown that garlic has anticancer and tumor suppressive effects. The present study aimed to investigate the effects of allicin on the MGC‑803 human gastric carcinoma cell line, and to further explore the possible mechanisms of its tumor suppressor effects. The effects of allicin on the MGC‑803 cells were initially examined using an 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay. Hoechst staining was also used, in order to demonstrate the impact of allicin on MGC‑803 cell apoptosis. In addition, western blot analysis was performed to determine the abnormal expression levels of apoptosis‑associated proteins, following the treatment of MGC‑803 cells with allicin. Western blotting was also used to investigate the specific mechanisms underlying allicin‑induced apoptosis of MGC‑803 cells. The rate of MGC‑803 apoptosis was significantly increased, when the concentration and treatment time of allicin were increased. Hoechst staining detected an enhanced rate of apoptosis, and enhanced expression levels of cleaved caspase 3 were determined by western blotting. Notably, the protein expression levels of p38 were increased when the MGC‑803 cells were treated with allicin. The results of the present study suggest that allicin may inhibit the proliferation and induce the apoptosis of MGC‑803 human gastric carcinoma cells, and this may partially be achieved through the enhanced expression of p38 and cleaved caspase 3. PMID:25523417

  17. IL-8通过上调Bcl-2的表达和下调caspase-3的表达抑制MCF-7乳腺癌细胞凋亡%IL-8 inhibits the apoptosis of MCF-7 human breast cancer cells by up-regulating Bcl-2 and down-regulating caspase-3

    Institute of Scientific and Technical Information of China (English)

    庞雪利; 李矿发; 魏兰; 黄云秀; 苏敏; 王林; 曹红; 陈婷梅

    2015-01-01

    目的 探讨白细胞介素8(IL-8)对乳腺癌细胞MCF-7凋亡的影响及其机制.方法 Westem blot法检测MCF-7细胞IL-8受体CXC趋化因子受体1(CXCR1)、CXCR2的表达;反转录PCR、Western blot法检测(0、20、40、80、160) ng/mL IL-8对MCF-7细胞Bcl-2、caspase-3表达的影响;CCK-8法检测(0、40、80) ng/mL IL-8对MCF-7细胞增殖的影响;相差显微镜下观察80 ng/mL IL-8处理MCF-7后细胞形态的变化;Western blot法检测80 ng/mL IL-8联合信号通路抑制剂10 μmol/L PD980590、10 μmol/L LY294002或50 μmol/L AG490[分别为丝裂原活化蛋白激酶/细胞外调节蛋白激酶(MAPK/ERK)、磷酸肌醇-3激酶/蛋白激酶B(PBK/AKT)、Janus激酶/信号转导子和转录激活子(JAK/STAT)信号通路抑制剂],共同处理MCF-7细胞后,细胞内Bcl-2蛋白表达的变化;Western blot法检测(0、20、40、80、160) ng/mL IL-8对MCF-7细胞磷酸化p-AKT表达的影响;流式细胞术、反转录PCR以及Westem blot法分别检测80 ng/mL IL-8联合10 μmol/L LY294002共同处理MCF-7细胞后,细胞凋亡以及细胞内Bcl-2、caspase-3表达的变化.结果 IL-8受体CXCR1、CXCR2在MCF-7细胞中均有表达;在IL-8的作用下,MCF-7细胞Bcl-2表达升高,caspase-3表达下降,抗凋亡能力明显增强;IL-8能显著上调MCF-7细胞中p-AKT的表达;PBK/AKT信号通路抑制剂LY294002能显著抑制IL-8抗MCF-7细胞凋亡的作用,且减少Bcl-2并增加caspase-3的表达.结论 IL-8可显著抑制MCF-7细胞的凋亡,其机制可能与IL-8激活PI3K/AKT信号通路而上调Bcl-2、下调caspase-3的表达有关.

  18. MAPKs and Mst1/Caspase-3 pathways contribute to H2B phosphorylation during UVB-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Apoptosis is a highly coordinated or programmed cell suicide mechanism in eukaryotes.Histone modification is associated with nuclear events in apoptotic cells.Specifically H2B phosphorylation at serine 14 (Ser14) catalyzed by Mst1 kinase has been linked to chromatin condensation during apoptosis.We report that activation of MAPKs (ERK1/2,JNK1/2 and p38) together with Mst1 and caspase-3 is required for phosphorylation of H2B (Ser14) during ultraviolet B light (UVB)-induced apoptosis.UVB can trigger activation of MAPKs and induce H2B phosphorylation at Ser14 but not acetylation in a time-dependent manner.Inhibition of ERK1/2,JNK1/2 or p38 activity blocked H2B phosphorylation (Ser14).Furthermore,caspase-3 was activated by UVB to regulate Mst1 activity,which phosphorylates H2B at Ser14,leading to chromatin condensation.Full inhibition of caspase-3 activity reduced Mst1 activation and partially inhibited H2B phosphorylation (Ser14),but ERK1/2,JNK1/2 and p38 activities were not affected.Taken together,these data revealed that H2B phosphorylation is regulated by both MAPKs and caspase-3/Mst1 pathways during UVB-induced apoptosis.

  19. Induction of antiproliferative effect by diosgenin through activation of p53,release of apoptosis-inducing factor (AIF) and modulation of caspase-3 activity in different human cancer cells

    Institute of Scientific and Technical Information of China (English)

    Cecile CORBIERE; Bertrand LIAGRE; Faraj TERRO; Jean-Louis BENEYTOUT

    2004-01-01

    Previously, we demonstrated that a plant steroid, diosgenin, altered cell cycle distribution and induced apoptosis in the human osteosarcoma 1547 cell line. The objective of this study was to investigate if the antiproliferative effect of diosgenin was similar for different human cancer cell lines such as laryngocarcinoma HEp-2 and melanoma M4Beu cells. Moreover, this work essentially focused on the mitochondrial pathway. We found that diosgenin had an important and similar antiproliferative effect on different types of cancer cells. In addition, our new results show that diosgenininduced apoptosis is caspase-3 dependent with a fall of mitochondrial membrane potential, nuclear localization of AIF and poly (ADP-ribose) polymerase cleavage. Diosgenin treatment also induces p53 activation and cell cycle arrest in the different cell lines studied.

  20. Discovery of Potent, Selective and Reversible Caspase-3 Inhibitors

    Institute of Scientific and Technical Information of China (English)

    Han Yongxin; John Tam; Paul Tawa; Donald W. Nicholson; Robert J. Zamboni; André Giroux; John Colucci; Christopher I. Bayly; Daniel J. Mckay; Sophie Roy; Steve Xanthoudakis; John Vaillancourt; Dita M. Rasper

    2004-01-01

    Recent studies towards understanding the molecular mechanisms of apoptosis have revealed the importance of a group of cysteinyl aspartate specific proteases, the caspases, in the programmed cell death process (Hengartner, M.O. Nature 2000, 407, 770). Caspase-3, in particular,has been characterized as the dominant effector caspase involved in the proteolytic cleavage of a variety of protein substrates including cytoskeletal proteins, kinases and DNA repair enzymes during apoptosis (Nicholson, D. W. Cell Death Differ. 1999, 6, 1028). The development of potent and selective caspase-3 inhibitors has thus emerged as an attractive therapeutic target. In the presentation,the identification of a series of potent, selective and reversible non-peptidyl caspase-3 inhibitors containing a pyrazinone core (1) will be presented. SAR optimization at R1, R2, R3 and R4 led to the discovery of inhibitors such as 2 with excellent in vitro activities (IC50 against rh-caspase-3: 5 nM; IC50 against camptothecin induced apoptotic cell death in NT2 cells: 20 nM). Compounds such as 2 also displayed excellent in vivo activities in a number of animal models of acute injuries (see: Methot, N. et al, J. Exp. Med. 2004, 119, 199; Toulmond, S. et al, British J. Pharm. 2004, 141,689; Holtzman,D.M. et al, JBC, 2002, 277, 30128), and selected examples will be discussed during the presentation.

  1. Flavonoids of Rosa roxburghii Tratt exhibit radioprotection and anti-apoptosis properties via the Bcl-2(Ca(2+))/Caspase-3/PARP-1 pathway.

    Science.gov (United States)

    Xu, Ping; Cai, Xinhua; Zhang, Wenbo; Li, Yana; Qiu, Peiyong; Lu, Dandan; He, Xiaoyang

    2016-10-01

    The objective of our study was to assess the radioprotective effect of flavonoids extracted from Rosa roxburghii Tratt (FRT) and investigate the role of Bcl-2(Ca(2+))/Caspase-3/PARP-1 pathway in radiation-induced apoptosis. Cells and mice were exposed to (60)Co γ-rays at a dose of 6 Gy. The radiation treatment induced significant effects on tissue pathological changes, apoptosis, Ca(2+), ROS, DNA damage, and expression levels of Bcl-2, Caspase-3 (C-Caspase-3), and PARP-1. The results showed that FRT acted as an antioxidant, reduced DNA damage, corrected the pathological changes of the tissue induced by radiation, promoted the formation of spleen nodules, resisted sperm aberration, and protected the thymus. FRT significantly reduced cell apoptosis compared with the irradiation group. The expression of Ca(2+) and C-Caspase-3 was decreased after FRT treatment compared with the radiation-treated group. At the same time, expression of prototype PARP-1 and Bcl-2 increased, leading to a decrease in the percentage of apoptosis cells in FRT treatment groups. We conclude that FRT acts as a radioprotector. Apoptosis signals were activated via the Bcl-2(Ca(2+))/Caspase-3/PARP-1 pathway in irradiated cells and FRT inhibited this pathway of apoptosis by down-regulation of C-Caspase-3 and Ca(2+) and up-regulation of prototype PARP-1 and Bcl-2.

  2. Bacterial lipoprotein delays apoptosis in human neutrophils through inhibition of caspase-3 activity: regulatory roles for CD14 and TLR-2.

    LENUS (Irish Health Repository)

    Power, Colm P

    2012-02-03

    The human sepsis syndrome resulting from bacterial infection continues to account for a significant proportion of hospital mortality. Neutralizing strategies aimed at individual bacterial wall products (such as LPS) have enjoyed limited success in this arena. Bacterial lipoprotein (BLP) is a major constituent of the wall of diverse bacterial forms and profoundly influences cellular function in vivo and in vitro, and has been implicated in the etiology of human sepsis. Delayed polymorphonuclear cell (PMN) apoptosis is a characteristic feature of human sepsis arising from Gram-negative or Gram-positive bacterial infection. Bacterial wall product ligation and subsequent receptor-mediated events upstream of caspase inhibition in neutrophils remain incompletely understood. BLP has been shown to exert its cellular effects primarily through TLR-2, and it is now widely accepted that lateral associations with the TLRs represent the means by which CD14 communicates intracellular messages. In this study, we demonstrate that BLP inhibits neutrophil mitochondrial membrane depolarization with a subsequent reduction in caspase-3 processing, ultimately leading to a significant delay in PMN apoptosis. Pretreatment of PMNs with an anti-TLR-2 mAb or anti-CD14 mAb prevented BLP from delaying PMN apoptosis to such a marked degree. Combination blockade using both mAbs completely prevented the effects of BLP (in 1 and 10 ng\\/ml concentrations) on PMN apoptosis. At higher concentrations of BLP, the antiapoptotic effects were observed, but were not as pronounced. Our findings therefore provide the first evidence of a crucial role for both CD14 and TLR-2 in delayed PMN apoptosis arising from bacterial infection.

  3. Lactoferrin inhibits dexamethasone-induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yihui [Department of Orthopaedics, Yangpu District Central Hospital Affiliated to Tongji University School of Medicine, 450 Tengyue Road, Shanghai (China); Xue, Huaming [Department of Orthopaedics, Yangpu District Central Hospital Affiliated to Tongji University School of Medicine, 450 Tengyue Road, Shanghai (China); Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Francis, Wendy [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Davies, Andrew P. [Department of Orthopaedics and Trauma, Moriston Hospital, Swansea (United Kingdom); Pallister, Ian; Kanamarlapudi, Venkateswarlu [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Xia, Zhidao, E-mail: zhidao.xia@gmail.com [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom)

    2013-11-08

    Highlights: •Dex exerts dose-dependant inhibition of HACs viability and induction of apoptosis. •Dex-induced impairment of chondrocytes was attenuated by rhLF. •ERK and FASL/FAS signaling are involved in the effects of rhLF. •OA patients with glucocorticoid-induced cartilage damage may benefit from treatment with rhLF. -- Abstract: Dexamethasone (Dex) is commonly used for osteoarthritis (OA) with excellent anti-inflammatory and analgesic effect. However, Dex also has many side effects following repeated use over prolonged periods mainly through increasing apoptosis and inhibiting proliferation. Lactoferrin (LF) exerts significantly anabolic effect on many cells and little is known about its effect on OA chondrocytes. Therefore, the aim of this study is to investigate whether LF can inhibit Dex-induced OA chondrocytes apoptosis and explore its possible molecular mechanism involved in. MTT assay was used to determine the optimal concentration of Dex and recombinant human LF (rhLF) on chondrocytes at different time and dose points. Chondrocytes were then stimulated with Dex in the absence or presence of optimal concentration of rhLF. Cell proliferation and viability were evaluated using MTT and LIVE/DEAD assay, respectively. Cell apoptosis was evaluated by multi-parameter apoptosis assay kit using both confocal microscopy and flow cytometry, respectively. The expression of extracellular signal-regulated kinase (ERK), FAS, FASL, and Caspase-3 (CASP3) at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The optimal concentration of Dex (25 μg/ml) and rhLF (200 μg/ml) were chosen for the following experiments. rhLF significantly reversed the detrimental effect of Dex on chondrocytes proliferation, viability, and apoptosis. In addition, rhLF significantly prevented Dex-induced down-regulation of ERK and up-regulation of FAS, FASL, and CASP3. These findings demonstrated that rhLF acts as

  4. TNF-α-Induced Mitochondrial Alterations in Human T Cells Requires FADD and Caspase-8 Activation but Not RIP and Caspase-3 Activation

    OpenAIRE

    Shakibaei, Mehdi; Sung, Bokyung; Sethi, Gautam; Aggarwal, Bharat B.

    2010-01-01

    Although much is known about how TNF-α induces apoptosis in the presence of inhibitors of protein synthesis, little is known about how it induces apoptosis without these inhibitors. In this report we investigated temporal sequence of events induced by TNF-α in the absence of protein synthesis. Regardless of whether we measured the effects by plasma membrane phosphotidylserine accumulation, by DNA strand breaks, or activation of caspases, significant changes were observed only between 12–24 h ...

  5. Expression and effect of Caspase-3 in neurons after tractive spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; PEI Fu-xing; TANG Kang-lai; XU Jian-zhong; LI Qi-hong

    2005-01-01

    Objective: To investigate Caspase-3 expression and its role in neuronal apoptosis.Methods: The T13-L2 spinal cord of rats was injured by traction after the amplitude of P1-N1 wave, monitored by a cortical somatosensory evoked potential (CSEP) monitor, decreased to seventy percent of that before operation. Then rats were killed in 6 h, 1 d, 4 d, 7 d, 14 d and 21 d respectively after operation. Flow cytometer terminal deoxynucleotldyl transferease-mediated biotinylated deoxynuridine triphosphate nick end labeling (TUNEL), Caspase-3 activity assay and immunohistochemical method were applied to investigate Caspase-3 expression in the spinal cord tissue and to study neuronal apoptosis in rats. Results: After spinal cord injury, apoptotic cells detected by flow cytometry and TUNEL-positive cells were significantly more, and positive immunohistochemical staining of Caspase-3 and Caspase-3 activity were significantly higher in Group injury than in Groups control and laminectomy, respectively (P>0.05, P>0.01). Similar trend of changes was noticed in apoptotic cells, TUNEL-positive cells and positive immunohistochemical staining of Caspase-3, all of which reached their respective peak 7 days after operation. Caspase-3 activity reached its peak, however, 4 days postoperatively. Conclusions: Increased expression and activity of Caspase-3 protein in neurons after tractive spinal cord injury is the biochemical signal of early spinal cell apoptosis. It is of great significance for understanding the mechanism of spinal cord injury.

  6. Design and Synthesis of a Novel Peptidomimetic Inhibitor of Caspase-3

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Caspases, a family of cysteine proteases, comprise of highly homologous enzymes that play an important role in apoptotic cell death. Caspase-3 shows key functions in apoptosis, mediating apoptotic cascade from the intrinsic and extrinsic activation pathways. Therefore, caspase-3 is an attractive target for therapeutic intervention. For instance,inhibitors of caspase-3 have been described as promising cardioprotectants, neuroprotectants and antiarthritic agents.A novel peptidomimetic inhibitor of caspase-3, has been designed, which still has the properties of a reversible inhibitor, while the P1 site at the C-terminal remains, and only L-amino acid has been replaced by D-amino acid. Also presented here is the synthesis of the inhibitor and its inhibitory activity against caspase-3, which was tested by the fluorescent activity assay.

  7. Hispolon Decreases Melanin Production and Induces Apoptosis in Melanoma Cells through the Downregulation of Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF Expressions and the Activation of Caspase-3, -8 and -9

    Directory of Open Access Journals (Sweden)

    Yi-Shyan Chen

    2014-01-01

    Full Text Available Hispolon is one of the most important functional compounds that forms Phellinus linteus (Berkeley & Curtis Teng. Hispolon has antioxidant, anti-inflammatory, antiproliferative and anticancer effects. In this study, we analyzed the functions of hispolon on melanogenesis and apoptosis in B16-F10 melanoma cells. The results demonstrated that hispolon is not an enzymatic inhibitor for tyrosinase; rather, it represses the expression of tyrosinase and the microphthalmia-associated transcription factor (MITF to reduce the production of melanin in α-melanocyte-stimulating hormone (α-MSH-stimulated B16-F10 cells at lower concentrations (less than 2 μM. In contrast, at higher concentration (greater than 10 μM, hispolon can induce activity of caspase-3, -8 and -9 to trigger apoptosis of B16-F10 cells but not of Detroit 551 normal fibroblast cells. Therefore, we suggest that hispolon has the potential to treat hyperpigmentation diseases and melanoma skin cancer in the future.

  8. Testosterone undecanoate and depo medroxyprogesterone acetate induced azoospermia through increased expression of spermatogenic cell caspase 3

    Directory of Open Access Journals (Sweden)

    Nukman Moeloek

    2008-09-01

    Full Text Available The administration of a combination of testosterone undecanoate (TU, a long-acting androgen and depo-medroxyprogesterone acetate (DMPA were investigated in term of suppression of rat sperm concentration in vivo to azoospermia through increasing activity of spermatogenic cell caspase 3. Adult Sprague Dawley rats received TU and DMPA of 2.5 mg and 1.25 mg, respectively, a regimen known to rapidly reduce intra testicular testosterone and to produce azoospermia within 12 weeks. Caspase 3 positive sperm cells increased compared with control levels during 6 weeks post-injection and increased further through 60 weeks. Immunohistochemistry for caspase 3 revealed that spermatocytes represented the predominant caspase 3 positive germ cells. Modest immunoreactivity for caspase-3 was localized to nuclear region of the germ cells of control and treated testes. Immunohistochemistry study revealed significantly increased caspase-3 expression in nuclei of germ cells during administration of TU+DMPA to rats. Additionally, the caspase 3 content was significantly increased in germ cells during rats were administered TU+DMPA (453.90±84.88 cells/200 seminiferous tubules and caspase 3 significant increase in immunoreactivity was localized to the nuclei of spermatogonia, spermatocytes, and spermatids. Taken together, these results indicated that azoospermia due to reduced intratesticular testosterone concentration was caspase-3 activation dependent and suggested that the increase in active caspase-3 in the nucleus may be involved in the induction of decreased sperm production. (Med J Indones 2008; 17: 149-56Keywords: TU, DMPA, sperm concentration, germ cells

  9. Low levels of Caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a therapeutic approach.

    Science.gov (United States)

    Flanagan, L; Meyer, M; Fay, J; Curry, S; Bacon, O; Duessmann, H; John, K; Boland, K C; McNamara, D A; Kay, E W; Bantel, H; Schulze-Bergkamen, H; Prehn, J H M

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers in the Western world. 5-Fluorouracil (5FU)-based chemotherapy (CT) remains the mainstay treatment of CRC in the advanced setting, and activates executioner caspases in target cells. Executioner caspases are key proteins involved in cell disassembly during apoptosis. Activation of executioner caspases also has a role in tissue regeneration and repopulation by stimulating signal transduction and cell proliferation in neighbouring, non-apoptotic cells as reported recently. Tissue microarrays (TMAs) consisting of tumour tissue from 93 stage II and III colon cancer patients were analysed by immunohistochemistry. Surprisingly, patients with low levels of active Caspase-3 had an increased disease-free survival time. This was particularly pronounced in patients who received 5FU-based adjuvant CT. In line with this observation, lower serum levels of active Caspase-3 were found in patients with metastasised CRC who revealed stable disease or tumour regression compared with those with disease progression. The role of Caspase-3 in treatment responses was explored further in primary human tumour explant cultures from fresh patient tumour tissue. Exposure of explant cultures to 5FU-based CT increased the percentage of cells positive for active Caspase-3 and Terminal Deoxynucleotidyl Transferase dUTP Nick end Labelling (TUNEL), but also the expression of regeneration and proliferation markers β-Catenin and Ki-67, as well as cyclooxygenase-2 (COX-2). Of note, selective inhibition of Caspase-3 with Ac-DNLD-CHO, a selective, reversible inhibitor of Caspase-3, significantly reduced the expression of proliferation markers as well as COX-2. Inhibition of COX-2 with aspirin or celecoxib did not affect Caspase-3 levels but also reduced Ki-67 and β-Catenin levels, suggesting that Caspase-3 acted via COX-2 to stimulate cell proliferation and tissue regeneration. This indicates that low levels of active Caspase-3 may represent a

  10. Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP.

    Science.gov (United States)

    Mantena, Sudheer K; Sharma, Som D; Katiyar, Santosh K

    2006-10-01

    Chemotherapeutic approach using non-toxic botanicals may be one of the strategies for the management of the skin cancers. Here we report that in vitro treatment of human epidermoid carcinoma A431 cells with berberine, a naturally occurring isoquinoline alkaloid, decreased cell viability (3-77%, P berberine-induced G(1) cell cycle arrest was mediated through the increased expression of Cdki proteins (Cip1/p21 and Kip1/p27), a simultaneous decrease in Cdk2, Cdk4, Cdk6 and cyclins D1, D2 and E and enhanced binding of Cdki-Cdk. In additional studies, treatment of A431 cells with berberine (15-75 microM) for 72 h resulted in a significant dose-dependent increase in apoptosis (31-60%, P berberine-treated control (11.7%), which was associated with an increased expression of pro-apoptotic protein Bax, decreased expression of anti-apoptotic proteins Bcl-2 and Bcl-xl, disruption of mitochondrial membrane potential, and activation of caspases 9, 3 and poly (ADP-ribose) polymerase. Pretreatment of A431 cells with the pan-caspase inhibitor (z-VAD-fmk) significantly blocked the berberine-induced apoptosis in A431 cells confirmed that berberine-induced apoptosis is mediated through activation of caspase 3-dependent pathway. Together, this study for the first time identified berberine as a chemotherapeutic agent against human epidermoid carcinoma A431 cells in vitro, further in vivo studies are required to determine whether berberine could be an effective chemotherapeutic agent for the management of non-melanoma skin cancers.

  11. The role of caspase 3 and BclxL in the action of interleukin 7 (IL-7): a survival factor in activated human T cells

    DEFF Research Database (Denmark)

    Amos, C L; Woetmann, A; Nielsen, M;

    1998-01-01

    The effects of interleukin 7 (IL-7) on apoptosis in interleukin 2 (IL-2)-dependent, activated, primary, human T lymphocytes (hT cells) was examined. IL-7 (like IL-2) rescued cells from apoptosis, as measured by their cellular DNA profile and fragmentation. IL-2 also acted as a mitogen in these T ...

  12. Testosterone undecanoate and depo medroxyprogesterone acetate induced azoospermia through increased expression of spermatogenic cell caspase 3

    OpenAIRE

    Nukman Moeloek; Asmarinah Asmarinah; Nurjati C. Siregar; Syafruddin Ilyas

    2008-01-01

    The administration of a combination of testosterone undecanoate (TU, a long-acting androgen) and depo-medroxyprogesterone acetate (DMPA) were investigated in term of suppression of rat sperm concentration in vivo to azoospermia through increasing activity of spermatogenic cell caspase 3. Adult Sprague Dawley rats received TU and DMPA of 2.5 mg and 1.25 mg, respectively, a regimen known to rapidly reduce intra testicular testosterone and to produce azoospermia within 12 weeks. Caspase 3 positi...

  13. The calpain, caspase 12, caspase 3 cascade leading to apoptosis is altered in F508del-CFTR expressing cells.

    Directory of Open Access Journals (Sweden)

    Mathieu Kerbiriou

    Full Text Available In cystic fibrosis (CF, the most frequent mutant variant of the cystic fibrosis transmembrane conductance regulator (CFTR, F508del-CFTR protein, is misfolded and retained in the endoplasmic reticulum (ER. We previously showed that the unfolded protein response (UPR may be triggered in CF. Since prolonged UPR activation leads to apoptosis via the calcium-calpain-caspase-12-caspase-3 cascade and because apoptosis is altered in CF, our aim was to compare the ER stress-induced apoptosis pathway between wild type (Wt and F508del-CFTR expressing cells. Here we show that the calcium-calpain-caspase-12-caspase-3 cascade is altered in F508del-CFTR expressing cells. We propose that this alteration is involved in the altered apoptosis triggering observed in CF.

  14. Down-modulation of heat shock protein 70 and up-modulation of Caspase-3 during schisandrin B-induced apoptosis in human hepatoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Yi-Feng Wu; Ming-Fu Cao; Yan-Ping Gao; Fei Chen; Tao Wang; Edward P. Zumbika; Kai-Xian Qian

    2004-01-01

    AIM: To investigate the effect of schisandrin B (Sch B) on proliferation and apoptosis of human hepatoma SMMC-7721 cells in vitro and regulation of Hsp70 and Caspases-3, 7, 9 expression by Sch B.METHODS: Human hepatoma cell line SMMC-7721 was cultured and treated with Sch B at various concentrations.Growth suppression was detected with MTT colorimetric assay. Cell apoptosis was confirmed by DNA ladder detection and flow cytometric analysis. The expression of Hsp70,Caspases-3, 7, 9 were analyzed by Western blot analysis.RESULTS: Sch B inhibited the growth of hepatoma SMMC-7721 cells in a dose-dependent manner, leading to a 50% decrease in cell number (LC50) value of 23.50 mg/L. Treatment with Sch B resulted in degradation of chromosomal DNA into small internucleosomal fragments, evidenced by the formation of a 180-200 bp DNA ladder on agarose gels.FCM analysis showed the peak areas of subdiploid at the increased concentration of Sch B. The results of Western bolt analysis showed that Hsp70 was down-regulated and Caspase-3 was up-regulated, while the activity of Caspases-7,-9 had no significant change.CONCLUSION: Sch B is able to inhibit the proliferation of human hepatoma SMMC-7721 cells and induce apoptosis,which goes through Caspase-3-dependent and Caspase-9-independent pathway accompanied with the down-regulation of Hsp70 protein expression at an early event.

  15. Tolerance of Mice to Lipopolysaccharide is Correlated with Inhibition of Caspase-3-mediated Apoptosis in Mouse Liver Cells

    Institute of Scientific and Technical Information of China (English)

    Jie LUAN; Bingrong ZHOU; Hui DING; Zhongtian QI

    2007-01-01

    Bacterial endotoxin lipopolysaccharide (LPS) often results in multiple organ failure. However,pre-exposure of mice to a sublethal dose of LPS renders the animal tolerant to a lethal dose of LPS. This study was designed to determine whether pre-exposure of a small dose of LPS was able to suppress apoptosis in mice when challenged with LPS in combination with D-galactosamine, and to investigate the expression changes of the apoptosis-associated molecules. The results showed that a characteristic apoptotic DNA fragmentation existed in mouse livers of the LPS-naive group, but not in control groups; and the mice of the LPS-naive group were all dead after 2 d. However, in the LPS-tolerance groups, both the lethal rate and apoptotic DNA fragmentation were suppressed after the mice were challenged with LPS/D-galactosamine,and the protection against the lethality and apoptotic reaction could be maintained for up to 7 d. In this period, significantly lower levels of caspase-3 and its mRNA appeared in LPS-tolerant groups compared to those of the LPS-naive group (P<0.05), and the caspase-3 activities gradually recovered as the observation was prolonged. Our findings suggest that LPS tolerance could suppress apoptosis in mouse liver cells, and the expression and activity of caspase-3 could be down-regulated.

  16. Lacidipine Attenuates Apoptosis via a Caspase-3 Dependent Pathway in Human Kidney Cells

    Directory of Open Access Journals (Sweden)

    Aiqi Zhang

    2013-10-01

    Full Text Available Background: Acute kidney injury (AKI is common in hospitalised patients and has a poor prognosis. Therefore, new therapeutic strategies are anticipated. Lacidipine, a novel third-generation dihydropyridine calcium channel blocker, has been demonstrated effective for hypertension. However, its potential effect on renal injury remains unknown. In the present study, an in vitro model of renal ischemia reperfusion (I/R injury was used to investigate the protective effect and underlying mechanisms of lacidipine on human kidney cell (HKC apoptosis. Methods: HKCs were subjected to adenosine triphosphate (ATP depletion and recovery (0.01 µM AA, depletion for 2 h and recovery for 30 min, with or without lacidipine (1 µM and 10 µM, 24 h, then cell viability and apoptosis were determined using the cell counting kit-8 (CCK-8 assay and Annexin V flow cytometry. The expression of Bcl-2, Bax, and cytochrome c (cyt c was examined by western blot. Results: Antimycin A (AA was found to induce apoptosis of HKCs. The proportion of early apoptosis and activity of caspase-3 peaked at 30 min after ATP depletion and recovery and were attenuated by lacidipine. The expression of cyt c and Bax was decreased, while that of Bcl-2 was increased significantly in lacidipine treated group. Conclusion: We conclude that lacidipine protects HKCs against apoptosis induced by ATP depletion and recovery by regulating the caspase-3 pathway.

  17. ROLE OF CASPASE-3 IN ACUTE LIGHT DAMAGE TO RETINA OF RATS

    Institute of Scientific and Technical Information of China (English)

    Xiao Wang; Shi-xing Hu; Wei Li; Shao-chun Lin

    2007-01-01

    Objective To investigate the role of Caspase-3 in retinal damage caused by light exposure in rats.Methods Light injury to retina was induced by persistent exposure to illumination (intensity; 30000±50 lux) of operating microscope for 30 minutes in the right eyes of Sprague-Dawley rats. The pathological changes of retina were observed under optical and electron microscopies at different time points, which were 6 hours, 1,3,7,and 15 days after the light exposure. Apoptosis of retinal cells was analyzed by flow cytometry. The activity of Caspase-3 was evaluated by using the Caspase-3 assay kit. At the same time, the expression of Caspase-3 protease was determined with Western blot analysis.Results The examination results of optical and transmission electron microscopes showed that edema of inner and outer segments of the retina, espectially the chondriosome inside the inner segment, became obvious 6 hours after the light exposure. The change was deteriorated along with the increasing time. The structures of the discoidal valve dissociated in the outer segment simultaneously. Disorderly arranged nuclei, karyopycnosis, and thinning in the outer nuclear layer were observed. The retinal pogment epithelium almost disappeared during the later stage. The staining results of Annexin-V combined with PI demonstrated that the proportion of apoptotic cells increased with time. The proportion between 7th day (82.7%) and 15th day (80.4%), however, showed no significant difference. Caspase-3 became remarkably active with the lapse of time, which increased from 0.02 at 6th hour to the peak of 9.8 at 7th day before it started to descend. The Western blot detected a expression of the active form of Caspase-3 at 7th day and 15th day.Conclusion Apoptosis of photoreceptor cells is markedly involved in the light damage and Caspase-3 protease may play an important role in the apoptotic process of the retina after light exposure in rats.

  18. Adenoviral vector mediated-expression of caspase-3 siRNA on apoptosis induced by lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    Wu Feixiang; Yu Weifeng; Yuan Yang; Miao Xuerong; Xu Xuewu; Huang Shengdong; Sun Yuming

    2009-01-01

    Objective: To construct the recombinant adenovirus expressing small RNA of rats caspase-3 and observe the down-regulation effect of caspase-3 in neurons induced by lipopolysaccharide(LPS) in vitro. Methods: pShuttleH1-siCas3 containing Oligo DNA of the targeting sequences and pEGFPC1-Cas3 containing caspase-3 and EGFP sequences were constructed respectively, pShuttleH1-siCas3 and pEGFPC1-Cas3 were co-transfected to the 293 cells by liposomes to determine interfering efficacy by flow eytometry, pShuttleH1-siCas3 was linearized and transformed into E. coli BJ5183 cells containing backbone plasmid pAdEasy-1. The recombinant plasmid was transfected into 293 cells to package the adenovirus Ad-siCas3. The titers of adenovirus were determined by the specific 50% tissue culture infection dosage method. After virus infected the cultured hippocampus neurons, LPS-induced apoptosis and caspase-3 mRNA expression were observed. Results: It was identified that the sequence of target gene was correctly inserted into the genome of virus. The expression of green fluorescence protein was reduced by pShuttleH1-siCas3 in 293 cells. The titer of recombinant adenovirus was 1.06×1010 pfu/ml. After virus infection, caspase-3 mRNA was greatly reduced and neurons apoptosis was suppressed. Conclusion: The recombinant adenovirus expressing rats caspase-3 siRNA were successfully constructed, which may probably be further used in pain therapy by its anti-apoptosis effect.

  19. Nascent histamine induces α-synuclein and caspase-3 on human cells

    International Nuclear Information System (INIS)

    Highlights: • Nascent histamine alters cyclin expression pattern. • Nascent histamine increases expression of α-synuclein. • Nascent histamine activates caspase-3. - Abstract: Histamine (Hia) is the most multifunctional biogenic amine. It is synthetized by histidine decarboxylase (HDC) in a reduced set of mammalian cell types. Mast cells and histaminergic neurons store Hia in specialized organelles until the amine is extruded by exocytosis; however, other immune and cancer cells are able to produce but not store Hia. The intracellular effects of Hia are still not well characterized, in spite of its physiopathological relevance. Multiple functional relationships exist among Hia metabolism/signaling elements and those of other biogenic amines, including growth-related polyamines. Previously, we obtained the first insights for an inhibitory effect of newly synthetized Hia on both growth-related polyamine biosynthesis and cell cycle progression of non-fully differentiated mammalian cells. In this work, we describe progress in this line. HEK293 cells were transfected to express active and inactive versions of GFP-human HDC fusion proteins and, after cell sorting by flow cytometry, the relative expression of a large number of proteins associated with cell signaling were measured using an antibody microarray. Experimental results were analyzed in terms of protein–protein and functional interaction networks. Expression of active HDC induced a cell cycle arrest through the alteration of the levels of several proteins such as cyclin D1, cdk6, cdk7 and cyclin A. Regulation of α-synuclein and caspase-3 was also observed. The analyses provide new clues on the molecular mechanisms underlying the regulatory effects of intracellular newly synthetized Hia on cell proliferation/survival, cell trafficking and protein turnover. This information is especially interesting for emergent and orphan immune and neuroinflammatory diseases

  20. Nascent histamine induces α-synuclein and caspase-3 on human cells

    Energy Technology Data Exchange (ETDEWEB)

    Caro-Astorga, Joaquín; Fajardo, Ignacio; Ruiz-Pérez, María Victoria; Sánchez-Jiménez, Francisca; Urdiales, José Luis, E-mail: jlurdial@uma.es

    2014-09-05

    Highlights: • Nascent histamine alters cyclin expression pattern. • Nascent histamine increases expression of α-synuclein. • Nascent histamine activates caspase-3. - Abstract: Histamine (Hia) is the most multifunctional biogenic amine. It is synthetized by histidine decarboxylase (HDC) in a reduced set of mammalian cell types. Mast cells and histaminergic neurons store Hia in specialized organelles until the amine is extruded by exocytosis; however, other immune and cancer cells are able to produce but not store Hia. The intracellular effects of Hia are still not well characterized, in spite of its physiopathological relevance. Multiple functional relationships exist among Hia metabolism/signaling elements and those of other biogenic amines, including growth-related polyamines. Previously, we obtained the first insights for an inhibitory effect of newly synthetized Hia on both growth-related polyamine biosynthesis and cell cycle progression of non-fully differentiated mammalian cells. In this work, we describe progress in this line. HEK293 cells were transfected to express active and inactive versions of GFP-human HDC fusion proteins and, after cell sorting by flow cytometry, the relative expression of a large number of proteins associated with cell signaling were measured using an antibody microarray. Experimental results were analyzed in terms of protein–protein and functional interaction networks. Expression of active HDC induced a cell cycle arrest through the alteration of the levels of several proteins such as cyclin D1, cdk6, cdk7 and cyclin A. Regulation of α-synuclein and caspase-3 was also observed. The analyses provide new clues on the molecular mechanisms underlying the regulatory effects of intracellular newly synthetized Hia on cell proliferation/survival, cell trafficking and protein turnover. This information is especially interesting for emergent and orphan immune and neuroinflammatory diseases.

  1. Grape seed proanthocyanidins promote apoptosis in human epidermoid carcinoma A431 cells through alterations in Cdki-Cdk-cyclin cascade, and caspase-3 activation via loss of mitochondrial membrane potential.

    Science.gov (United States)

    Meeran, Syed M; Katiyar, Santosh K

    2007-05-01

    Dietary grape seed proanthocyanidins (GSPs) prevent photocarcinogenesis in mice. Here, we report that in vitro treatment of human epidermoid carcinoma A431 cells with GSPs inhibited cellular proliferation (13-89%) and induced cell death (1-48%) in a dose (5-100 mug/ml)- and time (24, 48 and 72 h)-dependent manner. GSP-induced inhibition of cell proliferation was associated with an increase in G1-phase arrest at 24 h, which was mediated through the inhibition of cyclin-dependent kinases (Cdk) Cdk2, Cdk4, Cdk6 and cyclins D1, D2 and E and simultaneous increase in protein expression of cyclin-dependent kinase inhibitors (Cdki), Cip1/p21 and Kip1/p27, and enhanced binding of Cdki-Cdk. The treatment of A431 cells with GSPs (20-80 mug/ml) resulted in a dose-dependent increase in apoptotic cell death (26-58%), which was associated with an increased protein expression of proapoptotic Bax, decreased expression of antiapoptotic Bcl-2 and Bcl-xl, loss of mitochondrial membrane potential, and cleavage of caspase-9, caspase-3 and PARP. Pretreatment with the pan-caspase inhibitor (z-VAD-fmk) blocked the GSP-induced apoptosis in A431 cells suggesting that GSP-induced apoptosis is associated primarily with the caspase-3-dependent pathway. Together, our study suggests that GSPs possess chemotherapeutic potential against human epidermoid carcinoma cells in vitro, further in vivo mechanistic studies are required to verify the chemotherapeutic effect of GSPs in skin cancers. PMID:17437483

  2. Dihydroartemisinin (DHA induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells

    Directory of Open Access Journals (Sweden)

    Sun Lei

    2009-02-01

    Full Text Available Abstract Background Dihydroartemisinin (DHA, a semi-synthetic derivative of artemisinin, isolated from the traditional Chinese herb Artemisia annua, is recommended as the first-line anti-malarial drug with low toxicity. DHA has been shown to possess promising anticancer activities and induce cancer cell death through apoptotic pathways, although the molecular mechanisms are not well understood. Methods In this study, cell counting kit (CCK-8 assay was employed to evaluate the survival of DHA-treated ASTC-a-1 cells. The induction of apoptosis was detected by Hoechst 33258 and PI staining as well as flow cytometry analysis. Collapse of mitochondrial transmembrane potential (ΔΨm was measured by dynamic detection under a laser scanning confocal microscope and flow cytometry analysis using Rhodamine123. Caspase-3 activities measured with or without Z-VAD-fmk (a broad spectrum caspase inhibitor pretreatment by FRET techniques, caspase-3 activity measurement, and western blotting analysis. Results Our results indicated that DHA induced apoptotic cell death in a dose- and time-dependent manner, which was accompanied by mitochondrial morphology changes, the loss of ΔΨm and the activation of caspase-3. Conclusion These results show for the first time that DHA can inhibit proliferation and induce apoptosis via caspase-3-dependent mitochondrial death pathway in ASTC-a-1 cells. Our work may provide evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of lung adenocarcinoma.

  3. Effect of Bcl-2 and caspase-3 on calcium distribution in apoptosis of HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Apoptosis manifests in two major execution programs downstream of the death signal: the caspase pathway and organelle dysfunction. An important antiapoptosis factor, Bcl-2 protein, contributes in caspase pathway of apoptosis. Calcium, an important intracellular signal element in cells, is also observed to have changes during apoptosis, which maybe affected by Bcl2 protein. We have previously reported that in Harringtonine (HT) induced apoptosis of HL-60 cells, there's a change of intracellular calcium distribution, moving from cytoplast especially Golgi's apparatus to nucleus and accumulating there with the highest concentration. We report here that caspase-3 becomes activated in HT-induced apoptosis of HL-60 cells, which can be inhibited by overexpression of Bcl-2 protein. No sign of apoptosis or intracellular calcium movement from Golgi's apparatus to nucleus in HL-60 cells overexpressing Bcl-2 or treated with Ac-DEVD-CHO, a specific inhibitor of caspase-3. The results indicate that activated caspase-3 can promote the movement of intracellular calcium from Golgi's apparatus to nucleus, and the process is inhibited by Ac-DEVD-CHO (inhibitor of caspas-3), and that Bcl-2 can inhibit the movement and accumulation of intracellular calcium in nucleus through its inhibition on caspase3. Calcium relocalization in apoptosis seems to be irreversible, which is different from the intracellular calcium changes caused by growth factor.

  4. Caspase-3 and its inhibitor Ac-DEVD-CHO in rat lens epithelial cell apoptosis induced by hydrogen in vitro

    Institute of Scientific and Technical Information of China (English)

    姚克; 王凯军; 徐雯; 孙朝晖; 申屠形超; 邱培瑾

    2003-01-01

    Objective To investigate the role of caspase-3 and its inhibitor Ac-DEVD-CHO in rat lens epithelial cell apoptosis induced by hydrogen peroxide (H2O2) in vitro.Methods Rat lenses were incubated in modified Eagle' s medium containing 2 mmol/L H2O2 to induce apoptosis in vitro. Apoptosis in lens epithelial cells was assessed by transmission electron microscopy and annexin V-propidium iodide (PI) double staining flow cytometry after 12, 24 and 48 h of incubation. The activity of caspase-3 was analyzed by western blotting.Results Observations under transmission electron microscopy revealed that 2 mmol/L H2O2 could effectively induce lens epithelial cell apoptosis in vitro. Caspase-3 activity increased during cell apoptosis and the peak measurement occurred at 24 h after treatment with H2O2. Cell apoptosis was blocked by caspase-3 inhibitor Ac-DEVD-CHO.Conclusions The activation of caspase-3 plays an important role in executing apoptosis in H2O2-treated lens epithelial cells and in the formation of cataract. The caspase-3 inhibitor Ac-DEVD-CHO may effectively prevent lens epithelial cell apoptosis caused by oxidative injury.

  5. Constitutive nitric oxide synthase-mediated caspase-3 S-nitrosylation in ghrelin protection against Porphyromonas gingivalis-induced salivary gland acinar cell apoptosis.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2010-06-01

    Recent advances in identifying the salivary constituents capable of influencing the oral mucosal inflammatory responses have brought to focus the importance of a peptide hormone, ghrelin. Here, we report on the involvement of ghrelin in controlling the apoptotic processes induced in sublingual salivary gland acinar cells by the lipopolysaccharide (LPS) of a periodontopathic bacterium, Porphyromonas gingivalis. We show that the countering effect of ghrelin on the LPS-induced acinar cell apoptosis was associated with the increase in constitutive nitric oxide synthase (cNOS) activity, and the reduction in caspase-3 and inducible nitric oxide synthase (iNOS). The loss in countering effect of ghrelin on the LPS-induced changes in apoptosis and caspase-3 activity was attained with Src kinase inhibitor, PP2, as well as Akt inhibitor, SH-5, and cNOS inhibitor, L-NAME, but not the iNOS inhibitor, 1400W. The effect of ghrelin on the LPS-induced changes in cNOS activity, moreover, was reflected in the increased cNOS phosphorylation that was sensitive to PP2 as well as SH-5. Furthermore, the ghrelin-induced up-regulation in cNOS activity was associated with the increase in caspase-3 S-nitrosylation that was susceptible to the blockage by SH-5 and L-NAME. The findings point to the involvement of ghrelin in Src/Akt kinase-mediated cNOS activation and the apoptogenic signal inhibition through the NO-induced caspase-3 S-nitrosylation.

  6. Caspase-3-independent pathways proceeding in bystander effect of HSV-tk/GCV system

    Science.gov (United States)

    Lin, Juqiang; Ma, Yan; Zeng, Shaoqun; Zhang, Zhihong

    2008-02-01

    HSV-tk/GCV system, which is the virus-directed enzyme/prodrug therapy of herpes simplex virus (HSV) thymidine kinase (tk) gene / the anti-viral reagent ganciclovir (GCV), is one of the promising approaches in the rapidly growing area of gene therapy. As gene therapy of cancer such as suicide gene therapy has entered the clinic, another therapy effect which is called 'bystander effect' was reported. Bystander effect can lead to killing of non-transduced tumor cells in the immediate vicinity of GCV-treated HSV-TK-positive cells. Now the magnitude of 'bystander effect' is an essential factor for this anti-tumor approach in vivo. However, the mechanism which HSV-tk/ACV brings "bystander effect" is poorly understood. In this study, we monitor the activation of caspase-3 in HSV-tk/GCV system by a FRET probe CD3, a FRET-based indicator for activity of caspase3, which is composed of an enhanced cyan fluorescent protein, a caspase-sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. Through application of CD3 we have visualized the activation of caspase-3 in tk gene positive human adenoid cystic carcinoma (ACC-M) cells but not in bystander effect of HSV-tk/GCV system induced by GCV. This finding provides needed information for understanding the mechanisms by which suicide gene approaches actually kill cancer cells, and may prove to be helpful for the clinical treatment of cancers.

  7. Implication of Caspase-3 as a Common Therapeutic Target for Multineurodegenerative Disorders and Its Inhibition Using Nonpeptidyl Natural Compounds

    Directory of Open Access Journals (Sweden)

    Saif Khan

    2015-01-01

    Full Text Available Caspase-3 has been identified as a key mediator of neuronal apoptosis. The present study identifies caspase-3 as a common player involved in the regulation of multineurodegenerative disorders, namely, Alzheimer’s disease (AD, Parkinson’s disease (PD, Huntington’s disease (HD, and amyotrophic lateral sclerosis (ALS. The protein interaction network prepared using STRING database provides a strong evidence of caspase-3 interactions with the metabolic cascade of the said multineurodegenerative disorders, thus characterizing it as a potential therapeutic target for multiple neurodegenerative disorders. In silico molecular docking of selected nonpeptidyl natural compounds against caspase-3 exposed potent leads against this common therapeutic target. Rosmarinic acid and curcumin proved to be the most promising ligands (leads mimicking the inhibitory action of peptidyl inhibitors with the highest Gold fitness scores 57.38 and 53.51, respectively. These results were in close agreement with the fitness score predicted using X-score, a consensus based scoring function to calculate the binding affinity. Nonpeptidyl inhibitors of caspase-3 identified in the present study expeditiously mimic the inhibitory action of the previously identified peptidyl inhibitors. Since, nonpeptidyl inhibitors are preferred drug candidates, hence, discovery of natural compounds as nonpeptidyl inhibitors is a significant transition towards feasible drug development for neurodegenerative disorders.

  8. Expression of caspase-3, p53 and Bcl-2 in generalized aggressive periodontitis

    Directory of Open Access Journals (Sweden)

    Özdemir B Handan

    2006-06-01

    Full Text Available Abstract Background Apoptosis, or programmed cell death is a form of physiological cell death. It is increased or decreased in the presence of infection, inflammation or tissue remodelling. Previous studies suggest that apoptosis is involved in the pathogenesis of inflammatory periodontal disease. The aim of the present study was to investigate the clinical features and known indicators of apoptosis (p53, Bcl-2, Caspase-3 in patients with generalized aggressive periodontitis (GAP Methods Eight patients with GAP, who had sites with probing depths (PD > 5 mm, and 10 periodontally-healthy persons were included in the study. Clinical examinations and PD were performed, and the plaque index and gingival index were recorded. Gingival tissues biopsies were obtained from active site of each patient and from healthy individuals. The expression of caspase-3, Bcl-2, and p53 was evaluated by immunohistochemistry Results There were no significant differences between GAP and control group with respect to levels of caspase-3 and p53 expression (P > 0.05. Contrary, the frequency of grade 3 expression of Bcl-2 was higher in GAP group than the control group. Conclusion The higher frequency of Bcl-2 expression in GAP group indicates and delayed apoptosis can lead to increasing resident inflammatory cells in periodontal tissues and resulting in progressive periodontal destruction.

  9. Ekspresi Bcl-2 dan Caspase-3 Pascapaparan Hipoksia Hipobarik Intermiten

    Directory of Open Access Journals (Sweden)

    Achmad Hidayat

    2011-12-01

    Full Text Available Intermittent hypobaric hypoxia often suffered by cabin crew due to the fact that they are breathing lower pressured air inside the plane cabin. Human body will adapt by binding more oxygen and reducing hypoxia effect. Mitochondria function will be irritated by hypoxia which affect, outer mithochondrial membrane permeability due to decrease of Bcl-2 protein. Later on if hypoxia continues mitochondrial membrane will leaked cytocrome-c will released and apoptotic pathway will occur. The purpose of this study was to analyze Bcl-2 protein as antiapoptosis and caspase-3 as apoptosis indicator of intermittent hypobaric hypoxia exposure. Experimental study >was subjected to Spraque Dawley male mice during January–April 2010 by exposing them to several intermittent hypobaric hypoxias (one to four treatment in an interval of one week. Protein expression on mice heart cell were detected by immunohistochemistry in the Department of Pathology Anatomy Padjadjaran University-RS Dr. Hasan Sadikin Bandung and western blot methods in Department Biomolecullar Indonesia University Jakarta. Bcl-2 protein expressions increased according with the frequency of intermittent hypobaric hypoxia exposures while a reverse trend was found for caspase-3 protein expressions (rs=-0.448, p=0.013. From the study it can be concluded that apoptosis will be decreased as a result of intermittent hypobaric hypoxia exposures, which occurred from natural adaptation mechanism indicated by decrease of cell apoptosis and cardio protective effect will be emerged.

  10. Effect of Dexamethasone on Nitric Oxide Synthase and Caspase-3 Gene Expressions in Endotoxemia in Neonate Rat Brain

    Institute of Scientific and Technical Information of China (English)

    HUA WANG; YU-BIN WU; XIU-HUA DU

    2005-01-01

    Objective To investigate the gene and protein expressions of three isoforms of nitric oxide synthase (NOS) and gene expression of Caspase-3, and effect of dexamethasone on them in neonatal rats with lipopolysaccharide (LPS)-induced endotoxemic brain damage. Methods Expressions of the three isoforms of NOS and caspase-3 mRNA in the brain were investigated by RT-PCR in postnatal 7-day wistar rats with acute endotoxemia by intraperitoneal administration of LPS. Regional distributions of NOSs were examined by immunohistochemical technique. Results nNOS and Caspase-3 mRNA were obviously detected. eNOS mRNA was faintly expressed, but iNOS mRNA was undetectable in the control rat brain. The expressions of NOS mRNA of three isoforms were weak 2 h after LPS (5 mg/mg) delivery, peaked at 6 h, and thereafter, reduced gradually up to 24 h. The expression intensity was in the order of nNOS> iNOS> eNOS. Widespread nNOS, scattered eNOS distribution and negative iNOS were identified in the control rat brain and all isoforms of NOS could be induced by LPS which reached the apex at 24 h in the order of nNOS> iNOS> eNOS as detected by immunostaining. Although Caspase-3 mRNA could be found in all groups, DNA fragmentation was only seen at 6 h and 24 h. The expressions of NOS and Caspase-3 mRNA were inhibited in the rat brain when dexamethasone was administrated. Conclusion LPS-induced NO production induces apoptosis of neurons through mechanism involving the Caspase-3 activation, which may play an important role in the pathogenesis of brain damage during endotoxemia, and neuro-protective effects of dexamethasone may be partially realized by inhibiting the expression of NOS mRNA.

  11. Location of caspase 3-like protease in the development of sieve element and tracheary element of stem in Cucurbita moschata.

    Science.gov (United States)

    Hao, Xia; Qian, Jie; Xu, Shan; Song, Xin; Zhu, Jian

    2008-12-01

    The casepase is considered to regulate the process of programmed cell death in the development of organisms. In this study, caspase 3-like protease was detected by immunohistochemistry and immunoelectron microscopy during the development of sieve element and tracheary element of stem in Cucurbita moschata Duch. Antibody with brown color (under light microscopy) and gold particles (under transmission electron microscopy) for detecting caspase 3-like protease was mainly displayed in inner phloem, external phloem and xylem in the region close to procambium. From the results it was considered that caspase 3-like protease did exist in vascular elements and played different roles during the development of sieve and tracheary elements, and different types of programmed cell death might be carried out. The caspase 3-like protease mainly participated in making cytoplasmic streaming cease and in degrading P-protein bodies; however, it rarely participated in the function for signal transferring in the developmental sieve element. However, it might induce calcium accumulation for rupturing the tonoplast in the signal of PCD in the developmental tracheary element.

  12. Location of Caspase 3-like Protease in the Development of Sieve Element and Tracheary Element of Stem in Cucurbita moschata

    Institute of Scientific and Technical Information of China (English)

    Xia Hao; Jie Qian; Shan Xu; Xin Song; Jian Zhu

    2008-01-01

    The casepase is considered to regulate the process of programmed cell death in the development of organisms. In this study, caspase 3-like protease was detected by immunohistochemistry and immunoelectron microscopy during the development of sieve element and tracheary element of stem in Cucurbita moschata Duch. Antibody with brown color (under light microscopy) and gold particles (under transmission electron microscopy) for detecting caspase 3-like protease was mainly displayed in inner phloem, extemal phloem and xylem in the region close to procambium. From the results it was considered that caspase 3-like protease did exist in vascular elements and played different roles during the development of sieve and tracheary elements, and different types of programmed cell death might be carried out. The caspase 3-like protease mainly participated in making cytoplasmic streaming cease and in degrading P-protein bodies; however, it rarely participated in the function for signal transferring in the developmental sieve element. However, it might induce calcium accumulation for rupturing the tonoplast in the signal of PCD in the developmental tracheary element.

  13. 新的细胞凋亡抑制基因survivin在垂体腺瘤中的表达及其与caspase-3表达相关性的研究%Apoptosis- regulating protein,survivin:expression and relationship with caspase- 3 protein in pituitary adenomas

    Institute of Scientific and Technical Information of China (English)

    马杰; 石智勇; 魏冰; 乔思杰

    2002-01-01

    Objective To study the expression of a inhibitor gene,survivin,in pituitary adenomas and its relationship with the expression of caspase- 3 gene.Method Using streptavidin- biotin peroxidase(SP),the expression of surviving,caspase- 3 protein was examined in 8 normal pituitary tissue and 38 pituitary adenomas.Result Survivin was expressed in 23 of 38 cases of pituitary adenomas,in contrast,normal pituitary tissue did not express surviving.Positive expression rate of PRL group,GH group,Mixed group in pituitary adenomas was 12/17,7/13,4/8,respectively.Overexpression of surviving was not related with the tumor type(P >0.05).Meanwhile,surviving positive rate in caspase- 3 positive and negative groups was 5/14,79% .The result showed it was strongly associated with caspase- 3 expression(P<0.05).Conclusions Apoptosis suppression by surviving play an important role in apoptosis of pituitary adenomas.Survivin could be a new diagnostic/therapeutic target in pituitary adenomas.

  14. Osthole prevents anti-Fas antibody-induced hepatitis in mice by affecting the caspase-3-mediated apoptotic pathway.

    Science.gov (United States)

    Okamoto, Toshihiro; Kawasaki, Toru; Hino, Okio

    2003-02-15

    Fas (Apo-1/CD95) ligand, which is a type II membrane protein, is a major inducer of apoptosis. Osthole is a coumarin derivative present in medicinal plants. The effect of osthole on hepatitis induced by anti-Fas antibody in mice was studied. Pretreatment of mice with osthole (10, 50, and 100 mg/kg, i.p.) prevented the elevation of plasma alanine aminotransferase (ALT) caused by anti-Fas antibody (175 microg/kg, i.v.). Administration of osthole to mice even at a dose of 10 mg/kg significantly inhibited of anti-Fas antibody-induced elevation of plasma ALT. Capase-3 is a cysteine protease, and treatment of mice with anti-Fas antibody caused an elevation of caspase-3 activity at 3.5 and 6 hr. Pretreatment of mice with osthole (100 mg/kg, i.p.) inhibited the elevation of caspase-3 activity caused by anti-Fas antibody. However, the addition of osthole (up to 10(-4)M) to a liver cytosol fraction isolated from mice treated with anti-Fas antibody did not inhibit caspase-3 activity in vitro. Thus, treatment of mice with osthole inhibited caspase-3 activity by an effect upstream of caspase-3 activation. The livers of mice treated with anti-Fas antibody contained apoptotic and dead cells; osthole attenuated the development of this apoptosis and cell death. The present results show that osthole prevented anti-Fas antibody-induced hepatitis by inhibiting the Fas-mediated apoptotic pathway. PMID:12566097

  15. A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3

    Science.gov (United States)

    Murthy, Aditya; Li, Yun; Peng, Ivan; Reichelt, Mike; Katakam, Anand Kumar; Noubade, Rajkumar; Roose-Girma, Merone; Devoss, Jason; Diehl, Lauri; Graham, Robert R.; van Lookeren Campagne, Menno

    2014-02-01

    Crohn's disease is a debilitating inflammatory bowel disease (IBD) that can involve the entire digestive tract. A single-nucleotide polymorphism (SNP) encoding a missense variant in the autophagy gene ATG16L1 (rs2241880, Thr300Ala) is strongly associated with the incidence of Crohn's disease. Numerous studies have demonstrated the effect of ATG16L1 deletion or deficiency; however, the molecular consequences of the Thr300Ala (T300A) variant remains unknown. Here we show that amino acids 296-299 constitute a caspase cleavage motif in ATG16L1 and that the T300A variant (T316A in mice) significantly increases ATG16L1 sensitization to caspase-3-mediated processing. We observed that death-receptor activation or starvation-induced metabolic stress in human and murine macrophages increased degradation of the T300A or T316A variants of ATG16L1, respectively, resulting in diminished autophagy. Knock-in mice harbouring the T316A variant showed defective clearance of the ileal pathogen Yersinia enterocolitica and an elevated inflammatory cytokine response. In turn, deletion of the caspase-3-encoding gene, Casp3, or elimination of the caspase cleavage site by site-directed mutagenesis rescued starvation-induced autophagy and pathogen clearance, respectively. These findings demonstrate that caspase 3 activation in the presence of a common risk allele leads to accelerated degradation of ATG16L1, placing cellular stress, apoptotic stimuli and impaired autophagy in a unified pathway that predisposes to Crohn's disease.

  16. Imatinib induces H2AX phosphorylation and apoptosis in chronic myelogenous leukemia cells in vitro via caspase-3/Mst1 pathway

    Institute of Scientific and Technical Information of China (English)

    Yan-jun ZHANG; Lian-ning DUAN; Cheng-rong LU; Yan CAO; Yuan LUO; Rong-feng BAO; Shu YAN; Mei XUE; Feng ZHU; Zhe WANG

    2012-01-01

    Aim:Histone H2AX is a novel tumor suppressor and its phosphorylation at the C terminus (Ser139 and Tyr142)is required for tumor cell apoptosis.The aim of the present study was to elucidate the mechanisms underlying imatinib-induced C-terminal phosphorylation of H2AX in chronic myelogenous leukemia cells in vitro.Methods:BCR-ABL-positive K562 cells were used.Microscopy,Western blotting and flow cytometry were used to study the signaling pathways that regulate imatinib-induced H2AX phosphorylation and the apoptotic mechanisms.Results:Treatment of K562 cells with imatinib (1-8 μmol/L)induced phosphorylation of H2AX at Ser139 and Tyr142 in time-and dose-dependent manners.In contrast,imatinib at the same concentrations did not affect H2AX acetylation at Lys 5,and the acetylated H2AX maintained a higher level in the cells.Meanwhile,imatinib (1-8 μmol/L)activated caspase-3 and its downstream mammalian STE20-like kinase 1 (Mst1),and induced apoptosis of K562 cells.The caspase-3 inhibitor Z-VAD (40 μmol/L)reduced imatinibinduced H2AX phosphorylation at Ser139 and Tyr142 and blocked imatinib-induced apoptosis of K562 cells.Imatinib (4 μmol/L)induced expression of Williams-Beuren syndrome transcription factor (WSTF),but not wild-type p53-induced phosphatase 1 (Wip1)in K562 cells.Conclusion:The caspase-3/Mst1 pathway is required for H2AX C-terminal phosphorylation at Ser139 and Tyr142 and subsequent apoptosis in Bcr-Abl-positive K562 cells induced by imatinib.

  17. Evaluation of caspase3 and 9 gene polymorphisms in gastric cancer patients in Mazandaran province: a brief report

    Directory of Open Access Journals (Sweden)

    Saeid Abediankenari

    2013-11-01

    Full Text Available Background: Gastric cancer is the most prevalent cancer with poor survival in gastrointestinal tract. Caspase 3 and 9 play an important role in the development and progression of cancer. Polymorphisms in the genes for these enzymes can affect gene activity and thus may influence susceptibility to gastric cancer. In this study, caspase 3 and 9 genes polymorphisms in patients with gastric cancer were examined.Methods: In a case - control study, 100 patients with gastric cancer and 100 healthy individuals were evaluated in the region rs4647601: G> T for caspase-3 and -1263 A> G gene promoter for caspase 9. DNA extraction was performed from whole blood according to manufacture protocol. RFLP-PCR method was carrying out for detection of caspase 3 and 9 genes genotype in two groups.Results: In this study, 143 men and 57 women were evaluated. All of them were selected from the same race and geographical area. The results indicated an increase of the mutant G allele in the control group, which leads to a decreasing in the incidence of gastric cancer (P caspase 9 polymorphism could be a useful marker in personal sensitivity to gastric cancer and help to cancer treatment and prevention process. It is concluded that caspase gene variation may be a diagnostic factor in the gastric cancer.

  18. Expression of livin protein in lung cancer and its relation with the expression of pro-caspase3 protein

    Directory of Open Access Journals (Sweden)

    Hongru LI

    2008-10-01

    Full Text Available Background and objective Livin is a novel inhibitor of apoptosis protein (IAP, recent studies showed it overexpresses in a variety of carcinomas including lung cancer and contributes much to the cancerous development. The objective of this study is to explore the expression of livin in tissues of lung cancer and its relationshipwith histological types, chemotherapy, Lymph node metastasis and to study its correlation with the expression of pro-caspase3 as well. Methods Expressions of Livin and caspase3 were detected by Western blot assay in lung cancer tissues as well as in controls. Results Livin was expressed in 15 of 27 lung cancer, significantly more than those in lung para-cancerous (1/5 or benign disease lung tissues (2/12 (P 0.05. Conclusion Livin are differently expressed in different histological types of lung cancer; High levels of livin expression do not relate to chemotherapy, lymph node metastasis (P >0.05. The levels of livin tends to be positively associated with those of accordingly pro-caspase3, it is presumed that livin could bind pro-caspase3 and suppress its activation.

  19. Caspase-3 activity predicts local recurrence in rectal cancer.

    NARCIS (Netherlands)

    Heer, P. de; Bruin, E.C. de; Klein-Kranenbarg, E.; Aalbers, R.I.; Marijnen, C.A.M.; Putter, H.; Bont, H.J. de; Nagelkerke, J.F.; Krieken, J.H.J.M. van; Verspaget, H.W.; Velde, C.J. van de; Kuppen, P.J.

    2007-01-01

    PURPOSE: Radiotherapy followed by total mesorectal excision surgery has been shown to significantly reduce local recurrence rates in rectal cancer patients. Radiotherapy, however, is associated with considerable morbidity. The present study evaluated the use of biochemical detection of enzymatic cas

  20. Expression of Livin, Survivin and Caspase-3 in human brain astrocytoma%Livin、Survivin和Caspase-3在星形细胞瘤中的表达

    Institute of Scientific and Technical Information of China (English)

    赵树鹏; 靳彩玲; 赵新利; 周文科

    2012-01-01

    目的 探讨Livin、Survivin和Caspase-3在星形细胞瘤中的表达.方法 采用免疫组织化学法检测50例星形细胞瘤标本及10例正常脑组织中Livin、Survivin和Caspase-3的表达,分析Livin、Survivin的表达与Caspase-3表达的关系.结果 Caspase-3在正常脑组织中的阳性表达率显著高于在星形细胞瘤(P<0.05),且在Ⅰ~Ⅱ级星形细胞瘤中的阳性表达率高于Ⅲ~Ⅳ级(P<0.05).Livin和Survivin在星形细胞瘤中的阳性表达率显著高于正常脑组织(P<0.05),且在Ⅲ~Ⅳ级星形细胞瘤中的阳性表达率明显高于Ⅰ~Ⅱ级(P<0.05).星形细胞瘤中Livin和Survivin 的表达与Caspase-3蛋白的表达均呈负相关(r分别为-0.520和-0.360,P<0.05).结论 Livin、Survivin和Caspase-3的表达可能与星形细胞瘤的发生及发展有关.%Objective To explore the expression of Livin, Survivin and Caspase-3 in human brain astrocytoma. Methods The expressions of Livin, Survivin and Caspase-3 in fifty astrocytomas and ten normal brain tissues were detected with immunohistochemical method,and the relationships of Caspase-3 with Livin,Survivin were analyzed. Results The positive rate of Caspase-3 in normal tissue was significantly higher than that in human brain astrocytoma (P <0. 05) ,it was higher in gradeⅠand II than in grade Ⅲ and Ⅳ(P <0. 05) . The positive rates of Livin and Survivin in human brain astrocytoma were significantly higher than those in normal brain tissue(P <0. 05) ,and they were higher in grade Ⅲ and IV than in grade I andII (P <0. 05) . The expressions of Livin and Survivin were negatively correlated with those of Caspase-3 in human brain astro-cytoma( r = - 0.520,r = - 0.360 ,P < 0.05). Conclusion Livin,Survivin and Caspase-3 may play an important role in incidence and development of human brain astrocytoma.

  1. EXPRESSIONS OF survivin, bax AND caspase-3 IN MISSED ABORTION PATIENTS%稽留流产病人survivin、bax及caspase-3的表达

    Institute of Scientific and Technical Information of China (English)

    张娟; 王蓁

    2011-01-01

    目的 探讨survivin、bax及caspase-3的表达与稽留流产的关系.方法 以35例稽留流产病人为病例组,30例正常妊娠者为对照组.采用免疫组织化学sP法检测绒毛细胞滋养细胞和合体滋养细胞及蜕膜组织蜕膜细胞中survivin、bax和caspase-3的表达.结果 病例组妊娠组织中survivin的表达明显低于对照组,bax及caspase-3的表达明显高于对照组(u=2.87~5.29,P<0.01).病例组survivin与bax及caspase-3的表达均呈负相关(r=-0.59、-0.71,P<0.05、0.01),bax与caspase-3的表达呈正相关(r=0.79,P<0.01).结论 survivin的低表达、bax及caspase-3的高表达在稽留流产的发生中起重要作用.%Objective To study the relationship of expressions of survivin, bax and caspase-3 with missed abortion.Methods Thirty-five missed abortion patients were assigned as study group, and 30 with normal pregnancy as controls. Immunohistochemistry technique was employed to detect the expressions of survivin, bax and caspase-3 in cytotrophoblast and syncytiotrophoblast of villi and decidual cells of decidua. Results Compared with that of the controls, the expression of survivin in the study group was significantly lower, while the expressions of bax and caspase-3 were higher (uc = 2. 87-5.29, P<0.01 ). In the study group, the survivin expression was negatively correlated wit h t he expressions of bax and caspase-3 (r = - 0. 59,0. 71; P< 0. 05,0.01), respectively, and the expression of bax was found to be positively correlated with caspase-3 (r=0. 79,P<0.01). Conclusion Low expression of survivin and high expressions of bax and caspase-3 play an important role in the occurrence of missed abortion.

  2. Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Ke-Wang Sun; Ying-Yu Ma; Tian-Pei Guan; Ying-Jie Xia; Chang-Ming Shao; Le-Gao Chen; Ya-Jun Ren

    2012-01-01

    AIM:To investigate the effect and mechanism of oridonin on the gastric cancer cell line HGC-27 in vitro.METHODS:The inhibitory effect of oridonin on HGC-27 cells was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay.After treatment with 10 μg/mL oridonin for 24 h and 48 h,the cells were stained with acridine orange/ethidium bromide.The morphologic changes were observed under an inverted fluorescence microscope.DNA fragmentation (a hallmark of apoptosis) and lactate dehydrogenase activity were examined using DNA ladder assay and lactate dehydrogenase-release assay.After treated with oridonin (0,1.25,2.5,5 and 10 μg/mL),HGC-27cells were collected for anexin V-phycoerythrin and 7-amino-actinomycin D double staining and tested by flow cytometric analysis,and oridonin-induced apoptosis in HGC-27 cells was detected.After treatment with oridonin for 24 h,the effects of oridonin on expression of Apaf-1,Bcl-2,Bax,caspase-3 and cytochrome c were also analyzed using reverse-transcript polymerase chain reaction (RT-PCR) and Western blotting.RESULTS:Oridonin significantly inhibited the proliferation of HGC-27 cells in a dose-and time-dependent manner.The inhibition rates of HGC-27 treated with four different concentrations of oridonin for 24 h (1.25,2.5,5 and 10 μg/mL) were 1.78% ± 0.36%,4.96% ±1.59%,10.35% ± 2.76% and 41.6% ± 4.29%,respectively,which showed a significant difference (P < 0.05).The inhibition rates of HGC-27 treated with oridonin at the four concentrations for 48 h were 14.77% ± 4.21%,21.57% ± 3.75%,30.31% ± 4.91% and 61.19% ±5.81%,with a significant difference (P < 0.05).The inhibition rates of HGC-27 treated with oridonin for 72 h at the four concentrations were 25.77% ± 4.85%,31.86% ± 3.86%,48.30% ± 4.16% and 81.80% ± 6.72%,with a significant difference (P < 0.05).Cells treated with oridonin showed typical apoptotic features with acridine orange

  3. Mechanism of mitochondrial respiratory control in caspase-3 induced positive feed back loop in apoptosis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Caspase-3 plays a central role in the execution of apoptosis. Besides many substrates of caspase-3, mitochondria seem to be one of the candidate targets in the apoptotic process. We evaluated the effects of caspase-3 on the isolated mitochondria in detail, and especially focused on the mechanism involved in mitochondrial functions, which were not fully assessed till now. Our results showed that recombinant caspase-3 induced the increase of superoxide production, the dissipation of mitochondrial membrane potential and rate increasing of mitochondrial state 4 respiration. Caspases inhibitor, z-VAD-fmk can inhibit these effects of caspase-3 on mitochondria. Bcl-xL and cyclosporin A were also shown to be able to inhibit these changes. These results suggested a possible mechanism in caspase-3 induced disruption of mitochondrial membrane barrier which formed a positive feedback loop in apoptosis.

  4. Caspase-3和bax在视网膜母细胞瘤中的表达%Expression of caspase-3 and bax gene protein in retinoblastoma

    Institute of Scientific and Technical Information of China (English)

    孙红; 惠延年; 王立勤; 马吉献

    2003-01-01

    目的: 观察凋亡及凋亡调控基因caspase-3/bax在视网膜母细胞瘤(retinoblastoma, RB)中的表达及与凋亡的相关性. 方法: 收集35例RB标本,对其分别进行caspase-3和bax免疫组织化学染色,观察表达情况及染色强度. 结果: Caspase-3及bax在未分化型(n=15)分别有较好的表达(11/12例),caspase-3及bax在分化型(n=20)中也有较好的表达(17/18例). 正常视网膜组织中无caspase-3及bax的表达. 结论: 凋亡在RB中是存在的,caspase-3及bax在RB的发生发展中起重要作用.

  5. QSAR Analysis for Some 1, 2-Benzisothiazol-3-one Derivatives as Caspase-3 Inhibitors by Stepwise MLR Method.

    Science.gov (United States)

    Hajimahdi, Zahra; Safizadeh, Fatemeh; Zarghi, Afshin

    2016-01-01

    Caspase-3 inhibitory activities of some 1, 2-benzisothiazol-3-one derivatives were modeled by quantitative structure-activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R(2)) of 0.91 and 0.59 for training and test groups, respectively. The quality of the model was evaluated by leave-one out (LOO) cross validation (LOO correlation coefficient, Q(2)) of 0.80). The results indicate that the descriptors related to the electronegativity, the atomic masses, the atomic van der Waals volumes and R--CX--R Atom-centered fragments play a more significant role in caspase-3 inhibitory activity. PMID:27642314

  6. Preclinical studies identify non-apoptotic low-level caspase-3 as therapeutic target in pemphigus vulgaris.

    Directory of Open Access Journals (Sweden)

    Camille Luyet

    Full Text Available The majority of pemphigus vulgaris (PV patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis. The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG, PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice as well as PV patients' biopsies (n=6. A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other

  7. Effect of protein kinase C alpha, caspase-3, and survivin on apoptosis of oral cancer cells induced by staurosporine

    Institute of Scientific and Technical Information of China (English)

    Yu-xia ZHANG; Shi-bin YU; Jing-ping OU-YANG; Dong XIA; Min WANG; Jin-rong LI

    2005-01-01

    Aim: To elucidate inhibition of protein kinase C α (PKC α) activity by staurosporine on apoptosis of oral cancer cell line tongue squamous cell carcinoma (TSCCa)cells and to clarify the role of survivin and caspase-3 in mediating apoptosis.Methods: TSCCa cell viability was measured by MTT assay after 100 nmol/L staurosporine treatment. Apoptotic cells were identified by using phase contrast microscopy, acridine orange/ethidium bromide staining, and flow cytometry. Level of PKC α and its subcellular location were investigated using Western blot analysis.Expression of survivin and caspase-3 were evaluated using immunocytochemistry.Results: Staurosporine significantly inhibited the cell viability of TSCCa cells in a dose- and time-dependent manner. Marked cell accumulation in G2/M phase was observed after 100 nmol/L staurosporine exposure for 6 h and 12 h. In addition,the percentage of apoptosis increased in a time-dependent manner, from 2.9% in control cultures to approximately 27.4% at 100 nmol/L staurosporine treatment for24 h. Staurosporine displayed difference in inhibitory efficacy between cytosolic and membrance-derived PKC α. The content of PKCα in membrane versus cytosol decreased quickly, from 0.45 in ethanol-treated control cultures to 0.18 after staurosporine exposure for 24 h (P<0.01). After treatment withstaurosporine, a time-dependent reduction of survivin and an activation of caspase-3 were observed in TSCCa cells. Conclusion: Staurosporine inhibited cell viability and promoted apoptosis in TSCCa cells. Inhibition of PKCα activity might be a potential mechanism for staurosporine to induce apoptosis in this cell line. The cleavage of survivin and activation of caspase-3 signaling pathway might contribute to PKC α inhibition-induced apoptosis.

  8. Expression of Caspase-3 in Dentate Gyrus of Adult Mice with Chronic Arsenic Poisoning%慢性砷中毒对小鼠齿状回caspase-3表达的影响

    Institute of Scientific and Technical Information of China (English)

    孙宝飞; 康朝胜; 余资江; 李玉飞

    2011-01-01

    目的 观察慢性砷中毒对成年小鼠齿状回神经元的形态学影响,探讨慢性砷中毒对成年小鼠脑部的神经毒性机制.方法 选取健康成年昆明小鼠80只,雌雄各半,分为对照组、高、中、低剂量砷染毒组,每组20只,高、中、低剂量砷染毒组分别以As03的1/5、1/10、1/40 LD50(9、4.5、1.1 mg/kg)灌胃染毒,对照组以蒸馏水灌胃,连续3个月.利用免疫组织化学和蛋白印迹技术观察小鼠齿状回部位神经元半胱氨酸蛋白水解酶-3(caspase-3)蛋白的表达.结果 免疫组化染色显示,与正常对照组比较,砷染毒组小鼠齿状回caspase-3阳性细胞明显增多(P<0.01),阳性反应产物平均光密度增高(P<0.01),同时蛋白印迹结果显示随砷中毒剂量的增加,小鼠齿状回caspase-3蛋白含量随之增加(P<0.01),各剂量组雌雄间各数据差异无统计学意义(P>0.05).结论 慢性砷中毒导致脑齿状回神经元细胞凋亡可能与齿状回细胞caspase-3增加有关,同时脑细胞caspase-3随砷浓度增加而增高.%Objective To investigate the effects of chronic arsenic exposure at different doses on dentate gyrus neurons in adult mice. Methods Eighty healthy adult Kunming mice, 20-22 g, were randomly divided into four groups: normal control group, low-dose group, moderate dose group and high dose group, 20 in each (10 males and 10 females in each group), each group was fed respectively with distilled water, 1/5 LD50, 1/10 LD50 and 1/40 LD50 As203 for 3 consecutive months, and adjusting the dose according to their weight changes. The content of arsenic in brain was determined. The expression of caspase-3 in dentate gyrus neurons was detected by western blotting and immunohistochemistry and analyzed by morphology methods. Results Compared with normal control group, groups of arsenic poisoning had been the main changes: caspase-3 immunohistochemical staining positive cells increased significantly (P0.05). Conclusion The obvious up-regulated

  9. CLINICOPATHOLOGICAL SIGNIFICANCE OF PTEN AND CASPASE-3 EXPRESSIONS IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    Xue-fei Yang; Yan Xin; Li-li Mao

    2008-01-01

    Objective To investigate the expressions of PTEN and Caspase-3 proteins in human breast carcinoma, and to evaluate their clinicopathological implications during the tumorigenesis and progression of breast cancer.Methods The expressions of PTEN and Caspase-3 proteins in 95 cases of breast cancer and 15 cases of benignbreast diseases were investigated immunohistochemically. Correlations between the expression of PTEN protein,Caspase-3 protein, and clinicopathological features of breast cancers were analyzed.Results The loss expression rate of PTEN protein in tumor tissues was significantly higher than that in benignbreast diseases (33.7% vs. 0, P 0. 05). In addition,the expression of PTEN protein had significantly positive correlation with the expression of Caspase-3 protein in breast cancer (P <0.01 ).Conclusion The combination detection of PTEN and Caspase-3 may serve as an important index to estimate the pathobiological behavior and pognosis of breast cancer.

  10. TRAIL, DR5 and caspase 3-dependent apoptosis in vessels of diseased human temporomandibular joint disc. An immunohistochemical study

    Directory of Open Access Journals (Sweden)

    C. Loreto

    2010-09-01

    Full Text Available To evaluate the apoptosis involvement in the angiogenesis as a self-limiting process in patients with temporomandibular joint (TMJ degenerated disc vessels, we assessed, by immunohistochemistry, the detection of TRAIL, its death receptor DR5 and caspase 3. TRAIL, its death receptor DR5 and caspase 3 expression were studied by immunohistochemistry in 15 TMJ discs displaced without reduction and in 4 unaffected discs. These apoptosis molecules were detected in the intima and media layers of newly formed vessels affected discs. In conclusion, vessels apoptosis activation in TMJ disc with ID could be regarded as a self-limiting process that try to leads to vessel regression; in this way an inhibition of angiogenic vessels may prove a key strategy in limiting pathological angiogenesis, by cutting off blood supply to tumors, or by reducing harmful inflammation.

  11. Pfaffosidic Fraction from Hebanthe paniculata Induces Cell Cycle Arrest and Caspase-3-Induced Apoptosis in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Tereza Cristina da Silva

    2015-01-01

    Full Text Available Hebanthe paniculata roots (formerly Pfaffia paniculata and popularly known as Brazilian ginseng show antineoplastic, chemopreventive, and antiproliferative properties. Functional properties of these roots and their extracts are usually attributed to the pfaffosidic fraction, which is composed mainly by pfaffosides A–F. However, the therapeutic potential of this fraction in cancer cells is not yet entirely understood. This study aimed to analyze the antitumoral effects of the purified pfaffosidic fraction or saponinic fraction on the human hepatocellular carcinoma HepG2 cell line. Cellular viability, proliferation, and apoptosis were evaluated, respectively, by MTT assay, BrdU incorporation, activated caspase-3 immunocytochemistry, and DNA fragmentation assay. Cell cycle was analyzed by flow cytometry and the cell cycle-related proteins were analyzed by quantitative PCR and Western blot. The cells exposed to pfaffosidic fraction had reduced viability and cellular growth, induced G2/M at 48 h or S at 72 h arrest, and increased sub-G1 cell population via cyclin E downregulation, p27KIP1 overexpression, and caspase-3-induced apoptosis, without affecting the DNA integrity. Antitumoral effects of pfaffosidic fraction from H. paniculata in HepG2 cells originated by multimechanisms of action might be associated with cell cycle arrest in the S phase, by CDK2 and cyclin E downregulation and p27KIP1 overexpression, besides induction of apoptosis through caspase-3 activation.

  12. Bcl-2/caspase 3 mucosal imbalance favors T cell resistance to apoptosis in dogs with inflammatory bowel disease.

    Science.gov (United States)

    Jergens, A; Young, J; Moore, D; Wang, C; Hostetter, J; Augustine, L; Allenspach, K; Schmitz, S; Mosher, C

    2014-04-15

    Canine idiopathic inflammatory bowel disease (IBD) is believed to result from complex interplay between genetic, microbial, and immunologic factors. Abnormal cell death by apoptosis may result in the persistence of activated intestinal T cells that contribute to mucosal inflammation and clinical severity. To test this hypothesis, we investigated the mucosal expression of pro- and anti-apoptotic proteins in different intestinal compartments and their association with inflammatory indices in dogs with IBD. Apoptosis of lamina propria (LP) T cells in duodenal, ileal, and colonic tissues in control and IBD dogs was analyzed by caspase 3/Bcl-2 immunohistochemistry and TUNEL assays. Densities and distributions of LP caspase 3 and Bcl-2 cells were correlated to histopathologic lesions and the clinical activity index (CIBDAI). Compared to control tissues, IBD dogs had significantly (Pdogs, there were significantly greater numbers of Bcl-2 cells at the apical and basilar villus in the duodenum as compared to the colon and to the apical and basilar villus in the ileum (Pdogs compared with controls (Pdogs and the CIBDAI (Pdogs with IBD. Mucosal imbalance of Bcl-2/caspase 3 expression favors T cell resistance to apoptosis which may contribute to T cell accumulation and chronic intestinal inflammation, similar to human IBD.

  13. Acteoside Binds to Caspase-3 and Exerts Neuroprotection in the Rotenone Rat Model of Parkinson's Disease

    Science.gov (United States)

    Wang, Ying; He, Xiao; Zhao, Yuwu

    2016-01-01

    Parkinson’s disease (PD) is characterized by the progressive degeneration of the dopaminergic neurons in the substantia nigra (SN) region. Acteoside has displayed multiple biological functions. Its potential role against PD and the underlying signaling mechanisms are largely unknown. Here, we showed that oral administration of acteoside significantly attenuated parkinsonism symptoms in rotenone-induced PD rats. Further, acteoside inhibited rotenone-induced α-synuclein, caspase-3 upregulation and microtubule-associated protein 2 (MAP2) downregulation in PD rats. The molecular docking and molecular dynamics (MD) simulation results indicated that acteoside may directly bind to and inhibit caspase-3. Acteoside formed hydrogen bonds with at least six residues of caspase-3: ThrA177, SerA178, GlyA238, SerB339, ArgB341 and TrpB348. In addition, a pi-pi interaction was formed between acteoside and caspase-3’s HisA237, which might further stabilize the complex. MD simulation results demonstrated that the binding affinity of the caspase-3-acteoside complex was higher than that of caspase-3 and its native ligand inhibitor. Together, we show that acteoside binds to caspase-3 and exerts neuroprotection in the rotenone rat model of PD. PMID:27632381

  14. Caspase-3 and survivin expression in pediatric neuroblastoma and their roles in apoptosis

    Institute of Scientific and Technical Information of China (English)

    王家祥; 郑树

    2004-01-01

    Background Neuroblastoma, one of the common tumors in children, possesses the feature of natural regression that might be related to apoptosis caspase-3 and survivin are believed to respectively induce and inhibit apoptosis. We investigated the expression of caspase-3 and survivin in pediatric neuroblastoma and the role that these genes played in apoptosis.Methods The expression of caspase-3 and survivin in pediatric neuroblastoma tissue samples was detected using in situ hybridization, ter mintuesal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and immunohistochemical staining. The role that these genes played in apoptosis was then evaluated.Results A converse correlation was observed between the expression of survivin and caspase-3. When survivin was expressed at high levels in neuroblastoma samples, caspase-3 expression was downregulated, and the apoptotic index decreased simultaneously.Conclusion There is a converse correlation between the expression of caspase-3 and the expression of survivin in neuroblastoma cells, indicating that caspase-3 might induce apoptosis, and survivin may inhibit this process.

  15. Bcl-2、Caspase-3、Survivin与银屑病的研究进展%Research Progress of Bcl-2,Caspase-3,Survivin and Psoriasis

    Institute of Scientific and Technical Information of China (English)

    秦兰英; 邢卫斌; 叶文静

    2013-01-01

    Bcl-2, caspase-3, survivin genes are important genes in the process of apoptosis, playing important roles in psoriasis keratinocyte apoptosis. Bcl-2 is a kind of apoptosis suppressor gene, which can prolong life period of cells. Caspase-3 can promote cell apoptosis. Survivin is one of the strongest anti-apopto-sis factor discovered so far,which can inhibit cell apoptosis and promote cell proliferation. Psoriasis lesions contain less Bcl-2, more caspase-3 and survivin. Interaction between them may result in the shortened life period and fastened apoptosis in psoriasis keratinocy,and cells proliferation is obvious,which maintains the benign proliferative state of psoriasis epidermis.%Bcl-2、caspase-3、survivin是细胞凋亡过程中重要的调控基因,在银屑病角质形成细胞凋亡中,三种蛋白起着非常重要的作用.Bcl-2是一种凋亡抑制基因,可延长细胞的生存期,caspase-3可促进细胞凋亡,survivin是迄今发现最强的凋亡抑制因子,具有抑制细胞凋亡、促进细胞增殖的作用,在银屑病皮损中Bcl-2呈低表达,caspase-3、survivin呈高表达,三种蛋白的相互作用,可能导致银屑病角质形成细胞的生存期缩短、凋亡速度加快,同时细胞增殖明显,从而维持银屑病表皮的良性增生状态.

  16. Hepatitis B Virus X Protein Sensitizes Primary Mouse Hepatocytes to Ethanol- and TNF-α-Induced Apoptosis by a Caspase-3-Dependent Mechanism

    Institute of Scientific and Technical Information of China (English)

    Won-Ho Kim; Feng Hong; Barbara Jaruga; Zhengsheng Zhang; Saijun Fan; T. Jake Liang; Bin Gao

    2005-01-01

    It is well-documented that alcohol drinking together with hepatitis viral infection accelerates liver injury; however the underlying mechanisms remain unknown. In this paper, we demonstrated that primary hepatocytes from transgenic mice overexpressing hepatitis B virus X protein (HBX) were more susceptible to ethanol- and TNF-α-induced apoptotic killing. Compared to normal control mouse hepatocytes, ethanol and/or TNF-α treatment led to a significant increase in reactive oxygen species, mitochondrial permeability transition, cytochrome C release,caspase-3 activity, and poly (ADP-ribose) polymerase degradation in hepatocytes from HBX transgenic mice.Blocking caspase-3 activity antagonized ethanol- and TNF-α-induced apoptosis in primary hepatocytes from HBX transgenic mice. Taken together, our findings suggest that HBX sensitizes primary mouse hepatocytes to ethanoland TNF-α-induced apoptosis by a caspase-3-dependent mechanism, which may partly explain the synergistic effects of alcohol consumption and hepatitis B virus infection on liver injury.

  17. Inhibitory effects of hyperoside on lung cancer by inducing apoptosis and suppressing inflammatory response via caspase-3 and NF-κB signaling pathway.

    Science.gov (United States)

    Lü, Ping

    2016-08-01

    Lung cancer is one of the most common malignancies in the world and the most threatening cancer to human health. Effective therapies based on non-cytotoxic induction in cell inflammation- and apoptosis-responsive pathways are thought to represent a novel advance in treating lung cancer. However, many studies are still required for effective pharmaceutical to induce cancer cell death. Hyperoside (Hyp) is the chief component of some Chinese herbs with anticancer effect. Here, we investigated the role of hyperoside on the lung cancer cell migration, invasion, inflammation and apoptosis in A549 cells in vitro and xenografts of nude mice in vivo. A549 cells were injected in nude mice for establishing tumors. Our results showed that hyperoside suppressed the proliferation, migration and invasion. Additionally, apoptosis was induced by hyperoside via Bcl-2/Bax-regulated Caspase3 activation, suggesting that hyperoside might inhibit lung cancer progression through apoptotic induction. And also, hyperoside could prevent progression and development of lung cancer through inactivating NF-κB signaling pathway. Subsequently, inflammatory cytokines, including TNF-α, IL-6, IL-1β and IL-18, were down-regulated significantly. And animal experiments also illustrated that the tumor volume and weight were reduced after hyperoside administration, which was also through apoptosis induction and prevention of inflammation response by Caspase3 activation and NF-κB inactivation. To our knowledge, it was the first time to evaluate the effects of hyperoside on preventing progression and development of lung cancer in vivo and in vitro to assess the possible therapies of hyperoside as a future approach for preventing lung cancer progression and development. PMID:27470358

  18. Developing a powerful In Silico tool for the discovery of novel caspase-3 substrates: a preliminary screening of the human proteome

    Directory of Open Access Journals (Sweden)

    Ayyash Muneef

    2012-01-01

    Full Text Available Abstract Background Caspases are a family of cysteinyl proteases that regulate apoptosis and other biological processes. Caspase-3 is considered the central executioner member of this family with a wide range of substrates. Identification of caspase-3 cellular targets is crucial to gain further insights into the cellular mechanisms that have been implicated in various diseases including: cancer, neurodegenerative, and immunodeficiency diseases. To date, over 200 caspase-3 substrates have been identified experimentally. However, many are still awaiting discovery. Results Here, we describe a powerful bioinformatics tool that can predict the presence of caspase-3 cleavage sites in a given protein sequence using a Position-Specific Scoring Matrix (PSSM approach. The present tool, which we call CAT3, was built using 227 confirmed caspase-3 substrates that were carefully extracted from the literature. Assessing prediction accuracy using 10 fold cross validation, our method shows AUC (area under the ROC curve of 0.94, sensitivity of 88.83%, and specificity of 89.50%. The ability of CAT3 in predicting the precise cleavage site was demonstrated in comparison to existing state-of-the-art tools. In contrast to other tools which were trained on cleavage sites of various caspases as well as other similar proteases, CAT3 showed a significant decrease in the false positive rate. This cost effective and powerful feature makes CAT3 an ideal tool for high-throughput screening to identify novel caspase-3 substrates. The developed tool, CAT3, was used to screen 13,066 human proteins with assigned gene ontology terms. The analyses revealed the presence of many potential caspase-3 substrates that are not yet described. The majority of these proteins are involved in signal transduction, regulation of cell adhesion, cytoskeleton organization, integrity of the nucleus, and development of nerve cells. Conclusions CAT3 is a powerful tool that is a clear improvement over

  19. Diosgenin-induced apoptosis dependent on caspase-3 pathway in MGC-803 cells%薯蓣皂苷元诱导人胃低分化粘液腺癌MGC-803细胞凋亡依赖caspase-3途径

    Institute of Scientific and Technical Information of China (English)

    何忠梅; 张显涛; 王铁成

    2011-01-01

    Objective AM To study the antitunormechanian ofD io for hum an gastric adenocarcinan a MGC-803 cells.M eth- ods MGC-803 eells viability and the effect of caspase-3 inhibitor(DEVD-CHO ) on Dirinduced apoptosis were measured by MTT assay .Annexin V expression in M GC-803 cellm an biane was assessed by a flow cytom eter.The effect of D io on DNA in M GC-803 cells was measured using APO-BRDU Kit.Caspase-3 acttriy was detected by a enzyme link inmune detector. Results Dio inhibited MGC-803 cells growth in dose-and tin e-dependent manners M GC-803 cells treated w ifh D io showed typical characteristics of apopto- sis:Annexin V-FITC+/PI-and DNA fragn entation .Caspase-3 inM GC-803 cellswas activated by D io .Caspase-3 inhib itor,A c-DEVD -CH0 partilly inhibited D io-induced apoptosis. Conclusion D io-induced apoptosis is partially dependent on caspase-3 pathway in M GC-803 cells.%目的 研究薯蓣皂苷元(Diosgenin,Dio)诱导人胃低分化粘液腺癌(MGC-803)细胞死亡的机理.方法 四唑蓝(MTT)比色法检测Dio对肿瘤细胞生长抑制作用;流式细胞仪检测Dio对MGC-803细胞膜Annexin V表达的影响;APO-BRDU试剂盒检测Dio对MGC-803细胞DNA的影响;酶联免疫分析仪测定Dio对MGC-803细胞caspase-3活力和caspase-3抑制剂Ac-DEVD-CHO对Dio诱导细胞死亡的影响.结果 一定浓度范围内Dio对MGC-803细胞增殖有剂量、时间依赖性抑制作用;经Dio处理后Armexin V-FTTC+/PI-的凋亡细胞逐渐增多;随Dio剂量增大,DNA断裂碎片增多,凋亡细胞也逐渐增多.Dio作用细胞24 h,明显增强细胞caspase-3的活性.caspase-3抑制剂Ac-DEVD-CHO能部分抑制MGC-803细胞的凋亡.结论 Dio通过caspase-3途径诱导人胃低分化粘液腺癌细胞凋亡.

  20. Expression of caspase-3 gene in apoptotic HL-60 cell and different human tumor cell lines

    International Nuclear Information System (INIS)

    Objective: To research the expression of caspase-3 gene in the apoptotic and the control HL-60 cells and in the different human tumor cell lines. Methods: Caspase-3 mRNA in the control and γ-radiation-induced apoptotic HL-60 cells, and in the 6 types of human tumor cell lines, was analysed by Northern blot. Results: The caspase-3 gene transcript was more highly expressed in leukemia cells HL-60, CEM, K562 and neuroblastoma SH-SY5Y than in cervical adenocarcinoma HeLa and breast carcinoma MCF7, and more highly in the radiation-induced apoptotic HL-60 than in the control HL-60 cells. Conclusion: The high level of expression of caspase-3 may aid the efforts to understand the tumor cell sensitivity to radiation, apoptosis and its inherent ability to survive

  1. Role of caspase-3 in neuronal apoptosis after experimental intracerebral hemorrhage in rats

    International Nuclear Information System (INIS)

    Objective: To investigate the relationship between the expression of caspase-3 and neuronal apoptosis after experimental intracerebral hemorrhage (ICH) in rats. Methods: ICH rat models were prepared with stereotactic infusion of autologous blood into caudate nucleus. TUNEL method of staining was used to detect apoptotic cells and immunohistochemistry technic was applied to detect caspase-3 expression in cerebral tissue of the sacrificed animals at 6h, 12h, 24h, 48h, 72h, 1w, 2w after the intracerebral blood infusion (n=5 in each group). Five rats underwent sham operation with intracerebral infusion of normal saline. Results: At 6h, TONEL positive cells could be demonstrated with peak at 72h and could still be shown at 2w. Apoptotic cells were not seen in the sham-operation group. Caspase-3 expression was significant at 6h with peak at 24h and was significantly higher than those in the sham group (P<0.05). Expression of caspase-3 was positively correlated with the number of TUNEL positive cells (r=0.547, P<0.01). Conclusion: The cellular (neuronal) apoptosis after experimental intracerebral hemorrhage was closely related to the expression of caspase-3, suggesting possible beneficial effect of selective caspase-3 inhibitors. (authors)

  2. Truncation of Caspase-3 on Phosphorylated tau%Caspase-3对磷酸化tau蛋白截断作用的研究

    Institute of Scientific and Technical Information of China (English)

    段萍; 李夏春; 邓艳秋; 张蕲; 王建枝

    2005-01-01

    磷酸化tau是阿尔茨海默病(Alzheimer's disease,AD)的特征性病理改变--神经原纤维缠结(neurofibrillarytangles,NFTs)的主要组成部分.最近的研究显示:NFT存在Glu391和Asp421位点被截断的tau片段,然而,tau蛋白的磷酸化是否会影响caspase-3的切割作用尚不清楚.首先纯化重组tau蛋白,然后利用蛋白激酶A(PKA)、钙/钙调蛋白依赖性蛋白激酶Ⅱ(CaMKⅡ)和乳鼠海马组织抽提液对其磷酸化,并用caspase-3对不同磷酸化的tau蛋白进行切割,比较caspase-3对非磷酸化和不同蛋白激酶磷酸化的tau蛋白的切割特性.结果显示:除切割非磷酸化tau蛋白外,caspase-3在体外可分别切割被PKA、CaMKⅡ和乳鼠海马组织抽提液磷酸化的tau蛋白.这一结果提示:磷酸化修饰的tau蛋白仍然是caspase-3的底物.

  3. Phycocyanin for protecting brain ischemia-reperfusion injury and its effect on the expression of Caspase-3 mRNA

    Institute of Scientific and Technical Information of China (English)

    Xuewei Yang; Yunliang Guo; Hongbing Chen

    2006-01-01

    3.34), (23.11 ±± 1.89), (10.75±2.63)/visual field]than in the control group [(94.38 ±8.28), (108.81 ±16.11), (140.88 ±14.47), (98.13 ±11.31), (81.03 ±9.31),(31.22±8.86), (16.06±5.96)/visual field] ( P < 0.05); and those at central ischemic area were also significantly lower in the phycocyanin-treated group [(33.86±4.01), (39.51 ±3.46), (50.96±2.53), (43.07±4.09),(36.25±3.72), (9.03±3.87), (4.91 ±5.59)/visual field ]than in the control group [(51.35±2.13), (54.87±3.42),(61.77±4.94), (55.69±6.06), (49.01 ±5.73), (12.84±3.37), (7.32±2.39)/visual field](P < 0.05).CONCLUSION: Phycocyanin can obviously improve the neurologic function, reduce the size of brain infarction and down-regulate the expression of Caspase-3 mRNA of rats with ischemia and reperfusion injury,thus protect brain.

  4. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    Science.gov (United States)

    Mirzayans, Razmik; Andrais, Bonnie; Kumar, Piyush; Murray, David

    2016-05-11

    It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and triggers growth arrest (e.g., through premature senescence) in some genetic backgrounds; such growth arrested cells remain viable, secrete growth-promoting factors, and give rise to progeny with stem cell-like properties. In addition, caspase 3, which is best known for its role in the execution phase of apoptosis, has been recently reported to facilitate (rather than suppress) DNA damage-induced genomic instability and carcinogenesis. This observation is consistent with an earlier report demonstrating that caspase 3 mediates secretion of the pro-survival factor prostaglandin E₂, which in turn promotes enrichment of tumor repopulating cells. In this article, we review these and related discoveries and point out novel cancer therapeutic strategies. One of our objectives is to demonstrate the growing complexity of the DNA damage response beyond the conventional "repair and survive, or die" hypothesis.

  5. Correlation between neuronal injury and Caspase-3 after focal ischemia in human hippocampus

    Institute of Scientific and Technical Information of China (English)

    戚基萍; 吴爱萍; 王德生; 王立峰; 李淑霞; 徐凤琳

    2004-01-01

    Background Cerebral ischemia is a significant clinical problem, and cerebral ischemia usually causes neuron injury such as apoptosis in various brain areas, including hippocampus. Cysteinyl aspartate-specific protease (Caspases) are fundamental factors of apoptotic mechanism. Caspase-3 inhibitors show effect in attenuating brain injury after ischemia. But all the results were from animal models in research laboratories. This study aimed at investigating the correlation between the change of ischemic neuronal injury and Caspase-3 post-ischemia in human hippocampus. Methods We selected and systematized 48 post-mortem specimens from 48 patients, who died of cerebral infarction. Morphological change was firstly analyzed by observing hematoxyline/eosin-staining hippocampal sections. The expression of Caspase-3 was investigated using the methods of in situ hybridization and immunohistochemistry. Terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick-end labeling (TUNEL) method was used to clarify the involvement of Caspase-3 in neuron death. The loss of MAP 2 (MAP-2) was applied to judging the damaged area and degree of neuronal injury caused by ischemia.Results In the CA1 sector of hippocampus, Caspase-3 immunostaining modestly increased at 8 hours [8.05/high-power field (hpf)], dramatically increased at 24 hours (24.85/hpf), decreased somewhat after 72 hours. Caspase-3 mRNA was detectable at 4 hours (6.75/hpf), reached a maximum at 16 hours (17.60/hpf), faded at 72 hours. TUNEL-positive cells were detectable at 24 hours (10.76/hpf), markedly increased at 48-72 hours. The loss of MAP-2 was obviously detected at 4 hours, progressed significantly between 24 and 72 hours; MAP-2 immunoreactivity was barely detectable at 72 hours. Before 72 hours, the Caspase-3 evolution was related with the upregulation of TUNEL and the loss of MAP-2. The positive correlation between Caspase-3 mRNA and TUNEL was significant at the 0.05 level (correlation

  6. Hepatitis C virus induced a novel apoptosis-like death of pancreatic beta cells through a caspase 3-dependent pathway.

    Directory of Open Access Journals (Sweden)

    Qian Wang

    Full Text Available Epidemiological and experimental studies have suggested that Hepatitis C virus (HCV infection is associated with the development of type 2 diabetes. Pancreatic beta cell failure is central to the progression of type 2 diabetes. Using virus infection system, we investigate the influence of HCV infection on the fate of the insulinoma cell line, MIN6. Our experiments demonstrate that the HCV virion itself is indispensable and has a dose- and time-dependent cytopathic effect on the cells. HCV infection inhibits cell proliferation and induces death of MIN6 cells with apoptotic characteristics, including cell surface exposure of phosphatidylserine, decreased mitochondrial membrane potential, activation of caspase 3 and poly (ADP-ribose polymerase, and DNA fragmentation in the nucleus. However, the fact that HCV-infected cells exhibit a dilated, low-density nucleus with intact plasma and nuclear membrane indicates that a novel apoptosis-like death occurs. HCV infection also causes endoplasmic reticulum (ER stress. Further, HCV RNA replication was detected in MIN6 cells, although the infection efficiency is very low and no progeny virus particle generates. Taken together, our data suggest that HCV infection induces death of pancreatic beta cells through an ER stress-involved, caspase 3-dependent, special pathway.

  7. Astragalus saponins induce apoptosis in human gastric adenocarcinoma cells via a caspase 3-dependent pathway

    Institute of Scientific and Technical Information of China (English)

    JOSHUA K S Ko; Kathy K W Auyeung

    2008-01-01

    Objective Many Asian countriea including China, Japan and Korea have very high incidence of gastric cancer, in which about 42 % cases occur in mainland China. The precise targets and underlying mechanisms are not well understood. Our previous study revealed that Astragalus saponins (AST) showed promising effects on the suppression of the growth of HT-29 human colon cancer cells and tumor xenograft by inhibiting cell proliferation and promoting apoptosis. In the present study, we investigated the anti-carcinogenic effects of AST in AGS human gastric adenocarcinoma cells and attempted to elucidate the underlying mechanisms. Methods Growth inhibition of AGS cells was determined by using the MTT viability test. Involvement of different members of the apoptotic cascade and other growth-related factors was explored by assessment of their protein expression using Western blot analysis. Distribution of cells in different phases of the cell cycle was assessed by flow eytometry. Results Our data indicate that AST induced growth-inhibition and apoptosis in AGS cells by activating caspase 3 with subsequent poly (ADP-ribose) polymerase (PARP) cleavage. Cell cycle arrest at the G2/M phase had been observed in AST-treated AGS cells. The anti-proliferative effect of AST was associated with modulation of eydin B1 and p21. We then demonstrate that AST could downregulate the expression of VEGF, of which interaction with its receptors is important for angiogenesis during tumor formation. Conclusions Our findings suggest that AST is an effective agent in gastric cancer treatment by inducing cell cycle arrest and apoptosis, of which anti-angiogenesis could be an alternative mode of action.

  8. Mesenchymal stromal cells protect against caspase 3-mediated apoptosis of CD19(+) peripheral B cells through contact-dependent upregulation of VEGF.

    Science.gov (United States)

    Healy, Marc E; Bergin, Ronan; Mahon, Bernard P; English, Karen

    2015-10-15

    The immune suppressive and anti-inflammatory capabilities of bone marrow-derived mesenchymal stromal cells (MSCs) represent an innovative new tool in regenerative medicine and immune regulation. The potent immune suppressive ability of MSC over T cells, dendritic cells, and natural killer cells has been extensively characterized, however, the effect of MSC on B cell function has not yet been clarified. In this study, the direct effect of MSC on peripheral blood B cell function is defined and the mechanism utilized by MSC in enhancing B cell survival in vitro identified. Human MSC supported the activation, proliferation, and survival of purified CD19(+) B cells through a cell contact-dependent mechanism. These effects were not mediated through B cell activating factor or notch signaling. However, cell contact between MSC and B cells resulted in increased production of vascular endothelial growth factor (VEGF) by MSC facilitating AKT phosphorylation within the B cell and inhibiting caspase 3-mediated apoptosis. Blocking studies demonstrated that this cell contact-dependent effect was not dependent on signaling through CXCR4-CXCL12 or through the epidermal growth factor receptor (EGFR). These results suggest that direct cell contact between MSC and B cells supports B cell viability and function, suggesting that MSC may not represent a suitable therapy for B cell-mediated disease. PMID:26076727

  9. Angiotensin II-Induced Apoptosis of Human Umbilical Vein Endothelial Cells was Inhibited by Blueberry Anthocyanin Through Bax- and Caspase 3-Dependent Pathways.

    Science.gov (United States)

    Du, Jian; Leng, Jiyan; Zhang, Li; Bai, Guangxin; Yang, Di; Lin, Huan; Qin, Junjie

    2016-01-01

    BACKGROUND This study aimed to investigate the inhibitory effect of blueberry anthocyanin (BBA) on Angiotensin II (Ang II)-induced apoptosis of human umbilical vein endothelial cells (HUVECs), and its regulation mechanisms involving Bax and Caspase 3. MATERIAL AND METHODS HUVECs were first treated by different concentrations of Ang II (10-9, 10-8, 10-7, 10-6, 10-5, and 10-4 mol/L) and BBA (80, 40, 20, 10, 5, and 2.5 μg/ml). After 24 h and 48 h of treatment, MTT was performed to detect the viability of HUVECs. Then, HUVECs were randomly divided into the Ang II group (10-6 mol/L Ang II) and Ang II + BBA group (10-6 mol/L Ang II and 20 μg/ml BBA), and the apoptosis rate was detected by flow cytometry. Western blot analysis was performed to detect the expression of Bax and Caspase 3 in these 2 groups. During the whole process, HUVECs without any treatments served as the control group. RESULTS The cell viability of HUVECs was significantly reduced by Ang II in a time- and concentration-dependent manner (P<0.05), while BBA significantly elevated the cell viability of HUVECs until a peak of 20.0 μg/ml. The apoptosis rate of HUVECs was significantly increased by Ang II (P<0.01) and reduced by the BBA intervention (P<0.05). Ang II significantly elevated the expression of Bax and Caspase 3 in HUVECs, but their expression was significantly inhibited by BBA. CONCLUSIONS BBA increased cell viability and reduced apoptosis rate of HUVECs induced by Ang II through Bax- and Caspase 3-dependent pathways. PMID:27616275

  10. Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats

    OpenAIRE

    Liu, Guangyi; Tao WANG; WANG, TINGING; Song, Jinming; Zhou, Zhen

    2013-01-01

    Neuron apoptosis is known to mediate a change of ethology following cerebral ischemia-reperfusion injury in rats. Additionally, Bcl-2, Bax and caspase-3 proteins may exert a significant effect on neuron injury. The aim of this study was to investigate the role, mechanism of action and clinical significance of these proteins in neuron apoptosis and functional impairment following cerebral ischemia-reperfusion injury in rats. Sixty male healthy adult Wistar rats were randomly assigned into cont...

  11. STEREOLOGIC ESTIMATION OF KI-67, CASPASE 3 AND GSTP1 POSITIVE CELLS IN PROSTATE LESIONS

    Directory of Open Access Journals (Sweden)

    Luis Santamaría

    2011-05-01

    Full Text Available Cell proliferation, caspase 3 and pi-form of glutathione S transferase (GSTP1 were evaluated in prostate carcinoma (PCA, proliferative inflammatory atrophy (PIA and prostate intraepithelial neoplasia (PIN. Forty biopsies were classified as: without morphological lesions (controls: CTR, PIA, PIN and PCA. Ki67, caspase3 and GSTP1 were immunostained. The following estimates were performed: Numerical densities of Ki67+ cells (NVEPKi67, of all epithelial cells (NVEPtotal and of GSTP1+ cells (NVEPGSTP1; labelling index for Ki67 (LIKi67; volume fraction to caspase 3 positive tissue (VVcaspase 3 and of GSTP1 positive tissue (VVGSTP1. ANOVA was performed to compare the groups. NVEPtotal and NVEPKi67 were increased in PIA. LIKi67 was only increased in PCA. VVcaspase 3 was decreased in PIN and PCA. VVEGSTP1 was decreased in PCA. In our results PIA lacks the characteristics of a premalignant lesion. The result may be explained by the use of unbiased quantitative methods, the inadequate definition of PIA and the scarce inflammation observed in the samples with PIA included in this study.

  12. Levofloxacin increases the effect of serum deprivation on anoikis of rat nucleus pulposus cells via Bax/Bcl-2/caspase-3 pathway.

    Science.gov (United States)

    Yang, Si-Dong; Bai, Zhi-Long; Zhang, Feng; Ma, Lei; Yang, Da-Long; Ding, Wen-Yuan

    2014-12-01

    Levofloxacin, a fluoroquinolone, is a widely-used and effective antibiotic. However, various adverse side effects are associated with levofloxacin. The purpose of this study was to further explore the effects of levofloxacin on rat nucleus pulposus cells (NPCs). Inverted phase-contrast microscopy, flow cytometry and caspase-3 activity assays were used and revealed that serum deprivation induced apoptosis, which was markedly increased by levofloxacin in a dose-dependent manner. Simultaneously, levofloxacin decreased cell binding to type II collagen (COL2). Thus, levofloxacin-induced apoptosis exhibits characteristics of anoikis, the process by which cell death is triggered by separation from the extracellular matrix, which contains COL2. Furthermore, real-time quantitative RT-PCR was used to further confirm that levofloxacin downregulates COL2 expression in a dose-dependent manner. At last, western blot was used to find that levofloxacin increased the ratio of Bax/Bcl-2 and active caspase-3 in a dose-dependent manner. Levofloxacin therefore increases the effects of serum deprivation on anoikis by downregulating COL2 in rat NPCs in vitro via Bax/Bcl-2/caspase-3 pathway. This research provides a novel insight into the mechanisms of levofloxacin-induced toxicity and may potentially lead to a better understanding of the clinical effects of levofloxacin, especially in terms of intervertebral disc degeneration. PMID:25224805

  13. Hepatitis B Virus X Protein Sensitizes Primary Mouse Hepatocytes to Ethanol-and TNF-α-Induced Apoptosis by a Caspase-3-Dependent Mechanism

    Institute of Scientific and Technical Information of China (English)

    Won-HoKim; FengHong; BarbaraJaruga; ZhengshengZhang; SaijunFan; T.JakeLiang; BinGao

    2005-01-01

    It is well-documented that alcohol drinking together with hepatitis viral infection accelerates liver injury; however the underlying mechanisms remain unknown. In this paper, we demonstrated that primary hepatocytes from transgenic mice overexpressing hepatitis B virus X protein (HBX) were more susceptible to ethanol- and TNF-α-induced apoptotic killing. Compared to normal control mouse hepatocytes, ethanol and/or TNF-α treatment led to a significant increase in reactive oxygen species, mitochondrial permeability transition, cytochrome C release, caspase-3 activity, and poly (ADP-ribose) polymerase degradation in hepatocytes from HBX transgenic mice. Blocking caspase-3 activity antagonized ethanol- and TNF-α-induced apoptosis in primary hepatocytes from HBX transgenic mice. Taken together, our findings suggest that HBX sensitizes primary mouse hepatocytes to ethanoland TNF-α-induced apoptosis by a caspase-3-dependent mechanism, which may partly explain the synergistic effects of alcohol consumption and hepatitis B virus infection on liver injury. Cellular & Molecular Immunology. 2005;2(1):40-48.

  14. Novel anti-apoptotic microRNAs 582-5p and 363 promote human glioblastoma stem cell survival via direct inhibition of caspase 3, caspase 9, and Bim.

    Directory of Open Access Journals (Sweden)

    Desiree Hunt Floyd

    Full Text Available Glioblastoma is the most common and lethal primary brain tumor. Tumor initiation and recurrence are likely caused by a sub-population of glioblastoma stem cells, which may derive from mutated neural stem and precursor cells. Since CD133 is a stem cell marker for both normal brain and glioblastoma, and to better understand glioblastoma formation and recurrence, we looked for dys-regulated microRNAs in human CD133+ glioblastoma stem cells as opposed to CD133+ neural stem cells isolated from normal human brain. Using FACS sorting of low-passage cell samples followed by microRNA microarray analysis, we found 43 microRNAs that were dys-regulated in common in three separate CD133+ human glioblastomas compared to CD133+ normal neural stem cells. Among these were several microRNAs not previously associated with cancer. We then verified the microRNAs dys-regulated in glioblastoma using quantitative real time PCR and Taqman analysis of the original samples, as well as human GBM stem cell and established cell lines and many human specimens. We show that two candidate oncogenic microRNAs, miR-363 and miR-582-5p, can positively influence glioblastoma survival, as shown by forced expression of the microRNAs and their inhibitors followed by cell number assay, Caspase 3/7 assay, Annexin V apoptosis/fluorescence activated cell sorting, siRNA rescue of microRNA inhibitor treatment, as well as 3'UTR mutagenesis to show luciferase reporter rescue of the most successful targets. miR-582-5p and miR-363 are shown to directly target Caspase 3, Caspase 9, and Bim.

  15. Glutamine supplementation prevents exercise-induced neutrophil apoptosis and reduces p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression.

    Science.gov (United States)

    Lagranha, Claudia J; Hirabara, Sandro M; Curi, Rui; Pithon-Curi, Tania C

    2007-01-01

    We have previously shown that a single session of exercise induces DNA fragmentation, mitochondrial membrane depolarization, increases expression of pro-apoptotic genes (bax and bcl-xS) and decreases expression of anti-apoptotic genes (bcl-xL) in rat neutrophils. Glutamine supplementation had a protective effect in the apoptosis induced by a single session of exercise. The mechanism involved in the effect of single session of exercise to induce apoptosis was investigated by measuring expression of p53 and caspase 3 and phosphorylation of p38 mitogen-activated protein kinases (MAPK) and cJun NH(2)-terminal kinase (JNK) in neutrophils from rats supplemented or not with glutamine. Exercise was carried out on a treadmill for 1 h and the rats were killed by decapitation. Neutrophils were obtained by intraperitoneal (i.p.) lavage with PBS, 4 h after injection of oyster glycogen solution. Glutamine supplementation (1g per Kg b.w.) was given by gavage 1 h before the exercise session. Gene expression and protein phosphorylation were then analyzed by reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. A single session of exercise increased p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression. Glutamine supplementation partially prevented the increase in p38 MAPK and JNK phosphorylation and p53 expression, and fully abolished the increase in caspase 3 expression. Thus, neutrophil apoptosis induced by a single session of exercise is accompanied by increased p53 and caspase 3 expression and p38 MAPK and JNK phosphorylation. Glutamine supplementation prevents these effects of exercise and reduces apoptosis. PMID:17542038

  16. Glutamine supplementation prevents exercise-induced neutrophil apoptosis and reduces p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression.

    Science.gov (United States)

    Lagranha, Claudia J; Hirabara, Sandro M; Curi, Rui; Pithon-Curi, Tania C

    2007-01-01

    We have previously shown that a single session of exercise induces DNA fragmentation, mitochondrial membrane depolarization, increases expression of pro-apoptotic genes (bax and bcl-xS) and decreases expression of anti-apoptotic genes (bcl-xL) in rat neutrophils. Glutamine supplementation had a protective effect in the apoptosis induced by a single session of exercise. The mechanism involved in the effect of single session of exercise to induce apoptosis was investigated by measuring expression of p53 and caspase 3 and phosphorylation of p38 mitogen-activated protein kinases (MAPK) and cJun NH(2)-terminal kinase (JNK) in neutrophils from rats supplemented or not with glutamine. Exercise was carried out on a treadmill for 1 h and the rats were killed by decapitation. Neutrophils were obtained by intraperitoneal (i.p.) lavage with PBS, 4 h after injection of oyster glycogen solution. Glutamine supplementation (1g per Kg b.w.) was given by gavage 1 h before the exercise session. Gene expression and protein phosphorylation were then analyzed by reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. A single session of exercise increased p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression. Glutamine supplementation partially prevented the increase in p38 MAPK and JNK phosphorylation and p53 expression, and fully abolished the increase in caspase 3 expression. Thus, neutrophil apoptosis induced by a single session of exercise is accompanied by increased p53 and caspase 3 expression and p38 MAPK and JNK phosphorylation. Glutamine supplementation prevents these effects of exercise and reduces apoptosis.

  17. Human telomerase activity regulation

    OpenAIRE

    Wojtyla, Aneta; Gladych, Marta; Rubis, Blazej

    2010-01-01

    Telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells. Thus, it has become a very promising target for anticancer therapy. The cell proliferative potential can be limited by replication end problem, due to telomeres shortening, which is overcome in cancer cells by telomerase activity or by alternative telomeres lengthening (ALT) mechanism. However, this multisubunit enzymatic complex can be regulated at various levels, including expression control b...

  18. Effects of Berberine on the Expression of Caspase-3 Gene in Human Cervical Cancer Hela Cell%小檗碱对宫颈癌Hela细胞Caspase-3基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    张丽萍; 张志军; 程萍; 肖劲松

    2010-01-01

    日的:研究小檗碱(berberlne)对人宫颈癌Hela细胞体外增殖、凋亡及凋亡相关基因Caspase-3表达的影响.方法:WIT法测定不同浓度(0~40 μmol/L)berberine干预Hela细胞后的凋亡率;RT-PCR检测Caspase-3 mRNA表达水平.结果:berberine呈剂量-时间依赖方式抑制Hela细胞的生长(P<0.01);且随着berberine浓度增高,细胞凋亡增加,Caspase-3 mRNA表达上调(P<0.001).结论:berberine抑制人宫颈癌Hela细胞生长、诱导凋亡的机制可能与上调Caspase-3 mRNA表达有关.

  19. Caspase-3在大鼠中枢神经系统的表达研究%Study on the expression of caspase-3 in central nervous system of rat

    Institute of Scientific and Technical Information of China (English)

    陈雪梅; 杜显刚; 官鹏; 谭志巍; 王亚琴

    2005-01-01

    目的研究caspase-3在大鼠中枢神经系统的表达及其意义.方法用western-blot方法对出生1天和3个月SD大鼠的大脑皮质、中脑和小脑组织的caspase-3进行半定量测定.结果出生1天大鼠脑的caspase-3表达较高,出生3个月大鼠脑的caspase-3表达较低.结论caspase-3在中枢神经系统的发育成熟过程中对神经元的凋亡起着关键性作用.

  20. Phorbol Esters from Jatropha Meal Triggered Apoptosis, Activated PKC-δ, Caspase-3 Proteins and Down-Regulated the Proto-Oncogenes in MCF-7 and HeLa Cancer Cell Lines

    OpenAIRE

    Syahida Ahmad; Norhani Abdullah; Ehsan Oskoueian

    2012-01-01

    Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs). The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7) and cervical (HeLa) cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell li...

  1. Nerve growth factor downregulates c-jun mRNA and Caspase-3 in striate cortex of rats after transient global cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Dacheng Jin; Tiemin Wang; Xiubin Fang

    2006-01-01

    BACKGROUND: Immediate early gene (LEG) c-jun is a sensitive marker for functional status of nerve cells.Caspase-3 is a cysteine protease,which is a critical regulator of apoptosis. The effect of exogenous nerve growth factor (NGF) on the expression of c-jun Mrna and Caspase-3 protein in striate cortex of rats with transient global cerebral ischemia/reperfusion (IR) is unclear.OBJECTIVE: To study the protective effect of exogenous NGF on the brain of rats with transient global cerebral IR and its effecting pathway by observing the expression of c-jun Mrna and Caspase-3 protein.DESIGN: Randomized controlled animal trial.SETTING: Department of Neural Anatomy, Institute of Brain,China Medical University.MATERTALS:Eighteen healthy male SD rats of clean grade, aged 1 to 3 months, with body mass of 250 to 300 g, were involved in this study. NGF was provided by Dalian Svate Pharmaceutical Co.,Ltd, c-jun in situ hybridization detection kit, Caspase-3 antibody and SABC kit were purchased from Boster Biotechnology Co. ,Ltd.METHODS: This trial was carried out in the Department of Neural Anatomy, Institute of Brain, China Medical University during September 2003 to April 2005. ①Experimental animals were randomized into three groups with 6 in each: sham-operation group,IR group and NGF group. ②After the rats were anesthetized,the bilateral common carotid arteries and right external carotid arteries of rats were bluntly dissected and bilateral common carotid arteries were clamped for 30 minutes with bulldog clamps. Reperfusion began after buldog clamps were removed. Normal saline of 1mL and NGF (1×106 U/L) of 1 Ml was injected into the common carotid artery of rats via right external carotid arteries in the IR group and NGF group respectively.The injection was conducted within 30 minutes, and then the right external carotid arteries were ligated. In the sham-operation group, occlusion of bilateral common carotid arteries and administration of drugs were phosphate buffer

  2. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia

    Directory of Open Access Journals (Sweden)

    R.L. Figueira

    2016-01-01

    Full Text Available Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC. This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group: 1 preterm control (PTC, 2 preterm ventilated (PTV, 3 preterm asphyxiated (PTA, 4 preterm asphyxiated and ventilated (PTAV, 5 term control (TC, 6 term ventilated (TV, 7 term asphyxiated (TA, and 8 term asphyxiated and ventilated (TAV. We measured body, brain, and intestine weights and respective ratios [(BW, (BrW, (IW, (BrW/BW and (IW/BW]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus and intestine (jejunum/ileum tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP. IW was lower in the TA than in the other terms (P<0.05, and the IW/BW ratio was lower in the TA than in the TAV (P<0.005. PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex and TA (cortex/hippocampus (P<0.005. I-FABP was higher in PTAV (P<0.005 and TA (ileum (P<0.05. I-FABP expression was increased in PTAV subgroup (P<0.0001. Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers.

  3. Evaluation of Bcl-2, Bcl-x and Cleaved Caspase-3 in Malignant Peripheral Nerve Sheath Tumors and Neurofibromas

    Directory of Open Access Journals (Sweden)

    KARIN S. CUNHA

    2013-11-01

    Full Text Available AIMS: To study the expression of Bcl-2, Bcl-x, as well the presence of cleaved caspase-3 in neurofibromas and malignant peripheral nerve sheath tumors. The expression of Bcl-2 and Bcl-x and the presence of cleaved caspase 3 were compared to clinicopathological features of malignant peripheral nerve sheath tumors and their impact on survival rates were also investigated. MATERIALS AND METHODS: The evaluation of Bcl-2, Bcl-x and cleaved caspase-3 was performed by immunohistochemistry using tissue microarrays in 28 malignant peripheral nerve sheath tumors and 38 neurofibromas. Immunoquantification was performed by computerized digital image analysis. CONCLUSIONS: Apoptosis is altered in neurofibromas and mainly in malignant peripheral nerve sheath tumors. High levels of cleaved caspase-3 are more common in tumors with more aggressive histological features and it is associated with lower disease free survival of patients with malignant peripheral nerve sheath tumors.

  4. EFFECTS OF ANTISENSE OLIGODEOXYNUCLEOTIDES ON EXPRESSION OF CASPASE-3 IN Γ-RADIATION INDUCED APOPTOTIC HL-60 CELLS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To study the inhibitory effects of caspase-3 mRNA antisense oligodeoxynucleotides (ASODN) on expressions of caspase-3 and it's mRNA in γ-radiation induced apoptotic HL-60 cells, and screen the effective ASODN. Methods ASODN-1 and ASODN-2 targeting 5′-noncoding region and initial translation region of caspase-3 mRNA were respectively designed, synthesized and introduced into HL-60 cells by means of liposome-mediated transfection followed by 10Gy γ-radiation exposures. TUNEL assay was conducted to investigate the morphologic change and apoptotic percentage of HL-60 cells 18 h later. Immunocytochemical staining and one step RT-PCR were respectively performed to detect the expressions of caspase-3 and it's mRNA. Mismatched oligodeoxynucleotide (MODN) transfected and un-transfected HL-60 cells were taken as control. Results TUNEL assay found that the apoptotic percentages in ASODN-1 and ASODN-2 groups were significantly reduced compared with the control groups (P<0.01) when the final concentration of both ASODNs was ≥3μmol/L. Immunocytochemistry showed that caspase-3 positive cell percentages were reduced but the average gray values increased significantly compared with the control groups (P<0.01). RT-PCR showed expressions of caspase-3 mRNA was decreased after ASODN transfection. Furthermore, ASODN-1 proved more effective in inhibiting HL-60 cell apoptosis than ASODN-2 (P<0.01). Conclusion Caspase-3 mRNA ASODNs can prevent HL-60 cells from apoptosis induced by γ-radiation and reduce expression of caspase-3 and its mRNA. These effects are dose dependent in a certain range.

  5. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor...... of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings...... of a regulatory effect of the PFC on the emotional control of our actions....

  6. Expression of Caspase-3 in gastric tissue of rats with precancerous lesions treated by different traditional Chinese herbs%中药不同组方对胃癌前病变模型大鼠胃黏膜细胞Caspase-3表达的影响

    Institute of Scientific and Technical Information of China (English)

    李岩; 王垂杰

    2012-01-01

    [Objective]To explore the effects of different traditional Chinese herbs on gastritic morphological and histological changes in rats with chronic atrophic gastritis with dysplasia. [Methods] The animal models of chronic atrophic gastritis with precancerous lesions were made by using chemical substances,and then devided into different groups for therapy. The expression of Caspase-3 in gastric tissue was detected by microplate reader for enzyme activity. [Results]Either in prevention or treatment groups, the expressions of Caspase-3 were significantly increased by the intervention of TCM and western medicine, P < 0. 05 when compared with the model group. Jianpi Huayu Decoction group was better than other groups. [Conclusion] TCM with the function of strengthening spleen-qi and smoothing blood stagnationCJianpi Huayu) strengthening spleen-qi(Jianpi) ,and smoothing blood stagnationC Huayu) played an important role in the prevention and treatment of the gastric epithelial dysplasia. The mechanism might be contributed to the increase of the Caspase-3 expression in gastric tissue. TCM with the function of Jianpi Huayu were better than the other two treating principles(Jianpi and Huayu) in the treatment of atrophic gastritis with precancerous lesions.%[目的]探讨不同组方中药对慢性萎缩性胃炎伴不典型增生大鼠胃黏膜形态、组织学改变的影响.[方法]采用化学药物刺激的方法复制慢性萎缩性胃炎癌前病变动物模型并分组用药物干预.用酶标仪检测各组大鼠胃组织中Caspase-3表达的变化.[结果]无论是预防组还是治疗组,中药、西药的干预均可以使Caspase-3的表达增加,与模型大鼠比较差异有统计学意义(P<0.05);健脾化瘀方要优于其他药物.[结论]各组中药均可以通过增加胃组织中Caspase-3的表达达到对胃癌前病变的治疗作用,其中健脾化瘀方治疗萎缩性胃炎癌前病变的作用要明显优于健脾益气方、活血化瘀方.

  7. Immunoexpression of cleaved caspase-3 shows lower apoptotic area indices in lip carcinomas than in intraoral cancer

    Science.gov (United States)

    LEITE, Ana Flávia Schueler de Assumpção; BERNARDO, Vagner Gonçalves; BUEXM, Luisa Aguirre; da FONSECA, Eliene Carvalho; da SILVA, Licínio Esmeraldo; BARROSO, Danielle Resende Camisasca; LOURENÇO, Simone de Queiroz Chaves

    2016-01-01

    ABSTRACT Objective This study aimed to evaluate apoptosis by assessing cleaved caspase-3 immunoexpression in hyperplastic, potentially malignant disorder (PMD), and malignant tumors in intraoral and lower lip sites. Material and Methods A retrospective study using paraffin blocks with tissues from patients with inflammatory fibrous hyperplasia (IFH), actinic cheilitis, oral leukoplakia, lower lip and intraoral squamous cell carcinoma (SCC) was performed. The tissues were evaluated by immunohistochemical analysis with anti-cleaved caspase-3 antibody. Apoptotic area index was then correlated with lesion type. Results From 120 lesions assessed, 55 (46%) were cleaved caspase-3-positive. The SCC samples (n=40) had the highest apoptotic area indices (n=35; 87.5%). Significant differences were detected between SCCs and PMDs (p=0.0003), as well as SCCs and IFHs (p=0.001), regarding caspase-3 immunopositivity. Carcinomas of the lower lip had lower apoptotic area indices than intraoral cancer (p=0.0015). Conclusions Cleaved caspase-3 immunoexpression showed differences in oral SCCs and PMDs and demonstrated a distinct role of apoptosis in carcinogenesis of intraoral and lower lip cancer. In future, the expression of cleaved caspase-3 with other target molecules in oral cancer may be helpful in delineating the prognosis and treatment of these tumors. PMID:27556207

  8. Correlation of the expression of survivin and caspase-3 proteins in juvenile laryngeal papilloma%儿童喉乳头状瘤组织中Survivin及Caspase-3蛋白表达及相关性研究

    Institute of Scientific and Technical Information of China (English)

    汪武; 周远大; 何海霞

    2009-01-01

    目的:研究儿童喉乳头状瘤中survivin及caspase-3蛋白的表达及其相互关系.方法:应用免疫组化方法对儿童喉乳头状瘤组织、儿童声带小结组织及正常的喉黏膜组织中survivin及caspase-3的表达进行检测并进行相关性分析.结果:42例儿童喉乳头状瘤组织中survivin阳性表达率为57.14%, 明显高于儿童声带小结组(P<0.01)和正常黏膜组(P<0.01);42例喉乳头状瘤组织中caspase-3阳性表达率为26.19%, 显著高于儿童声带小结组和正常喉黏膜组 (P<0.01);Spearman相关性分析显示, 儿童喉乳头状瘤中survivin与caspase-3的表达呈显著负相关(r=-0.682, P<0.01).结论:Survivin的高表达和caspase-3的低表达可能在儿童喉乳头状瘤发生发展过程中起着重要作用.%AIM: To investigate correlation between the expression of survivin and caspase-3 proteins in juvenile laryngeal papilloma. METHODS: The expression of survivin and caspase-3 proteins were detected with immunohistochemial method in 43 cases of juvenile laryngeal papilloma, 25 vocal nodules and 25 normal laryngeal mucosa. RESULTS: The positive rates of survivin protein in juvenile laryngeal papilloma were 57.14% and higher than that in voeal nodules (P<0.01)and the normal laryngeal moeusa (P<0.01). And the Caspase-3 protein positive rate was 26.19% in juvenile laryngeal papilloma and lower than that in voeal nodules and the normal laryngeal mucosa (P<0.01).There was a significant negative correlation between the expression of survivin and caspase-3 in juvenile laryngeal papilloma. CONCLUSION: The abnormal expression of survivin and caspase-3 may play important role in the pathogenesis of juvenile laryngeal papilloma.

  9. The effect of adenosine A1 receptor agonist and antagonist on p53 and caspase 3, 8, and 9 expression and apoptosis rate in MCF-7 breast cancer cell line.

    Science.gov (United States)

    Dastjerdi, Mehdi Nikbakht; Rarani, Mohammad Zamani; Valiani, Ali; Mahmoudieh, Mohsen

    2016-07-01

    Adenosine receptor family especially A1 type is expressed in breast cancer cells in which P53 and caspase genes are wild-type. The aim of this study was to investigate the correlation between A1 receptor and either cell apoptosis or proliferation and also to recognize the relationship between this receptor and P53 and the expression of caspases 3, 8 and 9 in MCF-7 cell line. MCF-7 cells were treated intermittently with A1 receptor agonist N6-Cyclopentyladenosine (CPA) and A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) in different times to measure the expression of p53, caspase 3, 8 and 9 besides apoptosis and survival rate. Our findings indicated that DPCPX significantly induced apoptosis in MCF-7 cells while the cell viability was reduced specially 72 h after the treatment and the expression of p53 gene and caspase expressions was dramatically up-regulated. On the other hand, CPA increased the cell viability and reduced apoptosis in MCF-7 cells. Our results indicated a significant down-regulation in the MCF-7 mRNA expression of p53 and caspases 3, 8 and 9. Furthermore, DPCPX induced p53 and caspase 3, 8 and 9 expressions that consequently promotes the cell apoptosis in MCF-7 cells. Therefore, DPCPX can be considered as an anti-cancer drug. PMID:27651810

  10. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia

    Science.gov (United States)

    Figueira, R.L.; Gonçalves, F.L.; Simões, A.L.; Bernardino, C.A.; Lopes, L.S.; Castro e Silva, O.; Sbragia, L.

    2016-01-01

    Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (Pmechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers. PMID:27356106

  11. Caspase-3在roscovitine诱发PC12细胞凋亡中发挥重要作用%Caspase-3 plays a required role in PC12 cell apoptotic death induced by roscovitine

    Institute of Scientific and Technical Information of China (English)

    高建新; 周玉琴; 张茹华; 马雪莲; 刘克敬

    2005-01-01

    我们已证实周期蛋白激酶(cyclin-dependent kinases)cdk2、cdc2和cdk5抑制剂roscovitine诱导PC12细胞凋亡.本实验应用caspase-3免疫细胞化学与hoechst 33342荧光化学双标、MTT比色法细胞活性测定和Western blot方法,研究了caspase-3在roscovitine所致PC12细胞凋亡中的作用.结果显示,roscovitine(50μmol/L)处理PC12细胞12 h,细胞核染色质凝缩及核碎片形成,同时胞浆中出现caspase-3阳性标志,caspase-3阳性细胞占细胞总数的42%.非特异性caspases抑制剂Z-VAD-FMK(50 μmol/L)和caspase-3特异性抑制剂Z-DEVD-FMK(100 μmol/L)可部分降低roscovitine所致的细胞死亡,使细胞存活率分别由29.03%(roscovitine)增至58.06%(Z-VAD-FMK+roscovitine)和45.16%(Z-DEVD-FMK+roscovitine);用单克隆non-erythroid α-spectrin抗体检测roscovitine处理组细胞匀浆提取液,表明caspase-3裂解的特异性spectrin 120 kDa蛋白产物较对照组显著增加.提示细胞凋亡成分caspases参与roscovitine所致的细胞凋亡,其中caspase-3发挥重要作用.

  12. Garlic ((Allium sativum)) Fresh Juice Induces Apoptosis in Human Oral Squamous Cell Carcinoma: The Involvement of Caspase-3, Bax and Bcl-2.

    Science.gov (United States)

    Farhadi, Farrokh; Jahanpour, Salar; Hazem, Kameliya; Aghbali, Amirala; Baradran, Behzad; Vahid Pakdel, Seyyed Mahdi

    2015-01-01

    Background and aims. There is no report on the apoptotic impact of Allium sativum L.(Garlic) on the oral squamous cell carcinoma (KB); hence, this study was designed to survey the apoptotic effects of garlic fresh juice (GFJ) on the KB cells. Materials and methods. MTTassay (MicrocultureTetrazolium Assay) was carried out to evaluate the cytotoxicity of GFJ on KB cells. Furthermore, TUNEL(Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling)and DNA fragmentation tests were performed to determine if GFJ is able to induce apoptosis in KB cells. Also a standard kit was used to assess caspase-3 activity in KB cells. Also western blotting was employed to evaluate the effect of GFJ on Bax:Bcl-2 ratio. Results. Significant cytotoxic effects were observed for the minimum used concentration (1μg/mL) as calculated to be 77.97±2.3% for 24 h and 818±3.1% for 36h of incubation (P < 0.001). Furthermore, TUNEL and DNA fragmentation tests corroborated the apoptosis inducing activity of GFJ. Consistently, after treating KB cells with GFJ(1μg/mL), caspase-3 activity and Bax:Bcl-2 ratio were raised by 7.3±0.6 and (P <0.001) folds, respectively. Conclusion. The results of this study advanced that GFJ induces apoptosis in the KB cells through increasing caspase-3 activity and Bax:Bcl2 ratio which could be attributed to its organo-sulfurcomponents. PMID:26889365

  13. Osteocyte expression of caspase-3, COX-2, IL-6 and sclerostin are spatially and temporally associated following stress fracture initiation.

    Science.gov (United States)

    Wu, Andy C; Kidd, Lisa J; Cowling, Nicholas R; Kelly, Wendy L; Forwood, Mark R

    2014-01-01

    Stress fractures (SFxs) are debilitating injuries and exact mechanisms that initiate their repair incompletely understood. We hypothesised that osteocyte apoptosis and expression of cytokines and proteins such as sclerostin, VEGF, TGF-β, COX-2 and IL-6 were early signalling events to facilitate the formation of periosteal woven bone and recruitment of osteoclast precursors to the site of remodelling. A SFx was created in the right ulna of mature female wistar rats using cyclic end loading. Rats were killed 1, 4 and 7 days after loading (n=5 per group). Standard histological staining was used to examine SFx morphology and immunohistochemistry to detect the localisation of these proteins and in situ hybridisation to detect mRNA along the SFx line or gene expression to quantify the target genes. Unloaded ulnae served as controls. The labelling index of caspase-3, COX-2 and IL-6 was significantly elevated in the region of SFxs at all time points compared with controls (Pwoven bone. These data reinforce the involvement of osteocyte apoptosis in the healing of fatigue damage in bone, and demonstrate that local regulation of sclerostin, COX-2 and IL-6 are important signalling events associated with new bone formation and SFx remodelling. PMID:25228984

  14. 舒肝解郁胶囊对抑郁模型大鼠海马神经元凋亡及脑组织caspase-3蛋白表达的影响%Effect of Shuganjieyu capsules on neuronal apoptosis in hippocampal CA3 area and the expression of caspase-3 in the brain of rat depression model

    Institute of Scientific and Technical Information of China (English)

    傅锦华; 刘勇; 王清勇; 赵靖平

    2012-01-01

    Objective: To evaluate the effect of "Shuganjieyu" (SGJY) capsules on neuronal apoptosis in hippocampal CA3 area and the expression of caspase-3 in the brain of rat depression model, and to investigate its pharmacological mechanisms in depression treatment. Methods: Adult male SD rats were randomly divided into 4 groups: a control, a model, a SGJY and a fluoxetine group. The rat depression model was established under chronic unpredictable mild stress (CUMS) and separate feeding. The behaviors were measured by open-field test, sucrose consumption and forced swimming test. We observed the neuronal morphology structure and neuronal apoptosis in the hippocampal CA3 area. We detected the rat caspase-3 expression level of medial prefrontal cortex ( mPFC) and hippocampal CA3 area by Western blot. Results: After 21-day stress, compared with the model group, spontaneous activity and sucrose consumption and preference percentage of the rats in the SGJY group significantly increased, while the immobility time in forced swimming test, the number of apoptotic cells and the protein levels of caspase-3 significantly reduced (P0.05). Conclusion: SGJY capsules can reduce the depression symptoms of CUMS and help to increase hippocampal neuron generation, survival and neogenesis, reduce the protein levels of caspase-3, and reverse neurocyte apoptosis in the rat depression model with the same efficacy as fluoxetine.%目的:研究舒肝解郁胶囊对抑郁模型大鼠海马神经元凋亡及脑组织caspase-3蛋白表达的影响,探讨其治疗抑郁症的作用机制.方法:将雄性SD大鼠随机分为正常对照组、模型组、舒肝解郁组和氟西汀组四组;采用慢性轻度不可预见性应激(CUMS)结合孤养建立抑郁大鼠模型,并用旷场、糖水消耗和强迫游泳试验评价大鼠的行为学改变,观察海马CA3区神经元的形态结构及凋亡,应用蛋白印记分析检测脑组织caspase-3蛋白的表达.结果:与模型组比较,舒肝解郁

  15. TAF15 and the leukemia-associated fusion protein TAF15-CIZ/NMP4 are cleaved by caspases-3 and -7

    International Nuclear Information System (INIS)

    Caspases are central players in proteolytic pathways that regulate cellular processes such as apoptosis and differentiation. To accelerate the discovery of novel caspase substrates we developed a method combining in silico screening and in vitro validation. With this approach, we identified TAF15 as a novel caspase substrate in a trial study. We find that TAF15 was specifically cleaved by caspases-3 and -7. Site-directed mutagenesis revealed the consensus sequence 106DQPD/Y110 as the only site recognized by these caspases. Surprisingly, TAF15 was cleaved at more than one site in staurosporine-treated Jurkat cells. In addition, we generated two oncogenic TAF15-CIZ/NMP4-fused proteins which have been found in acute myeloid leukemia and demonstrate that caspases-3 and -7 cleave the fusion proteins at one single site. Broad application of this combination approach should expedite identification of novel caspase-interacting proteins and provide new insights into the regulation of caspase pathways leading to cell death in normal and cancer cells.

  16. L-carvone induces p53, caspase 3 mediated apoptosis and inhibits the migration of breast cancer cell lines.

    Science.gov (United States)

    Patel, Pinaki B; Thakkar, Vasudev R

    2014-01-01

    A wide variety of natural compounds exists that possesses significant cytotoxic as well as chemopreventive activity through induction of apoptosis in cancer cells. The antiproliferative and apoptotic effect of L-carvone, an active component of spearmint (Mentha spicata) was studied on breast cancer (MCF 7 and MDA MB 231) and normal (MCF 10A) cell lines, and insight into its mechanism of action was attained. L-carvone inhibited proliferation of MCF 7 (IC50 1.2 mM) and MDA MB 231 cells (IC50 1.0 mM) and inhibited the migration of breast cancer cell lines. L-carvone induced apoptosis as observed by nuclei fragmentation and the presence of apoptotic bodies in DAPI, AnnexinV/propidium iodide, and TUNEL assays. L-carvone exposure arrested MCF 7 cells in S phase of the cell cycle. DNA damage caused by L-carvone was apparent from the increased tail moment in COMET assay, which could be induced by an increase in ROS that was measured using a fluorescence probe. Glutathione levels were also increased. The increased level of p53, Bad, cleaved caspase 3, and cleaved PARP explained p53 and caspase-mediated apoptosis. PMID:24611509

  17. Fluoroquinolones cause changes in extracellular matrix, signalling proteins, metalloproteinases and caspase-3 in cultured human tendon cells

    International Nuclear Information System (INIS)

    Antimicrobial therapy with fluoroquinolones can be associated with tendinitis and other tendon disorders as an adverse reaction associated with this class of antimicrobials. Here we investigated aspects of the mechanism of quinolone-induced tendotoxicity in human tenocytes focussing mainly on the question whether fluoroquinolones may induce apoptosis. Monolayers of human tenocytes were incubated with ciprofloxacin or levofloxacin at different concentrations (0, 3, 10, 30 and 100 mg/L medium) for up to 4 days. Ultrastructural changes were studied by electron microscopy, and alterations in synthesis of specific proteins were determined using immunoblotting. At concentrations, which are achievable during quinolone therapy, 3 mg ciprofloxacin/L medium significantly decreased type I collagen; similar changes were observed with 3 mg ciprofloxacin or 10 mg levofloxacin/L medium for the β1- integrin receptors. Effects were intensified at higher concentrations and longer incubation periods. Cytoskeletal and signalling proteins, such as activated shc or erk 1/2, were significantly reduced by both fluoroquinolones already at 3 mg/L. Furthermore, time- and concentration-dependent increases of matrix metalloproteinases as well as of the apoptosis marker activated caspase-3 were found. Apoptotic changes were confirmed by electron microscopy: both fluoroquinolones caused typical alterations like condensed material in the nucleus, swollen cell organelles, apoptotic bodies and bleb formation at the cell membrane. Our results provide evidence that besides changes in receptor and signalling proteins apoptosis has to be considered as a final event in the pathogenesis of fluoroquinolone-induced tendopathies

  18. Caspase-3-dependent apoptosis of citreamicin ε-induced heLa iells Is associated with reactive oxygen species generation

    KAUST Repository

    Liu, Lingli

    2013-07-15

    Citreamicins, members of the polycyclic xanthone family, are promising antitumor agents that are produced by Streptomyces species. Two diastereomers, citreamicin ε A (1) and B (2), were isolated from a marine-derived Streptomyces species. The relative configurations of these two diastereomers were determined using NMR spectroscopy and successful crystallization of citreamicin ε A (1). Both diastereomers showed potent cytotoxic activity against HeLa (cervical cancer) and HepG2 (hepatic carcinoma) cells with IC 50 values ranging from 30 to 100 nM. The terminal deoxynucleotidyl transferase dUTP nick-end labeling assay confirmed that citreamicin ε A (1) induced cellular apoptosis, and Western blot analysis showed that apoptosis occurred via activation of caspase-3. The 2,7-dichlorofluorescein diacetate assay indicated that citreamicin ε substantially increased the intracellular concentration of reactive oxygen species (ROS). To confirm the hypothesis that citreamicin ε induced apoptosis through an increase in the intracellular ROS concentration, the oxidized products, oxicitreamicin ε A (3) and B (4), were obtained from a one-step reaction catalyzed by Ag 2O. These products, with a reduced capacity to increase the intracellular ROS concentration, exhibited a significantly weakened cytotoxicity in both HeLa and HepG2 cells compared with that of citreamicin ε A (1) and B (2). © 2013 American Chemical Society.

  19. P53-mediated cell cycle arrest and apoptosis through a caspase-3-independent, but caspase-9-dependent pathway in oridonin-treated MCF-7 human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Qiao CUI; Jing-hua YU; Jin-nan WU; Shin-ichi TASHIRO; Satoshi ONODERA; Mutsuhiko MINAMI; Takashi IKEJIMA

    2007-01-01

    Aim: To study the caspase-3-independent mechanisms in oridonin-induced MCF-7 human breast cancer cell apoptosis in vitro. Methods: The viability of oridonin-treated MCF-7 cells was measured by MTT (thiazole blue) assay. Apoptotic cells with condensed nuclei were visualized by phase contrast microscopy. Nucleoso-mal DNA fragmentation was assayed by agarose gel electrophoresis. The apoptotic ratio was determined by lactate dehydrogenase assay. Cell cycle alternation and mitochondrial membrane potential were measured by flow cytometric analysis. Bax, Bcl-2, caspase-3, caspase-9, heat shock protein (Hsp)90, p53, p-p53, p21, Poly (ADP-ribose) polymerase (PARP), and the inhibitor of caspase-activated Dnase (ICAD) protein expressions were detected by Western blot analysis. Results: Oridonin inhibited cell growth in a time- and dose-dependent manner. Cell cycle was altered through the upregulation of p53 and p21 protein expressions. Pan-caspase inhibitor Z-VAD-fmk and calpain inhibitor Ⅱ both decreased cell death ratio. Nucleosomal DNA fragmentation and the downregulation of △ψmit were detected in oridonin-induced MCF-7 cell apoptosis, which was involved in a postmitochondrial caspase-9-dependent pathway. Decreased Bcl-2 and Hsp90 expression levels and increased Bax and p21 expression levels were positively correlated with elevated levels of phosphorylated p53 phosphorylation. Moreover, PARP was partially cleaved by calpain rather than by capase-3. Conclusion: DNA damage provoked alternations in the mitochondrial and caspase-9 pathways as well as p53-mediated cell cycle arrest, but was not related to caspase-3 activity in oridonin-induced MCF-7 cells.

  20. Effects of acupoint versus non-acupoint electroacupuncture on cerebral cortical neuronal Bcl-2,Bax and caspase-3 expression in a rat model of focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Junming Fan; Yongshu Dong; Xia Huang; Hongxia Zhang

    2008-01-01

    each group for specimen preparation. A brain tissue block comprising the frontal lobe and the occipital lobe was cut into five coronal sections of equal-thickness. Neuronal apoptosis was detected by the terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling technique. Expression levels of caspase-3, Bcl-2 and Bax were evaluated by immunohistochemistry.RESULTS: Compared with the sham-operated group, the model group exhibited significantly decreased Bcl-2 expression (P 0.05).CONCLUSION: Electroacupuncture by acpoint selection can up-regulate Bcl-2 expression and concomitantly inhibit caspase-3 and Bax expression, inhibiting neuronal poptosis in rat cerebral cortex following cerebral ischemia/reperfusion.

  1. 瘢痕疙瘩组织中Livin、Smac、Caspase-3的表达及其相关性%Expression of Livin, Smac and Caspase-3 in keloids and their correlation

    Institute of Scientific and Technical Information of China (English)

    张远贵; 段冬; 李攀登; 陈润芳; 李之华; 高新宇; 吴炜

    2016-01-01

    BACKGROUND:Currently, there is no effective treatment for keloids that often recur. Its pathogenesis is stil entirely unclear, and fibroblast proliferation and apoptosis have become a research hotspot. OBJECTIVE:To investigate the expression of Livin, Smac and Caspase-3 in keloids and to analyze their relationship so as to preliminarily explore the significance of Livin, Smac and Caspase-3 in the pathogenesis of keloids. METHODS:RT-PCR and immunohistochemical methods were used to detect the mRNA and protein expressions of Livin, Smac and Caspase-3 in keloids (n=20) and normal skin tissues (n=20). RESULTS AND CONCLUSION:Compared with the normal skin tissue, the mRNA and protein positive expressions of Livin were significantly higher in keloids (P   目的:分析瘢痕疙瘩组织中Livin、Smac、Caspase-3的表达的相关性,初步探讨3种因子在瘢痕疙瘩组织发病机制中的作用。  方法:采用RT-PCR和免疫组织化学分别检测Livin、Smac、Caspase-3的mRNA和蛋白在20例瘢痕疙瘩组织和20例正常皮肤组织中的表达,并进行相关性分析  结果与结论:瘢痕疙瘩组织中Livin的mRNA表达水平和蛋白的阳性表达率显著高于正常皮肤组织(P <0.05),瘢痕疙瘩组织中Smac和Caspase-3的mRNA表达水平和蛋白的阳性表达率低于正常皮肤组织(P<0.05)。瘢痕疙瘩组织中Livin和Smac、Caspase-3蛋白的表达呈负关联。结果提示Livin基因高表达可能抑制了Smac、Caspase-3基因表达从而导致了瘢痕疙瘩成纤维细胞增殖和凋亡的失衡,最终导致了瘢痕疙瘩的形成。

  2. The apoptotic function analysis of p53, Apaf1, Caspase3 and Caspase7 during the spermatogenesis of the Chinese fire-bellied newt Cynops orientalis.

    Directory of Open Access Journals (Sweden)

    Da-Hui Wang

    Full Text Available BACKGROUND: Spontaneous and stress-induced germ cell apoptosis during spermatogenesis of multicellular organisms have been investigated broadly in mammals. Spermatogenetic process in urodele amphibians was essentially like that in mammals in spite of morphological differences; however, the mechanism of germ cell apoptosis in urodele amphibians remains unknown. The Chinese fire-belly newt, Cynops orientalis, was an excellent organism for studying germ cell apoptosis due to its sensitiveness to temperature, strong endurance of starvation, and sensitive skin to heavy metal exposure. METHODOLOGY/PRINCIPAL FINDINGS: TUNEL result showed that spontaneous germ cell apoptosis took place in normal newt, and severe stress-induced apoptosis occurred to spermatids and sperm in response to heat shock (40°C 2 h, cold exposure (4°C 12 h, cadmium exposure (Cd 36 h, and starvation stress. Quantitative reverse transcription polymerase chain reactions (qRT-PCR showed that gene expression of Caspase3 or Caspase7 was obviously elevated after stress treatment. Apaf1 was not altered at its gene expression level, and p53 was significantly decreased after various stress treatment. Caspase assay demonstrated that Caspase-3, -8, -9 enzyme activities in newt testis were significantly elevated after heat shock (40°C 2 h, cold exposure (4°C 12 h, and cadmium exposure (Cd 36 h, while Caspase3 and Caspase8 activities were increased with Caspase9 significantly decreased after starvation treatment. CONCLUSIONS/SIGNIFICANCE: Severe germ cell apoptosis triggered by heat shock, cold exposure, and cadmium exposure was Caspase3 dependent, which probably involved both extrinsic and intrinsic pathways. Apaf1 may be involved in this process without elevating its gene expression. But starvation-induced germ cell apoptosis was likely mainly through extrinsic pathway. p53 was probably not responsible for stress-induced germ cell apoptosis in newt testis. The intriguing high occurrence

  3. Expression and Significance of Bcl-2, Bax, Fas and Caspase-3 in Different Phases of Human Hemangioma

    Institute of Scientific and Technical Information of China (English)

    YANG Hong; DENG Chenguo; SHEN Shengguo; ZHANG Duanlian; YUYing

    2006-01-01

    The relationship between Bcl-2, Bax, Fas, caspase-3 and development of hemangioma and the molecular mechanism was investigated. By using immunohistochemical S-P method, proliferating cell nuclear antigen was detected. According to the classification of Mulliken in combination with PCNA expression, 27 cases were identified as proliferating hemangioma and 22 cases as involutive hemangioma. Five normal skin tissues around the tumor tissue served as controls. By using immunohistochemical technique, the expression of Bcl-2, Bax, Fax and Caspase-3 was detected. The cells expressing Bcl-2, Bax, Fax and cappase-3 were identified as hemangioma endothelia by immunohistochemical staining of Ⅷ factor. The average absorbance (A) and average positive area rate of Bcl-2, Bax, Fas and caspase-3 expression were measured by using HPIAS-2000 imaging analysis system. The results showed that the expression of Bcl-2 in the endothelia of proliferating hemangioma was significantly higher that in involutive degenerative hemangioma endothelia and vascular endothelia of normal skin tissue (P<0.01). The expression of Bax, Fas and Caspase-3 in the endothelia of involutive hemangioma was obviously higher than in the endothelia of proliferating hemangioma and normal skin tissue (P<0.01). The expression of BAx and Fas in endothelia of proliferating hemangioma was higher than in those of normal skin tissue (P<0.05). It was suggested that Bcl-2,Bax, Fas and caspase-3 might be involved in the development and involution of hemangioma. Bcl-2 could promote the growth of hemangioma by inhibiting apoptosis of endothelia. Bax, Fas and caspase-3 promote the switch of hemangioma from proliferation to involution by inducing the apoptosis of hemangioma endothelia.

  4. 增殖细胞核抗原和caspase-3在单侧输尿管梗阻大鼠模型中的表达及其意义%Expression and Significance of Proliferating Cell Nuclear Antigen and caspase-3 Expression in Rat Model of Unilateral Ureteral Obstruction

    Institute of Scientific and Technical Information of China (English)

    李里; 宫亮; 吴玉斌

    2012-01-01

    protein expression in tubulointerstitial areas showed statistically significant difference (P < 0.05) .The percentage of positive cells of caspase-3 protein expression in tubules showed statistically significant differences three days, seven days and 14 days after operation between the two groups (P < 0.05) .The percentage of positive cells of caspase-3 protein expression in tubulointerstitial areas also showed statistically significant differences (P < 0.05) .Western blot method showed that there were trace expressions of PCNA and caspase-3 proteins in renal cortex in the sham group.The expressions of PCNA and caspase-3 proteins were increased and the extended expression of obstruction was also increased in the UUO group after operation.Conclusion Increased PCNA expression can lead to overproliferation of tubulointerstitial cells, which is involved in the obstructive nephropathy.The accelerated cell apoptosis caused by the enhanced activity of caspase-3 also plays an important part in obstructive nephropathy.Cell proliferation and apoptosis both participate in the fibrosis of renal interstitial and both of them are important parameters in this process.

  5. MDMA诱导大鼠神经元凋亡及凋亡相关因子caspase-3的表达%Neuron apoptosis induced by 3,4-methylenedioxy methamphetamine and the expression of caspase-3

    Institute of Scientific and Technical Information of China (English)

    王雪; 李静; 祝三平

    2007-01-01

    目的 探讨3,4 -亚甲基二氧基甲基苯丙胺(MDMA)对实验大鼠神经元凋亡的诱导及凋亡相关因子半胱氨酸天冬氨酸特异性蛋白酶-3(caspase-3)的表达.方法 将20只Wistar雄性大鼠随机均分为1组对照组(A)、3组MDMA实验组(B、C、D).B组予MDMA(20 mg · kg-1, ip, single),C组予MDMA(20 mg · kg-1, 8 am,8 pm,ip×2 d),D组予MDMA (20 mg · kg-1 ,8 am,8 pm,ip×4 d);A组给予等体积生理盐水.采用TUNEL法检测神经元凋亡,免疫组织化学方法检测Caspase-3的表达.结果 给予MDMA后,大鼠各相关脑区有凋亡细胞形成,Caspase-3有不同程度的表达.结论 MDMA可导致神经元的凋亡,并诱导凋亡相关因子Caspase-3的表达.

  6. Caspase-3 expression in spinal tissue of retinoic acid induce spiua bifida fetal rat%维甲酸诱导脊柱裂胎鼠脊髓组织中Caspase-3表达情况

    Institute of Scientific and Technical Information of China (English)

    马英桓; 袁正伟

    2012-01-01

    Objective To explore caspase-3 expression in spinal tissue of retinoic acid induced spina bifida fetal rat. Methods Pregnant Wister rats with 10 days were used. Retinoic acid dissolved in olive oil (40mg /ml) were stomach fed for preparing the rat model of spina bifida malformations 135mg / kg). Control group only received olive oil. The animals were divided into 4 groups: pregnancy of 12 days, 15 days, 17 days and 20 days. Immunohistochemical method was used to detect and compare caspase-3 expression in different groups. Results The expression of caspase-3 increased at the day 15 after pregnancy, and maintained until day 20 in the spinal tissue of modeled fetal rat, which presented significant difference compared to that of control groups at the same pregnant time. At day 15, day 17 and day 20 of pregnancy, the number of caspase-3 positive cells was more in model animals than the control. Conclusions Retinoic acid induced spina bifida fetal rat demonstrates the increased caspase-3 expression in spinal tissue of fetal rats.%目的 本文旨在探讨维甲酸诱导脊柱裂胎鼠脊髓组织Caspase-3表达情况.方法 选取孕10d Wistar大鼠,实验组用溶有维甲酸(40mg/ml)的橄榄油,以135mg/kg经胃管注入给药制作脊柱裂畸形大鼠模型;对照组选取孕10 d Wistar大鼠给等量橄榄油.将实验组及对照组按照孕12、15、17和20 d分为4组.应用免疫组织化学方法比较分析Caspase-3在对照组、畸形组胎鼠脊髓组织细胞中的分布和表达情况.结果 脊柱裂大鼠脊髓神经组织中Caspase-3在15d开始增多,一直持续到20 d胚胎大鼠.其增高情况明显高于同一时间点对照组大鼠.胚胎15、17和20 d显性脊柱裂畸形鼠脊髓组织Caspase-3阳性细胞数多于对照组,荧光强度高于对照组.结论 维甲酸诱导的脊柱裂胎鼠Caspase-3表达明显高于正常发育胎鼠.

  7. Effect of myocardial reperfusion on cardiocyte apoptosis and expression of bcl-2, bax and caspase-3 in rats with depression%心肌再灌注对抑郁大鼠心肌细胞凋亡以及bcl-2、bax和caspase-3表达的影响

    Institute of Scientific and Technical Information of China (English)

    刘淑珍; 尤鑫; 熊小栓; 刘兴德

    2012-01-01

    apoplolic cardiomyocyles were delecled by in siLu TdT - media-led dUTP nick end labeling (TUNEL) melhod, and ihe expression of bcl -2, bax and caspase - 3 was delemined by ihe melhods of immunohislochemislry and reverse Iranscriplion polymerase chain reaction ( RT - PCR) . RESULTS; Compared wilh group A and group B, ihe numbers of apoplolic cardiomyocyles in group C and group D were significantly increased (P < 0. 01) , and ihe expression of bcl - 2, bax and caspase - 3 in group C and group D was also significantly increased ( P < 0. 01). No significant difference between group A and B was observed. Compared wilh group C, the number of apoplolic cardiomyocyles in group D was significantly increased (P < 0. 05). The gene expression of bcl -2 in group D was decreased significantly ( P < 0. 05 ) , while the gene expression of bax and caspase - 3 in group D was significantly increased ( P < 0. 05 ) . CONCLUSION; Myocardial reperfusion increases apoptosis in ischemic cardiomyocyles in the rals with depression. The mechanisms may be associated with up - regulaling the gene expression of bax and caspase - 3 while down - regulaling bcl - 2 expression.

  8. PLGA-carbon nanotube conjugates for intercellular delivery of caspase-3 into osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Qingsu Cheng

    Full Text Available Cancer has arisen to be of the most prominent health care issues across the world in recent years. Doctors have used physiological intervention as well as chemical and radioactive therapeutics to treat cancer thus far. As an alternative to current methods, gene delivery systems with high efficiency, specificity, and safety that can reduce side effects such as necrosis of tissue are under development. Although viral vectors are highly efficient, concerns have arisen from the fact that viral vectors are sourced from lethal diseases. With this in mind, rod shaped nano-materials such as carbon nanotubes (CNTs have become an attractive option for drug delivery due to the enhanced permeability and retention effect in tumors as well as the ability to penetrate the cell membrane. Here, we successfully engineered poly (lactic-co-glycolic (PLGA functionalized CNTs to reduce toxicity concerns, provide attachment sites for pro-apoptotic protein caspase-3 (CP3, and tune the temporal release profile of CP3 within bone cancer cells. Our results showed that CP3 was able to attach to functionalized CNTs, forming CNT-PLGA-CP3 conjugates. We show this conjugate can efficiently transduce cells at dosages as low as 0.05 μg/ml and suppress cell proliferation up to a week with no further treatments. These results are essential to showing the capabilities of PLGA functionalized CNTs as a non-viral vector gene delivery technique to tune cell fate.

  9. The effects of ultrasonic scaling duration and replication on caspase-3 expression of Sprague Dawley rat's pulp cells

    Directory of Open Access Journals (Sweden)

    Archadian Nuryanti

    2015-03-01

    Full Text Available Background: Ultrasonic scaling has been used commonly for stain and calculus removal in dental clinic for over 60years. Previous researches even had proved that ultrasonic scaling may give effects on the surface of tooth root. Ultrasonic wave exposure for 20 seconds or more can increase caspase-3 activity as an indicator of increased apoptotic cells associated with tissue damage. Purpose: This research was aimed to investigate the effects of ultrasonic scaling duration and replication on caspace-3 expression in dental pulp cells. Methods: The samples of this research were 54 male Sprague Dawley rats aged 2 months old divided into 2 groups, each of which consisted of 27 mice. The first group was induced with stain, while the second group was not. Each group was divided into 3 subgroups for ultrasonic scaling 1, 3, and 5 times. Each subgroup was divided into 3 sub-subgroups for duration procedure of 15, 30 and 60 seconds respectively. During scaling process, those rats were anesthetized using 0.1 ml of ketamine and 0.1 ml of xylol added to 2 ml of distilled water injected intramuscularly into their right thigh as much as 0.4 ml. Scaling was done on buccal surface of right first maxillary molar from cervical to occlusal. The teeth were decalcified and embedded in paraffin, then their sagittal plane was cut for thickness of 3µm and painted with immunohystochemistry for detecting caspace-3 expression of cell within dental pulp. Results: The results showed that the duration and replication of ultrasonic scaling procedures affected on the expression of caspace-3 cells as analyzed with Univariate Analisis of Variance test (p<0.05. Conclusion: It can be concluded that duration and replication of ultrasonic scaling procedure on teeth with and without stain enhauced the expression of  caspace-3 in dental pulp cells.

  10. Autophagy-related proteins are functionally active in human spermatozoa and may be involved in the regulation of cell survival and motility

    Science.gov (United States)

    Aparicio, I. M.; Espino, J.; Bejarano, I.; Gallardo-Soler, A.; Campo, M. L.; Salido, G. M.; Pariente, J. A.; Peña, F. J.; Tapia, J. A.

    2016-01-01

    Macroautophagy (hereafter autophagy) is an evolutionarily highly conserved cellular process that participates in the maintenance of intracellular homeostasis through the degradation of most long-lived proteins and entire organelles. Autophagy participates in some reproductive events; however, there are not reports regarding the role of autophagy in the regulation of sperm physiology. Hence, the aim of this study was to investigate whether autophagy-related proteins are present and functionally active in human spermatozoa. Proteins related to autophagy/mitophagy process (LC3, Atg5, Atg16, Beclin 1, p62, m-TOR, AMPKα 1/2, and PINK1) were present in human spermatozoa. LC3 colocalized with p62 in the middle piece of the spermatozoa. Autophagy activation induced a significant increase in motility and a decrease in PINK1, TOM20 expression and caspase 3/7 activation. In contrast, autophagy inhibition resulted in decreased motility, viability, ATP and intracellular calcium concentration whereas PINK1, TOM20 expression, AMPK phosphorylation and caspase 3/7 activation were significantly increased. In conclusion our results show that autophagy related proteins and upstream regulators are present and functional in human spermatozoa. Modification of mitochondrial proteins expression after autophagy activation/inhibition may be indicating that a specialized form of autophagy named mitophagy may be regulating sperm function such as motility and viability and may be cooperating with apoptosis. PMID:27633131

  11. Carnosol increases caspase-3 activation, but delays DNA fragmentation induced by chemotherapeutic drugs

    Science.gov (United States)

    Previously, we showed that carnosol from rosemary induced apoptosis in leukemic cells derived from patients with high-risk pre-B acute lymphoblastic leukemia (ALL). In the current study, carnosol was tested for its ability to sensitize leukemia-derived cells to or synergize with conventional chemot...

  12. The in vitro immunogenic potential of caspase-3 proficient breast cancer cells with basal low immunogenicity is increased by hypofractionated irradiation

    International Nuclear Information System (INIS)

    Radiotherapy is an integral part of breast cancer treatment. Immune activating properties of especially hypofractionated irradiation are in the spotlight of clinicians, besides the well-known effects of radiotherapy on cell cycle and the reduction of the clonogenic potential of tumor cells. Especially combination of radiotherapy with further immune stimulation induces immune-mediated anti-tumor responses. We therefore examined whether hypofractionated irradiation alone or in combination with hyperthermia as immune stimulants is capable of inducing breast cancer cells with immunogenic potential. Clonogenic assay, AnnexinA5-FITC/Propidium iodide assay and ELISA analyses of heat shock protein 70 and high mobility group box 1 protein were applied to characterize colony forming capability, cell death induction, cell death forms and release of danger signals by breast cancer cells in response to hypofractionated radiation (4x4Gy, 6x3Gy) alone and in combination with hyperthermia (41.5 °C for 1 h). Caspase-3 deficient, hormone receptor positive, p53 wild type MCF-7 and caspase-3 intact, hormone receptor negative, p53 mutated MDA-MB231 breast cancer cells, the latter in absence or presence of the pan-caspase inhibitor zVAD-fmk, were used. Supernatants of the treated tumor cells were analyzed for their potential to alter the surface expression of activation markers on human-monocyte-derived dendritic cells. Irradiation reduced the clonogenicity of caspase deficient MCF-7 cells more than of MDA-B231 cells. In contrast, higher amounts of apoptotic and necrotic cells were induced in MDA-B231 cells after single irradiation with 4Gy, 10Gy, or 20Gy or after hypofractionated irradiation with 4x4Gy or 6x3Gy. MDA-B231 cells consecutively released higher amounts of Hsp70 and HMGB1 after hypofractionated irradiation. However, only the release of Hsp70 was further increased by hyperthermia. Both, apoptosis induction and release of the danger signals, was dependent on caspase-3. Only

  13. 吗啡成瘾时脑内Fas、Bcl-2和Caspase-3蛋白表达的改变%Changes of Fas, Bcl-2 and Caspase-3 protein in rat brain during morphine addiction

    Institute of Scientific and Technical Information of China (English)

    刘立伟; 王新华; 傅舒昆; 吴青华; 傅强

    2012-01-01

    目的 观察吗啡成瘾时脑细胞中凋亡相关蛋白Fas、Caspase-3和Bcl-2表达的改变.方法 将48只体质量为190~210 g的成年SD大鼠随机分为3组:吗啡依赖组、吗啡戒断组和对照组,每组16只.依据药物递增原则,依赖组和戒断组大鼠腹腔内给予吗啡13d,建立吗啡成瘾模型.戒断组大鼠在成瘾后腹腔内注射纳洛酮5 mg/kg,诱导戒断30 min.对照组大鼠在相同的治疗时间腹腔内注射生理盐水.应用免疫组织化学、蛋白印迹分析方法检测大鼠海马区Fas、Bcl-2和Caspase-3蛋白的表达.结果 与对照组比较,吗啡依赖组和戒断组大鼠海马区Fas和Caspase-3的表达增加(P<0.01),而Bcl-2的表达降低(P<0.01).结论 长期应用吗啡可通过Fas、Caspase-3表达的增加和Bcl-2表达的降低诱发脑细胞异常凋亡,这可能是阿片类药物引起神经损害的机制之一.%Objective To investigate the changes of apoptosis-related proteins Fas,Caspase-3 and Bcl-2 expression in rat brain during morphine addiction. Methods A total of 48 adult male Sprague-Dawley rats, weighing 190-210 g, were randomly divided into 3 groups (n=16): chronic morphine-dependent group, chronic morphine-abstinent group and control group. The rats in dependent group and abstinent group were chronically treated with morphine for 13 days to establish morphine dependent model. In the abstinent group, the withdrawal syndromes were induced with intraperitoneal injection of naloxone 5 mg/kg for 30 min. The control group was injected with normal saline. Immunohistochemistry and Western blotting analysis were used to examine the expression of Fas, Bcl-2 and Caspase-3 proteins. Results Compared with the control group, the other two groups had significantly increased expression of Fas and Caspase-3 (P

  14. Expression of inducible nitric oxide synthase, caspase-3 and production of reactive oxygen intermediate on endothelial cells culture (HUVECs treated with P. falciparum infected erythrocytes and tumour necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Loeki E. Fitri

    2006-09-01

    Full Text Available Cytoadherence of P. falciparum infected erythrocytes on endothelial cells is a key factor in development of severe malaria. This process may associated with the activation of local immune that was enhanced by tumour necrosis factor-α (TNF-α. This study was conducted to see the influence of P.falciparum infected erythrocytes cytoadherence and TNF-α treatment in inducing endothelial cells activation in vitro. inducible nitric oxide synthase (iNOS and caspase-3 expression, also reactive oxygen intermediate (ROI production were used as parameters. An Experimental laboratory study had been done to observe endothelial cells activation (HUVECs after treatment with TNF-α for 20 hours or P. falciparum infected erythrocytes for 1 hour or both of them. Normal endothelial cells culture had been used as a control. Using immunocytochemistry local immune activation of endothelial cells was determined by iNOS and caspase-3 expression. Nitro Blue Tetrazolium reduction-assay was conducted to see the ROI production semi quantitatively. inducible nitric oxide synthase expression only found on endothelial cells culture treated with P. falciparum infected erythrocytes or both P. falciparum infected erythrocytes and TNF-α. Caspase-3 expression found slightly on normal endothelial cells culture. This expression increased significantly on endothelial cells culture treated with both P.falciparum infected erythrocytes and TNF-α (p=0.000. The normal endothelial cells release low level of ROI in the presence of non-specific trigger, PMA. In the presence of P. falciparum infected erythrocytes or TNF-α or both of them, some cells showed medium to high levels of ROI. Cytoadherence of P. falciparum infected erythrocytes and TNF α treatment on endothelial cells can induce activation of local immune marked by increase inducible nitric oxide synthase and release of free radicals that cause cell damage. (Med J Indones 2006; 15:151-6 Keywords: P.falciparum ,HUVECs, TNF-α, i

  15. Caspase-3、DIAPH-3蛋白在浸润性乳腺癌中的作用研究%Role of caspase-3 and DIAPH3 in invasive breast cancer

    Institute of Scientific and Technical Information of China (English)

    张玲玲; 张亚男; 耿翠芝; 丁妍; 杨会钗; 马力; 刘月平

    2016-01-01

    目的:探讨浸润性乳腺癌组织中Caspase-3、DIAPH-3蛋白的表达与临床病理特征及预后的关系。方法采用免疫组织化学EliVision法检测Caspase-3、DIAPH-3在浸润性乳腺癌(=240)及癌旁组织(=44)中的表达情况,并分析其与临床病理特征及预后的关系。结果 Caspase-3、DIAPH-3在浸润性乳腺癌组织中表达的阳性率(36.7%和40.8%)低于癌旁组织(81.8%和86.7%),<0.05。Caspase-3的阳性表达率随淋巴结转移数的增多、肿瘤长径的增加、临床分期的提高、脉管瘤栓的产生及P53的阳性表达的增强而降低。DIAPH-3的表达随淋巴结转移数的增加、脉管瘤栓的产生及临床分期的提高而降低。Kaplan- Meier单因素生存分析显示Caspase-3和DIAPH-3蛋白阳性组患者的5年生存率(95.5%、95.8%),高于阴性组(85.5%、84.5%)。COX多因素生存分析显示DIAPH-3阴性表达与患者不良预后正相关(O?=1.687,95%CI:1.032,2.758)。结论浸润性乳腺癌组织中Caspase-3、DIAPH-3蛋白表达均低于癌旁正常乳腺组织,两者均与乳腺癌的进展及预后密切相关,但两者之间无关联;DIAPH-3的低表达提示患者预后不良,可能是预测乳腺癌患者预后的独立因素之一。%Objective To study the possible association of the expressions of caspase-3 and diaphanous related formin 3 (DIAPH3) protein with clinicopathological features and prognosis in invasive breast cancer. Methods The expressions of caspase-3 and DIAPH3 protein in invasive breast cancer tissues from 240 cases and para-cancerous tissues from 44 cases were detected by immunohistochemical EliVision method, and then their relationships with the clinicopathological features and prognosis were analyzed. Results The positive-expression rates of caspase-3 and DIAPH3 protein in the invasive breast cancer tissues (36.7% and 40.8%respectively) were significantly lower than those in the para-cancerous tissues

  16. Detect of P53,bax and caspase 3 genes expression after optic nerve injury in rats with SYBR green I fluorescence quantitative PCR%SYBR Green I荧光定量PCR检测大鼠外伤性视神经损伤后P53、bax和caspase 3基因表达

    Institute of Scientific and Technical Information of China (English)

    吕瀛娟; 赵秀兰; 杨洁; 于金国; 颜华

    2009-01-01

    目的 应用SYBR Green Ⅰ荧光定量PCR法检测外伤性视神经损伤后P53、bax和caspase 3基因mRNA表达的变化.方法 应用液压颅脑损伤仪建立大鼠外伤性视神经损伤动物模型,伤后1、3、5、7、9、14、28d处死,以Trizol法提取新鲜视网膜组织的总RNA,以Oligo (dt) 18 为引物逆转录合成cDNA 并进行扩增,以T/A克隆法将纯化的目的 片断与T/A克隆载体(pTZ57R/T)连接成重组质粒并转化入E.coli DH5α.采用碱裂解法提取重组质粒,经蓝白斑筛选、酶切、测序鉴定后,根据标准品建立标准曲线,由软件自动计算出待测样本中靶基因mRNA的含量,并以靶基因和内参GAPDH mRNA含量的比值作为评价靶基因表达水平的指标.结果 由pTZ57R/T与目的 基因所构建的标准曲线的线性关系良好、灵敏度高、特异性强、准确可靠.P53和bax均在视神经损伤后3d mRNA表达明显增加,5d时达到高峰,7d后开始下降;伤后5d caspase 3 mRNA表达明显增加,9d时达到高峰,14d后开始下降.三者表达水平与对照组相比,差异均有统计学意义(P<0.05).结论 促凋亡基因P53、bax和caspase 3在视神经损伤后视网膜神经节细胞(RGCs)的凋亡发生中起到重要作用.%Objective Previous study showed that the histopathological basis of visual function damage caused by optical nerve injury is apoptosis of retinal ganglion cells(RGCs). This procedure is regulated by P53, bax and caspase 3 genes. Present study aimed to observe the expression of bax, P53 and caspase 3 mRNA in RGCs after traumatic optic nerve damage in the rats by SYBR green I fluorescence quantitative PCR method. Methods The animal model of optic nerve injury was established in the right eyes of 56 adult Wistar rats by a fluid percussion brain injury device (FPI) . Animal were killed on days 1, 3, 5, 7, 9, 14, 28 days separately after injury. Other 16 Wistar rats were divided into normal control group and sham operation group. The total RNA

  17. Ricinus communis L. stem bark extracts regulate ovarian cell functions and secretory activity and their response to Luteinising hormone.

    Science.gov (United States)

    Nath, S; Kadasi, A; Grossmann, R; Sirotkin, A V; Kolesarova, A; Talukdar, A D; Choudhury, M D

    2015-01-01

    Ricinus communis L. has ethnopharmacological contraceptive reputation but its stem bark has unexplored mechanisms of action in female reproductive system. In the present study, the effect of methanolic and aqueous extracts from the stem bark of the plant was examined on basic porcine ovarian granulosa cell functions and its response to Luteinising hormone (LH)-the upstream hormonal regulator. Systemic treatment of methanolic and aqueous extracts stimulated cell proliferation (proliferating cell nuclear antigen, PCNA) and also promoted cell apoptosis (caspase-3). Aqueous extract has inverted the stimulatory effect of LH on PCNA but not on caspase-3. Methanolic extract stimulated as well as inhibited progesterone release and stimulated testosterone secretion. Whereas aqueous extract inhibited both steroid releases and suppressed the stimulatory effect of LH on progesterone release and promoted the inhibitory effect of LH on testosterone release. In conclusion, the present study unveils the mechanism of action of R. communis stem bark in in vitro condition. These suggest its possible contraceptive efficacy by exerting its regulatory role over LH and on basic ovarian cell functions and secretion activity.

  18. Analysis of macrophage apoptosis induced by Brucella melitensis and the effects of caspases 3,8 and 9

    Institute of Scientific and Technical Information of China (English)

    任晓莉

    2013-01-01

    Objective To determine the difference of macrophage RAW264.7 apoptosis induced by Brucella melitensis virulent strain 16M and attenuated strain M5-90 and elucidate the regulatory role of caspases 3,8 and 9.Methods The best multiplicity of infection (MOI) was determined through kinetic analysis of Brucella melitensis strain 16M and M5-90 induced mouse macrophages apop-

  19. The caspase 3-dependent apoptotic effect of pycnogenol in human oral squamous cell carcinoma HSC-3 cells

    OpenAIRE

    Yang, In-Hyoung; Shin, Ji-Ae; Kim, Lee-Han; Kwon, Ki Han; Cho, Sung-Dae

    2015-01-01

    In the present study, the apoptotic effect of pycnogenol and its molecular mechanism in human oral squamous cell carcinoma HSC-3 cells were investigated. Pycnogenol significantly inhibited the viability of HSC-3 cells and suppressed neoplastic cell transformation in HSC-3 cells and TPA-treated JB6 cells. It caused caspase-dependent apoptosis evidenced by the increase in cleaved poly (ADP-ribose) polymerase and caspase 3 in a dose-dependent manner. Pycnogenol increased Bak protein by enhancing...

  20. Pathological cyclic strain-induced apoptosis in human periodontal ligament cells through the RhoGDIα/caspase-3/PARP pathway.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available AIM: Human periodontal ligament (PDL cells incur changes in morphology and express proteins in response to cyclic strain. However, it is not clear whether cyclic strain, especially excessive cyclic strain, induces PDL cell apoptosis and if so, what mechanism(s are responsible. The aim of the present study was to elucidate the molecular mechanisms by which pathological levels of cyclic strain induce human PDL cell apoptosis. MATERIALS AND METHODS: Human PDL cells were obtained from healthy premolar tissue. After three to five passages in culture, the cells were subjected to 20% cyclic strain at a frequency of 0.1 Hz for 6 or 24 h using an FX-5000T system. Morphological changes of the cells were assessed by inverted phase-contrast microscopy, and apoptosis was detected by fluorescein isothiocyanate (FITC-conjugated annexin V and propidium iodide staining followed by flow cytometry. Protein expression was evaluated by Western blot analysis. RESULTS: The number of apoptotic human PDL cells increased in a time-dependent manner in response to pathological cyclic strain. The stretched cells were oriented parallel to each another with their long axes perpendicular to the strain force vector. Cleaved caspase-3 and poly-ADP-ribose polymerase (PARP protein levels increased in response to pathological cyclic strain over time, while Rho GDP dissociation inhibitor alpha (RhoGDIα decreased. Furthermore, knock-down of RhoGDIα by targeted siRNA transfection increased stretch-induced apoptosis and upregulated cleaved caspase-3 and PARP protein levels. Inhibition of caspase-3 prevented stretch-induced apoptosis, but did not change RhoGDIα protein levels. CONCLUSION: The overall results suggest that pathological-level cyclic strain not only influenced morphology but also induced apoptosis in human PDL cells through the RhoGDIα/caspase-3/PARP pathway. Our findings provide novel insight into the mechanism of apoptosis induced by pathological cyclic strain in

  1. 完全睡眠剥夺对大鼠caspase-3表达的影响%Effect of total sleep deprivation on expression of caspase-3 in cortex and hippocampus

    Institute of Scientific and Technical Information of China (English)

    先雄斌; 刘军祥; 先德海; 郑宇杰

    2008-01-01

    目的:探讨完全睡眠剥夺对大鼠caspase-3的影响及其导致记忆、认知等功能障碍的机制.方法:取Sprague-Dawley大鼠35只,随机分为正常对照组、大平台对照组和完全睡眠剥夺组.其中正常对照组(NC)5只大鼠,正常笼养;大平台对照组(TC)只有72、96及120 h 3个时间点,每个时间点5只大鼠;完全睡眠剥夺组(TSD)也有72、96及120 h 3个时间点,每个时间点5只大鼠.采用小平台水环境法建立完全睡眠剥夺模型,在不同的时点处死大鼠后运用免疫组化SP法检测各组大鼠海马和皮质caspase-3的分布规律和动态变化.结果:caspase-3在各组的海马和皮质均有表达,随着睡眠剥夺时间的延长,caspase-3的表达逐渐增加,与正常对照组、大平台对照组差异有显著性(P<0.01).结论:完全睡眠剥夺能引起大鼠海马和皮质caspase-3的表达增加.并随睡眠剥夺时间的延长而渐趋明显.可能是完全睡眠剥夺引起大鼠神经元调亡,进而引起大鼠记忆、认知等功能障碍的机制之一.

  2. Butylphthalide Suppresses Neuronal Cells Apoptosis and Inhibits JNK-Caspase3 Signaling Pathway After Brain Ischemia /Reperfusion in Rats.

    Science.gov (United States)

    Wen, Xiang-Ru; Tang, Man; Qi, Da-Shi; Huang, Xiao-Jing; Liu, Hong-Zhi; Zhang, Fang; Wu, Jian; Wang, Yi-Wen; Zhang, Xun-Bao; Guo, Ji-Qiang; Wang, Shu-Ling; Liu, Yong; Wang, Yu-Lan; Song, Yuan-Jian

    2016-10-01

    Although Butylphthalide (BP) has protective effects that reduce ischemia-induced brain damage and neuronal cell death, little is known about the precise mechanisms occurring during cerebral ischemia/reperfusion (I/R). Therefore, the aim of this study was to investigate the neuroprotective mechanisms of BP against ischemic brain injury induced by cerebral I/R through inhibition of the c-Jun N-terminal kinase (JNK)-Caspase3 signaling pathway. BP in distilled non-genetically modified Soybean oil was administered intragastrically three times a day at a dosage of 15 mg/(kg day) beginning at 20 min after I/R in Sprague-Dawley rats. Immunohistochemical staining and Western blotting were performed to examine the expression of related proteins, and TUNEL-staining was used to detect the percentage of neuronal apoptosis in the hippocampal CA1 region. The results showed that BP could significantly protect neurons against cerebral I/R-induced damage. Furthermore, the expression of p-JNK, p-Bcl2, p-c-Jun, FasL, and cleaved-caspase3 was also decreased in the rats treated with BP. In summary, our results imply that BP could remarkably improve the survival of CA1 pyramidal neurons in I/R-induced brain injury and inhibit the JNK-Caspase3 signaling pathway. PMID:27015680

  3. 人难治性颞叶癫痫神经细胞凋亡与 Caspase 3,4的表达%Apoptosis and expression of Caspase 3 and Caspase 4 in neurocytes of refractory human temporal lobe epilepsy

    Institute of Scientific and Technical Information of China (English)

    林若庭; 蔡若蔚; 张鹏飞; 林元相

    2016-01-01

    目的:观察人难治性颞叶癫痫(TLE)颞叶组织神经细胞凋亡及半胱氨酸天冬氨酸蛋白酶(Caspase )3和Caspase4的表达情况。方法免疫组化S-P染色法检测1993年1月至2008年5月福建医科大学病理学系与福建医科大学附属第一医院神经外科手术切除的30例人难治性颞叶癫痫组( TLE组)与10例脑外伤组(对照组)颞叶组织中神经细胞Caspase 3与Caspase 4的表达并分析其表达差异, TUNEL 法检测两组神经细胞的凋亡情况。结果 TLE 组颞叶组织神经细胞存在Caspase 3和Caspase 4的阳性表达且表达明显高于对照组( Caspase 3:0.69±0.10比0.26±0.05,t=12.905,P<0.01;Caspase 4:0.62±0.10比0.24±0.05,t=11.880,P<0.01),TLE组颞叶组织神经细胞凋亡指数(AI)较对照组显著增加(12.6±3.1比2.5±1.9,t=9.664,P<0.01)。结论人难治性TLE颞叶组织可能存在Caspase 3,Caspase 4转导的神经细胞凋亡。%Objective To study apoptosis and expression of Caspase 3 and Caspase 4 in temporal lobe neurocytes of refractory human temporal lobe epilepsy ( TLE).Methods The temporal tissue samples were obtained from 30 cases of refractory TLE ( TLE group) and 10 cases of brain trauma ( contrast group) between January 1993 and May 2008. The surgical specimens were paraffin-embedded samples from Department of Pathology of Fujian Medical University and Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University. S-P staining of immunohistochemistry was used to detect the expression of Caspase 3 and Caspase 4 in temporal lobe neurocytes of TLE group and contrast group.Their expression was then analyzed.The terminal deoxynucleoitidyl transferase-mediated dUTP nick end labeling ( TUNEL) staining was performed to visualize and analyze the neurocytes′apoptosis of two groups.Results The expression of Caspase 3 and Caspase 4 in neurocytes of TLE

  4. Molecular regulation of osteoclast activity.

    Science.gov (United States)

    Bruzzaniti, Angela; Baron, Roland

    2006-06-01

    Osteoclasts are multinucleated cells derived from hematopoietic precursors that are primarily responsible for the degradation of mineralized bone during bone development, homeostasis and repair. In various skeletal disorders such as osteoporosis, hypercalcemia of malignancy, tumor metastases and Paget's disease, bone resorption by osteoclasts exceeds bone formation by osteoblasts leading to decreased bone mass, skeletal fragility and bone fracture. The overall rate of osteoclastic bone resorption is regulated either at the level of differentiation of osteoclasts from their monocytic/macrophage precursor pool or through the regulation of key functional proteins whose specific activities in the mature osteoclast control its attachment, migration and resorption. Thus, reducing osteoclast numbers and/or decreasing the bone resorbing activity of osteoclasts are two common therapeutic approaches for the treatment of hyper-resorptive skeletal diseases. In this review, several of the key functional players involved in the regulation of osteoclast activity will be discussed. PMID:16951988

  5. Cell apoptosis in perihematomal brain regions and expression of Caspase-3 protein in patients with hypertensive intracerebral hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Xinqing Zhang; Xiaoliang Yin; Kun Zhang; Zhimin Zhang; Hui Cai; Honglan Xu

    2006-01-01

    BACKGROUND: In patients with intracerebral hemorrhage (ICH), besides the space-occupying effect of hematoma, hematomal component also causes the pathological changes of perihematomal region, including the death of neurons and glial cells, vasogenic brain edema, the destruction of blood brain barrier and so on, which are the important factors to influence the prognosis of patients. Therefore, it is necessary to perform fur ther investigation and study on the pathological characteristics of injury and death of brain nerve cells. OBJECTIVE: To observe the pathological changes of apoptosis and Caspase-3 expression in perihe matomal brain regions in patients with hypertensive ICH (HICH) in different stages of onset, and analyze their relationship. DESIGN: Case-control observation. SETTING: Departments of Neurosurgery and Pathology of Beijing Chuiyangliu Hospital. PARTICIPANTS: Totally 19 patients with HICH, including 12 male, 7 female, aged (58.3±12.8) ranging from 49 to 78 years, whose mean volume of hemorrhage was (48.6±16.4) mL, were involved . All the cases conformed to the diagnostic criteria of intracerebral hemorrhage formulated in the 4th National Cerebrovascular Dis eases Conference and were confirmed by skull CT scanning. Informed consents of operation and specimens were obtained from the patients and relatives.METHODS; ①Patients with HICH who had undergone surgical evacuation of an intracerebral hematoma by traverse temporal lobe approach in the Department of Neurosurgery, Beijing Chuiyangliu Hospital from Jan uary 2004 to July 2005 were involved. Nineteen specimens of brain tissue from perihematomal region of HICH patients in different phases served as patient group. Five specimens were obtained from distant regions of patients in the super-early phase as the control group. According to the time from onset to operation, the 19 cases were divided into 3 groups: 6 cases in super-early phase(onset < 8 hours), 8 cases in early phase (onset about 8 to 24

  6. Estudo citofotométrico da expressão dos marcadores tumorais Caspase-3 e Ki-67 no adenocarcinoma gástrico Cytophotometric study of the expression of tumoral markers Caspase-3 and Ki-67 in gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Pedro Manuel Gonzales Cuellar

    2007-06-01

    Full Text Available RACIONAL: A carcinogênese gástrica é processo complexo e depende de fatores genéticos, ambientais e infecciosos. Nos últimos anos, houve grandes avanços nos campos da genética e da biologia molecular, sobre o desenvolvimento dos tumores. Os marcadores tumorais são substâncias ausentes nos tecidos normais e que podem ser identificadas em tecidos com câncer. Através de procedimentos imunoistoquímicos eles podem ser estudados. OBJETIVOS: Descrever a expressão citofotométrica do marcador tumoral Ki-67 analisando a densidade óptica e o índice de marcagem no adenocarcinoma de estômago. Descrever a expressão citofotométrica do marcador tumoral Caspase-3 analisando a densidade óptica e o índice de marcagem no adenocarcinoma de estômago. Comparar o índice de marcagem e densidade óptica dos marcadores tumorais Ki-67 e Caspase-3 no adenocarcinoma de estômago. MÉTODO: Foram selecionados, inicialmente, 58 blocos com espécime de adenocarcinoma gástrico coletados nos Serviços de Anátomo-Patologia do Hospital do Gama - Brasília (DF e Hospital Dom Orione - Araguaina (TO, e analizados no Laboratório de Citologia e Histopalogia Ltda - CITOLAB, Curitiba (PR. Foram aproveitados 31 blocos para o estudo histológico e imunoistoquímico realizado pelo sistema de análise computarizado SAMBA 4000. RESULTADOS: Das 31 lâminas estudas, 15 (48% foram marcadas pelo marcador Ki-67, 22 (71% foram marcadas pelo marcador Caspase-3 e 14 (45% marcaram com os dois marcadores. CONCLUSÕES: A expressão citofométrica do marcador Ki-67 foi observada em 15 lâminas da amostra estudada e apresentaram média do índice de marcagem de 36,85%, enquanto a densidade óptica apresentou média de 29,33 pixels. A expressão citofotométrica do marcador Caspase-3 foi observada em 22 lâminas da amostra estudada e apresentaram média do índice de marcagem de 87,71% e 60,74 pixels de média para a densidade óptica. Na comparação do índice de marcagem dos

  7. Quercetin ameliorates ischemia/reperfusion-induced cognitive deficits by inhibiting ASK1/JNK3/caspase-3 by enhancing the Akt signaling pathway.

    Science.gov (United States)

    Pei, Bing; Yang, Miaomiao; Qi, Xiaoyan; Shen, Xin; Chen, Xing; Zhang, Fayong

    2016-09-01

    Cerebral ischemia/reperfusion (I/R) is a major cause of severe disability and death all worldwide. However, therapeutic options to minimize the detrimental effects of cerebral I/R injury are limited. Recent research has demonstrated that quercetin mediates neuroprotective effects associated with the activation of the Akt signaling pathway in the cerebral I/R brain. Therefore, the aim of this study was to further investigate the mechanisms of cognitive deficits induced by cerebral I/R injury and the effects of quercetin on these mechanisms. First, we assessed anxiety-like behavioral and cognitive impairment using the open field test and the Morris water maze test, respectively. Next, we examined the severity of apoptosis by staining hippocampal neurons by the Cresyl violet method. Third, we used western blot analysis to investigate the expression of total and phosphorylated Akt, ASK1, JNK3, c-Jun and caspase-3 after I/R injury. Our results revealed that mice subjected to bilateral common carotid occlusion exhibited severe anxiety-like behavior, learning and memory impairment, cell damage and apoptosis. These severe effects were attenuated by administration of quercetin. Further, western blot analysis revealed that quercetin increased p-Akt expression and decreased p-ASK1, p-JNK3 and cleaved caspase-3 expression after cerebral I/R injury and led to inhibition of neuronal apoptosis. Conversely, treatment with LY294002 (a selective inhibitor of Akt1) reversed the effects of quercetin. In conclusion, these findings highlight the important role of quercetin in protecting against cognitive deficits and inhibiting neuronal apoptosis via the Akt signaling pathway. We believe that quercetin might prove to be a useful therapeutic component in treating cerebral I/R diseases in the near future. PMID:27450812

  8. 类叶升麻苷对阿尔采末病小鼠皮层 caspase-3基因表达的影响%Effects of acteoside on expression of caspase-3 in cerebral cortex of mouse models of Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    彭晓明; 高莉; 霍仕霞; 闫明

    2014-01-01

    time,mice were in-duced continuously by a combination of D-galactose and AlCl3 .The learning and memory of mice were de-tected by step-down test,the activity of AChE in serum and brain of mice was measured by chemical colorime-try,the structure changes in cerebral cortex were ob-served by HE staining,and the expression of caspase-3 in cerebral cortex was analyzed through the immunohis-tochemical staining.Results Compared with model group,acteoside could improve the learning and mem-ory abilities(P <0.05 or P <0.01 ),decrease the ac-tivity of AChE in serum and brain(P <0.05 or P <0.01 ),and improve the morphology and number of neuron in cerebral cortex(P <0.01 ).Moreover,acte-oside could significantly inhibit the expression of caspase-3 in cerebral cortex (P <0.05,P <0.01 ). Conclusion Acteoside has significantly protective effects on brain damage of mice induced by a combina-tion of D-galactose and AlCl3 , and it′s protective mechanism probably relate to inhibiting the expression of caspase-3 and maintainings the normal morphology and number of neuron in cerebral cortex.

  9. Significado clínico-patológico das expressões citofotométricas do Ki-67 e Caspase-3 no carcinoma de células escamosas do esôfago Clinicopathologic significance of the Ki-67 and Caspase-3 cytophotometric expressions in the esophageal squamous cell carcinomal

    Directory of Open Access Journals (Sweden)

    Gilmar Pereira Silva

    2008-06-01

    se mostraram in-tensas sendo que a da Caspase-3 foi superior ao Ki-67 mas sem correlação com as características clínico-patológicas.BACKGROUND: The esophageal squamous cell carcinoma treatment strategy is still based on the tumor staging, where tumor histopathologic charac-teristics are the major determinants. In parallel, studies have been developed in order to better understand the tumor biology using immunohistochemical meth-ods with manual quantification evaluating the proliferative and apoptotic activi-ties of the cells. The disadvantages related to the manual method rose the de-velopment of computerized ways to do the image analysis. OBJETIVES: To verify the expressions of the markers Ki-67 (proliferative and Caspase-3 (apoptotic and to correlate them with the clinic and pathologic characteristics of the tumor. METHODS: Twenty-nine paraffin embedded blocks were studied, each one con-taining tissue samples from patients with esophageal squamous cell carcinoma submitted to esophagectomies. The clinic and pathological data were obtained from histopathologic informations and from medical records. The slides were prepared following the routine immunohistochemical method until the point to utilize the specific antibodies (MIB-1 and CPP32. Positive quantification of the immunoreactivity to the proteins Ki-67 and Caspase-3 was performed by the software for computerized image analysis SAMBA (Systeme d' Analyse Micro-photometrique a Balayage Automatique. Statistical analysis was done having P3cm; and lesions located in the lower third of the organ. The mean score indexes found were 62.05% for Ki-67 and 86.06% for Caspase-3 and there was no correlation with the clinic or pathologi-cal characteristics as gender, age and tumor staging. There was significant dif-ference of Ki-67 expression among the histological grades (P=0.047 and corre-lation between the evaluated indexes (r=0.41 and P=0.032. CONCLUSION: The protein expressions were high and the Caspase-3 protein

  10. Expression of Livin in tissues of lung cancer and its correlation with the expression of caspase-3%Livin在肺癌组织中的表达及与caspase-3的相关性初步探讨

    Institute of Scientific and Technical Information of China (English)

    Hongru Li; Yusheng Chen; Gang Chen; Baosong Xie; Lifang Lin

    2008-01-01

    Objective:To study the expressions of two isoforms of Livin in tissues of lung cancer and their relations to histological types and chemotherapy,and to study their correlations to the expression of caspase-3 as well.Methods:Expressions of Livin isoforms a,βand caspase-3 were detected by reverse transcription polymerase chain reaction (RT-PCR)assay in lung cancer tissues as well as in controls.Results:Livin isoforms a and β were expressed in 12 of 27,and 19 of 27 lung cancer tissues respectively,much more than those in lung para-cancerous [both were (0/6)] or benign disease lung tissues (0/12,1/12;P<0.01 and P<0.01).Moreover,they were detected in 7/14,9/14 lung adenocarcinomas and 4/12,9/12 squamocellular and large cell carcinomas,respectively,and both showed expressions in one small cell carcinoma.The levels of these two isoforms in lung cancer were significantly higher than those in controls by Gel imaging system (P<0.05 and P<0.05),the former was higher in adenocarcinoma than that in squamocellular carcinoma (P<0.05),while the latter was the same in both (P>0.05).Meanwhile,the levels of caspase-3 in lung cancer were significantly lower than those in controls,and it was suggested to be negatively associated with either each of two isoforms or their sum (P<0.05,P<0.01 and P<0.01).Two isoforms of Livin expression seemed to increase'after chemotherapy but not related to clinical stages (P>0.05).Conclusion:Two isoforms of Livin are differently expressed in different histological types of lung cancer and may contribute to corresponding cancerous development;the levels of Livin are negatively associated with those of caspase-3,this may be due to the fact that Livin could resist against apoptosis;high expression of Livin seems to be related to chemotherapy but not clinical stages.

  11. 力竭运动损伤模型大鼠运动预适应后心脏STAT3和Caspase-3的表达%Effects of exercise preconditioning on expression of STAT3 and Caspase-3 in the heart of rats with exhaustive exercise injury

    Institute of Scientific and Technical Information of China (English)

    孙晓娟

    2015-01-01

    BACKGROUND:Signal transducer and activator of transcription 3 (STAT3) and Caspase-3 are the important factors in JAK2/STAT3 signaling pathway. However, there are few studies on their role in the exercise preconditioning for myocardial protection. OBJECTIVE: To analyze the effects of exercise preconditioning on the expression of STAT3 and Caspase-3 in the heart of rats and investigate the cardioprotective mechanism of action. METHODS: Eighty Sprague-Dawley rats were randomly divided into control, exhaustive, exercise preconditioning, and exercise preconditioning+AG490 groups. The exercise preconditioning rat models were established by subjecting to intermittent treadmil exercise for 3 successive days. Rats in the control group were fed routinely for 3 days. Rats in the exhaustive group underwent treadmil exercise at 30 m/min until exhaustion after 3 days of routine raise. Rats in the exercise preconditioning group underwent exercise preconditioning for 3 days, and 24 hours later, they underwent treadmil exercises at the speed of 30 m/min until exhaustion. Rats in the exercise %背景:信号转导及转录激活因子3(STAT3)和Caspase-3是JAK2/STAT3信号通路中的重要因子,它们在运动预适应心肌保护中的作用目前相关研究较少。目的:分析运动预适应对大鼠心脏STAT3和Caspase-3表达的影响及其对心脏保护的作用机制。方法:将80只SD大鼠随机分为对照组、力竭组、运动预适应组、运动预适应+AG490组。连续3 d的间歇跑台运动建立运动预适应动物模型。对照组:常规饲养3 d;力竭组:常规饲养3 d后,以30 m/min的速度运动至力竭;运动预适应组:先进行3 d的运动预适应,24 h后以30 m/min的速度运动至力竭;运动预适应+AG490组:在每天运动预适应前10 min,腹腔注射JAK2抑制剂AG490(3 mg/kg),余处理同运动预适应组。用HBFP染色法检测心肌缺血缺氧改变,用Western blot方法检测心脏STAT3

  12. Expressions of MDM2, Livin and Caspase-3 protein and mRNA in endometrial adenocarcinomas%学位论文摘要

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Objective To investigate the relationship of the expression of MDM2,Livin and Caspase-3 protein and mRNA in the development of endometrioid adenocarcinoma (EA). Methods The expression levels of MDM2, Livin and Caspase-3 proteins and mRNA in EA tissues (n = 72), endometrial hyperplasia tissues (n = 60) and normal tissues ( n = 30) were examined by tissue microarray technique, immunohistochemistry( SP method) and in situ hybridization method. Results The positive expression rates of MDM2, Livin and Caspase-3 protein and mRNA in EA were respectively 80. 6% ( 58/72 ), 80. 6% ( 58/72 ), 33.3% ( 24/72 ) and 73.6% ( 53/72 ), 75.0% ( 54/72 ),27.8% (20/72). The positive rates of both MDM2 and Livin protein and mRNA in EA were higher than that in normal endometrium and endometrial hyperplasia( P < 0. 01 ). However, the positive rate of Caspase-3 in EA was lower than that in normal endometrium and endometrial hyperplasia( P < 0. 01 ). The positive expressions of MDM2 protein and mRNA were not related to the histological grade, FIGO stage, depth of invasion and lymph node metastasis. The positive expressions of Livin and Caspase-3 protein and mRNA were related to histological grade (P <0. 01 ,P <0.05 ), but they were not related to FIGO stage, depth of invasion and the lymph node metastasis. The expressions of MDM2, Livin and Caspase-3 protein were positively correlated with their mRNA. The expression of Livin was negatively correlated Caspase-3. Conclusion The expressions of MDM2, Livin and Caspase-3 protein and mRNA correlate with the dedvelopment and progression of EA, which may be valuable biomarkers to detect the early carcinogenesis and prognosis of EA.

  13. Chuanxiongzine-astragaloside V decreases IL-1β and Caspase-3 gene expressions in rat brain damaged by cerebral ischemia/reperfusion: A study of real-time quantitgtive PCR assay%川芎嗪-黄芪甲苷降低缺血/再灌注损伤的大鼠脑组织中IL-1β和Caspase-3基因的表达:实时定量PCR的研究

    Institute of Scientific and Technical Information of China (English)

    朱振洪; 万海同; 李金辉

    2011-01-01

    本文旨在运用实时荧光PCR技术建立大鼠脑缺血/再灌注(ischemia-reperfusion,I/R)中IL-1β和Caspase-3基因绝对定量分析方法.成年雄性Sprague-Dawely大鼠被随机分成了5组:假手术组、I/R模型组、黄芪甲苷组、川芎嗪-黄芪甲苷组、尼莫地平组.除假手术组外,其余各组均进行脑I/R处理,然后通过腹膜内注射进行药物处理,时间为脑I/R后0 h、12 h、1 d、2 d直至7 d.假手术组和I/R模型组注射生理盐水(5 mL/kg),黄芪甲苷组中黄芪甲苷剂量为20 mg/kg,川芎嗪-黄芪甲苷组中川芎嗪和黄芪甲苷剂量分别为10 mg/kg和20 mg/kg,而尼莫地平组中尼莫地平剂量为10 mg/kg.通过常规RT-PCR克隆了大鼠的IL-1β和Caspase-3基因,运用TA克隆技术分别构建了重组质粒pTA2-IL1和pTA2-Casp3,重组质粒经过紫外分光光度计测定A260/A280比值,并计算拷贝数.以该质粒作为标准品,首先对实时荧光PCR反应的引物进行筛选和验证,然后进行反应退火温度的优化,最后定量检测各组损伤的脑组织中IL-1β和Caspase-3的基因表达情况.结果显示,从候选引物中各筛选到一对最佳引物,熔解度曲线分析显示单一峰,琼脂糖电泳表明反应产物与预计目标产物大小一致.梯度退火温度实验表明IL-1β和Caspase-3基因的最佳退火温度分别是59°C和61.2°C.实时荧光PCR检测结果表明,与假手术组相比,I/R模型组中的IL-1β和Caspase-3表达显著升高;和I/R模型组相比,黄芪甲苷组、川芎嗪-黄芪甲苷组、尼莫地平组中IL-1β和Caspase-3基因表达水平均有所下降,特别是川芎嗪-黄芪甲苷组基因下调最显著.以上这些结果提示,本研究建立的方法适用于中药处理I/R模型后IL-1β和Caspase-3基因的定量分析.%The purpose of this study was to establish an absolute quantitative method to detect IL-1β and Caspase-3 gene expressions in rat brain after cerebral ischemia-reperfusion (I/R) using real

  14. Advanced glycation end-products induce apoptosis in pancreatic islet endothelial cells via NF-κB-activated cyclooxygenase-2/prostaglandin E2 up-regulation.

    Directory of Open Access Journals (Sweden)

    Kuo-Cheng Lan

    Full Text Available Microvascular complications eventually affect nearly all patients with diabetes. Advanced glycation end-products (AGEs resulting from hyperglycemia are a complex and heterogeneous group of compounds that accumulate in the plasma and tissues in diabetic patients. They are responsible for both endothelial dysfunction and diabetic vasculopathy. The aim of this study was to investigate the cytotoxicity of AGEs on pancreatic islet microvascular endothelial cells. The mechanism underlying the apoptotic effect of AGEs in pancreatic islet endothelial cell line MS1 was explored. The results showed that AGEs significantly decreased MS1 cell viability and induced MS1 cell apoptosis in a dose-dependent manner. AGEs dose-dependently increased the expressions of cleaved caspase-3, and cleaved poly (ADP-ribose polymerase in MS1 cells. Treatment of MS1 cells with AGEs also resulted in increased nuclear factor (NF-κB-p65 phosphorylation and cyclooxygenase (COX-2 expression. However, AGEs did not affect the expressions of endoplasmic reticulum (ER stress-related molecules in MS1 cells. Pretreatment with NS398 (a COX-2 inhibitor to inhibit prostaglandin E2 (PGE2 production reversed the induction of cleaved caspase-3, cleaved PARP, and MS1 cell viability. Moreover, AGEs significantly increased the receptor for AGEs (RAGE protein expression in MS1 cells, which could be reversed by RAGE neutralizing antibody. RAGE Neutralizing antibody could also reverse the induction of cleaved caspase-3 and cleaved PARP and decreased cell viability induced by AGEs. These results implicate the involvement of NF-κB-activated COX-2/PGE2 up-regulation in AGEs/RAGE-induced islet endothelial cell apoptosis and cytotoxicity. These findings may provide insight into the pathological processes within the pancreatic islet microvasculature induced by AGEs accumulation.

  15. Exposure to 1950-MHz TD-SCDMA electromagnetic fields affects the apoptosis of astrocytes via caspase-3-dependent pathway.

    Directory of Open Access Journals (Sweden)

    Yu-xiao Liu

    Full Text Available The usage of mobile phone increases globally. However, there is still a paucity of data about the impact of electromagnetic fields (EMF on human health. This study investigated whether EMF radiation would alter the biology of glial cells and act as a tumor-promoting agent. We exposed rat astrocytes and C6 glioma cells to 1950-MHz TD-SCDMA for 12, 24 and 48 h respectively, and found that EMF exposure had differential effects on rat astroctyes and C6 glioma cells. A 48 h of exposure damaged the mitochondria and induced significant apoptosis of astrocytes. Moreover, caspase-3, a hallmark of apoptosis, was highlighted in astrocytes after 48 h of EMF exposure, accompanied by a significantly increased expression of bax and reduced level of bcl-2. The tumorigenicity assays demonstrated that astrocytes did not form tumors in both control and exposure groups. In contrast, the unexposed and exposed C6 glioma cells show no significant differences in both biological feature and tumor formation ability. Therefore, our results implied that exposure to the EMF of 1950-MHz TD-SCDMA may not promote the tumor formation, but continuous exposure damaged the mitochondria of astrocytes and induce apoptosis through a caspase-3-dependent pathway with the involvement of bax and bcl-2.

  16. Phycocyanin for protecting brain ischemia-reperfusion injury and its effect on the expression of Caspase-3 mRNA

    Institute of Scientific and Technical Information of China (English)

    Xuewei Yang; Yunliang Guo; Hongbing Chen

    2006-01-01

    BACKGROUND: Phycocyanin can anti-oxidize and clear free radial. Whether its protective effect on brain is related to Caspase-3, the promoter and operator of apoptosis, is highly concerned.OBJECTIVE: To observe phycocyanin for protecting nerve function and reducing the size of cerebral infarction of rats with brain ischemia-reperfusion and its effect on the expression of Caspase-3 mRNA.DESIGN: A randomized controlled experiment.SETrING: Institute of Cerebrovascular Disease, Affiliated Hospital of Medical College of Qingdao University.MATERIALS: Totally 84 adult healthy female Wistar rats, weighing 210 to 250 g, of clean grade, were provided by the Animal Experimental Center of Shandong University. Phycocyanin (Institute of Oceanography of Chinese Academy of Sciences) was used.METHODS: This experiment was carried out in the Key Laboratory for Prevention and Treatment of Brain Diseases during May to December 2005. ① The rats were randomized into sham-operation group (n=4),control group (n=40) and phycocyanin-treated group (n=40). Middle cerebral artery occlusion/reperfusion (MACO/R) models were created on the rats of control and phycocyanin-treated groups with suture-occluded method by inserting a thread into left side external-internal carotid artery. In the sham-operation group, inserting suture was omitted. After ischemia for 1 hour and reperfusion for 2 hours, suspension of phycocyanin was intragastrically administrated into the rats of the phycocyanin-treated group at 100 mg/kg , and the same volume of normal saline was isochronously administrated into the rats of control group as the same. ② Six rats were chosen respectively from the control group and phycocyanin-treated group, then neurologic impairment degrees of rats were evaluated according to Bederson's grading. ③ Six rats were chosen respectively from the control and phycocyanin-treated groups. The isolated brain tissue was stained with triphenyltetrazolium chloride, and then the size of cerebral

  17. Regulation of ROS in transmissible gastroenteritis virus-activated apoptotic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Zhao, Xiaomin; Huang, Yong; Du, Qian; Dong, Feng; Zhang, Hongling; Song, Xiangjun; Zhang, Wenlong [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-06

    Highlights: •TGEV infection induced ROS accumulation. •ROS accumulation is involved in TGEV-induced mitochondrial integrity impairment. •ROS is associated with p53 activation and apoptosis occurrence in TGEV-infected cells. -- Abstract: Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, causes severe lethal watery diarrhea and dehydration in piglets. Previous studies indicate that TGEV infection induces cell apoptosis in host cells. In this study, we investigated the roles and regulation of reactive oxygen species (ROS) in TGEV-activated apoptotic signaling. The results showed that TGEV infection induced ROS accumulation, whereas UV-irradiated TGEV did not promote ROS accumulation. In addition, TGEV infection lowered mitochondrial transmembrane potential in PK-15 cell line, which could be inhibited by ROS scavengers, pyrrolidinedithiocarbamic (PDTC) and N-acetyl-L-cysteine (NAC). Furthermore, the two scavengers significantly inhibited the activation of p38 MAPK and p53 and further blocked apoptosis occurrence through suppressing the TGEV-induced Bcl-2 reduction, Bax redistribution, cytochrome c release and caspase-3 activation. These results suggest that oxidative stress pathway might be a key element in TGEV-induced apoptosis and TGEV pathogenesis.

  18. Dietary flavonoid fisetin targets caspase-3-deficient human breast cancer MCF-7 cells by induction of caspase-7-associated apoptosis and inhibition of autophagy.

    Science.gov (United States)

    Yang, Pei-Ming; Tseng, Ho-Hsing; Peng, Chih-Wen; Chen, Wen-Shu; Chiu, Shu-Jun

    2012-02-01

    The outcome of producing apoptotic defects in cancer cells is the primary obstacle that limits the therapeutic efficacy of anticancer agents, and hence the development of novel agents targeting novel non-canonical cell death pathways has become an imperative mission for clinical research. Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid commonly found in fruits and vegetables. In this study, we investigated the potential anticancer effects of fisetin on breast cancer cells. The result showed fisetin induced higher cytotoxicity in human breast cancer MCF-7 than in MDA-MB-231 cells otherwise it did not exert any detectable cytotoxicity in non-tumorigenic MCF-10A cells. We found fisetin can trigger a novel form of atypical apoptosis in caspase-3-deficient MCF-7 cells, which was characterized by several apoptotic features, including plasma membrane rupture, mitochondrial depolarization, activation of caspase-7, -8 and -9, and PARP cleavage; however, neither DNA fragmentation and phosphotidylserine (PS) externalization was observed. Although p53 was also activated by fisetin, the fisetin-induced apoptosis was not rescued by the p53 inhibitor pifithrin-α. In contrast, the fisetin-induced apoptosis was abrogated by pan-caspase inhibitor z-VAD-fmk. Furthermore, inhibition of autophagy by fisetin was shown as additional route to prompt anticancer activity in MCF-7 cells. These data allow us to propose that fisetin appears as a new potential anticancer agent which can be applied to develop a clinical protocol of human breast cancers. PMID:21922137

  19. Effects of Sodium Cantharidate Vitamin B6 on Proliferation,Apoptosis and Influence of NF-κB and Caspase3/7 on Human Lung Cancer A549 Cells%斑蝥酸钠维生素B6注射液对人肺癌细胞系A549增殖抑制及核因子κB和Caspase3/7的影响

    Institute of Scientific and Technical Information of China (English)

    温省初; 王一飞; 李爱明; 李冠军; 成志勇; 王亚丽; 石林

    2011-01-01

    Objective To investigate the effect of sodium cantharidinate ( SC ) vitamin B6 on human non - small cell lung cancer A549 cell proliferation, apoptosis and the influence of transcription factor NF - kB and apoptosis molecules Caspase3/7. Methods Different concentrations of SC vitamin B6 and A549 cells were cultured together; Cells apoptosis was tested by light microscopy and fluorescent staining Hoechst33342 morphology; MTT assay tested cell proliferation; Rhodamine 123 examined mitochondrial membrane potential; Caspase3/7 activity assay kit tested Caspase3/7 activity; Western blot detected of NF - kB P65 , I - kB protein levels. Results SC vitamin B6 inhibited the A549 cells proliferation, of which there were apparent apoptotic morphological changes. When 5. 0 mg/L group roled in A549 cells 72 h, cell proliferation inhibition rate reached 67. 37 percent maximum. Mitochondrial membrane potential results showed that with increasing concentration of SC vitamin B6 and time, the mitochondrial membrane potential gradually weakened, while Caspase3/7 protein activity increased. After SC vitamin B6 was added in A549 cells, NF - kB P65 protein levels was reduced ( P < 0. 05 ) and I - kB protein levels had no changes. Conclusion SC vitamin B6 inhibits the NF - kB P65 expression, activates caspase - 3/7 activities which inhibits A549 cells proliferation and induce apoptosis.%目的 探讨斑蝥酸钠(SC)维生素B6注射液对人非小细胞肺癌A549细胞增殖、凋亡及核因子κB(NF-κB)、凋亡分子Caspase3/7的影响.方法 用不同浓度(0、1.0、2.5、5.0 mg/L)的SC维生素B6注射液处理A549细胞,观察光镜及Hoechst33342荧光染色检测细胞凋亡形态;用噻唑蓝(MTT)比色法检测SC维生素B6注射液对细胞增殖的抑制作用;罗丹明123检测线粒体膜电位;Caspase3/7活性检测试剂盒检测Caspase3/7活性;蛋白印迹检测NF-κB P65、I-κB 蛋白表达.结果 SC维生素B6注射液对A549细胞的体外增殖有明显抑制作

  20. The caspase 3-dependent apoptotic effect of pycnogenol in human oral squamous cell carcinoma HSC-3 cells.

    Science.gov (United States)

    Yang, In-Hyoung; Shin, Ji-Ae; Kim, Lee-Han; Kwon, Ki Han; Cho, Sung-Dae

    2016-01-01

    In the present study, the apoptotic effect of pycnogenol and its molecular mechanism in human oral squamous cell carcinoma HSC-3 cells were investigated. Pycnogenol significantly inhibited the viability of HSC-3 cells and suppressed neoplastic cell transformation in HSC-3 cells and TPA-treated JB6 cells. It caused caspase-dependent apoptosis evidenced by the increase in cleaved poly (ADP-ribose) polymerase and caspase 3 in a dose-dependent manner. Pycnogenol increased Bak protein by enhancing its protein stability whereas other Bcl-2 family members were not altered. In addition, the treatment with pycnogenol led to the production of reactive oxygen species and N-acetyl-l-cysteine almost blocked pycnogenol-induced reactive oxygen species generation. Taken together, these findings suggest that pycnogenol may be a potential candidate for the chemoprevention or chemotherapy of human oral cancer. PMID:26798196

  1. Proteinase activity regulation by glycosaminoglycans

    Directory of Open Access Journals (Sweden)

    Tersariol I.L.S.

    2002-01-01

    Full Text Available There are few reports concerning the biological role and the mechanisms of interaction between proteinases and carbohydrates other than those involved in clotting. It has been shown that the interplay of enzymes and glycosaminoglycans is able to modulate the activity of different proteases and also to affect their structures. From the large number of proteases belonging to the well-known protease families and also the variety of carbohydrates described as widely distributed, only few events have been analyzed more deeply. The term "family" is used to describe a group of proteases in which every member shows an evolutionary relationship to at least one other protease. This relationship may be evident throughout the entire sequence, or at least in that part of the sequence responsible for catalytic activity. The majority of proteases belong to the serine, cysteine, aspartic or metalloprotease families. By considering the existing limited proteolysis process, in addition to the initial idea that the proteinases participate only in digestive processes, it is possible to conclude that the function of the enzymes is strictly limited to the cleavage of intended substrates since the destruction of functional proteins would result in normal tissue damage. In addition, the location as well as the eventual regulation of protease activity promoted by glycosaminoglycans can play an essential role in the development of several physiopathological conditions.

  2. Expression and clinical significance of Caspase-3 in placental tissues of patients with hypertension disorder complicating pregnancy%Caspase-3在妊娠期高血压疾病胎盘组织中的表达及其意义

    Institute of Scientific and Technical Information of China (English)

    李莉; 郑丹

    2014-01-01

    Objective To investigate expression and clinical significance of Caspase-3 in placenta of patients with hyperten-sive disorder complicating pregnancy. Methods The expression of Caspase-3 in placenta of 30 normal pregnant women (as con-trols) and 30 pregnant women with hypertensive disorder complicating pregnancy (in study group) were detected by using SP method of immunohistochemistry,and the relationship between expression of Caspase-3 and hypertensive disorder complicating pregnancy was explored. Results The expression level of Caspase-3 in placenta villous of study group was significantly higher than that of control group. Along with aggravation of severity of the disease,the positive expression rate of Caspase-3 was in-creased significantly. Conclusion The increased expression of Caspase-3 in placenta of patients with hypertensive disorder com-plicating pregnancy may be involved in pathogenesis of the disease by increasing the apoptosis of syncytiotrophoblast.%目的:探讨Caspase-3在妊娠期高血压疾病胎盘组织中的表达及临床意义。方法利用免疫组织化学SP法检测正常妊娠者30例(对照组)和妊娠期高血压疾病者30例(实验组)胎盘组织中Caspase-3的表达,探讨Caspase-3与妊娠期高血压疾病的关系。结果 Caspase-3在实验组胎盘组织中明显高表达,与对照组比较有显著差异(t=7.52,P<0.05);Caspase-3阳性表达率随病情加重而显著增高。结论 Caspase-3在妊娠期高血压疾病中高表达,可能上调合体滋养细胞的凋亡而参与妊娠期高血压疾病的发生发展。

  3. The Effects of Magnesium Sulfate on Fetal Rats of FGR and the Expression of Caspase-3 in the Placenta of Maternal Rat

    Institute of Scientific and Technical Information of China (English)

    GAO Hui; ZOU Li

    2005-01-01

    To investigate the effect of magnesium sulfate on the fetal rats of FGR and the expression of caspase-3 in the placenta of maternal rat; To explore the mechanism of using magnesium sulfate to cure the FGR. Establish model of FGR by a way of passive smoking: giving the maternal rats different agent of magnesium sulfate by subcutaneous injection: low agent group (300 mg/kg),high agent group (600 mg/kg). Concentration of magnesium sulfate was monitored. The expres sion of caspase-3 was measured by RT-PCR and immunohistochemistry technology. Both of the concentrations of magnesium sulfate in high and low agents group are higher than the FGR group (P<0. 01); the weight of the placenta and fetal rat in high agent group are higher than the FGR group (P<0.05 and P<0.01); the expression of mRNA and protein of caspase-3 in the two agent group is higher than the FGR group (P<0.05 respectively); concentration of magnesium sulfate in the maternal rat blood correlate to the weight of fetal rat (r=0. 899, P=0. 038) and the expression of caspase-3 in the placenta of maternal rat (r= 0.747, P 0.033; r=-0. 915, P=0.001).The research suggests that the weight of fetal rat could be increased by treatment of magnesium sulfate. Because it would imfrmove the placental function by depressing the expression of caspase-3.

  4. Human urine extract CDA-2 induces apoptosis of myelodysplastic syndrome-derived MUTZ-1 cells through the PI3K/Akt signaling pathway in a caspase-3-dependent manner

    Institute of Scientific and Technical Information of China (English)

    Jian HUANG; Min YANG; Hui LIU; Jie JIN

    2008-01-01

    Aim: The aim of this study was to investigate the antitumoral activity of human urine extract against myelodysplastic syndrome (MDS)-derived MUTZ-1 cells in vitro and in vivo. Methods: The MDS-refractory anemia with excess of blasts (RAEB)-derived MUTZ-1 cell line was used to examine the effects of a human urine preparation, CDA-2, on the induction of growth arrest and apoptosis. Apoptotic proteins, including caspase family, Bcl-2 family, the inhibitor of apoptosis protein (IAP) family, and the F-LICE-like inhibitory protein (FLIP), as well as cell cycle-associated proteins were studied. The phosphoinositide 3 ki- nase (PI3K)/Akt survival signaling pathway and the NF-k B pathway were also examined. The caspase-3 inhibitor Z-DEVD-fmk was used to examine the involve- ment of caspase-3 and poly (ADP-ribose) polymerase (PARP). PI3K inhibitor LY294002 was used to examine the involvement of the PI3K/Akt signaling path- way in this apoptosis-inducing effect. MUTZ-1 cell xenografted serious com- bined immunodeficiency disease mice were used for the in vivo study. Results: We found that CDA-2 could induce growth arrest and apoptosis of MUTZ-l cells in vitro and in vivo. The main mechanisms were related to the inhibition of PI3Kp110or expression at the transcriptional level, which inactivated the phos- phorylation of Akt involving the prevention NF-KB phosphorylation and nuclear translocation, the downregulation of the IAP family and FLIPL protein, and the dephosphorylation of the Bad protein, which then triggered the activation of the caspase cascades. This phenomenon could be inhibited by the PI3K inhibitor LY294002 and caspase-3 inhibitor Z-DEVD-fmk. Conclusion: Our results demon- strate the presence of active components in the human urine extract that can induce the growth arrest and apoptosis of MDS-RAEB-derived MUTZ-1 cells and may involve the PI3K/Akt signaling pathway in a caspase-3-dependent manner. This may provide new insights for the treatment of high-risk MDS.

  5. Strain-Dependent Induction of Human Enterocyte Apoptosis by Blastocystis Disrupts Epithelial Barrier and ZO-1 Organization in a Caspase 3- and 9-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Zhaona Wu

    2014-01-01

    Full Text Available Blastocystis is an emerging protistan parasite colonizing the human intestine. It is frequently reported to cause general intestinal symptoms of vomiting, diarrhea, and abdominal pain. We recently demonstrated that Blastocystis rearranged cytoskeletal proteins and induced intestinal epithelial barrier compromise. The effect of Blastocystis on enterocyte apoptosis is unknown, and a possible link between microbially induced enterocyte apoptosis and increased epithelial permeability has yet to be determined. The aim of this study is to assess if Blastocystis induces human enterocyte apoptosis and whether this effect influences human intestinal epithelial barrier function. Monolayers of polarized human colonic epithelial cell-line Caco-2 were incubated with Blastocystis subtype 7 and subtype 4. Assays for both early and late markers of apoptosis, phosphatidylserine externalization, and nuclear fragmentation, respectively, showed that Blastocystis ST-7, but not ST-4, significantly increased apoptosis in enterocytes, suggesting that Blastocystis exhibits host specificity and strain-to-strain variation in pathogenicity. ST-7 also activated Caco-2 caspases 3 and 9 but not 8. ST-7 induced changes in epithelial resistance, permeability, and tight junction (ZO-1 localization. Pretreatment of Caco-2 monolayers with a pan-caspase inhibitor z-VAD-fmk significantly inhibited these changes. This suggests a role for enterocyte apoptosis in Blastocystis-mediated epithelial barrier compromise in the human intestine.

  6. Subacute Zinc Administration and L-NAME Caused an Increase of NO, Zinc, Lipoperoxidation, and Caspase-3 during a Cerebral Hypoxia-Ischemia Process in the Rat

    Directory of Open Access Journals (Sweden)

    Victor Manuel Blanco-Alvarez

    2013-01-01

    Full Text Available Zinc or L-NAME administration has been shown to be protector agents, decreasing oxidative stress and cell death. However, the treatment with zinc and L-NAME by intraperitoneal injection has not been studied. The aim of our work was to study the effect of zinc and L-NAME administration on nitrosative stress and cell death. Male Wistar rats were treated with ZnCl2 (2.5 mg/kg each 24 h, for 4 days and N-ω-nitro-L-arginine-methyl ester (L-NAME, 10 mg/kg on the day 5 (1 hour before a common carotid-artery occlusion (CCAO. The temporoparietal cortex and hippocampus were dissected, and zinc, nitrites, and lipoperoxidation were assayed at different times. Cell death was assayed by histopathology using hematoxylin-eosin staining and caspase-3 active by immunostaining. The subacute administration of zinc before CCAO decreases the levels of zinc, nitrites, lipoperoxidation, and cell death in the late phase of the ischemia. L-NAME administration in the rats treated with zinc showed an increase of zinc levels in the early phase and increase of zinc, nitrites, and lipoperoxidation levels, cell death by necrosis, and the apoptosis in the late phase. These results suggest that the use of these two therapeutic strategies increased the injury caused by the CCAO, unlike the alone administration of zinc.

  7. Roles of Na+/H+ exchange in regulation of p38 mitogen-activated protein kinase activity and cell death after chemical anoxia in NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Rentsch, Maria L; Ossum, Carlo G; Hoffmann, Else K;

    2007-01-01

    , p38 mitogen-activated protein kinase (MAPK), ERK1/2, p53, and Akt activity, and cell death, after chemical anoxia in NIH3T3 fibroblasts. The NHE1 inhibitor 5'-(N-ethyl-N-isopropyl) amiloride (EIPA) (5 muM), as well as removal of extracellular Na(+) [replaced by N-methyl-D: -glucamine (NMDG......) and extracellular signal-regulated kinase (ERK) (PD98059). In contrast, chemical anoxia activated p38 MAPK in an NHE-dependent manner, while ERK1/2 activity was unaffected. Anoxia-induced cell death was caspase-3-independent, mildly attenuated by EIPA, potently exacerbated by SB203580, and unaffected by PD98059...

  8. Investigation of the Relationship between the Intracellular Ca2+ Levels and Caspases-3 and 8 Expression in Rat Mammary Gland Carcinoma Undergoing Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Hui Sun; Jing Zhang; Zhongli Zhan; Baocun Sun; Xishan Hao

    2007-01-01

    OBJECTIVE To investigate the relationship between the level of caspase-3 and 8 expression and intracellular Ca2+ levels in BCML-TA299 breast cancer cells in the process of apoptosis.METHODS Mice were divided into three IFNa-treated groups and one control group as follows: an intratumoral injection, subcutaneous injection, preventive injection, and a control without injection. The cellular DMA content, changes in the cell cycle and the relationship between the cell Ca2+ concentrations and the expression of caspase-3 and 8 were examined. RESULTS After injection of IFN-α-2b by different routes, the morphologic transformation of the breast cancer cells in each group was observed. There was a typical apoptotic response in the intratumoral-injection group. The expression of caspase-3 and 8 was diverse among the experimental groups, and correlated with the cellular Ca2+ concentration. Caspase-3 and 8 expression and the cellular Ca2+ level were higher following intratumoral injection compared to the other treatments (P<0.01). Among the experimental groups, the cell cycle displayed definitive changes.CONCLUSION a) Both caspase-3 and 8 and the intracellular Ca2+ are elevated in the process of cell apoptosis in BCML-TA299 breast cancer tissues. These changes may play important roles in the occurrence and development of breast cancer; b) Variation in the route of IFN-α-2b administration can produce different responses in the expression of caspase-3 and 8 and the concentration of Ca2+ in apoptotic tumor cells.

  9. Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis.

    Science.gov (United States)

    Sendler, Matthias; Maertin, Sandrina; John, Daniel; Persike, Maria; Weiss, F Ulrich; Krüger, Burkhard; Wartmann, Thomas; Wagh, Preshit; Halangk, Walter; Schaschke, Norbert; Mayerle, Julia; Lerch, Markus M

    2016-07-01

    Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific. PMID:27226576

  10. Platelets actively sequester angiogenesis regulators

    OpenAIRE

    Lakka Klement, Giannoula; Yip, Tai-Tung; Cassiola, Flavia; Kikuchi, Lena; Cervi, David; Podust, Vladimir; Italiano, Joseph E.; Wheatley, Erin; Abou-Slaybi, Abdo; Bender, Elise; Almog, Nava; Kieran, Mark W.; Folkman, Judah

    2009-01-01

    Clinical trials with antiangiogenic agents have not been able to validate plasma or serum levels of angiogenesis regulators as reliable markers of cancer presence or therapeutic response. We recently reported that platelets contain numerous proteins that regulate angiogenesis. We now show that accumulation of angiogenesis regulators in platelets of animals bearing malignant tumors exceeds significantly their concentration in plasma or serum, as well as their levels in platelets from non–tumor...

  11. An ent-kaurane diterpenoid from Croton tonkinensis induces apoptosis by regulating AMP-activated protein kinase in SK-HEP1 human hepatocellular carcinoma cells.

    Science.gov (United States)

    Sul, Young Hoon; Lee, Myung Sun; Cha, Eun Young; Thuong, Phuong Thien; Khoi, Nguyen Minh; Song, In Sang

    2013-01-01

    Hepatocellular carcinoma (HCC) is the most common type of liver cancer with high mortality worldwide. Traditional chemotherapy for HCC is not widely accepted by clinical practitioners because of its toxic side effects. Thus, there is a need to identify chemotherapeutic drugs against HCC. AMP-activated protein kinase (AMPK) is a biologic sensor for cellular energy status that acts a tumor suppressor and a potential cancer therapeutic target. The traditional Vietnamese medicinal plant Croton tonkinensis shows cytotoxicity in various cancer cells; however, its anticancer mechanism remains unclear. In this study, we determined whether the ent-kaurane diterpenoid ent-18-acetoxy-7β-hydroxy kaur-15-oxo-16-ene (CrT1) isolated from this plant plays a role as a chemotherapeutic drug targeting AMPK. CrT1 blocked proliferation in dose- and time-dependent manners in human hepatocellular carcinoma SK-HEP1 cells. CrT1 induced sub-G(1) arrest and caspase-dependent apoptosis. CrT1 activated caspase-3, -7, -8, -9, and poly(ADP-ribose) polymerase, and its effect was inhibited by z-VAD-fmk suppressing caspase-3 cleavage. CrT1 induced increases in p53 and Bax levels but decreased Bcl(2) levels. In addition, CrT1 resulted in increased translocation of cytochrome c into the cytoplasm. We showed that CrT1-activated AMPK activation was followed by modulating the mammalian target of rapamycin/p70S6K pathway and was inactivated by treating cells with compound C. Treatment with CrT1 and aminoimidazole carboxamide ribonucleotide (AICAR) synergistically activated AMPK. CrT1-induced AMPK activation regulated cell viability and apoptosis. These results suggest that CrT1 is a novel AMPK activator and that AMPK activation in SK-HEP1 cells is responsible for CrT1-induced anticancer activity including apoptosis. PMID:23302650

  12. Effect of NF-κB, survivin, Bcl-2 and Caspase3 on apoptosis of gastric cancer cells induced by tumor necrosis factor related apoptosis inducing ligand

    Institute of Scientific and Technical Information of China (English)

    Liu-Qin Yang; Dian-Chun Fang; Rong-Quan Wang; Shi-Ming Yang

    2004-01-01

    AIM: To study the effect of NF-κB, survivin, Bcl-2 and Caspase3 on tumor necrosis factors related apoptosis inducing ligand (TRAIL) induced apoptosis of gastric cancer cells.METHODS: Gastric cancer cells of SGC-7901, MKN28,MKN45 and AGS lines were cultured in PRMI-1640 medium and the apoptosis rates of the cells of 4 lines were observed after treatment of tumor necrosis factors related apoptosis inducing ligand (TRAIL) with a flow cytometer. The expression of NF-κB, survivin, Bcl-2 and Caspase3 in gastric cancer cells of 4 lines was analyzed with Western blot.RESULTS: After the gastric cancer cells were exposed to TRAIL 300 ng/ml for 24 hours, the apoptosis rate was 36.05%, 20.27%, 16.50% and 11.80% in MKN28, MKN45,AGS and SGC-7901cells respectively. Western blot revealed that the expressions of NF-κB and survivin were lower in MKN28 cells than in MKN45, AGS and SGC-7901 cells. In contrast, the expression of Caspase3 was higher in MKN28 cells than in MKN45, AGS and SGC-7901 cells.CONCLUSION: There is a selectivity of TRAIL potency to induce apoptosis in gastric cancer cells of different cell lines.The anticancer potency of TRAIL is associated with the decreased expression of NF-κB and survivin and increased expression of Caspase3 of gastric cancer cells.

  13. Huangzhi Oral Liquid Prevents Arrhythmias by Upregulating Caspase-3 and Apoptosis Network Proteins in Myocardial Ischemia-Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Xu Ran

    2015-01-01

    Full Text Available To study the effect of Huangzhi oral liquid (HZOL on I/R after 2 h and 4 h and determine its regulatory function on caspase-3 and protein networks. 70 SD male rats were randomly divided into seven groups and established myocardial I/R injury model by ligating the left anterior descending coronary artery. Myocardial infarction model was defined by TTC staining and color of the heart. The levels of CK-MB, CTnI, C-RPL, SOD, and MDA were tested at 2 h and 4 h after reperfusion. HE staining and ultramicrostructural were used to observe the pathological changes. The apoptotic index (AI of cardiomyocyte was marked by TUNEL. The expression levels of caspase-3, p53, fas, Bcl-2, and Bax were tested by immunohistochemistry and western blot. HZOL corrected arrhythmia, improved the pathologic abnormalities, decreased CK-MB, CTnI, C-RPL, MDA, AI, caspase-3, p53, fas, and Bax, and increased SOD ans Bcl-2 with different times of myocardial reperfusion; this result was similar to the ISMOC (P>0.05. HZOL could inhibit arrhythmia at 2 and 4 h after I/R and ameliorate cardiac function, which was more significant at 4 h after reperfusion. This result may be related to decreased expression of caspase-3, p53, and fas and increased Bcl-2/Bax ratio.

  14. Expression of Survivin, CyclinD1, p21WAF1, Caspase-3 in Cervical Cancer and Its Relation with Prognosis

    Institute of Scientific and Technical Information of China (English)

    LU Shi; ZHANG Baohua; WANG Zehua

    2005-01-01

    The implications of Survivin, CyclinD1, p21WAF1, Caspase-3 in the development, progression and prognosis in cervical cancer were investigated. By using immunohistochemical SP method, the expression of Survivin, CyclinD1, p21WAF1 , Caspase-3 was detected in 41 cases of cervical cancer, 17 cases of cervical intraepithelial neoplasia (CIN) and 10 cases of normal tissues, and their relation with pathological grade, clinical stage, metastasis and survival time was analyzed.The results showed that the positive expression rate of Survivin, CyclinD1 in cervical cancer was significantly higher than in CIN group and normal control group (P<0.05). The median survival time in the patients with cervical cancer positive for Survivin and CyclinD1 was significantly shorter than in those with negative expression (P<0.05). The expression of both Survivin and CyclinD1 was not related with tumor grade, clinical stage and metastasis (P>0. 05). The positive expression rate of p21WAF1 , Caspase-3 in cervical ca rcer was significantly lower than in CIN group and normal control group (P<0.05), and had a close relation with tumor grade (P<0.05). The expression of Survivin in cervical cancer in cervical cancer was negatively associated with that of Caspase-3 (P<0.01), but positively with that of CyclinD1 (P<0.01). Cox Multivariate analysis revealed that Survivin was the independent prognostic indicator influencing the survival time of the patients with cervical cancer (P<0.05). It was suggested that the high expression of Survivin or CyclinD1, and low expression of p21WAF1 or Caspase-3 was closely correlated with the development of cervical cancer. Survivin and CyclinD1 could be used as a useful indicator to predict the prognosis of cervical cancer.

  15. [Protein kinase C activation induces platelet apoptosis].

    Science.gov (United States)

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  16. Effect of Exogenous Erythropoietin on Caspase-9 and Caspase-3 Expression in Newborn Rats after Hypoxia-ischemia Brain Damage%EPO对新生大鼠缺氧缺血性脑损伤时脑组织Caspase-9和Caspase-3的影响

    Institute of Scientific and Technical Information of China (English)

    白丹; 阴怀清; 阴崇娟; 武师润

    2011-01-01

    目的 观察新生大鼠缺氧缺血性脑损伤(HIBD)时脑组织Caspase-9和Caspase-3的表达变化及促红细胞细胞生成素(EPO)对其表达的影响,从而探讨EPO发挥脑保护作用的可能机制.方法 将新生7 d SD大鼠120只随机分成3组,假手术组、HIBD组、rhEPO治疗组,每组根据不同时间点又分为5个亚组:6 h组、12 h组、24 h组、48 h组、72 h组,每组8只,用免疫组化的方法观察各组脑组织Caspase-9和Caspase-3的表达.结果 Caspase-9的表达在缺氧缺血6 h即增强,12 h时逐渐升高,24 h~72 h维持在高峰水平(P<0.01);Caspase-3的表达也在缺氧缺血6 h即增强,12 h时逐渐升高,24 h~48 h达高峰,72 h稍有降低(P<0.01);rhEPO治疗组各时间点Caspase-9和Caspase-3的表达水平较HIBD组均明显降低(P<0.01).结论 Caspase-9和Caspase-3参与了新生大鼠脑组织HIBD的发生发展过程,EPO可能通过降低新生大鼠缺氧缺血性脑损伤时脑组织Caspase-9和Caspase-3的表达发挥其脑保护作用.%Objective To observe the expression of caspase - 9 and caspase - 3 in brain tissue of neonatal rats after hypoxia - ischemia brain damage (HIBD) and the effects of exogenous erythropoietin (EPO) on the expression of caspase- 9 and caspase- 3. Methods One hundred and twenty seven - day - old neonatal Sprague - Dawley rats were randomly divided into three groups: Sham - operated group, HIBD group and rhEPO treatment group. Each group was further divided into five sub-groups(n= 8) based on different time points after H IBD(6 h, 12 h, 24 h, 48 h, 72 h), respectively. Immunohistochemical technique was used to determine the expression of caspase - 9 and caspase - 3 in brain tissues. Results The expression of caspase - 9 in HIBD group was increased at 6 h after HIBD,increased gradually at 12 h,and maintained the peak level 24 h to 72 h (P<0.01). The expression of caspase-3 in HIBD group was increased at 6 h after HIBD,increased gradually at 12 h,reached the peak at 24 h

  17. 龙葵碱对HepG2细胞内caspase-3及Bcl-2蛋白含量的影响%Effect of Solanine on the Contents of Caspase-3 and Bcl-2 in HepG2

    Institute of Scientific and Technical Information of China (English)

    高世勇; 王秋娟; 季宇彬

    2006-01-01

    目的:观察龙葵碱对HepG2细胞内caspase-3及Bcl-2蛋白含量的影响,阐明龙葵碱诱导肿瘤细胞凋亡的作用机制.方法:采用激光共聚焦扫描显微术和Western blot法检测caspase-3和Bcl-2蛋白含量,并对二者在细胞内的位置进行定位.结果:龙葵碱能够显著升高HepG2细胞内caspase-3蛋白含量,降低Bcl-2的含量,并且均具有剂量依赖性.Bcl-2蛋白和caspase-3蛋白均在细胞浆内呈不均匀分布,在细胞核中无分布,龙葵碱对二者的分布没有影响.结论:龙葵碱通过抑制Bcl-2的活性,激活caspase-3蛋白,诱导细胞凋亡的发生.

  18. Effect of irradiation on the expression of caspase-3 in the submandibular gland of streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heung Ki; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2005-09-15

    To observe the histopathological changes and caspace-3 expression in the submandibular gland in streptozotocin-induced diabetic rats after irradiation. The male Sprague-Dawley rats weighing approximately 250gm were divided into four groups; control, diabetes, irradiation, and diabetes-irradiation groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control and irradiation groups were injected with citrate buffer only. After 5 days, rats in irradiation, and diabetes-irradiation groups were irradiated with a single absorbed dose of 10 Gy to the head and neck region. All the rats were sacrificed at 3, 7, 14, 21, and 28 days after irradiation. The specimen including the submandibular gland were sectioned and observed using histopathological and immunohistochemical methods. In the irradiation group, the condensed nucleus, karyolysis, and degeneration of the acinar cells and atrophy of the duct cells were observed in the early experimental phase. However, the acinar cells were found to be normal at 28 days after irradiation. In the diabetes group, the condensed nucleus, karyolysis, atrophy, and degeneration of the acinar cells were observed in the early experimental phase. However, the acinar cells were found to be normal at 21 days, after diabetic state induction. In the diabetes-irradiation group, the ductal epithelial cells were predominant in their glandular tissues at 28 days after irradiation. In all of the experimental groups, the most prominent change of the acinar cells and ductal cells were observed at 14 days after diabetic state induction and irradiation. The expression of caspase-3 in the acinar cells and ductal cells of the submandibular gland was weak after irradiation, but that in the acinar cells, ductal cells, and fibrous cells of the submandibular gland was prominent after diabetic state induction.

  19. Berberine in combination with cisplatin suppresses breast cancer cell growth through induction of DNA breaks and caspase-3-dependent apoptosis.

    Science.gov (United States)

    Zhao, Yuwan; Jing, Zuolei; Li, Yan; Mao, Weifeng

    2016-07-01

    Berberine (BBR) is an isoquinoline alkaloid extracted from medicinal plants such as Hydrastis canadensis, Berberis aristata and Coptis chinensis. BBR displays a number of beneficial roles in the treatment of various types of cancers, yet the precise mechanisms of its action remain unclear. Cisplatin is an effective cancer chemotherapeutic agent and functions by generating DNA damage, promoting DNA damage-induced cell cycle arrest and apoptosis; however, its efficacy is challenged by the resistance of tumor cells in clinical application. The aim of the present study was to investigate the effects of BBR in combination with cisplatin on human breast cancer cells. MTT assay showed that BBR inhibited breast cancer MCF-7 cell growth with a 50% inhibitory concentration (IC50) value of 52.178±1.593 µM and the IC50 value of cisplatin was 49.541±1.618 µM, while in combination with 26 µM BBR, the IC50 value of cisplatin was 5.759±0.76 µM. BBR sensitized the MCF-7 cells to cisplatin in a time- and dose-dependent manner. After treatment of BBR and cisplatin, the cellular pro-apoptotic capase-3 and cleaved capspase-3 and caspase-9 were upregulated and the anti-apoptotic Bcl-2 was downregulated. Importantly, BBR restrained the expression of cellular PCNA, and immunofluoresence analysis of γH2AX showed that BBR increased the DNA damages induced by cisplatin. Taken together, the results demonstrated that BBR sensitized MCF-7 cells to cisplatin through induction of DNA breaks and caspase-3-dependent apoptosis. PMID:27177238

  20. Effect of 12C6+ irradiation on cell cycle, apoptosis and expression of caspase-3 in human lung cell line H1299%重离子辐照对人肺癌细胞株H1299细胞周期及caspase-3蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    徐华; 徐杰; 杜文静; 白玉祖; 王高强; 车团结; 王子仁; 金晓东

    2011-01-01

    目的探讨重离子辐照对人肺癌细胞株H1299细胞周期及caspase-3蛋白表达的影响.方法 以不同剂量的12C6+辐照H 1299细胞,培养12、24、48、72 h收获细胞.用流式细胞术和噻唑蓝法检测H1299细胞周期及增殖的变化.caspase-3荧光分析试剂盒检测caspase-3活性的变化.蛋白印迹法和SP法检测辐照后caspase-3蛋白的表达.结果 H1299细胞经12C6+辐照后出现形态学改变;辐照12h细胞出现中期阻滞;4Gy辐照24 h细胞中期阻滞最为明显,与对照组比较差异有统计学意义(P<0.05),具有剂量依赖性.caspase-3活性随着辐照剂量的增加而增加.12C6+显著上调caspase-3的表达.结论 12C6+辐照能够调控细胞周期,抑制细胞生长.重离子辐照H1299细胞经非p53依赖途径发生凋亡,caspase-3可能在辐照诱导细胞凋亡中发挥重要作用.%Objective To investigate the effect of 12C6+ irradiation on cell cycle and caspase-3 expression in human lung cell line HI299. Methods The changes of cell cycle in HI299 were detected by flow cytometry, the inhibition of cell proliferation was observed by microculture tetrazolium test and the expression of caspase-3 was detected by immunohistochemistry and western blot. Results Showed that after H1299 cells irradiated by 12C6+, the block of G2/M phase began to appear after treatment for 12 h, the most obvious block of G2/M appeared after treatment with 4 Gy for 24 h, which showed dose-dependence. The apoptosis rate tended to increase with the radiation dose increasing. All of the study results involving in Western Blot and immunohistochemistry shown that irradiation of 12C6+ could increase expression of caspase-3 with an obviously statistical significance comparing with control group (P <0.05). ConclusionThe results indicated that irradiation of 12C6+ could induce apoptosis in human lung cell lineH1299 and could significantly inhibit the growth of H1299 cells via caspase-3 pathway activatedby heavy ion

  1. 大鼠脑出血后细胞凋亡与Caspase-3、Ref-1表达的相关性%Correlation between expression of Caspase-3、 Ref-1 and apoptosis after intracerebral hemorrhage in rats

    Institute of Scientific and Technical Information of China (English)

    洪丽蓉; 沈国理; 喻森明; 胡晓华

    2007-01-01

    [目的]研究脑出血(intracerebral hemorrhage,ICH)血肿周围缺血半暗带区中半胱氨酸蛋白酶(Caspase-3)与氧化还原因子-1(redox factor-1,Ref-1)的表达与细胞凋亡的关系.[方法]采取立体定向技术,将SD大鼠自体不凝血50 μl注入大脑尾状核区制备脑出血模型,将大鼠随机分为正常组和出血组,分别在不同时间点断头取脑,连续切片作TUNEL、Ref-1和Caspase-3免疫组化染色.[结果]脑出血后血肿周围缺血半暗带区中细胞凋亡与Caspase-3表达呈正相关(r=0.466,P<0.01),与Ref-1表达呈负相关(r=-0.195,P<0.05);且Caspase-3表达在开始及高峰时间上先于细胞凋亡的发生,Ref-1表达明显下降和下降谷底时间均早于细胞凋亡出现的时间.[结论]缺血半暗带区脑组织中细胞凋亡与Ref-1及Caspase-3表达相关,且caspase-3表达的高峰、Ref-1表达的下降均先于细胞凋亡的发生.

  2. Expressions of Caspase-3 and Bcl-2 in Related Encephalic Region of Rats with Poisoning of Methamphetamine%甲基苯丙胺中毒大鼠相关脑区Caspase-3和Bcl-2表达的研究

    Institute of Scientific and Technical Information of China (English)

    段晓飞; 邓冲; 曾晓锋; 赵永和; 王尚文; 李桢

    2011-01-01

    目的:研究凋亡相关因子Caspase-3和Bcl-2在甲基苯丙胺神经毒性机制中所发挥的作用.方法:40只健康雄性SD大鼠随机分为对照组(n=10)和实验组(又分为3个亚组,分别为注射1天后、4天后、7天后,n=10).实验组给予20mg/kg的甲基苯丙胺腹腔注射,对照组给予相同剂量的生理盐水注射.用免疫组化检测中毒大鼠相关脑区Caspase-3和Bcl-2的表达,用图像分析技术对检测结果进行分析.结果:Caspase-3在中毒大鼠不同脑区表达逐渐增加并可见明显的阳性信号;Bcl-2在中毒大鼠不同脑区表达逐渐减弱.结论:凋亡相关因子Caspase-3和Bcl-2参与了甲基苯丙胺神经毒性机制.%Objective: To study the function of Caspase-3 and Bcl-2 protein in the methamphetamine mechanism. Methods: Forty male Sprague-Dawley rats were randomly divided into control group (n=10) and experimental group(dividing it into the first, fourth and seventh group after the injection, n=10). Rats in the experimental group were intraperitoneal injected with methamphetamine hydrochloride (20mg/kg), and those in the control group were injected with saline with the same volume. Then examining the protein expression of Caspase-3 and Bcl-2 of poisoning rats in related encephalic region by immunohistochemistry technique and analyzing the test results through image. Results: Expression of Caspase-3 increased significantly in the related encephalicregion in rat poisoning of methamphetamine where exist more clearly positive signal. Express of Bcl-2 the reduced gruadually in the related encephalicregion in rat poisoning of methamphetamine. Conclusion: The abnormal expression of Caspase-3 and Bcl-2 shows that they take part in the Methamphetamine-lnduced Neurotoxicity.

  3. Tracing the accumulation and effects of mercury uptake in the previtellogenic ovary of crucian carp Carassius auratus gibelio by autometallography and caspase-3 immunohistochemistry

    OpenAIRE

    Zarnescu, Otilia

    2009-01-01

    The aims of the present study were to apply the AMG technique for localization of mercury at the light and electron microscopic level in the ovary of crucian carp after exposure to mercuric chloride and to find out if this heavy metal induces expression of caspase-3. Depending on the stage of ovarian follicle development, two patterns of mercury accumulation have been found in previtellogenic ovary of crucian carp. The first mercury accumulation pattern has been fou...

  4. Immunohistochemical study of cell proliferation, Bcl-2, p53, and caspase-3 expression on preneoplastic changes induced by cadmium and zinc chloride in the ventral rat prostate.

    OpenAIRE

    Arriazu, Riánsares; José M Pozuelo; Henriques-Gil, Nuno; Perucho, Teresa; Martín, Rocío; Rodríguez, Rosario; Santamaría, Luis

    2006-01-01

    KEYWORDS CLASSIFICATION: Animals;Apoptosis;biosynthesis;Biology;chemically induced;Cadmium;Cadmium Chloride;Carcinogens;Caspase 3;Caspases;Cell Proliferation;Chlorides;Immunohistochemistry;metabolism;Male;mechanisms of carcinogenesis;pathology;pharmacology;Precancerous Conditions;Proliferating Cell Nuclear Antigen;Prostate;Prostatic Intraepithelial Neoplasia;Prostatic Neoplasms;Proteins;Proto-Oncogene Proteins;Proto-Oncogene Proteins c-bcl-2;Rats;Rats,Sprague-Dawley;Research;Spain;toxicity;Ti...

  5. Regulation of p21ras activity

    DEFF Research Database (Denmark)

    Lowy, D R; Zhang, K; DeClue, J E;

    1992-01-01

    The ras genes encode GTP/GDP-binding proteins that participate in mediating mitogenic signals from membrane tyrosine kinases to downstream targets. The activity of p21ras is determined by the concentration of GTP-p21ras, which is tightly regulated by a complex array of positive and negative control...... mechanisms. GAP and NF1 can negatively regulate p21ras activity by stimulating hydrolysis of GTP bound to p21ras. Other cellular factors can positively regulate p21ras by stimulating GDP/GTP exchange....

  6. [Molecular mechanisms regulating the activity of macrophages].

    Science.gov (United States)

    Onoprienko, L V

    2011-01-01

    This article reviews modern concepts of the most common types of macrophage activation: classical, alternative, and type II. Molecular mechanisms of induction and regulation of these three types of activation are discussed. Any population of macrophages was shown to change its properties depending on its microenvironment and concrete biological situation (the "functional plasticity of macrophages"). Many intermediate states of macrophages were described along with the most pronounced and well-known activation types (classical activation, alternative activation, and type II activation). These intermediate states are characterized by a variety of combinations of their biological properties, including elements of the three afore mentioned types of activation. Macrophage activity is regulated by a complex network of interrelated cascade mechanisms.

  7. Expressions of caspase-3, Tunel, and Hsp72 immunoreactivities in cultured spinal cord neurons of rat after exposure to glutamate, nitric oxide, or peroxynitrite.

    Science.gov (United States)

    Manabe, Y; Wang, J; Warita, H; Shiro, Y; Abe, K

    2001-07-01

    Although excitotoxic and oxidative stress play important roles in spinal neuron death, the exact mechanisms are not fully understood. We examined cell damage of primary culture of 11 day-old rat spinal cord by addition of glutamate, nitric oxice (NO) or peroxynitrite (PN) with detection of caspase-3, terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL) or 72 kDa heat shock protein (HSP72). With addition of glutamate, NOC18 (a slow NO releaser) or PN, immunoreactivity for caspase-3 became stronger in the cytoplasm of large motor neurons in the ventral horn at 6 to 24 hr. TUNEL positive nuclei were found in spinal large motor neurons from 24 h and the positive cell proportion greatly increased at 48 h in contrast to the vehicle. On the other hand, the immunoreactivity of HSP72 in the ventral horn was already positive at 0 h, and gradually decreased in the course of time with glutamate, NOC18 or PN than vehicle treatment. In the dorsal horn, the proportion of caspase-3 positive small neurons greatly increased at 6 to 48 h after addition of glutamate. The present results suggest that both excitotoxic and oxidative stress play important roles in the apoptotic pathway in cultured spinal neurons. PMID:15111253

  8. Overexpression of the hydatidiform mole-related gene F10 inhibits apoptosis in A549 cells through downregulation of BCL2-associated X protein and caspase-3.

    Science.gov (United States)

    Song, Yali; Zhang, Gong; Zhu, Xiulan; Pang, Zhanjun; Xing, Fuqi; Quan, Song

    2012-09-01

    The aim of this study was to investigate how the overexpression of the hydatidiform mole-related gene F10 affects apoptosis in human lung cancer A549 cells. A549 cells were transfected with pEGFP-N1-F10 (A549-F10) or pEGFP-N1 empty vector (A549-empty). Untransfected A549, A549-F10 or A549-empty cells were examined using the MTT cell proliferation assay and the TUNEL-FITC/Hoechst 33258 apoptosis assay. Western blotting was used to examine the expression levels of the pro-apoptotic genes, BCL2-associated X protein (BAX) and caspase-3. F10 was stably expressed in A549 cells. From 12 h, A549-F10 cells proliferated markedly faster than the untransfected and A549-empty cells. F10 overexpression also significantly inhibited apoptosis, as shown by the reduced number of TUNEL and Hoechst 33258 double-positive cells. This inhibition was likely due to an F10-induced reduction in the BAX and caspase-3 levels. The results of this study indicate that F10 overexpression inhibits apoptosis in A549 cells through the downregulation of the pro-apoptotic genes BAX and caspase-3. PMID:23741243

  9. Regulation of ROCK Activity in Cancer

    DEFF Research Database (Denmark)

    Morgan-Fisher, Marie; Wewer, Ulla M; Yoneda, Atsuko

    2013-01-01

    , these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer.......Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key...... regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active...

  10. Oxymatrine protects against sepsis-induced myocardial injury via inhibition of the TNF-α/p38-MAPK/caspase-3 signaling pathway.

    Science.gov (United States)

    Zhang, Minghao; Wang, Xiuyu; Bai, Bin; Zhang, Rui; Li, Yunhong; Wang, Yin

    2016-07-01

    tissue. The present study concluded that OMT may offer substantial therapeutic potential for the treatment of septic shock‑induced myocardial injury by inhibiting the TNF-α/p38-MAPK/caspase-3 signaling pathway. PMID:27177246

  11. Effect of Granulocyte Colony-stimulating Factor on Changes of Neuronal Apoptosis and Caspase-3 Expression after Spinal Cord Injury in Rats%G-CSF对大鼠脊髓损伤后神经细胞凋亡及caspase-3表达的影响

    Institute of Scientific and Technical Information of China (English)

    张炼; 李晓飞; 文益民; 张增山

    2012-01-01

    目的:通过观察粒细胞集落刺激因子(G-CSF)对大鼠急性脊髓损伤后神经细胞凋亡及Caspase-3的表达的影响,探讨其对脊髓保护的作用机制.方法:32只Vistar大鼠随机分成2组:对照组和治疗组,每组16只,采用改良的Allen's装置制成大鼠急性脊髓损伤模型.在术前及术后对大鼠进行BBB功能评分观察大鼠的神经功能变化;用免疫荧光法检测脊髓损伤后个时间点Caspase-3表达;原位脱氧核糖核苷酸末端转移酶介导的缺口末端标记法(Tunel法)检测凋亡细胞.结果:大鼠急性脊髓损后Caspase-3表达与细胞凋亡均呈现先升高后下降的趋势,损伤后3d可见大量的Caspase-3和TUNEL阳性细胞,7d时达到高峰,此后表达逐渐减少,21d时仍可见少量阳性细胞.与对照组比较,G-CSF治疗组各时间点Caspase-3表达和细胞凋亡显著降低,功能恢复显著优于对照组,差异具有统计学意义.结论:G-CSF可以减轻大鼠脊髓损伤后的神经元凋亡,从而发挥神经保护作用,其作用可能是通过抑制Caspase-3的表达使脊髓损伤周围神经细胞凋亡显著下降而实现的.%Objective: To investigate the effect of Granulocyte colony-stimulating factor on changes of neuronal apoptosis and expression of caspase-3 after spinal cord injury and to explore its protective effect and actionmechanism. Methods: 32 Vistar rats were divided into two groups by randomization: Sham and G-CSF cure groups, there were 16 rats in each group. Vistar rat model of acute spinal cord injury were established by modified Allen's device. The hind limb Neurologica function of the rats was evaluated by BBB score. The terminal deoxynucleotide transferase mediated DUTP- biotin nick end labeling (TUNEL) and Immunofluorescence measurement were used to observe neural apoptosis and expression of Bcl-2 and Bax proteins. Results: After spinal cord injury, Caspase-3 expression and apoptosis showed a downward trend after the first elevated

  12. Expressions and significances of HIF-1α and caspase-3 in placental tissue of cases with idiopathic fetal growth restriction%HIF -1α及caspase -3在特发性胎儿生长受限胎盘组织中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    崔世红; 刘萍萍; 张婷; 程国梅; 管秀娟; 贾国战; 韩笑

    2011-01-01

    目的:探讨特发性胎儿生长受限(IFGR)患者胎盘组织中HIF -1α及caspase -3的表达及在发病机制的作用.方法:选取郑州大学第三附属医院2010年7月~2011年3月剖宫产分娩的IFGR孕妇30例作为实验组,同期因社会因素剖宫产分娩的正常足月孕妇30例作为对照组.采用免疫组化SP法检测两组胎盘组织中HIF-1α、caspase -3的表达.结果:①实验组及对照组的胎盘组织中均有HIF -1α、caspase -3蛋白不同程度的阳性表达.②HIF -1α、caspase -3在胎盘合体滋养细胞上的表达,实验组高于正常对照组,差异有统计学意义(P<0.05).结论:①胎盘组织中HIF-1α、caspase -3表达增加可能是IFGR发病机制中的关键环节之一.②本结果为临床上应用干预手段预防或治疗IFGR提供依据.%Objective: To explore the expressions of hypoxia inducible factor -1 α ( HIF -lα) and caspase - 3 in placental tissue of cases with idiopathic fetal growth restriction (IFGR) and their roles in the pathogenesis of IFGR. Methods; 30 pregnant women with IF-CR who underwent cesarean section in the hospital from July 2010 to March 2011 were selected as experimental group, 30 full -term pregnant women who chose cesarean section because of social factor at the same time were selected as control group. Immunohistochemical SP method was used to detect the expression levels of HIF - lα and caspase -3 in placental tissues of the two groups. Results; HIF - lα and caspase - 3 expressed in placental tissues of the two groups positively at different levels. The expression levels of HIF - lα and caspase - 3 in placental syncytiotrophoblast cells of experimental group were significantly higher than those of control group (P <0.05) . Conclusion; The high expressions of HIF - la and caspase -3 in placental tissue may be one of the key links of pathogenesis of IFGR The study provides a basis for preventing and treating IFCR by interventional therapy in clinic.

  13. Expressions of X-linked inhibitor of apoptosis protein, caspase-3 and Smac/DIABLO in nasopharyngeal carcinoma tissues%鼻咽癌组织中X连锁凋亡抑制蛋白及caspase-3和Smac/DIABLO的表达及意义

    Institute of Scientific and Technical Information of China (English)

    李栋才; 杨贵; 姚春苑

    2010-01-01

    目的 采用组织芯片技术研究鼻咽癌组织中X连锁凋亡抑制蛋白(XIAP)、caspase-3与其拮抗蛋白Smae/DIABLO的表达及其意义.方法 以50例鼻咽癌患者鼻咽部活体组织石蜡标本和20例鼻咽部慢性炎症组织石蜡标本为研究对象,利用组织芯片技术同时采用SP免疫组织化学方法检测鼻咽癌组织芯片中XIAP、caspase-3和Smac/DIAB-LO的表达.结果 鼻咽癌组织中XIAP的阳性表达高于鼻咽部慢性炎症组织,caspase-3和Smac/DIABLO的阳性表达明显低于鼻咽部慢性炎症组织,差别均有统计学意义(P<0.05).XIAP阳性的鼻咽癌石蜡标本Smac/DIABLO阳性表达率低于XIAP阴性的鼻咽癌石蜡标本Smac/DIABLO阳性表达率,鼻咽癌组织中XIAP与Smac/DIABLO表达呈负相关(P<0.05).结论 XIAP在鼻咽癌中高表达,caspase-3、Smac/DIABLO在鼻咽癌中低表达,鼻咽癌中XIAP和Smac/DI-ABLO表达呈负相关.XIAP、caspase-3和Smac/DIABLO可能是鼻咽癌细胞凋亡信号传导网络中的重要一环,与鼻咽癌的发生、发展密切相关.

  14. Molecular regulation of telomerase activity in aging

    Institute of Scientific and Technical Information of China (English)

    Craig Nicholls; He Li; Jian-Qiu Wang; Jun-Ping Liu

    2011-01-01

    The process of aging is mitigated by the maintenance and repair of chromosome ends (telomeres),resulting in extended lifespan.This review examines the molecular mechanisms underlying the actions and regulation of the enzyme telomerase reverse transcriptase (TERT),which functions as the primary mechanism of telomere maintenance and regulates cellular life expectancy.Underpinning increased cell proliferation,telomerase is also a key factor in facilitating cancer cell immortalization.The review focuses on aspects of hormonal regulations of telomerase,and the intraceilular pathways that converge to regulate telomerase activity with an emphasis on molecular interactions at protein and gene levels.In addition,the basic structure and function of two key telomerase enzyme components-the catalytic subunit TERT and the template RNA (TERC) are discussed briefly.

  15. GDNF基因修饰的神经干细胞抑制脑卒中后大鼠的Caspase-3表达%The grafting neural stem cells modified by GDNF gene inhibits the expression of Caspase-3 in rats subjected to cerebral ischemia reperfusion

    Institute of Scientific and Technical Information of China (English)

    陈贵军; 高小青; 杨朝鲜; 谭树凯; 袁琼兰

    2012-01-01

    目的 研究胶质源性神经营养因子(glial cell line-derived neural factor,GDNF)基因修饰的神经干细胞(neural stem cells,NSCs)移植对脑卒中后大鼠缺血侧脑组织内半胱氨酰天冬氨酸特异性蛋白酶-3(cysteinyl aspartate specific proteinase-3,caspase-3)表达的影响,探讨GDNF基因修饰的神经干细胞(GDNF/NSCs)移植对大鼠脑卒中的神经保护作用机制.方法 取新生大鼠脑组织分离培养NSCs,收集第6代前的NSCs备用.用重组腺病毒GDNF转染神经干细胞,制备GDNF/NSCs.暂时性阻塞大鼠大脑中动脉制备脑卒中模型,3d后,用脑立体定位仪向卒中侧侧脑室分别给予NSCs、GDNF/NSCs和生理盐水.再灌注时间1周、2周、3周、5周、7周后处死大鼠(n=3).裂解卒中侧脑组织,离心后得到脑组织蛋白样品,通过蛋白免疫印迹( Western Blotting)检测Caspase-3表达.结果 GDNF/NSCs、NSCs、NS各组caspase-3的表达在1周、2周、3周、5周、7周各时间点均逐渐降低.NSCs组、GDNF/NSCs组显著低于NS组(P<0.01;P<0.001);GDNF/NSCs组明显低于NSCs组(P<0.01).结论 GDNF/NSCs移植治疗脑卒中的机制可能与抑制caspase-3表达有关.%Objective To study the effects of grafting neural stem cells( NSCs) modified by glial cell line-derived neural factor(GDNF) gene (GDNF/NSCs) on the expression of Caspase-3 in rats subjected to cerebral ischemia reperfusion. Methods NSCs were cultured from newborn rats and NSCs before 6 generation were used for grafting use. NSCs were infected by recombinant GDNF adenovirus to prepare NSCs - overexpressing GDNF( GDNF/NSCs). Rat stroke was performed by occluding the middle cerebral artery occlusion for 2 h and reperfusion. At 3 days after reperfusion, NSCs, GDNF/NSCs and saline was infused into ipsilateral ventricle respectively. According to different reperfusion time, each group was subdivide into 5 groups: 1,2,3,5,7 weeks ( n = 3 ). At each time point, rats were sacrificed and brains were

  16. Effect of tenuigenin on the Caspase-3 and Par-4 expression of neural stem cells induced by beta-amyloid protein%远志总皂苷干预β-淀粉样蛋白致伤神经干细胞Caspase-3及Par-4的表达

    Institute of Scientific and Technical Information of China (English)

    张晓梅; 孙光涛; 黄作义; 吴成吉; 戚询中; 朱晓峰

    2011-01-01

    BACKGROUND: The effect of tenuigenin which has a good nerve protection to neural stem cells has not been reported. OBJECTIVE: To investigate the protective effect and mechanism of tenuigenin for neural stem cells in the hippocampus impaired by β-amyloid protein.METHODS: The third passage neural stem cells generated from the hippocampi of Kunming mice which injured by β-amyloid protein in vitro were incubated with different concentrations of tenuigenin.RESULTS AND CONCLUSION: Immunocytochemical technique was used to detect Caspase3-positive neural stem cells. The study revealed that the expression of Par-4 and caspase-3 positive neural stem cells in the tenuigenin group were significantly lower than that in the control group with statistical significance (P < 0.05). Tenuigenin can reduce the expression of Par-4 and Caspase-3 in neural stem cells impaired by β-amyloid protein.%背景:远志总皂苷具有良好的神经保护作用.目的:分析远志总皂苷对β-淀粉样蛋白致伤海马神经干细胞的保护作用及机制.方法:自昆明小鼠海马分离培养神经干细胞,取第3代神经干细胞,用含不同质量浓度远志总皂苷与β-淀粉样蛋白致伤体外培养的神经干细胞共孵育.结果:应用免疫组织化学法检测Caspase-3阳性神经干细胞,与对照组相比,远志总皂苷组Caspase-3阳性细胞率及Par-4的表达明显降低,差异具有显著性意义(P<0.05).提示远志总皂苷能够降低β-淀粉样蛋白致伤神经干细胞中Caspase-3及Par-4的表达.

  17. Apoptosis and Caspase-3 Expression in Placenta of Patients with Intrahepatic Cholestasis of Pregnancy%妊娠期肝内胆汁淤积症胎盘组织中细胞凋亡及caspase-3的表达

    Institute of Scientific and Technical Information of China (English)

    江燕; 虞国芬; 张艳; 费冬; 徐婧

    2013-01-01

    目的 探讨妊娠期肝内胆汁淤积症(ICP)胎盘组织中细胞凋亡及caspase-3的表达情况.方法 以临产前行剖宫产术终止妊娠的ICP患者为ICP组(20例),同期因骨盆、胎位、社会因素等原因临产前行剖宫产术终止妊娠的健康孕妇为对照组(20例).采用末端脱氧核苷酸转移酶介导、地高辛标记的dUTP缺口末端标记法(TUNEL)检测胎盘组织中合体滋养细胞、细胞滋养细胞、蜕膜细胞及绒毛间质细胞的凋亡情况,采用免疫组织化学法检测胎盘组织caspase-3蛋白表达水平.结果 ICP组胎盘组织中各细胞的凋亡率指数、caspase-3蛋白阳性表达率均高于对照组(P<0.05).结论 ICP胎盘组织存在细胞凋亡以及凋亡相关蛋白表达增多的改变,ICP胎盘功能减退与细胞凋亡密切相关,细胞凋亡在ICP疾病的发生、发展中起重要作用.%Objective To explore the apoptosis and caspase-3 expression in the placental tissue of patients with intrahepatic cholestasis of pregnancy (ICP). Methods Twenty ICP patients who underwent cesarean section to terminate the pregnancy before labor were selected as the ICP group, and 20 normal pregnant women who underwent cesarean section due to pelvis, fetal position or social factors as the control group. The apoptosis of syncytiotrophoblast, cytotrophoblast, decidual and interstitial cells was detected by TUNEL assay. The expression of caspase-3 protein was measured by immunohistochemistry. Results Compared with control group,the apoptosis rate and caspase-3 expression in placental tissue significantly increased in ICP group ( P<0.05). Conclusion The apoptosis and apoptosis-related protein expression increase in placenta of ICP patients. The ICP-induced placental insufficiency is closely related to the apoptosis, which plays an important role in the occurrence and development of ICP.

  18. Commission of energy regulation. 2004 activity report

    International Nuclear Information System (INIS)

    The commission of energy regulation (CRE) is an independent administrative authority in charge of the control of the operation of gas and electricity markets. This document is the fifth activity report of CRE and covers the July 1, 2003 - June 30, 2004 period, which corresponds to the era of opening of energy markets as a consequence of the enforcement of the June 26, 2003 European directive. In the framework of the stakes made by energy markets liberalization, this document presents the situation of the gas and electricity markets during this period (European framework, regulation of both markets, public utility mission..) and describes CRE's means for the monitoring of these markets. (J.S.)

  19. Addition of exogenous NAD+ prevents mefloquine-induced neuroaxonal and hair cell degeneration through reduction of caspase-3-mediated apoptosis in cochlear organotypic cultures.

    Directory of Open Access Journals (Sweden)

    Dalian Ding

    Full Text Available BACKGROUND: Mefloquine is widely used for the treatment of malaria. However, this drug is known to induce neurological side effects including depression, anxiety, balance disorder, and sensorineural hearing loss. Yet, there is currently no treatment for these side effects. PRINCIPAL FINDINGS: In this study, we show that the coenzyme NAD(+, known to play a critical role in maintaining the appropriate cellular redox environment, protects cochlear axons and sensory hair cells from mefloquine-induced degeneration in cultured rat cochleae. Mefloquine alone destroyed hair cells and nerve fiber axons in rat cochlear organotypics cultures in a dose-dependent manner, while treatment with NAD(+ protected axons and hair cells from mefloquine-induced degeneration. Furthermore, cochlear organs treated with mefloquine showed increased oxidative stress marker levels, including superoxide and protein carbonyl, and increased apoptosis marker levels, including TUNEL-positive nuclei and caspases-3. Treatment with NAD(+ reduced the levels of these oxidative stress and apoptosis markers. CONCLUSIONS/SIGNIFICANCE: Taken together, our findings suggest that that mefloquine disrupts the cellular redox environment and induces oxidative stress in cochlear hair cells and nerve fibers leading to caspases-3-mediated apoptosis of these structures. Exogenous NAD(+ suppresses mefloquine-induced oxidative stress and prevents the degeneration of cochlear axons and sensory hair cells caused by mefloquine treatment.

  20. CD95/Fas-induced ceramide formation proceeds with slow kinetics and is not blocked by caspase-3/CPP32 inhibition.

    Science.gov (United States)

    Tepper, A D; Cock, J G; de Vries, E; Borst, J; van Blitterswijk, W J

    1997-09-26

    The current confusion regarding the relevance of endogenous ceramide in mediating CD95/Fas-induced apoptosis is based mainly on (i) discrepancies in kinetics of the ceramide response between different studies using the same apoptotic stimulus and (ii) the observation that late ceramide formation (hours) often parallels apoptosis onset. We investigated CD95-induced ceramide formation in Jurkat cells, using two methods (radiolabeling/thin layer chromatography and benzoylation/high performance liquid chromatography), which, unlike the commonly used diglyceride kinase assay, discriminate between ceramide species and de novo formed dihydroceramide. We demonstrate that ceramide accumulates after several hours, reaching a 7-fold increase after 8 h, kinetics closely paralleling apoptosis induction. No fast response was observed, not even in the presence of inhibitors of ceramide metabolism. The majority ( approximately 70%) of the ceramide response remained unaffected when apoptosis was completely inhibited at the level of caspase-3/CPP32 processing by the inhibitor peptide DEVD-CHO. Exogenous cell-permeable C2-ceramide induced the proteolytic processing of caspase-3, albeit with somewhat slower kinetics than with CD95. DEVD-CHO dose-dependently inhibited C2-ceramide- or exogenous sphingomyelinase-induced apoptosis. The results support the idea that ceramide acts in conjunction with the caspase cascade in CD95-induced apoptosis. PMID:9305886

  1. 过氧化氢体外诱导细粒棘球蚴原头节细胞Caspase-3表达及超微结构改变的影响%Effect of hydrogen peroxide on the expression of caspase-3 and changes of ultra- structures in protoscolex cells of Echinococcus granulosus in vitro

    Institute of Scientific and Technical Information of China (English)

    胡汉华; 康金凤; 陈蓉; 白山别克; 艾赛提; 汤建安; 谢风莲

    2009-01-01

    目的 探讨过氧化氢(H2O2)体外诱导细粒棘球蚴原头节细胞凋亡、Caspase-3表达和细胞超微结构的影响.方法 RPMI1640添加谷氨酰胺组即体外培养细粒棘球蚴原头节,用5mmol/L H2O2诱导8h,使其发生细胞凋亡.用原位末端脱氧核糖核苷酸转移酶标记技术(TUNEL 法)检测原头节细胞凋亡情况,用过氧化物酶标记链霉卵白素(SP)染色半胱天冬氨酸蛋白酶-3(caspase-3).在透射电镜下观察原头节细胞超微结构的变化.结果 过氧化氢诱导原头节细胞凋亡细胞增加,caspase-3表达增加,电镜观察原头节细胞异染色质增加,部分细胞染色质异常浓缩呈现凋亡细胞征象.结论 H2O2可诱导细粒棘球蚴原头节细胞凋亡,且caspase-3参与原头节细胞的凋亡.

  2. Effects of Modified Gandou Decoction on Protein and mRNA Expression of X-linked Inhibitor of Apoptosis, Caspase-9, and Caspase-3 in Brain Tissue of TX Mice%肝豆汤改良方对TX小鼠脑组织XIAP、Caspase-9和Caspase-3蛋白及其mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    赵雯; 马艳红; 韩咏竹; 程楠; 饶娆; 王训

    2015-01-01

    目的 探究肝豆汤改良方抑制肝豆状核变性(Wilson's disease,WD)脑神经细胞凋亡的分子机制.方法 选取1月龄TX小鼠120只,随机分为TX模型组(40只)、肝豆汤改良方组(40只)、丁苯酞组(20只),另选DL小鼠40只作为正常组;每组再分成2组,各20只,分别予以生理盐水、肝豆汤改良方、丁苯酞灌胃2个月和4个月.分别采用免疫组织化学法和Western blot法检测小鼠脑组织中X-连锁凋亡抑制蛋白(X-linked inhibitor of apoptosis,XIAP)、胱冬肽酶-9(Caspase-9)及胱冬肽酶-3(Caspase-3)蛋白表达水平,采用RT-PCR技术检测小鼠脑组织中XIAP、Caspase-9及Caspase-3 mRNA表达水平.结果 免疫组织化学检测显示,肝豆汤改良方组XIAP表达水平较同月龄模型组明显增多,Caspase-9和Caspase-3表达水平较同月龄模型组下降,5月龄和3月龄肝豆汤改良方组XIAP和Caspase-3表达水平有所差异.Western blot检测结果显示,月龄因素对脑组织XIAP、Caspase-9、Caspase-3蛋白表达水平的主效应均无统计学意义(P>0.05);月龄因素和分组因素对3种蛋白表达水平的交互作用均无统计学意义(P>0.05);对于同月龄小鼠,模型组脑组织XIAP表达水平显著低于正常组(P<0.05),Caspase-9和Caspase-3蛋白表达水平显著高于正常组(P<0.05);肝豆汤改良方组XIAP表达水平显著高于模型组(P<0.05),Caspase-9和Caspase-3蛋白表达水平显著低于模型组(P<0.05).RT-PCR检测结果显示,月龄因素对小鼠脑组织XIAP mRNA表达水平的主效应无统计学意义(P>0.05),但对Caspase-9、Caspase-3 mRNA表达水平的主效应具有统计学意义(P<0.05);月龄因素和分组因素对XIAP、Caspase-9、Caspase-3 mRNA表达水平的交互作用均无统计学意义(P>0.05).对于相同月龄小鼠,模型组脑组织XIAP mRNA表达水平显著低于正常组(P<0.05),而Caspase-9、Caspase-3 mRNA表达水平显著高于正常组(P<0.05);与模型组比较,丁苯酞

  3. Regulators of Slc4 bicarbonate transporter activity

    Directory of Open Access Journals (Sweden)

    Ian M. Thornell

    2015-06-01

    Full Text Available The Slc4 family of transporters is comprised of anion exchangers (AE1-4, Na-coupled bicarbonate transporters (NCBTs including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2, electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2, and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE, as well as a borate transporter (BTR1. These transporters regulate intracellular pH (pHi and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO3– either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO3– transporter contributes to a cell’s ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s (e.g., Na+ or Cl–. In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both classical and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.

  4. 宫颈癌术前介入化疗前后组织中Survivin、Caspase-3和Caspase-7的表达变化及意义%The significance of different expression of survivin,caspase-3 and caspase-7 in cervical carcinoma cells before and after the ameba femoralis interventional chemotherapy

    Institute of Scientific and Technical Information of China (English)

    杨斌; 陈赛英; 史佃云; 张佃乾

    2009-01-01

    目的:研究宫颈癌术前行动脉介入化疗前后组织中细胞凋亡相关蛋白Survivin、caspase-3、Caspase-7的表达变化及其临床意义.方法:对54例宫颈癌患者术前行介入化疗前宫颈活检组织和介入化疗后手术切除的标本,免疫组化检测Survivin、Caspase-3、Caspase-7的表达,同时检测38例正常宫颈组织以及28例宫颈上皮内瘤变组织作为对照.结果:Survivin在介入化疗前宫颈癌组织中呈高表达,介入化疗后Survivin呈现不同程度的下降,而凋亡相关蛋白Caspase-3、Caspase-7的表达则呈不同程度的上升.相关性分析表明,介入化疗后Survivin的表达变化与Caspase-3及Capase-7的表达变化呈负相关,介入前后3种蛋白表达变化越大,临床有效率越高.结论:Survivin高表达及Caspase-3、Caspase-7低表达在官颈癌的发生发展中有一定作用,宫颈癌患者术前动脉介入化疗可以通过促进肿瘤细胞的凋亡来达到抑制肿瘤生长、缩小肿瘤体积进而抑制其远处转移.

  5. Ack1: activation and regulation by allostery.

    Directory of Open Access Journals (Sweden)

    Ketan S Gajiwala

    Full Text Available The non-receptor tyrosine kinase Ack1 belongs to a unique multi-domain protein kinase family, Ack. Ack is the only family of SH3 domain containing kinases to have an SH3 domain following the kinase domain; others have their SH3 domains preceding the kinase domain. Previous reports have suggested that Ack1 does not require phosphorylation for activation and the enzyme activity of the isolated kinase domain is low relative to other kinases. It has been shown to dimerize in the cellular environment, which augments its enzyme activity. The molecular mechanism of activation, however, remains unknown. Here we present structural and biochemical data on Ack1 kinase domain, and kinase domain+SH3 domain that suggest that Ack1 in its monomeric state is autoinhibited, like EGFR and CDK. The activation of the kinase domain may require N-lobe mediated symmetric dimerization, which may be facilitated by the N-terminal SAM domain. Results presented here show that SH3 domain, unlike in Src family tyrosine kinases, does not directly control the activation state of the enzyme. Instead we speculate that the SH3 domain may play a regulatory role by facilitating binding of the MIG6 homologous region to the kinase domain. We postulate that features of Ack1 activation and regulation parallel those of receptor tyrosine kinase EGFR with some interesting differences.

  6. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway.

    Science.gov (United States)

    Bhui, Kulpreet; Prasad, Sahdeo; George, Jasmine; Shukla, Yogeshwer

    2009-09-18

    Chemoprevention impels the pursuit for either single targeted or cocktail of multi-targeted agents. Bromelain, potential agent in this regard, is a pharmacologically active compound, present in stems and fruits of pineapple (Ananas cosmosus), endowed with anti-inflammatory, anti-invasive and anti-metastatic properties. Herein, we report the anti tumor-initiating effects of bromelain in 2-stage mouse skin tumorigenesis model. Pre-treatment of bromelain resulted in reduction in cumulative number of tumors (CNT) and average number of tumors per mouse. Preventive effect was also comprehended in terms of reduction in tumor volume up to a tune of approximately 65%. Components of the cell signaling pathways, connecting proteins involved in cell death were targeted. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in Bcl-2. A marked inhibition in cyclooxygenase-2 (Cox-2) expression and inactivation of nuclear factor-kappa B (NF-kappaB) was recorded, as phosphorylation and consequent degradation of I kappa B alpha was blocked by bromelain. Also, bromelain treatment curtailed extracellular signal regulated protein kinase (ERK1/2), p38 mitogen-activated protein kinase (MAPK) and Akt activity. The basis of anti tumor-initiating activity of bromelain was revealed by its time dependent reduction in DNA nick formation and increase in percentage prevention. Thus, modulation of inappropriate cell signaling cascades driven by bromelain is a coherent approach in achieving chemoprevention.

  7. Epithelial-specific ETS-1 (ESE1/ELF3) regulates apoptosis of intestinal epithelial cells in ulcerative colitis via accelerating NF-κB activation.

    Science.gov (United States)

    Li, Liren; Miao, Xianjing; Ni, Runzhou; Miao, Xiaobing; Wang, Liang; Gu, Xiaodan; Yan, Lijun; Tang, Qiyun; Zhang, Dongmei

    2015-06-01

    Epithelial-specific ETS-1 (ESE1), also named as ELF3, ERT and ESX, belonging to the ETS family of transcription factors, exerts multiple activities in inflammation, epithelial differentiation and cancer development. Previous data demonstrated that ESE1 synergizes with NF-κB to induce inflammation and drive tumor progress, and the nuclear translocation of ESE1 promotes colon cells apoptosis. However, the expression and biological functions of ESE1 in ulcerative colitis (UC) remain unclear. In this study, we reported for the first time that ESE1/ELF3 was over-expressed in intestinal epithelial cells (IECs) of patients with UC. In DSS-induced colitis mouse models, we observed the up-regulation of ESE1/ELF3 accompanied with the elevated levels of IEC apoptotic markers (active caspase-3 and cleaved PARP) and NF-κB activation indicators [phosphorylated NF-κB p65 subunit (p-p65) and p-IκB] in colitis IECs. Increased co-localization of ESE1/ELF3 with active caspase-3 (and p-p65) in IECs of the DSS-induced colitis group further indicated the possible involvement of ESE1/ELF3 in NF-κB-mediated IEC apoptosis in UC. Employing the TNF-α-treated HT-29 cells as an IEC apoptosis model, we confirmed the positive correlation of ESE1/ELF3 with NF-κB activation and caspase-dependent IEC apoptosis in vitro. Immunoprecipitation and immunofluorescence assay revealed the physical interaction and increased nuclear translocation of ESE1/ELF3 and the NF-κB p65 subunit in TNF-α-treated HT-29 cells. Knocking ESE1/ELF3 down by siRNA significantly alleviated TNF-α-induced NF-κB activation and cellular apoptosis in HT-29 cells. Taken together, our data suggested that ESE1/ELF3 may promote the UC progression via accelerating NF-κB activation and thus facilitating IEC apoptosis.

  8. Expression of apoptosis-regulating genes in the rat prostate following botulinum toxin type a injection

    Directory of Open Access Journals (Sweden)

    Gorgal Tiago

    2012-01-01

    Full Text Available Abstract Background Onabotulinumtoxin A (OnabotA injection has been investigated as a novel treatment for benign prostatic enlargement caused by benign prostatic hyperplasia. An OnabotA - induced volume reduction caused by sympathetic fibers impairment has been proposed as a potential mechanism of action. Our aim was to investigate the expression of apoptosis-regulating proteins in the rat prostate following OnabotA intraprostatic injection. Methods Adult Wistar rats were injected in the ventral lobes of the prostate with 10 U of OnabotA or saline. A set of OnabotA-injected animals was further treated with 0.5 mg/kg of phenylephrine (PHE subcutaneously daily. All animals were sacrificed after 1 week and had their prostates harvested. Immunohistochemical staining was performed for Bax, Bcl-xL and caspase-3 proteins and visualized by the avidin-biotin method. The optical density of the glandular cells was also determined, with measurement of differences between average optical densities for each group. Results Saline-treated animals showed intense epithelial staining for Bcl-xL and a faint labelling for both Bax and Caspase-3. OnabotA-treated rats showed a reduced epithelial staining of Bcl-xL and a consistently increased Bax and Caspase-3 staining when compared with saline-treated animals. PHE-treated animals showed a stronger Bcl-xL staining and reduced staining of both Bax and Caspase-3 when compared to the OnabotA group. Mean signal intensity measurements for each immunoreaction confirmed a significant decrease of the signal intensity for Bcl-xL and a significant increase of the signal intensity for Bax and Caspase 3 in OnabotA-injected animals when compared with the control group. In OnabotA+PHE treated animals mean signal intensity for Bcl-xL, Bax and Caspase 3 immunoreactions was identical to that of the control animals. Conclusions These results support the hypothesis that OnabotA activates apoptotic pathways in the rat prostate through a

  9. The change of pathology and expression of caspase-3 in cerebral cortex and hippocampus and cerebellum of alcoholism rats%大鼠酒精中毒后大脑皮质、海马、小脑的病理学改变及caspase-3的异常表达

    Institute of Scientific and Technical Information of China (English)

    贾明月; 朱丹; 陈嘉峰

    2012-01-01

    目的 探讨大鼠慢性酒精中毒后大脑皮质、海马、小脑的病理学改变及caspase-3的异常表达.方法 选用健康雄性Wistar大鼠随机分为两组,其中酒精中毒组30只;盐水对照组20只.酒精中毒组每日每只大鼠分别按8ml/kg灌胃2w,随后再按照10ml/kg灌胃1w,按12ml/kg灌胃1w,共灌胃4w.每日灌胃两次,其间隔均为6h,酒精浓度为50%.对照组用等量的生理盐水灌胃.并对两组大鼠进行体重、一般生物学特征、HE染色、TUNEL染色、免疫组化caspase-3的检测.结果 造模成功后,两组大鼠的体重存在的统计学差异;HE染色后酒精组大鼠大脑皮质、海马、小脑锥体细胞数目减少,部分神经元变性、坏死;TUNEL法测定酒精组大鼠凋亡细胞数量明显多于对照组(P<0.05),酒精组大鼠大脑皮质、海马、小脑的caspase-3表达明显高于对照组(P<0.05).结论 慢性酒精中毒可引起大鼠大脑皮质、海马及小脑的病理学改变,出现神经细胞凋亡,引起与凋亡相对应部位caspase-3阳性表达,并参与大鼠酒精中毒后凋亡机制的发生、发展.%Objective To discuse the change of pathology and expression of caspase-3 in cerebral cortex, hippocampus and cerebellum of alcoholism rats. Methods There were 50 male healthy Wistar rats divided into 2 groups randomly, alcoholism group,30 rats,saline control group,20 rats. Alcoholic group;every rat was fed with 8ml/kg50% alcohol twice a day, and two weeks later, increased to 10ml/kg for one week, then 12ml/kg for one week. The interval of time was 6 hours of all. Control group: every rat was fed with the same dosage of 0.9% sodium chloride at the same time for four weeks. During the experiment, we measured their weight, observed their general condition, HE dyes, TUNEL dying and expression of caspase-3 by SP dying method. Results After 4 weeks,the alcoholic group rats appeared malnutrition,emaciated,moreover,some also appeared the performance of

  10. Regulation of pokemon 1 activity by sumoylation.

    Science.gov (United States)

    Roh, Hee-Eun; Lee, Min-Nyung; Jeon, Bu-Nam; Choi, Won-Il; Kim, Yoo-Jin; Yu, Mi-Young; Hur, Man-Wook

    2007-01-01

    Pokemon 1 is a proto-oncogenic transcriptional regulator that contains a POZ domain at the N-terminus and four Kruppel-like zinc fingers at the C-terminus. Pokemon 1 plays an important role in adipogenesis, osteogenesis, oncogenesis, and transcription of NF-kB responsive genes. Recent reports have shown that biological activities of transcription factors are regulated by sumolylation. We investigated whether Pokemon 1 is post-translationally modified by sumoylation and whether the modification affects Pokemon 1's transcriptional properties. We found that Pokemon 1 is sumoylated in vitro and in vivo. Upon careful analysis of the amino acid sequence of Pokemon 1, we found ten potential sumoylation sites located at lysines 61, 354, 371, 379, 383, 396, 486, 487, 536 and 539. We mutated each of these amino acids into arginine and tested whether the mutation could affect the transcriptional properties of Pokemon 1 on the Pokemon 1 responsive genes, such as ADH5/FDH and pG5-FRE-Luc. Wild-type Pokemon 1 potently represses transcription of ADH5/FDH. Most of the mutants, however, were weaker transcription repressors and repressed transcription 1.3-3.3 fold less effective. Although potential sumoylation sites were located close to the DNA binding domain or the nuclear localization sequence, the mutations did not alter nuclear localization or DNA binding activity. In addition, on the pG5-FRE-Luc test promoter construct, ectopic SUMO-1 repressed transcription in the presence of Pokemon 1. The sumoylation target lysine residue at amino acid 61, which is located in the middle of the POZ-domain, is important because K61R mutation resulted in a much weaker molecular interaction with corepressors. Our data suggest that Pokemon 1's activity as a transcription factor may involve sumoylation, and that sumoylation might be important in the regulation of transcription by Pokemon 1. PMID:17595526

  11. Combined fluorimetric caspase 3/7 assay and bradford protein determination for assessment of polycation-mediated cytotoxicity

    DEFF Research Database (Denmark)

    Larsen, Anna K; Hall, Arnaldur; Lundsgart, Henrik;

    2013-01-01

    and design of safe and efficient nucleic acid delivery systems. Numerous methods are presently available to detect and delineate cytotoxicity and cell death-mediated signals in cell cultures. Activation of caspases is part of the classical apoptosis program and increased caspase activity is therefore a well...

  12. Tumor-suppressive activity of 1,25-dihydroxyvitamin D3 against kidney cancer cells via up-regulation of FOXO3.

    Science.gov (United States)

    Lee, Jongsung; Park, See-Hyoung

    2016-10-01

    1,25-Dihydroxyvitamin D3 has been known to have the tumor-suppressive activity in various kinds of tumors. However, the exact effect and working mechanism of 1,25-dihydroxyvitamin D3 on the tumor-suppressive activity in human kidney cancer cells remains poorly understood. 1,25-Dihydroxyvitamin D3 has cytotoxicity to ACHN cells and inhibited ACHN cell proliferation compared to the vehicle control. 1,25-Dihydroxyvitamin D3 increased the expression of the cleaved PARP1, active Caspase3, Bax, and Bim but decreased the expression of Bcl2 in ACHN cells. Moreover, 1,25-dihydroxyvitamin D3 down-regulated the phosphorylated Akt and Erk which might lead to apoptosis through activation of FOXO3 in ACHN cells. Transfection of siRNA against FOXO3 attenuated the pro-apoptotic BimEL expression in ACHN cells treated with 1,25-dihydroxyvitamin D3. These results suggest that FOXO3 is involved in the apoptosis induced by 1,25-dihydroxyvitamin D3. PMID:27181027

  13. Regulation of Aicda expression and AID activity.

    Science.gov (United States)

    Zan, Hong; Casali, Paolo

    2013-03-01

    Activation-induced cytidine deaminase (AID) is expressed in a B cell differentiation stage-specific fashion and is essential for immunoglobulin (Ig) gene class switch DNA recombination (CSR) and somatic hypermutation (SHM). CSR and SHM play a central role in the maturation of antibody and autoantibody responses. AID displays a mutagenic activity by catalyzing targeted deamination of deoxycytidine (dC) residues in DNA resulting in dU:dG mismatches, which are processed into point-mutations in SHM or double-strand breaks (DSBs) in CSR. Although AID specifically targets the Ig gene loci (IgH, Igκ and Igλ), it can also home into a wide array of non-Ig genes in B-and non-B-cell backgrounds. Aberrant expression of AID is associated with multiple diseases such as allergy, inflammation, autoimmunity and cancer. In autoimmune systemic lupus erythematosus, dysregulated AID expression underpins increased CSR, SHM and autoantibody production. As a potent mutator, AID is under stringent transcriptional, post-transcriptional and post-translational regulation. AID is also regulated in its targeting and enzymatic function. In resting naïve or memory B cells, AID transcripts and protein are undetectable. These, however, are readily and significantly up-regulated in B cells induced to undergo CSR and/or SHM. Transcription factors, such as HoxC4 and NF-κB, which are up-regulated in a B cell lineage-and/or differentiation stage-specific manner, regulate the induction of AID. HoxC4 induces AID expression by directly binding to the AID gene promoter through an evolutionarily conserved 5'-ATTT-3' motif. HoxC4 is induced by the same stimuli that induce AID and CSR. It is further up-regulated by estrogen through three estrogen responsive elements in its promoter region. The targeting of AID to switch (S) regions is mediated by 14-3-3 adaptor proteins, which specifically bind to 5'-AGCT-3' repeats that are exist at high frequency in S region cores. Like HoxC4, 14-3-3 adaptors are induced

  14. Regulation of Aicda expression and AID activity.

    Science.gov (United States)

    Zan, Hong; Casali, Paolo

    2013-03-01

    Activation-induced cytidine deaminase (AID) is expressed in a B cell differentiation stage-specific fashion and is essential for immunoglobulin (Ig) gene class switch DNA recombination (CSR) and somatic hypermutation (SHM). CSR and SHM play a central role in the maturation of antibody and autoantibody responses. AID displays a mutagenic activity by catalyzing targeted deamination of deoxycytidine (dC) residues in DNA resulting in dU:dG mismatches, which are processed into point-mutations in SHM or double-strand breaks (DSBs) in CSR. Although AID specifically targets the Ig gene loci (IgH, Igκ and Igλ), it can also home into a wide array of non-Ig genes in B-and non-B-cell backgrounds. Aberrant expression of AID is associated with multiple diseases such as allergy, inflammation, autoimmunity and cancer. In autoimmune systemic lupus erythematosus, dysregulated AID expression underpins increased CSR, SHM and autoantibody production. As a potent mutator, AID is under stringent transcriptional, post-transcriptional and post-translational regulation. AID is also regulated in its targeting and enzymatic function. In resting naïve or memory B cells, AID transcripts and protein are undetectable. These, however, are readily and significantly up-regulated in B cells induced to undergo CSR and/or SHM. Transcription factors, such as HoxC4 and NF-κB, which are up-regulated in a B cell lineage-and/or differentiation stage-specific manner, regulate the induction of AID. HoxC4 induces AID expression by directly binding to the AID gene promoter through an evolutionarily conserved 5'-ATTT-3' motif. HoxC4 is induced by the same stimuli that induce AID and CSR. It is further up-regulated by estrogen through three estrogen responsive elements in its promoter region. The targeting of AID to switch (S) regions is mediated by 14-3-3 adaptor proteins, which specifically bind to 5'-AGCT-3' repeats that are exist at high frequency in S region cores. Like HoxC4, 14-3-3 adaptors are induced

  15. New avenue in the treatment of temporal lobe epilepsy by classical anti-epileptics: A hypothetical establishment of executioner Caspase 3 inactivation by molecular modeling

    Directory of Open Access Journals (Sweden)

    M Vijey Aanandhi

    2015-01-01

    Full Text Available Patients with temporal lobe epilepsy (TLE are prescribed first-line antiepileptic drugs and surgery to the management of this disorder. Unfortunately, the surgical treatment has been shown to be beneficial for the selected patients but fails to provide a seizure-free outcome in 20-30% of TLE patients. In our present study, we investigate the possibilities of marketed antiepileptic drugs in a different manner to improve the present situation in TLE. Molecular docking simulation study and various open source computational tools were used to perform the study. AutoDock 4.2 MGL tools, Pymol visualize tools, Patch dock server, and Swarm Dock servers (protein-protein docking were used to perform the molecular modeling. FTsite and computed atlas of surface topography of protein open source server were used to understand the pocket and ligand binding information respectively. Toxtree application was used to determine the toxicity profile of the drug by Cramers rule. The obtained molecular docking models (Caspase 3, Procaspase 8, and Fas-associated death domain [FADD] with selected compounds (Clonazepam, Clobazepam, and Retigabine showed promising trio blocking event of FADD, Caspase 3, and Procaspase 8 (−6.66 kcal, −8.1 kcal, 6.46 kcal by Clonazepam respectively. Protein-protein interaction study (Swarm Dock, Patch Dock server indicated promising results that helped to establish our hypothesis. Toxtree showed a quantitative structure toxicity relationship report that helps to clarify the toxicity of the selected compounds. Clonazepam showed a trio inhibition property that may lead to develop a new era of the new generation benzodiazepine prototype drugs in the future. Filtered compounds will further process for higher in vitro, in vivo models for better understanding of the mechanism.

  16. Phosphorylation regulates coilin activity and RNA association

    Directory of Open Access Journals (Sweden)

    Hanna J. Broome

    2013-02-01

    The Cajal body (CB is a domain of concentrated components found within the nucleus of cells in an array of species that is functionally important for the biogenesis of telomerase and small nuclear ribonucleoproteins. The CB is a dynamic structure whose number and size change during the cell cycle and is associated with other nuclear structures and gene loci. Coilin, also known as the marker protein for the CB, is a phosphoprotein widely accepted for its role in maintaining CB integrity. Recent studies have been done to further elucidate functional activities of coilin apart from its structural role in the CB in an attempt to explore the rationale for coilin expression in cells that have few CBs or lack them altogether. Here we show that the RNA association profile of coilin changes in mitosis with respect to that during interphase. We provide evidence of transcriptional and/or processing dysregulation of several CB-related RNA transcripts as a result of ectopic expression of both wild-type and phosphomutant coilin proteins. We also show apparent changes in transcription and/or processing of these transcripts upon coilin knockdown in both transformed and primary cell lines. Additionally, we provide evidence of specific coilin RNase activity regulation, on both U2 and hTR transcripts, by phosphorylation of a single residue, serine 489. Collectively, these results point to additional functions for coilin that are regulated by phosphorylation.

  17. 阿托伐他汀对大鼠脑缺血再灌注 PERK/elfR2a通路及 Caspase-3表达的影响%The Study of PERK/eIF2a Pathway and the Expression of Caspase-3 in Ischemia-reperfusion Rats and Atorvastatin Intervention

    Institute of Scientific and Technical Information of China (English)

    彭文娟; 杨剑文; 刘湘玉; 杨期明

    2016-01-01

    目的:研究蛋白激酶 R 样内质网激酶(PERK)/ eIFR2a 通路及 Caspase-3在大鼠脑缺血再灌注损伤中的作用机制及阿托伐他汀对其的影响。方法采用大脑中动脉线栓塞法制作大鼠脑缺血再灌注模型;随机分为缺血再灌注组、假手术组、阿托伐他汀组、阿托伐他汀+ Salubrinal 抑制剂组,大体标本采用 TTC 染色,釆用 West-ern-blot 法检测 PERK、Caspase-3蛋白表达及 eIF2a 蛋白磷酸化。结果与假手术组相比,大鼠缺血再灌注后PERK 蛋白表达及 eIF2a 的磷酸化增加, Caspase-3表达的活性增强(P <0.01);阿托伐他汀干预可以减轻 PERK 蛋白表达及 eIF2a 蛋白磷酸化(P <0.05)。给予特异性 eIF2a 磷酸化抑制剂 Salubrinal 后可抑制 eIF2a 的磷酸化及Caspase-3表达的活性(P <0.05),对 PERK 蛋白表达无影响。形态学上从 TTC 染色提示:在缺血再灌注组 TTC 染色可见大片脑梗死组织。 Salubrinal 抑制剂及阿托伐他汀干预后脑梗死体积明显缩小(P <0.05)。结论内质网应激通过 PERK/ eIF2a/ Caspase-3途径促进细胞凋亡,阿托伐他汀干预可以减轻脑缺血再灌注损伤。%Objective To study the PERK/ eIF2a pathways and Caspase 3 in the mechanism of action of ischemia reperfusion injury in rats and the effect of atorvastatin. Methods Produce the ischemia reperfusion model rats by Middle cerebral artery embolism method which were divided into the ischemia reperfusion group,control group,atorvastatin interven-tion group and eIF2a suppression group. To observe the changes of ischemic brain,specimens were treated with TTC stai-ning,the PERK,Caspase-3 protein expression and protein phosphorylation eIF2a were detected by western-blot. Results Compared with the control group,after ischemia reperfusion,PERK protein expression and protein phosphorylation eIF2a in-creased,the expression of Caspase 3 was enhanced,and the expression of PERK protein and phosphorylation eIF2a was re

  18. TRAIL sensitize MDR cells to MDR-related drugs by down-regulation of P-glycoprotein through inhibition of DNA-PKcs/Akt/GSK-3β pathway and activation of caspases

    Directory of Open Access Journals (Sweden)

    Kim Dong-Wan

    2010-07-01

    Full Text Available Abstract Background The development of new modulator possessing high efficacy, low toxicity and high selectivity is a pivotal approach to overcome P-glycoprotein (P-gp mediated multidrug resistance (MDR in cancer treatment. In this study, we suggest a new molecular mechanism that TRAIL (tumor necrosis factor-related apoptosis-inducing ligand down-regulates P-glycoprotein (P-gp through inhibition of DNA-PKcs/Akt/GSK-3β pathway and activation of caspases and thereby sensitize MDR cells to MDR-related drugs. Results MDR variants, CEM/VLB10-2, CEM/VLB55-8 and CEM/VLB100 cells, with gradually increased levels of P-gp derived from human lymphoblastic leukemia CEM cells, were gradually more susceptible to TRAIL-induced apoptosis and cytotoxicity than parental CEM cells. The P-gp level of MDR variants was positively correlated with the levels of DNA-PKcs, pAkt, pGSK-3β and c-Myc as well as DR5 and negatively correlated with the level of c-FLIPs. Hypersensitivity of CEM/VLB100 cells to TRAIL was accompanied by the activation of mitochondrial apoptotic pathway as well as the activation of initiator caspases. In addition, TRAIL-induced down-regulation of DNA-PKcs/Akt/GSK-3β pathway and c-FLIP and up-regulation of cell surface expression of death receptors were associated with the increased susceptibility to TRAIL of MDR cells. Moreover, TRAIL inhibited P-gp efflux function via caspase-3-dependent degradation of P-gp as well as DNA-PKcs and subsequently sensitized MDR cells to MDR-related drugs such as vinblastine and doxorubicin. We also found that suppression of DNA-PKcs by siRNA enhanced the susceptibility of MDR cells to vincristine as well as TRAIL via down-regulation of c-FLIP and P-gp expression and up-regulation of DR5. Conclusion This study showed for the first time that the MDR variant of CEM cells was hypersensitive to TRAIL due to up-regulation of DR5 and concomitant down-regulation of c-FLIP, and degradation of P-gp and DNA-PKcs by

  19. Isoflurane Preconditioning Induces Neuroprotection by Up-Regulation of TREK1 in a Rat Model of Spinal Cord Ischemic Injury

    Science.gov (United States)

    Wang, Kun; Kong, Xiangang

    2016-01-01

    This study aimed to explore the neuroprotection and mechanism of isoflurane on rats with spinal cord ischemic injury. Total 40 adult male Sprague-Dawley rats were divided into the four groups (n=10). Group A was sham-operation group; group B was ischemia group; group C was isoflurane preconditioning group; group D was isoflurane preconditioning followed by ischemia treatment group. Then the expressions of TWIK-related K+ channel 1 (TREK1) in the four groups were detected by immunofluorescent assay, real time-polymerase chain reactions (RT-PCR) and western blot. The primary neurons of rats were isolated and cultured under normal and hypoxic conditions. Besides, the neurons under two conditions were transfected with green fluorescent protein (GFP)-TREK1 and lentivirual to overexpress and silence TREK1. Additionally, the neurons were treated with isoflurane or not. Then caspase-3 activity and cell cycle of neurons under normal and hypoxic conditions were detected. Furthermore, nicotinamide adenine dinucleotide hydrate (NADH) was detected using NAD+/NADH quantification colorimetric kit. Results showed that the mRNA and protein expressions of TREK1 increased significantly in group C and D. In neurons, when TREK1 silenced, isoflurane treatment improved the caspase-3 activity. In hypoxic condition, the caspase-3 activity and sub-G1 cell percentage significantly increased, however, when TREK1 overexpressed the caspase-3 activity and sub-G1 cell percentage decreased significantly. Furthermore, both isoflurane treatment and overexpression of TREK1 significantly decreased NADH. In conclusion, isoflurane-induced neuroprotection in spinal cord ischemic injury may be associated with the up-regulation of TREK1. PMID:27469140

  20. Up-regulation of activating transcription factor 4 induces severe loss of dopamine nigral neurons in a rat model of Parkinson's disease.

    Science.gov (United States)

    Gully, Joseph C; Sergeyev, Valeriy G; Bhootada, Yogesh; Mendez-Gomez, Hector; Meyers, Craig A; Zolotukhin, Sergey; Gorbatyuk, Marina S; Gorbatyuk, Oleg S

    2016-08-01

    Activating transcription factor 4 (ATF4) is a member of the PERK signaling pathway, which directly binds endoplasmic reticulum stress target genes and plays a crucial role in both adaptations to stress and activation of apoptosis. Previous publications demonstrated conflicting evidence on the role of ATF4 in the pathogenesis of neurodegenerative disorders. In this study, we used recombinant adeno-associate virus (rAAV)-mediated gene transfer to investigate if the sustained up-regulation of ATF4 launches a pro-survival or pro-death trend in the dopamine (DA) cells of the substantia nigra pars compacta in a rat model of Parkinson-like neurodegeneration induced by human alpha-synuclein (αS) overexpression. We showed that ATF4 does not protect nigral DA neurons against an αS-induced pathology. Moreover, the rAAV-mediated overexpression of ATF4 resulted in severe nigra-striatal degeneration via activation of caspases 3/7. PMID:27233218

  1. Effects of aerobic exercise combined with resveratrol on cardiomyocyte apoptosis factors TNF-αand Caspase-3 in type II diabetic rats%有氧运动联合白藜芦醇对Ⅱ型糖尿病大鼠心肌细胞凋亡因子TNF-α、Caspase-3的影响

    Institute of Scientific and Technical Information of China (English)

    任建厂; 王红丽; 肖国强

    2014-01-01

    为探讨有氧运动联合白藜芦醇对Ⅱ型糖尿病大鼠心肌细胞凋亡因子TNF-α、Caspase-3的影响。选用2月龄雄性SD大鼠40只,随机选取8只大鼠作为正常对照组(ZA),以标准饲料喂养;其余大鼠在高脂高糖喂养基础上,腹腔注射小剂量链脲佐菌素(STZ),建立Ⅱ型糖尿病大鼠动物模型。将Ⅱ型糖尿病模型大鼠随机分成4组:模型安静组(TA)、模型运动组(TY)、模型灌胃白藜芦醇安静组(TB)、模型灌胃白藜芦醇运动组(TYB)。运动训练采用每周6 d的无负重游泳。7周后,检测各组大鼠空腹血糖水平、血脂指标、心肌组织细胞形态学变化,心肌TNF-α、Caspase-3含量。结果发现:①OGTT后30、60、120 min时间段TY、TB、TYB组血糖浓度与TA组比较,均非常显著性降低(P<0.01);与TA组相比,TY、TB、TYB组血清TC、TG、LDL水平均显著性或非常显著性下降(P<0.05或P<0.01)。与ZA组相比,TA组心肌呈现病理性变化;与TA组相比, TY、TB、TYB组心肌病理性变化明显减轻。②与ZA组相比,TA组心肌组织TNF-α显著性升高(P<0.01);与 TA 组相比,TY、TB、TYB 组心肌组织 TNF-α非常显著性下降(P<0.05);与 TYB组相比较,TY、TB组心肌TNF-α的表达量显著性升高(P<0.05)。与ZA组相比,TA组心肌组织Caspase-3显著性升高(P<0.01);与TA组相比,TY、TB、TYB组心肌组织Caspase-3非常显著性下降(P<0.05);与TYB组相比,TY、TB组心肌Caspase-3蛋白表达水平显著性升高(P<0.05)。结果说明:Ⅱ型糖尿病大鼠心肌组织呈现病理性变化,有氧运动、白藜芦醇及联合干预可能通过降低糖尿病大鼠心肌组织TNF-α、Caspase-3含量,降低心肌细胞凋亡因子的表达,改善糖尿病大鼠心肌组织的病理性变化。有氧运动联合白藜芦醇干预降低心肌组织凋亡因子表达的效果优于单一的有氧运动或白藜芦醇干预。%In order to probe into

  2. Endoglin regulates cyclooxygenase-2 expression and activity.

    Science.gov (United States)

    Jerkic, Mirjana; Rivas-Elena, Juan V; Santibanez, Juan F; Prieto, Marta; Rodríguez-Barbero, Alicia; Perez-Barriocanal, Fernando; Pericacho, Miguel; Arévalo, Miguel; Vary, Calvin P H; Letarte, Michelle; Bernabeu, Carmelo; López-Novoa, Jose M

    2006-08-01

    The endoglin heterozygous (Eng(+/-)) mouse, which serves as a model of hereditary hemorrhagic telangiectasia (HHT), was shown to express reduced levels of endothelial NO synthase (eNOS) with impaired activity. Because of intricate changes in vasomotor function in the Eng(+/-) mice and the potential interactions between the NO- and prostaglandin-producing pathways, we assessed the expression and function of cyclooxygenase (COX) isoforms. A specific upregulation of COX-2 in the vascular endothelium and increased urinary excretion of prostaglandin E(2) were observed in the Eng(+/-) mice. Specific COX-2 inhibition with parecoxib transiently increased arterial pressure in Eng(+/-) but not in Eng(+/+) mice. Transfection of endoglin in L6E9 myoblasts, shown previously to stimulate eNOS expression, led to downregulation of COX-2 with no change in COX-1. In addition, COX-2 promoter activity and protein levels were inversely correlated with endoglin levels, in doxycyclin-inducible endothelial cells. Chronic NO synthesis inhibition with N(omega)-nitro-l-arginine methyl ester induced a marked increase in COX-2 only in the normal Eng(+/+) mice. N(omega)-nitro-l-arginine methyl ester also increased COX-2 expression and promoter activity in doxycyclin-inducible endoglin expressing endothelial cells, but not in control cells. The level of COX-2 expression following transforming growth factor-beta1 treatment was less in endoglin than in mock transfected L6E9 myoblasts and was higher in human endothelial cells silenced for endoglin expression. Our results indicate that endoglin is involved in the regulation of COX-2 activity. Furthermore, reduced endoglin levels and associated impaired NO production may be responsible, at least in part, for augmented COX-2 expression and activity in the Eng(+/-) mice. PMID:16840721

  3. Structural Basis for Plexin Activation and Regulation.

    Science.gov (United States)

    Kong, Youxin; Janssen, Bert J C; Malinauskas, Tomas; Vangoor, Vamshidhar R; Coles, Charlotte H; Kaufmann, Rainer; Ni, Tao; Gilbert, Robert J C; Padilla-Parra, Sergi; Pasterkamp, R Jeroen; Jones, E Yvonne

    2016-08-01

    Class A plexins (PlxnAs) act as semaphorin receptors and control diverse aspects of nervous system development and plasticity, ranging from axon guidance and neuron migration to synaptic organization. PlxnA signaling requires cytoplasmic domain dimerization, but extracellular regulation and activation mechanisms remain unclear. Here we present crystal structures of PlxnA (PlxnA1, PlxnA2, and PlxnA4) full ectodomains. Domains 1-9 form a ring-like conformation from which the C-terminal domain 10 points away. All our PlxnA ectodomain structures show autoinhibitory, intermolecular "head-to-stalk" (domain 1 to domain 4-5) interactions, which are confirmed by biophysical assays, live cell fluorescence microscopy, and cell-based and neuronal growth cone collapse assays. This work reveals a 2-fold role of the PlxnA ectodomains: imposing a pre-signaling autoinhibitory separation for the cytoplasmic domains via intermolecular head-to-stalk interactions and supporting dimerization-based PlxnA activation upon ligand binding. More generally, our data identify a novel molecular mechanism for preventing premature activation of axon guidance receptors. PMID:27397516

  4. The influence of XINKANGTAI on the level of calcium and cytochrome C and the ativty of Caspase-3 in bioblast of cardiac muscle%新康泰营养包对心肌线粒体钙和细胞色素C及Caspase-3活性的影响

    Institute of Scientific and Technical Information of China (English)

    杨小英; 张钧; 陈刚毅; 林敬松; 范秀娟; 曹俊涛

    2007-01-01

    目的 研究新康泰营养包对过度训练大鼠心肌线粒体钙浓度和细胞色素C及Caspase-3活性的影响,以探讨新康泰营养包抗过度训练大鼠心肌细胞凋亡影响的作用机理.方法 以过度训练大鼠为运动疲劳模型,用Daly方法、微电极法测定细胞色素C,用德国Boehringer Mannheim公司提供的试剂盒测定心肌细胞中Caspase-3的活性.结果 过度训练可造成心肌线粒体钙超载,而新康泰营养包具有抑制心肌钙超载的作用;过度训练可导致大鼠心肌细胞中Caspase-3活性显著升高,而新康泰营养包可抑制过度训练大鼠心肌细胞中Caspase-3活性显著升高.过度训练组和过度训练+蒸馏水组大鼠心肌组织中细胞色素C含量明显高于对照组和过度训练+新康泰营养包组大鼠(P<0.01).结论 新康泰营养包具有防止过度训练造成的心肌细胞凋亡增加,防止过度训练造成的心肌组织中钙超载,从而有效地阻止心肌线粒体内钙超载,保护心肌线粒体膜的功能,使得心肌线粒体内细胞色素C不漏入胞浆,从而使心肌组织中Caspase级联反应不被启动,有效地阻止了心肌细胞凋亡发生.

  5. Caspase-3-mediated cleavage of p65/RelA results in a carboxy-terminal fragment that inhibits IκBα and enhances HIV-1 replication in human T lymphocytes

    Directory of Open Access Journals (Sweden)

    Alcamí José

    2008-12-01

    Full Text Available Abstract Background Degradation of p65/RelA has been involved in both the inhibition of NF-κB-dependent activity and the onset of apoptosis. However, the mechanisms of NF-κB degradation are unclear and can vary depending on the cell type. Cleavage of p65/RelA can produce an amino-terminal fragment that was shown to act as a dominant-negative inhibitor of NF-κB, thereby promoting apoptosis. However, the opposite situation has also been described and the production of a carboxy-terminal fragment that contains two potent transactivation domains has also been related to the onset of apoptosis. In this context, a carboxy-terminal fragment of p65/RelA (ΔNH2p65, detected in non-apoptotic human T lymphocytes upon activation, has been studied. T cells constitute one of the long-lived cellular reservoirs of the human immunodeficiency virus type 1 (HIV-1. Because NF-κB is the most important inducible element involved in initiation of HIV-1 transcription, an adequate control of NF-κB response is of paramount importance for both T cell survival and viral spread. Its major inhibitor IκBα constitutes a master terminator of NF-κB response that is complemented by degradation of p65/RelA. Results and conclusions In this study, the function of a caspase-3-mediated carboxy-terminal fragment of p65/RelA, which was detected in activated human peripheral blood lymphocytes (PBLs, was analyzed. Cells producing this truncated p65/RelA did not undergo apoptosis but showed a high viability, in spite of caspase-3 activation. ΔNH2p65 lacked most of DNA-binding domain but retained the dimerization domain, NLS and transactivation domains. Consequently, it could translocate to the nucleus, associate with NF-κB1/p50 and IκBα, but could not bind -κB consensus sites. However, although ΔNH2p65 lacked transcriptional activity by itself, it could increase NF-κB activity in a dose-dependent manner by hijacking IκBα. Thus, its expression resulted in a persistent

  6. Mitochondrial and nuclear damages and caspase-3 expression in the hippicampal CA3 region of rats with kainic acid induced status epilepticus

    Institute of Scientific and Technical Information of China (English)

    Shuhai Tang; Jianying Sun; Xiaojun Pan; Li Zhang

    2006-01-01

    BACKGROUND: Some scholars believed that the neuronal injury after status epilepticus is apoptosis,the main evidence is the changes of expressions of various apoptosis releted genes,such as immediate-early gene,p53 gene and genes of bcl-2 family,etc.But there is still no ultrastructural evidence for apoptosis.OBJECTIVE: To observe the ultrastructural damages of mitochondrion and nucleus and the changes of caspase expression in neurons of hippocampal CA3 region in rats with status epilepticus induced by kainic acid.DESIGN: A randomized controlled study.SETTING: Department of Anesthesiology and Department of Neurology,Qilu Hospital of Shandong University.MATERIALS: Seventy-five adult male Wistar rats of 250-300 g.clean degree,were provided by the experimental animal center of Shandong University.Kainic acid was purchased from Sigma Company (USA);rabbit anti-rat polyclonal antibody caspase-3 from Santa Cruz Company(USA).METHODS:The experiments were carried out in the Department of Anesthesiology,Qilu Hospital of Shandong University from October 2005 to February 2006.①The 75 rats were randomly divided into experimental group (n=45)and control group(n=30).②Model establishment,convulsion grading and the judging standards for status epilepticus:Rats in the experimental group were given intraperitoneal injection of kainic acid(10 mg/kg),and those in the control group were injected with saline of the same volume.The time of seizure was recorded and their behavioral manifestations were observed,and the seizure was terminated by intraperitoneal injection of diazepam(10 mg/kg).③Observation under electron microscope:At 3, 12 and 24 hours after status epilepticus respectively,bilateral hippocampal tissues were taken out,semithin sections of about 75 nm were prepared after fixation,dehydration and embedding,and then observed under H-800 transmission electron microscope.④Immunohistochemical detection:Bilateral hippocampi were removed at 3,12 and 24 hours after status

  7. Ethanol Activation of PKA Mediates Single-Minded 2 Expression in Neuronal Cells.

    Science.gov (United States)

    Wang, Xiaolan; Yang, Zhihua; Sun, Yinan; Zhou, Hanjing; Chu, Guangpin; Zhang, Jing; Meng, Xianfang

    2015-12-01

    Prenatal ethanol exposure can cause extensive apoptotic neurodegeneration throughout the developing central nervous system (CNS), which results in cognitive deficits and memory decline. However, the underlying mechanisms need further study. Single-minded 2 (Sim2), a transcriptional repressor, is reportedly involved in diseases that impair learning and memory, such as Down syndrome (DS) and Alzheimer's disease. It is still unknown whether Sim2 is involved in regulating ethanol-mediated neuronal injury that might ultimately lead to neuronal dysfunction and subsequent learning and memory deficits. To study the effects of ethanol on Sim2 expression and neuronal injury, we used animal models and cell culture experiments. Our results indicated that in SH-SY5Y cells, ethanol exposure increased Sim2 expression and levels of cleaved caspase 3, which is a marker for cells undergoing apoptosis. Silencing Sim2 expression attenuated caspase 3 activation and cellular apoptosis. We also found that protein kinase A (PKA) activation induced Sim2 expression, as did ethanol. Inhibiting the PKA signaling pathway with H-89 decreased Sim2 expression and cleavage of caspase 3 that was induced by ethanol in vivo and in vitro. We further found that PKA regulated Sim2 expression at the transcriptional level. These results demonstrate that ethanol leads to increased Sim2 expression via the PKA pathway, ultimately resulting in apoptotic cell death.

  8. The anti-depression effects of docosahexaenoic acid and its effects on the expression of caspase-3 in hippocampal neuron%二十二碳六烯酸抗抑郁作用及其对海马神经元caspase-3表达的影响

    Institute of Scientific and Technical Information of China (English)

    林桂平; 郑巧; 林创杰; 邓若梅子; 冯蔚姣; 胡航通; 刘伟; 向秋玲

    2014-01-01

    Objective To explore the therapeutic effects of docosahexaenoic acid (DHA) on depression,and its influence on the expression of caspase-3 in hippocampal neuron.Methods A total of 50 SD rats were randomly divided into 5 groups (control,model,fluoxetine,DHA,combination group),10 rats in each group.SD rats were given different stimuli for 21 days to set up unforeseeable chronic stress depression model.After 21 days,the changes of behaviors in forced swimming test and morphology change in CA1,CA2 and CA3 in hippocampal neurons were observed.The change of caspase-3 in hippocampal neuron were detected by real-time PCR and western blot.Results Behavioral results showed that the swimming immobility time in depression model group,DHA group and combination group were respectively(113.33±9.50) s,(81.67±7.68) s and(73.00±8.54) s.Compared with depression model group,the DHA group and DHA combined with fluoxetine group obviously reduced the swimming immobility time of rats(t=8.164,9.855,P<0.01).HE stain result showed DHA could partly recovered the number of hippocampal neurons in CA1,CA2 and CA3 and reduced apoptosis.qPCR and WB results showed DHA alone or DHA combined with fluoxetine could inhibit mRNA and protein level of caspase-3 in hippocampal neurons.Conclusion DHA can improve depression to a certain extent in a rat model of unforeseeable chronic stress depression,which might work through inhibition of neuron apoptosis and caspase-3 expression in hippocampal neurons.%目的 观察二十二碳六烯酸(docosahexaenoic acid,DHA)对抑郁症的治疗作用及其对海马神经元caspase-3表达的影响.方法 50只SD大鼠随机分为5组(空白对照组,抑郁模型组,氟西汀组,DHA组,氟西汀与DHA联合用药组),每组10只,连续21 d每天给予不同刺激,建立慢性应激不可预见抑郁大鼠模型.21 d后强迫游泳实验进行行为学检测,HE染色检测海马CA1、CA2、CA3区锥体细胞的形态学变化.荧光实时定量PCR和Western Blot检测海马神经元caspase

  9. APE1/Ref-1 regulates STAT3 transcriptional activity and APE1/Ref-1-STAT3 dual-targeting effectively inhibits pancreatic cancer cell survival.

    Science.gov (United States)

    Cardoso, Angelo A; Jiang, Yanlin; Luo, Meihua; Reed, April M; Shahda, Safi; He, Ying; Maitra, Anirban; Kelley, Mark R; Fishel, Melissa L

    2012-01-01

    Pancreatic cancer is a largely incurable disease, and increasing evidence supports strategies targeting multiple molecular mediators of critical functions of pancreatic ductal adenocarcinoma cells. Intracellular redox state modulates the activity of various signal transduction pathways and biological processes, including cell survival, drug resistance and responsiveness to microenvironmental factors. Recently, it has been shown that the transcription factor STAT3 is under redox control, but the mechanisms involved in its regulation are unknown. Here, we demonstrate for the first time that STAT3 DNA binding and transcriptional activity is directly regulated by the redox function of the APE1/Ref-1 endonuclease, using overexpression and redox-specific mutational strategies, and gene knockdown. Also, pharmacological blockade of APE1/Ref-1 by the redox-selective inhibitor E3330 abrogates STAT3 DNA binding. Since APE1/Ref-1 also exerts redox control on other cancer-associated transcription factors, we assessed the impact of dual-targeting of STAT3 signaling and APE1/Ref-1 redox on pancreatic cancer cell functions. We observed that disruption of APE1/Ref-1 redox activity synergizes with STAT3 blockade to potently inhibit the proliferation and viability of human PDAC cells. Mechanistically, we show that STAT3-APE1/Ref-1 dual targeting promotes marked tumor cell apoptosis, with engagement of caspase-3 signaling, which are significantly increased in comparison to the effects triggered by single target blockade. Also, we show that STAT3-APE1/Ref-1 dual blockade results in significant inhibition of tumor cell migration. Overall, this work demonstrates that the transcriptional activity of STAT3 is directly regulated by the redox function of APE1/Ref-1, and that concurrent blockade of STAT3 and APE1/Ref-1 redox synergize effectively inhibit critical PDAC cell functions.

  10. M867, a novel selective inhibitor of caspase-3 enhances cell death and extends tumor growth delay in irradiated lung cancer models.

    Directory of Open Access Journals (Sweden)

    Kwang Woon Kim

    Full Text Available BACKGROUND: Lung cancer remains the leading cause of cancer death worldwide. Radioresistance of lung cancer cells results in unacceptable rate of loco-regional failure. Although radiation is known to induce apoptosis, our recent study showed that knockdown of pro-apoptotic proteins Bak and Bax resulted in an increase in autophagic cell death and lung cancer radiosensitivity in vitro. To further explore the potential of apoptosis inhibition as a way to sensitize lung cancer for therapy, we tested M867, a novel chemical and reversible caspase-3 inhibitor, in combination with ionizing radiation in vivo and in vitro. METHODS AND FINDINGS: M867 reduced clonogenic survival in H460 lung cancer cells (DER = 1.27, p = 0.007 compared to the vehicle-treated treated cells. We found that administration of M867 with ionizing radiation in an in vivo mouse hind limb lung cancer model was well tolerated, and produced a significant tumor growth delay compared to radiation alone. A dramatic decrease in tumor vasculature was observed with M867 and radiation using von Willebrand factor staining. In addition, Ki67 index showed >5-fold reduction of tumor proliferation in the combination therapy group, despite the reduced levels of apoptosis observed with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. Radiosensitizing effect of M867 through inhibiting caspases was validated using caspase-3/-7 double-knockout (DKO mouse embryonic fibroblasts (MEF cell model. Consistent with our previous study, autophagy contributed to the mechanism of increased cell death, following inhibition of apoptosis. In addition, matrigel assay showed a decrease in in vitro endothelial tubule formation during the M867/radiation combination treatment. CONCLUSIONS: M867 enhances the cytotoxic effects of radiation on lung cancer and its vasculature both in vitro and in vivo. M867 has the potential to prolong tumor growth delay by inhibiting tumor proliferation

  11. Effects of isoflurane on spatial reference memory and changes of Caspase-3 expression and apoptosis in brain of aged mice%异氟醚对老年小鼠空间参考记忆和脑细胞凋亡及Caspase-3表达的影响

    Institute of Scientific and Technical Information of China (English)

    柳垂亮; 李玉娟; 陈郡兴; 李国才; 谢晓澜

    2010-01-01

    目的 观察异氟醚对老年小鼠空间学习记忆能力及其大脑Caspase-3蛋白表达、细胞凋亡的影响.方法 24只16月龄C57BL/6老年小鼠分层随机分为异氟醚组(Iso,n=12)和对照组(Con,n=12).lso组使用1.0%异氟醚行麻醉暴露4h/d,连续2d;Con组同期只使用30%的氧气和70%氮气混合气.在麻醉暴露后,采用Morris水迷宫检测小鼠空间学习记忆能力,再分别使用免疫荧光染色法及TUNEL法检测小鼠大脑皮质区(CX)、海马Cal区和齿状回(DG)的Caspase-3蛋白表达及神经细胞凋亡的变化.结果 在Morris水迷宫的定位航行测试中,2组间逃避潜伏期的变化差异无显著性(F=0.007,P=1.235),但在空间探索实验测试中,Iso组在原平台所在象限(靶象限)停留时间[(34.5±5.0)%]明显短于Con组[(45.1±4.9)%],差异具有显著性(P0.05).TUNEL 法检测到极少量阳性凋亡细胞.结论 重复使用1%异氟醚麻醉暴露可损害老年小鼠的空间参考记忆能力,但无明显影响大脑Caspase-3蛋白表达及细胞凋亡.%Objective To investigate the effect of isoflurane on the spatial learning and memory in aged mice,and whether this is associated with the changes of Caspase-3 expression and apoptosis in brain.Methods Twenty-four CO57BL/6 aged mice(16 months)were randomly divided into isoflurane treatment group(Iso Group,n=12) and sham control group (Con Group,n=12).Mice in Iso group were exposed to 1% isoflurane in carrying gas of 30% oxygen,balance nitrogen in a warmed,humidified chamber for4 h per day for2 days.For Con group,animals were treated at the same condition with only carrying gas.After anesthetic exposures,behavioral testing was performed using the Morris water maze(MWM),and then changes of Caspase-3 expression and apoptosis in hippocampus CAI,dentate gyrus(DG) and cortex(CX) in brain were determined by using immunofluorecence staining and TUNEL staining.Results In hidden-platform training of MWM,the mean escape latency to platform showed

  12. MicroRNA-17-mediated down-regulation of apoptotic protease activating factor 1 attenuates apoptosome formation and subsequent apoptosis of cardiomyocytes.

    Science.gov (United States)

    Song, Seungjun; Seo, Hyang-Hee; Lee, Se-Yeon; Lee, Chang Yeon; Lee, Jiyun; Yoo, Kyung-Jong; Yoon, Cheesoon; Choi, Eunhyun; Hwang, Ki-Chul; Lee, Seahyoung

    2015-09-18

    Heart diseases such as myocardial infarction (MI) can damage individual cardiomyocytes, leading to the activation of cell death programs. The most scrutinized type of cell death in the heart is apoptosis, and one of the key events during the propagation of apoptotic signaling is the formation of apoptosomes, which relay apoptotic signals by activating caspase-9. As one of the major components of apoptosomes, apoptotic protease activating factor 1 (Apaf-1) facilitates the formation of apoptosomes containing cytochrome c (Cyto-c) and deoxyadenosine triphosphate (dATP). Thus, it may be possible to suppress the activation of the apoptotic program by down-regulating the expression of Apaf-1 using miRNAs. To validate this hypothesis, we selected a number of candidate miRNAs that were expected to target Apaf-1 based on miRNA target prediction databases. Among these candidate miRNAs, we empirically identified miR-17 as a novel Apaf-1-targeting miRNA. The delivery of exogenous miR-17 suppressed Apaf-1 expression and consequently attenuated formation of the apoptosome complex containing caspase-9, as demonstrated by co-immunoprecipitation and immunocytochemistry. Furthermore, miR-17 suppressed the cleavage of procaspase-9 and the subsequent activation of caspase-3, which is downstream of activated caspase-9. Cell viability tests also indicated that miR-17 pretreatment significantly prevented the norepinephrine-induced apoptosis of cardiomyocytes, suggesting that down-regulation of apoptosome formation may be an effective strategy to prevent cellular apoptosis. These results demonstrate the potential of miR-17 as an effective anti-apoptotic agent. PMID:26265044

  13. 76 FR 12364 - Agency Information Collection Activities: Bonded Warehouse Regulations

    Science.gov (United States)

    2011-03-07

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse... Bonded Warehouse Regulations. This request for comment is being made pursuant to the Paperwork Reduction... concerning the following information collection: Title: Bonded Warehouse Regulations. OMB Number:...

  14. Effect of glycyrrhizic flavone on the expression of caspase -3 and caspase - 12 in photoaging skin of mice%甘草黄酮对小鼠光老化皮肤中caspase-3、caspase-12表达的影响

    Institute of Scientific and Technical Information of China (English)

    宁舒鹏; 杨桂兰; 王佳媚; 白景瑞; 龙朝钦; 罗洋

    2012-01-01

    目的:研究皮肤外用甘草黄酮对紫外线照射引起的小鼠光老化皮肤的影响.方法:BALB/C小鼠50只随机分成5组:模型组(A)、基质组(B)、甘草黄酮组(C)、薇诺娜组(D)、正常对照组(E),模拟UVB长期照射,造成皮肤光老化小鼠模型.B、C、D组照射同时分别外用基质乳膏、甘草黄酮乳膏、薇诺娜防晒霜( SPF30,PA+++).组织切片HE染色观察皮肤结构改变;以ELISA法测定皮肤组织caspasse -3、caspase - 12含量.结果:A、B组小鼠皮肤组织caspasse -3、caspase - 12含量明显增加,病理切片呈现明显光老化状态;C、D组capasse -3、caspase - 12含量与E组差异无统计学意义(P>0.05).结论:甘草黄酮乳膏对紫外线照射引起的小鼠皮肤光老化具有保护作用,其机制可能为甘草黄酮通过抑制caspase - 12活化,进而阻断caspase-3的激活,抑制细胞的凋亡.%Objective: To investigate the effect of glycyrrhizic flavone cream on the photoaging skin of mice induced by ultraviolet radiation B ( UVB). Methods: Fifty BALB / C mice were randomly divided into 5 groups (n = 5 in each group) , photoaging model group (A), matrix group (B), glycyrrhizic flavone group (C) , Winona group (D), normal control group (E). The mouse model of photoaging skin was established by long - term UVB radiation. Matrix cream, glycyrrhizic flavone cream, and Winona cream (SPF30, PA + + + ) were used respectively on the back of mice in groups of B, C and D before UVB radiation. Histological sections were stained with HE to observe the structural changes of skin. Caspasse - 3 and caspase - 12 levels were detected by ELISA. Results; Expression of caspasae -3 and caspase - 12 in skin tissue of A and B group were significantly upregulated and obvious skin photoage was seen. The differences of cspasse - 3 and caspase -12 expression between C, D and E group were not statistically significant (P >0. 05). Conclusion; The glycyrrhizic flavone cream could protect skin from

  15. Compressed images for affinity prediction-2 (CIFAP-2): an improved machine learning methodology on protein-ligand interactions based on a study on caspase 3 inhibitors.

    Science.gov (United States)

    Erdas, Ozlem; Andac, Cenk A; Gurkan-Alp, A Selen; Alpaslan, Ferda Nur; Buyukbingol, Erdem

    2015-01-01

    The aim of this study is to propose an improved computational methodology, which is called Compressed Images for Affinity Prediction-2 (CIFAP-2) to predict binding affinities of structurally related protein-ligand complexes. CIFAP-2 method is established based on a protein-ligand model from which computational affinity information is obtained by utilizing 2D electrostatic potential images determined for the binding site of protein-ligand complexes. The quality of the prediction of the CIFAP-2 algorithm was tested using partial least squares regression (PLSR) as well as support vector regression (SVR) and adaptive neuro-fuzzy ınference system (ANFIS), which are highly promising prediction methods in drug design. CIFAP-2 was applied on a protein-ligand complex system involving Caspase 3 (CASP3) and its 35 inhibitors possessing a common isatin sulfonamide pharmacophore. As a result, PLSR affinity prediction for the CASP3-ligand complexes gave rise to the most consistent information with reported empirical binding affinities (pIC(50)) of the CASP3 inhibitors. PMID:25578823

  16. Effect of Osthole on Expressions of Caspase-3 and Caspase-9 Proteins in Hippocampal Neuron in Kainite-induced Rats%蛇床子素对海人酸致痫大鼠神经元 Caspase-3和Caspase-9蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    谢洪婷; 沈阳; 曾常茜

    2015-01-01

    .Immunohistochemistry staining showed that the expressions of Caspase-3 and Caspase-9 in the hippocampal neuron in the kainite group increased significantly than those in the control group ( P<0.05 ) .The expressions of active Caspase-3 and active Caspase-9 of the hippocampal neuron in the Osthole group decreased obviously than that in the kainite group (P<0.05).Conclusion: Osthole has a protective effect on the hippocampal neurons in kainite -induced rats by inhibiting the activity of Caspase -3 and Caspase-9 protein.

  17. Higher insulin sensitivity in EDL muscle of rats fed a low-protein, high-carbohydrate diet inhibits the caspase-3 and ubiquitin-proteasome proteolytic systems but does not increase protein synthesis.

    Science.gov (United States)

    Dos Santos, Maísa Pavani; Batistela, Emanuele; Pereira, Mayara Peron; Paula-Gomes, Silvia; Zanon, Neusa Maria; Kettelhut, Isis do Carmo; Karatzaferi, Christina; Andrade, Claudia Marlise Balbinotti; de França, Suélem Aparecida; Baviera, Amanda Martins; Kawashita, Nair Honda

    2016-08-01

    Compared with the extensor digitorum longus (EDL) muscle of control rats (C), the EDL muscle of rats fed a low-protein, high-carbohydrate diet (LPHC) showed a 36% reduction in mass. Muscle mass is determined by the balance between protein synthesis and proteolysis; thus, the aim of this work was to evaluate the components involved in these processes. Compared with the muscle from C rats, the EDL muscle from LPHC diet-fed rats showed a reduction (34%) in the in vitro basal protein synthesis and a 22% reduction in the in vitro basal proteolysis suggesting that the reduction in the mass can be associated with a change in the rate of the two processes. Soon after euthanasia, in the EDL muscles of the rats fed the LPHC diet for 15days, the activity of caspase-3 and that of components of the ubiquitin-proteasome system (atrogin-1 content and chymotrypsin-like activity) were decreased. The phosphorylation of p70(S6K) and 4E-BP1, proteins involved in protein synthesis, was also decreased. We observed an increase in the insulin-stimulated protein content of p-Akt. Thus, the higher insulin sensitivity in the EDL muscle of LPHC rats seemed to contribute to the lower proteolysis in LPHC rats. However, even with the higher insulin sensitivity, the reduction in p-E4-BP1 and p70(S6K) indicates a reduction in protein synthesis, showing that factors other than insulin can have a greater effect on the control of protein synthesis. PMID:27239756

  18. Activation and Regulation of Cellular Eicosanoid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Thomas G. Brock

    2007-01-01

    Full Text Available There is a growing appreciation for the wide variety of physiological responses that are regulated by lipid messengers. One particular group of lipid messengers, the eicosanoids, plays a central role in regulating immune and inflammatory responses in a receptor-mediated fashion. These mediators are related in that they are all derived from one polyunsaturated fatty acid, arachidonic acid. However, the various eicosanoids are synthesized by a wide variety of cell types by distinct enzymatic pathways, and have diverse roles in immunity and inflammation. In this review, the major pathways involved in the synthesis of eicosanoids, as well as key points of regulation, are presented.

  19. Association of abnormal glucose metabolism and pancreas Caspase-3 in rat model with collagen-induced arthritis%胶原诱导关节炎大鼠糖代谢异常与凋亡蛋白Caspase-3的关系

    Institute of Scientific and Technical Information of China (English)

    杨明峰; 尚可; 皮慧; 王友莲

    2013-01-01

    Objective To explore the possible mechanism of rheumatoid arthritis(RA)-related abnormal glucose metabolism.Methods The model of collagen-induced arthritis (CIA) was established by intradermal injection of type Ⅱ collagen 10 mg and complete Freud' s adjuvant in 6 Wistar rats(group CIA).Eight rats were injected normal saline as the controls(group C).The fasting plasma glucose(FBG),fasting insulin(FIns) and the expressions of IL-6 and islet Caspase-3 were examined.The possible mechanism for impaired glucose metabolism was analysed.Results The CIA models were established successfully on the 12th to 14th day.On the 17th day,the FBG of group CIA was (6.22±0.94) mmol/L,which was higher than (5.01±0.73) mmol/L of group C(P<0.05).So did the expressions of IL-6 [(503,49± 104.04) pg/ml vs.(343.02 ± 75.73) pg/ml] and islet Caspase-3(P<0.01).On the 17th day,the FIns of group CIA was (9.38± 0.40) ng/ml,which was lower than (14.76±2.48) ng/ml of group C(P<0.01).Conclusion The elevated FBG in CIA may be associated with the reduced FIns level secondary to the overapoptosis of pancreas islet cells.%目的 探索类风湿关节炎(RA)并发糖代谢异常的可能机制.方法 取Wistar大鼠6只皮内注射牛Ⅱ型胶原10 mg和弗氏完全佐剂建立牛Ⅱ型胶原诱导性关节炎(CIA组),另取8只大鼠注射生理盐水作对照(C组).检测空腹血糖(FBG)、胰岛素、IL-6和胰腺组织胰岛半胱天冬氨酸蛋白酶3 (Caspase-3)的表达,分析CIA大鼠发生糖代谢异常的可能机制.结果 CIA组大鼠第12-14天成功建立CIA模型.第17天时,CIA组FBG为(6.22±0.94) mmol/L,高于C组的(5.01±0.73)mmol/L(P<0.05);CIA组空腹胰岛素水平为(9.38±0.40) ng/ml,低于C组的(14.76±2.48) ng/ml(P<0.01);CIA组IL-6为(503.49±104.04) pg/ml,高于C组的(343.02±75.73) pg/ml(P<0.01).CIA组胰岛Caspase-3的表达高于C组(P<0.01).结论 CIA大鼠FBG升高的原因可能与胰岛凋亡过度、胰岛素分泌减少有关.

  20. 缬草对慢性应激导致的抑郁大鼠血清皮质酮和海马caspase-3阳性细胞数量的影响%Effects of Valerian on serum cortisol level and caspase-3 positive cells of hippocampus in depressive rats induced by chronic mild stress

    Institute of Scientific and Technical Information of China (English)

    秦亚静; 林玉坤; 周春春; 李燕; 钟志强; 曾园山

    2009-01-01

    目的 探讨缬草对慢性应激导致的抑郁大鼠体重、行为、血清皮质醇和海马Caspase-3阳性细胞数量的影响.方法 50只大鼠被分为正常对照组、未用药模型组、阴性对照模型组、阳性对照模型组和缬草治疗组,每组各10只.除正常对照组外,给予其余4组大鼠为期4周的慢性应激,以建立抑郁症模型.在整个实验期间,每周检测所有大鼠体重、自来水摄取量、1%糖水摄取量.除未用药模型组正常饲养外,其余4组大鼠在模型建立后分别灌服羧甲基纤维素钠、氟西汀以及缬草,灌药周期均为3周.灌药结束后,每组随机选取5只大鼠,采用放射免疫法检测其血清皮质酮水平;每组另5只大鼠用于caspase-3阳性细胞的计数.结果 经过4周慢性应激后,与正常对照组大鼠相比,抑郁模型组大鼠的体重以及1%糖水摄取量明显降低.灌服缬草3周后,能使抑郁模型组大鼠的体重、1%糖水摄取量增加并恢复到正常对照组水平.缬草治疗组血清皮质酮水平明显降低,并恢复至正常对照组大鼠水平,同时使抑郁大鼠海马caspase-3阳性细胞总数减少到正常对照组大鼠水平.结论 缬草能使抑郁大鼠恢复体重及正常行为,能降低抑郁大鼠血清皮质酮水平,并具有减少大脑海马caspase-3阳性细胞的作用.

  1. Eucommia ulmoides Oliv.antagonizes H2O2-induced rat osteoblastic MC3T3-E1 apoptosis by inhibiting expressions of caspases 3,6,7,and 9

    Institute of Scientific and Technical Information of China (English)

    Jun LIN; Yi-jing FAN; Christian MEHL; Jia-jun ZHU; Hong CHEN; Ling-yan JIN; Jing-hong XU; Hui-ming WANG

    2011-01-01

    Eucommia ulmoides Oilv.(EuO),also known as Duzhong,native to China,has been reported to have antioxidaUve function,but its cellular mechanism is not fully examined yet.We investigated inhibitory effects of EuO leaf ethanol extracts on H2O2-induced apoptosis in rat osteoblastic MC3T3-E1 cells and underlying mechanisms.Locally-grown Duzhong leaves were extracted with ethanol.MC3T3-E1 cells were treated with EuO(6.25,12.5,25,50,and 100 μg/ml)for 24 h,and then H2O2(800 μmol/L)for an additional 24 h.Cell survival rate,percentage of apoptosis,and expressions of caspases 3,6,7,and 9 were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay,microscopic analysis,Western blotting,and reverse transcription polymerase chain reaction(RT-PCR).The final EuO leaf ethanol extract powder was detected to contain caffeotannic acid at 58 mg/g and geniposide at 3.45 mg/g by high performance liquid chromatography(HPLC).EuO remarkably restrained cell oxidative damage and increased cell survival rate in a dose-dependent manner: 0 μg/ml,0.21; 6.25 μg/ml,0.28; 12.5 μg/ml,0.31; 25 μg/ml,0.48; 50 μg/ml,0.54; and 100 μg/ml,0.66(P<0.05),with the half-effective concentration being around25 μg/ml.MTT results were confirmed by microscopic analysis.Western blotting and RT-PCR analyses showed that the expressions of caspases 3,6,7,and 9 were significantly decreased in the EuO-treated cells compared with the control(EuO-and H2O2-free)(P<0.05),with the half-effective concentration of EuO ranging from 12.5 to 25 μg/ml.We conclude that the ethanol-extracted EuO leaf extracts promoted the growth of MC3T3-E1 cells,and suppressed the H2O2-induced apoptosis in a rat MC3T3-E1 osteogenic cell model,likely due to the inhibition of caspases' activities.The results indicate that EuO is a potent antioxidant,which may contribute to its many cellular protective functions,including the promotion of bone growth.

  2. Hinokitiol-Loaded Mesoporous Calcium Silicate Nanoparticles Induce Apoptotic Cell Death through Regulation of the Function of MDR1 in Lung Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Fang Shen

    2016-04-01

    Full Text Available Hinokitiol is a tropolone-related compound found in heartwood cupressaceous plants. Hinokitiol slows the growth of a variety of cancers through inhibition of cell proliferation. The low water solubility of hinokitiol leads to less bioavailability. This has been highlighted as a major limiting factor. In this study, mesoporous calcium silicate (MCS nanoparticles, both pure and hinokitiol-loaded, were synthesized and their effects on A549 cells were analyzed. The results indicate that Hino-MCS nanoparticles induce apoptosis in higher concentration loads (>12.5 μg/mL for A549 cells. Hino-MCS nanoparticles suppress gene and protein expression levels of multiple drug resistance protein 1 (MDR1. In addition, both the activity and the expression levels of caspase-3/-9 were measured in Hino-MCS nanoparticle-treated A549 cells. The Hino-MCS nanoparticles-triggered apoptosis was blocked by inhibitors of pan-caspase, caspase-3/-9, and antioxidant agents (N-acetylcysteine; NAC. The Hino-MCS nanoparticles enhance reactive oxygen species production and the protein expression levels of caspase-3/-9. Our data suggest that Hino-MCS nanoparticles trigger an intrinsic apoptotic pathway through regulating the function of MDR1 and the production of reactive oxygen species in A549 cells. Therefore, we believe that Hino-MCS nanoparticles may be efficacious in the treatment of drug-resistant human lung cancer in the future.

  3. THE EUROPEAN MODEL OF STATE REGULATION OF TOURISM ACTIVITIES

    OpenAIRE

    О. Davydova

    2013-01-01

    In the article the existing model of state regulation of the development of tourism. Expediency of the European model of state regulation of tourism development in Ukraine. It is noted that the European model of state regulation of tourism activities based on the coordination of marketing activities and the development of cooperation between the public and private sectors. The basic forms of public-private partnerships and the advantages of using cluster model of development of tourism, namel...

  4. 50 CFR 404.7 - Regulated activities.

    Science.gov (United States)

    2010-10-01

    ... vessel engine cooling water, weather deck runoff, and vessel engine exhaust; (f) Discharging or... effluent, cooling water, and engine exhaust; (g) Touching coral, living or dead; (h) Possessing fishing... Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF...

  5. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chih-Yeu Fang

    2015-01-01

    Full Text Available (−-Epigallocatechin-3-gallate (EGCG, a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC, yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC.

  6. Aging, Physical Activity, and Energy Intake Regulation

    OpenAIRE

    Van Walleghen, Emily Lynn

    2006-01-01

    More than seventy percent of Americans over the age of sixty are classified as overweight or obese, and the future incidence of these conditions is expected to rise. Although it is unclear why older adults are predisposed to weight gain, decreased total energy expenditure may contribute to positive energy balance. It is also possible that age-related impairments in energy intake regulation result in the inability to appropriately adjust food intake to meet energy requirements with advancing a...

  7. Active Power Regulation based on Droop for AC Microgrid

    DEFF Research Database (Denmark)

    Li, Chendan; Coelho, Ernane A. A.; Firoozabadi, Mehdi Savaghebi;

    2015-01-01

    In this paper, two different control strategies are proposed to address the active power regulation issue in AC microgrids. The principle of power regulation in the droop controller is firstly introduced. Frequency scheduling and droop gain scheduling on top of droop control is proposed to succes......In this paper, two different control strategies are proposed to address the active power regulation issue in AC microgrids. The principle of power regulation in the droop controller is firstly introduced. Frequency scheduling and droop gain scheduling on top of droop control is proposed...

  8. Modern aspects of tax regulation of investment activity

    Directory of Open Access Journals (Sweden)

    E.S. Podakov

    2016-03-01

    Full Text Available The article investigates the tax regulation of investment activity in modern conditions. Scientists studied different views about the impact of tax regulations on the investment activity in the country. The author determines that the tax regulation of investment activity involves the use of state mechanisms taxation of certain measures to improve investment conditions. The subject is the state tax regulations, and the object is the investment activity of individual and institutional investors of any form of ownership including organizational and legal forms. Such regulation is performed by using complex special tools. The possible methods of tax stimulation of investment processes are described. The article deals with the current results of tax reform in Ukraine and predicts its possible consequences for agricultural producers. The rating positions of Ukraine according to international organizations are showed. The systematic analysis has been carried out and the impact of differential tax rates, tax exemption for a specified period, reducing the tax base, elimination of double taxation on investment activity in certain areas have been researched. The special instruments of investment activity tax regulation are considered. The options for improving investment activity by introducing effective tax regulation are determined.

  9. Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Mathieu Pernice

    Full Text Available BACKGROUND: Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts. METHODOLOGY/PRINCIPAL FINDINGS: The PRESENT study reports the impacts of different stressors (colchicine and heat stress on three phases of apoptosis: (i the potential initiation by differential expression of Bcl-2 members, (ii the execution of apoptotic events by activation of caspase 3-like proteases and (iii and finally, the cell disposal indicated by DNA fragmentation in the reef building coral Acropora millepora. In corals incubated with colchicine, an increase in caspase 3-like activity and DNA fragmentation was associated with a relative down-regulation of Bcl-2, suggesting that the initiation of apoptosis may be mediated by the suppression of an anti-apoptotic mechanism. In contrast, in the early steps of heat stress, the induction of caspase-dependent apoptosis was related to a relative up-regulation of Bcl-2 consecutively followed by a delayed decrease in apoptosis activity. CONCLUSIONS/SIGNIFICANCE: In the light of these results, we propose a model of heat stress in coral hosts whereby increasing temperatures engage activation of caspase 3-dependent apoptosis in cells designated for termination, but also the onset of a delayed protective response involving overexpression of Bcl-2 in surviving cells. This mitigating response to thermal stress could conceivably be an important regulatory mechanism for cell survival in

  10. Activity Dependent Regulation of Inhibitory Circuitry

    OpenAIRE

    Sharma, Nikhil

    2015-01-01

    Inhibition controls information flow through a neural circuit by modulating synaptic integration, restricting action potentials, and coordinating the activity of ensembles of neurons. These functions are mediated by a diverse array of inhibitory neuron subtypes that synapse on defined domains of a postsynaptic neuron. Activity-dependent transcription controls inhibitory synapse number and function, but how this transcription program affects the inhibitory inputs that form on di...

  11. Commission for energy regulation - 2012 Activity Report

    International Nuclear Information System (INIS)

    After a presentation of the organisation, role and missions of the French Commission for Energy Regulation (CRE), and of its relationship with other institutional actors, this report describes and comments the action of the CRE in the fields of dialogue and transparency. It presents and comments key figures regarding the electricity and gas retail markets. It reports and comments the European reaction to the cold peak of February 2012 (historical peak for consumption and prices, inquiry on the causes of these price peaks, need of a European market). The next part addresses the relationship between electricity grids and territories (solidarity between electricity grids as the basis of the Europe of energy, evolution of French grids to face new needs and to take regional and local dimensions into account). Another part addresses gas infrastructures which are considered as the cornerstone of a good operation for the French market and for the integration of the European energy market (gas world market in 2012, definition of a target model for the gas market by European regulators, evolution of the French market in compliance with the European target model, new tariffs for the use of natural gas transport networks). The report then addresses the development of renewable energies: actions of CRE (bidding, opinion of tariffs), influence of renewable energy development on electricity prices on gross markets, needed evolution of electricity grids. A last part addresses the issues of energy cost, demand management, and struggle against energy poverty

  12. Effect of Buspirone, Fluoxetine and 8-OH-DPAT on Striatal Expression of Bax, Caspase-3 and Bcl-2 Proteins in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rats

    OpenAIRE

    Hamdollah Sharifi; Alireza Nayebi; Safar Farajnia; Rasool Haddadi

    2015-01-01

    Purpose: The exact pathogenesis of sporadic parkinson’s disease (PD) is still unclear. Numerous evidences suggest involvement of apoptosis in the death of dopaminergic neurons. In this study we investigated the effect of sub-chronic administration of buspirone, fluoxetine and 8-hydroxy-2-[di-n-propylamino]tetralin (8-OH-DPAT) in 6-hydroxydopamine (6-OHDA)-lesioned rats and assayed striatal concentrations of apoptotic (Bax, Caspase3) and anti-apoptotic (Bcl-2) proteins. M...

  13. 发育性髋脱位早期髋臼软骨细胞凋亡与Caspase-3、Bcl-2表达的相关性研究

    Institute of Scientific and Technical Information of China (English)

    丁良甲; 王炳海; 刘莹丽; 韦宜山

    2014-01-01

    Objective To investigate the corelation of the apoptosis and the expression of Caspase-3 and Bcl-2 of the acetabulum chondrocytes in the early stage of development dislocation of the hip. Methods Thirty two rabbits of 4 weeks old with no restriction on the gender were used in the experiment.The hip was flexured and the left back knee was extended and then fixed with a plaster cast as DDH model group and the right side without fixation as the control group. The apoptosis was detected by TUNEL,and the expression of Caspase-3,Bcl-2 was determined by immunohistochemistry in the acetabulum chondrocytes of 24 successful models. The correlation of apoptosis and the expression of Caspase-3,Bcl-2 was analyzed by the Spearman rank correlation. Results TUNEL Results showed that the apoptosis rate of acetabulum chondrocytes in DDH model group(45.23±10.42)was higher than that in the control group(8.04±4.35,P<0.050)before 8 weeks. However,after 8 weeks the apoptosis in DDH model group did not change obviously. Immunohistochemical results showed that the expression of caspase-3 and bcl-2 in DDH model group was higher than it in the control group(56.73±7.85vs61.45±5.47 and 56.73±7.85 vs. 52.32±7.99,respectively;P<0.05). The caspase-3 expression and the apoptosis rate in acetabulum chondrocytes was negatively correlated(r=-0.896,P<0.05),while bcl-2 expression and the apoptosis rate was positively correlated(r=-0.896,P<0.05). Conclusion Caspase-3 and bcl-2 may play a role in acetabulum dysplasia and cartilage degeneration.%目的:探讨发育性髋关节脱位(development dislocation of the hip,DDH)早期髋臼软骨细胞凋亡与Caspase-3、Bcl-2表达的相关性。方法选取32只4周龄新西兰大白兔,采用兔后肢屈髋伸膝位管型石膏固定制作DDH动物模型。对24只成功模型兔采用TUNEL法检测髋臼软骨细胞凋亡情况;免疫组化法检测软骨细胞中Caspase-3和Bcl-2的表达。Spearman等级相关分析法进行细胞凋亡与Caspase

  14. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  15. Physical Activity and Self-Regulation Strategy Use in Adolescents

    Science.gov (United States)

    Matthews, James; Moran, Aidan

    2011-01-01

    Objective: To examine the degree to which the use of selected theoretically derived self-regulation strategies (eg, goal setting) could predict adolescents' self-reported leisure-time physical activity behavior. Method: Two hundred thirty-three (M age = 15.88) high school students completed measures assessing their self-regulation strategy use and…

  16. Regulation of nuclear activities in Canada

    International Nuclear Information System (INIS)

    This review was initiated by the OECD Nuclear Energy Agency for its series of analytical studies on nuclear legislation. It looks at the historic background and general overview of the use and handling of nuclear energy; the governmental framework controlling nuclear activities; and the agencies involved in its research and industrial applications. The regulatory power and structure of the Atomic Energy Control Board are highlighted

  17. Hormonal Regulation of Hepatic Drug Metabolizing Enzyme Activity During Adolescence

    OpenAIRE

    Kennedy, M J

    2008-01-01

    Activities of drug metabolizing enzymes (DME) are known to change throughout the course of physical and sexual maturation with the greatest variability noted during infancy and adolescence. The mechanisms responsible for developmental regulation of DME are currently unknown. However, the hormonal changes of puberty/adolescence provide a theoretical framework for understanding biochemical regulation of DME activity during growth and maturation. Important information regarding potential influen...

  18. MicroRNA-124 and -137 cooperativity controls caspase-3 activity through BCL2L13 in hippocampal neural stem cells

    NARCIS (Netherlands)

    M. Schouten; S.A. Fratantoni; C.J. Hubens; S.R. Piersma; T.V. Pham; P. Bielefeld; R.A. Voskuyl; P.J. Lucassen; C.R. Jimenez; C.P. Fitzsimons

    2015-01-01

    Adult neurogenesis continuously contributes new neurons to hippocampal circuits and the programmed death of a subset of immature cells provides a primary mechanism controlling this contribution. Epileptic seizures induce strong structural changes in the hippocampus, including the induction of adult

  19. Fucose-Containing Sulfated Polysaccharides from Brown Seaweeds Inhibit Proliferation of Melanoma Cells and Induce Apoptosis by Activation of Caspase-3 in Vitro

    DEFF Research Database (Denmark)

    Ale, Marcel Tutor; Maruyama, Hiroko; Tamauchi, Hidekazu;

    2011-01-01

    Fucose-containing sulfated polysaccharides (FCSPs) extracted from seaweeds, especially brown macro-algae, are known to possess essential bioactive properties, notably growth inhibitory effects on tumor cells. In this work, we conducted a series of in vitro studies to examine the influence of FCSPs...

  20. Saponin-rich fraction from Clematis chinensis Osbeck roots protects rabbit chondrocytes against nitric oxide-induced apoptosis via preventing mitochondria impairment and caspase-3 activation

    OpenAIRE

    Wu, Wenjun; Gao, Xinghua; Xu, Xianxiang; Luo, Yubin; Liu, Mei; Xia, Yufeng; Dai, Yue

    2012-01-01

    Our previous study reported that the saponin-rich fraction from Clematis chinensis Osbeck roots (SFC) could effectively alleviate experimental osteoarthritis induced by monosodium iodoacetate in rats through protecting articular cartilage and inhibiting local inflammation. The present study was performed to investigate the preventive effects of SFC on articular chondrocyte, and explore the underlying mechanisms. Primary rabbit chondrocytes were cultured and exposed to sodium nitroprusside (SN...

  1. caspase-3激活在庆大霉素所致耳蜗螺旋神经元延迟性死亡过程中的作用

    Institute of Scientific and Technical Information of China (English)

    王苹; 杜波; 丁大连; 杜宝东; Salvi RJ

    2007-01-01

    目的 观察毛细胞丢失后耳蜗神经元延迟性死亡模式以及caspase-3的活动.方法 采用3 mol的庆大霉素作用离体培养的耳蜗24 h,损毁全部毛细胞,分别在毛细胞丢失后1、3、5、7和14 d收获样本.采用Neurofilament 200KDa标记耳蜗神经元,TRITC-labeled phalloidin标记毛细胞,免疫荧光染色观察神经元和毛细胞的存活数量,采用Western Blot的方法检测caspase-3特异降解产物α-spectrin,间接确定caspase-3活动.结果 3 mol庆大霉素作用于培养的耳蜗24 h,耳蜗毛细胞几乎全部消失.螺旋神经元和神经纤维的数目随培养时间的延长而减少,神经元存活从第1天的87%降至第14天的5%.神经元变小且形状不规则,在神经纤维上出现实质小体.检测caspse-3激活的特异降解带-120 KDa的灰度值,发现在毛细胞丢失后24 h,caspase-3活性明显高于毛细胞丢失的初时(P<0.01).结论 毛细胞丢失引起螺旋神经元死亡具有时间依赖效应,神经元出现凋亡的形态学特征,并且有caspase-3的活动.

  2. 阿托伐他汀对大鼠脑缺血再灌注PERK/elfR2a通路及Caspase-3表达的影响

    Institute of Scientific and Technical Information of China (English)

    彭文娟; 杨剑文; 刘湘玉; 杨期明

    2016-01-01

    目的研究蛋白激酶R样内质网激酶(PERK)/e IFR2a通路及Caspase-3在大鼠脑缺血再灌注损伤中的作用机制及阿托伐他汀对其的影响。方法采用大脑中动脉线栓塞法制作大鼠脑缺血再灌注模型;随机分为缺血再灌注组、假手术组、阿托伐他汀组、阿托伐他汀+Salubrinal抑制剂组,大体标本采用TTC染色,釆用Western-blot法检测PERK、Caspase-3蛋白表达及e IF2a蛋白磷酸化。结果与假手术组相比,大鼠缺血再灌注后PERK蛋白表达及e IF2a的磷酸化增加,Caspase-3表达的活性增强(P〈0.01);阿托伐他汀干预可以减轻PERK蛋白表达及e IF2a蛋白磷酸化(P〈0.05)。给予特异性e IF2a磷酸化抑制剂Salubrinal后可抑制e IF2a的磷酸化及Caspase-3表达的活性(P〈0.05),对PERK蛋白表达无影响。形态学上从TTC染色提示:在缺血再灌注组TTC染色可见大片脑梗死组织。Salubrinal抑制剂及阿托伐他汀干预后脑梗死体积明显缩小(P〈0.05)。结论内质网应激通过PERK/e IF2a/Caspase-3途径促进细胞凋亡,阿托伐他汀干预可以减轻脑缺血再灌注损伤。

  3. A Small Group Activity About Bacterial Regulation And Complementation

    Directory of Open Access Journals (Sweden)

    Susan M. Merkel

    2010-11-01

    Full Text Available As teachers, we well understand the need for activities that help develop critical-thinking skills in microbiology. In our experience, one concept that students have difficulty understanding is transcriptional regulation of bacterial genes. To help with this, we developed and evaluated a paper-based activity to help students understand and apply the concepts of bacterial transcriptional regulation. While we don't identify it as such, we use a complementation experiment to assess student understanding of how regulation changes when new DNA is introduced. In Part 1 of this activity, students complete an open book, take-home assignment that asks them to define common terminology related to regulation, and draw the regulatory components of different scenarios involving positive and negative regulation. In Part 2, students work in small groups of 3-4 to depict the regulatory components for a different scenario. They are asked to explain the results of a complementation experiment based on this scenario. They then predict the results of a slightly different experiment. Students who completed the Regulation Activity did significantly better on post-test questions related to regulation, compared to pre-test questions.

  4. Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster.

    Science.gov (United States)

    Mishra, Abhinava K; Sachan, Nalani; Mutsuddi, Mousumi; Mukherjee, Ashim

    2015-11-15

    Notch signaling pathway represents a principal cellular communication system that plays a pivotal role during development of metazoans. Drosophila misshapen (msn) encodes a protein kinase, which is related to the budding yeast Ste20p (sterile 20 protein) kinase. In a genetic screen, using candidate gene approach to identify novel kinases involved in Notch signaling, we identified msn as a novel regulator of Notch signaling. Data presented here suggest that overexpression of kinase active form of Msn exhibits phenotypes similar to Notch loss-of-function condition and msn genetically interacts with components of Notch signaling pathway. Kinase active form of Msn associates with Notch receptor and regulate its signaling activity. We further show that kinase active Misshapen leads to accumulation of membrane-tethered form of Notch. Moreover, activated Msn also depletes Armadillo and DE-Cadherin from adherens junctions. Thus, this study provides a yet unknown mode of regulation of Notch signaling by Misshapen. PMID:26431585

  5. Regulation of Activation Induced Deaminase (AID) by Estrogen.

    Science.gov (United States)

    Pauklin, Siim

    2016-01-01

    Regulation of Activation Induced Deaminase (AID) by the hormone estrogen has important implications for understanding adaptive immune responses as well as the involvement of AID in autoimmune diseases and tumorigenesis. This chapter describes the general laboratory techniques for analyzing AID expression and activity induced by estrogen, focusing on the isolation and preparation of cells for hormone treatment and the subsequent analysis of AID responsiveness to estrogen at the RNA level and for determining the regulation of AID activity via estrogen by analyzing Ig switch circle transcripts and mutations in switch region loci.

  6. Absence of canonical active chromatin marks in developmentally regulated genes

    Science.gov (United States)

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  7. Developmental regulation of aromatase activity in the rat hypothalamus

    Energy Technology Data Exchange (ETDEWEB)

    Lephart, E.D.

    1989-01-01

    The brain of all mammalian species studied thus far contain an enzymatic activity (aromatase) that catalyzes the conversion of androgens to estrogens. The activity is highest during prenatal development and contributes to the establishment of sex differences which determine adult gonadotropin secretion patterns and reproductive behavior. The studies presented in this dissertation represent a systematic effort to elucidate the mechanism(s) that control the initiation of and contribute to maintaining rat hypothalamic aromatase activity during pre- and postnatal development. Aromatase enzyme activity was measured by the {sup 3}H{sub 2}O release assay or by traditional estrogen product isolation. Brain aromatase mRNA was detected by hybridization to a cDNA encoding rat aromatase cytochrome P-450. In both males and females the time of puberty was associated with a decline in hypothalamic aromatase activity. This decline may represent a factor underlying the peri-pubertal decrease in the sensitivity to gonadal steroid feedback that accompanies completion of puberty. The results also indicate that androgens regulate brain aromatase levels during both the prepubertal and peri-pubertal stages of sexual development and that this regulation is transiently lost in young adults. Utilizing a hypothalamic organotypic culture system, aromatase activity in vitro was maintained for as long as two days. The results of studies of a variety of hormonal and metabolic regulators suggest that prenatal aromatase activity is regulated by factor(s) that function independently from the classical cyclic AMP and protein kinase C trans-membrane signaling pathways.

  8. Post-translational regulation of Oct4 transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Jonathan P Saxe

    Full Text Available Oct4 is a key component of the molecular circuitry which regulates embryonic stem cell proliferation and differentiation. It is essential for maintenance of undifferentiated, pluripotent cell populations, and accomplishes these tasks by binding DNA in multiple heterodimer and homodimer configurations. Very little is known about how formation of these complexes is regulated, or the mechanisms through which Oct4 proteins respond to complex extracellular stimuli which regulate pluripotency. Here, we provide evidence for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations. Point mutations of a putative phosphorylation site can specifically abrogate transcriptional activity of a specific homodimer assembly, with little effect on other configurations. Moreover, we performed bioinformatic predictions to identify a subset of Oct4 target genes which may be regulated by this specific assembly, and show that altering Oct4 protein levels affects transcription of Oct4 target genes which are regulated by this assembly but not others. Finally, we identified several signaling pathways which may mediate this phosphorylation and act in combination to regulate Oct4 transcriptional activity and protein stability. These results provide a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals.

  9. Pretreatment of rats with increased bioavailable berberine attenuates cerebral ischemia-reperfusion injury via down regulation of adenosine-5'monophosphate kinase activity.

    Science.gov (United States)

    Chen, Weijia; Wei, Shengnan; Yu, Yang; Xue, Huan; Yao, Fan; Zhang, Ming; Xiao, Jun; Hatch, Grant M; Chen, Li

    2016-05-15

    Berberine (BBR) exhibits multiple beneficial biological effects. However, poor bioavailability of BBR has limited its clinical application. We previously demonstrated that solid dispersion of BBR with sodium caprate (HGSD) remarkably improves its bioavailability. We examined whether this increased bioavailability of BBR could protect the brain from ischemia-reperfusion (IR) induced injury. Rats treated with HGSD, SC and saline for 7 days then subjected to cerebral ischemia reperfusion by middle cerebral artery occlusion for 2h followed 12h reperfusion. Neurological deficit scores, infarct size, SOD, MDA and NO levels were examined. P-AMPK, Bax, cleaved-Caspase-3 in brain was determined. To further probe for the mechanism of beneficial effect of HGSD, PC12 cells were incubated with serum from control or HGSD pretreated animals, incubated with 300μM H2O2 to induce apoptosis. Caspase-3 activity and cell apoptosis was evaluated. HGSD pretreatment significantly attenuated neurological deficit scores, reduced infarct size, increased SOD and decreased MDA and NO after cerebral IR injury compared to controls. Meanwhile, HGSD pretreatment significantly reduced expression of p-AMPK, Bax, cleaved-Caspase-3 after cerebral IR injury. Sodium caprate (100mg/kg/d) pretreatment alone did not exhibit any of these beneficial effects. PC12 cell apoptosis was attenuated when cells were cultured with HGSD serum compared to control. The presence of AMPK activator (AICAR) attenuated whereas AMPK inhibitor (Compound C) augmented the protective effect of HGSD serum on PC12 cell apoptosis.The results indicate that HGSD-pretreatment of rats protects the brain from ischemia-reperfusion injury and the mechanism is due to its anti-apoptotic effect mediated by decreased activation of AMPK. PMID:26957053

  10. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    Sergiy; Kostenko; Gianina; Dumitriu; Kari; Jenssen; Lgreid; Ugo; Moens

    2011-01-01

    Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.

  11. Human neuronal apoptosis secondary to traumatic brain injury and the regulative role of apoptosis-related genes

    Institute of Scientific and Technical Information of China (English)

    杨树源; 雪亮

    2004-01-01

    Objective: To observe human neuronal apoptosis secondary to traumatic brain injury, and to elucidate its regulative mechanism and the change of expression of apoptosis-related genes.Methods: Specimens of brain were collected from cases of traumatic brain injury in humans. The histological and cellular morphology was examined by light and electron microscopy. The extent of DNA injury to cortical neurons was detected by using TUNEL. By in situ hybridisation and immunohistochemistry the mRNA changes and protein expression of Bcl-2, Bax, p53, and caspase 3 p20 subunit were observed.Results: Apoptotic neurons appeared following traumatic brain injury, peaked at 24 hours and lasted for 7 days. In normal brain tissue activated caspase 3 was rare,but a short time after trauma it became activated. The activity peaked at 20-28 hours and remained higher than normal for 5-7 days. There was no expression of Bcl-2 mRNA and Bcl-2 protein in normal brain tissue but 8 hours after injury their expression became evident and then increased, peaked at 2-3 days and remained higher than normal for 5-7 days. The primary expression of Bax-mRNA and Bax protein was high in normal brain tissue. At 20-28 hours they increased and remained high for 2-3 days; on the 7th days they returned to a normal level. In normal brain tissue, p53mRNA and P53 were minimally expressed.Increased expression was detected at the 8th hour, and decreased at 20-28 hours but still remained higher than normal on the 5th day.Conclusions: Following traumatic injury to the human brain, apoptotic neurons appear around the focus of trauma. The mRNA and protein expression of Bcl-2, Bax and p53 and the activity of caspase 3 enzyme are increased.

  12. The downregulation of thioredoxin accelerated Neuro2a cell apoptosis induced by advanced glycation end product via activating several pathways.

    Science.gov (United States)

    Ren, Xiang; Ma, Haiying; Qiu, Yuanyuan; Liu, Bo; Qi, Hui; Li, Zeyu; Kong, Hui; Kong, Li

    2015-08-01

    Thioredoxin (Trx), a 12 kDa protein, has different functions in different cellular environments, playing important anti-oxidative and anti-apoptotic roles and regulating the expression of transcription factors. Advanced glycation end products (AGEs) are a heterogeneous group of irreversible adducts from glucose-protein condensation reactions and are considered crucial to the development of diabetic nephropathy, retinopathy, neurodegeneration and atherosclerosis. The aim of this study was to use a Trx inhibitor to investigate the effects and mechanism of Trx down-regulation on AGE-induced Neuro2a cell apoptosis. Neuro2a cells were cultured in vitro and treated with different conditions. The apoptosis and proliferation of Neuro2a cells were detected using flow cytometry, DNA-Ladder and CCK8 assays. Rho 123 was used to detect the mitochondrial membrane potential. ROS generation and caspase3 activity were detected using a DCFH-DA probe and micro-plate reader. Western blotting and real-time PCR were used to detect the expression of proteins and genes. We found that the down-regulation of thioredoxin could accelerate AGE-induced apoptosis in Neuro2a cells. A possible underlying mechanism is that the down-regulation of thioredoxin stimulated the up-regulation of ASK1, p-JNK, PTEN, and Txnip, as well as the down-regulation of p-AKT, ultimately increasing ROS levels and caspase3 activity.

  13. The downregulation of thioredoxin accelerated Neuro2a cell apoptosis induced by advanced glycation end product via activating several pathways.

    Science.gov (United States)

    Ren, Xiang; Ma, Haiying; Qiu, Yuanyuan; Liu, Bo; Qi, Hui; Li, Zeyu; Kong, Hui; Kong, Li

    2015-08-01

    Thioredoxin (Trx), a 12 kDa protein, has different functions in different cellular environments, playing important anti-oxidative and anti-apoptotic roles and regulating the expression of transcription factors. Advanced glycation end products (AGEs) are a heterogeneous group of irreversible adducts from glucose-protein condensation reactions and are considered crucial to the development of diabetic nephropathy, retinopathy, neurodegeneration and atherosclerosis. The aim of this study was to use a Trx inhibitor to investigate the effects and mechanism of Trx down-regulation on AGE-induced Neuro2a cell apoptosis. Neuro2a cells were cultured in vitro and treated with different conditions. The apoptosis and proliferation of Neuro2a cells were detected using flow cytometry, DNA-Ladder and CCK8 assays. Rho 123 was used to detect the mitochondrial membrane potential. ROS generation and caspase3 activity were detected using a DCFH-DA probe and micro-plate reader. Western blotting and real-time PCR were used to detect the expression of proteins and genes. We found that the down-regulation of thioredoxin could accelerate AGE-induced apoptosis in Neuro2a cells. A possible underlying mechanism is that the down-regulation of thioredoxin stimulated the up-regulation of ASK1, p-JNK, PTEN, and Txnip, as well as the down-regulation of p-AKT, ultimately increasing ROS levels and caspase3 activity. PMID:26142569

  14. Antitumor Activities and Apoptosis-regulated Mechanisms of Fermented Wheat Germ Extract in the Transplantation Tumor Model of Human HT-29 Cells in Nude Mice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia Yan; XIAO Xiang; DONG Ying; WU Jing; ZHOU Xing Hua

    2015-01-01

    Objective A subcutaneous transplantation tumor model of human HT-29 cells in nude mice was established to evaluate anticarcinogenic activities, and the apoptosis-regulated mechanism effect of aqueous extract of fermented wheat germ with Lactobacillus plantarum dy-1 (LFWGE). Methods The HT-29 cells were transplanted via subcutaneous injection of 1×107 cells into the right flank of each nude mouse. Then, nude mice were treated for 30 d with LFWGE (high-dose 2 g/kg/d;low-dose 1 g/kg/d) and for 7 d with 5-fluorouracil (5-FU, 25 mg/kg/d) by gavage and intraperitoneal injection, respectively. An inhibition of tumor growth was observed. Results Tumor volume and weights decreased significantly in both groups of nude mice treated with LFWGE. In addition, the cell apoptosis rate of the LFWGE group (2 g/kg/d, 60.1%±4.4%; 1 g/kg/d, 58.6%±6.9%) was significantly higher than that of the control group (11.5%±1.6%) and 5-FU group (32.1%±3.5%) as measured by the TUNEL assay. Moreover, the real-time fluorescent quantitative PCR and Western blot method further confirmed these enhancing apoptosis and growth inhibition effects. The involvement of LFWGE in inducing apoptosis was confirmed by the expression of Bax, Bcl-2, Caspase-3, and CyclinD1. Conclusion The results showed that LFWGE could induce subcutaneous transplantation tumor apoptosis in nude mice and could be as a natural nutrient supplements or chemopreventive agent in the treatment of human colon cancer.

  15. Effects of L-3-n-butylphthalide on caspase-3 and nuclear factor kappa-B expression in primary basal forebrain and hippocampal cultures after beta-amyloid peptide 1-42 treatment

    Institute of Scientific and Technical Information of China (English)

    Ruixia Wang; Yong Zhang; Liangliang Jiang; Guozhao Ma; Qingxi Fu; Jialong Li; Peng Yan; Lunqian Shen; Yabo Feng; Chunxia Li; Zaiying Pang; Yuanxiao Cui; Chunfu Chen; Yifeng Du; Zhaokong Liu

    2009-01-01

    BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42).OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF-кB) expression in a rat model of Alzheimer's disease.DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008.MATERIALS: L-NBP (purity>98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2μmol/L), the Aβ1-42+0.1μmol/L L-NBP group, the Aβ1-42+1 μmol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10μmol/L) for 48 hours. Cells in the control group were incubated in PBS.MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, Western blot.RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased the high dose (P<0.05).CONCLUSION: Aβ1-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF-κB expression.

  16. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity

    Directory of Open Access Journals (Sweden)

    Lama Tarayrah

    2015-11-01

    Full Text Available Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid maintains germline stem cell (GSC mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities.

  17. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Jun-Ha Hwang

    Full Text Available Mesenchymal stem cell (MSC differentiation is regulated by the extracellular matrix (ECM through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ was identified as an effector protein for MSC differentiation. However, the detailed underlying mechanism regarding the role of ECM stiffness and TAZ in MSC differentiation is not yet fully understood. In this report, we showed that ECM stiffness regulates MSC fate through ERK or JNK activation. Specifically, a stiff hydrogel matrix stimulates osteogenic differentiation concomitant with increased nuclear localization of TAZ, but inhibits adipogenic differentiation. ERK and JNK activity was significantly increased in cells cultured on a stiff hydrogel. TAZ activation was induced by ERK or JNK activation on a stiff hydrogel because exposure to an ERK or JNK inhibitor significantly decreased the nuclear localization of TAZ, indicating that ECM stiffness-induced ERK or JNK activation is important for TAZ-driven osteogenic differentiation. Taken together, these results suggest that ECM stiffness regulates MSC differentiation through ERK or JNK activation.

  18. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation.

    Science.gov (United States)

    Hwang, Jun-Ha; Byun, Mi Ran; Kim, A Rum; Kim, Kyung Min; Cho, Hang Jun; Lee, Yo Han; Kim, Juwon; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2015-01-01

    Mesenchymal stem cell (MSC) differentiation is regulated by the extracellular matrix (ECM) through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ) was identified as an effector protein for MSC differentiation. However, the detailed underlying mechanism regarding the role of ECM stiffness and TAZ in MSC differentiation is not yet fully understood. In this report, we showed that ECM stiffness regulates MSC fate through ERK or JNK activation. Specifically, a stiff hydrogel matrix stimulates osteogenic differentiation concomitant with increased nuclear localization of TAZ, but inhibits adipogenic differentiation. ERK and JNK activity was significantly increased in cells cultured on a stiff hydrogel. TAZ activation was induced by ERK or JNK activation on a stiff hydrogel because exposure to an ERK or JNK inhibitor significantly decreased the nuclear localization of TAZ, indicating that ECM stiffness-induced ERK or JNK activation is important for TAZ-driven osteogenic differentiation. Taken together, these results suggest that ECM stiffness regulates MSC differentiation through ERK or JNK activation.

  19. Energy Regulation Commission. Activity report. 1 July - 31 December 2008

    International Nuclear Information System (INIS)

    After a description of the scope of activities, organisation and operation of the CRE (Commission de Regulation de l'Energie, Energy regulation commission) and of the CorDIS (Comite de reglement des differents et des sanctions de la CRE, CRE's Committee for settlements of controversies and sanctions), this report outlines the importance of the grid manager independence and of the regulation reinforcement for the building up of a domestic energy market. It discusses the role of the regulation authority in the interconnection of European grids, their operation security and supply security, but also in pricing and in investments. It highlights the relationship between the reduction of carbon emission, energy demand management, strengthening of electric grids, financial incentives, and advanced metering systems. It describes how the CRE ensures a good operation of electricity and natural gas markets

  20. RhoA/ROCK pathway regulates hypoxia-induced myocardial cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yi Huang; Jiang-bin Chen; Bo Yang; Hui Shen; Jin-Jun Liang; Qiong Luo

    2014-01-01

    Objective:To observe the regulatory effects of RhoA/ROCK pathway on the apoptosis of cardiac myocyte induced by anoxia and its mechanism. Methods:The model of cardiac myocyte anoxia was established. The beat pulsations and apoptosis rates after 1 h, 3 h, 6 h, 9 h and 12 h of anoxia were recorded and the expressions of RhoA, ROCK1/2, p-PI3K, p-AKT and caspae-3 were detected, too. The apoptosis and the expressions of related proteins were detected after RNAi of RhoA and the inhibition of ROCK by Y-27632. Results:The beat pulsations after 1 h, 3 h, 6 h, 9 h and 12 h decreased gradually but the apoptosis rates increased gradually, and the expressions of RhoA, ROCK1/2, p-PI3K, p-AKT and caspase-3 were increasing along with the increasing duration of anoxia. The apoptotic rates after 1 h, 3 h, 6 h, 9 h and 12 h of anoxia were (4.36±0.98)%, (8.36±2.12)%, (15.32±3.62)%, (18.68±4.83)%and (24.56±6.22)%, respectively and decreased more significantly than control group in different time points of anoxia (P<0.05), and the expressions of RhoA, ROCK1/2, p-PI3K, p-AKT and caspase-3 decreased significantly (P<0.05). The apoptosis rate and the expressions of RhoA, ROCK1/2, p-PI3K, p-AKT and caspase-3 decreased significantly (P<0.05) after the inhibition of ROCK by Y-27632 (P<0.05). Conclusions:RhoA/ROCK pathway plays a critical role in the regulation of the apoptosis of cardiac myocyte induced by anoxia, which may be accompanied by regulating the activity of PI3K/AKT/Caspase-3 pathway.

  1. EBNA3C-mediated regulation of aurora kinase B contributes to Epstein-Barr virus-induced B-cell proliferation through modulation of the activities of the retinoblastoma protein and apoptotic caspases.

    Science.gov (United States)

    Jha, Hem Chandra; Lu, Jie; Saha, Abhik; Cai, Qiliang; Banerjee, Shuvomoy; Prasad, Mahadesh A J; Robertson, Erle S

    2013-11-01

    Epstein-Barr virus (EBV) is an oncogenic gammaherpesvirus that is implicated in several human malignancies, including Burkitt's lymphoma (BL), posttransplant lymphoproliferative disease (PTLD), nasopharyngeal carcinoma (NPC), and AIDS-associated lymphomas. Epstein-Barr nuclear antigen 3C (EBNA3C), one of the essential EBV latent antigens, can induce mammalian cell cycle progression through its interaction with cell cycle regulators. Aurora kinase B (AK-B) is important for cell division, and deregulation of AK-B is associated with aneuploidy, incomplete mitotic exit, and cell death. Our present study shows that EBNA3C contributes to upregulation of AK-B transcript levels by enhancing the activity of its promoter. Further, EBNA3C also increased the stability of the AK-B protein, and the presence of EBNA3C leads to reduced ubiquitination of AK-B. Importantly, EBNA3C in association with wild-type AK-B but not with its kinase-dead mutant led to enhanced cell proliferation, and AK-B knockdown can induce nuclear blebbing and cell death. This phenomenon was rescued in the presence of EBNA3C. Knockdown of AK-B resulted in activation of caspase 3 and caspase 9, along with poly(ADP-ribose) polymerase 1 (PARP1) cleavage, which is known to be an important contributor to apoptotic signaling. Importantly, EBNA3C failed to stabilize the kinase-dead mutant of AK-B compared to wild-type AK-B, which suggests a role for the kinase domain in AK-B stabilization and downstream phosphorylation of the cell cycle regulator retinoblastoma protein (Rb). This study demonstrates the functional relevance of AK-B kinase activity in EBNA3C-regulated B-cell proliferation and apoptosis.

  2. THE EUROPEAN MODEL OF STATE REGULATION OF TOURISM ACTIVITIES

    Directory of Open Access Journals (Sweden)

    О. Davydova

    2013-11-01

    Full Text Available In the article the existing model of state regulation of the development of tourism. Expediency of the European model of state regulation of tourism development in Ukraine. It is noted that the European model of state regulation of tourism activities based on the coordination of marketing activities and the development of cooperation between the public and private sectors. The basic forms of public-private partnerships and the advantages of using cluster model of development of tourism, namely, contracts, production sharing agreement, lease, joint venture. Promising areas of application of the PPP identified the transport sector, housing and utilities, energy and tourism sector. The features of cluster formations in the country and the prospects for tourism clusters.

  3. The Immune System as a Regulator of Thyroid Hormone Activity

    OpenAIRE

    Klein, John R.

    2006-01-01

    It has been known for decades that the neuroendocrine system can both directly and indirectly influence the developmental and functional activity of the immune system. In contrast, far less is known about the extent to which the immune system collaborates in the regulation of endocrine activity. This is particularly true for immune-endocrine interactions of the hypothalamus-pituitary-thyroid axis. Although thyroid stimulating hormone (TSH) can be produced by many types of extra-pituitary cell...

  4. Neural progenitor cells regulate microglia functions and activity.

    Science.gov (United States)

    Mosher, Kira I; Andres, Robert H; Fukuhara, Takeshi; Bieri, Gregor; Hasegawa-Moriyama, Maiko; He, Yingbo; Guzman, Raphael; Wyss-Coray, Tony

    2012-11-01

    We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.

  5. Regulation of eNOS Enzyme Activity by Posttranslational Modification

    OpenAIRE

    Heiss, Elke H.; Dirsch, Verena M.

    2014-01-01

    The regulation of endothelial NO synthase (eNOS) employs multiple different cellular control mechanisms impinging on level and activity of the enzyme. This review aims at summarizing the current knowledge on the posttranslational modifications of eNOS, including acylation, nitrosylation, phosphorylation, acetylation, glycosylation and glutathionylation. Sites, mediators and impact on enzyme localization and activity of the single modifications will be discussed. Moreover, interdependence, coo...

  6. Active Inference, homeostatic regulation and adaptive behavioural control

    OpenAIRE

    Pezzulo, G; Rigoli, F.; Friston, K.

    2015-01-01

    We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a...

  7. How is AMPK activity regulated in skeletal muscles during exercise?

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Rose, Adam John

    2008-01-01

    discuss the influence of reactive oxygen species produced within the muscle as well as muscle glycogen and TAK1 in regulating AMPK during exercise. Currently, during intensive contraction, activation of alpha2-AMPK seems mainly to rely on AMP accumulating from ATP-hydrolysis whereas calcium signaling may...

  8. Regulation of Enzyme Activity through Interactions with Nanoparticles

    OpenAIRE

    Bin Zhang; Bing Yan; Zhaochun Wu

    2009-01-01

    The structure and function of an enzyme can be altered by nanoparticles (NPs). The interaction between enzyme and NPs is governed by the key properties of NPs, such as structure, size, surface chemistry, charge and surface shape. Recent representative studies on the NP-enzyme interactions and the regulation of enzyme activity by NPs with different size, composition and surface modification are reviewed.

  9. 76 FR 28801 - Agency Information Collection Activities: Bonded Warehouse Regulations

    Science.gov (United States)

    2011-05-18

    ... Federal Register (76 FR 11254) on March 1, 2011, allowing for a 60-day comment period. This notice allows... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse... approval in accordance with the Paperwork Reduction Act: Bonded Warehouse Regulations. This is a...

  10. Signal integration by Ca2+ regulates intestinal stem cell activity

    Science.gov (United States)

    Deng, Hansong; Gerencser, Akos A.; Jasper, Heinrich

    2015-01-01

    Summary Somatic stem cells (SCs) maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here, we identify Ca2+ signaling as a central regulator of intestinal SC (ISC) activity in Drosophila. We find that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response and for an associated modulation of cytosolic Ca2+ oscillations that results in sustained high cytosolic Ca2+ concentrations. High cytosolic Ca2+ induces ISC proliferation by regulating Calcineurin and CREB - regulated transcriptional co-activator (CRTC). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca2+ oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca2+ levels allows effective integration of diverse mitogenic signals in ISCs to tailor their proliferative activity to the needs of the tissue. PMID:26633624

  11. Dietary and behavioral interventions protect against age related activation of caspase cascades in the canine brain.

    Directory of Open Access Journals (Sweden)

    Shikha Snigdha

    Full Text Available Lifestyle interventions such as diet, exercise, and cognitive training represent a quietly emerging revolution in the modern approach to counteracting age-related declines in brain health. Previous studies in our laboratory have shown that long-term dietary supplementation with antioxidants and mitochondrial cofactors (AOX or behavioral enrichment with social, cognitive, and exercise components (ENR, can effectively improve cognitive performance and reduce brain pathology of aged canines, including oxidative damage and Aβ accumulation. In this study, we build on and extend our previous findings by investigating if the interventions reduce caspase activation and ceramide accumulation in the aged frontal cortex, since caspase activation and ceramide accumulation are common convergence points for oxidative damage and Aβ, among other factors associated with the aged and AD brain. Aged beagles were placed into one of four treatment groups: CON--control environment/control diet, AOX--control environment/antioxidant diet, ENR--enriched environment/control diet, AOX/ENR--enriched environment/antioxidant diet for 2.8 years. Following behavioral testing, brains were removed and frontal cortices were analyzed to monitor levels of active caspase 3, active caspase 9 and their respective cleavage products such as tau and semaphorin7a, and ceramides. Our results show that levels of activated caspase-3 were reduced by ENR and AOX interventions with the largest reduction occurring with combined AOX/ENR group. Further, reductions in caspase-3 correlated with reduced errors in a reversal learning task, which depends on frontal cortex function. In addition, animals treated with an AOX arm showed reduced numbers of cells expressing active caspase 9 or its cleavage product semaphorin 7A, while ENR (but not AOX reduced ceramide levels. Overall, these data demonstrate that lifestyle interventions curtail activation of pro-degenerative pathways to improve cellular

  12. Dietary and behavioral interventions protect against age related activation of caspase cascades in the canine brain.

    Science.gov (United States)

    Snigdha, Shikha; Berchtold, Nicole; Astarita, Giuseppe; Saing, Tommy; Piomelli, Daniele; Cotman, Carl W

    2011-01-01

    Lifestyle interventions such as diet, exercise, and cognitive training represent a quietly emerging revolution in the modern approach to counteracting age-related declines in brain health. Previous studies in our laboratory have shown that long-term dietary supplementation with antioxidants and mitochondrial cofactors (AOX) or behavioral enrichment with social, cognitive, and exercise components (ENR), can effectively improve cognitive performance and reduce brain pathology of aged canines, including oxidative damage and Aβ accumulation. In this study, we build on and extend our previous findings by investigating if the interventions reduce caspase activation and ceramide accumulation in the aged frontal cortex, since caspase activation and ceramide accumulation are common convergence points for oxidative damage and Aβ, among other factors associated with the aged and AD brain. Aged beagles were placed into one of four treatment groups: CON--control environment/control diet, AOX--control environment/antioxidant diet, ENR--enriched environment/control diet, AOX/ENR--enriched environment/antioxidant diet for 2.8 years. Following behavioral testing, brains were removed and frontal cortices were analyzed to monitor levels of active caspase 3, active caspase 9 and their respective cleavage products such as tau and semaphorin7a, and ceramides. Our results show that levels of activated caspase-3 were reduced by ENR and AOX interventions with the largest reduction occurring with combined AOX/ENR group. Further, reductions in caspase-3 correlated with reduced errors in a reversal learning task, which depends on frontal cortex function. In addition, animals treated with an AOX arm showed reduced numbers of cells expressing active caspase 9 or its cleavage product semaphorin 7A, while ENR (but not AOX) reduced ceramide levels. Overall, these data demonstrate that lifestyle interventions curtail activation of pro-degenerative pathways to improve cellular health and are the

  13. Commission for Energy regulation (CRE) - Activity report June 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2004 activity report of CRE. Content: A - Opening of the gas and electricity markets for professional customers on 1 July 2004; B - Regulation of the gas market: Gas markets and players (The European environment, The French gas market); Regulation of the gas market (Implementing regulation, Works planned for the coming year; C - Regulation of the electricity market: The electricity markets and players (The European electricity markets, The French electricity market, Monitoring the electricity market); Regulation of the French electricity market (Access to public grid, Cross-border exchanges, Un-bundled accounting principles); The public electricity service in the regulated market (Content of the public service, Public service charges, Electricity production public service financing, Electricity sales tariffs) D - The working of CRE: How CRE exercises its jurisdiction, Tools; E - Appendices: Glossary, Units and conversions, Council of European Energy Regulators, Index of tables and figures.

  14. Commission for Energy regulation (CRE) - Activity report June 2004

    International Nuclear Information System (INIS)

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2004 activity report of CRE. Content: A - Opening of the gas and electricity markets for professional customers on 1 July 2004; B - Regulation of the gas market: Gas markets and players (The European environment, The French gas market); Regulation of the gas market (Implementing regulation, Works planned for the coming year; C - Regulation of the electricity market: The electricity markets and players (The European electricity markets, The French electricity market, Monitoring the electricity market); Regulation of the French electricity market (Access to public grid, Cross-border exchanges, Un-bundled accounting principles); The public electricity service in the regulated market (Content of the public service, Public service charges, Electricity production public service financing, Electricity sales tariffs) D - The working of CRE: How CRE exercises its jurisdiction, Tools; E - Appendices: Glossary, Units and conversions, Council of European Energy Regulators, Index of tables and figures

  15. Commission for Energy regulation (CRE) - Activity report june 2008

    International Nuclear Information System (INIS)

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2008 activity report of CRE. Content: A - How CRE works: CRE regulatory authority and organisation: Powers, Organisation; Budget resources; Personnel; B - The Standing Committee for Dispute Settlement and Sanctions (CoRDiS) activity: Admissibility, Authority; C - Building a single European energy market: Overview; Organisation and coordination of the main European regulators (Work carried out collectively by European regulators, Regulator organisation and development, CRE's relations with European Community institutions, Development of CEER activities outside the European Union); CRE's European activities (The contribution of European regulators to the Third Energy Package, Integration of gas markets, Integration of electricity markets, Operation of the European interconnected electricity grid and security of supply, Opening up markets to benefit consumers); European Community activities (The European Commission's proposals for the internal energy market: the Third Energy Package, The European Commission's proposals for fighting climate change: the Climate Package, Infringement

  16. Changes of NF-κB, Bax and Caspase 3 in Apoptosis lnduced by Ligustrazine Combined with Cis-dichlorodiamine Platinum in Human Gastric Carcinoma SGC-7901 Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Tao HUANG; Liyan Ll; Xiaona GUO; Zhigang GUO; Yalin Zhang

    2015-01-01

    Objective] This study aimed to investigate the mechanism of apoptosis in-duced by ligustrazine (TMP) and cis-dichlorodiamine platinum (DDP) in SGC-7901 cel lines in vitro. [Methods] SGC-7901 cel lines were treated with ligustrazine and DDP alone or combined for 48 h for Western blot analysis, respectively. Western blot analysis was used to determine the expression of proteins involved in apoptosis including NF-κB p65, bax and caspase-3. [Results] The viability of SGC-7901 cel s was inhibited after treated with ligustrazine and/or combined with DDP. The expres-sion of NF-κB P65 protein decreased after treated with drugs, in which the protein decreased significantly in 1.2 mg/ml of TMP combined with 2 μg/ml of DDP group. Meanwhile, we investigated the protein expression of bax and caspase-3. The re-sults showed that the expression of the two proteins increased fol owing with the in-creasing concentration of TMP. [Conclusion] Al the results indicated that ligustrazine combined with DDP could induce the apoptosis of SGC-7901 cel lines, and NF-κB maybe the possible way to induce the cel apoptosis.

  17. Complement system part I - molecular mechanisms of activation and regulation

    Directory of Open Access Journals (Sweden)

    Nicolas eMerle

    2015-06-01

    Full Text Available Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins and the membrane attack complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly we will discuss the development and benefits of therapies using complement inhibitors.

  18. Down-regulation of protein kinase Ceta by antisense oligonucleotides sensitises A549 lung cancer cells to vincristine and paclitaxel.

    Science.gov (United States)

    Sonnemann, Jürgen; Gekeler, Volker; Ahlbrecht, Katrin; Brischwein, Klaus; Liu, Chao; Bader, Peter; Müller, Cornelia; Niethammer, Dietrich; Beck, James F

    2004-06-25

    Previous studies point to protein kinase C (PKC) isozyme eta as a resistance factor in cancer cells. Therefore, we investigated whether down-regulation of PKCeta with second generation antisense oligonucleotides (ODNs) would sensitise A549 human lung carcinoma cells to cytostatics. The effects were compared to the outcome of Bcl-xL down-regulation. Upon treatment with antisense ODNs, PKCeta and Bcl-xL were both significantly reduced on mRNA and protein level. Down-regulation of either PKCeta or Bcl-xL in combination with vincristine or paclitaxel resulted in a significant increase in caspase-3 activity compared to that in the control oligonucleotide treated cells. In addition, PKCeta down-regulation augmented vincristine-induced dissipation of mitochondrial transmembrane potential. In conclusion, these results confirm that PKCeta might represent a considerable resistance factor and an interesting target to improve anticancer chemotherapy. PMID:15159020

  19. Cbl negatively regulates JNK activation and cell death

    Institute of Scientific and Technical Information of China (English)

    Andrew A Sproul; Zhiheng Xu; Michael Wilhelm; Stephen Gire; Lloyd A Greene

    2009-01-01

    Here, we explore the role of Cbl proteins in regulation of neuronal apoptosis. In two paradigms of neuron apopto-sis--nerve growth factor (NGF) deprivation and DNA damage--cellular levels of c-Cbl and Cbl-b fell well before the onset of cell death. NGF deprivation also induced rapid loss of tyrosine phosphorylation (and most likely, activa-tion) of c-Cbl. Targeting e-Cbl and Cbl-b with siRNAs to mimic their loss/inactivation sensitized neuronal cells to death promoted by NGF deprivation or DNA damage. One potential mechanism by which Cbl proteins might affect neuronal death is by regulation of apoptotic c-Jun N-terminal kinase (JNK) signaling. We demonstrate that Cbl pro-teins interact with the JNK pathway components mixed lineage kinase (MLK) 3 and POSH and that knockdown of Cbl proteins is sufficient to increase JNK pathway activity. Furthermore, expression of c-Cbl blocks the ability of MLKs to signal to downstream components of the kinase cascade leading to JNK activation and protects neuronal cells from death induced by MLKs, but not from downstream JNK activators. On the basis of these findings, we propose that Cbls suppress cell death in healthy neurons at least in part by inhibiting the ability of MLKs to activate JNK signaling. Apoptotic stimuli lead to loss of Cbl protein/activity, thereby removing a critical brake on JNK acti-vation and on cell death.

  20. Regulation of human hepatocellular carcinoma cells by Spred2 and correlative studies on its mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiao-Ni [Lanzhou University of Technology, Lanzhou 730050 (China); Liu, Xiao-Yun [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Center for Disease Control and Prevention, Lanzhou Military Command, Lanzhou 730020 (China); Yang, Yue-Feng [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Xiao, Feng-Jun [Lanzhou University of Technology, Lanzhou 730050 (China); Li, Qing-Fang [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Yan, Jun [Lanzhou University of Technology, Lanzhou 730050 (China); Zhang, Qun-Wei; Wang, Li-Sheng [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Li, Xue-Yan, E-mail: llglixueyan@163.com [Lanzhou University of Technology, Lanzhou 730050 (China); Wang, Hua, E-mail: wanghua@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China)

    2011-07-15

    Highlights: {yields} Hepatocellular carcinoma is inhibited by Spred2 through as yet unclear mechanisms. {yields} We studied the overexpression of Spred2 in cell line and murine tumor models of HCC. {yields} Spred2 inhibited cell proliferation and migration via attenuating ERK signaling. {yields} Spred2 overexpression induced apoptosis via caspase-3 and downregulated Mcl-1. {yields} A Spred2 knockdown markedly induced tumor growth in vivo. -- Abstract: Members of the Spred gene family are negative regulators of the Ras/Raf-1/ERK pathway, which has been associated with several features of the tumor malignancy. However, the effect of Spred genes on hepatocellular carcinoma (HCC) remains uninvestigated. In the present work, we analyzed the in vitro and in vivo effects of Spred2 expression on the hepatic carcinoma cell line, SMMC-7721. In addition to attenuated ERK activation, which inhibited the proliferation and migration of unstimulated and HGF-stimulated SMMC-7721 cells. Adenovirus-mediated Spred2 overexpression induced the activation of caspase-3 and apoptosis, as well as reduced the expression level of Mcl-1. Most importantly, the knockdown of Spred2 markedly enhanced tumor growth in vivo. In conclusion, these results suggest that Spred2 could qualify as a potential therapeutic target in HCC.

  1. Molecular Mechanisms Regulating Ocular Apoptosis in Zebrafish gdf6a Mutants

    DEFF Research Database (Denmark)

    Pant, Sameer D.; March, Lindsey D.; Famulski, Jakub K.;

    2013-01-01

    PURPOSE. To characterize the molecular mechanisms underlying retinal apoptosis induced by loss of Gdf6, a TGF beta ligand. METHODS. The role of Gdf6 in regulating apoptosis was studied using a zebrafish gdf6a(-/-) mutant, which encodes a truncated, nonfunctional protein. To investigate whether...... intrinsic or extrinsic apoptotic mechanisms were involved, morpholino antisense oligonucleotides targeting baxa, baxb, and p53 were employed. Caspase-3 immunohistochemistry (IHC) was performed to assay apoptosis. Pharmacologic inhibition (using SB203580) and IHC were used to investigate the role of p38...... mitogen activated protein (MAP) kinase activation in gdf6a(-/-) induced apoptosis. To assess the role of Gdf6a in transcriptional regulation of TGF beta signal transducers, in situ hybridization (ISH) was performed using probes to smad1, 5, 7, and 8. RESULTS. Results indicate maximal ocular apoptosis...

  2. Commission for Energy regulation (CRE) - Activity report June 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2007 activity report of CRE. Content: A - Towards a single European energy market: Birth of a single European energy market (Origins of Europe of Energy, Emergence of a European energy policy); Main European Community guiding lines (European governance as regards energy, Guiding principles for the internal energy market); European Community activities (European Commission reports, Electricity and gas Regional Initiatives); Organisation and coordination of European regulators (Joint organisation of European regulators, CRE's relations with European Community institutions); CRE's European activities (Regional integration of gas markets, Regional integration of electricity markets, Operation of the European interconnected electricity grid and security of supply, CRE's other European activities); B - CRE action at national level: Grids/networks and infrastructures (General information, Electricity grids, Regulation of gas networks and infrastructures); Markets (Changes in the regulatory and legislative contexts of electricity and natural gas markets, Electricity markets

  3. Commission for Energy regulation (CRE) - Activity report June 2007

    International Nuclear Information System (INIS)

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2007 activity report of CRE. Content: A - Towards a single European energy market: Birth of a single European energy market (Origins of Europe of Energy, Emergence of a European energy policy); Main European Community guiding lines (European governance as regards energy, Guiding principles for the internal energy market); European Community activities (European Commission reports, Electricity and gas Regional Initiatives); Organisation and coordination of European regulators (Joint organisation of European regulators, CRE's relations with European Community institutions); CRE's European activities (Regional integration of gas markets, Regional integration of electricity markets, Operation of the European interconnected electricity grid and security of supply, CRE's other European activities); B - CRE action at national level: Grids/networks and infrastructures (General information, Electricity grids, Regulation of gas networks and infrastructures); Markets (Changes in the regulatory and legislative contexts of electricity and natural gas markets, Electricity markets, Natural gas

  4. CDK5 Regulates Paclitaxel Sensitivity in Ovarian Cancer Cells by Modulating AKT Activation, p21Cip1- and p27Kip1-Mediated G1 Cell Cycle Arrest and Apoptosis.

    Directory of Open Access Journals (Sweden)

    Shu Zhang

    Full Text Available Cyclin-dependent kinase 5 (CDK5 is a cytoplasmic serine/ threonine kinase. Knockdown of CDK5 enhances paclitaxel sensitivity in human ovarian cancer cells. This study explores the mechanisms by which CDK5 regulates paclitaxel sensitivity in human ovarian cancers. Multiple ovarian cancer cell lines and xenografts were treated with CDK5 small interfering RNA (siRNA with or without paclitaxel to examine the effect on cancer cell viability, cell cycle arrest and tumor growth. CDK5 protein was measured by immunohistochemical staining of an ovarian cancer tissue microarray to correlate CDK5 expression with overall patient survival. Knockdown of CDK5 with siRNAs inhibits activation of AKT which significantly correlates with decreased cell growth and enhanced paclitaxel sensitivity in ovarian cancer cell lines. In addition, CDK5 knockdown alone and in combination with paclitaxel induced G1 cell cycle arrest and caspase 3 dependent apoptotic cell death associated with post-translational upregulation and nuclear translocation of TP53 and p27(Kip1 as well as TP53-dependent transcriptional induction of p21(Cip1 in wild type TP53 cancer cells. Treatment of HEYA8 and A2780 wild type TP53 xenografts in nu/nu mice with CDK5 siRNA and paclitaxel produced significantly greater growth inhibition than either treatment alone. Increased expression of CDK5 in human ovarian cancers correlates inversely with overall survival. CDK5 modulates paclitaxel sensitivity by regulating AKT activation, the cell cycle and caspase-dependent apoptosis. CDK5 inhibition can potentiate paclitaxel activity in human ovarian cancer cells.

  5. CDK5 Regulates Paclitaxel Sensitivity in Ovarian Cancer Cells by Modulating AKT Activation, p21Cip1- and p27Kip1-Mediated G1 Cell Cycle Arrest and Apoptosis.

    Science.gov (United States)

    Zhang, Shu; Lu, Zhen; Mao, Weiqun; Ahmed, Ahmed A; Yang, Hailing; Zhou, Jinhua; Jennings, Nicholas; Rodriguez-Aguayo, Cristian; Lopez-Berestein, Gabriel; Miranda, Roberto; Qiao, Wei; Baladandayuthapani, Veera; Li, Zongfang; Sood, Anil K; Liu, Jinsong; Le, Xiao-Feng; Bast, Robert C

    2015-01-01

    Cyclin-dependent kinase 5 (CDK5) is a cytoplasmic serine/ threonine kinase. Knockdown of CDK5 enhances paclitaxel sensitivity in human ovarian cancer cells. This study explores the mechanisms by which CDK5 regulates paclitaxel sensitivity in human ovarian cancers. Multiple ovarian cancer cell lines and xenografts were treated with CDK5 small interfering RNA (siRNA) with or without paclitaxel to examine the effect on cancer cell viability, cell cycle arrest and tumor growth. CDK5 protein was measured by immunohistochemical staining of an ovarian cancer tissue microarray to correlate CDK5 expression with overall patient survival. Knockdown of CDK5 with siRNAs inhibits activation of AKT which significantly correlates with decreased cell growth and enhanced paclitaxel sensitivity in ovarian cancer cell lines. In addition, CDK5 knockdown alone and in combination with paclitaxel induced G1 cell cycle arrest and caspase 3 dependent apoptotic cell death associated with post-translational upregulation and nuclear translocation of TP53 and p27(Kip1) as well as TP53-dependent transcriptional induction of p21(Cip1) in wild type TP53 cancer cells. Treatment of HEYA8 and A2780 wild type TP53 xenografts in nu/nu mice with CDK5 siRNA and paclitaxel produced significantly greater growth inhibition than either treatment alone. Increased expression of CDK5 in human ovarian cancers correlates inversely with overall survival. CDK5 modulates paclitaxel sensitivity by regulating AKT activation, the cell cycle and caspase-dependent apoptosis. CDK5 inhibition can potentiate paclitaxel activity in human ovarian cancer cells. PMID:26146988

  6. Shape regulation generates elastic interaction between active force dipoles

    CERN Document Server

    Golkov, Roman

    2016-01-01

    The organization of live cells to tissues is associated with the mechanical interaction between cells, which is mediated through their mechanical environment. We model live cells as spherical active force dipoles surrounded by an infinite elastic matrix, and analytically evaluate their elastic interaction energy for different scenarios of their regulatory behavior. For purely dilational eigenstrains the elastic interaction energy between any two bodies vanishes. We identify mechanical interactions between active cells applying non isotropic displacements with a regulation mechanism designed so that they will preserve their spherical shape. We express the resultant non-isotropic deformation field by a multipole expansion in terms of spherical harmonics. Mechanical self-regulation of live cells is not fully understood, and we compare homeostatic (set point) force applied by the cells on their environment versus homeostatic displacements on their surface. By including or excluding the first term of the expansion...

  7. Regulation of burstiness by network-driven activation

    CERN Document Server

    García-Pérez, Guillermo; Serrano, M Ángeles

    2014-01-01

    We prove that complex networks of interactions have the capacity to regulate and buffer unpredictable fluctuations in production events. We show that non-bursty network-driven activation dynamics can effectively regulate the level of burstiness in the production of nodes, which can be enhanced or reduced. Burstiness can be induced even when the endogenous inter-event time distribution of nodes' production is non-bursty. We found that hubs tend to be less controllable than low degree nodes, which are more susceptible to the networked regulatory effects. Our results have important implications for the analysis and engineering of bursty activity in a range of systems, from telecommunication networks to transcription and translation of genes into proteins in cells.

  8. Commission for Energy regulation (CRE) - Activity report June 2005

    International Nuclear Information System (INIS)

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2005 activity report of CRE. Content: A - The opening of the markets in France and in Europe: The opening of the markets one year after 1 July 2004 (An especially important step, Electricity and gas: a common framework with structural differences, The coexistence of market prices and regulated tariffs); The European texts of 26 June 2003 (Texts to give new impetus, Texts to harmonize the role and powers of national regulators, Texts to guarantee the independence of system operators, Texts to ensure transparent and non-discriminatory access to networks, Texts providing for strengthening of interconnections); The outlook for 2007, a fully open market (1 July 2007: a date set by the directives, Priority given to informing and protecting consumers); B - Regulation of the natural gas market: The gas market in the European context (Europe's dependency on imports is increasing, Gas prices increased considerably across the whole of Europe in 2004, The European gas scene continues to be dominated by a small number of players, Gas infrastructures need to be developed in Europe, The new European

  9. Activation and Regulation of DNA-Driven Immune Responses

    OpenAIRE

    Paludan, Søren R

    2015-01-01

    The innate immune system provides early defense against infections and also plays a key role in monitoring alterations of homeostasis in the body. DNA is highly immunostimulatory, and recent advances in this field have led to the identification of the innate immune sensors responsible for the recognition of DNA as well as the downstream pathways that are activated. Moreover, information on how cells regulate DNA-driven immune responses to avoid excessive inflammation is now emerging. Finally,...

  10. Harvester ants use interactions to regulate forager activation and availability.

    Science.gov (United States)

    Pinter-Wollman, Noa; Bala, Ashwin; Merrell, Andrew; Queirolo, Jovel; Stumpe, Martin C; Holmes, Susan; Gordon, Deborah M

    2013-07-01

    Social groups balance flexibility and robustness in their collective response to environmental changes using feedback between behavioural processes that operate at different timescales. Here we examine how behavioural processes operating at two timescales regulate the foraging activity of colonies of the harvester ant, Pogonomyrmex barbatus, allowing them to balance their response to food availability and predation. Previous work showed that the rate at which foragers return to the nest with food influences the rate at which foragers leave the nest. To investigate how interactions inside the nest link the rates of returning and outgoing foragers, we observed outgoing foragers inside the nest in field colonies using a novel observation method. We found that the interaction rate experienced by outgoing foragers inside the nest corresponded to forager return rate, and that the interactions of outgoing foragers were spatially clustered. Activation of a forager occurred on the timescale of seconds: a forager left the nest 3-8 s after a substantial increase in interactions with returning foragers. The availability of outgoing foragers to become activated was adjusted on the timescale of minutes: when forager return was interrupted for more than 4-5 min, available foragers waiting near the nest entrance went deeper into the nest. Thus, forager activation and forager availability both increased with the rate at which foragers returned to the nest. This process was checked by negative feedback between forager activation and forager availability. Regulation of foraging activation on the timescale of seconds provides flexibility in response to fluctuations in food abundance, whereas regulation of forager availability on the timescale of minutes provides robustness in response to sustained disturbance such as predation.

  11. Disorders of regulation of cognitive activity in autistic children.

    Science.gov (United States)

    Adrien, J L; Martineau, J; Barthélémy, C; Bruneau, N; Garreau, B; Sauvage, D

    1995-06-01

    Infantile autism is a pervasive developmental disorder characterized by disturbances concerning not only the areas of socialization and communication ("aloneness") but also the ability to modify and change behavior ("need for sameness"). In most recent studies, various abnormal and deviant cognitive activities, such as the ability to regulate one's behavior, were considered as accounting for these signs. In this report, we examined the regulation of cognitive activity, from a developmental perspective in comparing autistic with mentally retarded children matched in a pairwise manner by global, verbal, and nonverbal developmental ages. All children were tested with tasks adapted from the Object Permanence Test which corresponds to Piaget's sensorimotor development Stages IV to VI. Results showed that autistic children had a pervasive difficulty in maintenance set, made more perseverative errors when the abstraction degree of task was higher, and were more variable in their behavioral strategies. Discussion is focused on the interests and limits of these tasks for the examination of regulation activity from diagnostic and developmental perspectives. Finally, interpretations about recent neuropsychological and neurophysiological works, and additional interdisciplinary studies are suggested. PMID:7559291

  12. Raf activation is regulated by tyrosine 510 phosphorylation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Fan Xia

    2008-05-01

    Full Text Available The proto-oncoprotein Raf is pivotal for mitogen-activated protein kinase (MAPK signaling, and its aberrant activation has been implicated in multiple human cancers. However, the precise molecular mechanism of Raf activation, especially for B-Raf, remains unresolved. By genetic and biochemical studies, we demonstrate that phosphorylation of tyrosine 510 is essential for activation of Drosophila Raf (Draf, which is an ortholog of mammalian B-Raf. Y510 of Draf is phosphorylated by the c-src homolog Src64B. Acidic substitution of Y510 promotes and phenylalanine substitution impairs Draf activation without affecting its enzymatic activity, suggesting that Y510 plays a purely regulatory role. We further show that Y510 regulates Draf activation by affecting the autoinhibitory interaction between the N- and C-terminal fragments of the protein. Finally, we show that Src64B is required for Draf activation in several developmental processes. Together, these results suggest a novel mechanism of Raf activation via Src-mediated tyrosine phosphorylation. Since Y510 is a conserved residue in the kinase domain of all Raf proteins, this mechanism is likely evolutionarily conserved.

  13. Regulation of Akt/PKB activity by P21-activated Kinase in Cardiomyocytes

    OpenAIRE

    Mao, Kai; Kobayashi, Satoru; Jaffer, Zahara M.; Huang, Yuan; Volden, Paul; Chernoff, Jonathan; Liang, Qiangrong

    2007-01-01

    Akt/PKB is a critical regulator of cardiac function and morphology, and its activity is governed by dual phosphorylation at active loop (Thr308) by phosphoinositide-dependent protein kinase-1 (PDK1) and at carboxyl-terminal hydrophobic motif (Ser473) by a putative PDK2. P21-activated kinase-1 (Pak1) is a serine/threonine protein kinase implicated in the regulation of cardiac hypertrophy and contractility, and was shown previously to activate Akt through an undefined mechanism. Here we report ...

  14. p53 regulation and activity in mouse embryonic stem cells

    OpenAIRE

    Solozobova, Valeriya

    2010-01-01

    P53 is a tumour development p53. The aim of this work was to study the regulation of p53 in embryonic stem cells and its activation in response to DNA damage. p53 was found that p53 becomes transcriptionally active in ES cells after DNA damage. Embryonic stem cells contain a relatively high amount of p53 protein and p53 RNA. After differentiation p53 level is rapidly downregulated. The high abundance of p53 in undifferentiated ES cells is a result of enhanced translation.

  15. Y-27632 Increases Sensitivity of PANC-1 Cells to Epigallocatechin Gallate (EGCG) in Regulating Cell Proliferation and Migration

    Science.gov (United States)

    Liu, Xing; Bi, Yongyi

    2016-01-01

    Background The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (−)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. Material/Methods PANC-1 cells, maintained in Dulbecco’s Modified Eagle’s Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator–activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). Results EGCG (20–80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARα and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. Conclusions Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARα mRNA and Caspase-3 mRNA. PMID:27694793

  16. The molecular regulation of Janus kinase (JAK) activation.

    Science.gov (United States)

    Babon, Jeffrey J; Lucet, Isabelle S; Murphy, James M; Nicola, Nicos A; Varghese, Leila N

    2014-08-15

    The JAK (Janus kinase) family members serve essential roles as the intracellular signalling effectors of cytokine receptors. This family, comprising JAK1, JAK2, JAK3 and TYK2 (tyrosine kinase 2), was first described more than 20 years ago, but the complexities underlying their activation, regulation and pleiotropic signalling functions are still being explored. Here, we review the current knowledge of their physiological functions and the causative role of activating and inactivating JAK mutations in human diseases, including haemopoietic malignancies, immunodeficiency and inflammatory diseases. At the molecular level, recent studies have greatly advanced our knowledge of the structures and organization of the component FERM (4.1/ezrin/radixin/moesin)-SH2 (Src homology 2), pseudokinase and kinase domains within the JAKs, the mechanism of JAK activation and, in particular, the role of the pseudokinase domain as a suppressor of the adjacent tyrosine kinase domain's catalytic activity. We also review recent advances in our understanding of the mechanisms of negative regulation exerted by the SH2 domain-containing proteins, SOCS (suppressors of cytokine signalling) proteins and LNK. These recent studies highlight the diversity of regulatory mechanisms utilized by the JAK family to maintain signalling fidelity, and suggest alternative therapeutic strategies to complement existing ATP-competitive kinase inhibitors. PMID:25057888

  17. Regulation of transcription and activity of Rhizobium etli glutaminase A.

    Science.gov (United States)

    Huerta-Saquero, Alejandro; Calderón-Flores, Arturo; Díaz-Villaseñor, Andrea; Du Pont, Gisela; Durán, Socorro

    2004-08-01

    The present study determines the regulatory mechanisms that operate on Rhizobium etli glutaminase A. glsA gene expression levels were evaluated under several metabolic conditions by fusions of the glsA gene promoter and the transcriptional reporter cassette uidA2-aad. glsA expression was directly correlated to the glutaminase A activity found under the tested growth conditions, reaching its maximum level in the presence of glutamine and during exponential growth phase. Glutamine induces glsA expression. The influence of allosteric metabolites on glutaminase A activity was also determined. The purified enzyme was inhibited by 2-oxoglutarate and pyruvate, whereas oxaloacetate and glyoxylate modulate it positively. Glutaminase A is not inhibited by glutamate and is activated by ammonium. Glutaminase A participates in an ATP-consuming cycle where glutamine is continually degraded and resynthesized by glutamine synthetase (GS). GS and glutaminase A activities appear simultaneously during bacterial growth under different metabolic conditions and their control mechanisms are not reciprocal. Slight overproduction in glutaminase A expression causes a reduction in growth yield and a dramatic decrease in bacterial growth. We propose a model for regulation of glutaminase A, and discuss its contribution to glutamine cycle regulation. PMID:15279892

  18. Simultaneously expressed miR-424 and miR-381 synergistically suppress the proliferation and survival of renal cancer cells---Cdc2 activity is up-regulated by targeting WEE1

    Directory of Open Access Journals (Sweden)

    Binghai Chen

    2013-06-01

    Full Text Available OBJECTIVES: MiRNAs are intrinsic RNAs that interfere with protein translation. Few studies on the synergistic effects of miRNAs have been reported. Both miR-424 and miR-381 have been individually reported to be involved in carcinogenesis. They share a common putative target, WEE1, which is described as an inhibitor of G2/M progression. Here, we studied the synergistic effects of miR-424 and miR-381 on renal cancer cells. METHODS: The viability of 786-O cells was analyzed after transfection with either a combination of miR-424 and miR-381 or each miRNA alone. We investigated cell cycle progression and apoptosis with flow cytometry. To confirm apoptosis and the abrogation of G2/M arrest, we determined the level of pHH3, which is an indicator of mitosis, and caspase-3/7 activity. The expression levels of WEE1, Cdc25, γH2AX, and Cdc2 were manipulated to investigate the roles of these proteins in the miRNA-induced anti-tumor effects. To verify that WEE1 was a direct target of both miR-424 and miR-381, we performed a dual luciferase reporter assay. RESULTS: We showed that the combination of these miRNAs synergistically inhibited proliferation, abrogated G2/M arrest, and induced apoptosis. This combination led to Cdc2 activation through WEE1 inhibition. This regulation was more effective when cells were treated with both miRNAs than with either miRNA alone, indicating synergy between these miRNAs. WEE1 was verified to be a direct target of each miRNA according to the luciferase reporter assay. CONCLUSIONS: These data clearly demonstrate that these two miRNAs might synergistically act as novel modulators of tumorigenesis by down-regulating WEE1 expression in renal cell cancer cells.

  19. Connexin 43 is a potential regulator in fluid shear stress-induced signal transduction in osteocytes.

    Science.gov (United States)

    Li, Xiaoting; Liu, Chenglin; Li, Ping; Li, Shengnan; Zhao, Zhihe; Chen, Yangxi; Huo, Bo; Zhang, Ding

    2013-12-01

    Connexin 43 (Cx43), a gap junctional protein, regulates osteocyte viability, and modulates mechanical stimulation-induced bone remodeling. However, the underlying mechanisms of its action remain unclear. In the current study, osteocyte-like MLO-Y4 cells were exposed to fluid shear stress (FSS) of 16 (physiological) or 30 (high) dyne/cm(2) for the indicated time points. Cx43 gene (Gja1) was silenced using siRNA or the protein was blocked chemically. The signaling molecules related to osteocyte apoptosis, osteogenesis, or osteoclastogenesis were detected at mRNA or protein levels. The results showed that physiological FSS significantly upregulated Cx43, which further inhibited apoptosis pathways (e.g., caspase-3) and osteoclastogenesis signaling (e.g., RANKL), but activated osteogenesis signaling (Sost/sclerostin). Suppressing Cx43 gene (Gja1) by siRNA or chemically blocking gap junction communication enhanced caspase-3, RANKL, and Sost/sclerostin, which could be restored with physiological FSS over 8 h. In addition, high FSS decreased Cx43 expression and adversely affected signaling molecules compared with physiological FSS. The findings indicate the involvement of Cx43 in mechanotransduction of FSS and in the modulation of mechanical loading-related apoptosis, osteogenesis, and osteoclastogenesis of osteocytes. This may provide a cellular and molecular basis for interpreting the biomechanical mechanism of bone absorption and remodeling. PMID:23878018

  20. Interleukin-1β regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    International Nuclear Information System (INIS)

    Research highlights: → Levels of IL-1β are increased in the pig myocardium after infarction. → Cultured pig heart cells possess IL-1 receptors. → IL-1β increases cell proliferation of pig heart cells in-vitro. → IL-1β increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. → IL-1β may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1β is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1β on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1β. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1β resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1β (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1β (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1β plays a major role in the events of tissue remodelling in the heart. Combined with our recently published in vivo data (Meybohm et al., PLoS One

  1. Calcium and cargoes as regulators of myosin 5a activity

    International Nuclear Information System (INIS)

    Myosin 5a is a two-headed actin-dependent motor that transports various cargoes in cells. Its enzymology and mechanochemistry have been extensively studied in vitro. It is a processive motor that takes multiple 36 nm steps on actin. The enzymatic activity of myosin 5 is regulated by an intramolecular folding mechanism whereby its lever arms fold back against the coiled-coil tail such that the motor domains directly bind the globular tail domains. We show that the structure seen in individual folded molecules is consistent with electron density map of two-dimensional crystals of the molecule. In this compact state, the actin-activated MgATPase activity of the molecule is markedly inhibited and the molecule cannot move processively on surface bound actin filaments. The actin-activated MgATPase activity of myosin 5a is activated by increasing the calcium concentration or by binding of a cargo-receptor molecule, melanophilin, in vitro. However, calcium binding to the calmodulin light chains results in dissociation of some of the calmodulin which disrupts the ability of myosin 5a to move on actin filaments in vitro. Thus we propose that the physiologically relevant activation pathway in vivo involves binding of cargo-receptor proteins

  2. Combined Treatment With Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands and Gamma Radiation Induces Apoptosis by PPARγ-Independent Up-Regulation of Reactive Oxygen Species-Induced Deoxyribonucleic Acid Damage Signals in Non-Small Cell Lung Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Jong; Im, Chang-Nim; Park, Seon Hwa [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Moon, Eun-Yi [Department of Bioscience and Biotechnology, Sejong University, Seoul (Korea, Republic of); Hong, Sung Hee, E-mail: gobrian@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-04-01

    Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation in a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.

  3. Commission for Energy regulation (CRE) - Activity report june 2006

    International Nuclear Information System (INIS)

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2006 activity report of CRE. Content: A - Opening of the electricity and natural gas markets to household consumers on 1 July 2007: CRE at the service of eligible customers (Information for eligible customers, Improved knowledge of non-household customers); Monitoring of the non-discrimination, transparency and independence of system operators (Drafting and distribution of codes of good conduct for system operators, The necessary improvement of system operator independence); Preparing the practical methods of opening: GTE 2007 and GTG 2007 (The necessary simplification of relations between operators and customers, Achieving a greater level of consumer information and protection, The clearly defined stages of the 'customer pathway', Profiling and settlement mechanisms: turning experience feedback from 2004 to good account); Persisting uncertainties and hurdles (The need for a suitable regulatory and legislative platform, Hurdles to the opening of the household market); B - Regulation of the natural gas market: The gas market in the European context (Increasing weight of imports in gas

  4. Commission for Energy regulation (CRE) - Activity report june 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2006 activity report of CRE. Content: A - Opening of the electricity and natural gas markets to household consumers on 1 July 2007: CRE at the service of eligible customers (Information for eligible customers, Improved knowledge of non-household customers); Monitoring of the non-discrimination, transparency and independence of system operators (Drafting and distribution of codes of good conduct for system operators, The necessary improvement of system operator independence); Preparing the practical methods of opening: GTE 2007 and GTG 2007 (The necessary simplification of relations between operators and customers, Achieving a greater level of consumer information and protection, The clearly defined stages of the 'customer pathway', Profiling and settlement mechanisms: turning experience feedback from 2004 to good account); Persisting uncertainties and hurdles (The need for a suitable regulatory and legislative platform, Hurdles to the opening of the household market); B - Regulation of the natural gas market: The gas market in the European context (Increasing weight of

  5. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass

    OpenAIRE

    Shah, M; Kola, B; Bataveljic, A.; Arnett, T. R.; Viollet, B.; Saxon, L.; Korbonits, M.; C. Chenu

    2010-01-01

    Adenosine 5′-monophosphate-activated protein kinase (AMPK), a regulator of energy homeostasis, has a central role in mediating the appetite-modulating and metabolic effects of many hormones and antidiabetic drugs metformin and glitazones. The objective of this study was to determine if AMPK can be activated in osteoblasts by known AMPK modulators and if AMPK activity is involved in osteoblast function in vitro and regulation of bone mass in vivo. ROS 17/2.8 rat osteoblast-like cells were cult...

  6. Inhibitory neurotransmission regulates vagal efferent activity and gastric motility.

    Science.gov (United States)

    McMenamin, Caitlin A; Travagli, R Alberto; Browning, Kirsteen N

    2016-06-01

    The gastrointestinal tract receives extrinsic innervation from both the sympathetic and parasympathetic nervous systems, which regulate and modulate the function of the intrinsic (enteric) nervous system. The stomach and upper gastrointestinal tract in particular are heavily influenced by the parasympathetic nervous system, supplied by the vagus nerve, and disruption of vagal sensory or motor functions results in disorganized motility patterns, disrupted receptive relaxation and accommodation, and delayed gastric emptying, amongst others. Studies from several laboratories have shown that the activity of vagal efferent motoneurons innervating the upper GI tract is inhibited tonically by GABAergic synaptic inputs from the adjacent nucleus tractus solitarius. Disruption of this influential central GABA input impacts vagal efferent output, hence gastric functions, significantly. The purpose of this review is to describe the development, physiology, and pathophysiology of this functionally dominant inhibitory synapse and its role in regulating vagally determined gastric functions. PMID:27302177

  7. [Polymethoxylated flavonoids activate cystic fibrosis transmembrane conductance regulator chloride channel].

    Science.gov (United States)

    Cao, Huan-Huan; Fang, Fang; Yu, Bo; Luan, Jian; Jiang, Yu; Yang, Hong

    2015-04-25

    Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent chloride channel, plays key roles in fluid secretion in serous epithelial cells. Previously, we identified two polymethoxylated flavonoids, 3',4',5,5',6,7-hexamethoxyflavone (HMF) and 5-hydroxy-6,7,3',4'-tetramethoxyflavone (HTF) which could potentiate CFTR chloride channel activities. The present study was aimed to investigate the potentiation effects of HMF and HTF on CFTR Cl(-) channel activities by using a cell-based fluorescence assay and the short circuit Ussing chamber assay. The results of cell-based fluorescence assay showed that both HMF and HTF could dose-dependently potentiate CFTR Cl(-) channel activities in rapid and reversible ways, and the activations could be reversed by the CFTR blocker CFTRinh-172. Notably, HMF showed the highest affinity (EC50 = 2 μmol/L) to CFTR protein among the flavonoid CFTR activators identified so far. The activation of CFTR by HMF or HTF was forskolin (FSK) dependent. Both compounds showed additive effect with FSK and 3-Isobutyl-1-methylx (IBMX) in the activation of CFTR, while had no additive effect with genistein (GEN). In ex vivo studies, HMF and HTF could stimulate transepithelial Cl(-) secretion in rat colonic mucosa and enhance fluid secretion in mouse trachea submucosal glands. These results suggest that HMF and HTF may potentiate CFTR Cl(-) channel activities through both elevation of cAMP level and binding to CFTR protein pathways. The results provide new clues in elucidating structure and activity relationship of flavonoid CFTR activators. HMF might be developed as a new drug in the therapy of CFTR-related diseases such as bronchiectasis and habitual constipation. PMID:25896054

  8. Negative regulation of lymphocyte activation by the adaptor protein LAX.

    Science.gov (United States)

    Zhu, Minghua; Granillo, Olivia; Wen, Renren; Yang, Kaiyong; Dai, Xuezhi; Wang, Demin; Zhang, Weiguo

    2005-05-01

    The membrane-associated adaptor protein LAX is a linker for activation of T cells (LAT)-like molecule that is expressed in lymphoid tissues. Upon stimulation of T or B cells, it is phosphorylated and interacts with Grb2 and the p85 subunit of PI3K. LAX, however, is not capable of replacing LAT in the TCR signaling pathway. In this study we report that upon T or B cell activation, the LAX protein was up-regulated dramatically. Although disruption of the LAX gene by homologous recombination had no major impact on lymphocyte development, it caused a significant reduction in CD23 expression on mature B cells. Interestingly, naive LAX(-/-) mice had spontaneous germinal center formation. Compared with normal T and B cells, LAX(-/-) T and B cells were hyperresponsive and had enhanced calcium flux, protein tyrosine phosphorylation, MAPK and Akt activation, and cell survival upon engagement of the T or B AgRs. Our data demonstrate that LAX functions as a negative regulator in lymphocyte signaling.

  9. Swainsonine promotes apoptosis in human oesophageal squamous cell carcinoma cells in vitro and in vivo through activation of mitochondrial pathway

    Indian Academy of Sciences (India)

    Zhaocai Li; Yong Huang; Feng Dong; Wei Li; Li Ding; Gaoshui Yu; Dan Xu; Yuanyuan Yang; Xingang Xu; Dewen Tong

    2012-12-01

    Swainsonine, a natural indolizidine alkaloid, has been reported to have antitumour effects, and can induce apoptosis in human gastric and lung cancer cells. In the present study, we evaluated the antitumour effects of swainsonine on several oesophageal squamous cell carcinoma cells and investigated relative molecular mechanisms. Swainsonine treatment inhibited the growth of Eca-109, TE-1 and TE-10 cells in a concentration-dependent manner as measured by MTT assay. Morphological observation, DNA laddering detection and flow cytometry analysis demonstrated that swainsonine treatment induced Eca-109 cell apoptosis in vitro. Further results showed that swainsonine treatment up-regulated Bax, down-regulated Bcl-2 expression, triggered Bax translocation to mitochondria, destructed mitochondria integrity and activated mitochondria-mediated apoptotic pathway, followed by the release of cytochrome c, which in turn activated caspase-9 and caspase-3, promoted the cleavage of PARP, resulting in Eca-109 cell apoptosis. Moreover, swainsonine treatment inhibited Bcl-2 expression, promoted Bax translocation, cytochrome c release and caspase-3 activation in xenograft tumour cells, resulting in a significant decrease of tumour volume and tumour weight in the swainsonine-treated xenograft mice groups compared with that in the control group. Taken together, this study demonstrated that swainsonine inhibited Eca-109 cells growth through activation of mitochondria-mediated caspase-dependent pathway.

  10. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    Science.gov (United States)

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators. PMID:27226582

  11. Dynamic regulation of Polycomb group activity during plant development.

    Science.gov (United States)

    Bemer, Marian; Grossniklaus, Ueli

    2012-11-01

    Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis.

  12. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death

    DEFF Research Database (Denmark)

    Fortin, A; Cregan, S P; MacLaurin, J G;

    2001-01-01

    p53 is a transcriptional activator which has been implicated as a key regulator of neuronal cell death after acute injury. We have shown previously that p53-mediated neuronal cell death involves a Bax-dependent activation of caspase 3; however, the transcriptional targets involved in the regulation...... of this process have not been identified. In the present study, we demonstrate that p53 directly upregulates Apaf1 transcription as a critical step in the induction of neuronal cell death. Using DNA microarray analysis of total RNA isolated from neurons undergoing p53-induced apoptosis a 5-6-fold upregulation...... of Apaf1 mRNA was detected. Induction of neuronal cell death by camptothecin, a DNA-damaging agent that functions through a p53-dependent mechanism, resulted in increased Apaf1 mRNA in p53-positive, but not p53-deficient neurons. In both in vitro and in vivo neuronal cell death processes of p53-induced...

  13. Regulation of dopamine transporter activity by carboxypeptidase E

    Directory of Open Access Journals (Sweden)

    Zhang Heping

    2009-05-01

    Full Text Available Abstract Background The dopamine transporter (DAT plays a critical role in terminating the action of dopamine by rapid reuptake into the presynaptic neuron. Previous studies have revealed that the DAT carboxyl terminus (DAT-CT can directly interact with other cellular proteins and regulate DAT function and trafficking. Results Here, we have identified that carboxypeptidase E (CPE, a prohormone processing exopeptidase and sorting receptor for the regulated secretory pathway, interacts with the DAT-CT and affects DAT function. Mammalian cell lines coexpressing CPE and DAT exhibited increased DAT-mediated dopamine uptake activity compared to cells expressing DAT alone. Moreover, coexpression of an interfering DAT-CT minigene inhibited the effects of CPE on DAT. Functional changes caused by CPE could be attributed to enhanced DAT expression and subsequent increase in DAT cell surface localization, due to decreased DAT degradation. In addition, CPE association could reduce the phosphorylation state of DAT on serine residues, potentially leading to reduced internalization, thus stabilizing plasmalemmal DAT localization. Conclusion Taken together, our results reveal a novel role for CPE in the regulation of DAT trafficking and DAT-mediated DA uptake, which may provide a novel target in the treatment of dopamine-governed diseases such as drug addiction and obesity.

  14. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Saquib, Quaiser [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Attia, Sabry M. [Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh (Saudi Arabia); Siddiqui, Maqsood A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Aboul-Soud, Mourad A.M. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Biochemistry Department, Faculty of Agriculture, Cairo University, 12613 Giza (Egypt); Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Giesy, John P. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada S7N 5B3 (Canada); Zoology Department and Center for Integrative Toxicology, Michigan State University, East Lansing 48824 (United States); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh (India)

    2012-02-15

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G{sub 2}/M arrest and appearance of a distinctive SubG{sub 1} peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced

  15. Regulation of seasonal reproduction by hypothalamic activation of thyroid hormone

    Directory of Open Access Journals (Sweden)

    Ai eShinomiya

    2014-02-01

    Full Text Available Organisms living outside the tropics measure the changes in the length of the day to adapt to seasonal changes in the environment. Animals that breed during spring and summer are called long-day breeders, while those that breed during fall are called short-day breeders. Although the influence of thyroid hormone in the regulation of seasonal reproduction has been known for several decades, its precise mechanism remained unknown. Recent studies revealed that the activation of thyroid hormone within the mediobasal hypothalamus (MBH plays a key role in this phenomenon. This localized activation of the thyroid hormone is controlled by thyrotropin (thyroid-stimulating hormone, TSH secreted from the pars tuberalis of the pituitary gland. Although seasonal reproduction is a rate-limiting factor in animal production, genes involved in photoperiodic signal transduction pathway could emerge as potential targets to facilitate domestication.

  16. Osteoblast differentiation and migration are regulated by dynamin GTPase activity.

    Science.gov (United States)

    Eleniste, Pierre P; Huang, Su; Wayakanon, Kornchanok; Largura, Heather W; Bruzzaniti, Angela

    2014-01-01

    Bone formation is controlled by osteoblasts, but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0-21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased in osteoblasts over-expressing dynamin. Conversely, ALP activity was increased following shRNA-mediated knockdown of dynamin and in osteoblasts treated with the dynamin inhibitor, dynasore. Dynasore also reduced c-fos and osterix expression, markers of early osteoblasts, suggesting a role for dynamin in pre-osteoblast to osteoblast differentiation. Since dynamin GTPase activity is regulated by tyrosine phosphorylation, we examined the mechanism of dynamin dephosphorylation in osteoblasts. Dynamin formed a protein complex with the tyrosine phosphatase PTP-PEST and inhibition of phosphatase activity increased the level of phosphorylated dynamin. Further, PTP-PEST blocked the Src-mediated increase in the phosphorylation and GTPase activity of wild-type dynamin but not the phosphorylation mutant dynY231F/Y597F. Although ALP activity was increased in osteoblasts expressing GTPase-defective dynK44A, and to a lesser extent dynY231F/Y597F, osteoblast migration was significantly inhibited by dynK44A and dynY231F/Y597F. These studies demonstrate a novel role for dynamin GTPase activity and phosphorylation in osteoblast differentiation and migration, which may be important for bone formation. PMID:24387844

  17. Legal Instruments of Regulation of Development of Banking Activity in Ukraine

    OpenAIRE

    Senyshch Pavlo M.

    2014-01-01

    The article considers main approaches to identification of essence of legal instruments of regulation of development of the banking activity, identifies the mechanism of legal regulation of the banking activity and its elements and justifies the system and form of legal regulation of the banking activity in Ukraine. It describes subjects of legal regulation of the banking activity at the international level, which are the Basel Committee on Banking Supervision, European Central Bank, IMF, Int...

  18. Regulation of TLR3 Activation by S100A9.

    Science.gov (United States)

    Tsai, Su-Yu; Segovia, Jesus A; Chang, Te-Hung; Shil, Niraj K; Pokharel, Swechha M; Kannan, T R; Baseman, Joel B; Defrêne, Joan; Pagé, Nathalie; Cesaro, Annabelle; Tessier, Philippe A; Bose, Santanu

    2015-11-01

    Recognition of viral dsRNA by endosomal TLR3 activates innate immune response during virus infection. Trafficking of TLR3 to the endolysosomal compartment arising from fusion of late endosome (LE) with lysosome is required for recognition and detection of pathogen associated molecular patterns, which results in activation of the TLR3-dependent signaling cascade. Existing knowledge about the mechanism(s) and cellular factor(s) governing TLR3 trafficking is limited. In the current study, we identified intracellular S100A9 protein as a critical regulator of TLR3 trafficking. S100A9 was required for maturation of TLR3 containing early endosome (EE) into LE, the compartment that fuses with lysosome to form the endolysosomal compartment. A drastic reduction in cytokine production was observed in S100A9-knockout (KO) primary macrophages following RNA virus infection and treatment of cells with polyinosinic-polycytidylic acid (polyIC; a dsRNA mimetic that acts as a TLR3 agonist). Mechanistic studies revealed colocalization and interaction of S100A9 with TLR3 following polyIC treatment. S100A9-TLR3 interaction was critical for maturation of TLR3 containing EE into LE because TLR3 could not be detected in the LE of polyIC-treated S100A9-KO macrophages. Subsequently, TLR3 failed to colocalize with its agonist (i.e., biotin-labeled polyIC) in S100A9-deficient macrophages. The in vivo physiological role of S100A9 was evident from loss of cytokine production in polyIC-treated S100A9-KO mice. Thus, we identified intracellular S100A9 as a regulator of TLR3 signaling and demonstrated that S100A9 functions during pre-TLR3 activation stages by facilitating maturation of TLR3 containing EE into LE. PMID:26385519

  19. Chemical Characterization and Antitumor Activities of Polysaccharide Extracted from Ganoderma lucidum

    Directory of Open Access Journals (Sweden)

    Zengenni Liang

    2014-05-01

    Full Text Available Ganoderma lucidum polysaccharide (GLP is a biologically active substance reported to possess anti-tumor ability. Nonetheless, the mechanisms of GLP-stimulated apoptosis are still unclear. This study aims to determine the inhibitory and apoptosis-inducing effects of GLP on HCT-116 cells. We found that GLP reduced cell viability on HCT-116 cells in a time- and dose-dependent manner, which in turn, induced cell apoptosis. The observed apoptosis was characterized by morphological changes, DNA fragmentation, mitochondrial membrane potential decrease, S phase population increase, and caspase-3 and -9 activation. Furthermore, inhibition of c-Jun N-terminal kinase (JNK by SP600125 led to a dramatic decrease of the GLP-induced apoptosis. Western blot analysis unveiled that GLP up-regulated the expression of Bax/Bcl-2, caspase-3 and poly (ADP-ribose polymerase (PARP. These results demonstrate that apoptosis stimulated by GLP in human colorectal cancer cells is associated with activation of mitochondrial and mitogen-activated protein kinase (MAPK pathways.

  20. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...(.csml) Show Receptor tyrosine kinases and the regulation of macrophage activation. PubmedID 14726496 Title ...Receptor tyrosine kinases and the regulation of macrophage activation. Authors Co