WorldWideScience

Sample records for activation inhibits drug-resistant

  1. 14-3-3ε boosts bleomycin-induced DNA damage response by inhibiting the drug-resistant activity of MVP.

    Science.gov (United States)

    Tang, Siwei; Bai, Chen; Yang, Pengyuan; Chen, Xian

    2013-06-07

    Major vault protein (MVP) is the predominant constituent of the vault particle, the largest known ribonuclear protein complex. Although emerging evidence have been establishing the links between MVP (vault) and multidrug resistance (MDR), little is known regarding exactly how the MDR activity of MVP is modulated during cellular response to drug-induced DNA damage (DDR). Bleomycin (BLM), an anticancer drug, induces DNA double-stranded breaks (DSBs) and consequently triggers the cellular DDR. Due to its physiological implications in hepatocellular carcinoma (HCC) and cell fate decision, 14-3-3ε was chosen as the pathway-specific bait protein to identify the critical target(s) responsible for HCC MDR. By using an LC-MS/MS-based proteomic approach, MVP was first identified in the BLM-induced 14-3-3ε interactome formed in HCC cells. Biological characterization revealed that MVP possesses specific activity to promote the resistance to the BLM-induced DDR. On the other hand, 14-3-3ε enhances BLM-induced DDR by interacting with MVP. Mechanistic investigation further revealed that 14-3-3ε, in a phosphorylation-dependent manner, binds to the phosphorylated sites at both Thr52 and Ser864 of the monomer of MVP. Consequently, the phosphorylation-dependent binding between 14-3-3ε and MVP inhibits the drug-resistant activity of MVP for an enhanced DDR to BLM treatment. Our findings provide an insight into the mechanism underlying how the BLM-induced interaction between 14-3-3ε and MVP modulates MDR, implicating novel strategy to overcome the chemotherapeutic resistance through interfering specific protein-protein interactions.

  2. Dodecyltriphenylphosphonium inhibits multiple drug resistance in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Knorre, Dmitry A; Markova, Olga V; Smirnova, Ekaterina A; Karavaeva, Iuliia E; Sokolov, Svyatoslav S; Severin, Fedor F

    2014-08-08

    Multiple drug resistance pumps are potential drug targets. Here we asked whether the lipophilic cation dodecyltriphenylphosphonium (C12TPP) can interfere with their functioning. First, we found that suppression of ABC transporter gene PDR5 increases the toxicity of C12TPP in yeast. Second, C12TPP appeared to prevent the efflux of rhodamine 6G - a fluorescent substrate of Pdr5p. Moreover, C12TPP increased the cytostatic effects of some other known Pdr5p substrates. The chemical nature of C12TPP suggests that after Pdr5p-driven extrusion the molecules return to the plasma membrane and then into the cytosol, thus effectively competing with other substrates of the pump. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation.

    Directory of Open Access Journals (Sweden)

    Xiao-Na Pan

    Full Text Available Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA. Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.

  4. Alpinetin inhibits lung cancer progression and elevates sensitization drug-resistant lung cancer cells to cis-diammined dichloridoplatium

    Directory of Open Access Journals (Sweden)

    Wu L

    2015-11-01

    Full Text Available Lin Wu, Wei Yang, Su-ning Zhang, Ji-bin Lu Department of Thoracic Surgery, Sheng Jing Hospital of China Medical University, Shenyang, People’s Republic of China Objective: Alpinetin is a novel flavonoid that has demonstrated potent antitumor activity in previous studies. However, the efficacy and mechanism of alpinetin in treating lung cancer have not been determined. Methods: We evaluated the impact of different doses and durations of alpinetin treatment on the cell proliferation, the apoptosis of lung cancer cells, as well as the drug-resistant lung cancer cells. Results: This study showed that the alpinetin inhibited the cell proliferation, enhanced the apoptosis, and inhibited the PI3K/Akt signaling in lung cancer cells. Moreover, alpinetin significantly increased the sensitivity of drug-resistant lung cancer cells to the chemotherapeutic effect of cis-diammined dichloridoplatium. Taken together, this study demonstrated that alpinetin significantly suppressed the development of human lung cancer possibly by influencing mitochondria and the PI3K/Akt signaling pathway and sensitized drug-resistant lung cancer cells. Conclusion: Alpinetin may be used as a potential compound for combinatorial therapy or as a complement to other chemotherapeutic agents when multiple lines of treatments have failed to reduce lung cancer. Keywords: alpinetin, cell proliferation and apoptosis, drug resistance reversal, PI3K/Akt, lung cancer

  5. Potent inhibition of drug-resistant HIV protease variants by monoclonal antibodies

    Czech Academy of Sciences Publication Activity Database

    Bartoňová, Vanda; Král, Vlastimil; Sieglová, Irena; Brynda, Jiří; Fábry, Milan; Hořejší, Magdalena; Kožíšek, Milan; Grantz Šašková, Klára; Konvalinka, Jan; Sedláček, Juraj; Řezáčová, Pavlína

    2008-01-01

    Roč. 78, č. 3 (2008), s. 275-277 ISSN 0166-3542 R&D Projects: GA MZd NR8571 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z40550506 Keywords : HIV protease * drug resistance * Inhibiting antibody Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.613, year: 2008

  6. Emetine inhibits replication of RNA and DNA viruses without generating drug-resistant virus variants.

    Science.gov (United States)

    Khandelwal, Nitin; Chander, Yogesh; Rawat, Krishan Dutt; Riyesh, Thachamvally; Nishanth, Chikkahonnaiah; Sharma, Shalini; Jindal, Naresh; Tripathi, Bhupendra N; Barua, Sanjay; Kumar, Naveen

    2017-08-01

    At a noncytotoxic concentration, emetine was found to inhibit replication of DNA viruses [buffalopoxvirus (BPXV) and bovine herpesvirus 1 (BHV-1)] as well as RNA viruses [peste des petits ruminants virus (PPRV) and Newcastle disease virus (NDV)]. Using the time-of-addition and virus step-specific assays, we showed that emetine treatment resulted in reduced synthesis of viral RNA (PPRV and NDV) and DNA (BPXV and BHV-1) as well as inhibiting viral entry (NDV and BHV-1). In addition, emetine treatment also resulted in decreased synthesis of viral proteins. In a cell free endogenous viral polymerase assay, emetine was found to significantly inhibit replication of NDV, but not BPXV genome, suggesting that besides directly inhibiting specific viral polymerases, emetine may also target other factors essentially required for efficient replication of the viral genome. Moreover, emetine was found to significantly inhibit BPXV-induced pock lesions on chorioallantoic membrane (CAM) along with associated mortality of embryonated chicken eggs. At a lethal dose 50 (LD 50 ) of 126.49 ng/egg and at an effective concentration 50 (EC 50 ) of 3.03 ng/egg, the therapeutic index of the emetine against BPXV was determined to be 41.74. Emetine was also found to significantly delay NDV-induced mortality in chicken embryos associated with reduced viral titers. Further, emetine-resistant mutants were not observed upon long-term (P = 25) sequential passage of BPXV and NDV in cell culture. Collectively, we have extended the effective antiviral activity of emetine against diverse groups of DNA and RNA viruses and propose that emetine could provide significant therapeutic value against some of these viruses without inducing an antiviral drug-resistant phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Activity of siderophores against drug-resistant Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Gokarn K

    2018-01-01

    Full Text Available Karuna Gokarn,1,2 Ramprasad B Pal1 1Department of Microbiology, Sir Hurkisondas Nurrotumdas Medical Research Society, 2Caius Research Laboratory, St Xavier’s College, Mumbai, India Abstract: Infections by drug-resistant bacteria are life-threatening. As iron is a vital element for the growth of bacteria, iron-chelating agents (siderophores can be used to arrest their multiplication. Exogenous siderophores – exochelin-MS and deferoxamine-B – were evaluated for their inhibitory activity against methicillin-resistant Staphylococcus aureus and metallo-β-lactamase producers – Pseudomonas aeruginosa and Acinetobacter baumannii – by disc diffusion, micro-broth dilution, and turbidimetric growth assays. The drug-resistant isolates were inhibited by the synergistic activity of siderophores and antibiotics. Minimum inhibitory concentration of exochelin-MS+ampicillin for different isolates was between 0.05 and 0.5 mg/mL. Minimum inhibitory concentration of deferoxamine-B+ampicillin was 1.0 mg/mL and greater. Iron-chelation therapy could provide a complementary approach to overcome drug resistance in pathogenic bacteria. Keywords: iron-chelation, xenosiderophores, exochelin MS, deferoxamine B

  8. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells.

    Science.gov (United States)

    Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E; Sanderson, Michael W; Bodie, Wesley W; Kramer, Lora B; Orlowski, Robert Z; Grant, Steven

    2014-01-01

    The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.

  9. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Xin-Yan Pei

    Full Text Available The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.

  10. P-glycoprotein inhibition of drug resistant cell lines by nanoparticles.

    Science.gov (United States)

    Singh, Manu Smriti; Lamprecht, Alf

    2016-01-01

    Several pharmaceutical excipients are known for their ability to interact with cell membrane lipids and reverse the phenomenon of multidrug resistance (MDR) in cancer. Interestingly, many excipients act as stabilizers and are key ingredients in a variety of nano-formulations. In this study, representatives of ionic and non-ionic excipients were used as surface active agents in nanoparticle (NP) formulations to utilize their MDR reversing potential. In-vitro assays were performed to elucidate particle-cell interaction and accumulation of P-glycoprotein (P-gp) substrates-rhodamine-123 and calcein AM, in highly drug resistant glioma cell lines. Chemosensitization achieved using NPs and their equivalent dose of free excipients was assessed with the co-administered anti-cancer drug doxorubicin. Among the excipients used, non-ionic surfactant, Cremophor® EL, and cationic surfactant, cetyltrimethylammonuium bromide (CTAB), demonstrated highest P-gp modulatory activity in both free solution form (up to 7-fold lower IC50) and as a formulation (up to 4.7-fold lower IC50) as compared to doxorubicin treatment alone. Solutol® HS15 and Tween® 80 exhibited considerable chemosensitization as free solution but not when incorporated into a formulation. Sodium dodecyl sulphate (SDS)-based nanocarriers resulted in slightly improved cytotoxicity. Overall, the results highlight and envisage the usage of excipient in nano-formulations in a bid to improve chemosensitization of drug resistant cancer cells towards anti-cancer drugs.

  11. Taking aim at a moving target: designing drugs to inhibit drug-resistant HIV-1 reverse transcriptases.

    Science.gov (United States)

    Sarafianos, Stefan G; Das, Kalyan; Hughes, Stephen H; Arnold, Eddy

    2004-12-01

    HIV undergoes rapid genetic variation; this variation is caused primarily by the enormous number of viruses produced daily in an infected individual. Because of this variation, HIV presents a moving target for drug and vaccine development. The variation within individuals has led to the generation of diverse HIV-1 subtypes, which further complicates the development of effective drugs and vaccines. In general, it is more difficult to hit a moving target than a stationary target. Two broad strategies for hitting a moving target (in this case, HIV replication) are to understand the movement and to aim at the portions that move the least. In the case of anti-HIV drug development, the first option can be addressed by understanding the mechanism(s) of drug resistance and developing drugs that effectively inhibit mutant viruses. The second can be addressed by designing drugs that interact with portions of the viral machinery that are evolutionarily conserved, such as enzyme active sites.

  12. [Morphological signs of inflammatory activity in different clinical forms of drug-resistant pulmonary tuberculosis].

    Science.gov (United States)

    Elipashev, A A; Nikolsky, V O; Shprykov, A S

    to determine whether the activity of tuberculous inflammation is associated with different clinical forms of drug-resistant pulmonary tuberculosis. The material taken from 310 patients operated on in 2010-2015 were retrospectively examined. The patients underwent economical lung resections of limited extent (typical and atypical ones of up to 3 segments) for circumscribed forms of tuberculosis with bacterial excretion. A study group consisted of 161 (51.9%) patients with drug-resistant variants of pulmonary tuberculosis. A control group included 149 (48.1%) patients with preserved susceptibility of Mycobacterium tuberculosis to anti-TB drugs. The activity of specific changes in tuberculosis was morphologically evaluated in accordance with the classification proposed by B.M. Ariel in 1998. The highest activity of fourth-to-fifth degree specific inflammation, including that outside the primary involvement focus, was obtained in the drug-resistant pulmonary tuberculosis group due to the predominance of patients with cavernous and fibrous-cavernous tuberculosis versus those in whom the susceptibility to chemotherapeutic agents was preserved. A macroscopic study showed that the primary lesion focus had a median size in one-half of the all the examinees; but large tuberculomas, caverns, and fibrous caverns over 4 cm in diameter were multiple and detected in the drug-resistant pulmonary tuberculosis group. Multidrug resistance was observed in more than 60% of the patients with fibrous-cavernous pulmonary tuberculosis, extensive drug resistance was seen in those with cavernous tuberculosis, which is an aggravating factor. The data obtained from the morphological study of the intraoperative material can specify the clinical form of tuberculosis and evaluate the efficiency of preoperative specific therapy. The highest activity of specific inflammation was observed in patients with multiple drug-resistant pulmonary tuberculosis, the prevalence of third-to-fourth degree

  13. Methylation of WTH3, a possible drug resistant gene, inhibits p53 regulated expression

    International Nuclear Information System (INIS)

    Tian, Kegui; Wang, Yuezeng; Huang, Yu; Sun, Boqiao; Li, Yuxin; Xu, Haopeng

    2008-01-01

    Previous results showed that over-expression of the WTH3 gene in MDR cells reduced MDR1 gene expression and converted their resistance to sensitivity to various anticancer drugs. In addition, the WTH3 gene promoter was hypermethylated in the MCF7/AdrR cell line and primary drug resistant breast cancer epithelial cells. WTH3 was also found to be directly targeted and up regulated by the p53 gene. Furthermore, over expression of the WTH3 gene promoted the apoptotic phenotype in various host cells. To further confirm WTH3's drug resistant related characteristics, we recently employed the small hairpin RNA (shRNA) strategy to knockdown its expression in HEK293 cells. In addition, since the WTH3 promoter's p53-binding site was located in a CpG island that was targeted by methylation, we were interested in testing the possible effect this epigenetic modification had on the p53 transcription factor relative to WTH3 expression. To do so, the in vitro methylation method was utilized to examine the p53 transgene's influence on either the methylated or non-methylated WTH3 promoter. The results generated from the gene knockdown strategy showed that reduction of WTH3 expression increased MDR1 expression and elevated resistance to Doxorubicin as compared to the original control cells. Data produced from the methylation studies demonstrated that DNA methylation adversely affected the positive impact of p53 on WTH3 promoter activity. Taken together, our studies provided further evidence that WTH3 played an important role in MDR development and revealed one of its transcription regulatory mechanisms, DNA methylation, which antagonized p53's positive impact on WTH3 expression

  14. Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance.

    Science.gov (United States)

    Mohana, Krishnamoorthy; Achary, Anant

    2017-08-01

    Glutathione-S-transferase (GST) inhibition is a strategy to overcome drug resistance. Several isoforms of human GSTs are present and they are expressed in almost all the organs. Specific expression levels of GSTs in various organs are collected from the human transcriptome data and analysis of the organ-specific expression of GST isoforms is carried out. The variations in the level of expressions of GST isoforms are statistically significant. The GST expression differs in diseased conditions as reported by many investigators and some of the isoforms of GSTs are disease markers or drug targets. Structure analysis of various isoforms is carried out and literature mining has been performed to identify the differences in the active sites of the GSTs. The xenobiotic binding H site is classified into H1, H2, and H3 and the differences in the amino acid composition, the hydrophobicity and other structural features of H site of GSTs are discussed. The existing inhibition strategies are compared. The advent of rational drug design, mechanism-based inhibition strategies, availability of high-throughput screening, target specific, and selective inhibition of GST isoforms involved in drug resistance could be achieved for the reversal of drug resistance and aid in the treatment of diseases.

  15. Activities of selected medicinal plants against multi-drug resistant ...

    African Journals Online (AJOL)

    The present work was designed to assess the in vitro antibacterial activities of some Cameroonian medicinal plants including Entada abyssinica, Entada africana, Pentaclethra macrophylla, Allexis cauliflora, Anthocleista leibrechtsiana, Carapa procera, Carica papaya and Persea americana against Gram-negative bacteria ...

  16. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    2010-10-01

    Full Text Available Uncoupling protein-2 (UCP2 is known to suppress mitochondrial reactive oxygen species (ROS production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.

  17. Drug Resistance

    Science.gov (United States)

    ... Drug-resistance testing is also recommended for all pregnant women with HIV before starting HIV medicines and also in some pregnant women already taking HIV medicines. Pregnant women will work with their health ...

  18. Antibacterial activity of herbal extracts against multi-drug resistant Escherichia coli recovered from retail chicken meat.

    Science.gov (United States)

    Shaheen, Arfat Yousaf; Sheikh, Ali Ahmad; Rabbani, Masood; Aslam, Asim; Bibi, Tasra; Liaqat, Fakhra; Muhammad, Javed; Rehmani, Shafqat Fatima

    2015-07-01

    Increasing incidence rate of multiple drug resistance in Escherichia coli (E. coli) due to extensive uses of antibiotics is a serious challenge to disease treatment. Contaminated retail chicken meat is one of the major sources of spread of multi drug resistant (MDR) E. coli. Current study has been conducted to study the prevalence of MDR E. coli in retail chicken meat samples from Lahore city of Pakistan and it was found that 73.86% of E. coli isolates have MDR pattern. In vitro evaluation of antibacterial activity of crude ethanolic extracts of six herbs against MDR E. coli phenotypes has revealed that clove and cinnamon have maximum zones of inhibition as compared to other herbal extracts. Mint and coriander gave the intermediate results while garlic and kalonji showed the least antibacterial activity against the MDR E. coli phenotypes using the agar well diffusion technique. Average Minimum Inhibitory Concentrations (MICs) for clove, mint, cinnamon, coriander, kalonji and garlic extracts were 1.15, 1.38, 0.5, 1.99, 2.41, 8.60 mg/mL respectively using the broth micro dilution method. The results obtained in present study were revealed that crude ethanol extracts of selected herbs have had significant antibacterial activity. Hence they can be used as promising alternatives of antimicrobials against MDR E. coli species and can be used for cooked food preservation.

  19. The Inhibition of Folylpolyglutamate Synthetase (folC in the Prevention of Drug Resistance in Mycobacterium tuberculosis by Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Tzu-Chieh Hung

    2014-01-01

    Full Text Available Tuberculosis (TB is an infectious disease caused by many strains of mycobacteria, but commonly Mycobacterium tuberculosis. As a possible method of reducing the drug resistance of M. tuberculosis, this research investigates the inhibition of Folylpolyglutamate synthetase, a protein transcript from the resistance association gene folC. After molecular docking to screen the traditional Chinese medicine (TCM database, the candidate TCM compounds, with Folylpolyglutamate synthetase, were selected by molecular dynamics. The 10,000 ps simulation in association with RMSD analysis and total energy and structural variation defined the protein-ligand interaction. The selected TCM compounds Saussureamine C, methyl 3-O-feruloylquinate, and Labiatic acid have been found to inhibit the activity of bacteria and viruses and to regulate immunity. We also suggest the possible pathway in protein for each ligand. Compared with the control, similar interactions and structural variations indicate that these compounds might have an effect on Folylpolyglutamate synthetase. Finally, we suggest Saussureamine C is the best candidate compound as the complex has a high score, maintains its structural composition, and has a larger variation value than the control, thus inhibiting the drug resistance ability of Mycobacterium tuberculosis.

  20. Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Sørensen, Belinda Halling; Sauter, Daniel Rafael Peter

    2015-01-01

    to be an essential component of both VRAC and VSOAC. Reduced VRAC and VSOAC activities are seen in drug resistant cancer cells. ANO1 is a calcium-activated chloride channel expressed on the plasma membrane of e.g. secretory epithelia. ANO1 is amplified and highly expressed in a large number of carcinomas. The gene...... functions as well as their role in cancer and drug resistance....

  1. Drug resistance

    NARCIS (Netherlands)

    Gorter, J.A.; Potschka, H.; Noebels, J.L.; Avoli, M.; Rogawski, M.A.; Olsen, R.W.; Delgado-Escueta, A.V.

    2012-01-01

    Drug resistance remains to be one of the major challenges in epilepsy therapy. Identification of factors that contribute to therapeutic failure is crucial for future development of novel therapeutic strategies for difficult-to-treat epilepsies. Several clinical studies have shown that high seizure

  2. Ginger Phytochemicals Inhibit Cell Growth and Modulate Drug Resistance Factors in Docetaxel Resistant Prostate Cancer Cell.

    Science.gov (United States)

    Liu, Chi-Ming; Kao, Chiu-Li; Tseng, Yu-Ting; Lo, Yi-Ching; Chen, Chung-Yi

    2017-09-05

    Ginger has many bioactive compounds with pharmacological activities. However, few studies are known about these bioactive compounds activity in chemoresistant cells. The aim of the present study was to investigate the anticancer properties of ginger phytochemicals in docetaxel-resistant human prostate cancer cells in vitro. In this study, we isolated 6-gingerol, 10-gingerol, 4-shogaol, 6-shogaol, 10-shogaol, and 6-dehydrogingerdione from ginger. Further, the antiproliferation activity of these compounds was examined in docetaxel-resistant (PC3R) and sensitive (PC3) human prostate cancer cell lines. 6-gingerol, 10-gingerol, 6-shogaol, and 10-shogaol at the concentration of 100 μM significantly inhibited the proliferation in PC3R but 6-gingerol, 6-shogaol, and 10-shogaol displayed similar activity in PC3. The protein expression of multidrug resistance associated protein 1 (MRP1) and glutathione-S-transferase (GSTπ) is higher in PC3R than in PC3. In summary, we isolated the bioactive compounds from ginger. Our results showed that 6-gingerol, 10-gingerol, 6-shogaol, and 10-shogaol inhibit the proliferation of PC3R cells through the downregulation of MRP1 and GSTπ protein expression.

  3. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations.

    Science.gov (United States)

    Tojo, Shigeo; Tanaka, Yukinori; Ochi, Kozo

    2015-12-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Antibacterial activity of combined medicinal plants extract against multiple drug resistant strains

    Directory of Open Access Journals (Sweden)

    Rafiqul Islam

    2015-06-01

    Full Text Available Objective: To find out the combined antibacterial efficacy of Aegle marmelos, Aphanamixis polystachya, Cuscuta reflexa and Aesclynomene indica against bacterial pathogens. Methods: Antibacterial potency of combined plant extracts has been tested against Bacillus subtilis IFO 3026, Sarcina lutea IFO 3232, Xanthomonas campestris IAM 1671, Escherichia coli IFO 3007, Klebsiella pneumoniae ATTC 10031, Proteus vulgaris MTCC 321 and Pseudomonas denitrificans KACC 32026 by disc diffusion assay. Commercially available standard antibiotic discs were also used to find out antibiotic resistance pattern of test organisms. Results: Among the test organisms, Escherichia coli, Proteus vulgaris, Klebsiella pneumoniae and Proteus denitrificans showed resistance against multiple commercially available antibiotics. On the other hand, these multiple drug resistant organisms showed susceptibility against combined plant extracts. Conclusions: These combined plants extracts showed synergistic antibacterial activity and could lead to new antibacterial drug designing.

  5. Leveraging Hypoxia-Activated Prodrugs to Prevent Drug Resistance in Solid Tumors.

    Directory of Open Access Journals (Sweden)

    Danika Lindsay

    2016-08-01

    Full Text Available Experimental studies have shown that one key factor in driving the emergence of drug resistance in solid tumors is tumor hypoxia, which leads to the formation of localized environmental niches where drug-resistant cell populations can evolve and survive. Hypoxia-activated prodrugs (HAPs are compounds designed to penetrate to hypoxic regions of a tumor and release cytotoxic or cytostatic agents; several of these HAPs are currently in clinical trial. However, preliminary results have not shown a survival benefit in several of these trials. We hypothesize that the efficacy of treatments involving these prodrugs depends heavily on identifying the correct treatment schedule, and that mathematical modeling can be used to help design potential therapeutic strategies combining HAPs with standard therapies to achieve long-term tumor control or eradication. We develop this framework in the specific context of EGFR-driven non-small cell lung cancer, which is commonly treated with the tyrosine kinase inhibitor erlotinib. We develop a stochastic mathematical model, parametrized using clinical and experimental data, to explore a spectrum of treatment regimens combining a HAP, evofosfamide, with erlotinib. We design combination toxicity constraint models and optimize treatment strategies over the space of tolerated schedules to identify specific combination schedules that lead to optimal tumor control. We find that (i combining these therapies delays resistance longer than any monotherapy schedule with either evofosfamide or erlotinib alone, (ii sequentially alternating single doses of each drug leads to minimal tumor burden and maximal reduction in probability of developing resistance, and (iii strategies minimizing the length of time after an evofosfamide dose and before erlotinib confer further benefits in reduction of tumor burden. These results provide insights into how hypoxia-activated prodrugs may be used to enhance therapeutic effectiveness in the

  6. Antibacterial Activity of Essential Oil of Sature jahortensis Against Multi-DrugResistant Bacteria

    Directory of Open Access Journals (Sweden)

    Saeide Saeidi

    2014-05-01

    Full Text Available Background: Development of resistance to many of the commonly used antibiotics is an impetus for further attempts to search for new antimicrobial agents. Objectives: In the present study, the antibacterial activity of Saturejahortensis essential oil against multi-drug resistant bacteria isolated from the urinary tract infections was investigated. Materials and Methods: During the years 2011 to 2012 a total of 36 strains of pathogenic bacteria including 12 Klebsiellapneumoniae, 12 Escherichia coli and 12 Staphylococcus aureus species were isolated from urine samples of hospitalized patients (Amir Al-Momenin Hospital, Zabol, South-eastern Iran suffering from urinary tract infections. After bacteriological confirmatory tests, the minimum inhibitory concentrations of the essential oil of Saturejahortensis were determined using micro-dilution method. Results: The antibiotic resistance profile of the E. coli isolates were as follows: ceftazidime (50% cefixime (41.6%, tetracycline (75%, erythromycin (58.3%. However K. pneumoniae isolates showed resistance to ceftazidime (33.3%, cefixime (58.3%, erythromycin (75% and S. aureus isolates were resistant to cefixime (33.3%, trimethoprim-sulfamethoxazole (41.66%, penicillin (50%, oxacillin (83.3%, ceftazidime (66.6% and vancomycin (8.3%. The essential oil of this plant had inhibitory effect against most isolates. More than 1/3 of the E. coli isolates showed the lowest MIC (10 ppm whereas more than 1/3 of the K. pneumoniae isolates showed the highest (250 ppm MIC values. In contrast ,equal number of S. aureus isolates showed the low MIC values (10 and 50 ppm, while the heighest MIC (250 ppm was seen in 1/3 of isolates and moderate MIC (100 ppm was seen in one isolate only. Conclusions: The Saturejahortensis essential oil has a potent antimicrobial activity against multi-drug resistant bacteria. The present study confirms the usefullness of this essential oil as antibacterial agent but further research is

  7. Bioconjugated nano-bactericidal complex for potent activity against human and phytopathogens with concern of global drug resistant crisis.

    Science.gov (United States)

    Syed, Baker; Nagendra Prasad, M N; Mohan Kumar, K; Satish, S

    2018-05-09

    The present study emphasizes the need for novel antimicrobial agents to combat the global drug resistant crisis. The development of novel nanomaterials is reported to be of the alternative tool to combat drug resistant pathogens. In present investigation, bioconjugated nano-complex was developed from secondary metabolite secreted from endosymbiont. The endosymbiont capable of secreting antimicrobial metabolite was subjected to fermentation and the culture supernatant was assessed for purification of antimicrobial metabolite via bio-assay guided fraction techniques such as thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and column chromatography. The metabolite was characterized as 2,4-Diacetylphloroglucinol (2,4 DAPG) which was used to develop bioconjugated nano-complex by treating with 1 mM silver nitrate under optimized conditions. The purified metabolite 2,4 DAPG reduced silver nitrate to form bioconjugated nano-complex to form association with silver nanoparticles. The oxidized form of DAPG consists of four hard ligands that can conjugate on to the surface of silver nanoparticles cluster. The bioconjugation was confirmed with UV-visible spectroscopy which displayed the shift and shoulder peak in the absorbance spectra. This biomolecular interaction was further determined by the Fourier-transform spectroscopy (FTIR) and nuclear magnetic resonance (NMR) analyses which displayed different signals ascertaining the molecular binding of 2,4,DAPG with silver nanoparticles. The transmission electron microscopy (TEM) analysis revealed the cluster formation due to bioconjugation. The XRD analysis revealed the crystalline nature of nano-complex with the characteristic peaks indexed to Bragg's reflection occurring at 2θ angle which indicated the (111), (200), (220) and (311) planes. The activity of bioconjugated nano-complex was tested against 12 significant human and phytopathogens. Among all the test pathogens, Shigella flexneri (MTCC

  8. Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation.

    Science.gov (United States)

    Courtney, Colleen M; Goodman, Samuel M; Nagy, Toni A; Levy, Max; Bhusal, Pallavi; Madinger, Nancy E; Detweiler, Corrella S; Nagpal, Prashant; Chatterjee, Anushree

    2017-10-01

    The rise of multidrug-resistant (MDR) bacteria is a growing concern to global health and is exacerbated by the lack of new antibiotics. To treat already pervasive MDR infections, new classes of antibiotics or antibiotic adjuvants are needed. Reactive oxygen species (ROS) have been shown to play a role during antibacterial action; however, it is not yet understood whether ROS contribute directly to or are an outcome of bacterial lethality caused by antibiotics. We show that a light-activated nanoparticle, designed to produce tunable flux of specific ROS, superoxide, potentiates the activity of antibiotics in clinical MDR isolates of Escherichia coli , Salmonella enterica , and Klebsiella pneumoniae . Despite the high degree of antibiotic resistance in these isolates, we observed a synergistic interaction between both bactericidal and bacteriostatic antibiotics with varied mechanisms of action and our superoxide-producing nanoparticles in more than 75% of combinations. As a result of this potentiation, the effective antibiotic concentration of the clinical isolates was reduced up to 1000-fold below their respective sensitive/resistant breakpoint. Further, superoxide-generating nanoparticles in combination with ciprofloxacin reduced bacterial load in epithelial cells infected with S. enterica serovar Typhimurium and increased Caenorhabditis elegans survival upon infection with S. enterica serovar Enteriditis, compared to antibiotic alone. This demonstration highlights the ability to engineer superoxide generation to potentiate antibiotic activity and combat highly drug-resistant bacterial pathogens.

  9. Oridonin effectively reverses the drug resistance of cisplatin involving induction of cell apoptosis and inhibition of MMP expression in human acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2017-03-01

    Full Text Available Cisplatin is the first generation platinum-based chemotherapy agent. However, the extensive application of cisplatin inevitably causes drug resistance, which is a major obstacle to cancer chemotherapy. Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activity. The aim of our study is to investigate the role of oridonin to reverse the cisplatin-resistance in human acute myeloid leukemia (AML cells. The effect of oridonin on human AML cell proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays in cisplatin-resistant human AML cells. Furthermore, cell apoptosis was examined by flow cytometry. The inhibitive effect of oridonin in vivo was determined using xenografted nude mice. In addition, the expressions of MMP2 and MMP9 were detected by Western blot. There was a synergistic antitumor effect between cisplatin and oridonin on cisplatin-resistant human AML cells in vitro and in vivo. In addition, the combination of cisplatin and oridonin synergistically induced cell apoptosis. Furthermore, the combination treatment not only inhibited AML cell migration and invasion, but more significantly, decreased the expressions of MMP2 and MMP9 proteins. Our results suggest that the synergistic effect between both agents is likely to be driven by the inhibition of MMP expression and the resulting increased apoptosis.

  10. ANTIBACTERIAL ACTIVITY OF DRACONTOMELON DAO EXTRACTS ON METHICILLIN-RESISTANT S. AUREUS (MRSA) AND E. COLI MULTIPLE DRUG RESISTANCE (MDR).

    Science.gov (United States)

    Yuniati, Yuniati; Hasanah, Nurul; Ismail, Sjarif; Anitasari, Silvia; Paramita, Swandari

    2018-01-01

    Staphylococcus aureus , methicillin-resistant and Escherichia coli , multidrug-resistant included in the list of antibiotic-resistant priority pathogens from WHO. As multidrug-resistant bacteria problem is increasing, it is necessary to probe new sources for identifying antimicrobial compounds. Medicinal plants represent a rich source of antimicrobial agents. One of the potential plants for further examined as antibacterial is Dracontomelon dao (Blanco) Merr. & Rolfe. The present study designed to find the antibacterial activity of D. dao stem bark extracts on Methicillin-resistant S. aureus (MRSA) and E. coli Multiple Drug Resistance (MDR), followed by determined secondary metabolites with antibacterial activity and determined the value of MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). D. dao stem bark extracted using 60% ethanol. Disc diffusion test methods used to find the antibacterial activity, following by microdilution methods to find the value of MIC and MBC. Secondary metabolites with antibacterial activity determined by bioautography using TLC (thin layer chromatography) methods. D. dao stem bark extracts are sensitive to MSSA, MRSA and E.coli MDR bacteria. The inhibition zone is 16.0 mm in MSSA, 11.7 mm in MRSA and 10.7 mm in E. coli MDR. The entire MBC/MIC ratios for MSSA, MRSA and E.coli MDR is lower than 4. The ratio showed bactericidal effects of D. dao stem bark extracts. In TLC results, colorless bands found to be secondary metabolites with antibacterial activity. D. dao stem bark extracts are potential to develop as antibacterial agent especially against MRSA and E. coli MDR strain.

  11. In vitro antimicrobial activity of five essential oils on multi-drug resistant Gram-negative clinical isolates

    OpenAIRE

    Hercules Sakkas; Panagiota Gousia; Vangelis Economou; Vassilios Sakkas; Stefanos Petsios; Chrissanthy Papadopoulou

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneum...

  12. Oral Metronomic Topotecan Sensitizes Crizotinib Antitumor Activity in ALKF1174L Drug-Resistant Neuroblastoma Preclinical Models

    Directory of Open Access Journals (Sweden)

    Libo Zhang

    2017-08-01

    Full Text Available BACKGROUND: Anaplastic lymphoma kinase (ALK inhibitor crizotinib has proven to be effective in the treatment of ALK-mutated neuroblastoma, but crizotinib resistance was commonly observed in patients. We aimed to overcome crizotinib resistance by combining with the MEK inhibitor trametinib or low-dose metronomic (LDM topotecan in preclinical neuroblastoma models. METHODS: We selected a panel of neuroblastoma cell lines carrying various ALK genetic aberrations to assess the therapeutic efficacy on cell proliferation in vitro. Downstream signals of ALK activation, including phosphorylation of ERK1/2, Akt as well as HIF-1α expression were evaluated under normoxic and hypoxic conditions. Tumor growth inhibition was further assessed in NOD/SCID xenograft mouse models. RESULTS: All NBL cell lines responded to crizotinib treatment but at variable ED50 levels, ranging from 0.25 to 5.58 μM. ALK-mutated cell lines SH-SY5Y, KELLY, LAN-5, and CHLA-20 are more sensitive than ALK wild-type cell lines. In addition, we demonstrated that under hypoxic conditions, all NBL cell lines showed marked decrease of ED50s when compared to normoxia except for KELLY cells. Taking into consideration the hypoxia sensitivity to crizotinib, combined treatment with crizotinib and LDM topotecan demonstrated a synergistic effect in ALKF1174L-mutated SH-SY5Y cells. In vivo, single-agent crizotinib showed limited antitumor activity in ALKF1174L-mutated SH-SY5Y and KELLY xenograft models; however, when combined with topotecan, significantly delayed tumor development was achieved in both SH-SY5Y and KELLY tumor models. CONCLUSIONS: Oral metronomic topotecan reversed crizotinib drug resistance in the ALKF1174L-mutated neuroblastoma preclinical model.

  13. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains.

    Science.gov (United States)

    Boonyanugomol, Wongwarut; Kraisriwattana, Kairin; Rukseree, Kamolchanok; Boonsam, Kraisorn; Narachai, Panchaporn

    In this study, we determined the antibacterial and synergistic activities of the essential oil from Zingiber cassumunar against the extensively drug-resistant (XDR) Acinetobacter baumannii strains. The antibacterial and synergistic properties of the essential oil from Z. cassumunar were examined by agar disc diffusion tests. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated by broth microdilution using the resazurin assay. The in vitro time-kill antibacterial kinetics was analyzed using the plate count technique. We found that the essential oil from Z. cassumunar had antibacterial activity against A. baumannii, with MIC and MBC ranging from 7.00 to 9.24mg/ml. The essential oil could completely inhibit A. baumannii at 1h, and coccoid-shaped bacteria were found after treatment. In addition, the essential oil had a synergistic effect when combined with antibiotics, e.g., aminoglycosides, fluoroquinolones, tetracyclines, and folate pathway inhibitors. Thus, the essential oil from Z. cassumunar has strong antibacterial and synergistic activities against XDR A. baumannii, which may provide the basis for the development of a new therapy against drug-resistant bacteria. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Immunohistochemical Estimates of Angiogenesis, Proliferative Activity, p53 Expression, and Multiple Drug Resistance Have No Prognostic Impact in Osteosarcoma: A Comparative Clinicopathological Investigation

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Jensen, Kenneth; Vaeth, Michael

    2008-01-01

    Purpose. To investigate angiogenesis, multiple drug resistance (MDR) and proliferative activity as prognostic variables in patients suffering from osteosarcoma. Methods. Histologic biopsies from 117 patients treated in the period from 1972 through 1999 were immunohistologically investigated...

  15. Antimicrobial (Drug) Resistance

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Antimicrobial (Drug) Resistance Go to Information for Researchers ► Credit: ... and infectious diseases. Why Is the Study of Antimicrobial (Drug) Resistance a Priority for NIAID? Over time, ...

  16. Antimalarial activity of novel 4-aminoquinolines active against drug resistant strains.

    Science.gov (United States)

    Kondaparla, Srinivasarao; Soni, Awakash; Manhas, Ashan; Srivastava, Kumkum; Puri, Sunil K; Katti, S B

    2017-02-01

    In the present study we have synthesized a new class of 4-aminoquinolines and evaluated against Plasmodium falciparum in vitro (3D7-sensitive strain & K1-resistant strain) and Plasmodium yoelii in vivo (N-67 strain). Among the series, eleven compounds (5, 6, 7, 8, 9, 11, 12, 13, 14, 15 and 21) showed superior antimalarial activity against K1 strain as compared to CQ. In addition, all these analogues showed 100% suppression of parasitemia on day 4 in the in vivo mouse model against N-67 strain when administered orally. Further, biophysical studies suggest that this series of compounds act on heme polymerization target. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites.

    Science.gov (United States)

    Kevin Ii, Dion A; Meujo, Damaris Af; Hamann, Mark T

    2009-02-01

    As multidrug-resistant (MDR) pathogens continue to emerge, there is a substantial amount of pressure to identify new drug candidates. Carboxyl polyethers, also referred to as polyether antibiotics, are a unique class of compounds with outstanding potency against a variety of critical infectious disease targets including protozoa, bacteria and viruses. The characteristics of these molecules that are of key interest are their selectivity and high potency against several MDR etiological agents. Although many studies have been published about carboxyl polyether antibiotics, there are no recent reviews of this class of drugs. The purpose of this review is to provide the reader with an overview of the spectrum of activity of polyether antibiotics, their mechanism of action, toxicity and potential as drug candidates to combat drug-resistant infectious diseases. Polyether ionophores show a high degree of promise for the potential control of drug-resistant bacterial and parasitic infections. Despite the long history of use of this class of drugs, very limited medicinal chemistry and drug optimization studies have been reported, thus leaving the door open to these opportunities in the future. Scifinder and PubMed were the main search engines used to locate articles relevant to the topic presented in the present review. Keywords used in our search were specific names of each of the 88 compounds presented in the review as well as more general terms such as polyethers, ionophores, carboxylic polyethers and polyether antibiotics.

  18. Inhibition of GSK3B bypass drug resistance of p53-null colon carcinomas by enabling necroptosis in response to chemotherapy

    DEFF Research Database (Denmark)

    Grassilli, Emanuela; Narloch, Robert; Federzoni, Elena

    2013-01-01

    Evasion from chemotherapy-induced apoptosis due to p53 loss strongly contributes to drug resistance. Identification of specific targets for the treatment of drug-resistant p53-null tumors would therefore increase the effectiveness of cancer therapy....

  19. Tenofovir alafenamide demonstrates broad cross-genotype activity against wild-type HBV clinical isolates and maintains susceptibility to drug-resistant HBV isolates in vitro.

    Science.gov (United States)

    Liu, Yang; Miller, Michael D; Kitrinos, Kathryn M

    2017-03-01

    Tenofovir alafenamide (TAF) is a novel prodrug of tenofovir (TFV). This study evaluated the antiviral activity of TAF against wild-type genotype A-H HBV clinical isolates as well as adefovir-resistant, lamivudine-resistant, and entecavir-resistant HBV isolates. Full length HBV genomes or the polymerase/reverse transcriptase (pol/RT) region from treatment-naïve patients infected with HBV genotypes A-H were amplified and cloned into an expression vector under the control of a CMV promoter. In addition, 11 drug resistant HBV constructs were created by site-directed mutagenesis of a full length genotype D construct. Activity of TAF was measured by transfection of each construct into HepG2 cells and assessment of HBV DNA levels following treatment across a range of TAF concentrations. TAF activity in vitro was similar against wild-type genotype A-H HBV clinical isolates. All lamivudine- and entecavir-resistant isolates and 4/5 adefovir-resistant isolates were found to be sensitive to inhibition by TAF in vitro as compared to the wild-type isolate. The adefovir-resistant isolate rtA181V + rtN236T exhibited low-level reduced susceptibility to TAF. TAF is similarly active in vitro against wild-type genotype A-H HBV clinical isolates. The TAF sensitivity results for all drug-resistant isolates are consistent with what has been observed with the parent drug TFV. The in vitro cell-based HBV phenotyping assay results support the use of TAF in treatment of HBV infected subjects with diverse HBV genotypes, in both treatment-naive and treatment-experienced HBV infected patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Chaetominine reduces MRP1-mediated drug resistance via inhibiting PI3K/Akt/Nrf2 signaling pathway in K562/Adr human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingyun; Wei, Xing [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai (China); Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai (China); Lu, Yanhua, E-mail: luyanhua@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai (China); Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai (China)

    2016-05-13

    Drug resistance limits leukemia treatment and chaetominine, a cytotoxic alkaloid that promotes apoptosis in a K562 human leukemia cell line via the mitochondrial pathway was studied with respect to chemoresistance in a K562/Adr human resistant leukemia cell line. Cytotoxicity assays indicated that K562/Adr resistance to adriamycin (ADR) did not occur in the presence of chaetominine and that chaetominine increased chemosensitivity of K562/Adr to ADR. Data show that chaetominine enhanced ADR-induced apoptosis and intracellular ADR accumulation in K562/Adr cells. Accordingly, chaetominine induced apoptosis by upregulating ROS, pro-apoptotic Bax and downregulating anti-apoptotic Bcl-2. RT-PCR and western-blot confirmed that chaetominine suppressed highly expressed MRP1 at mRNA and protein levels. But little obvious alternation of another drug transporter MDR1 mRNA was observed. Furthermore, inhibition of MRP1 by chaetominine relied on inhibiting Akt phosphorylation and nuclear Nrf2. In summary, chaetominine strongly reverses drug resistance by interfering with the PI3K/Akt/Nrf2 signaling, resulting in reduction of MRP1-mediated drug efflux and induction of Bax/Bcl-2-dependent apoptosis in an ADR-resistant K562/Adr leukemia cell line. - Highlights: • Chaetominine enhanced chemosensitivity of ADR against K562/Adr cells. • Chaetominine increased intracellular ADR levels via inhibiting MRP1. • Chaetominine induced apoptosis of K562/Adr cells through upregulation of ROS and modulation of Bax/Bcl-2. • Inhibition of MRP1 and Nrf2 by chaetominine treatment was correlative with blockade of PI3K/Akt signaling.

  1. Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance.

    Directory of Open Access Journals (Sweden)

    Nadia Bakkour

    2007-10-01

    Full Text Available The development of multidrug-resistant viruses compromises antiretroviral therapy efficacy and limits therapeutic options. Therefore, it is an ongoing task to identify new targets for antiretroviral therapy and to develop new drugs. Here, we show that an indole derivative (IDC16 that interferes with exonic splicing enhancer activity of the SR protein splicing factor SF2/ASF suppresses the production of key viral proteins, thereby compromising subsequent synthesis of full-length HIV-1 pre-mRNA and assembly of infectious particles. IDC16 inhibits replication of macrophage- and T cell-tropic laboratory strains, clinical isolates, and strains with high-level resistance to inhibitors of viral protease and reverse transcriptase. Importantly, drug treatment of primary blood cells did not alter splicing profiles of endogenous genes involved in cell cycle transition and apoptosis. Thus, human splicing factors represent novel and promising drug targets for the development of antiretroviral therapies, particularly for the inhibition of multidrug-resistant viruses.

  2. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    International Nuclear Information System (INIS)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng; Xia, Qiang

    2012-01-01

    Highlights: ► miR-199a-5p levels were significantly decreased after cisplatin treatment. ► Cisplatin treatment induced autophagy activation. ► Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  3. Activities of colistin- and minocycline-based combinations against extensive drug resistant Acinetobacter baumannii isolates from intensive care unit patients

    Directory of Open Access Journals (Sweden)

    Li Jian

    2011-04-01

    Full Text Available Abstract Background Extensive drug resistance of Acinetobacter baumannii is a serious problem in the clinical setting. It is therefore important to find active antibiotic combinations that could be effective in the treatment of infections caused by this problematic 'superbug'. In this study, we analyzed the in vitro activities of three colistin-based combinations and a minocycline-based combination against clinically isolated extensive drug resistant Acinetobacter baumannii (XDR-AB strains. Methods Fourteen XDR-AB clinical isolates were collected. The clonotypes were determined by polymerase chain reaction-based fingerprinting. Susceptibility testing was carried out according to the standards of the Clinical and Laboratory Standards Institute. Activities of drug combinations were investigated against four selected strains and analyzed by mean survival time over 12 hours (MST12 h in a time-kill study. Results The time-kill studies indicated that the minimum inhibitory concentration (MIC of colistin (0.5 or 0.25 μg/mL completely killed all strains at 2 to 4 hours, but 0.5×MIC colistin showed no bactericidal activity. Meropenem (8 μg/mL, minocycline (1 μg/mL or rifampicin (0.06 μg/mL did not show bactericidal activity. However, combinations of colistin at 0.5×MIC (0.25 or 0.125 μg/mL with each of the above were synergistic and shown bactericidal activities against all test isolates. A combination of meropenem (16 μg/mL with minocycline (0.5×MIC, 4 or 2 μg/mL was synergitic to all test isolates, but neither showed bactericidal activity alone. The MST12 h values of drug combinations (either colistin- or minocycline-based combinations were significantly shorter than those of the single drugs (p Conclusions This study indicates that combinations of colistin/meropenem, colistin/rifampicin, colistin/minocycline and minocycline/meropenem are synergistic in vitro against XDR-AB strains.

  4. Antimicrobial (Drug) Resistance Prevention

    Science.gov (United States)

    ... June 6, 2018 HIV Vaccine Elicits Antibodies in Animals that Neutralize Dozens of HIV Strains , June 4, 2018 ... Antimicrobial (Drug) Resistance > Understanding share with facebook share with twitter share ...

  5. Activities of doripenem against nosocomial bacteremic drug-resistant Gram-negative bacteria in a medical center in Taiwan.

    Science.gov (United States)

    Dong, Shao-Xing; Wang, Jann-Tay; Chang, Shan-Chwen

    2012-12-01

    The majority of nosocomial infections in Taiwan hospitals are caused by drug-resistant Gram-negative bacteria (GNB), including Pseudomonas aeruginosa, Acinetobacter baumannii, and various species of Enterobacteriaceae. Carbapenems are important agents for treating infections caused by these GNB. Recently, doripenem was approved for use in Taiwan in August 2009. However, data on its in vitro activity against nosocomial GNB isolated from Taiwan remain limited. The study was designed to look into this clinical issue. A total of 400 nonduplicated nosocomial blood isolates isolated in 2009, inclusive of P. aeruginosa (n = 100), A. baumannii (n = 100), and Enterobacteriaceae (n = 200), were randomly selected from the bacterial bank preserved at National Taiwan University Hospital. Susceptibilities of these 400 isolates to various antibiotics, including doripenem, imipenem, meropenem, ceftazidime, amikacin, ciprofloxacin, colistin, and tigecycline were determined by using Etest. Doripenem demonstrated similar in vitro activity to imipenem and meropenem against P. aeruginosa (87%, vs. 85% and 89%), A. baumannii (56%, vs. 60% and 60%), and Enterobacteriaceae (100%, vs. 98.5% and 99.5%). The prevalence of carbapenem-resistant (any one of three tested carbapenems) P. aeruginosa, A. baumannii, and Enterobacteriaceae isolates was 15%, 44%, and 0.5%, respectively. Doripenem was as effective as imipenem and meropenem in our study. However, there was a significant proportion of carbapenem resistance among the tested isolates. Hence, longitudinal surveillance is necessary to monitor the resistance trend. Copyright © 2012. Published by Elsevier B.V.

  6. 2'-Fluoro-6'-methylene carbocyclic adenosine and its phosphoramidate prodrug: A novel anti-HBV agent, active against drug-resistant HBV mutants.

    Science.gov (United States)

    Singh, Uma S; Mulamoottil, Varughese A; Chu, Chung K

    2018-05-01

    Chronic hepatitis B (CHB) is one of the major causes of morbidity and mortality worldwide. Currently, clinically approved nucleos(t)ide analogs (NAs) are very efficient in reducing the load of hepatitis B virus (HBV) with minimum side effects. However, the long-term administration of antiviral drugs promotes HBV for potential drug resistance. To overcome this problem, combination therapies are administered, but HBV progressively altered mutations remain a threat. Therefore, optimally designed NAs are urgently needed to treat drug-resistant HBV. Herein, 2'-fluoro-6'-methylene carbocyclic adenosine (FMCA) and its phosphoramidate (FMCAP) have been discovered, which may be utilized in combination therapies for curing drug-resistant chronic hepatitis B. In preclinical studies, these carbocyclic NAs demonstrated potential anti-HBV activity against adefovir, as well as lamivudine (LMV/LAM) drug-resistant mutants. In vitro, these molecules have demonstrated significant activity against LMV/entecavir (ETV) triple mutants (L180M + S202G + M204V). Also, preliminary studies of FMCA/FMCAP in chimeric mice and female Non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mouse models having the LMV/ETV triple mutant have shown a high rate of reduction of HBV DNA levels compared to ETV. In this review, we have summarized preclinical studies of FMCA and its phosphoramidate prodrug (FMCAP). © 2018 Wiley Periodicals, Inc.

  7. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China); Xia, Qiang, E-mail: xiaqiang1@yahoo.com.cn [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer miR-199a-5p levels were significantly decreased after cisplatin treatment. Black-Right-Pointing-Pointer Cisplatin treatment induced autophagy activation. Black-Right-Pointing-Pointer Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  8. Antibacterial activity of methylglyoxal against multi-drug resistant Salmonella Typhi

    International Nuclear Information System (INIS)

    Afzal, R.K.; Ahmed, A.

    2018-01-01

    To evaluate the antibacterial activity of MGO against MDR Salmonella typhi isolated from blood culture specimens and compare this activity against non-MDR S. typhi and with other gram negative rods. Study Design: Experimental study. Place and Duration of Study: Department of Microbiology, University of Health Sciences Lahore, from Jul 2011 to Jun 2012. Material and Methods: A total of 157 isolates of S. typhi were collected from different hospitals of Lahore and kept stored at -80 degree C. Morphological, biochemical and serological identification and antibiotic susceptibility testing of the isolates was carried out as per CLSI 2011 guidelines. Agar dilution method was used for the determination of MICs of MGO, using a multi-point inoculator. The data was compiled and results were determined using SPSS version 17. Results: Ninety-seven out of 157 isolates (61.8%) were MDR S. Typhi, while 60 (38.2%) were non-MDR S. Typhi. MIC90 of MGO against MDR S. Typhi isolates was (0.20 mg/mL; 2.8 mM), against non-MDR S. Typhi and Gram negative rods each, it was (0.21 mg/mL; 3.0 mM). When MICs of MGO against MDR S. Typhi group were compared to those of non-MDR S. Typhi group, the p-value was 0.827 (p>0.05; statistically insignificant). Whereas, the p-value of MICs of MGO against MDR S. Typhi group was 0.023 (p<0.05; statistically significant) when compared to gram negative rods group. Conclusion: MGO has good antibacterial activity against MDR and non-MDR S. Typhi, and other genera of Gram negative rods. (author)

  9. Lethal inflammasome activation by a multi-drug resistant pathobiont upon antibiotic disruption of the microbiota

    Science.gov (United States)

    Ayres, Janelle S.; Trinidad, Norver J.; Vance, Russell E.

    2012-01-01

    The mammalian intestine harbors a complex microbial community that provides numerous benefits to its host. However, the microbiota can also include potentially virulent species, termed pathobionts, which can cause disease when intestinal homeostasis is disrupted. The molecular mechanisms by which pathobionts cause disease remain poorly understood. Here we describe a sepsis-like disease that occurs upon gut injury in antibiotic-treated mice. Sepsis was associated with the systemic spread of a specific multidrug-resistant E. coli pathobiont that expanded dramatically in the microbiota of antibiotic-treated mice. Rapid sepsis-like death required a component of the innate immune system, the Naip5-Nlrc4 inflammasome. In accordance with Koch's postulates, we found the E. coli pathobiont was sufficient to activate Naip5-Nlrc4 and cause disease when injected intravenously into unmanipulated mice. These findings reveal how sepsis-like disease can result from recognition of pathobionts by the innate immune system. PMID:22522562

  10. Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy.

    Science.gov (United States)

    Jing, Lijia; Qu, Haijing; Wu, Dongqi; Zhu, Chaojian; Yang, Yongbo; Jin, Xing; Zheng, Jian; Shi, Xiangsheng; Yan, Xiufeng; Wang, Yang

    2018-01-01

    Multidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients. In this study, a nanomedicine RGD-NPVs@MNPs/DOX was developed by encapsulating melanin nanoparticles (MNPs) and doxorubicin (DOX) inside RGD peptide (c(RGDyC))-modified nanoscale platelet vesicles (RGD-NPVs) to efficiently inhibit the growth and metastasis of drug-resistant tumors via a cancer cells and tumor vasculature dual-targeting strategy. Methods: The in vitro immune evasion potential and the targeting performance of RGD-NPVs@MNPs/DOX were examined using RAW264.7, HUVECs, MDA-MB-231 and MDA-MB-231/ADR cells lines. We also evaluated the pharmacokinetic behavior and the in vivo therapeutic performance of RGD-NPVs@MNPs/DOX using a MDA-MB-231/ADR tumor-bearing nude mouse model. Results: By taking advantage of the self-recognizing property of the platelet membrane and the conjugated RGD peptides, RGD-NPVs@MNPs/DOX was found to evade immune clearance and target the αvβ3 integrin on tumor vasculature and resistant breast tumor cells. Under irradiation with a NIR laser, RGD-NPVs@MNPs/DOX produced a multipronged effect, including reversal of cancer MDR, efficient killing of resistant cells by chemo-photothermal therapy, elimination of tumor vasculature for blocking metastasis, and long-lasting inhibition of the expressions of VEGF, MMP2 and MMP9 within the tumor. Conclusion: This versatile nanomedicine of RGD-NPVs@MNPs/DOX integrating unique biomimetic properties, excellent targeting performance, and comprehensive therapeutic strategies in one formulation might bring opportunities to MDR cancer therapy.

  11. Gefitinib inhibits invasive phenotype and epithelial-mesenchymal transition in drug-resistant NSCLC cells with MET amplification.

    Directory of Open Access Journals (Sweden)

    Silvia La Monica

    Full Text Available Despite the initial response, all patients with epidermal growth factor receptor (EGFR-mutant non-small cell lung cancer (NSCLC eventually develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs. The EGFR-T790M secondary mutation is responsible for half of acquired resistance cases, while MET amplification has been associated with acquired resistance in about 5-15% of NSCLCs. Clinical findings indicate the retained addiction of resistant tumors on EGFR signaling. Therefore, we evaluated the molecular mechanisms supporting the therapeutic potential of gefitinib maintenance in the HCC827 GR5 NSCLC cell line harbouring MET amplification as acquired resistance mechanism. We demonstrated that resistant cells can proliferate and survive regardless of the presence of gefitinib, whereas the absence of the drug significantly enhanced cell migration and invasion. Moreover, the continuous exposure to gefitinib prevented the epithelial-mesenchymal transition (EMT with increased E-cadherin expression and down-regulation of vimentin and N-cadherin. Importantly, the inhibition of cellular migration was correlated with the suppression of EGFR-dependent Src, STAT5 and p38 signaling as assessed by a specific kinase array, western blot analysis and silencing functional studies. On the contrary, the lack of effect of gefitinib on EGFR phosphorylation in the H1975 cells (EGFR-T790M correlated with the absence of effects on cell migration and invasion. In conclusion, our findings suggest that certain EGFR-mutated patients may still benefit from a second-line therapy including gefitinib based on the specific mechanism underlying tumor cell resistance.

  12. Mechanisms of drug resistance in cancer cells

    International Nuclear Information System (INIS)

    Iqbal, M.P.

    2003-01-01

    Development of drug resist chemotherapy. For the past several years, investigators have been striving hard to unravel mechanisms of drug resistance in cancer cells. Using different experimental models of cancer, some of the major mechanisms of drug resistance identified in mammalian cells include: (a) Altered transport of the drug (decreased influx of the drug; increased efflux of the drug (role of P-glycoprotein; role of polyglutamation; role of multiple drug resistance associated protein)), (b) Increase in total amount of target enzyme/protein (gene amplification), (c) alteration in the target enzyme/protein (low affinity enzyme), (d) Elevation of cellular glutathione, (e) Inhibition of drug-induced apoptosis (mutation in p53 tumor suppressor gene; increased expression of bcl-xl gene). (author)

  13. Activity of Colistin in Combination with Meropenem, Tigecycline, Fosfomycin, Fusidic Acid, Rifampin or Sulbactam against Extensively Drug-Resistant Acinetobacter baumannii in a Murine Thigh-Infection Model.

    Directory of Open Access Journals (Sweden)

    Bing Fan

    Full Text Available Few effective therapeutic options are available for treating severe infections caused by extensively drug-resistant Acinetobacter baumannii (XDR-AB. Using a murine thigh-infection model, we examined the in vivo efficacy of colistin in combination with meropenem, tigecycline, fosfomycin, fusidic acid, rifampin, or sulbactam against 12 XDR-AB strains. Colistin, tigecycline, rifampin, and sulbactam monotherapy significantly decreased bacterial counts in murine thigh infections compared with those observed in control mice receiving no treatment. Colistin was the most effective agent tested, displaying bactericidal activity against 91.7% of strains at 48 h post-treatment. With strains showing a relatively low minimum inhibitory concentration (MIC for meropenem (MIC ≤ 32 mg/L, combination therapy with colistin plus meropenem caused synergistic inhibition at both 24 h and 48 h post-treatment. However, when the meropenem MIC was ≥64 mg/L, meropenem did not significantly alter the efficacy of colistin. The addition of rifampin and fusidic acid significantly improved the efficacy of colistin, showing a synergistic effect in 100% and 58.3% of strains after 24 h of treatment, respectively, while the addition of tigecycline, fosfomycin, or sulbactam did not show obvious synergistic activity. No clear differences in activities were observed between colistin-rifampin and colistin-fusidic acid combination therapy with most strains. Overall, our in vivo study showed that administering colistin in combination with rifampin or fusidic acid is more efficacious in treating XDR-AB infections than other combinations. The colistin-meropenem combination may be another appropriate option if the MIC is ≤32 mg/L. Further clinical studies are urgently needed to confirm the relevance of these findings.

  14. Potential of berberine to enhance antimicrobial activity of commonly used antibiotics for dairy cow mastitis caused by multiple drug-resistant Staphylococcus epidermidis infection.

    Science.gov (United States)

    Zhou, X; Yang, C; Li, Y; Liu, X; Wang, Y

    2015-08-19

    Berberine is a plant alkaloid with antimicrobial activity against a variety of microorganisms. In this study, the antimicrobial properties of berberine against multi-drug resistant field isolates of Staphylococcus epidermidis were investigated using berberine alone or in combination with a commonly used antibiotics in veterinary clinics, including penicillin, lincomycin, and amoxicillin. The results indicated that the minimum inhibitory concentrations of berberine, penicillin, lincomycin, and amoxicillin against field S. epidermidis isolates were 2-512, 0.8-213, 0.4-1024, and 0.4-256 mg/mL, respectively. Furthermore, the synergistic effects of antimicrobial activity against these multi-drug resistant isolates were observed when the berberine was combined with penicillin, lincomycin, or amoxicillin; no antagonistic effect of the combination was detected in any of the clinical isolates. These observations were further confirmed using a time-killing assay, in which a combination of 2 agents yielded a greater than 2.03-2.44 log10 decrease in colony-forming unit/mL compared with each agent alone. These findings suggest that berberine is a promising compound for preventing and treating multi-drug resistant S. epidermidis infected mastitis in dairy cows either alone or in combination with other commonly used antibiotics, such as penicillin, lincomycin, and amoxicillin.

  15. Elucidating the Interdependence of Drug Resistance from Combinations of Mutations.

    Science.gov (United States)

    Ragland, Debra A; Whitfield, Troy W; Lee, Sook-Kyung; Swanstrom, Ronald; Zeldovich, Konstantin B; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2017-11-14

    HIV-1 protease is responsible for the cleavage of 12 nonhomologous sites within the Gag and Gag-Pro-Pol polyproteins in the viral genome. Under the selective pressure of protease inhibition, the virus evolves mutations within (primary) and outside of (secondary) the active site, allowing the protease to process substrates while simultaneously countering inhibition. The primary protease mutations impede inhibitor binding directly, while the secondary mutations are considered accessory mutations that compensate for a loss in fitness. However, the role of secondary mutations in conferring drug resistance remains a largely unresolved topic. We have shown previously that mutations distal to the active site are able to perturb binding of darunavir (DRV) via the protein's internal hydrogen-bonding network. In this study, we show that mutations distal to the active site, regardless of context, can play an interdependent role in drug resistance. Applying eigenvalue decomposition to collections of hydrogen bonding and van der Waals interactions from a series of molecular dynamics simulations of 15 diverse HIV-1 protease variants, we identify sites in the protease where amino acid substitutions lead to perturbations in nonbonded interactions with DRV and/or the hydrogen-bonding network of the protease itself. While primary mutations are known to drive resistance in HIV-1 protease, these findings delineate the significant contributions of accessory mutations to resistance. Identifying the variable positions in the protease that have the greatest impact on drug resistance may aid in future structure-based design of inhibitors.

  16. Development of drug resistance mutations in patients on highly active antiretroviral therapy: does competitive advantage drive evolution.

    Science.gov (United States)

    Kolber, Michael A

    2007-01-01

    Most physicians that treat individuals with HIV-1 disease are able to successfully suppress viral replication with the pharmacologic armamentarium available today. For the majority of patients this results in immune reconstitution and improved quality of life. However, a large fraction of these patients have transient elevations in their viral burden and even persistence of low-level viremia. In fact, many individuals whose viral load is suppressed to < 50 c/ml have evidence of low-level viral replication. The impact of low-level viremia and persistent viral replication is an area of significant study and interest owing to the potential for the development of drug resistance mutations. Here the fundamental question is whether and perhaps what factors provide a venue for the development of resistant virus. The concern is clearly the eventual progression of disease with the exhaustion of treatment options. The purpose of this review is to evaluate the current literature regarding the effect of low-level viremia on the development of drug resistance mutations. Herein, we discuss the impact of different levels of viral suppression on the development of mutations. In addition, we look at the role that resistance and fitness play in determining the survival of a breakthrough mutation within the background of drug.

  17. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance

    Science.gov (United States)

    Azam, Mohammad; Nardi, Valentina; Shakespeare, William C.; Metcalf, Chester A.; Bohacek, Regine S.; Wang, Yihan; Sundaramoorthi, Raji; Sliz, Piotr; Veach, Darren R.; Bornmann, William G.; Clarkson, Bayard; Dalgarno, David C.; Sawyer, Tomi K.; Daley, George Q.

    2006-01-01

    Mutation in the ABL kinase domain is the principal mechanism of imatinib resistance in patients with chronic myelogenous leukemia. Many mutations favor active kinase conformations that preclude imatinib binding. Because the active forms of ABL and SRC resemble one another, we tested two dual SRC-ABL kinase inhibitors, AP23464 and PD166326, against 58 imatinib-resistant (IMR) BCR/ABL kinase variants. Both compounds potently inhibit most IMR variants, and in vitro drug selection demonstrates that active (AP23464) and open (PD166326) conformation-specific compounds are less susceptible to resistance than imatinib. Combinations of inhibitors suppressed essentially all resistance mutations, with the notable exception of T315I. Guided by mutagenesis studies and molecular modeling, we designed a series of AP23464 analogues to target T315I. The analogue AP23846 inhibited both native and T315I variants of BCR/ABL with submicromolar potency but showed nonspecific cellular toxicity. Our data illustrate how conformational dynamics of the ABL kinase accounts for the activity of dual SRC-ABL inhibitors against IMR-mutants and provides a rationale for combining conformation specific inhibitors to suppress resistance. PMID:16754879

  18. Inhibition of ABCB1 (MDR1 expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Michiro Susa

    2010-05-01

    Full Text Available The use of neo-adjuvant chemotherapy in treating osteosarcoma has improved patients' average 5 year survival rate from 20% to 70% in the past 30 years. However, for patients who progress after chemotherapy, its effectiveness diminishes due to the emergence of multi-drug resistance (MDR after prolonged therapy.In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure resulting from MDR, we designed and evaluated a novel drug delivery system for MDR1 siRNA delivery. Novel biocompatible, lipid-modified dextran-based polymeric nanoparticles were used as the platform for MDR1 siRNA delivery; and the efficacy of combination therapy with this system was evaluated. In this study, multi-drug resistant osteosarcoma cell lines (KHOS(R2 and U-2OS(R2 were treated with the MDR1 siRNA nanocarriers and MDR1 protein (P-gp expression, drug retention, and immunofluoresence were analyzed. Combination therapy of the MDR1 siRNA loaded nanocarriers with increasing concentrations of doxorubicin was also analyzed. We observed that MDR1 siRNA loaded dextran nanoparticles efficiently suppresses P-gp expression in the drug resistant osteosarcoma cell lines. The results also demonstrated that this approach may be capable of reversing drug resistance by increasing the amount of drug accumulation in MDR cell lines.Lipid-modified dextran-based polymeric nanoparticles are a promising platform for siRNA delivery. Nanocarriers loaded with MDR1 siRNA are a potential treatment strategy for reversing MDR in osteosarcoma.

  19. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria.

    Science.gov (United States)

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W; Carballeira, Néstor M

    2015-11-15

    The first total synthesis of a C5-curcumin-2-hexadecynoic acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13% overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50=100.2±13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    International Nuclear Information System (INIS)

    Florea, Ana-Maria; Büsselberg, Dietrich

    2011-01-01

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects

  1. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    Energy Technology Data Exchange (ETDEWEB)

    Florea, Ana-Maria [Department of Neuropathology, Heinrich-Heine University, Düsseldorf (Germany); Büsselberg, Dietrich, E-mail: dib2015@qatar-med.cornell.edu [Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha (Qatar)

    2011-03-15

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects.

  2. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes

    Science.gov (United States)

    2012-01-01

    Background The present work was designed to evaluate the antibacterial properties of the methanol extracts of eleven selected Cameroonian spices on multi-drug resistant bacteria (MDR), and their ability to potentiate the effect of some common antibiotics used in therapy. Results The extract of Cinnamomum zeylanicum against Escherichia coli ATCC 8739 and AG100 strains showed the best activities, with the lowest minimal inhibitory concentration (MIC) of 64 μg/ml. The extract of Dorstenia psilurus was the most active when tested in the presence of an efflux pump inhibitor, phenylalanine Arginine-β- Naphtylamide (PAβN), a synergistic effect being observed in 56.25 % of the tested bacteria when it was combined with Erythromycin (ERY). Conclusion The present work evidently provides information on the role of some Cameroonian spices in the fight against multi-resistant bacteria. PMID:22709668

  3. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes

    Directory of Open Access Journals (Sweden)

    Voukeng Igor K

    2012-06-01

    Full Text Available Abstract Background The present work was designed to evaluate the antibacterial properties of the methanol extracts of eleven selected Cameroonian spices on multi-drug resistant bacteria (MDR, and their ability to potentiate the effect of some common antibiotics used in therapy. Results The extract of Cinnamomum zeylanicum against Escherichia coli ATCC 8739 and AG100 strains showed the best activities, with the lowest minimal inhibitory concentration (MIC of 64 μg/ml. The extract of Dorstenia psilurus was the most active when tested in the presence of an efflux pump inhibitor, phenylalanine Arginine-β- Naphtylamide (PAβN, a synergistic effect being observed in 56.25 % of the tested bacteria when it was combined with Erythromycin (ERY. Conclusion The present work evidently provides information on the role of some Cameroonian spices in the fight against multi-resistant bacteria.

  4. Hypoxia-induced cytotoxic drug resistance in osteosarcoma is independent of HIF-1Alpha.

    Directory of Open Access Journals (Sweden)

    Jennifer Adamski

    Full Text Available Survival rates from childhood cancer have improved dramatically in the last 40 years, such that over 80% of children are now cured. However in certain subgroups, including metastatic osteosarcoma, survival has remained stubbornly poor, despite dose intensive multi-agent chemotherapy regimens, and new therapeutic approaches are needed. Hypoxia is common in adult solid tumours and is associated with treatment resistance and poorer outcome. Hypoxia induces chemotherapy resistance in paediatric tumours including neuroblastoma, rhabdomyosarcoma and Ewing's sarcoma, in vitro, and this drug resistance is dependent on the oxygen-regulated transcription factor hypoxia inducible factor-1 (HIF-1. In this study the effects of hypoxia on the response of the osteosarcoma cell lines 791T, HOS and U2OS to the clinically relevant cytotoxics cisplatin, doxorubicin and etoposide were evaluated. Significant hypoxia-induced resistance to all three agents was seen in all three cell lines and hypoxia significantly reduced drug-induced apoptosis. Hypoxia also attenuated drug-induced activation of p53 in the p53 wild-type U2OS osteosarcoma cells. Drug resistance was not induced by HIF-1α stabilisation in normoxia by cobalt chloride nor reversed by the suppression of HIF-1α in hypoxia by shRNAi, siRNA, dominant negative HIF or inhibition with the small molecule NSC-134754, strongly suggesting that hypoxia-induced drug resistance in osteosarcoma cells is independent of HIF-1α. Inhibition of the phosphoinositide 3-kinase (PI3K pathway using the inhibitor PI-103 did not reverse hypoxia-induced drug resistance, suggesting the hypoxic activation of Akt in osteosarcoma cells does not play a significant role in hypoxia-induced drug resistance. Targeting hypoxia is an exciting prospect to improve current anti-cancer therapy and combat drug resistance. Significant hypoxia-induced drug resistance in osteosarcoma cells highlights the potential importance of hypoxia as a target

  5. Antibacterial and antibiotic resistance modifying activity of the extracts from Allanblackia gabonensis, Combretum molle and Gladiolus quartinianus against Gram-negative bacteria including multi-drug resistant phenotypes.

    Science.gov (United States)

    Fankam, Aimé G; Kuiate, Jules R; Kuete, Victor

    2015-06-30

    Bacterial resistance to antibiotics is becoming a serious problem worldwide. The discovery of new and effective antimicrobials and/or resistance modulators is necessary to tackle the spread of resistance or to reverse the multi-drug resistance. We investigated the antibacterial and antibiotic-resistance modifying activities of the methanol extracts from Allanblackia gabonensis, Gladiolus quartinianus and Combretum molle against 29 Gram-negative bacteria including multi-drug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the samples meanwhile the standard phytochemical methods were used for the preliminary phytochemical screening of the plant extracts. Phytochemical analysis showed the presence of alkaloids, flavonoids, phenols and tannins in all studied extracts. Other chemical classes of secondary metabolites were selectively presents. Extracts from A. gabonensis and C. molle displayed a broad spectrum of activity with MICs varying from 16 to 1024 μg/mL against about 72.41% of the tested bacteria. The extract from the fruits of A. gabonensis had the best activity, with MIC values below 100 μg/mL on 37.9% of tested bacteria. Percentages of antibiotic-modulating effects ranging from 67 to 100% were observed against tested MDR bacteria when combining the leaves extract from C. molle (at MIC/2 and MIC/4) with chloramphenicol, kanamycin, streptomycin and tetracycline. The overall results of the present study provide information for the possible use of the studied plant, especially Allanblackia gabonensis and Combretum molle in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.

  6. A review of mechanisms of circumvention and modulation of chemotherapeutic drug resistance.

    Science.gov (United States)

    O'Connor, R

    2009-05-01

    Drug resistance is a serious limitation to the effective treatment of a number of common malignancies. Thirty years of laboratory and clinical research have greatly defined the molecular alterations underlying many drug resistance processes in cancer. Based on this knowledge, strategies to overcome the impact of resistance and increase the efficacy of cancer treatment have been translated from laboratory models to clinical trials. This article reviews laboratory and, in particular, clinical attempts at drug resistance circumvention from early forays in the inhibition of cellular efflux pump-mediated drug resistance through to more selective circumvention agent strategies and into inhibition of the other important mechanisms which can allow cancer cells to survive therapy, such as apoptosis resistance. Despite some promising results to date, resistance inhibition strategies have largely failed due to poor understanding of the pharmacology, dynamics and complexity of the resistance phenotype. With the realisation that new molecularly-targeted agents can also be rendered ineffectual by the actions of resistance mechanisms, a major focus is once again emerging on identifying new strategies/pharmaceuticals which can augment the activity of the arsenal of more conventional cytotoxics and newer targeted anti-cancer drugs. Future tactical directions where old and new resistance strategies may merge to overcome this challenge are discussed.

  7. Kinetically Controlled Drug Resistance

    DEFF Research Database (Denmark)

    Sun, Xin E.; Hansen, Bjarne Gram; Hedstrom, Lizbeth

    2011-01-01

    The filamentous fungus Penicillium brevicompactum produces the immunosuppressive drug mycophenolic acid (MPA), which is a potent inhibitor of eukaryotic IMP dehydrogenases (IMPDHs). IMPDH catalyzes the conversion of IMP to XMP via a covalent enzyme intermediate, E-XMP*; MPA inhibits by trapping E...... of resistance is not apparent. Here, we show that, unlike MPA-sensitive IMPDHs, formation of E-XMP* is rate-limiting for both PbIMPDH-A and PbIMPDH-B. Therefore, MPA resistance derives from the failure to accumulate the drug-sensitive intermediate....

  8. Active methamphetamine use is associated with transmitted drug resistance to non-nucleoside reverse transcriptase inhibitors in individuals with HIV infection of unknown duration.

    Science.gov (United States)

    Cachay, Edward R; Moini, Niousha; Kosakovsky Pond, Sergei L; Pesano, Rick; Lie, Yolanda S; Aiem, Heidi; Butler, David M; Letendre, Scott; Mathews, Wm Christopher; Smith, Davey M

    2007-01-01

    Frequent methamphetamine use among recently HIV infected individuals is associated with transmitted drug resistance (TDR) to non-nucleoside reverse transcriptase inhibitors (NNRTI); however, the reversion time of TDR to drug susceptible HIV may exceed 3 years. We assessed whether recreational substance use is associated with detectable TDR among individuals newly diagnosed with HIV infection of unknown duration. Cross-sectional analysis. Subjects were enrolled at the University California, San Diego Early Intervention Program. Demographic, clinical and substance use data were collected using structured interviews. Genotypic resistance testing was performed using GeneSeq, Monogram Biosciences. We analyzed the association between substance use and TDR using bivariate analyses and the corresponding transmission networks using phylogenetic models. Between April 2004 and July 2006, 115 individuals with genotype data were enrolled. The prevalence of alcohol, marijuana and methamphetamine use were 98%, 71% and 64% respectively. Only active methamphetamine use in the 30 days prior to HIV diagnosis was independently associated with TDR to NNRTI (OR: 6.6; p=0.002). Despite not knowing the duration of their HIV infection, individuals reporting active methamphetamine use in the 30 days prior to HIV diagnosis are at an increased risk of having HIV strains that are resistant to NNRTI.

  9. Novel bacterial metabolite merochlorin A demonstrates in vitro activity against multi-drug resistant methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    George Sakoulas

    Full Text Available We evaluated the in vitro activity of a merochlorin A, a novel compound with a unique carbon skeleton, against a spectrum of clinically relevant bacterial pathogens and against previously characterized clinical and laboratory Staphylococcus aureus isolates with resistance to numerous antibiotics.Merochlorin A was isolated and purified from a marine-derived actinomycete strain CNH189. Susceptibility testing for merochlorin A was performed against previously characterized human pathogens using broth microdilution and agar dilution methods. Cytotoxicity was assayed in tissue culture assays at 24 and 72 hours against human HeLa and mouse sarcoma L929 cell lines.The structure of as new antibiotic, merochlorin A, was assigned by comprehensive spectroscopic analysis. Merochlorin A demonstrated in vitro activity against Gram-positive bacteria, including Clostridium dificile, but not against Gram negative bacteria. In S. aureus, susceptibility was not affected by ribosomal mutations conferring linezolid resistance, mutations in dlt or mprF conferring resistance to daptomycin, accessory gene regulator knockout mutations, or the development of the vancomycin-intermediate resistant phenotype. Merochlorin A demonstrated rapid bactericidal activity against MRSA. Activity was lost in the presence of 20% serum.The unique meroterpenoid, merochlorin A demonstrated excellent in vitro activity against S. aureus and C. dificile and did not show cross-resistance to contemporary antibiotics against Gram positive organisms. The activity was, however, markedly reduced in 20% human serum. Future directions for this compound may include evaluation for topical use, coating biomedical devices, or the pursuit of chemically modified derivatives of this compound that retain activity in the presence of serum.

  10. In vitro antimicrobial activity of five essential oils on multi-drug resistant Gram-negative clinical isolates

    Directory of Open Access Journals (Sweden)

    Hercules Sakkas

    2016-09-01

    Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive or resistant and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. [J Complement Med Res 2016; 5(3.000: 212-218

  11. Isolation, structure elucidation and anticancer activity from Brevibacillus brevis EGS 9 that combats Multi Drug Resistant actinobacteria.

    Science.gov (United States)

    Arumugam, T; Senthil Kumar, P; Hemavathy, R V; Swetha, V; Karishma Sri, R

    2018-02-01

    Actinobacteria is the most widely distributed organism in the mangrove environment and produce a large amount of secondary metabolites. A new environmental actinobacterial stain exhibited strong antimicrobial activity against vancomycin and methicillin resistant actinobacteria. The active producer strain was found to be as Brevibacillus brevis EGS9, which was confirmed by its morphological, biochemical characteristics and 16S rRNA gene sequencing. It was deposited in NCBI GeneBank database and received with an accession number of KX388147. Brevibacillus brevis EGS9 was cultivated by submerged fermentation to produce antimicrobial compounds. The anti-proliferative agent was extracted from Brevibacillus brevis EGS9 with ethyl acetate. The bioactive metabolites of mangrove actinobacteria was identified by Liquid chromatography with mass spectrometry analysis. The result of the present investigation revealed that actinobacteria isolated from mangroves are potent source of anticancer activity. The strain of Brevibacillus brevis EGS9 exhibited a potential in vitro anticancer activity. The present research concluded that the actinobacteria isolated from mangrove soil sediment are valuable in discovery of novel species. Copyright © 2017. Published by Elsevier Ltd.

  12. Antibacterial activity of novel cationic peptides against clinical isolates of multi-drug resistant Staphylococcus pseudintermedius from infected dogs.

    Directory of Open Access Journals (Sweden)

    Mohamed F Mohamed

    Full Text Available Staphylococcus pseudintermedius is a major cause of skin and soft tissue infections in companion animals and has zoonotic potential. Additionally, methicillin-resistant S. pseudintermedius (MRSP has emerged with resistance to virtually all classes of antimicrobials. Thus, novel treatment options with new modes of action are required. Here, we investigated the antimicrobial activity of six synthetic short peptides against clinical isolates of methicillin-susceptible and MRSP isolated from infected dogs. All six peptides demonstrated potent anti-staphylococcal activity regardless of existing resistance phenotype. The most effective peptides were RRIKA (with modified C terminus to increase amphipathicity and hydrophobicity and WR-12 (α-helical peptide consisting exclusively of arginine and tryptophan with minimum inhibitory concentration50 (MIC50 of 1 µM and MIC90 of 2 µM. RR (short anti-inflammatory peptide and IK8 "D isoform" demonstrated good antimicrobial activity with MIC50 of 4 µM and MIC90 of 8 µM. Penetratin and (KFF3K (two cell penetrating peptides were the least effective with MIC50 of 8 µM and MIC90 of 16 µM. Killing kinetics revealed a major advantage of peptides over conventional antibiotics, demonstrating potent bactericidal activity within minutes. Studies with propidium iodide and transmission electron microscopy revealed that peptides damaged the bacterial membrane leading to leakage of cytoplasmic contents and consequently, cell death. A potent synergistic increase in the antibacterial effect of the cell penetrating peptide (KFF3K was noticed when combined with other peptides and with antibiotics. In addition, all peptides displayed synergistic interactions when combined together. Furthermore, peptides demonstrated good therapeutic indices with minimal toxicity toward mammalian cells. Resistance to peptides did not evolve after 10 passages of S. pseudintermedius at sub-inhibitory concentration. However, the MICs of amikacin

  13. Peptide-Like Nylon-3 Polymers with Activity against Phylogenetically Diverse, Intrinsically Drug-Resistant Pathogenic Fungi.

    Science.gov (United States)

    Rank, Leslie A; Walsh, Naomi M; Lim, Fang Yun; Gellman, Samuel H; Keller, Nancy P; Hull, Christina M

    2018-01-01

    Understanding the dimensions of fungal diversity has major implications for the control of diseases in humans, plants, and animals and in the overall health of ecosystems on the planet. One ancient evolutionary strategy organisms use to manage interactions with microbes, including fungi, is to produce host defense peptides (HDPs). HDPs and their synthetic analogs have been subjects of interest as potential therapeutic agents. Due to increases in fungal disease worldwide, there is great interest in developing novel antifungal agents. Here we describe activity of polymeric HDP analogs against fungi from 18 pathogenic genera composed of 41 species and 72 isolates. The synthetic polymers are members of the nylon-3 family (poly-β-amino acid materials). Three different nylon-3 polymers show high efficacy against surprisingly diverse fungi. Across the phylogenetic spectrum (with the exception of Aspergillus species), yeasts, dermatophytes, dimorphic fungi, and molds were all sensitive to the effects of these polymers. Even fungi intrinsically resistant to current antifungal drugs, such as the causative agents of mucormycosis ( Rhizopus spp.) and those with acquired resistance to azole drugs, showed nylon-3 polymer sensitivity. In addition, the emerging pathogens Pseudogymnoascus destructans (cause of white nose syndrome in bats) and Candida auris (cause of nosocomial infections of humans) were also sensitive. The three nylon-3 polymers exhibited relatively low toxicity toward mammalian cells. These findings raise the possibility that nylon-3 polymers could be useful against fungi for which there are only limited and/or no antifungal agents available at present. IMPORTANCE Fungi reside in all ecosystems on earth and impart both positive and negative effects on human, plant, and animal health. Fungal disease is on the rise worldwide, and there is a critical need for more effective and less toxic antifungal agents. Nylon-3 polymers are short, sequence random, poly

  14. MRJP1-containing glycoproteins isolated from honey, a novel antibacterial drug candidate with broad spectrum activity against multi-drug resistant clinical isolates

    Directory of Open Access Journals (Sweden)

    Katrina eBrudzynski

    2015-07-01

    Full Text Available The emergence of extended- spectrum β-lactamase (ESBL is the underlying cause of growing antibiotic resistance among Gram-negative bacteria to β-lactam antibiotics. We recently reported the discovery of honey glycoproteins (glps that exhibited a rapid, concentration-dependent antibacterial activity against both Gram-positive Bacillus subtilis and Gram-negative Escherichia coli that resembled action of cell wall-active β-lactam drugs. Glps showed sequence identity with the Major Royal Jelly Protein 1 (MRJP1 precursor that harbors three antimicrobial peptides: Jelleins 1, 2 and 4. Here, we used semi-quantitative radial diffusion assay and broth microdilution assay to evaluate susceptibility of a number of multi-drug resistant (MDR clinical isolates to the MRJP1-contaning honey glycoproteins. The MDR bacterial strains comprised 3 MRSA, 4 Pseudomonas aeruginosa, 2 Klebsiella pneumoniae, 2 VRE and 5 Extended-spectrum beta-lactamase (ESBL identified as 1 Proteus mirabilis, 3 Escherichia coli and 1 Escherichia coli NDM. Their resistance to different classes of antibiotics was confirmed using automated system Vitek 2. MDR isolates differred in their susceptibility to glps with MIC90 values ranging from 4.8μg/ml against B. subtilis to 14.4μg/ml against ESBL K. pneumoniae, Klebsiella spp ESBL and E. coli and up to 33μg/ml against highly resistant strains of P. aeruginosa. Glps isolated from different honeys showed a similar ability to overcome bacterial resistance to β-lactams suggesting that (a their mode of action is distinct from other classes of β-lactams and that (b the common glps structure was the lead structure responsible for the activity. The results of the current study together with our previous evidence of a rapid bactericidal activity of glps demonstrate that glps possess suitable characteristics to be considered a novel antibacterial drug candidate.

  15. Extensively Drug-Resistant TB

    Centers for Disease Control (CDC) Podcasts

    2016-12-16

    Dr. Charlotte Kvasnovsky, a surgery resident and Ph.D. candidate in biostatistics, discusses various types of drug resistance in TB patients in South Africa.  Created: 12/16/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/16/2016.

  16. Initial drug resistance in India

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Initial drug resistance in India. There is gradual increase in primary MDR all over India : Pondi= Pondicherry 1985; Bangalore =1986; Jaipur = 1991; Jaipur =2000. Overall the MDR is less than 3% (TRC studies).

  17. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria

    Science.gov (United States)

    2013-01-01

    drug resistant clinical and soil bacterial strains. Cinnamaldehyde was identified as the most active antimicrobial component present in the cinnamon essential oil which acted as a strong inhibitory agent in MIC assay against the tested bacteria. The results indicate that essential oils from Pakistani spices can be pursued against multidrug resistant bacteria. PMID:24119438

  18. Antimicrobial activity of photodynamic therapy in combination with colistin against a pan-drug resistant Acinetobacter baumannii isolated from burn patient.

    Science.gov (United States)

    Boluki, Ebrahim; Kazemian, Hossein; Peeridogaheh, Hadi; Alikhani, Mohammad Yousef; Shahabi, Sima; Beytollahi, Leili; Ghorbanzadeh, Roghayeh

    2017-06-01

    Nosocomially-acquired multi-, extensively-, and pandrug resistant (MDR, XDR, and PDR) strains of microorganisms such as Acinetobacter baumannii remain a serious cause of infection and septic mortality in burn patients. Treatment of patients with nosocomial burn wound infections is often complicated by drug-resistant strains of A. baumannii. Today, many researchers are focusing on the investigation of novel non-antibiotic strategies such as photodynamic therapy (PDT). We report a new PDT strategy that suppresses colistin resistance in PDR A. baumannii by interfering with the expression of a pmrA/pmrB two-component system. In the current study, A. baumannii with a PDR feature isolated from a burn patient was used as a test strain. PDT was carried out using toluidine blue O (TBO) and light-emitting diode (LED) as a photosensitizer and radiation source, respectively. The antimicrobial susceptibility profiles were assessed for cells surviving PDT. The effects of sub-lethal PDT (sPDT) on the expression of the pmrA/pmrB two-component signal transduction system were evaluated by real-time quantitative reverse transcription PCR. Results of drug susceptibly testing (DST) in LED and TBO groups separately showed that the bacteria were resistant to all tested antibiotics, while the DST result of the LED+TBO group showed highly declining bacterial growth when compared with the control group. Reduction in the expression of pmrA and pmrB was observed in the treated strains after sPDT. This represents the first conclusive example of a direct role for the PDT in breaking antibiotic resistance by directly modulating two-component system activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Emerging Trends of HIV Drug Resistance in Chinese HIV-Infected Patients Receiving First-Line Highly Active Antiretroviral Therapy: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Liu, Huixin; Ma, Ye; Su, Yingying; Smith, M. Kumi; Liu, Ying; Jin, Yantao; Gu, Hongqiu; Wu, Jing; Zhu, Lin; Wang, Ning

    2014-01-01

    Background. Highly active antiretroviral therapy (HAART) has led to a dramatic decrease in AIDS-related morbidity and mortality through sustained suppression of human immunodeficiency virus (HIV) replication and reconstitution of the immune response. Settings like China that experienced rapid HAART rollout and relatively limited drug selection face considerable challenges in controlling HIV drug resistance (DR). Methods. We conducted a systematic review and meta-analysis to describe trends in emergent HIV DR to first-line HAART among Chinese HIV-infected patients, as reflected in the point prevalence of HIV DR at key points and fixed intervals after treatment initiation, using data from cohort studies and cross-sectional studies respectively. Results. Pooled prevalence of HIV DR from longitudinal cohorts studies was 10.79% (95% confidence interval [CI], 5.85%–19.07%) after 12 months of HAART and 80.58% (95% CI, 76.6%–84.02%) after 72 months of HAART. The HIV DR prevalence from cross-sectional studies was measured in treatment intervals; during the 0–12-month HAART treatment interval, the pooled prevalence of HIV DR was 11.1% (95% CI, 7.49%–16.14%), which increased to 22.92% at 61–72 months (95% CI, 9.45%–45.86%). Stratified analyses showed that patients receiving a didanosine-based regimen had higher HIV DR prevalence than those not taking didanosine (15.82% vs 4.97%). Patients infected through former plasma donation and those receiving AIDS treatment at village clinics had higher HIV DR prevalence than those infected through sexual transmission or treated at a county-level hospital. Conclusions. Our findings indicate higher prevalence of HIV DR for patients with longer cumulative HAART exposure, highlighting important subgroups for future HIV DR surveillance and control. PMID:25053721

  20. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions.

    Science.gov (United States)

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-09-04

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g., DNA hypermethylation) are essential to maintain this drug-resistant phenotype. Thus, altered lipid synthesis may be linked to epigenetic mechanisms of drug resistance. We hypothesize that reversing DNA hypermethylation in resistant cells with an epigenetic drug could alter lipid synthesis, changing the cell membrane's biophysical properties to facilitate drug delivery to overcome drug resistance. Herein we show that treating drug-resistant breast cancer cells (MCF-7/ADR) with the epigenetic drug 5-aza-2'-deoxycytidine (decitabine) significantly alters cell lipid composition and biophysical properties, causing the resistant cells to acquire biophysical characteristics similar to those of sensitive cell (MCF-7) lipids. Following decitabine treatment, resistant cells demonstrated increased sphingomyelinase activity, resulting in a decreased sphingomyelin level that influenced lipid domain structures, increased membrane fluidity, and reduced P-glycoprotein expression. Changes in the biophysical characteristics of resistant cell lipids facilitated doxorubicin transport and restored endocytic function for drug delivery with a lipid-encapsulated form of doxorubicin, enhancing the drug efficacy. In conclusion, we have established a new mechanism for efficacy of an epigenetic drug, mediated through changes in lipid composition and biophysical properties, in reversing cancer drug resistance.

  1. Drug-resistant spinal tuberculosis

    Directory of Open Access Journals (Sweden)

    Anil K Jain

    2018-01-01

    Full Text Available Drug-resistant spinal tuberculosis (TB is an emerging health problem in both developing and developed countries. In this review article, we aim to define management protocols for suspicion, diagnosis, and treatment of such patients. Spinal TB is a deep-seated paucibacillary lesion, and the demonstration of acid-fast bacilli on Ziehl-Neelsen staining is possible only in 10%–30% of cases. Drug resistance is suspected in patients showing the failure of clinicoradiological improvement or appearance of a fresh lesion of osteoarticular TB while on anti tubercular therapy (ATT for a minimum period of 5 months. The conventional culture of Mycobacterium tuberculosis remains the gold standard for both bacteriological diagnosis and drug sensitivity testing (DST; however, the high turn around time of 2–6 weeks for detection with added 3 weeks for DST is a major limitation. To overcome this problem, rapid culture methods and molecular methods have been introduced. From a public health perspective, reducing the period between diagnosis and treatment initiation has direct benefits for both the patient and the community. For all patients of drug-resistant spinal TB, a complete Drug-O-Gram should be prepared which includes details of all drugs, their doses, and duration. Patients with confirmed multidrug-resistant TB strains should receive a regimen with at least five effective drugs, including pyrazinamide and one injectable. Patients with resistance to additional antitubercular drugs should receive individualized ATT as per their DST results.

  2. Interplay between Mutations and Efflux in Drug Resistant Clinical Isolates of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Miguel Viveiros

    2017-04-01

    Full Text Available Numerous studies show efflux as a universal bacterial mechanism contributing to antibiotic resistance and also that the activity of the antibiotics subject to efflux can be enhanced by the combined use of efflux inhibitors. Nevertheless, the contribution of efflux to the overall drug resistance levels of clinical isolates of Mycobacterium tuberculosis is poorly understood and still is ignored by many. Here, we evaluated the contribution of drug efflux plus target-gene mutations to the drug resistance levels in clinical isolates of M. tuberculosis. A panel of 17 M. tuberculosis clinical strains were characterized for drug resistance associated mutations and antibiotic profiles in the presence and absence of efflux inhibitors. The correlation between the effect of the efflux inhibitors and the resistance levels was assessed by quantitative drug susceptibility testing. The bacterial growth/survival vs. growth inhibition was analyzed through the comparison between the time of growth in the presence and absence of an inhibitor. For the same mutation conferring antibiotic resistance, different MICs were observed and the different resistance levels found could be reduced by efflux inhibitors. Although susceptibility was not restored, the results demonstrate the existence of a broad-spectrum synergistic interaction between antibiotics and efflux inhibitors. The existence of efflux activity was confirmed by real-time fluorometry. Moreover, the efflux pump genes mmr, mmpL7, Rv1258c, p55, and efpA were shown to be overexpressed in the presence of antibiotics, demonstrating the contribution of these efflux pumps to the overall resistance phenotype of the M. tuberculosis clinical isolates studied, independently of the genotype of the strains. These results showed that the drug resistance levels of multi- and extensively-drug resistant M. tuberculosis clinical strains are a combination between drug efflux and the presence of target-gene mutations, a reality

  3. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii.

    Science.gov (United States)

    Knezevic, Petar; Aleksic, Verica; Simin, Natasa; Svircev, Emilija; Petrovic, Aleksandra; Mimica-Dukic, Neda

    2016-02-03

    Traditional herbal medicine has become an important issue on the global scale during the past decade. Among drugs of natural origin, special place belongs to essential oils, known as strong antimicrobial agents that can be used to combat antibiotic-resistant bacteria. Eucalyptus camaldulensis leaves are traditional herbal remedy used for various purposes, including treatment of infections. The aim of this study was to determine antimicrobial potential of two E. camaldulensis essential oils against multi-drug resistant (MDR) Acinetobacter baumannii wound isolates and to examine possible interactions of essential oils with conventional antimicrobial agents. Chemical composition of essential oils was determined by gas chromatography-mass spectrometry analysis (GC-MS). MIC values of essential oils against A. baumannii strains were estimated by modified broth microdilution method. The components responsible for antimicrobial activity were detected by bioautographic analysis. The potential synergy between the essential oils and antibiotics (ciprofloxacin, gentamicin and polymyxin B) was examined by checkerboard method and time kill curve. The dominant components of both essential oils were spatulenol, cryptone, p-cimene, 1,8-cineole, terpinen-4-ol and β-pinene. The detected MICs for the E. camaldulensis essential oils were in range from 0.5 to 2 μl mL(-1). The bioautographic assay confirmed antibacterial activity of polar terpene compounds. In combination with conventional antibiotics (ciprofloxacin, gentamicin and polymyxin B), the examined essential oils showed synergistic antibacterial effect in most of the cases, while in some even re-sensitized MDR A. baumannii strains. The synergistic interaction was confirmed by time-kill curves for E. camaldulensis essential oil and polymyxin B combination which reduced bacterial count under detection limit very fast, i.e. after 6h of incubation. The detected anti-A. baumannii activity of E. camaldulensis essential oils

  4. Antibacterial Activity of the Extracts Obtained from Rosmarinus officinalis, Origanum majorana, and Trigonella foenum-graecum on Highly Drug-Resistant Gram Negative Bacilli

    Directory of Open Access Journals (Sweden)

    Roula Abdel-Massih

    2010-01-01

    Full Text Available Our aim was to determine the antimicrobial activity of three selected plants (Rosmarinus officinalis, Origanum majorana, and Trigonella foenum-graecum against Extended Spectrum Beta Lactamase (ESBL—producing Escherichia coli and Klebsiella pneumoniae— and to identify the specific plant fraction responsible for the antimicrobial activity. The plants were extracted with ethanol to yield the crude extract which was further subfractionated by different solvents to obtain the petroleum ether, the dichloromethane, the ethyl acetate, and the aqueous fractions. The Minimum Inhibitory Concentrations (MIC and Minimum Bactericidal Concentrations (MBC were determined using broth microdilution. The MICs ranged between 1.25 and 80 g/l. The majority of these microorganisms were inhibited by 80 and 40 g/l of the crude extracts. The petroleum ether fraction of Origanum majorana significantly inhibited 94% of the tested strains. Ethyl acetate extracts of all selected plants exhibited relatively low MICs and could be therefore described as strong antibacterial.

  5. Lysosomes as mediators of drug resistance in cancer.

    Science.gov (United States)

    Zhitomirsky, Benny; Assaraf, Yehuda G

    2016-01-01

    Drug resistance remains a leading cause of chemotherapeutic treatment failure and cancer-related mortality. While some mechanisms of anticancer drug resistance have been well characterized, multiple mechanisms remain elusive. In this respect, passive ion trapping-based lysosomal sequestration of multiple hydrophobic weak-base chemotherapeutic agents was found to reduce the accessibility of these drugs to their target sites, resulting in a markedly reduced cytotoxic effect and drug resistance. Recently we have demonstrated that lysosomal sequestration of hydrophobic weak base drugs triggers TFEB-mediated lysosomal biogenesis resulting in an enlarged lysosomal compartment, capable of enhanced drug sequestration. This study further showed that cancer cells with an increased number of drug-accumulating lysosomes are more resistant to lysosome-sequestered drugs, suggesting a model of drug-induced lysosome-mediated chemoresistance. In addition to passive drug sequestration of hydrophobic weak base chemotherapeutics, other mechanisms of lysosome-mediated drug resistance have also been reported; these include active lysosomal drug sequestration mediated by ATP-driven transporters from the ABC superfamily, and a role for lysosomal copper transporters in cancer resistance to platinum-based chemotherapeutics. Furthermore, lysosomal exocytosis was suggested as a mechanism to facilitate the clearance of chemotherapeutics which highly accumulated in lysosomes, thus providing an additional line of resistance, supplementing the organelle entrapment of chemotherapeutics away from their target sites. Along with these mechanisms of lysosome-mediated drug resistance, several approaches were recently developed for the overcoming of drug resistance or exploiting lysosomal drug sequestration, including lysosomal photodestruction and drug-induced lysosomal membrane permeabilization. In this review we explore the current literature addressing the role of lysosomes in mediating cancer drug

  6. Tumor Heterogeneity and Drug Resistance

    International Nuclear Information System (INIS)

    Kucerova, L.; Skolekova, S.; Kozovska, Z.

    2015-01-01

    New generation of sequencing methodologies revealed unexpected complexity and genomic alterations linked with the tumor subtypes. This diversity exists across the tumor types, histologic tumor subtypes and subsets of the tumor cells within the same tumor. This phenomenon is termed tumor heterogeneity. Regardless of its origin and mechanisms of development it has a major impact in the clinical setting. Genetic, phenotypic and expression pattern diversity of tumors plays critical role in the selection of suitable treatment and also in the prognosis prediction. Intratumoral heterogeneity plays a key role in the intrinsic and acquired chemoresistance to cytotoxic and targeted therapies. In this review we focus on the mechanisms of intratumoral and inter tumoral heterogeneity and their relationship to the drug resistance. Understanding of the mechanisms and spatiotemporal dynamics of tumor heterogeneity development before and during the therapy is important for the ability to design individual treatment protocols suitable in the given molecular context. (author)

  7. Computational Studies of Drug Resistance

    DEFF Research Database (Denmark)

    da Silva Martins, João Miguel

    Drug resistance has been an increasing problem in patient treatment and drug development. Starting in the last century and becoming a major worry in the medical and scienti c communities in the early part of the current millennium, major research must be performed to address the issues of viral...... is of the utmost importance in developing better and less resistance-inducing drugs. A drug's in uence can be characterized in many diff erent ways, however, and the approaches I take in this work re ect those same different in uences. This is what I try to achieve in this work, through seemingly unrelated...... approaches that come together in the study of drug's and their in uence on proteins and vice-versa. In part I, I aim to understand through combined theoretical ensemble analysis and free energy calculations the e ects mutations have over the binding anity and function of the M2 proton channel. This research...

  8. Drug-resistant gram-negative uropathogens: A review.

    Science.gov (United States)

    Khoshnood, Saeed; Heidary, Mohsen; Mirnejad, Reza; Bahramian, Aghil; Sedighi, Mansour; Mirzaei, Habibollah

    2017-10-01

    Urinary tract infection(UTI) caused by Gram-negative bacteria is the second most common infectious presentation in community medical practice. Approximately 150 million people are diagnosed with UTI each year worldwide. Drug resistance in Gram-negative uropathogens is a major global concern which can lead to poor clinical outcomes including treatment failure, development of bacteremia, requirement for intravenous therapy, hospitalization, and extended length of hospital stay. The mechanisms of drug resistance in these bacteria are important due to they are often not identified by routine susceptibility tests and have an exceptional potential for outbreaks. Treatment of UTIs depends on the access to effective drugs, which is now threatened by antibiotic resistant Gram-negative uropathogens. Although several effective antibiotics with activity against highly resistant Gram-negatives are available, there is not a unique antibiotic with activity against the high variety of resistance. Therefore, antimicrobial susceptibility tests, correlation between clinicians and laboratories, development of more rapid diagnostic methods, and continuous monitoring of drug resistance are urgent priorities. In this review, we will discuss about the current global status of drug-resistant Gram-negative uropathogens and their mechanisms of drug resistance to provide new insights into their treatment options. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer.

    Science.gov (United States)

    Ji, Runbi; Zhang, Bin; Zhang, Xu; Xue, Jianguo; Yuan, Xiao; Yan, Yongmin; Wang, Mei; Zhu, Wei; Qian, Hui; Xu, Wenrong

    2015-08-03

    Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.

  10. Active Sputum Monitoring Detects Substantial Rate of Multi-Drug Resistant Tuberculosis (MDR-TB) in an HIV-Infected Population in South Africa

    Science.gov (United States)

    Hassim, Shaheen; Shaw, Pamela A.; Sangweni, Phumelele; Malan, Lizette; Ntshani, Ella; Mathibedi, Monkwe Jethro; Stubbs, Nomso; Metcalf, Julia A; Eckes, Risa; Masur, Henry; Komati, Stephanus

    2010-01-01

    Background Tuberculosis (TB) co-infection with HIV is a substantial problem in South Africa. There has been a presumption that drug resistant strains of TB are common in South Africa, but few studies have documented this impression. Methods In Phidisa, a joint observational and randomized HIV treatment study for South African National Defence Force members and dependents, an initiative obtained microbiologic TB testing in subjects who appeared to be at high risk. We report results for HIV-infected subjects. Results TB was identified by culture in 116/584 (19.9%) of patients selected for sputum examination on the basis of suggestive symptoms. Smear was an insensitive technique for confirming the diagnosis: only 33% of culture-positive patients were identified by smear, with a 0.2% false positive rate. Of the 107 culture-positive individuals with susceptibility testing, 22 (20.6%) were identified to be MDR and 4 (3.7%) became extremely drug resistant tuberculosis (XDR) while under observation. Culture-positive cases with a history of TB treatment had more than twice the rate of MDR than those without, 27.1% vs. 11.9% (p=0.05). Conclusions TB is common in this cohort of HIV-infected patients. Smear was not a sensitive technique for identifying culture-positive cases in this health system. Drug susceptibility testing is essential to proper patient management because MDR was present in 20.6% of culture-positive patients. Better management strategies are needed to reduce the development of MDR-TB since so many such patients had received prior antituberculous therapy that was presumably not curative. PMID:20196651

  11. Combined antiretroviral and anti- tuberculosis drug resistance ...

    African Journals Online (AJOL)

    these epidemics, many challenges remain.[3] Antiretroviral and anti-TB drug resistance pose considerable threats to the control of these epidemics.[4,5]. The breakdown in HIV/TB control within prisons is another emerging threat.[6,7] We describe one of the first reports of combined antiretroviral and anti-TB drug resistance ...

  12. Drug Resistance of Mycobacterium tuberculosis Complex among ...

    African Journals Online (AJOL)

    BACKGROUND: In Burkina Faso, there is no recent data about the level of drug resistance in Mycobacterium tuberculosis strains among newly diagnosed tuberculosis cases. OBJECTIVE: To provide an update of the primary drug resistance of mycobacterium tuberculosis among patients in Burkina faso. METHODS: ...

  13. Emergence of Extensively Drug Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    Extensively drug-resistant tuberculosis (XDR TB) outbreaks have been reported in South Africa, and strains have been identified on 6 continents. Dr. Peter Cegielski, team leader for drug-resistant TB with the Division of Tuberculosis Elimination at CDC, comments on a multinational team's report on this emerging global public health threat.

  14. The effect of S1P receptor signaling pathway on the survival and drug resistance in multiple myeloma cells.

    Science.gov (United States)

    Fu, Di; Li, Yingchun; Li, Jia; Shi, Xiaoyan; Yang, Ronghui; Zhong, Yuan; Wang, Huihan; Liao, Aijun

    2017-01-01

    Multiple myeloma (MM) remains incurable by conventional chemotherapy. Sphingosine-1-phosphate (S1P) receptor-mediated signaling has been recently demonstrated to have critical roles in cell survival and drug resistance in a number of hematological malignancies. To dissect the roles of S1P receptor pathway in MM, we systematically examined cell viability and protein expression associated with cell survival and drug resistance in MM cell lines upon treatment with either pathway activator (S1P) or inhibitor (FTY720). Our results reveal that FTY720 inhibits cell proliferation by downregulating expression of target genes, while S1P has an opposite effect. Knocking down of S1P receptor S1P5R results in a reduction of cell survival-related gene expression; however, it does not have impacts on expression of drug resistance genes. These results suggest that S1P signaling plays a role in cell proliferation and drug resistance in MM, and targeting this pathway will provide a new therapeutic direction for MM management.

  15. Aqueous and Organic Solvent-Extracts of Selected South African Medicinal Plants Possess Antimicrobial Activity against Drug-Resistant Strains of Helicobacter pylori: Inhibitory and Bactericidal Potential

    Directory of Open Access Journals (Sweden)

    Collise Njume

    2011-09-01

    Full Text Available The aim of this study was to identify sources of cheap starting materials for the synthesis of new drugs against Helicobacter pylori. Solvent-extracts of selected medicinal plants; Combretum molle, Sclerocarya birrea, Garcinia kola, Alepidea amatymbica and a single Strychnos species were investigated against 30 clinical strains of H. pylori alongside a reference control strain (NCTC 11638 using standard microbiological techniques. Metronidazole and amoxicillin were included in these experiments as positive control antibiotics. All the plants demonstrated anti-H. pylori activity with zone diameters of inhibition between 0 and 38 mm and 50% minimum inhibitory concentration (MIC50 values ranging from 0.06 to 5.0 mg/mL. MIC50 values for amoxicillin and metronidazole ranged from 0.001 to 0.63 mg/mL and 0.004 to 5.0 mg/mL respectively. The acetone extracts of C. molle and S. birrea exhibited a remarkable bactericidal activity against H. pylori killing more than 50% of the strains within 18 h at 4× MIC and complete elimination of the organisms within 24 h. Their antimicrobial activity was comparable to the control antibiotics. However, the activity of the ethanol extract of G. kola was lower than amoxicillin (P < 0.05 as opposed to metronidazole (P > 0.05. These results demonstrate that S. birrea, C. molle and G. kola may represent good sources of compounds with anti-H. pylori activity.

  16. High Levels of Transmitted HIV Drug Resistance in a Study in Papua New Guinea.

    Science.gov (United States)

    Lavu, Evelyn; Kave, Ellan; Mosoro, Euodia; Markby, Jessica; Aleksic, Eman; Gare, Janet; Elsum, Imogen A; Nano, Gideon; Kaima, Petronia; Dala, Nick; Gurung, Anup; Bertagnolio, Silvia; Crowe, Suzanne M; Myatt, Mark; Hearps, Anna C; Jordan, Michael R

    2017-01-01

    Papua New Guinea is a Pacific Island nation of 7.3 million people with an estimated HIV prevalence of 0.8%. ART initiation and monitoring are guided by clinical staging and CD4 cell counts, when available. Little is known about levels of transmitted HIV drug resistance in recently infected individuals in Papua New Guinea. Surveillance of transmitted HIV drug resistance in a total of 123 individuals recently infected with HIV and aged less than 30 years was implemented in Port Moresby (n = 62) and Mount Hagen (n = 61) during the period May 2013-April 2014. HIV drug resistance testing was performed using dried blood spots. Transmitted HIV drug resistance was defined by the presence of one or more drug resistance mutations as defined by the World Health Organization surveillance drug resistance mutations list. The prevalence of non-nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 16.1% (95% CI 8.8%-27.4%) and 8.2% (95% CI 3.2%-18.2%) in Port Moresby and Mount Hagen, respectively. The prevalence of nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 3.2% (95% CI 0.2%-11.7%) and 3.3% (95% CI 0.2%-11.8%) in Port Moresby and Mount Hagen, respectively. No protease inhibitor transmitted HIV drug resistance was observed. The level of non-nucleoside reverse transcriptase inhibitor drug resistance in antiretroviral drug naïve individuals recently infected with HIV in Port Moresby is amongst the highest reported globally. This alarming level of transmitted HIV drug resistance in a young sexually active population threatens to limit the on-going effective use of NNRTIs as a component of first-line ART in Papua New Guinea. To support the choice of nationally recommended first-line antiretroviral therapy, representative surveillance of HIV drug resistance among antiretroviral therapy initiators in Papua New Guinea should be urgently implemented.

  17. DNA origami as a carrier for circumvention of drug resistance.

    Science.gov (United States)

    Jiang, Qiao; Song, Chen; Nangreave, Jeanette; Liu, Xiaowei; Lin, Lin; Qiu, Dengli; Wang, Zhen-Gang; Zou, Guozhang; Liang, Xingjie; Yan, Hao; Ding, Baoquan

    2012-08-15

    Although a multitude of promising anti-cancer drugs have been developed over the past 50 years, effective delivery of the drugs to diseased cells remains a challenge. Recently, nanoparticles have been used as drug delivery vehicles due to their high delivery efficiencies and the possibility to circumvent cellular drug resistance. However, the lack of biocompatibility and inability to engineer spatially addressable surfaces for multi-functional activity remains an obstacle to their widespread use. Here we present a novel drug carrier system based on self-assembled, spatially addressable DNA origami nanostructures that confronts these limitations. Doxorubicin, a well-known anti-cancer drug, was non-covalently attached to DNA origami nanostructures through intercalation. A high level of drug loading efficiency was achieved, and the complex exhibited prominent cytotoxicity not only to regular human breast adenocarcinoma cancer cells (MCF 7), but more importantly to doxorubicin-resistant cancer cells, inducing a remarkable reversal of phenotype resistance. With the DNA origami drug delivery vehicles, the cellular internalization of doxorubicin was increased, which contributed to the significant enhancement of cell-killing activity to doxorubicin-resistant MCF 7 cells. Presumably, the activity of doxorubicin-loaded DNA origami inhibits lysosomal acidification, resulting in cellular redistribution of the drug to action sites. Our results suggest that DNA origami has immense potential as an efficient, biocompatible drug carrier and delivery vehicle in the treatment of cancer.

  18. Clinical Management of HIV Drug Resistance

    Science.gov (United States)

    Cortez, Karoll J.; Maldarelli, Frank

    2011-01-01

    Combination antiretroviral therapy for HIV-1 infection has resulted in profound reductions in viremia and is associated with marked improvements in morbidity and mortality. Therapy is not curative, however, and prolonged therapy is complicated by drug toxicity and the emergence of drug resistance. Management of clinical drug resistance requires in depth evaluation, and includes extensive history, physical examination and laboratory studies. Appropriate use of resistance testing provides valuable information useful in constructing regimens for treatment-experienced individuals with viremia during therapy. This review outlines the emergence of drug resistance in vivo, and describes clinical evaluation and therapeutic options of the individual with rebound viremia during therapy. PMID:21994737

  19. Danshen extract circumvents drug resistance and represses cell growth in human oral cancer cells.

    Science.gov (United States)

    Yang, Cheng-Yu; Hsieh, Cheng-Chih; Lin, Chih-Kung; Lin, Chun-Shu; Peng, Bo; Lin, Gu-Jiun; Sytwu, Huey-Kang; Chang, Wen-Liang; Chen, Yuan-Wu

    2017-12-29

    Danshen is a common traditional Chinese medicine used to treat neoplastic and chronic inflammatory diseases in China. However, the effects of Danshen on human oral cancer cells remain relatively unknown. This study investigated the antiproliferative effects of a Danshen extract on human oral cancer SAS, SCC25, OEC-M1, and KB drug-resistant cell lines and elucidated the possible underlying mechanism. We investigated the anticancer potential of the Danshen extract in human oral cancer cell lines and an in vivo oral cancer xenograft mouse model. The expression of apoptosis-related molecules was evaluated through Western blotting, and the concentration of in vivo apoptotic markers was measured using immunohistochemical staining. The antitumor effects of 5-fluorouracil and the Danshen extract were compared. Cell proliferation assays revealed that the Danshen extract strongly inhibited oral cancer cell proliferation. Cell morphology studies revealed that the Danshen extract inhibited the growth of SAS, SCC25, and OEC-M1 cells by inducing apoptosis. The Flow cytometric analysis indicated that the Danshen extract induced cell cycle G0/G1 arrest. Immunoblotting analysis for the expression of active caspase-3 and X-linked inhibitor of apoptosis protein indicated that Danshen extract-induced apoptosis in human oral cancer SAS cells was mediated through the caspase pathway. Moreover, the Danshen extract significantly inhibited growth in the SAS xenograft mouse model. Furthermore, the Danshen extract circumvented drug resistance in KB drug-resistant oral cancer cells. The study results suggest that the Danshen extract could be a potential anticancer agent in oral cancer treatment.

  20. Plasmodium falciparum drug resistance in Angola.

    Science.gov (United States)

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-02-09

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information on malaria drug resistance in Angola, is reviewed and discussed. The review aims to inform but also to encourage future research studies that monitor and update the information on anti-malarial drug efficacy and prevalence of molecular markers of drug resistance, key fields in the context and objectives of elimination.

  1. Emergence of Extensively Drug Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    2007-03-01

    Extensively drug-resistant tuberculosis (XDR TB) outbreaks have been reported in South Africa, and strains have been identified on 6 continents. Dr. Peter Cegielski, team leader for drug-resistant TB with the Division of Tuberculosis Elimination at CDC, comments on a multinational team's report on this emerging global public health threat.  Created: 3/1/2007 by Emerging Infectious Diseases.   Date Released: 3/26/2007.

  2. Preventing drug resistance in severe influenza

    Science.gov (United States)

    Dobrovolny, Hana; Deecke, Lucas

    2015-03-01

    Severe, long-lasting influenza infections are often caused by new strains of influenza. The long duration of these infections leads to an increased opportunity for the emergence of drug resistant mutants. This is particularly problematic for new strains of influenza since there is often no vaccine, so drug treatment is the first line of defense. One strategy for trying to minimize drug resistance is to apply periodic treatment. During treatment the wild-type virus decreases, but resistant virus might increase; when there is no treatment, wild-type virus will hopefully out-compete the resistant virus, driving down the number of resistant virus. We combine a mathematical model of severe influenza with a model of drug resistance to study emergence of drug resistance during a long-lasting infection. We apply periodic treatment with two types of antivirals: neuraminidase inhibitors, which block release of virions; and adamantanes, which block replication of virions. We compare the efficacy of the two drugs in reducing emergence of drug resistant mutants and examine the effect of treatment frequency on the emergence of drug resistant mutants.

  3. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Demetrio L Valle

    Full Text Available Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC and the minimum bactericidal concentrations (MBC of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA, vancomycin-resistant Enterococcus (VRE, extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn. Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant

  4. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    Science.gov (United States)

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  5. Mechanisms of Candida biofilm drug resistance

    Science.gov (United States)

    Taff, Heather T; Mitchell, Kaitlin F; Edward, Jessica A; Andes, David R

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involving both mechanisms similar to conventional, planktonic antifungal resistance, such as increased efflux pump activity, as well as mechanisms specific to the biofilm lifestyle. A unique biofilm property is the production of an extracellular matrix. Two components of this material, β-glucan and extracellular DNA, promote biofilm resistance to multiple antifungals. Biofilm formation also engages several stress response pathways that impair the activity of azole drugs. Resistance within a biofilm is often heterogeneous, with the development of a subpopulation of resistant persister cells. In this article we review the molecular mechanisms underlying Candida biofilm antifungal resistance and their relative contributions during various growth phases. PMID:24059922

  6. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.

    Science.gov (United States)

    Nishikawa, Joy L; Boeszoermenyi, Andras; Vale-Silva, Luis A; Torelli, Riccardo; Posteraro, Brunella; Sohn, Yoo-Jin; Ji, Fei; Gelev, Vladimir; Sanglard, Dominique; Sanguinetti, Maurizio; Sadreyev, Ruslan I; Mukherjee, Goutam; Bhyravabhotla, Jayaram; Buhrlage, Sara J; Gray, Nathanael S; Wagner, Gerhard; Näär, Anders M; Arthanari, Haribabu

    2016-02-25

    Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a

  7. GRL-09510, a Unique P2-Crown-Tetrahydrofuranylurethane -Containing HIV-1 Protease Inhibitor, Maintains Its Favorable Antiviral Activity against Highly-Drug-Resistant HIV-1 Variants in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Masayuki; Miguel Salcedo-Gómez, Pedro; Yedidi, Ravikiran S.; Delino, Nicole S.; Nakata, Hirotomo; Venkateswara Rao, Kalapala; Ghosh, Arun K.; Mitsuya, Hiroaki

    2017-09-25

    We report that GRL-09510, a novel HIV-1 protease inhibitor (PI) containing a newly-generated P2-crown-tetrahydrofuranylurethane (Crwn-THF), a P2'-methoxybenzene, and a sulfonamide isostere, is highly active against laboratory and primary clinical HIV-1 isolates (EC50: 0.0014–0.0028 μM) with minimal cytotoxicity (CC50: 39.0 μM). Similarly, GRL-09510 efficiently blocked the replication of HIV-1NL4-3 variants, which were capable of propagating at high-concentrations of atazanavir, lopinavir, and amprenavir (APV). GRL-09510 was also potent against multi-drug-resistant clinical HIV-1 variants and HIV-2ROD. Under the selection condition, where HIV-1NL4-3 rapidly acquired significant resistance to APV, an integrase inhibitor raltegravir, and a GRL-09510 congener (GRL-09610), no variants highly resistant against GRL-09510 emerged over long-term in vitro passage of the virus. Crystallographic analysis demonstrated that the Crwn-THF moiety of GRL-09510 forms strong hydrogen-bond-interactions with HIV-1 protease (PR) active-site amino acids and is bulkier with a larger contact surface, making greater van der Waals contacts with PR than the bis-THF moiety of darunavir. The present data demonstrate that GRL-09510 has favorable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants, that the newly generated P2-Crwn-THF moiety confers highly desirable anti-HIV-1 potency. The use of the novel Crwn-THF moiety sheds lights in the design of novel PIs.

  8. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  9. Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer.

    Science.gov (United States)

    Yang, Wanli; Ma, Jiaojiao; Zhou, Wei; Cao, Bo; Zhou, Xin; Yang, Zhiping; Zhang, Hongwei; Zhao, Qingchuan; Fan, Daiming; Hong, Liu

    2017-11-01

    Systemic chemotherapy is a curative approach to inhibit gastric cancer cells proliferation. Despite the great progress in anti-cancer treatment achieved during the last decades, drug resistance and treatment refractoriness still extensively persists. Recently, accumulating studies have highlighted the role of miRNAs in drug resistance of gastric cancers by modulating some drug resistance-related proteins and genes expression. Pre-clinical reports indicate that miRNAs might serve as ideal biomarkers and potential targets, thus holding great promise for developing targeted therapy and personalized treatment for the patients with gastric cancer. Areas covered: This review provide a comprehensive overview of the current advances of miRNAs and molecular mechanisms underlying miRNA-mediated drug resistance in gastric cancer. We particularly focus on the potential values of drug resistance-related miRNAs as biomarkers and novel targets in gastric cancer therapy and envisage the future research developments of these miRNAs and challenges in translating the new findings into clinical applications. Expert opinion: Although the concrete mechanisms of miRNAs in drug resistance of gastric cancer have not been fully clarified, miRNA may be a promising theranostic approach. Further studies are still needed to facilitate the clinical applications of miRNAs in drug resistant gastric cancer.

  10. Withanolide D Exhibits Similar Cytostatic Effect in Drug-Resistant and Drug-Sensitive Multiple Myeloma Cells

    Directory of Open Access Journals (Sweden)

    Mark E. Issa

    2017-09-01

    Full Text Available In spite of recent therapeutic advances, multiple myeloma (MM remains a malignancy with very low curability. This has been partly attributed to the existence of a drug-resistant subpopulation known as cancer stem cells (CSCs. MM-CSCs are equipped with the necessary tools that render them highly resistant to virtually all conventional therapies. In this study, the growth inhibitory effects of withanolide D (WND, a steroidal lactone isolated from Withania somnifera, on drug-sensitive tumoral plasma cells and drug-resistant MM cells have been investigated. In MTT/XTT assays, WND exhibited similar cytostatic effects between drug-resistant and drug-sensitive cell lines in the nM range. WND also induced cell death and apoptosis in MM-CSCs and RPMI 8226 cells, as examined by the calcein/ethidium homodimer and annexin V/propidium iodide stainings, respectively. To determine whether P-glycoprotein (P-gp efflux affected the cytostatic activity of WND, P-gp was inhibited with verapamil and results indicated that the WND cytostatic effect in MM-CSCs was independent of P-gp efflux. Furthermore, WND did not increase the accumulation of the fluorescent P-gp substrate rhodamine 123 in MM-CSCs, suggesting that WND may not inhibit P-gp at the tested relevant doses. Therefore, the WND-induced cytostatic effect may be independent of P-gp efflux. These findings warrant further investigation of WND in MM-CSC animal models.

  11. [Change in drug resistance of Staphylococcus aureus].

    Science.gov (United States)

    Lin, Yan; Liu, Yan; Luo, Yan-Ping; Liu, Chang-Ting

    2013-11-01

    To analyze the change in drug resistance of Staphylococcus aureus (SAU) in the PLA general hospital from January 2008 to December 2012, and to provide solid evidence to support the rational use of antibiotics for clinical applications. The SAU strains isolated from clinical samples in the hospital were collected and subjected to the Kirby-Bauer disk diffusion test. The results were assessed based on the 2002 American National Committee for Clinical Laboratory Standards (NCCLS) guidelines. SAU strains were mainly isolated from sputum, urine, blood and wound excreta and distributed in penology, neurology wards, orthopedics and surgery ICU wards. Except for glycopeptide drugs, methicillin-resistant Staphylococcus aureus (MRSA) had a higher drug resistance rate than those of the other drugs and had significantly more resistance than methicillin-sensitive Staphylococcus aureus (MSSA) (P resistance, we discovered a gradual increase in drug resistance to fourteen test drugs during the last five years. Drug resistance rate of SAU stayed at a higher level over the last five years; moreover, the detection ratio of MRSA keeps rising year by year. It is crucial for physicians to use antibiotics rationally and monitor the change in drug resistance in a dynamic way.

  12. Streptococcus pneumoniae Drugs Resistance in Acute Rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Chong Jie Hao

    2016-03-01

    Full Text Available Background: Acute rhinosinusitis that usually caused by Streptococcus pneumoniae becomes the reason why patients seek for medical care. Drugs resistance in Streptococcus pneumoniae is increasing worldwide. This study was conducted to determine drugs resistance of Streptococcus pneumonia from acute rhinosinusitis in Dr. Hasan Sadikin General Hospital. Methods: A descriptive laboratory study was conducted in June–October 2014 at the Laboratory of Microbiology Faculty of Medicine Universitas Padjadjaran. The sample was taken using nasopharyngeal swabbing from 100 acute rhinosinusitis patients in Dr. Hasan Sadikin General Hospital and planted on tryptic soy agar containing 5% sheep blood and 5 μg/ml of gentamicin sulphate and then incubated in 5% CO2 incubator at 37°C for 24 hours. The identification of Streptococcus pneumonia was performed by optochin test. The susceptibility test against Streptococcus pneumoniae was done using disk diffusion method.The antibiotic disks were trimethoprim-sulfamethoxazole, oxacillin, levofloxacin, azithromycin, and doxycycline. Results: Out of 100 samples, 8 of them were tested positive for Streptococcus pneumoniae. Three of Streptococcus pneumoniae isolates died with unknown reason after it were stored at -80 .The drugs resistance test showed the resistance of Streptococcus pneumonia to oxacillin, azithromycin and trimethoprim were 6, whereas levofloxacin and doxycycline are 4. Conclusions: Streptococcus pneumonia drugs resistance in acute rhinosinusitis shows the resistance of Streptococcus pneumoniae to oxacillin, azithromycin and trimethoprim are 6, whereas the resistance to levofloxacin and doxycycline are 4.

  13. characterization of drug resistant pseudomonas aeruginosa and ...

    African Journals Online (AJOL)

    Abstract: Lizards as well as some other reptiles have been known to carry pathogenic bacteria organisms as well as drug resistant pathogens. Despite the fact that they remain asymptomatic in many cases, they nevertheless play significant roles in the epidemiology of these pathogens through their dissemination to the ...

  14. Drug resistance in the mouse cancer clinic

    NARCIS (Netherlands)

    Rottenberg, Sven; Borst, Piet

    2012-01-01

    Drug resistance is one of the most pressing problems in treating cancer patients today. Local and regional disease can usually be adequately treated, but patients eventually die from distant metastases that have become resistant to all available chemotherapy. Although work on cultured tumor cell

  15. Malaria epidemic and drug resistance, Djibouti.

    Science.gov (United States)

    Rogier, Christophe; Pradines, Bruno; Bogreau, H; Koeck, Jean-Louis; Kamil, Mohamed-Ali; Mercereau-Puijalon, Odile

    2005-02-01

    Analysis of Plasmodium falciparum isolates collected before, during, and after a 1999 malaria epidemic in Djibouti shows that, despite a high prevalence of resistance to chloroquine, the epidemic cannot be attributed to a sudden increase in drug resistance of local parasite populations.

  16. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens.

    Science.gov (United States)

    Karuppiah, Ponmurugan; Rajaram, Shyamkumar

    2012-08-01

    To evaluate the antibacterial properties of Allium sativum (garlic) cloves and Zingiber officinale (ginger) rhizomes against multi-drug resistant clinical pathogens causing nosocomial infection. The cloves of garlic and rhizomes of ginger were extracted with 95% (v/v) ethanol. The ethanolic extracts were subjected to antibacterial sensitivity test against clinical pathogens. Anti-bacterial potentials of the extracts of two crude garlic cloves and ginger rhizomes were tested against five gram negative and two gram positive multi-drug resistant bacteria isolates. All the bacterial isolates were susceptible to crude extracts of both plants extracts. Except Enterobacter sp. and Klebsiella sp., all other isolates were susceptible when subjected to ethanolic extracts of garlic and ginger. The highest inhibition zone was observed with garlic (19.45 mm) against Pseudomonas aeruginosa (P. aeruginosa). The minimal inhibitory concentration was as low as 67.00 µg/mL against P. aeruginosa. Natural spices of garlic and ginger possess effective anti-bacterial activity against multi-drug clinical pathogens and can be used for prevention of drug resistant microbial diseases and further evaluation is necessary.

  17. Indolyl aryl sulfones (IASs): development of highly potent NNRTIs active against wt-HIV-1 and clinically relevant drug resistant mutants.

    Science.gov (United States)

    Silvestri, Romano; Artico, Marino

    2005-01-01

    Indolyl aryl sulfones (IASs) are a potent class of NNRTIs developed from L-737,126, a lead agent discovered by Merck AG. IAS derivatives are endowed with inhibitory activities against wt HIV-1 in the low nanomolar concentration range. Introduction of two methyl groups at positions 3 and 5 of the phenyl ring of the aryl sulfonyl moiety furnished IAS derivatives such as 5-chloro- or 5-bromo-3-[(3,5-dimethylphenyl)sulfonyl]indole-2-carboxyamide, which showed very potent and selective anti-HIV-1 activity against some mutants carrying NNRTI resistant mutations at positions 103 and 181 of the reverse transcriptase. IAS derivatives bearing 2-hydroxyethylcarboxyamide or 2-hydroxyethylcarboxyhydrazide groups at position 2 of the indole nucleus were more active than L-737,126 against the K103N-Y181C double mutant. A great improvement of antiviral activity against wt HIV-1 and resistant mutants was obtained by coupling 1-3 simple amino acids, such as glycine and alanine, in sequence, with the 3-[(3,5-dimethylphenyl)sulfonyl]-1H-indole-2-carbonyl moiety. The transformation of the chain terminus into amide or hydrazide, produced short peptides with high selectivity and potent activity against wt HIV-1, and the viral mutants Y181C, K103N-Y181C and EFV(R). IAS having two halogen atoms at the indole showed potent inhibitory activity against the Y181C and the EFV(R) resistant mutant strains. In particular, the introduction of a fluorine atom at position 4 of the indole ring notably contributed to improve the antiviral activities against both wt and the related resistant mutants. 5-Nitro-IASs were highly active against wt HIV-1 and exhibited low cytotoxicity. Experimental data highlighted the class IAS derivatives as promising candidates for clinical trials.

  18. Molecular Basis for Drug Resistance in HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Celia A. Schiffer

    2010-11-01

    Full Text Available HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease’s function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.

  19. Enhanced efficacy of imipenem-colistin combination therapy against multiple-drug-resistant Enterobacter cloacae: in vitro activity and a Galleria mellonella model

    Directory of Open Access Journals (Sweden)

    Haifei Yang

    2018-02-01

    Conclusion: This is the first report demonstrating the efficacy of antimicrobial agents in the G. mellonella larvae model of infections caused by E. cloacae. Our study suggested that imipenem-colistin combination was highly active against E. cloacae both in vitro and in the simple invertebrate model, and provided preliminary in vivo evidence that such combination might be useful therapeutically.

  20. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML.

    Science.gov (United States)

    Kung Sutherland, May S; Walter, Roland B; Jeffrey, Scott C; Burke, Patrick J; Yu, Changpu; Kostner, Heather; Stone, Ivan; Ryan, Maureen C; Sussman, Django; Lyon, Robert P; Zeng, Weiping; Harrington, Kimberly H; Klussman, Kerry; Westendorf, Lori; Meyer, David; Bernstein, Irwin D; Senter, Peter D; Benjamin, Dennis R; Drachman, Jonathan G; McEarchern, Julie A

    2013-08-22

    Outcomes in acute myeloid leukemia (AML) remain unsatisfactory, and novel treatments are urgently needed. One strategy explores antibodies and their drug conjugates, particularly those targeting CD33. Emerging data with gemtuzumab ozogamicin (GO) demonstrate target validity and activity in some patients with AML, but efficacy is limited by heterogeneous drug conjugation, linker instability, and a high incidence of multidrug resistance. We describe here the development of SGN-CD33A, a humanized anti-CD33 antibody with engineered cysteines conjugated to a highly potent, synthetic DNA cross-linking pyrrolobenzodiazepine dimer via a protease-cleavable linker. The use of engineered cysteine residues at the sites of drug linker attachment results in a drug loading of approximately 2 pyrrolobenzodiazepine dimers per antibody. In preclinical testing, SGN-CD33A is more potent than GO against a panel of AML cell lines and primary AML cells in vitro and in xenotransplantation studies in mice. Unlike GO, antileukemic activity is observed with SGN-CD33A in AML models with the multidrug-resistant phenotype. Mechanistic studies indicate that the cytotoxic effects of SGN-CD33A involve DNA damage with ensuing cell cycle arrest and apoptotic cell death. Together, these data suggest that SGN-CD33A has CD33-directed antitumor activity and support clinical testing of this novel therapeutic in patients with AML.

  1. Antibacterial activities of the methanol extracts of Albizia adianthifolia, Alchornea laxiflora, Laportea ovalifolia and three other Cameroonian plants against multi-drug resistant Gram-negative bacteria.

    Science.gov (United States)

    Tchinda, Cedric F; Voukeng, Igor K; Beng, Veronique P; Kuete, Victor

    2017-05-01

    In the last 10 years, resistance in Gram-negative bacteria has been increasing. The present study was designed to evaluate the in vitro antibacterial activities of the methanol extracts of six Cameroonian medicinal plants Albizia adianthifolia , Alchornea laxiflora , Boerhavia diffusa , Combretum hispidum , Laportea ovalifolia and Scoparia dulcis against a panel of 15 multidrug resistant Gram-negative bacterial strains. The broth microdilution was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts. The preliminary phytochemical screening of the extracts was conducted according to the reference qualitative phytochemical methods. Results showed that all extracts contained compounds belonging to the classes of polyphenols and triterpenes, other classes of chemicals being selectively distributed. The best antibacterial activities were recorded with bark and root extracts of A. adianthifolia as well as with L. ovalifolia extract, with MIC values ranging from 64 to 1024 μg/mL on 93.3% of the fifteen tested bacteria. The lowest MIC value of 64 μg/mL was recorded with A. laxiflora bark extract against Enterobacter aerogenes EA289. Finally, the results of this study provide evidence of the antibacterial activity of the tested plants and suggest their possible use in the control of multidrug resistant phenotypes.

  2. In vitro and in vivo analysis of antimicrobial agents alone and in combination against multi-drug resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Songzhe eHE

    2015-05-01

    Full Text Available Objective To investigate the in vitro and in vivo antibacterial activities of tigecycline and other 13 common antimicrobial agents, alone or in combination, against multi-drug resistant Acinetobacter baumannii.MethodsAn in vitro susceptibility test of 101 Acinetobacter baumannii was used to detect minimal inhibitory concentrations (MICs. A mouse lung infection model of multi-drug resistant Acinetobacter baumannii,established by the ultrasonic atomization method, was used to define in vivo antimicrobial activities.Results Multi-drug resistant Acinetobacter baumannii showed high sensitivity to tigecycline (98% inhibition, polymyxin B (78.2% inhibition, and minocycline (74.2% inhibition. However, the use of these antimicrobial agents in combination with other antimicrobial agents produced synergistic or additive effects. In vivo data showed that white blood cell (WBC counts in drug combination groups C (minocycline + amikacin and D (minocycline + rifampicin were significantly higher than in groups A (tigecycline and B (polymyxin B (P < 0.05, after administration of the drugs 24h post-infection. Lung tissue inflammation gradually increased in the model group during the first 24h after ultrasonic atomization infection; vasodilation, congestion with hemorrhage were observed 48h post infection. After three days of anti-infective therapy in groups A, B, C and D, lung tissue inflammation in each group gradually recovered with clear structures. The mortality rates in drug combination groups (groups C and D were much lower than in groups A and B.ConclusionThe combination of minocycline with either rifampicin or amikacin is more effective against multidrug-resistant Acinetobacter baumannii than single-agent tigecycline or polymyxin B. In addition, the mouse lung infection by ultrasonic atomization is a suitable model for drug screening and analysis of infection mechanism.

  3. Population mobility, globalization, and antimicrobial drug resistance.

    Science.gov (United States)

    MacPherson, Douglas W; Gushulak, Brian D; Baine, William B; Bala, Shukal; Gubbins, Paul O; Holtom, Paul; Segarra-Newnham, Marisel

    2009-11-01

    Population mobility is a main factor in globalization of public health threats and risks, specifically distribution of antimicrobial drug-resistant organisms. Drug resistance is a major risk in healthcare settings and is emerging as a problem in community-acquired infections. Traditional health policy approaches have focused on diseases of global public health significance such as tuberculosis, yellow fever, and cholera; however, new diseases and resistant organisms challenge existing approaches. Clinical implications and health policy challenges associated with movement of persons across barriers permeable to products, pathogens, and toxins (e.g., geopolitical borders, patient care environments) are complex. Outcomes are complicated by high numbers of persons who move across disparate and diverse settings of disease threat and risk. Existing policies and processes lack design and capacity to prevent or mitigate adverse health outcomes. We propose an approach to global public health risk management that integrates population factors with effective and timely application of policies and processes.

  4. Mesenchymal change and drug resistance in neuroblastoma.

    Science.gov (United States)

    Naiditch, Jessica A; Jie, Chunfa; Lautz, Timothy B; Yu, Songtao; Clark, Sandra; Voronov, Dimitry; Chu, Fei; Madonna, Mary Beth

    2015-01-01

    Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P change via multiple pathways in the transition to a drug-resistant state. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Antibacterial activity of local herbs collected from Murree (Pakistan) against multi-drug resistant Klebsiella pneumonae, E. coli and methyciline resistant Staphylococcus aureus.

    Science.gov (United States)

    Mansoor, Qaisar; Shaheen, Saira; Javed, Uzma; Shaheen, Uzma; Iqrar, Irum; Ismail, Muhammad

    2013-07-01

    Exploring healing power in plants emerged in prehistory of human civilization. Sustaining good health has been achieved over the millions of years by use of plant products in various traditional sockets. A major contribution of medicinal plants to health care systems is their limitless possession of bioactive components that stimulate explicit physiological actions. Luckily Pakistan is blessed with huge reservoir of plants with medicinal potential and some of them; we focused in this study for their medicinal importance.In this study we checked the antibacterial activity inherent in Ricinus communis, Solanum nigrum, Dodonaea viscose and Berberis lyceum extracts for multidrug resistance bacterial strains Klebsiella pneumonae, E. coli and methyciline resistant Staphylococcus aureus. MRSA showed sensitivity for Ricinus communis. Multidrug resistant Klebsiella pneumonae was sensitive with Pine roxburgii and Ricinus communis but weakly susceptible for Solanum nigrum. Multidrug resistant E. coli was resistant to all plant extracts. Treatment of severe infections caused by the bacterial strains used in this study with Ricinus communis, Pine roxburgii and Solanum nigrum can lower the undesired side effects of synthetic medicine and also reduce the economic burden.

  6. Drug-resistant tuberculosis in Sindh

    International Nuclear Information System (INIS)

    Almani, S.A.; Memon, N.M.; Qureshi, A.F.

    2002-01-01

    Objective: To assess the prevalence of primary and secondary drug resistance amongst the clinical isolates of M.tuberculosis, to identify risk factors and how to overcome this problem. Design: A case series of 50 indoor patients with sputum smear-positive pulmonary tuberculosis. Place and duration of Study: Department of Medicine, Liaquat University of Medical and Health Sciences Jamshoro, Sindh, (Pakistan) from January 1999 to December 2000. Patients and methods: Four first line anti-tuberculous drugs rifampicine, ethambutol and streptomycin were tested for sensitivity pattern. Results: Twelve (26.66%) were sensitive to all four drugs, 12(26.66%) were resistant to one drug, 14 (31.11%) were resistant to two drugs, 2 (4.44%) were resistant to three drugs, and 5(11.11%) were resistant to all four drugs. Resistance to isoniazid was the most common in 27 cases (60%) with primary resistance in 6(13.33%) and secondary resistance in 21(46.66%), followed by resistance to streptomycin in 17 cases (37.77%) with primary resistance in 5(11.11%) and secondary resistance in 12 (26.66%). Resistance to ethambutol in 10 cases (22.22%) and rifampicine in 11 (24.44%) and all cases were secondary. Similarly multi-drugs resistance (MRD) TB was found in 11(24.44%) isolates. Conclusion: This study showed high prevalence of drug resistance among clinical isolates of M. tuberculosis. Their is a need to establish centers at number of places with adequate facilities for susceptibility testing so that the resistant pattern could be ascertained and treatment regimens tailored accordingly. (author)

  7. Multi-drug resistant Ewingella Americana

    International Nuclear Information System (INIS)

    Bukhari, Syed Z.; Ashshi, Ahmad M.; Hussain, Waleed M.; Fatani, Mohammad I.

    2008-01-01

    We report a case of pneumonia due to multi-drug resistant Ewingella Americana in a young patient admitted in the Intensive Care Unit of Hera General Hospital, Makkah, Saudi Arabia with severe head injury in a road traffic accident. He was an Indonesian pilgrim who had traveled to the Kingdom of Saudi Arabia to perform Hajj in December 2007. Ewingella Americana was identified to be the pathogen of pneumonia with clinical signs and symptoms along with positive radiological findings. (author)

  8. Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines

    Directory of Open Access Journals (Sweden)

    Lin Ge

    2010-07-01

    Full Text Available Abstract Multi-drug resistance (MDR of cancer cells severely limits therapeutic outcomes. A proposed mechanism for MDR involves the efflux of anti-cancer drugs from cancer cells, primarily mediated by ATP-binding cassette (ABC membrane transporters including P-glycoprotein. This article reviews the recent progress of using active ingredients, extracts and formulae from Chinese medicine (CM in circumventing ABC transporters-mediated MDR. Among the ABC transporters, Pgp is the most extensively studied for its role in MDR reversal effects. While other MDR reversal mechanisms remain unclear, Pgp inhibition is a criterion for further mechanistic study. More mechanistic studies are needed to fully establish the pharmacological effects of potential MDR reversing agents.

  9. Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines.

    Science.gov (United States)

    Chai, Stella; To, Kenneth Kw; Lin, Ge

    2010-07-25

    Multi-drug resistance (MDR) of cancer cells severely limits therapeutic outcomes. A proposed mechanism for MDR involves the efflux of anti-cancer drugs from cancer cells, primarily mediated by ATP-binding cassette (ABC) membrane transporters including P-glycoprotein. This article reviews the recent progress of using active ingredients, extracts and formulae from Chinese medicine (CM) in circumventing ABC transporters-mediated MDR. Among the ABC transporters, Pgp is the most extensively studied for its role in MDR reversal effects. While other MDR reversal mechanisms remain unclear, Pgp inhibition is a criterion for further mechanistic study. More mechanistic studies are needed to fully establish the pharmacological effects of potential MDR reversing agents.

  10. Radiosensitivity of drug-resistant human tumour xenografts

    International Nuclear Information System (INIS)

    Mattern, J.; Bak, M. Jr.; Volm, M.; Hoever, K.H.

    1989-01-01

    The radiosensitivity of three drug-resistant sublines of a human epidermoid lung carcinoma growing as xenografts in nude mice was investigated. Drug resistance to vincristine, actinomycin D and cisplatin was developed in vivo by repeated drug treatment. It was found that all three drug-resistant tumour lines were not cross-resistant to irradiation. (orig.) [de

  11. Rational Design of Novel Allosteric Dihydrofolate Reductase Inhibitors Showing Antibacterial Effects on Drug-Resistant Escherichia coli Escape Variants.

    Science.gov (United States)

    Srinivasan, Bharath; Rodrigues, João V; Tonddast-Navaei, Sam; Shakhnovich, Eugene; Skolnick, Jeffrey

    2017-07-21

    In drug discovery, systematic variations of substituents on a common scaffold and bioisosteric replacements are often used to generate diversity and obtain molecules with better biological effects. However, this could saturate the small-molecule diversity pool resulting in drug resistance. On the other hand, conventional drug discovery relies on targeting known pockets on protein surfaces leading to drug resistance by mutations of critical pocket residues. Here, we present a two-pronged strategy of designing novel drugs that target unique pockets on a protein's surface to overcome the above problems. Dihydrofolate reductase, DHFR, is a critical enzyme involved in thymidine and purine nucleotide biosynthesis. Several classes of compounds that are structural analogues of the substrate dihydrofolate have been explored for their antifolate activity. Here, we describe 10 novel small-molecule inhibitors of Escherichia coli DHFR, EcDHFR, belonging to the stilbenoid, deoxybenzoin, and chalcone family of compounds discovered by a combination of pocket-based virtual ligand screening and systematic scaffold hopping. These inhibitors show a unique uncompetitive or noncompetitive inhibition mechanism, distinct from those reported for all known inhibitors of DHFR, indicative of binding to a unique pocket distinct from either substrate or cofactor-binding pockets. Furthermore, we demonstrate that rescue mutants of EcDHFR, with reduced affinity to all known classes of DHFR inhibitors, are inhibited at the same concentration as the wild-type. These compounds also exhibit antibacterial activity against E. coli harboring the drug-resistant variant of DHFR. This discovery is the first report on a novel class of inhibitors targeting a unique pocket on EcDHFR.

  12. Drug resistance patterns in pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Khoharo, H.K.; Shaikh, I.A.

    2011-01-01

    Objective: To determine the resistance patterns of mycobacterium tuberculosis (MTB) isolates among category I and II patients of pulmonary tuberculosis. Methods: This cross sectional study was conducted at the Department of Medicine, Liaquat University of Medical and Health Sciences Jamshoro, from November 2008 to September 2009. Patients were divided into category I and II. The sputa were collected, stained with Ziehl-Nielsen (Z-N) staining and ultimately inoculated on Lowenstein-Jensen (L-J) media for six weeks. Out of 890 pulmonary tuberculosis (PTB) patients, the growth was obtained in 285 cases. The Drug sensitivity testing (DST) for Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB) Pyrazinamide (PZA) and Streptomycin (SM) were performed. The data was analyzed on SPSS 10.0. A p-value of <0.05 was taken as significant. Result: Out of 285 cases, 176 (61.75%) were male and 109 (38.24%) female. The mean age was 37 +- 19.90 years. The DST showed drug sensitive and drug resistant isolates in 80 (28.05%) and 205 (71.92%) cases respectively (p=0.001). The drug resistant tuberculosis (DR-TB) rates for individual drugs; INH, RIF, EMB, PZA and SM were 51,22%, 15.4%, 13.33%, 9%12, and 3.85% respectively (p=0.03). The MDR-TB isolates were detected in 120 (42.10%) cases, including 5 (5.88%) in category I and 115 (57.50%) in category II patients (p=0.0001). Conclusion: Drug resistant and multidrug resistant tuberculosis was observed mainly in category II patients. However, primary MDR was also observed in category I patients and reflects dissemination of MDR cases within the community. (author)

  13. Antitumor effects of cecropin B-LHRH’ on drug-resistant ovarian and endometrial cancer cells

    International Nuclear Information System (INIS)

    Li, Xiaoyong; Shen, Bo; Chen, Qi; Zhang, Xiaohui; Ye, Yiqing; Wang, Fengmei; Zhang, Xinmei

    2016-01-01

    Luteinizing hormone-releasing hormone receptor (LHRHr) represents a promising therapeutic target for treating sex hormone-dependent tumors. We coupled cecropin B, an antimicrobial peptide, to LHRH’, a form of LHRH modified at carboxyl-terminal residues 4–10, which binds to LHRHr without interfering with luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. This study aimed to assess the antitumor effects of cecropin B-LHRH’ (CB-LHRH’) in drug-resistant ovarian and endometrial cancers. To evaluate the antitumor effects of CB-LHRH’, three drug resistant ovarian cancer cell lines (SKOV-3, ES-2, NIH:OVCAR-3) and an endometrial cancer cell line (HEC-1A) were treated with CB-LHRH’. Cell morphology changes were assessed using inverted and electron microscopes. In addition, cell growth and cell cytotoxicity were measured by MTT assay and LDH release, respectively. In addition, hemolysis was measured. Furthermore, radioligand receptor binding, hypersensitization and minimal inhibitory concentrations (against Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, Pseudomonas aeruginosa, and Acinetobacter baumannii) were determined. Finally, the impact on tumor growth in BALB/c-nu mice was assessed in an ES-2 xenograft model. CB-LHRH’ bound LHRHr with high-affinity (dissociation constant, Kd = 0.252 ± 0.061nM). Interestingly, CB-LHRH’ significantly inhibited the cell viability of SKOV-3, ES-2, NIH:OVCAR-3 and HEC-1A, but not that of normal eukaryotic cells. CB-LHRH’ was active against bacteria at micromolar concentrations, and caused no hypersensitivity in guinea pigs. Furthermore, CB-LHRH’ inhibited tumor growth with a 23.8 and 20.4 % reduction in tumor weight at 50 and 25 mg/kg.d, respectively. CB-LHRH’ is a candidate for targeted chemotherapy against ovarian and endometrial cancers

  14. Epigenetic Modulation of the Biophysical Properties of Drug-Resistant Cell Lipids to Restore Drug Transport and Endocytic Functions

    OpenAIRE

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-01-01

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g....

  15. Overview of drug-resistant tuberculosis worldwide

    Directory of Open Access Journals (Sweden)

    Ali A Velayati

    2016-01-01

    Full Text Available Even in the 21st century, we are losing the battle against eradication of tuberculosis (TB. In 2015, 9.6 million people were estimated to have fallen ill with TB, of which 1.5 million people died. This is the real situation despite the well-structured treatment programs and availability of effective treatment options since the 1950s. The high mortality rate has been associated with other risk factors, such as the HIV epidemic, underlying diseases, and decline of socioeconomic standards. Furthermore, the problem of drug resistance that was recognized in the early days of the chemotherapeutic era raises serious concerns. Although resistance to a single agent is the most common type, resistance to multiple agents is less frequent but of greater concern. The World Health Organization estimated approximately 5% of all new TB cases involved multidrug-resistant (MDR-TB. The estimation for MDR-TB is 3.3% for new cases, and 20.5% for previously treated cases. Failure to identify and appropriately treat MDR-TB patients has led to more dangerous forms of resistant TB. Based on World Health Organization reports, 5% of global TB cases are now considered to be extensively drug resistant (XDR, defined as MDR with additional resistance to both fluoroquinolones and at least one second-line injectable drug. XDR-TB had been reported by 105 countries by 2015. An estimated 9.7% of people with MDR-TB have XDR-TB. More recently, another dangerous form of TB bacillus was identified, which was named totally drug resistant (TDR-TB or extremely drug resistant TB. These strains were resistant to all first- and second-line anti-TB drugs. Collectively, it is accepted that 2% of MDR-TB strains turn to be TDR-TB. This number, however, may not reflect the real situation, as many laboratories in endemic TB countries do not have proper facilities and updated protocols to detect the XDR or TDR-TB strains. Nevertheless, existing data emphasize the need for additional control

  16. Molecular mechanisms of drug resistance and tumor promotion involving mammalian ribonucleotide reductase

    Energy Technology Data Exchange (ETDEWEB)

    Choy, B.B.K.

    1991-01-01

    Mammalian ribonucleotide reductase is a highly regulated, rate-limiting activity responsible for converting ribonucleoside diphosphates to the deoxyribonucleotide precursors of DNA. The enzyme consists of two nonidentical proteins called M1 and M2, both of which are required for activity. Hydroxyurea is an antitumor agent which inhibits ribonucleotide reductase by interacting with the M2 component specifically at a unique tyrosyl free radical. Studies were conducted on a series of drug resistant mouse cell lines, selected by a step-wise procedure for increasing levels of resistance to the cytotoxic effects of hydroxyurea. Each successive drug selection step leading to the isolation of highly resistant cells was accompanied by stable elevations in cellular resistance and ribonucleotide reductase activity. The drug resistant cell lines exhibited gene amplification of the M2 gene, elevated M2 mRNA, and M2 protein. In addition to M2 gene amplification, posttranscriptional modulation also occurred during the drug selection. Studies of the biosynthesis rates with exogenously added iron suggest a role for iron in regulating the level of M2 protein when cells are cultured in the presence of hydroxyurea. The hydroxyurea-inactivated ribonucleotide reductase protein M2 has a destabilized iron centre, which readily releases iron. Altered expression of ferritin appears to be required for the development of hydroxyurea resistance in nammalian cells. The results show an interesting relationship between the expressions of ribonucleotide reductase and ferritin. The phorbol ester tumor promoter, TPA, is also able to alter the expression of M2. TPA was able to induce M2 mRNA levels transiently up to 18-fold within 1/2 hour. This rapid and large elevation of ribonucleotide reductase suggests that the enzyme may play a role in tumor promotion. Studies of the M2 promoter region were undertaken to better understand the mechanism of TPA induction of M2.

  17. Telomerase and drug resistance in cancer

    OpenAIRE

    Lipinska, Natalia; Romaniuk, Aleksandra; Paszel-Jaworska, Anna; Toton, Ewa; Kopczynski, Przemyslaw; Rubis, Blazej

    2017-01-01

    It is well known that a decreased expression or inhibited activity of telomerase in cancer cells is accompanied by an increased sensitivity to some drugs (e.g., doxorubicin, cisplatin, or 5-fluorouracil). However, the mechanism of the resistance resulting from telomerase alteration remains elusive. There are theories claiming that it might be associated with telomere shortening, genome instability, hTERT translocation, mitochondria functioning modulation, or even alterations in ABC family gen...

  18. Clinical characteristics, drug resistance, and treatment outcomes among tuberculosis patients with diabetes in Peru.

    Science.gov (United States)

    Magee, M J; Bloss, E; Shin, S S; Contreras, C; Huaman, H Arbanil; Ticona, J Calderon; Bayona, J; Bonilla, C; Yagui, M; Jave, O; Cegielski, J P

    2013-06-01

    Diabetes is a risk factor for active tuberculosis (TB). Data are limited regarding the association between diabetes and TB drug resistance and treatment outcomes. We examined characteristics of TB patients with and without diabetes in a Peruvian cohort at high risk for drug-resistant TB. Among TB patients with diabetes (TB-DM), we studied the association between diabetes clinical/management characteristics and TB drug resistance and treatment outcomes. During 2005-2008, adults with suspected TB with respiratory symptoms in Lima, Peru, who received rapid drug susceptibility testing (DST), were prospectively enrolled and followed during treatment. Bivariate and Kaplan-Meier analyses were used to examine the relationships of diabetes characteristics with drug-resistant TB and TB outcomes. Of 1671 adult TB patients enrolled, 186 (11.1%) had diabetes. TB-DM patients were significantly more likely than TB patients without diabetes to be older, have had no previous TB treatment, and to have a body mass index (BMI) >18.5 kg/m(2) (pdiabetes, and 12% and 28%, respectively, among TB-DM patients. Among 149 TB-DM patients with DST results, 104 (69.8%) had drug-susceptible TB and 45 (30.2%) had drug-resistant TB, of whom 29 had multidrug-resistant TB. There was no association between diabetes characteristics and drug-resistant TB. Of 136 TB-DM patients with outcome information, 107 (78.7%) had a favorable TB outcome; active diabetes management was associated with a favorable outcome. Diabetes was common in a cohort of TB patients at high risk for drug-resistant TB. Despite prevalent multidrug-resistant TB among TB-DM patients, the majority had a favorable TB treatment outcome. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Bone morphogenetic protein 4 is overexpressed in and promotes migration and invasion of drug-resistant cancer cells.

    Science.gov (United States)

    Zhou, Kairui; Shi, Xiaoli; Huo, Jinling; Liu, Weihua; Yang, Dongxiao; Yang, Tengjiao; Qin, Tiantian; Wang, Cong

    2017-08-01

    Drug resistance and metastasis significantly hinder chemotherapy and worsen prognoses in cancer. Bone morphogenetic protein 4 (BMP4) belongs to the TGF-β superfamily, has broad biological activities in cell proliferation and cartilage differentiation and is also able to induce migration and invasion. Herein, we investigated the role of BMP4 in the regulation of metastasis in paclitaxel-resistant human esophageal carcinoma EC109 cells (EC109/Taxol) and docetaxel-resistant human gastric cancer MGC803 cells (MGC/Doc). In these drug-resistant cell lines, we found the cell motility was enhanced and BMP4 was up-regulated relative to their respective parental cell lines. Consistent with in vitro assays, migration potential and BMP4 expression were increased in EC109/Taxol nude mice. Furthermore, to address whether BMP4 was required to enhance the metastatic in EC109/Taxol cells, the pharmacological inhibitor of BMP signaling dorsomorphin was used; meanwhile, we found that the migration and invasion abilities were inhibited. Moreover, the canonical Smad signaling pathway was investigated. Overall, our studies demonstrated that BMP4 participates in the regulation of invasion and migration by EC109/Taxol cells, and inhibition of BMP4 may be a novel strategy to interfere with metastasis in cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance.

    Science.gov (United States)

    Khdair, Ayman; Chen, Di; Patil, Yogesh; Ma, Linan; Dou, Q Ping; Shekhar, Malathy P V; Panyam, Jayanth

    2010-01-25

    Tumor drug resistance significantly limits the success of chemotherapy in the clinic. Tumor cells utilize multiple mechanisms to prevent the accumulation of anticancer drugs at their intracellular site of action. In this study, we investigated the anticancer efficacy of doxorubicin in combination with photodynamic therapy using methylene blue in a drug-resistant mouse tumor model. Surfactant-polymer hybrid nanoparticles formulated using an anionic surfactant, Aerosol-OT (AOT), and a naturally occurring polysaccharide polymer, sodium alginate, were used for synchronized delivery of the two drugs. Balb/c mice bearing syngeneic JC tumors (mammary adenocarcinoma) were used as a drug-resistant tumor model. Nanoparticle-mediated combination therapy significantly inhibited tumor growth and improved animal survival. Nanoparticle-mediated combination treatment resulted in enhanced tumor accumulation of both doxorubicin and methylene blue, significant inhibition of tumor cell proliferation, and increased induction of apoptosis. These data suggest that nanoparticle-mediated combination chemotherapy and photodynamic therapy using doxorubicin and methylene blue has significant therapeutic potential against drug-resistant tumors. Copyright 2009 Elsevier B.V. All rights reserved.

  1. HIV Genetic Diversity and Drug Resistance

    Science.gov (United States)

    Santos, André F.; Soares, Marcelo A.

    2010-01-01

    Most of the current knowledge on antiretroviral (ARV) drug development and resistance is based on the study of subtype B of HIV-1, which only accounts for 10% of the worldwide HIV infections. Cumulative evidence has emerged that different HIV types, groups and subtypes harbor distinct biological properties, including the response and susceptibility to ARV. Recent laboratory and clinical data highlighting such disparities are summarized in this review. Variations in drug susceptibility, in the emergence and selection of specific drug resistance mutations, in viral replicative capacity and in the dynamics of resistance acquisition under ARV selective pressure are discussed. Clinical responses to ARV therapy and associated confounding factors are also analyzed in the context of infections by distinct HIV genetic variants. PMID:21994646

  2. The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Keith P Romano

    Full Text Available Hepatitis C virus (HCV infects over 170 million people worldwide and is the leading cause of chronic liver diseases, including cirrhosis, liver failure, and liver cancer. Available antiviral therapies cause severe side effects and are effective only for a subset of patients, though treatment outcomes have recently been improved by the combination therapy now including boceprevir and telaprevir, which inhibit the viral NS3/4A protease. Despite extensive efforts to develop more potent next-generation protease inhibitors, however, the long-term efficacy of this drug class is challenged by the rapid emergence of resistance. Single-site mutations at protease residues R155, A156 and D168 confer resistance to nearly all inhibitors in clinical development. Thus, developing the next-generation of drugs that retain activity against a broader spectrum of resistant viral variants requires a comprehensive understanding of the molecular basis of drug resistance. In this study, 16 high-resolution crystal structures of four representative protease inhibitors--telaprevir, danoprevir, vaniprevir and MK-5172--in complex with the wild-type protease and three major drug-resistant variants R155K, A156T and D168A, reveal unique molecular underpinnings of resistance to each drug. The drugs exhibit differential susceptibilities to these protease variants in both enzymatic and antiviral assays. Telaprevir, danoprevir and vaniprevir interact directly with sites that confer resistance upon mutation, while MK-5172 interacts in a unique conformation with the catalytic triad. This novel mode of MK-5172 binding explains its retained potency against two multi-drug-resistant variants, R155K and D168A. These findings define the molecular basis of HCV N3/4A protease inhibitor resistance and provide potential strategies for designing robust therapies against this rapidly evolving virus.

  3. Esters of the Marine-Derived Triterpene Sipholenol A Reverse P-GP-Mediated Drug Resistance

    Directory of Open Access Journals (Sweden)

    Yongchao Zhang

    2015-04-01

    Full Text Available Our previous studies showed that several sipholane triterpenes, sipholenol A, sipholenone E, sipholenol L and siphonellinol D, have potent reversal effect for multidrug resistance (MDR in cancer cells that overexpressed P-glycoprotein (P-gp/ABCB1. Through comparison of cytotoxicity towards sensitive and multi-drug resistant cell lines, we identified that the semisynthetic esters sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate potently reversed P-gp-mediated MDR but had no effect on MRP1/ABCC1 and BCRP/ABCG2-mediated MDR. The results from [3H]-paclitaxel accumulation and efflux studies suggested that these two triterpenoids were able to increase the intracellular accumulation of paclitaxel by inhibiting its active efflux. In addition, western blot analysis revealed that these two compounds did not alter the expression levels of P-gp when treated up to 72 h. These sipholenol derivatives also stimulated the ATPase activity of P-gp membranes, which suggested that they might be substrates of P-gp. Moreover, in silico molecular docking studies revealed the virtual binding modes of these two compounds into human homology model of P-gp. In conclusion, sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate efficiently inhibit the P-gp and may represent potential reversal agents for the treatment of multidrug resistant cancers.

  4. Nanoantibiotics: strategic assets in the fight against drug- resistant superbugs

    Directory of Open Access Journals (Sweden)

    Khurana C

    2018-03-01

    Full Text Available Chandni Khurana, Bhupendra Chudasama Laboratory of Nanomedicine, School of Physics and Materials Science, Thapar University, Patiala, Punjab, India Abstract: Antimicrobial characteristics of metals reveal that Ag despite its economic constraints remains the most popular antibiotic agent. Antimicrobial characteristics of copper nanoparticles (CNPs are not well understood. To our knowledge, no systematic comparative study on microbial properties of silver nanoparticles (SNPs and CNPs exists. In this article, a comparative study on microbial properties of engineered metal nanoantibiotics against clinically important strains has been attempted. Our results indicate that biocidal activities of CNPs are better than SNPs. Minimum inhibitory concentration (MIC values of CNPs are 10 times lower than the corresponding MICs of SNPs. These improved biocidal activities of CNPs would make it affordable and potent nontraditional antibiotics against which microbes are least susceptible to develop any drug resistance. Keywords: antibiotics, silver, copper, nanoparticles

  5. Drug resistance in Mexico: results from the National Survey on Drug-Resistant Tuberculosis.

    Science.gov (United States)

    Bojorquez-Chapela, I; Bäcker, C E; Orejel, I; López, A; Díaz-Quiñonez, A; Hernández-Serrato, M I; Balandrano, S; Romero, M; Téllez-Rojo Solís, M M; Castellanos, M; Alpuche, C; Hernández-Ávila, M; López-Gatell, H

    2013-04-01

    To present estimations obtained from a population-level survey conducted in Mexico of prevalence rates of mono-, poly- and multidrug-resistant strains among newly diagnosed cases of pulmonary tuberculosis (TB), as well as the main factors associated with multidrug resistance (combined resistance to isoniazid and rifampicin). Study data came from the National Survey on TB Drug Resistance (ENTB-2008), a nationally representative survey conducted during 2008-2009 in nine states with a stratified cluster sampling design. Samples were obtained for all newly diagnosed cases of pulmonary TB in selected sites. Drug susceptibility testing (DST) was performed for anti-tuberculosis drugs. DST results were obtained for 75% of the cases. Of these, 82.2% (95%CI 79.5-84.7) were susceptible to all drugs. The prevalence of multidrug-resistant TB (MDR-TB) was estimated at 2.8% (95%CI 1.9-4.0). MDR-TB was associated with previous treatment (OR 3.3, 95%CI 1.1-9.4). The prevalence of drug resistance is relatively low in Mexico. ENTB-2008 can be used as a baseline for future follow-up of drug resistance.

  6. Drug-resistant tuberculosis: emerging treatment options

    Directory of Open Access Journals (Sweden)

    Adhvaryu MR

    2011-12-01

    Full Text Available Meghna Adhvaryu1, Bhasker Vakharia21Department of Biotechnology, SRK Institute of Computer Education and Applied Sciences, 2R&D, Bhuma Research in Ayurvedic and Herbal Medicine, Surat, Gujarat, IndiaAbstract: Multidrug-resistant tuberculosis has emerged worldwide, with an increasing incidence due to failure of implementation of apparently effective first-line antituberculous therapy as well as primary infection with drug-resistant strains. Failure of current therapy is attributed to a long duration of treatment leading to nonadherence and irregular therapy, lack of patient education about the disease, poverty, irregular supply by care providers, drug–drug interactions in patients coinfected with human immunodeficiency virus (HIV, inadequate regulations causing market overlap and irresponsible drug usage in the private sector, and lack of research, with no addition of new drugs in the last four decades. Present standards of care for the treatment of drug-susceptible tuberculosis, multidrug-resistant tuberculosis, tuberculosis-HIV coinfection, and latent tuberculosis infection are all unsatisfactory. Since 2000, the World Health Organization (WHO has focused on drug development for tuberculosis, as well as research in all relevant aspects to discover new regimens by 2015 and to eliminate tuberculosis as a public health concern by 2050. As a result, some 20 promising compounds from 14 groups of drugs have been discovered. Twelve candidates from eight classes are currently being evaluated in clinical trials. Ongoing research should prioritize identification of novel targets and newer application of existing drugs, discovery of multitargeted drugs from natural compounds, strengthening host factors by immunopotentiation with herbal immunomodulators, as well as protective vaccines before and after exposure, consideration of surgical measures when indicated, development of tools for rapid diagnosis, early identification of resistant strains, and

  7. Targeting oncoprotein stability overcomes drug resistance caused by FLT3 kinase domain mutations.

    Directory of Open Access Journals (Sweden)

    Chuanjiang Yu

    Full Text Available FLT3 is the most frequently mutated kinase in acute myeloid leukemia (AML. Internal tandem duplications (ITDs in the juxta-membrane region constitute the majority of activating FLT3 mutations. Several FLT3 kinase inhibitors were developed and tested in the clinic with significant success. However, recent studies have reported the development of secondary drug resistance in patients treated with FLT3 inhibitors. Since FLT3-ITD is an HSP90 client kinase, we here explored if targeting the stability of drug-resistant FLT3 mutant protein could be a potential therapeutic option. We observed that HSP90 inhibitor treatment resulted in the degradation of inhibitor-resistant FLT3-ITD mutants and selectively induced toxicity in cells expressing FLT3-ITD mutants. Thus, HSP90 inhibitors provide a potential therapeutic choice to overcome secondary drug resistance following TKI treatment in FLT3-ITD positive AML.

  8. Linezolid in the treatment of drug-resistant tuberculosis: the challenge of its narrow therapeutic index.

    Science.gov (United States)

    Wasserman, Sean; Meintjes, Graeme; Maartens, Gary

    2016-10-01

    Linezolid is an oxazolidinone with potent activity against M tuberculosis, and improves culture conversion and cure rates when added to treatment regimens for drug resistant tuberculosis. However, linezolid has a narrow therapeutic window, and the optimal dosing strategy that minimizes the substantial toxicity associated with linezolid's prolonged use in tuberculosis treatment has not been determined, limiting the potential impact of this anti-mycobacterial agent. This paper aims to review and summarize the current knowledge on linezolid for the treatment of drug-resistant tuberculosis. The focus is on the pharmacokinetic-pharmacodynamic determinants of linezolid's efficacy and toxicity in tuberculosis, and how this relates to defining an optimal dose. Mechanisms of linezolid toxicity and resistance, and the potential role of therapeutic drug monitoring are also covered. Expert commentary: Prospective pharmacokinetic-pharmacodynamic studies are required to define optimal therapeutic targets and to inform improved linezolid dosing strategies for drug-resistant tuberculosis.

  9. Multi-drug resistant tuberculosis in Tanzania: Initial description of ...

    African Journals Online (AJOL)

    Background: Drug resistant Tuberculosis is well documented worldwide and is associated with increasing morbidity and mortality complicating Tuberculosis control with increasing costs of managing the disease. Broad. Objective: To describe clinical and laboratory characteristics of multi-drug resistant Tuberculosis ...

  10. Drug-resistance in chronic tuberculosis cases in Southern Nigeria ...

    African Journals Online (AJOL)

    Nigeria has a high burden of tuberculosis but the drug resistant situationwas previously unknown. This report evaluates the firstline drug resistance and associated factors among chronic tuberculosis cases from the tuberculosis control programme in South south and South east zones ofNigeria. Descriptive study of chronic ...

  11. Tuberculosis drug resistance in the Western Cape | Weyer | South ...

    African Journals Online (AJOL)

    Objectives: Drug resistance is a serious problem in the treatment of tuberculosis and a threat to successful tuberculosis control programmes. Local health workers have expressed concern that the increasing tuberculosis epidemic in the Western Cape is partly attributable to drug resistance. The aim of this study was to ...

  12. Adaptation and evolution of drug-resistant Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Bergval, I.L.

    2013-01-01

    Many studies have been conducted on drug resistance and the evolution of Mycobacterium tuberculosis. Notwithstanding, many molecular mechanisms facilitating the emergence, adaptation and spread of drug-resistant tuberculosis have yet to be discovered. This thesis reports studies of the adaptive

  13. Fitness trade-offs in the evolution of dihydrofolate reductase and drug resistance in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Marna S Costanzo

    Full Text Available Patterns of emerging drug resistance reflect the underlying adaptive landscapes for specific drugs. In Plasmodium falciparum, the parasite that causes the most serious form of malaria, antifolate drugs inhibit the function of essential enzymes in the folate pathway. However, a handful of mutations in the gene coding for one such enzyme, dihydrofolate reductase, confer drug resistance. Understanding how evolution proceeds from drug susceptibility to drug resistance is critical if new antifolate treatments are to have sustained usefulness.We use a transgenic yeast expression system to build on previous studies that described the adaptive landscape for the antifolate drug pyrimethamine, and we describe the most likely evolutionary trajectories for the evolution of drug resistance to the antifolate chlorcycloguanil. We find that the adaptive landscape for chlorcycloguanil is multi-peaked, not all highly resistant alleles are equally accessible by evolution, and there are both commonalities and differences in adaptive landscapes for chlorcycloguanil and pyrimethamine.Our findings suggest that cross-resistance between drugs targeting the same enzyme reflect the fitness landscapes associated with each particular drug and the position of the genotype on both landscapes. The possible public health implications of these findings are discussed.

  14. Identifying co-targets to fight drug resistance based on a random walk model

    Directory of Open Access Journals (Sweden)

    Chen Liang-Chun

    2012-01-01

    Full Text Available Abstract Background Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. Results We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. Conclusions With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.

  15. Simple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosis

    NARCIS (Netherlands)

    Kamp, Jasper; Bolhuis, Mathieu S.; Tiberi, Simon; Akkerman, Onno W.; Centis, Rosella; de lange, Wiel C.; Kosterink, Jos G.; van der Werf, Tjip S.; Migliori, Giovanni B.; Alffenaar, Jan-Willem C.

    Linezolid is used increasingly for the treatment of multi-drug-resistant (MDR) and extensively-drug-resistant (XDR) tuberculosis (TB). However, linezolid can cause severe adverse events, such as peripheral and optical neuropathy or thrombocytopenia related to higher drug exposure. This study aimed

  16. Study on drug resistance of mycobacterium tuberculosis in patients with pulmonary tuberculosis by drug resistance gene detecting

    International Nuclear Information System (INIS)

    Wang Wei; Li Hongmin; Wu Xueqiong; Wang Ansheng; Ye Yixiu; Wang Zhongyuan; Liu Jinwei; Chen Hongbing; Lin Minggui; Wang Jinhe; Li Sumei; Jiang Ping; Feng Bai; Chen Dongjing

    2004-01-01

    To investigate drug resistance of mycobacterium tuberculosis in different age group, compare detecting effect of two methods and evaluate their the clinical application value, all of the strains of mycobacterium tuberculosis were tested for resistance to RFP, INH SM PZA and EMB by the absolute concentration method on Lowenstein-Jensen medium and the mutation of the rpoB, katG, rpsL, pncA and embB resistance genes in M. tuberculosis was tested by PCR-SSCP. In youth, middle and old age group, the rate of acquired drug resistance was 89.2%, 85.3% and 67.6% respectively, the gene mutation rate was 76.2%, 81.3% and 63.2% respectively. The rate of acquired drug resistance and multiple drug resistance in youth group was much higher than those in other groups. The gene mutation was correlated with drug resistance level of mycobacterium tuberculosis. The gene mutation rate was higher in strains isolated from high concentration resistance than those in strains isolated from low concentration resistance. The more irregular treatment was longer, the rate of drug resistance was higher. Acquired drug resistance varies in different age group. It suggested that surveillance of drug resistence in different age group should be taken seriously, especially in youth group. PCR - SSCP is a sensitive and specific method for rapid detecting rpoB, katG, rpsL, pncA and embB genes mutations of MTB. (authors)

  17. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    Directory of Open Access Journals (Sweden)

    Morales Eva

    2012-05-01

    Full Text Available Abstract Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain. All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros. In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively. Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  18. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition.

    Science.gov (United States)

    Morales, Eva; Cots, Francesc; Sala, Maria; Comas, Mercè; Belvis, Francesc; Riu, Marta; Salvadó, Margarita; Grau, Santiago; Horcajada, Juan P; Montero, Maria Milagro; Castells, Xavier

    2012-05-23

    We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  19. Oxidative Stress in Patients with Drug Resistant Partial Complex Seizure

    Directory of Open Access Journals (Sweden)

    Lourdes Lorigados Pedre

    2018-06-01

    Full Text Available Oxidative stress (OS has been implicated as a pathophysiological mechanism of drug-resistant epilepsy, but little is known about the relationship between OS markers and clinical parameters, such as the number of drugs, age onset of seizure and frequency of seizures per month. The current study’s aim was to evaluate several oxidative stress markers and antioxidants in 18 drug-resistant partial complex seizure (DRPCS patients compared to a control group (age and sex matched, and the results were related to clinical variables. We examined malondialdehyde (MDA, advanced oxidation protein products (AOPP, advanced glycation end products (AGEs, nitric oxide (NO, uric acid, superoxide dismutase (SOD, glutathione, vitamin C, 4-hydroxy-2-nonenal (4-HNE and nitrotyrosine (3-NT. All markers except 4-HNE and 3-NT were studied by spectrophotometry. The expressions of 4-HNE and 3-NT were evaluated by Western blot analysis. MDA levels in patients were significantly increased (p ≤ 0.0001 while AOPP levels were similar to the control group. AGEs, NO and uric acid concentrations were significantly decreased (p ≤ 0.004, p ≤ 0.005, p ≤ 0.0001, respectively. Expressions of 3-NT and 4-HNE were increased (p ≤ 0.005 similarly to SOD activity (p = 0.0001, whereas vitamin C was considerably diminished (p = 0.0001. Glutathione levels were similar to the control group. There was a positive correlation between NO and MDA with the number of drugs. The expression of 3-NT was positively related with the frequency of seizures per month. There was a negative relationship between MDA and age at onset of seizures, as well as vitamin C with seizure frequency/month. We detected an imbalance in the redox state in patients with DRCPS, supporting oxidative stress as a relevant mechanism in this pathology. Thus, it is apparent that some oxidant and antioxidant parameters are closely linked with clinical variables.

  20. P53- and mevalonate pathway–driven malignancies require Arf6 for metastasis and drug resistance

    Science.gov (United States)

    Hashimoto, Ari; Oikawa, Tsukasa; Hashimoto, Shigeru; Sugino, Hirokazu; Yoshikawa, Ayumu; Otsuka, Yutaro; Handa, Haruka; Onodera, Yasuhito; Nam, Jin-Min; Oneyama, Chitose; Okada, Masato; Fukuda, Mitsunori

    2016-01-01

    Drug resistance, metastasis, and a mesenchymal transcriptional program are central features of aggressive breast tumors. The GTPase Arf6, often overexpressed in tumors, is critical to promote epithelial–mesenchymal transition and invasiveness. The metabolic mevalonate pathway (MVP) is associated with tumor invasiveness and known to prenylate proteins, but which prenylated proteins are critical for MVP-driven cancers is unknown. We show here that MVP requires the Arf6-dependent mesenchymal program. The MVP enzyme geranylgeranyl transferase II (GGT-II) and its substrate Rab11b are critical for Arf6 trafficking to the plasma membrane, where it is activated by receptor tyrosine kinases. Consistently, mutant p53, which is known to support tumorigenesis via MVP, promotes Arf6 activation via GGT-II and Rab11b. Inhibition of MVP and GGT-II blocked invasion and metastasis and reduced cancer cell resistance against chemotherapy agents, but only in cells overexpressing Arf6 and components of the mesenchymal program. Overexpression of Arf6 and mesenchymal proteins as well as enhanced MVP activity correlated with poor patient survival. These results provide insights into the molecular basis of MVP-driven malignancy. PMID:27044891

  1. Implementation of a national anti-tuberculosis drug resistance survey in Tanzania

    Directory of Open Access Journals (Sweden)

    Mfaume Saidi M

    2008-12-01

    Full Text Available Abstract Background A drug resistance survey is an essential public health management tool for evaluating and improving the performance of National Tuberculosis control programmes. The current manuscript describes the implementation of the first national drug resistance survey in Tanzania. Methods Description of the implementation process of a national anti-tuberculosis drug resistance survey in Tanzania, in relation to the study protocol and Standard Operating Procedures. Results Factors contributing positively to the implementation of the survey were a continuous commitment of the key stakeholders, the existence of a well organized National Tuberculosis Programme, and a detailed design of cluster-specific arrangements for rapid sputum transportation. Factors contributing negatively to the implementation were a long delay between training and actual survey activities, limited monitoring of activities, and an unclear design of the data capture forms leading to difficulties in form-filling. Conclusion Careful preparation of the survey, timing of planned activities, a strong emphasis on data capture tools and data management, and timely supervision are essential for a proper implementation of a national drug resistance survey.

  2. Implementation of a national anti-tuberculosis drug resistance survey in Tanzania.

    Science.gov (United States)

    Chonde, Timothy M; Doulla, Basra; van Leth, Frank; Mfinanga, Sayoki G M; Range, Nyagosya; Lwilla, Fred; Mfaume, Saidi M; van Deun, Armand; Zignol, Matteo; Cobelens, Frank G; Egwaga, Saidi M

    2008-12-30

    A drug resistance survey is an essential public health management tool for evaluating and improving the performance of National Tuberculosis control programmes. The current manuscript describes the implementation of the first national drug resistance survey in Tanzania. Description of the implementation process of a national anti-tuberculosis drug resistance survey in Tanzania, in relation to the study protocol and Standard Operating Procedures. Factors contributing positively to the implementation of the survey were a continuous commitment of the key stakeholders, the existence of a well organized National Tuberculosis Programme, and a detailed design of cluster-specific arrangements for rapid sputum transportation. Factors contributing negatively to the implementation were a long delay between training and actual survey activities, limited monitoring of activities, and an unclear design of the data capture forms leading to difficulties in form-filling. Careful preparation of the survey, timing of planned activities, a strong emphasis on data capture tools and data management, and timely supervision are essential for a proper implementation of a national drug resistance survey.

  3. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.

    Directory of Open Access Journals (Sweden)

    Shantelle L LaFayette

    2010-08-01

    Full Text Available Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC, which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which

  4. Meropenem-Clavulanate is Effective Against Extensive Drug-Resistant Mycobacterium Tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Hugonnet, J.; Tremblay, L; Boshoff, H; Barry, C; Blanchard, J

    2009-01-01

    e-lactam antibiotics are ineffective against Mycobacterium tuberculosis, being rapidly hydrolyzed by the chromosomally encoded blaC gene product. The carbapenem class of e-lactams are very poor substrates for BlaC, allowing us to determine the three-dimensional structure of the covalent BlaC-meropenem covalent complex at 1.8 angstrom resolution. When meropenem was combined with the e-lactamase inhibitor clavulanate, potent activity against laboratory strains of M. tuberculosis was observed [minimum inhibitory concentration (MICmeropenem) less than 1 microgram per milliliter], and sterilization of aerobically grown cultures was observed within 14 days. In addition, this combination exhibited inhibitory activity against anaerobically grown cultures that mimic the 'persistent' state and inhibited the growth of 13 extensively drug-resistant strains of M. tuberculosis at the same levels seen for drug-susceptible strains. Meropenem and clavulanate are Food and Drug Administration-approved drugs and could potentially be used to treat patients with currently untreatable disease.

  5. Cytotoxicity of the indole alkaloid reserpine from Rauwolfia serpentina against drug-resistant tumor cells.

    Science.gov (United States)

    Abdelfatah, Sara A A; Efferth, Thomas

    2015-02-15

    The antihypertensive reserpine is an indole alkaloid from Rauwolfia serpentina and exerts also profound activity against cancer cells in vitro and in vivo. The present investigation was undertaken to investigate possible modes of action to explain its activity toward drug-resistant tumor cells. Sensitive and drug-resistant tumor cell lines overexpressing P-glycoprotein (ABCB1/MDR1), breast cancer resistance protein (ABCG2/BCRP), mutation-activated epidermal growth factor receptor (EGFR), wild-type and p53-knockout cells as well as the NCI panel of cell lines from different tumor origin were analyzed. Reserpine's cytotoxicity was investigated by resazurin and sulforhodamine assays, flow cytometry, and COMPARE and hierarchical cluster analyses of transcriptome-wide microarray-based RNA expressions. P-glycoprotein- or BCRP overexpressing tumor cells did not reveal cross-resistance to reserpine. EGFR-overexpressing cells were collateral sensitive and p53- Knockout cells cross-resistant to this drug compared to their wild-type parental cell lines. Reserpine increased the uptake of doxorubicin in P-glycoprotein-overexpressing cells, indicating that reserpine inhibited the efflux function of P-glycoprotein. Using molecular docking, we found that reserpine bound with even higher binding energy to P-glycoprotein and EGFR than the control drugs verapamil (P-glycoprotein inhibitor) and erlotinib (EGFR inhibitor). COMPARE and cluster analyses of microarray data showed that the mRNA expression of a panel of genes predicted the sensitivity or resistance of the NCI tumor cell line panel with statistical significance. The genes belonged to diverse pathways and biological functions, e.g. cell survival and apoptosis, EGFR activation, regulation of angiogenesis, cell mobility, cell adhesion, immunological functions, mTOR signaling, and Wnt signaling. The lack of cross-resistance to most resistance mechanisms and the collateral sensitivity in EGFR-transfectants compared to wild

  6. Quorum Sensing Inhibition and Structure–Activity Relationships of β-Keto Esters

    Directory of Open Access Journals (Sweden)

    Stephanie Forschner-Dancause

    2016-07-01

    Full Text Available Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS—a cell-cell communication system in bacteria—controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that β-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen β-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl β-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the β-keto ester panel will enable us to obtain more insight into the structure–activity relationships needed to allow for the development of novel anti-virulence agents.

  7. Antimicrobial potentials of Helicteres isora silver nanoparticles against extensively drug-resistant (XDR) clinical isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Mapara, Nikunj; Sharma, Mansi; Shriram, Varsha; Bharadwaj, Renu; Mohite, K C; Kumar, Vinay

    2015-12-01

    Pseudomonas aeruginosa is a leading opportunistic pathogen and its expanding drug resistance is a growing menace to public health. Its ubiquitous nature and multiple resistance mechanisms make it a difficult target for antimicrobial chemotherapy and require a fresh approach for developing new antimicrobial agents against it. The broad-spectrum antibacterial effects of silver nanoparticles (SNPs) make them an excellent candidate for use in the medical field. However, attempts made to check their potency against extensively drug-resistant (XDR) microbes are meager. This study describes the biosynthesis and biostabilization of SNPs by Helicteres isora aqueous fruit extract and their characterization by ultraviolet-visible spectroscopy, transmission electron microscopy, dynamic light scattering, X-ray diffraction, and Fourier transform infrared spectroscopy. Majority of SNPs synthesized were of 8--20-nm size. SNPs exhibited dose-dependent antibacterial activities against four XDR P. aeruginosa (XDR-PA) clinical isolates as revealed by growth curves, with a minimum inhibitory concentration of 300 μg/ml. The SNPs exhibited antimicrobial activity against all strains, with maximum zone of inhibition (16.4 mm) in XRD-PA-2 at 1000 μg/ml. Amongst four strains, their susceptibilities to SNPs were in the following order: XDR-PA-2 > XDR-PA-4 > XDR-PA-3 > XDR-PA-1. The exposure of bacterial cells to 300 μg/ml SNPs resulted into a substantial leakage of reducing sugars and proteins, inactivation of respiratory chain dehydrogenases, and eventual cell death. SNPs also induced lipid peroxidation, a possible underlying factor to membrane porosity. The effects were more pronounced in XDR-PA-2 which may be correlated with its higher susceptibility to SNPs. These results are indicative of SNP-induced turbulence of membranous permeability as an important causal factor in XDR-PA growth inhibition and death.

  8. Bio-hybridization of nanobactericides with cellulose films for effective treatment against members of ESKAPE multi-drug-resistant pathogens

    Science.gov (United States)

    Baker, Syed; Volova, Tatiana; Prudnikova, Svetlana V.; Shumilova, Anna A.; Perianova, Olga V.; Zharkov, Sergey M.; Kuzmin, Andrey; Olga, Kondratenka; Bogdan, Kiryukhin; Shidlovskiy, Ivan P.; Potkina, Zoya K.; Khohlova, Olga Y.; Lobova, Tatiana I.

    2018-03-01

    The rapid expansion of drug-resistant pathogens has created huge global impact and development of novel antimicrobial leads is one of the top priority studies in the current scenario. The present study aims to develop bio-hybridized nanocellulose films which comprise of phytogenic silver nanobactericides. The nanobactericides were synthesized by treating 1 mM silver nitrate with aqueous extract of Chamerion angustifolium which reduced the metal salt to produce polydispersed nanobactericides which were tested against the members of ESKAPE drug-resistant communities. The synthesized silver nanobactericides were subjected to characterization with UV-visible spectra which displayed maximum absorbance at 408 nm. The bio-molecular interaction of phyto-constituents to mediate synthesis and stabilization of nanobactericides was studied with Fourier-transform infrared spectroscopy (FTIR) which depicted functional groups associated with nanobactericides. The crystalline nature was studied with X-ray diffraction (XRD) which showed Bragg's intensities at 2θ angle which denoted (111), (200), (220), and (311) planes. The morphological characteristics of silver nanobactericides were defined with transmission electron Microscopy (TEM) image which displayed polydispersity of silver nanobactericides with size ranging from 2 to 40 nm. The synthesized nanobactericides showed a significant activity against MRSA strain with 21 mm zone of inhibition. The minimal inhibitory concentration of silver nanobactericides to inhibit the growth of test pathogens was also determined which ranged between 0.625 and 1.25 μg/ml. The silver nanobactericides were bio-hybridized onto nanocellulose films produced by Komagataeibacter xylinus B-12068 culture strain. The films were dried to determine the mechanical properties which showed increased in Young's modulus and tensile strength in comparison with control bacterial cellulose films. Overall, the results obtained in the present investigation are

  9. Antituberculosis drug resistance patterns in adults with tuberculous meningitis

    DEFF Research Database (Denmark)

    Senbayrak, Seniha; Ozkutuk, Nuri; Erdem, Hakan

    2015-01-01

    BACKGROUND: Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis resistant to antituberculosis drugs is an increasingly common clinical problem. This study aimed to evaluate drug resistance profiles of TBM isolates in adult patients in nine European countries involving 32 centers...

  10. mtct regimen choice, drug resistance and the treatment of hiv

    African Journals Online (AJOL)

    risk of transmission is highest during labour and delivery, ... will have a major impact on controlling perinatally acquired HIV infection. ... could result in the development of drug resistance with potential .... dosing, pharmacokinetics and safety.

  11. Multidrug resistant to extensively drug resistant tuberculosis: What is ...

    Indian Academy of Sciences (India)

    Prakash

    The modern, ... World Health Organization is based on a four-drug regimen ... Better management and control of tuberculosis specially drug resistant TB by experienced and qualified .... a comprehensive approach including the major DOTS.

  12. GEAR: A database of Genomic Elements Associated with drug Resistance

    Science.gov (United States)

    Wang, Yin-Ying; Chen, Wei-Hua; Xiao, Pei-Pei; Xie, Wen-Bin; Luo, Qibin; Bork, Peer; Zhao, Xing-Ming

    2017-01-01

    Drug resistance is becoming a serious problem that leads to the failure of standard treatments, which is generally developed because of genetic mutations of certain molecules. Here, we present GEAR (A database of Genomic Elements Associated with drug Resistance) that aims to provide comprehensive information about genomic elements (including genes, single-nucleotide polymorphisms and microRNAs) that are responsible for drug resistance. Right now, GEAR contains 1631 associations between 201 human drugs and 758 genes, 106 associations between 29 human drugs and 66 miRNAs, and 44 associations between 17 human drugs and 22 SNPs. These relationships are firstly extracted from primary literature with text mining and then manually curated. The drug resistome deposited in GEAR provides insights into the genetic factors underlying drug resistance. In addition, new indications and potential drug combinations can be identified based on the resistome. The GEAR database can be freely accessed through http://gear.comp-sysbio.org. PMID:28294141

  13. A Structural View on Medicinal Chemistry Strategies against Drug Resistance.

    Science.gov (United States)

    Agnello, Stefano; Brand, Michael; Chellat, Mathieu F; Gazzola, Silvia; Riedl, Rainer

    2018-05-30

    The natural phenomenon of drug resistance represents a generic impairment that hampers the benefits of drugs in all major clinical indications. Antibacterials and antifungals are affected as well as compounds for the treatment of cancer, viral infections or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, underlying molecular processes have been identified to understand the emergence of resistance and to overcome this detrimental mechanism. Detailed structural information of the root causes for drug resistance is nowadays frequently available to design next generation drugs anticipated to suffer less from resistance. This knowledge-based approach is a prerequisite in the fight against the inevitable occurrence of drug resistance to secure the achievements of medicinal chemistry in the future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. SILVER NANOPARTICLES IN THE SOLUTION OF THE PROBLEM OF DRUG RESISTANCE IN MYCOBACTERIUM TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    A. V. Zaharov

    2017-01-01

    Full Text Available The goal — a scientific evaluation of the effectiveness and safety of NHS in the treatment of experimental drug-resistant tuberculosis. Materials and methods. Used silver nanoparticles obtained by an electrochemical method. With a size of 5-60 nm, 120-270 kontsentratsiey- 1 mcm² and the size of the stabilizer shell — 2-5 nm. 750 crops studied Inhibitory activity of the silver nanoparticles in an isolated form and as part of a nanocomposite with chemotherapy in concentrations of 5; 25 and 50 mcg/ml. Defines the minimum inhibitory concentration of bactericidal nanoparticles composed of a nanocomposite with isoniazid. To evaluate the morphometry M.tuberculosis used atomic force microscopy. Toxicology nanopreparations studied 83 non-linear white mice and 146 white rats. Chemotherapeutic Activity nanopreparations determined on an experimental model of tuberculosis in 65 white male mice imbrednoy line BALB/c. Infectivity dose amount 5х106 colony forming units injected into the sinus venosus animal eyes. Isoniazid, nanoparticles and nanocomposite began administered 14 days after infection by intramuscular injection daily. Treatment efficacy was determined by comparing the evaluation criteria in the experimental and control groups of animals. Evaluated the following indicators: survival index, body mass index and weight of target organ, lesions index, index smear and inoculation of affected organs. Conducted pathological examination. Results. When using isoniazid, which had resistant pathogens, with silver nanoparticles full and significant inhibition of the growth of the M.tuberculosis observed in 49,2% of cases. When the concentration of the nanoparticles 5 mcg/ml in the composite bactericidal activity reached 91,3%. The minimum inhibitory concentration of silver nanoperticles in combination with isoniazid was 2,5 mcg/ml, the minimum bactericidal — 5 mcg /ml. There have been changes in the M.tuberculosis morphometry under the influence of the

  15. Inhibition of intestinal disaccharidase activity by pentoses

    DEFF Research Database (Denmark)

    Halschou-Jensen, Kia

    on carbohydrate- ingesting enzymes activity in vitro and possible effects on human postprandial blood response. In paper 1 the effects of sugar beet polyphenols from molasses and the potential inhibition of sucrase activity in vitro, was investigated. Two different polyphenol-rich fractions from chromatographic...... separation of molasses from sugar beets and pure ferulic acid were tested. We found no effects of the two fractions of molasses. The pure ferulic acid indicated an inhibition of sucrase in vitr. Both in vitro and in vivo studies have investigated the effects of L-arabinose and D-xylose on carbohydrate...

  16. Quercetin suppresses drug-resistant spheres via the p38 MAPK-Hsp27 apoptotic pathway in oral cancer cells.

    Directory of Open Access Journals (Sweden)

    Su-Feng Chen

    Full Text Available BACKGROUND: Treatment failure in oral squamous cell carcinoma (OSCC leading to local recurrence(s and metastases is mainly due to drug resistance. Cancer stem cells (CSCs are thought be responsible for the development of drug resistance. However, the correlations between CSCs, drug resistance, and new strategy against drug resistance in OSCC remain elusive. METHODS: A drug-resistant sphere (DRSP model was generated by using a nonadhesive culture system to induce drug-resistant cells from SCC25 oral cancer cells. A comparative analysis was performed between the parent control cells and DRSPs with a related treatment strategy focusing on the expression of epithelial-mesenchymal transition (EMT-associated markers, drug-resistance-related genes, and CSC properties in vitro, as well as tumorigenicity and the regimen for tumor regression in vivo. RESULTS: Our data show the presence of a phenomenon of EMT with gradual cellular transition from an epithelioid to mesenchymal-like spheroid morphology during induction of drug resistance. The characterization of DRSPs revealed the upregulation of the drug-resistance-related genes ABCG2 and MDR-1 and of CSC-representative markers, suggesting that DRSPs have greater resistance to cisplatin (Cis and stronger CSC properties compared with the control. Moreover, overexpression of phosphorylated heat-shock protein 27 (p-Hsp27 via the activation of p38 MAPK signaling was observed in DRSPs. Knockdown of Hsp27 decreased Cis resistance and induced apoptosis in DRSPs. Furthermore, an inhibitor of Hsp27, quercetin (Qu, suppressed p-Hsp27 expression, with alterations of the EMT signature, leading to the promotion of apoptosis in DRSPs. A xenographic study also confirmed the increase of tumorigenicity in DRSPs. The combination of Qu and Cis can reduce tumor growth and decrease drug resistance in OSCC. CONCLUSIONS: The p38 MAPK-Hsp27 axis plays an important role in CSCs-mediated drug resistance in OSCC. Targeting this axis

  17. Effect of radiation decontamination on drug-resistant bacteria

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2006-01-01

    More than 80% of food poisoning bacteria such as Salmonella are reported as antibiotic-resistant to at least one type antibiotic, and more than 50% as resistant to two or more. For the decontamination of food poisoning bacteria in foods, radiation resistibility on drug-resistant bacteria were investigated compared with drug-sensitive bacteria. Possibility on induction of drug-resistant mutation by radiation treatment was also investigated. For these studies, type strains of Escherichia coli S2, Salmonella enteritidis YK-2 and Staphylococcus aureus H12 were used to induce drug-resistant strains with penicillin G. From the study of radiation sensitivity on the drug-resistant strain induced from E. coli S2, D 10 value was obtained to be 0.20 kGy compared with 0.25 kGy at parent strain. On S. enteritidis YK-2, D 10 value was obtained to be 0.14 kGy at drug-resistant strain compared with 0.16 kGy at parent strain. D 10 value was also obtained to be 0.15 kGy at drug-resistant strain compared with 0.21 kGy at parent strain of St. aureus H12. Many isolates of E. coli 157:H7 or other type of E. coli from meats such as beef were resistant to penicillin G, and looked to be no relationship on radiation resistivities between drug-resistant strains and sensitive strains. On the study of radiation sensitivity on E. coli S2 at plate agars containing antibiotics, higher survival fractions were obtained at higher doses compared with normal plate agar. The reason of higher survival fractions at higher doses on plate agar containing antibiotics should be recovery of high rate of injured cells by the relay of cell division, and drug-resistant strains by mutation are hardly induced by irradiation. (author)

  18. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    International Nuclear Information System (INIS)

    Hembruff, Stacey L; Laberge, Monique L; Villeneuve, David J; Guo, Baoqing; Veitch, Zachary; Cecchetto, Melanie; Parissenti, Amadeo M

    2008-01-01

    Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7 DOX-2 ), epirubicin (MCF-7 EPI ), paclitaxel (MCF-7 TAX-2 ), or docetaxel (MCF-7 TXT ). During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does occur at the threshold dose, the magnitude of

  19. Drug-resistant tuberculosis--current dilemmas, unanswered questions, challenges, and priority needs.

    Science.gov (United States)

    Zumla, Alimuddin; Abubakar, Ibrahim; Raviglione, Mario; Hoelscher, Michael; Ditiu, Lucica; McHugh, Timothy D; Squire, S Bertel; Cox, Helen; Ford, Nathan; McNerney, Ruth; Marais, Ben; Grobusch, Martin; Lawn, Stephen D; Migliori, Giovanni-Battista; Mwaba, Peter; O'Grady, Justin; Pletschette, Michel; Ramsay, Andrew; Chakaya, Jeremiah; Schito, Marco; Swaminathan, Soumya; Memish, Ziad; Maeurer, Markus; Atun, Rifat

    2012-05-15

    Tuberculosis was declared a global emergency by the World Health Organization (WHO) in 1993. Following the declaration and the promotion in 1995 of directly observed treatment short course (DOTS), a cost-effective strategy to contain the tuberculosis epidemic, nearly 7 million lives have been saved compared with the pre-DOTS era, high cure rates have been achieved in most countries worldwide, and the global incidence of tuberculosis has been in a slow decline since the early 2000s. However, the emergence and spread of multidrug-resistant (MDR) tuberculosis, extensively drug-resistant (XDR) tuberculosis, and more recently, totally drug-resistant tuberculosis pose a threat to global tuberculosis control. Multidrug-resistant tuberculosis is a man-made problem. Laboratory facilities for drug susceptibility testing are inadequate in most tuberculosis-endemic countries, especially in Africa; thus diagnosis is missed, routine surveillance is not implemented, and the actual numbers of global drug-resistant tuberculosis cases have yet to be estimated. This exposes an ominous situation and reveals an urgent need for commitment by national programs to health system improvement because the response to MDR tuberculosis requires strong health services in general. Multidrug-resistant tuberculosis and XDR tuberculosis greatly complicate patient management within resource-poor national tuberculosis programs, reducing treatment efficacy and increasing the cost of treatment to the extent that it could bankrupt healthcare financing in tuberculosis-endemic areas. Why, despite nearly 20 years of WHO-promoted activity and >12 years of MDR tuberculosis-specific activity, has the country response to the drug-resistant tuberculosis epidemic been so ineffectual? The current dilemmas, unanswered questions, operational issues, challenges, and priority needs for global drug resistance screening and surveillance, improved treatment regimens, and management of outcomes and prevention of DR

  20. Thermoresponsive Supramolecular Chemotherapy by "V"-Shaped Armed β-Cyclodextrin Star Polymer to Overcome Drug Resistance.

    Science.gov (United States)

    Fan, Xiaoshan; Cheng, Hongwei; Wang, Xiaoyuan; Ye, Enyi; Loh, Xian Jun; Wu, Yun-Long; Li, Zibiao

    2018-04-01

    Pump mediated drug efflux is the key reason to result in the failure of chemotherapy. Herein, a novel star polymer β-CD-v-(PEG-β-PNIPAAm) 7 consisting of a β-CD core, grafted with thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(ethylene glycol) (PEG) in the multiple "V"-shaped arms is designed and further fabricated into supramolecular nanocarriers for drug resistant cancer therapy. The star polymer could encapsulate chemotherapeutics between β-cyclodextrin and anti-cancer drug via inclusion complex (IC). Furthermore, the temperature induced chain association of PNIPAAm segments facilitated the IC to form supramolecular nanoparticles at 37 °C, whereas the presence of PEG impart great stability to the self-assemblies. When incubated with MDR-1 membrane pump regulated drug resistant tumor cells, much higher and faster cellular uptake of the supramolecular nanoparticles were detected, and the enhanced intracellular retention of drugs could lead to significant inhibition of cell growth. Further in vivo evaluation showed high therapeutic efficacy in suppressing drug resistant tumor growth without a significant impact on the normal functions of main organs. This work signifies thermo-responsive supramolecular chemotherapy is promising in combating pump mediated drug resistance in both in vitro and in vivo models, which may be encouraging for the advanced drug delivery platform design to overcome drug resistant cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sentinel surveillance of HIV-1 transmitted drug resistance, acute infection and recent infection.

    Directory of Open Access Journals (Sweden)

    Hong-Ha M Truong

    Full Text Available HIV-1 acute infection, recent infection and transmitted drug resistance screening was integrated into voluntary HIV counseling and testing (VCT services to enhance the existing surveillance program in San Francisco. This study describes newly-diagnosed HIV cases and characterizes correlates associated with infection.A consecutive sample of persons presenting for HIV VCT at the municipal sexually transmitted infections (STI clinic from 2004 to 2006 (N = 9,868 were evaluated by standard enzyme-linked immunoassays (EIA. HIV antibody-positive specimens were characterized as recent infections using a less-sensitive EIA. HIV-RNA pooled testing was performed on HIV antibody-negative specimens to identify acute infections. HIV antibody-positive and acute infection specimens were evaluated for drug resistance by sequence analysis. Multivariable logistic regression was performed to evaluate associations. The 380 newly-diagnosed HIV cases included 29 acute infections, 128 recent infections, and 47 drug-resistant cases, with no significant increases or decreases in prevalence over the three years studied. HIV-1 transmitted drug resistance prevalence was 11.0% in 2004, 13.4% in 2005 and 14.9% in 2006 (p = 0.36. Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTI was the most common pattern detected, present in 28 cases of resistance (59.6%. Among MSM, recent infection was associated with amphetamine use (AOR = 2.67; p<0.001, unprotected anal intercourse (AOR = 2.27; p<0.001, sex with a known HIV-infected partner (AOR = 1.64; p = 0.02, and history of gonorrhea (AOR = 1.62; p = 0.03.New HIV diagnoses, recent infections, acute infections and transmitted drug resistance prevalence remained stable between 2004 and 2006. Resistance to NNRTI comprised more than half of the drug-resistant cases, a worrisome finding given its role as the backbone of first-line antiretroviral therapy in San Francisco as well as worldwide. The integration of HIV-1 drug

  2. drug resistant strains of Salmonella enterica

    African Journals Online (AJOL)

    Conclusions: The aqueous extract of Thonningia sanguinea can provide an alternative therapy for the treatment of salmonellosis, mainly for typhoid fever caused by MDR strains of S. Typhi.The extract also inhibits S.Hadar a MDR emerging strain in Ivory Coast. Keywords: Thonningia sanguinea; Salmonella, MDR strains, ...

  3. MRP- and BCL-2-mediated drug resistance in human SCLC: effects of apoptotic sphingolipids in vitro.

    Science.gov (United States)

    Khodadadian, M; Leroux, M E; Auzenne, E; Ghosh, S C; Farquhar, D; Evans, R; Spohn, W; Zou, Y; Klostergaard, J

    2009-10-01

    Multidrug-resistance-associated protein (MRP) and BCL-2 contribute to drug resistance expressed in SCLC. To establish whether MRP-mediated drug resistance affects sphingolipid (SL)-induced apoptosis in SCLC, we first examined the human SCLC cell line, UMCC-1, and its MRP over-expressing, drug-resistant subline, UMCC-1/VP. Despite significantly decreased sensitivity to doxorubicin (Dox) and to the etoposide, VP-16, the drug-selected line was essentially equally as sensitive to treatment with exogenous ceramide (Cer), sphingosine (Sp) or dimethyl-sphingosine (DMSP) as the parental line. Next, we observed that high BCL-2-expressing human H69 SCLC cells, that were approximately 160-fold more sensitive to Dox than their combined BCL-2 and MRP-over-expressing (H69AR) counterparts, were only approximately 5-fold more resistant to DMSP. Time-lapse fluorescence microscopy of either UMCC cell line treated with DMSP-Coumarin revealed comparable extents and kinetics of SL uptake, further ruling out MRP-mediated effects on drug uptake. DMSP potentiated the cytotoxic activity of VP-16 and Taxol, but not Dox, in drug-resistant UMCC-1/VP cells. However, this sensitization did not appear to involve DMSP-mediated effects on the function of MRP in drug export; nor did DMSP strongly shift the balance of pro-apoptotic Sps and anti-apoptotic Sp-1-Ps in these cells. We conclude that SL-induced apoptosis markedly overcomes or bypasses MRP-mediated drug resistance relevant to SCLC and may suggest a novel therapeutic approach to chemotherapy for these tumors.

  4. Functional miRNAs in breast cancer drug resistance

    Directory of Open Access Journals (Sweden)

    Hu WZ

    2018-03-01

    Full Text Available Weizi Hu,1–3,* Chunli Tan,1–3,* Yunjie He,4 Guangqin Zhang,2 Yong Xu,3,5 Jinhai Tang1 1Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 2School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 3Nanjing Medical University Affiliated Cancer Hospital, 4The First Clinical School of Nanjing Medical University, 5Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: Owing to improved early surveillance and advanced therapy strategies, the current death rate due to breast cancer has decreased; nevertheless, drug resistance and relapse remain obstacles on the path to successful systematic treatment. Multiple mechanisms responsible for drug resistance have been elucidated, and miRNAs seem to play a major part in almost every aspect of cancer progression, including tumorigenesis, metastasis, and drug resistance. In recent years, exosomes have emerged as novel modes of intercellular signaling vehicles, initiating cell–cell communication through their fusion with target cell membranes, delivering functional molecules including miRNAs and proteins. This review particularly focuses on enumerating functional miRNAs involved in breast cancer drug resistance as well as their targets and related mechanisms. Subsequently, we discuss the prospects and challenges of miRNA function in drug resistance and highlight valuable approaches for the investigation of the role of exosomal miRNAs in breast cancer progression and drug resistance. Keywords: microRNA, exosome, breast cancer, drug resistance

  5. Combination of Bifunctional Alkylating Agent and Arsenic Trioxide Synergistically Suppresses the Growth of Drug-Resistant Tumor Cells

    Directory of Open Access Journals (Sweden)

    Pei-Chih Lee

    2010-05-01

    Full Text Available Drug resistance is a crucial factor in the failure of cancer chemotherapy. In this study, we explored the effect of combining alkylating agents and arsenic trioxide (ATO on the suppression of tumor cells with inherited or acquired resistance to therapeutic agents. Our results showed that combining ATO and a synthetic derivative of 3a-aza-cyclopenta[a]indenes (BO-1012, a bifunctional alkylating agent causing DNA interstrand cross-links, was more effective in killing human cancer cell lines (H460, H1299, and PC3 than combining ATO and melphalan or thiotepa. We further demonstrated that the combination treatment of H460 cells with BO-1012 and ATO resulted in severe G2/M arrest and apoptosis. In a xenograft mouse model, the combination treatment with BO-1012 and ATO synergistically reduced tumor volumes in nude mice inoculated with H460 cells. Similarly, the combination of BO-1012 and ATO effectively reduced the growth of cisplatin-resistant NTUB1/P human bladder carcinoma cells. Furthermore, the repair of BO-1012-induced DNA interstrand cross-links was significantly inhibited by ATO, and consequently, γH2AX was remarkably increased and formed nuclear foci in H460 cells treated with this drug combination. In addition, Rad51 was activated by translocating and forming foci in nuclei on treatment with BO-1012, whereas its activation was significantly suppressed by ATO. We further revealed that ATO might mediate through the suppression of AKT activity to inactivate Rad51. Taken together, the present study reveals that a combination of bifunctional alkylating agents and ATO may be a rational strategy for treating cancers with inherited or acquired drug resistance.

  6. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer.

    Science.gov (United States)

    Kim, Hak-Su; Wannatung, Tirawat; Lee, Sooho; Yang, Woo Kyeom; Chung, Sung Hyun; Lim, Jong-Seok; Choe, Wonchae; Kang, Insug; Kim, Sung-Soo; Ha, Joohun

    2012-09-01

    Tumor hypoxia is considered the best validated target in clinical oncology because of its significant contribution to chemotherapy failure and drug resistance. As an approach to target hypoxia, we assessed the potential of quercetin, a flavonoid widely distributed in plants, as a anticancer agent under hypoxic conditions and examined its pharmacological mechanisms by primarily focusing on the role of AMP-activated protein kinase (AMPK). Quercetin significantly attenuated tumor growth in an HCT116 cancer xenograft in vivo model with a substantial reduction of AMPK activity. In a cell culture system, quercetin more dramatically induced apoptosis of HCT116 cancer cells under hypoxic conditions than normoxic conditions, and this was tightly associated with inhibition of hypoxia-induced AMPK activity. An in vitro kinase assay demonstrated that quercetin directly inhibits AMPK activity. Inhibition of AMPK by expressing a dominant-negative form resulted in an increase of apoptosis under hypoxia, and a constitutively active form of AMPK effectively blocked quercetin-induced apoptosis under hypoxia. Collectively, our data suggest that quercetin directly inhibits hypoxia-induced AMPK, which plays a protective role against hypoxia. Quercetin also reduced the activity of hypoxia-inducible factor-1 (HIF-1), a major transcription factor for adaptive cellular response to hypoxia. Moreover, quercetin sensitized HCT116 cancer cells to the anticancer drugs cisplatin and etoposide under hypoxic conditions. Our findings suggest that AMPK may serve as a novel target for overcoming tumor hypoxia-associated negative aspects.

  7. Exosomes in development, metastasis and drug resistance of breast cancer.

    Science.gov (United States)

    Yu, Dan-dan; Wu, Ying; Shen, Hong-yu; Lv, Meng-meng; Chen, Wei-xian; Zhang, Xiao-hui; Zhong, Shan-liang; Tang, Jin-hai; Zhao, Jian-hua

    2015-08-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  8. Ceftolozane-tazobactam activity against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa causing healthcare-associated infections in Latin America: report from an antimicrobial surveillance program (2013-2015).

    Science.gov (United States)

    Pfaller, Michael A; Shortridge, Dee; Sader, Helio S; Gales, Ana; Castanheira, Mariana; Flamm, Robert K

    This study evaluated the in vitro activity of ceftolozane-tazobactam and comparator agents tested against Latin American isolates of Enterobacteriaceae and Pseudomonas aeruginosa from patients with health care-associated infections. Ceftolozane-tazobactam is an antipseudomonal cephalosporin combined with a well-established β-lactamase inhibitor. A total of 2415 Gram-negative organisms (537 P. aeruginosa and 1878 Enterobacteriaceae) were consecutively collected in 12 medical centers located in four Latin American countries. The organisms were tested for susceptibility by broth microdilution methods as described by the CLSI M07-A10 document and the results interpreted according to EUCAST and CLSI breakpoint criteria. Ceftolozane-tazobactam (MIC 50/90 , 0.25/32μg/mL; 84.2% susceptible) and meropenem (MIC 50/90 , ≤0.06/0.12μg/mL; 92.6% susceptible) were the most active compounds tested against Enterobacteriaceae. Among the Enterobacteriaceae isolates tested, 6.6% were carbapenem-resistant Enterobacteriaceae and 26.4% exhibited an extended-spectrum β-lactamase non-carbapenem-resistant phenotype. Whereas ceftolozane-tazobactam showed good activity against extended-spectrum beta-lactamase, non-carbapenem-resistant phenotype strains of Enterobacteriaceae (MIC 50/90 , 0.5/>32μg/mL), it lacked useful activity against strains with a (MIC 50/90 , >32/>32μg/mL; 1.6% S) carbapenem-resistant phenotype. Ceftolozane-tazobactam was the most potent (MIC 50//90 , 0.5/16μg/mL) β-lactam agent tested against P. aeruginosa isolates, inhibiting 86.8% at an MIC of ≤4μg/mL. P. aeruginosa exhibited high rates of resistance to cefepime (16.0%), ceftazidime (23.6%), meropenem (28.3%), and piperacillin-tazobactam (16.4%). Ceftolozane-tazobactam was the most active β-lactam agent tested against P. aeruginosa and demonstrated higher in vitro activity than available cephalosporins and piperacillin-tazobactam when tested against Enterobacteriaceae. Copyright © 2017 Sociedade

  9. Genome Analysis of the First Extensively Drug-Resistant (XDR Mycobacterium tuberculosis in Malaysia Provides Insights into the Genetic Basis of Its Biology and Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Chee Sian Kuan

    Full Text Available The outbreak of extensively drug-resistant tuberculosis (XDR-TB has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia.

  10. Cancer stem cells and drug resistance: the potential of nanomedicine

    Science.gov (United States)

    Vinogradov, Serguei; Wei, Xin

    2012-01-01

    Properties of the small group of cancer cells called tumor-initiating or cancer stem cells (CSCs) involved in drug resistance, metastasis and relapse of cancers can significantly affect tumor therapy. Importantly, tumor drug resistance seems to be closely related to many intrinsic or acquired properties of CSCs, such as quiescence, specific morphology, DNA repair ability and overexpression of antiapoptotic proteins, drug efflux transporters and detoxifying enzymes. The specific microenvironment (niche) and hypoxic stability provide additional protection against anticancer therapy for CSCs. Thus, CSC-focused therapy is destined to form the core of any effective anticancer strategy. Nanomedicine has great potential in the development of CSC-targeting drugs, controlled drug delivery and release, and the design of novel gene-specific drugs and diagnostic modalities. This review is focused on tumor drug resistance-related properties of CSCs and describes current nanomedicine approaches, which could form the basis of novel combination therapies for eliminating metastatic and CSCs. PMID:22471722

  11. Surveillance of drug resistance for tuberculosis control: why and how?

    Science.gov (United States)

    Chaulet, P; Boulahbal, F; Grosset, J

    1995-12-01

    The resistance of Mycobacterium tuberculosis to antibiotics, which reflects the quality of the chemotherapy applied in the community, is one of the elements of epidemiological surveillance used in national tuberculosis programmes. Measurement of drug resistance poses problems for biologists in standardization of laboratory methods and quality control. The definition of rates of acquired and primary drug resistance also necessitates standardization in the methods used to collect information transmitted by clinicians. Finally, the significance of the rates calculated depends on the choice of the patients sample on which sensitivity tests have been performed. National surveys of drug resistance therefore require multidisciplinary participation in order to select the only useful indicators: rates of primary resistance and of acquired resistance. These indicators, gathered in representative groups of patients over a long period, are a measurement of the impact of modern chemotherapy regimens on bacterial ecology.

  12. Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Al-Saeedi M

    2017-10-01

    Full Text Available Mashael Al-Saeedi, Sahal Al-Hajoj Department of Infection and Immunity, Mycobacteriology Research Section, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia Abstract: Despite the efficacy of antibiotics to protect humankind against many deadly pathogens, such as Mycobacterium tuberculosis, nothing can prevent the emergence of drug-resistant strains. Several mechanisms facilitate drug resistance in M. tuberculosis including compensatory evolution, epistasis, clonal interference, cell wall integrity, efflux pumps, and target mimicry. In this study, we present recent findings relevant to these mechanisms, which can enable the discovery of new drug targets and subsequent development of novel drugs for treatment of drug-resistant M. tuberculosis. Keywords: Mycobacterium tuberculosis, antibiotic resistance, compensatory evolution, epistasis, efflux pumps, fitness cost

  13. Multi drug resistance tuberculosis: pattern seen in last 13 years

    International Nuclear Information System (INIS)

    Iqbal, R.; Shabbir, I.; Munir, K.; Tabassum, M.N.; Khan, S.U.; Khan, M.Z.U.

    2011-01-01

    Background: Drug resistance in tuberculosis is a serious problem throughout the world especially, after the emergence of multi drug resistant TB strains. Objectives: To estimate drug resistance in TB patients and compare it with previous studies to see the changing trends. Materials and Methods: The PMRC Research Centre receives sputum samples from all the leading hospitals of Lahore. This retrospective analysis was done from 1996 to 2008 on the multi drug resistant TB strains that were seen during these years. Five first lines anti tuberculosis drugs were tested on Lowenstein Jensen medium using standard proportion method. Results: A total of 2661 confirmed isolates of Mycobacterium tuberculosis were seen over the past 13 years. Of the total, 2182 were pulmonary and 479 were extra pulmonary specimens. The patients comprised of those with and without history of previous treatment. These specimens were subjected to drug susceptibility testing. Almost half of the patient had some resistance; multiple drug resistance was seen in 12.3% and 23.0% cases without and with history of previous treatment respectively. Overall resistance to rifampicin was 26.4%, isoniazid 24.1% streptomycin 21.6% ethambutol 13.4% and pyrazinamide 28.4% respectively. Statistically significant difference was seen between primary and acquired resistance. When compared with the reports from previous studies from the same area, there was a trend of gradual increase of drug resistance. Conclusions Resistance to anti tuberculosis drugs is high. Policy message. TB Control Program should start 'DOTS Plus' schemes for which drug susceptibility testing facilities should be available for correctly managing the patients. (author)

  14. Multi drug resistance tuberculosis: pattern seen in last 13 years

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, R; Shabbir, I; Munir, K [King Edward Medical University Hospital, Lahore (Pakistan). Dept. of Research Centre; Tabassum, M N; Khan, S U; Khan, M Z.U. [King Edward Medical University Hospital, Lahore (Pakistan). Dept. of Chest Medicine

    2011-01-15

    Background: Drug resistance in tuberculosis is a serious problem throughout the world especially, after the emergence of multi drug resistant TB strains. Objectives: To estimate drug resistance in TB patients and compare it with previous studies to see the changing trends. Materials and Methods: The PMRC Research Centre receives sputum samples from all the leading hospitals of Lahore. This retrospective analysis was done from 1996 to 2008 on the multi drug resistant TB strains that were seen during these years. Five first lines anti tuberculosis drugs were tested on Lowenstein Jensen medium using standard proportion method. Results: A total of 2661 confirmed isolates of Mycobacterium tuberculosis were seen over the past 13 years. Of the total, 2182 were pulmonary and 479 were extra pulmonary specimens. The patients comprised of those with and without history of previous treatment. These specimens were subjected to drug susceptibility testing. Almost half of the patient had some resistance; multiple drug resistance was seen in 12.3% and 23.0% cases without and with history of previous treatment respectively. Overall resistance to rifampicin was 26.4%, isoniazid 24.1% streptomycin 21.6% ethambutol 13.4% and pyrazinamide 28.4% respectively. Statistically significant difference was seen between primary and acquired resistance. When compared with the reports from previous studies from the same area, there was a trend of gradual increase of drug resistance. Conclusions Resistance to anti tuberculosis drugs is high. Policy message. TB Control Program should start 'DOTS Plus' schemes for which drug susceptibility testing facilities should be available for correctly managing the patients. (author)

  15. Etanercept overcomes P-glycoprotein-induced drug resistance in lymphocytes of patients with intractable rheumatoid arthritis.

    Science.gov (United States)

    Tsujimura, Shizuyo; Saito, Kazuyoshi; Nakayamada, Shingo; Tanaka, Yoshiya

    2010-04-01

    P-glycoprotein (P-gp) on activated lymphocytes is an adenosine triphosphate (ATP)-binding cassette transporter that causes drug resistance by exclusion of intracellular drugs in patients with active rheumatoid arthritis (RA). However, infliximab with methotrexate (MTX) can overcome P-gp-mediated drug resistance. We encounter patients who cannot continue infliximab or MTX. Here we tested how etanercept affected P-gp-mediated drug resistance in such intractable RA patients. Peripheral lymphocytes of 11 RA patients (3 switched from infliximab and 8 who could not be treated with MTX) were analyzed for P-gp expression by flow cytometry and for drug exclusion using radioisotope-labeled dexamethasone. Activated lymphocytes of RA patients overexpressed P-gp and coexpressed CD69. Incubation of these lymphocytes with dexamethasone in vitro reduced intracellular dexamethasone levels. Two-week etanercept therapy significantly reduced P-gp expression and eliminated such P-gp- and CD69-high-expressing subgroup. The reduction in P-gp resulted in recovery of intracellular dexamethasone levels in lymphocytes and improvement of disease activity, thus allowing tapering of corticosteroids. None of the patients experienced any severe adverse effects. Etanercept is useful for overcoming P-gp-mediated treatment resistance in intractable RA patients who have to discontinue infliximab or are intolerant to MTX.

  16. Ceftolozane/tazobactam activity against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa causing urinary tract and intraabdominal infections in Europe: report from an antimicrobial surveillance programme (2012-15).

    Science.gov (United States)

    Pfaller, Michael A; Bassetti, Matteo; Duncan, Leonard R; Castanheira, Mariana

    2017-05-01

    To evaluate the in vitro activity of ceftolozane/tazobactam and comparators tested against European isolates of Enterobacteriaceae and Pseudomonas aeruginosa from hospitalized patients with urinary tract infection or intraabdominal infections. A total of 6553 Gram-negative organisms (603 P. aeruginosa and 5950 Enterobacteriaceae) were consecutively collected from 41 hospitals located in 17 European countries plus Israel and Turkey. The organisms were tested for susceptibility by broth microdilution methods and the results interpreted according to EUCAST and CLSI breakpoint criteria. Ceftolozane/tazobactam [MIC 50/90 0.25/1 mg/L; 93.5%/91.3% susceptible (S) (CLSI/EUCAST criteria)] and meropenem [MIC 50/90  ≤0.06/≤0.06 mg/L; 98.1%/98.3% S (CLSI/EUCAST)] were the most active compounds tested against Enterobacteriaceae. Among the Enterobacteriaceae isolates, 1.9% were carbapenem resistant (CRE), 15.2% exhibited an ESBL non-CRE phenotype, 14.6% were MDR, 2.2% were XDR and 32/>32 mg/L; 3.6% S) or PDR (MIC 50  >32 mg/L; 0.0% S) phenotype. Ceftolozane/tazobactam was the most potent (MIC 50/90 0.5/4 mg/L) β-lactam agent tested against P. aeruginosa isolates, inhibiting 91.7% at an MIC of ≤4 mg/L. P. aeruginosa exhibited high rates of resistance to cefepime (20.6%), ceftazidime (23.1%), meropenem (9.0%) and piperacillin/tazobactam (26.9%) (EUCAST criteria). Among these four P. aeruginosa resistant phenotypes, 61.3%-70.4% were susceptible to ceftolozane/tazobactam. Ceftolozane/tazobactam was the most active β-lactam agent tested against P. aeruginosa and demonstrated higher in vitro activity than currently available cephalosporins and piperacillin/tazobactam when tested against Enterobacteriaceae. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A Modified P1 Moiety Enhances in vitro Antiviral Activity against Various Multi-Drug-Resistant HIV-1 Variants and in vitro CNS Penetration Properties of a Novel Nonpeptidic Protease Inhibitor, GRL-10413

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Masayuki; Salcedo-Gómez, Pedro Miguel; Zhao, Rui; Yedidi, Ravikiran S.; Das, Debananda; Bulut, Haydar; Delino, Nicole S.; Sheri, Venkata Reddy; Ghosh, Arun K.; Mitsuya, Hiroaki (Kumamoto); (NIH); (Purdue)

    2016-09-12

    We here report that GRL-10413, a novel non-peptidic HIV-1 protease inhibitor (PI) containing a modified P1 moiety and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (EC50: 0.00035 - 0.0018 μM) with minimal cytotoxicity (CC50: 35.7 μM). GRL-10413 blocked the infectivity and replication of HIV-1NL4-3variants selected by up to 5 μM concentrations of atazanavir, lopinavir, or amprenavir (EC50: 0.0021 - 0.0023 μM). GRL-10413 also maintained its strong antiviral activity against multi-drug-resistant clinical HIV-1 variants isolated from patients, who no longer responded to various antiviral regimens after long-term antiretroviral therapy. The development of resistance against GRL-10413 was significantly delayed compared to that of APV. In addition, GRL-10413 showed a favorable central nervous system (CNS) penetration property as assessed with anin vitroblood brain barrier (BBB) reconstruction system. Analysis of the crystal structure of HIV-1 protease in complex with GRL-10413 demonstrated that the modified P1 moiety of GRL-10413 has a greater hydrophobic surface area and makes greater van der Waals contacts with active-site amino acids of protease than in the case of darunavir. Moreover, the chlorine substituent in the P1 moiety interacts with protease in two distinct configurations. The present data demonstrate that GRL-10413 has desirable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants with favorable CNS-penetration capability and that the newly modified P1-moiety may confer desirable features in designing novel anti-HIV-1 PIs.

  18. Na+/K+-ATPase: Activity and inhibition

    Science.gov (United States)

    Čolović, M.; Krstić, D.; Krinulović, K.; Momić, T.; Savić, J.; Vujačić, A.; Vasić, V.

    2009-09-01

    The aim of the study was to give an overview of the mechanism of inhibition of Na+/K+-ATPase activity induced by some specific and non specific inhibitors. For this purpose, the effects of some ouabain like compounds (digoxin, gitoxin), noble metals complexes ([PtCl2DMSO2], [AuCl4]-, [PdCl4]2-, [PdCl(dien)]+, [PdCl(Me4dien)]+), transition metal ions (Cu2+, Zn2+, Fe2+, Co2+), and heavy metal ions (Hg2+, Pb2+, Cd2+) on the activity of Na+/K+-ATPase from rat synaptic plasma membranes (SPM), porcine cerebral cortex and human erythrocytes were discussed.

  19. Characterization of p38 MAPK isoforms for drug resistance study using systems biology approach.

    Science.gov (United States)

    Peng, Huiming; Peng, Tao; Wen, Jianguo; Engler, David A; Matsunami, Risë K; Su, Jing; Zhang, Le; Chang, Chung-Che Jeff; Zhou, Xiaobo

    2014-07-01

    p38 mitogen-activated protein kinase activation plays an important role in resistance to chemotherapeutic cytotoxic drugs in treating multiple myeloma (MM). However, how the p38 mitogen-activated protein kinase signaling pathway is involved in drug resistance, in particular the roles that the various p38 isoforms play, remains largely unknown. To explore the underlying mechanisms, we developed a novel systems biology approach by integrating liquid chromatography-mass spectrometry and reverse phase protein array data from human MM cell lines with computational pathway models in which the unknown parameters were inferred using a proposed novel algorithm called modularized factor graph. New mechanisms predicted by our models suggest that combined activation of various p38 isoforms may result in drug resistance in MM via regulating the related pathways including extracellular signal-regulated kinase (ERK) pathway and NFкB pathway. ERK pathway regulating cell growth is synergistically regulated by p38δ isoform, whereas nuclear factor kappa B (NFкB) pathway regulating cell apoptosis is synergistically regulated by p38α isoform. This finding that p38δ isoform promotes the phosphorylation of ERK1/2 in MM cells treated with bortezomib was validated by western blotting. Based on the predicted mechanisms, we further screened drug combinations in silico and found that a promising drug combination targeting ERK1/2 and NFκB might reduce the effects of drug resistance in MM cells. This study provides a framework of a systems biology approach to studying drug resistance and drug combination selection. RPPA experimental Data and Matlab source codes of modularized factor graph for parameter estimation are freely available online at http://ctsb.is.wfubmc.edu/publications/modularized-factor-graph.php. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Design and synthesis of new hybrids from 2-cyano-3,12-dioxooleana- 9-dien-28-oic acid and O2-(2,4-dinitrophenyl) diazeniumdiolate for intervention of drug-resistant lung cancer.

    Science.gov (United States)

    Kang, Fenghua; Ai, Yong; Zhang, Yihua; Huang, Zhangjian

    2018-04-10

    To search for new drugs for intervention of drug-resistant lung cancer, a series of hybrids 4-15 from 2-cyano-3,12-dioxooleana-9-dien-28-oic acid (CDDO) and O 2 -(2,4-dinitrophenyl) diazeniumdiolate were designed, synthesized and biologically evaluated. The most active compound 7 produced relatively high levels of nitric oxide (NO) and reactive oxygen species (ROS) in drug-resistant lung cancer A549/Taxol cells which over-express glutathione S-transferase π (GSTπ), and significantly inhibited the cells' proliferation (IC 50  = 0.349 ± 0.051 μM), superior to the positive controls CDDO-Me, JS-K and Taxol. The inhibitory activity of 7 could be attenuated by an NO scavenger, ROS scavenger or GSTπ inhibitor. In addition, 7 suppressed the Lon protease expression as well as induced cell apoptosis and cycle arrest in A549/Taxol cells more strongly than CDDO-Me or JS-K. Together, our findings suggest that 7 may be worth studying further for intervention of drug-resistant lung cancer. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Theobromine inhibits sensory nerve activation and cough.

    Science.gov (United States)

    Usmani, Omar S; Belvisi, Maria G; Patel, Hema J; Crispino, Natascia; Birrell, Mark A; Korbonits, Márta; Korbonits, Dezso; Barnes, Peter J

    2005-02-01

    Cough is a common and protective reflex, but persistent coughing is debilitating and impairs quality of life. Antitussive treatment using opioids is limited by unacceptable side effects, and there is a great need for more effective remedies. The present study demonstrates that theobromine, a methylxanthine derivative present in cocoa, effectively inhibits citric acid-induced cough in guinea-pigs in vivo. Furthermore, in a randomized, double-blind, placebo-controlled study in man, theobromine suppresses capsaicin-induced cough with no adverse effects. We also demonstrate that theobromine directly inhibits capsaicin-induced sensory nerve depolarization of guinea-pig and human vagus nerve suggestive of an inhibitory effect on afferent nerve activation. These data indicate the actions of theobromine appear to be peripherally mediated. We conclude theobromine is a novel and promising treatment, which may form the basis for a new class of antitussive drugs.

  2. Kaempferol inhibits thrombosis and platelet activation.

    Science.gov (United States)

    Choi, Jun-Hui; Park, Se-Eun; Kim, Sung-Jun; Kim, Seung

    2015-08-01

    The objectives of the present study were to investigate whether kaempferol affects pro-coagulant proteinase activity, fibrin clot formation, blood clot and thrombin (or collagen/epinephrine)-stimulated platelet activation, thrombosis, and coagulation in ICR (Imprinting Control Region) mice and SD (Sprague-Dawley) rats. Kaempferol significantly inhibited the enzymatic activities of thrombin and FXa by 68 ± 1.6% and 52 ± 2.4%, respectively. Kaempferol also inhibited fibrin polymer formation in turbidity. Microscopic analysis was performed using a fluorescent conjugate. Kaempferol completely attenuated phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) 1/2, and phosphoinositide 3-kinase (PI3K)/PKB (AKT) in thrombin-stimulated platelets and delayed aggregation time (clotting) by 34.6% in an assay of collagen/epinephrine-stimulated platelet activation. Moreover, kaempferol protected against thrombosis development in 3 animal models, including collagen/epinephrine- and thrombin-induced acute thromboembolism models and an FeCl3-induced carotid arterial thrombus model. The ex vivo anticoagulant effect of kaempferol was further confirmed in ICR mice. This study demonstrated that kaempferol may be clinically useful due to its ability to reduce or prevent thrombotic challenge. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. Overcoming STC2 mediated drug resistance through drug and gene co-delivery by PHB-PDMAEMA cationic polyester in liver cancer cells.

    Science.gov (United States)

    Cheng, Hongwei; Wu, Zhixian; Wu, Caisheng; Wang, Xiaoyuan; Liow, Sing Shy; Li, Zibiao; Wu, Yun-Long

    2018-02-01

    Stanniocalcin 2 (STC2) overexpression in hepatocellular carcinoma (HCC) could lead to poor prognosis, which might be due to its induced P-glycoprotein and Bcl-2 protein expression level increase. P-glycoprotein or membrane pump induced drug efflux and altered prosurvival Bcl-2 expression are key mechanisms for drug resistance leading to failure of chemotherapy in HCC. However, current strategy to overcome both P-glycoprotein and Bcl-2 protein induced drug resistance was rarely reported. In this work, we utilized an amphiphilic poly[(R)-3-hydroxybutyrate] (PHB)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) cationic polyester to encapsulate chemotherapeutic paclitaxel (PTX) in hydrophobic PHB domain and Bcl-2 convertor Nur77/ΔDBD gene (Nur77 without DNA binding domain for mitochondria localization) by formation of polyplex due to cationic PDMAEMA segment, to effectively inhibit the drug resistant HepG2/STC2 and SMCC7721/STC2 liver cancer cell growth. Thanks to the cationic nanoparticle complex formation ability and high transfection efficiency to express Bcl-2 conversion proteins, PHB-PDMAEMA/PTX@polyplex could partially impair P-glycoprotein induced PTX efflux and activate the apoptotic function of previous prosurvival Bcl-2 protein. This is the pioneer report of cationic amphiphilic polyester PHB-PDMAEMA to codeliver anticancer drug and therapeutic plasmid to overcome both pump and non-pump mediated chemotherapeutic resistance in liver cancer cells, which might be inspiring for the application of polyester in personalized cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Draft Genome Sequences of Two Extensively Drug-Resistant Strains of Mycobacterium tuberculosis Belonging to the Euro-American S Lineage

    NARCIS (Netherlands)

    Malinga, L.A.; Abeel, T.; Desjardins, C.A.; Dlamini, T.C.; Cassell, G.; Chapman, S.B.; Birren, B.W.; Earl, A.M.; Van der Walt, M.

    2016-01-01

    We report the whole-genome sequencing of two extensively drug-resistant tuberculosis strains belonging to the Euro-American S lineage. The RSA 114 strain showed single-nucleotide polymorphisms predicted to have drug efflux activity.

  5. Trace element inhibition of phytase activity.

    Science.gov (United States)

    Santos, T; Connolly, C; Murphy, R

    2015-02-01

    Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.

  6. Mycobacterium tuberculosis drug-resistance in previously treated ...

    African Journals Online (AJOL)

    Corresponding to: Professor Lassana Sangaré, Department of Bacteriology and Virology, University Hospital Centre. Yalgado Ouedraogo, 03 BP 7022 Ouagadougou 03, Burkina Faso. E-mail: sangarel@hotmail.com. Abstract. Background: Tuberculosis drug-resistance becomes common in sub-Saharan Africa; however, ...

  7. Multi drug resistance and β-lactamase production by Klebsiella ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... *Corresponding author. E-mail: gnsimha123@rediffmail.com. (Rice, 1999). plasmid that can be easily spread from one organisms to another (Sirot, 1995) these enzymes are capable of inactivating a variety of β-lactam drugs (Rice,. 1999). The ESBL producing organisms often show multi- drug resistant as ...

  8. Diversity of Urinary Tract Pathogens and Drug Resistant Isolates of ...

    African Journals Online (AJOL)

    Purpose: This paper was mainly aimed to investigate drug resistance of the various urinary tract infection (UTI) pathogens from patients of different gender and age groups of Pakistanis. Method: For these purposes, urine samples of 109 patients were analyzed. Samples were screened on CLED agar. Antimicrobial ...

  9. Antiretroviral drug resistance: A guide for the southern African clinician

    African Journals Online (AJOL)

    Both private and public sector see a bewildering clinical array of patients taking failing antiretroviral (ARV) regimens. We intend this article to provide a practical guide to help clinicians understand and manage ARV drug resistance in an African context. ARV resistance is a rapidly evolving field, requiring expertise in dealing ...

  10. Prevalence of drug resistant tuberculosis in Arsi Zone, Ethiopia ...

    African Journals Online (AJOL)

    Background: Wide spread of occurrence of multi-drug resistance tuberculosis is becoming a major challenge to effective tuberculosis control. Thus, it is imperative to monitor the sensitivity of anti-TB drugs regularly. Objective: To determine the prevalence resistance to anti-TB drugs in a well established control program area ...

  11. Multi drug resistant tuberculosis: a challenge in the management of ...

    African Journals Online (AJOL)

    Multi drug resistant tuberculosis (MDR-TB) will not usually respond to short course chemotherapy. Unless the individual infected with this bug is treated appropriately, they can continue spreading resistant strains in the community and further fuel the tuberculosis epidemic. Diagnosis requires drug sensitivity testing and the ...

  12. Beijing/W genotype Mycobacterium tuberculosis and drug resistance.

    NARCIS (Netherlands)

    Glynn, Judith R; Kremer, Kristin; Borgdorff, Martien W; Rodriguez, Mar Pujades; Soolingen, Dick van

    2006-01-01

    Beijing/W genotype Mycobacterium tuberculosis is widespread, may be increasing, and may have a predilection for drug resistance. Individual-level data on >29,000 patients from 49 studies in 35 countries were combined to assess the Beijing genotype's prevalence worldwide, trends over time and with

  13. National anti-tuberculosis drug resistance study in Tanzania

    NARCIS (Netherlands)

    Chonde, T. M.; Basra, D.; Mfinanga, S. G. M.; Range, N.; Lwilla, F.; Shirima, R. P.; van Deun, A.; Zignol, M.; Cobelens, F. G.; Egwaga, S. M.; van Leth, F.

    2010-01-01

    OBJECTIVE: To assess the prevalence of anti-tuberculosis drug resistance in a national representative sample of tuberculosis (TB) patients in Tanzania according to recommended methodology. DESIGN: Cluster survey, with 40 clusters sampled proportional to size, of notified TB patients from all

  14. Options for modulation of drug resistance in ovarian cancer

    NARCIS (Netherlands)

    Arts, HJG; Van der Zee, AGJ; De Jong, S; De Vries, EGE

    2000-01-01

    The objective of this paper is to present an update of mechanisms responsible for drug resistance in ovarian cancer and the possible therapeutic options to modulate this resistance using literature review with emphasis on data acquired in studies comprising ovarian tumor samples. The classic

  15. Drug-resistant post-neurosurgical nosocomial Acinetobacter ...

    African Journals Online (AJOL)

    Drug-resistant post-neurosurgical nosocomial Acinetobacter baumannii meningitis in two Iranian hospitals. ... Vol 11, No 17 (2012) >. Log in or Register to get access to full text downloads. ... Acinetobacter baumannii may cause meningitis and ventriculitis, particularly after head trauma and/or neurosurgery. The rate of ...

  16. Laboratory methods for diagnosis and detection of drug resistant ...

    African Journals Online (AJOL)

    Data source: Published series of peer reviewed journals and manuals written on laboratory methods that are currently used for diagnosis and detection of drug resistance of Mycobacterium tuberculosis complex were reviewed using the index medicus, pubmed and medline search. Conventional bacteriological microscopy ...

  17. Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014.

    Science.gov (United States)

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert; Stephan, Roger

    2016-06-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis.

  18. Multi-drug resistance and molecular pattern of erythromycin and ...

    African Journals Online (AJOL)

    The appearance and dissemination of penicillin resistant and macrolide resistant Streptococcus pneumoniae strains has caused increasing concern worldwide. The aim of this study was to survey drug resistance and genetic characteristics of macrolide and penicillin resistance in S. pneumoniae. This is a cross-sectional ...

  19. Characterization of drug resistant Enterobacter species isolated from ...

    African Journals Online (AJOL)

    Enterobacter species are emerging clinical pathogens and they play important roles in the dissemination of drug resistant traits within the food chain due to their intrinsic abilities for resistance to commonly used antibiotics such as cephalosporins. Two Enterobacter cloacae and one Enterobacter hormaechei characterized in ...

  20. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    Unitless chemical activity, expressing the energetic level of a compound relative to its energetic level in pure liquid [0-1], has proven useful to quantify the effective exposure to hydrophobic organic compounds through both aerial and aqueous media. Several studies have linked toxicity to chemi......Unitless chemical activity, expressing the energetic level of a compound relative to its energetic level in pure liquid [0-1], has proven useful to quantify the effective exposure to hydrophobic organic compounds through both aerial and aqueous media. Several studies have linked toxicity...... to chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity......-polar liquids were applied to challenge the chemical activity range for baseline toxicity. For each compound, the effective activity (Ea50) was estimated as the ratio of the effective concentration (EC50) and water solubility. Of these ratios, 90% were within the expected chemical activity range of 0.01 to 0...

  1. Environment Mediated Drug Resistance in Neuroblastoma

    Science.gov (United States)

    2015-12-01

    activate STAT3 and MYC in neuroblastomas independently of IL6). Figure 9: Effect of IL-6 knockout crossing with NB- Tag mice. (A) MRI of abdominal...production. (D) Representative MRI images of NB-Tag and NB- Tag/IL-6KO pre-chemotherapy, post 3 and 6 weeks of chemotherapy. Task 6. Contribution of bone...described (16). Cells were lysed in radioimmunoprecipitation assay (RIPA) buffer supplemented with 1 tablet of complete mini-EDTA protease inhibitor

  2. Plasmonic Nanobubbles Rapidly Detect and Destroy Drug-Resistant Tumors

    Science.gov (United States)

    Lukianova-Hleb, Ekaterina Y.; Ren, Xiaoyang; Townley, Debra; Wu, Xiangwei; Kupferman, Michael E.; Lapotko, Dmitri O.

    2012-01-01

    The resistance of residual cancer cells after oncological resection to adjuvant chemoradiotherapies results in both high recurrence rates and high non-specific tissue toxicity, thus preventing the successful treatment of such cancers as head and neck squamous cell carcinoma (HNSCC). The patients' survival rate and quality of life therefore depend upon the efficacy, selectivity and low non-specific toxicity of the adjuvant treatment. We report a novel, theranostic in vivo technology that unites both the acoustic diagnostics and guided intracellular delivery of anti-tumor drug (liposome-encapsulated doxorubicin, Doxil) in one rapid process, namely a pulsed laser-activated plasmonic nanobubble (PNB). HNSCC-bearing mice were treated with gold nanoparticle conjugates, Doxil, and single near-infrared laser pulses of low energy. Tumor-specific clusters of gold nanoparticles (solid gold spheres) converted the optical pulses into localized PNBs. The acoustic signals of the PNB detected the tumor with high specificity and sensitivity. The mechanical impact of the PNB, co-localized with Doxil liposomes, selectively ejected the drug into the cytoplasm of cancer cells. Cancer cell-specific generation of PNBs and their intracellular co-localization with Doxil improved the in vivo therapeutic efficacy from 5-7% for administration of only Doxil or PNBs alone to 90% thus demonstrating the synergistic therapeutic effect of the PNB-based intracellular drug release. This mechanism also reduced the non-specific toxicity of Doxil below a detectable level and the treatment time to less than one minute. Thus PNBs combine highly sensitive diagnosis, overcome drug resistance and minimize non-specific toxicity in a single rapid theranostic procedure for intra-operative treatment. PMID:23139725

  3. Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis

    Institute of Scientific and Technical Information of China (English)

    REBECCA L DUNNE; LINDA A DUNN; PETER UPCROFT; PETER J O'DONOGHUE; JACQUELINE A UPCROFT

    2003-01-01

    Trichomoniasis is the most common, sexually transmitted infection. It is caused by the flagellated protozoan parasite Trichomonas vaginalis. Symptoms include vaginitis and infections have been associated with preterm delivery, low birth weight and increased infant mortality, as well as predisposing to HIV/AIDS and cervical cancer. Trichomoniasis has the highest prevalence and incidence of any sexually transmitted infection. The 5-nitroimidazole drugs, of which metronidazole is the most prescribed, are the only approved,effective drugs to treat trichomoniasis. Resistance against metronidazole is frequently reported and crossresistance among the family of 5-nitroimidazole drugs is common, leaving no alternative for treatment, with some cases remaining unresolved. The mechanism of metronidazole resistance in T. vaginalis from treatment failures is not well understood, unlike resistance which is developed in the laboratory under increasing metronidazole pressure. In the latter situation, hydrogenosomal function which is involved in activation of the prodrug, metronidazole, is down-regulated. Reversion to sensitivity is incomplete after removal of drug pressure in the highly resistant parasites while clinically resistant strains, so far analysed, maintain their resistance levels in the absence of drug pressure. Although anaerobic resistance has been regarded as a laboratory induced phenomenon, it clearly has been demonstrated in clinical isolates. Pursuit of both approaches will allow dissection of the underlying mechanisms. Many alternative drugs and treatments have been tested in vivo in cases of refractory trichomoniasis, as well as in vitro with some successes including the broad spectrum anti-parasitic drug nitazoxanide. Drug resistance incidence in T. vaginalis appears to be on the increase and improved surveillance of treatment failures is urged.

  4. Significance of MDR1 and multiple drug resistance in refractory human epileptic brain

    Directory of Open Access Journals (Sweden)

    Dini Gabriele

    2004-10-01

    Full Text Available Abstract Background The multiple drug resistance protein (MDR1/P-glycoprotein is overexpressed in glia and blood-brain barrier (BBB endothelium in drug refractory human epileptic tissue. Since various antiepileptic drugs (AEDs can act as substrates for MDR1, the enhanced expression/function of this protein may increase their active extrusion from the brain, resulting in decreased responsiveness to AEDs. Methods Human drug resistant epileptic brain tissues were collected after surgical resection. Astrocyte cell cultures were established from these tissues, and commercially available normal human astrocytes were used as controls. Uptake of fluorescent doxorubicin and radioactive-labeled Phenytoin was measured in the two cell populations, and the effect of MDR1 blockers was evaluated. Frozen human epileptic brain tissue slices were double immunostained to locate MDR1 in neurons and glia. Other slices were exposed to toxic concentrations of Phenytoin to study cell viability in the presence or absence of a specific MDR1 blocker. Results MDR1 was overexpressed in blood vessels, astrocytes and neurons in human epileptic drug-resistant brain. In addition, MDR1-mediated cellular drug extrusion was increased in human 'epileptic' astrocytes compared to 'normal' ones. Concomitantly, cell viability in the presence of cytotoxic compounds was increased. Conclusions Overexpression of MDR1 in different cell types in drug-resistant epileptic human brain leads to functional alterations, not all of which are linked to drug pharmacokinetics. In particular, the modulation of glioneuronal MDR1 function in epileptic brain in the presence of toxic concentrations of xenobiotics may constitute a novel cytoprotective mechanism.

  5. Novel drug-resistance mechanisms of pemetrexed-treated non-small cell lung cancer.

    Science.gov (United States)

    Tanino, Ryosuke; Tsubata, Yukari; Harashima, Nanae; Harada, Mamoru; Isobe, Takeshi

    2018-03-30

    Pemetrexed (PEM) improves the overall survival of patients with advanced non-small cell lung cancer (NSCLC) when administered as maintenance therapy. However, PEM resistance often appears during the therapy. Although thymidylate synthase is known to be responsible for PEM resistance, no other mechanisms have been investigated in detail. In this study, we explored new drug resistance mechanisms of PEM-treated NSCLC using two combinations of parental and PEM-resistant NSCLC cell lines from PC-9 and A549. PEM increased the apoptosis cells in parental PC-9 and the senescent cells in parental A549. However, such changes were not observed in the respective PEM-resistant cell lines. Quantitative RT-PCR analysis revealed that, besides an increased gene expression of thymidylate synthase in PEM-resistant PC-9 cells, the solute carrier family 19 member1 ( SLC19A1) gene expression was markedly decreased in PEM-resistant A549 cells. The siRNA-mediated knockdown of SLC19A1 endowed the parental cell lines with PEM resistance. Conversely, PEM-resistant PC-9 cells carrying an epidermal growth factor receptor (EGFR) mutation acquired resistance to a tyrosine kinase inhibitor erlotinib. Although erlotinib can inhibit the phosphorylation of EGFR and Erk, it is unable to suppress the phosphorylation of Akt in PEM-resistant PC-9 cells. Additionally, PEM-resistant PC-9 cells were less sensitive to the PI3K inhibitor LY294002 than parental PC-9 cells. These results indicate that SLC19A1 negatively regulates PEM resistance in NSCLC, and that EGFR-tyrosine-kinase-inhibitor resistance was acquired with PEM resistance through Akt activation in NSCLC harboring EGFR mutations.

  6. A modified Plasmodium falciparum growth inhibition assay (GIA) to assess activity of plasma from malaria endemic areas.

    Science.gov (United States)

    Mlambo, Godfree; Kumar, Nirbhay

    2007-02-01

    Plasma samples from patients undergoing treatment in malaria endemic countries often contain anti-malaria drugs, that may overstate effects of specific antibodies in growth inhibition assays (GIA). We describe a modified assay that uses drug resistant P. falciparum parasites (W2) that circumvents the requirement for dialyzing samples that may likely contain drugs such as chloroquine and sulfadoxine/pyrimethamine (SP).

  7. Predicted levels of HIV drug resistance

    DEFF Research Database (Denmark)

    Cambiano, Valentina; Bertagnolio, Silvia; Jordan, Michael R

    2014-01-01

    -term effects. METHODS: The previously validated HIV Synthesis model was calibrated to South Africa. Resistance was modeled at the level of single mutations, transmission potential, persistence, and effect on drug activity. RESULTS: We estimate 652 000 people (90% uncertainty range: 543 000-744 000) are living...... are maintained, in 20 years' time HIV incidence is projected to have declined by 22% (95% confidence interval, CI -23 to -21%), and the number of people carrying NNRTI resistance to be 2.9-fold higher. If enhancements in diagnosis and retention in care occur, and ART is initiated at CD4 cell count less than 500......  cells/μl, HIV incidence is projected to decline by 36% (95% CI: -37 to -36%) and the number of people with NNRTI resistance to be 4.1-fold higher than currently. Prevalence of people with viral load more than 500  copies/ml carrying NRMV is not projected to differ markedly according to future ART...

  8. Study of antagonistic effects of Lactobacillus strains as probiotics on multi drug resistant (MDR) bacteria isolated from urinary tract infections (UTIs).

    Science.gov (United States)

    Naderi, Atiyeh; Kasra-Kermanshahi, Roha; Gharavi, Sara; Imani Fooladi, Abbas Ali; Abdollahpour Alitappeh, Meghdad; Saffarian, Parvaneh

    2014-03-01

    Urinary tract infection (UTI) caused by bacteria is one of the most frequent infections in human population. Inappropriate use of antibiotics, often leads to appearance of drug resistance in bacteria. However, use of probiotic bacteria has been suggested as a partial replacement. This study was aimed to assess the antagonistic effects of Lactobacillus standard strains against bacteria isolated from UTI infections. Among 600 samples; those with ≥10,000 cfu/ml were selected as UTI positive samples. Enterococcus sp., Klebsiella pneumoniae, Enterobacter sp., and Escherichia coli were found the most prevalent UTI causative agents. All isolates were screened for multi drug resistance and subjected to the antimicrobial effects of three Lactobacillus strains by using microplate technique and the MICs amounts were determined. In order to verify the origin of antibiotic resistance of isolates, plasmid curing using ethidium bromide and acridine orange was carried out. No antagonistic activity in Lactobacilli suspension was detected against test on Enterococcus and Enterobacter strains and K. pneumoniae, which were resistant to most antibiotics. However, an inhibitory effect was observed for E. coli which were resistant to 8-9 antibiotics. In addition, L. casei was determined to be the most effective probiotic. RESULTS from replica plating suggested one of the plasmids could be related to the gene responsible for ampicillin resistance. Treatment of E. coli with probiotic suspension was not effective on inhibition of the plasmid carrying hypothetical ampicillin resistant gene. Moreover, the plasmid profiles obtained from probiotic-treated isolates were identical to untreated isolates.

  9. Antimicrobial Activity and Mechanism of inhibition of Silver Nanoparticles against Extreme Halophilic Archaea

    Directory of Open Access Journals (Sweden)

    Rebecca Thombre

    2016-09-01

    Full Text Available Haloarchaea are salt-loving halophilic microorganism’s that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs as a potent and broad spectrum inhibitory agent is known however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300- 400µg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting programme. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540 and human breast adenocarcinoma cell line (MCF-7. The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death.

  10. [Drug resistance reversal of HL-60/ADR cells by simultaneous suppression of XIAP and MRP].

    Science.gov (United States)

    Wang, Xiao-Fang; Wang, Chun; Qin, You-Wen; Yan, Shi-Ke; Gao, Yan-Rong

    2006-12-01

    This study was purposed to explore the mechanisms of drug resistance of HL-60/ADR cells and to compare the reversal drug-resistance effects of antisense oligonucleotides (AS ODN) of XIAP (X-linked inhibitor of apoptosis protein) and AS ODNs of MRP (multidrug resistance-associated protein) by use alone or in combination. Reverse transcription-PCR and Western blot were applied to detect the expression of XIAP, BCL-2, MRP and MDR1 in mRNA and protein levels of HL-60 cells and HL-60/ADR cells, respectively. Fully phosphorothioated AS ODN of XIAP and MRP was delivered into HL-60/ADR cells with Lipofectamine 2000 in the form of liposome-ODN complexes alone or in combination. CCK-8 cell viability assay was used to determine the effect of AS ODN of XIAP and MRP used alone or in combination on the chemotherapy sensitivity of HL-60/ADR cells to daunorubicin (DNR). Reverse transcription-PCR and Western blot were applied to examine the changes of XIAP, MRP in mRNA and protein levels respectively. The results showed that MRP and XIAP were both significantly higher in HL-60/ADR cells than those in HL-60 cells. AS ODN of XIAP and MRP down-regulated the expression of XIAP and MRP in HL-60/ADR cells and increased the sensitivity of HL-60/ADR cells to DNR, respectively. AS ODN of XIAP + MRP did not enhance the inhibition expression of XIAP in HL-60/ADR cells but increased the sensitivity of HL-60/ADR cells to DNR significantly as compared with AS ODN of XIAP (P MRP did not increase the concentration of DNR nor enhanced the inhibition expression of MRP in HL-60/ADR cells but increased the sensitivity of HL-60/ADR cells to DNR significantly (P MRP. It is concluded that both XIAP and MRP may be involved in the drug resistance mechanisms of HL-60/ADR cells. Drug-resistance of HL-60/ADR cells can be reversed significantly when antisense oligonucleotides of XIAP and MRP were used in combination.

  11. In vitro antileishmanial activity of fisetin flavonoid via inhibition of glutathione biosynthesis and arginase activity in Leishmania infantum.

    Science.gov (United States)

    Adinehbeigi, Keivan; Razi Jalali, Mohammad Hossein; Shahriari, Ali; Bahrami, Somayeh

    2017-06-01

    With the increasing emergence of drug resistant Leishmania sp. in recent years, combination therapy has been considered as a useful way to treat and control of Leishmaniasis. The present study was designed to evaluate the antileishmanial effects of the fisetin alone and combination of fisetin plus Meglumine antimoniate (Fi-MA) against Leishmania infantum. The IC50 values for fisetin were obtained 0.283 and 0.102 μM against promastigotes and amastigote forms, respectively. Meglumine antimoniate (MA, Glucantime) as control drug also revealed IC50 values of 0.247 and 0.105 μM for promastigotes and amastigotes of L. infantum, respectively. In order to determine the mode of action of fisetin and Meglumine antimoniate (MA, Glucantime), the activities of arginase (ARG), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) were measured. Moreover, intracellular glutathione (GSH) and nitric oxide (NO) levels in L. infantum-infected macrophages and L. infantum promastigotes which were treated with IC50 concentrations of fisetin, MA and Fi-MA were investigated. Our results showed that MA decreased CAT and SOD activity and increased NO levels in L. infantum-infected macrophages. In promastigotes, MA inhibited parasite SOD activity and reduced parasite NO production. The decreased levels of most of the antioxidant enzymes, accompanying by the raised level of NO in treated macrophages with MA, were observed to regain their normal profiles due to Fi-MA treatment. Furthermore, fisetin could prevent the growth of promastigotes by inhibition of ARG activity and reduction of GSH levels and NO production. In conclusion, these findings showed that fisetin improves MA side effects.

  12. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi.

    Science.gov (United States)

    Miyazawa, M; Tougo, H; Ishihara, M

    2001-01-01

    Inhibition of acetylcholinesterase (AChE) activity by essential oils of Citrus paradisi (grapefruit pink in USA) was studied. Inhibition of AChE was measured by the colorimetric method. Nootkatone and auraptene were isolated from C. paradisi oil and showed 17-24% inhibition of AChE activity at the concentration of 1.62 microg/mL.

  13. Establishing Drug Resistance in Microorganisms by Mass Spectrometry

    Science.gov (United States)

    Demirev, Plamen A.; Hagan, Nathan S.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and 13C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  14. Drug-Resistant Bacteria: On the Edge of a Crisis | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... drug-resistant bacteria research program. Why are certain bacteria becoming more resistant to drugs? There is a ... a national, even global crisis of drug-resistant bacteria. Why is that? The more we see this ...

  15. Implementation of a national anti-tuberculosis drug resistance survey in Tanzania

    NARCIS (Netherlands)

    Chonde, Timothy M.; Doulla, Basra; van Leth, Frank; Mfinanga, Sayoki G. M.; Range, Nyagosya; Lwilla, Fred; Mfaume, Saidi M.; van Deun, Armand; Zignol, Matteo; Cobelens, Frank G.; Egwaga, Saidi M.

    2008-01-01

    BACKGROUND: A drug resistance survey is an essential public health management tool for evaluating and improving the performance of National Tuberculosis control programmes. The current manuscript describes the implementation of the first national drug resistance survey in Tanzania. METHODS:

  16. Mathematical modeling and computational prediction of cancer drug resistance.

    Science.gov (United States)

    Sun, Xiaoqiang; Hu, Bin

    2017-06-23

    Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of

  17. Towards an understanding of drug resistance in malaria

    DEFF Research Database (Denmark)

    Lemcke, T; Christensen, I T; Jørgensen, Flemming Steen

    1999-01-01

    and structural differences. Based on this analysis the molecular consequences of point mutations known to be involved in drug resistance were discussed. The significance of the most important point mutation causing resistance, S108N, could be explained by the model, whereas the point mutations associated...... with enhanced resistance, N51I and C59R, seem to have a more indirect effect on inhibitor binding....

  18. Protective effect of Lactobacillus casei strain Shirota against lethal infection with multi-drug resistant Salmonella enterica serovar Typhimurium DT104 in mice.

    Science.gov (United States)

    Asahara, T; Shimizu, K; Takada, T; Kado, S; Yuki, N; Morotomi, M; Tanaka, R; Nomoto, K

    2011-01-01

    The anti-infectious activity of lactobacilli against multi-drug resistant Salmonella enterica serovar Typhimurium DT104 (DT104) was examined in a murine model of an opportunistic antibiotic-induced infection. Explosive intestinal growth and subsequent lethal extra-intestinal translocation after oral infection with DT104 during fosfomycin (FOM) administration was significantly inhibited by continuous oral administration of Lactobacillus casei strain Shirota (LcS), which is naturally resistant to FOM, at a dose of 10(8) colony-forming units per mouse daily to mice. Comparison of the anti-Salmonella activity of several Lactobacillus type strains with natural resistance to FOM revealed that Lactobacillus brevis ATCC 14869(T) , Lactobacillus plantarum ATCC 14917(T) , Lactobacillus reuteri JCM 1112(T) , Lactobacillus rhamnosus ATCC 7469(T) and Lactobacillus salivarius ATCC 11741(T) conferred no activity even when they obtained the high population levels almost similar to those of the effective strains such as LcS, Lact. casei ATCC 334(T) and Lactobacillus zeae ATCC 15820(T) . The increase in concentration of organic acids and maintenance of the lower pH in the intestine because of Lactobacillus colonization were correlated with the anti-infectious activity. Moreover, heat-killed LcS was not protective against the infection, suggesting that the metabolic activity of lactobacilli is important for the anti-infectious activity. These results suggest that certain lactobacilli in combination with antibiotics may be useful for prophylaxis against opportunistic intestinal infections by multi-drug resistant pathogens, such as DT104. Antibiotics such as FOM disrupt the metabolic activity of the intestinal microbiota that produce organic acids, and that only probiotic strains that are metabolically active in vivo should be selected to prevent intestinal infection when used clinically in combination with certain antibiotics. © 2010 The Authors. Journal of Applied Microbiology

  19. Transmission pattern of drug-resistant tuberculosis and its implication for tuberculosis control in eastern rural China.

    Directory of Open Access Journals (Sweden)

    Yi Hu

    with additional strategies, including active case finding at the village level, effective treatment for patients with cavities and drug susceptibility testing for patients at increased risk for drug-resistance.

  20. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes

    Directory of Open Access Journals (Sweden)

    Gudepalya Renukaiah Rudramurthy

    2016-06-01

    Full Text Available Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals. Antimicrobials are considered “miracle drugs” and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future.

  1. Drug-resistant tuberculosis: time for visionary political leadership.

    Science.gov (United States)

    Abubakar, Ibrahim; Zignol, Matteo; Falzon, Dennis; Raviglione, Mario; Ditiu, Lucica; Masham, Susan; Adetifa, Ifedayo; Ford, Nathan; Cox, Helen; Lawn, Stephen D; Marais, Ben J; McHugh, Timothy D; Mwaba, Peter; Bates, Matthew; Lipman, Marc; Zijenah, Lynn; Logan, Simon; McNerney, Ruth; Zumla, Adam; Sarda, Krishna; Nahid, Payam; Hoelscher, Michael; Pletschette, Michel; Memish, Ziad A; Kim, Peter; Hafner, Richard; Cole, Stewart; Migliori, Giovanni Battista; Maeurer, Markus; Schito, Marco; Zumla, Alimuddin

    2013-06-01

    Two decades ago, WHO declared tuberculosis a global emergency, and invested in the highly cost-effective directly observed treatment short-course programme to control the epidemic. At that time, most strains of Mycobacterium tuberculosis were susceptible to first-line tuberculosis drugs, and drug resistance was not a major issue. However, in 2013, tuberculosis remains a major public health concern worldwide, with prevalence of multidrug-resistant (MDR) tuberculosis rising. WHO estimates roughly 630 000 cases of MDR tuberculosis worldwide, with great variation in the frequency of MDR tuberculosis between countries. In the past 8 years, extensively drug-resistant (XDR) tuberculosis has emerged, and has been reported in 84 countries, heralding the possibility of virtually untreatable tuberculosis. Increased population movement, the continuing HIV pandemic, and the rise in MDR tuberculosis pose formidable challenges to the global control of tuberculosis. We provide an overview of the global burden of drug-resistant disease; discuss the social, health service, management, and control issues that fuel and sustain the epidemic; and suggest specific recommendations for important next steps. Visionary political leadership is needed to curb the rise of MDR and XDR tuberculosis worldwide, through sustained funding and the implementation of global and regional action plans. Copyright © 2013 World Health Organization. Published by Elsevier Ltd/Inc/BV. All rights reserved. Published by Elsevier Ltd. All rights reserved.

  2. Modeling HIV-1 drug resistance as episodic directional selection.

    Science.gov (United States)

    Murrell, Ben; de Oliveira, Tulio; Seebregts, Chris; Kosakovsky Pond, Sergei L; Scheffler, Konrad

    2012-01-01

    The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  3. Modeling HIV-1 drug resistance as episodic directional selection.

    Directory of Open Access Journals (Sweden)

    Ben Murrell

    Full Text Available The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  4. Surgery for Drug-Resistant Epilepsy in Children.

    Science.gov (United States)

    Dwivedi, Rekha; Ramanujam, Bhargavi; Chandra, P Sarat; Sapra, Savita; Gulati, Sheffali; Kalaivani, Mani; Garg, Ajay; Bal, Chandra S; Tripathi, Madhavi; Dwivedi, Sada N; Sagar, Rajesh; Sarkar, Chitra; Tripathi, Manjari

    2017-10-26

    Neurosurgical treatment may improve seizures in children and adolescents with drug-resistant epilepsy, but additional data are needed from randomized trials. In this single-center trial, we randomly assigned 116 patients who were 18 years of age or younger with drug-resistant epilepsy to undergo brain surgery appropriate to the underlying cause of epilepsy along with appropriate medical therapy (surgery group, 57 patients) or to receive medical therapy alone (medical-therapy group, 59 patients). The patients in the medical-therapy group were assigned to a waiting list for surgery. The primary outcome was freedom from seizures at 12 months. Secondary outcomes were the score on the Hague Seizure Severity scale, the Binet-Kamat intelligence quotient, the social quotient on the Vineland Social Maturity Scale, and scores on the Child Behavior Checklist and the Pediatric Quality of Life Inventory. At 12 months, freedom from seizures occurred in 44 patients (77%) in the surgery group and in 4 (7%) in the medical-therapy group (Pchildren and adolescents with drug-resistant epilepsy who had undergone epilepsy surgery had a significantly higher rate of freedom from seizures and better scores with respect to behavior and quality of life than did those who continued medical therapy alone at 12 months. Surgery resulted in anticipated neurologic deficits related to the region of brain resection. (Funded by the Indian Council of Medical Research and others; Clinical Trial Registry-India number, CTRI/2010/091/000525 .).

  5. Sleep instability and cognitive status in drug-resistant epilepsies.

    Science.gov (United States)

    Pereira, Alessandra Marques; Bruni, Oliviero; Ferri, Raffaele; Nunes, Magda Lahorgue

    2012-05-01

    The aims of this study were to evaluate the sleep habits of children with drug resistant epilepsy and to correlate sleep abnormalities with epilepsy and level of intelligence. Twenty five subjects with drug resistant epilepsy (14 males, age range 2-16.4 years) were recruited for this study. A control group was formed by 23 normal children. Two instruments to assess sleep habits were administered to the patients with epilepsy: a questionnaire on sleep habits (to preschool children) and a questionnaire on sleep behavior (for children aged more than seven years old); a cognitive test (Wechsler Intelligence Scale for Children-WISC) was also performed. Patients underwent a complete polysomnographic study and sleep parameters, including CAP, were analyzed and correlated according to cognitive-behavioral measures in children with epilepsy. Children with drug-resistant epilepsy and severe mental retardation showed sleep abnormalities such as low sleep efficiency, high percentage of wakefulness after sleep onset, reduced slow wave sleep, and reduced REM sleep. Sleep microstructure evaluated by means of CAP analysis showed a decrease in A1 index during N3 in patients with more severe cognitive impairment. Children with epilepsy and cognitive impairment (n=10) had higher Sleep Behavior Questionnaire for Children (SBQC) total scores (65.60 ± 18.56) compared to children with epilepsy and normal IQ (50.00 ± 10.40), pintellectual disability. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Effect and Safety of Shihogyejitang for Drug Resistant Childhood Epilepsy

    Directory of Open Access Journals (Sweden)

    Jinsoo Lee

    2016-01-01

    Full Text Available Objective. Herbal medicine has been widely used to treat drug resistant epilepsy. Shihogyejitang (SGT has been commonly used to treat epilepsy. We investigated the effect and safety of SGT in children with drug resistant epilepsy. Design. We reviewed medical records of 54 patients with epilepsy, who failed to respond to at least two antiepileptic drugs and have been treated with SGT between April 2006 and June 2014 at the Department of Pediatric Neurology, I-Tomato Hospital, Korea. Effect was measured by the response rate, seizure-free rate, and retention rate at six months. We also checked adverse events, change in antiepileptic drugs use, and the variables related to the outcome. Results. Intent-to-treat analysis showed that, after six months, 44.4% showed a >50% seizure reduction, 24.1% including seizure-free, respectively, and 53.7% remained on SGT. Two adverse events were reported, mild skin rash and fever. Focal seizure type presented significantly more positive responses when compared with other seizure types at six months (p=0.0284, Fisher’s exact test. Conclusion. SGT is an effective treatment with excellent tolerability for drug resistant epilepsy patients. Our data provide evidence that SGT may be used as alternative treatment option when antiepileptic drug does not work in epilepsy children.

  7. mTOR Inhibition Induces EGFR Feedback Activation in Association with Its Resistance to Human Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2015-02-01

    Full Text Available The mammalian target of rapamycin (mTOR is dysregulated in diverse cancers and contributes to tumor progression and drug resistance. The first generation of mTOR inhibitors have failed to show clinical efficiency in treating pancreatic cancers due in part to the feedback relief of the insulin-like growth factor-1 receptor (IGF-1R-AKT signaling pathway. The second generation of mTOR inhibitors, such as AZD8055, could inhibit AKT activation upon mTOR complex 2 (mTORC2 inhibition. However, whether this generation of mTOR inhibitors can obtain satisfactory activities in pancreatic cancer therapy remains unclear. In this study, we found AZD8055 did not show great improvement compared with everolimus, AZD8055 induced a temporal inhibition of AKT kinase activities and AKT was then rephosphorylated. Additionally, we found that AZD8055-induced transient AKT inhibition increased the expression and activation of epidermal growth factor receptor (EGFR by releasing its transcriptional factors Fork-head box O 1/3a (FoxO1/3a, which might contribute to cell resistance to AZD8055. The in vitro and in vivo experiments further indicated the combination of AZD8055 and erlotinib synergistically inhibited the mTORC1/C2 signaling pathway, EGFR/AKT feedback activation, and cell growth, as well as suppressed the progression of pancreatic cancer in a xenograft model. This study provides a rationale and strategy for overcoming AZD8055 resistance by a combined treatment with the EGFR inhibitor erlotinib in pancreatic cancer therapy.

  8. Imatinib mesylate inhibits Leydig cell tumor growth: evidence for in vitro and in vivo activity.

    Science.gov (United States)

    Basciani, Sabrina; Brama, Marina; Mariani, Stefania; De Luca, Gabriele; Arizzi, Mario; Vesci, Loredana; Pisano, Claudio; Dolci, Susanna; Spera, Giovanni; Gnessi, Lucio

    2005-03-01

    Leydig cell tumors are usually benign tumors of the male gonad. However, if the tumor is malignant, no effective treatments are currently available. Leydig cell tumors express platelet-derived growth factor (PDGF), kit ligand and their respective receptors, PDGFR and c-kit. We therefore evaluated the effects of imatinib mesylate (imatinib), a selective inhibitor of the c-kit and PDGFR tyrosine kinases, on the growth of rodent Leydig tumor cell lines in vivo and in vitro, and examined, in human Leydig cell tumor samples, the expression of activated PDGFR and c-kit and the mutations in exons of the c-kit gene commonly associated with solid tumors. Imatinib caused concentration-dependent decreases in the viability of Leydig tumor cell lines, which coincided with apoptosis and inhibition of proliferation and ligand-stimulated phosphorylation of c-kit and PDGFRs. Mice bearing s.c. allografts of a Leydig tumor cell line treated with imatinib p.o., had an almost complete inhibition of tumor growth, less tumor cell proliferation, increased apoptosis, and a lesser amount of tumor-associated mean vessel density compared with controls. No drug-resistant tumors appeared during imatinib treatment but tumors regrew after drug withdrawal. Human Leydig cell tumors showed an intense expression of the phosphorylated form of c-kit and a less intense expression of phosphorylated PDGFRs. No activating mutations in common regions of mutation of the c-kit gene were found. Our studies suggest that Leydig cell tumors might be a potential target for imatinib therapy.

  9. Ouabain, a cardiac glycoside, inhibits the Fanconi anemia/BRCA pathway activated by DNA interstrand cross-linking agents.

    Directory of Open Access Journals (Sweden)

    Dong Wha Jun

    Full Text Available Modulation of the DNA repair pathway is an emerging target for the development of anticancer drugs. DNA interstrand cross-links (ICLs, one of the most severe forms of DNA damage caused by anticancer drugs such as cisplatin and mitomycin C (MMC, activates the Fanconi anemia (FA/BRCA DNA repair pathway. Inhibition of the FA/BRCA pathway can enhance the cytotoxic effects of ICL-inducing anticancer drugs and can reduce anticancer drug resistance. To find FA/BRCA pathway inhibitory small molecules, we established a cell-based high-content screening method for quantitating the activation of the FA/BRCA pathway by measuring FANCD2 foci on DNA lesions and then applied our method to chemical screening. Using commercial LOPAC1280 chemical library screening, ouabain was identified as a competent FA/BRCA pathway inhibitory compound. Ouabain, a member of the cardiac glycoside family, binds to and inhibits Na(+/K(+-ATPase and has been used to treat heart disease for many years. We observed that ouabain, as well as other cardiac glycoside family members--digitoxin and digoxin--down-regulated FANCD2 and FANCI mRNA levels, reduced monoubiquitination of FANCD2, inhibited FANCD2 foci formation on DNA lesions, and abrogated cell cycle arrest induced by MMC treatment. These inhibitory activities of ouabain required p38 MAPK and were independent of cellular Ca(2+ ion increase or the drug uptake-inhibition effect of ouabain. Furthermore, we found that ouabain potentiated the cytotoxic effects of MMC in tumor cells. Taken together, we identified an additional effect of ouabain as a FA/BRCA pathway-inhibiting chemosensitization compound. The results of this study suggest that ouabain may serve as a chemosensitizer to ICL-inducing anticancer drugs.

  10. Oridonin Targets Multiple Drug-Resistant Tumor Cells as Determined by in Silico and in Vitro Analyses

    Directory of Open Access Journals (Sweden)

    Onat Kadioglu

    2018-04-01

    Full Text Available Drug resistance is one of the main reasons of chemotherapy failure. Therefore, overcoming drug resistance is an invaluable approach to identify novel anticancer drugs that have the potential to bypass or overcome resistance to established drugs and to substantially increase life span of cancer patients for effective chemotherapy. Oridonin is a cytotoxic diterpenoid isolated from Rabdosia rubescens with in vivo anticancer activity. In the present study, we evaluated the cytotoxicity of oridonin toward a panel of drug-resistant cancer cells overexpressing ABCB1, ABCG2, or ΔEGFR or with a knockout deletion of TP53. Interestingly, oridonin revealed lower degree of resistance than the control drug, doxorubicin. Molecular docking analyses pointed out that oridonin can interact with Akt/EGFR pathway proteins with comparable binding energies and similar docking poses as the known inhibitors. Molecular dynamics results validated the stable conformation of oridonin docking pose on Akt kinase domain. Western blot experiments clearly revealed dose-dependent downregulation of Akt and STAT3. Pharmacogenomics analyses pointed to a mRNA signature that predicted sensitivity and resistance to oridonin. In conclusion, oridonin bypasses major drug resistance mechanisms and targets Akt pathway and might be effective toward drug refractory tumors. The identification of oridonin-specific gene expressions may be useful for the development of personalized treatment approaches.

  11. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer.

    Science.gov (United States)

    Lv, Li; Liu, Chunxia; Chen, Chuxiong; Yu, Xiaoxia; Chen, Guanghui; Shi, Yonghui; Qin, Fengchao; Ou, Jiebin; Qiu, Kaifeng; Li, Guocheng

    2016-05-31

    The combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated. Studies demonstrated that BNDQ was more effectively taken up with less efflux by doxorubicin-resistant MCF-7 breast cancer cells (MCF-7/ADR cells) than by the cells treated with the free drugs, single-drug-loaded nanoparticles, or non-biotin-decorated nanoparticles. BNDQ exhibited clear inhibition of both the activity and expression of P-glycoprotein in MCF-7/ADR cells. More importantly, it caused a significant reduction in doxorubicin resistance in MCF-7/ADR breast cancer cells both in vitro and in vivo, among all the groups. Overall, this study suggests that BNDQ has a potential role in the treatment of drug-resistant breast cancer.

  12. Antibacterial effect of mango (Mangifera indica Linn.) leaf extract against antibiotic sensitive and multi-drug resistant Salmonella typhi.

    Science.gov (United States)

    Hannan, Abdul; Asghar, Samra; Naeem, Tahir; Ikram Ullah, Muhammad; Ahmed, Ijaz; Aneela, Syeda; Hussain, Shabbir

    2013-07-01

    Alternative herbal medicine has been used to treat various infections from centuries. Natural plants contain phytoconstituents having similar chemical properties as of synthetic antibiotics. Typhoid fever is a serious infection and failure of its treatment emerged multi-drug resistant (MDR) bugs of Salmonella typhi. Due to multiple and repeated issues with antibiotics efficacy, it became essential to evaluate biological properties of plants from different geographical origins. Mango leaves have been Reported for various medicinal effects like antioxidant, antimicrobial, antihelminthic, antidiabetic and antiallergic etc. Objective of present study was to investigate anti-typhoid properties of acetone mango leaf extract (AMLE) against antibiotic sensitive and MDR S. typhi isolates. A total of 50 isolates of S. typhi including MDR (n=30) and antibiotic sensitive (n=20) were investigated. Staphylococcus aureus (ATCC 25923) and Salmonella typhimurium (ATCC14028) were used as quality control strains. AMLE was prepared and its antibacterial activity was evaluated by agar well diffusion screening method and minimum inhibitory concentration (MIC), by agar dilution technique. Zone of inhibition (mm) of AMLE against MDR and antibiotic sensitive isolates was 18±1.5mm (Mean±S.D). Zone of S. aureus (ATCC 25923) and S. typhimurium (ATCC14028) was 20±1.5mm (Mean±S.D). MIC of AMLE was Reported in range from 10-50 mg/ml. The present study described the inhibitory effects of mango leaves against S. typhi.

  13. Rationale and uses of a public HIV drug-resistance database.

    Science.gov (United States)

    Shafer, Robert W

    2006-09-15

    Knowledge regarding the drug resistance of human immunodeficiency virus (HIV) is critical for surveillance of drug resistance, development of antiretroviral drugs, and management of infections with drug-resistant viruses. Such knowledge is derived from studies that correlate genetic variation in the targets of therapy with the antiretroviral treatments received by persons from whom the variant was obtained (genotype-treatment), with drug-susceptibility data on genetic variants (genotype-phenotype), and with virological and clinical response to a new treatment regimen (genotype-outcome). An HIV drug-resistance database is required to represent, store, and analyze the diverse forms of data underlying our knowledge of drug resistance and to make these data available to the broad community of researchers studying drug resistance in HIV and clinicians using HIV drug-resistance tests. Such genotype-treatment, genotype-phenotype, and genotype-outcome correlations are contained in the Stanford HIV RT and Protease Sequence Database and have specific usefulness.

  14. Life cycle synchronization is a viral drug resistance mechanism.

    Directory of Open Access Journals (Sweden)

    Iulia A Neagu

    2018-02-01

    Full Text Available Viral infections are one of the major causes of death worldwide, with HIV infection alone resulting in over 1.2 million casualties per year. Antiviral drugs are now being administered for a variety of viral infections, including HIV, hepatitis B and C, and influenza. These therapies target a specific phase of the virus's life cycle, yet their ultimate success depends on a variety of factors, such as adherence to a prescribed regimen and the emergence of viral drug resistance. The epidemiology and evolution of drug resistance have been extensively characterized, and it is generally assumed that drug resistance arises from mutations that alter the virus's susceptibility to the direct action of the drug. In this paper, we consider the possibility that a virus population can evolve towards synchronizing its life cycle with the pattern of drug therapy. The periodicity of the drug treatment could then allow for a virus strain whose life cycle length is a multiple of the dosing interval to replicate only when the concentration of the drug is lowest. This process, referred to as "drug tolerance by synchronization", could allow the virus population to maximize its overall fitness without having to alter drug binding or complete its life cycle in the drug's presence. We use mathematical models and stochastic simulations to show that life cycle synchronization can indeed be a mechanism of viral drug tolerance. We show that this effect is more likely to occur when the variability in both viral life cycle and drug dose timing are low. More generally, we find that in the presence of periodic drug levels, time-averaged calculations of viral fitness do not accurately predict drug levels needed to eradicate infection, even if there is no synchronization. We derive an analytical expression for viral fitness that is sufficient to explain the drug-pattern-dependent survival of strains with any life cycle length. We discuss the implications of these findings for

  15. Neurological autoantibodies in drug-resistant epilepsy of unknown cause.

    Science.gov (United States)

    Tecellioglu, Mehmet; Kamisli, Ozden; Kamisli, Suat; Yucel, Fatma Ebru; Ozcan, Cemal

    2018-03-09

    Autoimmune epilepsy is a rarely diagnosed condition. Recognition of the underlying autoimmune condition is important, as these patients can be resistant to antiepileptic drugs. To determine the autoimmune and oncological antibodies in adult drug-resistant epilepsy of unknown cause and identify the clinical, radiological, and EEG findings associated with these antibodies according to data in the literature. Eighty-two patients with drug-resistant epilepsy of unknown cause were prospectively identified. Clinical features were recorded. The levels of anti-voltage-gated potassium channel complex (anti-VGKCc), anti-thyroid peroxidase (anti-TPO), anti-nuclear antibody (ANA), anti-glutamic acid decarboxylase (anti-GAD), anti-phospholipid IgG and IgM, anti-cardiolipin IgG and IgM, and onconeural antibodies were determined. Serum antibody positivity suggesting the potential role of autoimmunity in the aetiology was present in 17 patients with resistant epilepsy (22.0%). Multiple antibodies were found in two patients (2.6%). One of these patients (1.3%) had anti-VGKCc and ANA, whereas another (1.3%) had anti-VGKCc and anti-TPO. A single antibody was present in 15 patients (19.5%). Of the 77 patients finally included in the study, 4 had anti-TPO (5.2%), 1 had anti-GAD (1.3%), 4 had anti-VGKCc (5.2%) 8 had ANA (10.3%), and 2 had onconeural antibodies (2.6%) (1 patient had anti-Yo and 1 had anti-MA2/TA). The other antibodies investigated were not detected. EEG abnormality (focal), focal seizure incidence, and frequent seizures were more common in antibody-positive patients. Autoimmune factors may be aetiologically relevant in patients with drug-resistant epilepsy of unknown cause, especially if focal seizures are present together with focal EEG abnormality and frequent seizures.

  16. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  17. Prevalence of genotypic HIV-1 drug resistance in Thailand, 2002

    Directory of Open Access Journals (Sweden)

    Watitpun Chotip

    2003-03-01

    Full Text Available Abstract Background The prices of reverse transcriptase (RT inhibitors in Thailand have been reduced since December 1, 2001. It is expected that reduction in the price of these inhibitors may influence the drug resistance mutation pattern of HIV-1 among infected people. This study reports the frequency of HIV-1 genetic mutation associated with drug resistance in antiretroviral-treated patients from Thailand. Methods Genotypic resistance testing was performed on samples collected in 2002 from 88 HIV-1 infected individuals. Automated DNA sequencing was used to genotype the HIV-1 polymerase gene isolated from patients' plasma. Results Resistance to protease inhibitors, nucleoside and non-nucleoside reverse transcriptase inhibitors were found in 10 (12%, 42 (48% and 19 (21% patients, respectively. The most common drug resistance mutations in the protease gene were at codon 82 (8%, 90 (7% and 54 (6%, whereas resistant mutations at codon 215 (45%, 67 (40%, 41 (38% and 184 (27% were commonly found in the RT gene. This finding indicates that genotypic resistance to nucleoside reverse transcriptase inhibitors was prevalent in 2002. The frequency of resistant mutations corresponding to non-nucleoside reverse transcriptase inhibitors was three times higher-, while resistant mutation corresponding to protease inhibitors was two times lower than those frequencies determined in 2001. Conclusion This study shows that the frequencies of RT inhibitor resistance mutations have been increased after the reduction in the price of RT inhibitors since December 2001. We believe that this was an important factor that influenced the mutation patterns of HIV-1 protease and RT genes in Thailand.

  18. Multi drug resistant tuberculosis presenting as anterior mediastinal mass

    Directory of Open Access Journals (Sweden)

    Parmarth Chandane

    2016-01-01

    Full Text Available Enlargement of the mediastinal lymphatic glands is a common presentation of intrathoracic tuberculosis (TB in children. However, usually, the mediastinal TB nodes enlarge to 2.8 ± 1.0 cm. In this report, we describe a case of anterior mediastinal lymphnode TB seen as huge mass (7 cm on computed tomography (CT thorax without respiratory or food pipe compromise despite anterior mediastinum being an enclosed space. CT guided biopsy of the mass cultured Mycobacterium TB complex which was resistant to isoniazide, rifampicin, streptomycin ofloxacin, moxifloxacin, and pyrazinamide. Hence, we report primary multi drug resistant TB presenting as anterior mediastinal mass as a rare case report.

  19. Dynamic optical tweezers based assay for monitoring early drug resistance

    International Nuclear Information System (INIS)

    Wu, Xiaojing; Zhu, Siwei; Feng, Jie; Zhang, Yuquan; Min, Changjun; Yuan, X-C

    2013-01-01

    In this letter, a dynamic optical tweezers based assay is proposed and investigated for monitoring early drug resistance with Pemetrexed-resistant non-small cell lung cancer (NSCLC) cell lines. The validity and stability of the method are verified experimentally in terms of the physical parameters of the optical tweezers system. The results demonstrate that the proposed technique is more convenient and faster than traditional techniques when the capability of detecting small variations of the response of cells to a drug is maintained. (letter)

  20. Hyperoxia Inhibits T Cell Activation in Mice

    Science.gov (United States)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  1. Global transcriptional profiling of longitudinal clinical isolates of Mycobacterium tuberculosis exhibiting rapid accumulation of drug resistance.

    Directory of Open Access Journals (Sweden)

    Anirvan Chatterjee

    Full Text Available The identification of multidrug resistant (MDR, extensively and totally drug resistant Mycobacterium tuberculosis (Mtb, in vulnerable sites such as Mumbai, is a grave threat to the control of tuberculosis. The current study aimed at explaining the rapid expression of MDR in Directly Observed Treatment Short Course (DOTS compliant patients, represents the first study comparing global transcriptional profiles of 3 pairs of clinical Mtb isolates, collected longitudinally at initiation and completion of DOTS. While the isolates were drug susceptible (DS at onset and MDR at completion of DOTS, they exhibited identical DNA fingerprints at both points of collection. The whole genome transcriptional analysis was performed using total RNA from H37Rv and 3 locally predominant spoligotypes viz. MANU1, CAS and Beijing, hybridized on MTBv3 (BuG@S microarray, and yielded 36, 98 and 45 differentially expressed genes respectively. Genes encoding transcription factors (sig, rpoB, cell wall biosynthesis (emb genes, protein synthesis (rpl and additional central metabolic pathways (ppdK, pknH, pfkB were found to be down regulated in the MDR isolates as compared to the DS isolate of the same genotype. Up regulation of drug efflux pumps, ABC transporters, trans-membrane proteins and stress response transcriptional factors (whiB in the MDR isolates was observed. The data indicated that Mtb, without specific mutations in drug target genes may persist in the host due to additional mechanisms like drug efflux pumps and lowered rate of metabolism. Furthermore this population of Mtb, which also showed reduced DNA repair activity, would result in selection and stabilization of spontaneous mutations in drug target genes, causing selection of a MDR strain in the presence of drug pressures. Efflux pump such as drrA may play a significant role in increasing fitness of low level drug resistant cells and assist in survival of Mtb till acquisition of drug resistant mutations with

  2. Drug-resistant tuberculosis among HIV-infected patients starting antiretroviral therapy in Durban, South Africa.

    Directory of Open Access Journals (Sweden)

    Jeffrey K Hom

    Full Text Available To estimate the prevalence of drug-resistant tuberculosis (TB and describe the resistance patterns in patients commencing antiretroviral therapy (ART in an HIV clinic in Durban, South Africa.Cross-sectional cohort study.Consecutive HIV-infected adults (≥ 18y/o initiating HIV care were enrolled from May 2007-May 2008, regardless of signs or symptoms of active TB. Prior TB history and current TB treatment status were self-reported. Subjects expectorated sputum for culture (MGIT liquid and 7H11 solid medium. Positive cultures were tested for susceptibility to first- and second-line anti-tuberculous drugs. The prevalence of drug-resistant TB, stratified by prior TB history and current TB treatment status, was assessed.1,035 subjects had complete culture results. Median CD4 count was 92/µl (IQR 42-150/µl. 267 subjects (26% reported a prior history of TB and 210 (20% were receiving TB treatment at enrollment; 191 (18% subjects had positive sputum cultures, among whom the estimated prevalence of resistance to any antituberculous drug was 7.4% (95% CI 4.0-12.4. Among those with prior TB, the prevalence of resistance was 15.4% (95% CI 5.9-30.5 compared to 5.2% (95% CI 2.1-8.9 among those with no prior TB. 5.1% (95% CI 2.4-9.5 had rifampin or rifampin plus INH resistance.The prevalence of TB resistance to at least one drug was 7.4% among adults with positive TB cultures initiating ART in Durban, South Africa, with 5.1% having rifampin or rifampin plus INH resistance. Improved tools for diagnosing TB and drug resistance are urgently needed in areas of high HIV/TB prevalence.

  3. Detection of First-Line Drug Resistance Mutations and Drug-Protein Interaction Dynamics from Tuberculosis Patients in South India.

    Science.gov (United States)

    Nachappa, Somanna Ajjamada; Neelambike, Sumana M; Amruthavalli, Chokkanna; Ramachandra, Nallur B

    2018-05-01

    Diagnosis of drug-resistant tuberculosis predominantly relies on culture-based drug susceptibility testing, which take weeks to produce a result and a more time-efficient alternative method is multiplex allele-specific PCR (MAS-PCR). Also, understanding the role of mutations in causing resistance helps better drug designing. To evaluate the ability of MAS-PCR in the detection of drug resistance and to understand the mechanism of interaction of drugs with mutant proteins in Mycobacterium tuberculosis. Detection of drug-resistant mutations using MAS-PCR and validation through DNA sequencing. MAS-PCR targeted five loci on three genes, katG 315 and inhA -15 for the drug isoniazid (INH), and rpoB 516, 526, and 531 for rifampicin (RIF). Furthermore, the sequence data were analyzed to study the effect on interaction of the anti-TB drug molecule with the target protein using in silico docking. We identified drug-resistant mutations in 8 out of 114 isolates with 2 of them as multidrug-resistant TB using MAS-PCR. DNA sequencing confirmed only six of these, recording a sensitivity of 85.7% and specificity of 99.3% for MAS-PCR. Molecular docking showed estimated free energy of binding (ΔG) being higher for RIF binding with RpoB S531L mutant. Codon 315 in KatG does not directly interact with INH but blocks the drug access to active site. We propose DNA sequencing-based drug resistance detection for TB, which is more accurate than MAS-PCR. Understanding the action of resistant mutations in disrupting the normal drug-protein interaction aids in designing effective drug alternatives.

  4. Structure-Based Design of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh,A.; Sridhar, P.; Leshchenko, S.; Hussain, A.; Li, J.; Kovalevsky, A.; Walters, D.; Wedelind, J.; Grum-Tokars, V.; et al.

    2006-01-01

    Structure-based design and synthesis of novel HIV protease inhibitors are described. The inhibitors are designed specifically to interact with the backbone of HIV protease active site to combat drug resistance. Inhibitor 3 has exhibited exceedingly potent enzyme inhibitory and antiviral potency. Furthermore, this inhibitor maintains impressive potency against a wide spectrum of HIV including a variety of multi-PI-resistant clinical strains. The inhibitors incorporated a stereochemically defined 5-hexahydrocyclopenta[b]furanyl urethane as the P2-ligand into the (R)-(hydroxyethylamino)sulfonamide isostere. Optically active (3aS,5R,6aR)-5-hydroxy-hexahydrocyclopenta[b]furan was prepared by an enzymatic asymmetrization of meso-diacetate with acetyl cholinesterase, radical cyclization, and Lewis acid-catalyzed anomeric reduction as the key steps. A protein-ligand X-ray crystal structure of inhibitor 3-bound HIV-1 protease (1.35 Angstroms resolution) revealed extensive interactions in the HIV protease active site including strong hydrogen bonding interactions with the backbone. This design strategy may lead to novel inhibitors that can combat drug resistance.

  5. Clinical Significance of HER-2 Splice Variants in Breast Cancer Progression and Drug Resistance

    Directory of Open Access Journals (Sweden)

    Claire Jackson

    2013-01-01

    Full Text Available Overexpression of human epidermal growth factor receptor (HER-2 occurs in 20–30% of breast cancers and confers survival and proliferative advantages on the tumour cells making HER-2 an ideal therapeutic target for drugs like Herceptin. Continued delineation of tumour biology has identified splice variants of HER-2, with contrasting roles in tumour cell biology. For example, the splice variant 16HER-2 (results from exon 16 skipping increases transformation of cancer cells and is associated with treatment resistance; conversely, Herstatin (results from intron 8 retention and p100 (results from intron 15 retention inhibit tumour cell proliferation. This review focuses on the potential clinical implications of the expression and coexistence of HER-2 splice variants in cancer cells in relation to breast cancer progression and drug resistance. “Individualised” strategies currently guide breast cancer management; in accordance, HER-2 splice variants may prove valuable as future prognostic and predictive factors, as well as potential therapeutic targets.

  6. Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Ansari, Mohammad A; Khan, Haris M; Alzohairy, Mohammad A; Jalal, Mohammad; Ali, Syed G; Pal, Ruchita; Musarrat, Javed

    2015-01-01

    -β-lactamases strains of P. aeruginosa, regardless of their drug resistance patterns and mechanisms. The results elucidated the clinical significance of Al2O3-NPs in developing an effective antibacterial therapeutic regimen against the multi-drug resistant bacterial infections. The use of leaf extract of lemongrass for the synthesis of Al2O3-NPs appears to be cost effective, nontoxic, eco-friendly and its strong antibacterial activity against multi-drug resistant strains of P. aeruginosa offers compatibility for pharmaceutical and other biomedical applications.

  7. Surgical management of cavernous malformations coursing with drug resistant epilepsy

    Directory of Open Access Journals (Sweden)

    Mario Arturo Alonso-Vanegas

    2012-01-01

    Full Text Available Cerebral cavernous malformations (CM are dynamic lesions characterized by continuous size changes and repeated bleeding. When involving cortical tissue, CM pose a significant risk for the development of drug-resistant epilepsy, which is thought to be result of an altered neuronal network caused by the lesion itself and its blood degradation products. Preoperative evaluation should comprise a complete seizure history, neurological examination, epilepsy-oriented MRI, EEG, video-EEG, completed with SPECT, PET, functional MRI and/or invasive monitoring as needed. Radiosurgery shows variable rates of seizure freedom and a high incidence of complications, thus microsurgical resection remains the optimal treatment for CM coursing with drug-resistant epilepsy.Two thirds of patients reach Engel I class at three-year follow-up, regardless of lobar location. Those with secondarily generalized seizures, a higher seizure frequency, and generalized abnormalities on preoperative or postoperative EEG, show poorer outcomes, while factors such as gender, duration of epilepsy, lesion size, age, bleeding at the time of surgery, do not correlate consistently with seizure outcome. Electrocorticography and a meticulous removal of all cortical hemosiderin –beyond pure lesionectomy– reduce the risk of symptomatic recurrences.

  8. Characterization of extensively drug-resistant Mycobacterium tuberculosis in Nepal.

    Science.gov (United States)

    Poudel, Ajay; Maharjan, Bhagwan; Nakajima, Chie; Fukushima, Yukari; Pandey, Basu D; Beneke, Antje; Suzuki, Yasuhiko

    2013-01-01

    The emergence of extensively drug-resistant tuberculosis (XDR-TB) has raised public health concern for global control of TB. Although molecular characterization of drug resistance-associated mutations in multidrug-resistant isolates in Nepal has been made, mutations in XDR isolates and their genotypes have not been reported previously. In this study, we identified and characterized 13 XDR Mycobacterium tuberculosis isolates from clinical isolates in Nepal. The most prevalent mutations involved in rifampicin, isoniazid, ofloxacin, and kanamycin/capreomycin resistance were Ser531Leu in rpoB gene (92.3%), Ser315Thr in katG gene (92.3%), Asp94Gly in gyrA gene (53.9%) and A1400G in rrs gene (61.5%), respectively. Spoligotyping and multilocus sequence typing revealed that 69% belonged to Beijing family, especially modern types. Further typing with 26-loci variable number of tandem repeats suggested the current spread of XDR M. tuberculosis. Our result highlights the need to reinforce the TB policy in Nepal with regard to control and detection strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Aggressive chemotherapy and the selection of drug resistant pathogens.

    Directory of Open Access Journals (Sweden)

    Silvie Huijben

    2013-09-01

    Full Text Available Drug resistant pathogens are one of the key public health challenges of the 21st century. There is a widespread belief that resistance is best managed by using drugs to rapidly eliminate target pathogens from patients so as to minimize the probability that pathogens acquire resistance de novo. Yet strong drug pressure imposes intense selection in favor of resistance through alleviation of competition with wild-type populations. Aggressive chemotherapy thus generates opposing evolutionary forces which together determine the rate of drug resistance emergence. Identifying treatment regimens which best retard resistance evolution while maximizing health gains and minimizing disease transmission requires empirical analysis of resistance evolution in vivo in conjunction with measures of clinical outcomes and infectiousness. Using rodent malaria in laboratory mice, we found that less aggressive chemotherapeutic regimens substantially reduced the probability of onward transmission of resistance (by >150-fold, without compromising health outcomes. Our experiments suggest that there may be cases where resistance evolution can be managed more effectively with treatment regimens other than those which reduce pathogen burdens as fast as possible.

  10. Drug resistance patterns of acinetobacter baumannii in makkah, saudi arabia

    International Nuclear Information System (INIS)

    Khan, M.A.; Ashshi, A.M.; Mahomed, M.F.

    2012-01-01

    Background: Acinetobacter baumannii causes infections of respiratory, urinary tract, blood stream and surgical sites. Its clinical significance has increased due to its rapidly developing resistance to major groups of antibiotics used for its treatment. There is limited data available on antimicrobial susceptibility of A. baumannii from Saudi Arabia. Objectives: To determine the patterns of drug resistance of Acinetobacter baumannii and predisposing factors for its acquisition.Subjects and Methods: In this descriptive study, 72 hospitalized patients infected with A baumannii were studied. The clinical and demographic data of the patients were collected using a predesigned questionnaire. Isolation and identification of A.baumannii from all clinical specimens were done using standard microbiological methods. Antibiotic susce ptibility testing was performed by disk diffusion method recommended by Clinical Laboratory Standards Institute. Results: Majority of the isolates (61.1%) were from respiratory tract infections. A.baumannii isolates showed high drug resistance to piperacil lin (93.1%), aztreonam (80.5%), ticarcillin, ampicillin, and tetracycline (76.4%, each) and cefotaxime (75%). Only amikacin showed low rate of resistance compared to other antibiotics (40.3%). About 36% patients had some underlying diseases with diabetes mellitus (11%) being the predominant underlying disease. Conclusions: High antimicrobial resistance to commonly used antibiotics was seen against A.baumannii isolates. Only amikacin was most effective against it. (author)

  11. Novel diagnostics and therapeutics for drug-resistant tuberculosis.

    Science.gov (United States)

    Toosky, Melody; Javid, Babak

    2014-06-01

    Drug-resistant tuberculosis (DR-TB) is associated with increased mortality and morbidity. This is at least partly due to late diagnosis and ineffective treatment of drug-resistant status. Selective search of the literature on DR-TB supplemented by recent guidelines from the World Health Organization. Better and more rapid diagnosis of DR-TB by new techniques such as Xpert Mtb/RIF are likely to make a substantial impact on the disease. New therapeutics for DR-TB are entering, or about to enter the market for the first time in decades. It is not clear whether new treatments should be restricted for DR-TB or also used for drug-susceptible tuberculosis. With several new agents on the horizon, there is the real possibility of an entirely new regimen for tuberculosis. An inexpensive 'near-patient' diagnostic test is still needed. Optimizing new drug combination regimens in a timely manner is urgently required. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Definition of drug-resistant epilepsy: is it evidence based?

    Science.gov (United States)

    Wiebe, Samuel

    2013-05-01

    Clinical case definitions are the cornerstone of clinical communication and of clinical and epidemiologic research. The ramifications of establishing a case definition are extensive, including potentially large changes in epidemiologic estimates of frequency, and decisions for clinical management. Yet, defining a condition entails numerous challenges such as defining the scope and purpose, incorporating the strongest evidence base with clinical expertise, accounting for patients' values, and considering impact on care. The clinical case definition of drug-resistant epilepsy, in addition, must address what constitutes an adequate intervention for an individual drug, what are the outcomes of relevance, what period of observation is sufficient to determine success or failure, how many medications should be tried, whether seizure frequency should play a role, and what is the role of side effects and tolerability. On the other hand, the principles of evidence-based medicine (EBM) aim at providing a systematic approach to incorporating the best available evidence into the process of clinical decision for individual patients. The case definition of drug-resistant epilepsy proposed by the the International League Against Epilepsy (ILAE) in 2009 is evaluated in terms of the principles of EBM as well as the stated goals of the authors of the definition. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  13. Drug-resistant tuberculosis in Mumbai, India: An agenda for operations research

    Science.gov (United States)

    Mistry, Nerges; Tolani, Monica; Osrin, David

    2012-01-01

    Operations research (OR) is well established in India and is also a prominent feature of the global and local agendas for tuberculosis (TB) control. India accounts for a quarter of the global burden of TB and of new cases. Multidrug-resistant TB is a significant problem in Mumbai, India’s most populous city, and there have been recent reports of totally resistant TB. Much thought has been given to the role of OR in addressing programmatic challenges, by both international partnerships and India’s Revised National TB Control Programme. We attempt to summarize the major challenges to TB control in Mumbai, with an emphasis on drug resistance. Specific challenges include diagnosis of TB and defining cure, detecting drug resistant TB, multiple sources of health care in the private, public and informal sectors, co-infection with human immunodeficiency virus (HIV) and a concurrent epidemic of non-communicable diseases, suboptimal prescribing practices, and infection control. We propose a local agenda for OR: modeling the effects of newer technologies, active case detection, and changes in timing of activities, and mapping hotspots and contact networks; modeling the effects of drug control, changing the balance of ambulatory and inpatient care, and adverse drug reactions; modeling the effects of integration of TB and HIV diagnosis and management, and preventive drug therapy; and modeling the effects of initiatives to improve infection control. PMID:24501697

  14. Exosomes in Cancer Development, Metastasis and Drug Resistance: A Comprehensive Review

    Science.gov (United States)

    Azmi, Asfar S.; Bao, Bin; Sarkar, Fazlul H.

    2013-01-01

    Trafficking of biological material across membranes is an evolutionary conserved mechanism and is part of any normal cell homeostasis. Such transport is comprised of active, passive, export through microparticles and vesicular transport (exosomes) that collectively maintain proper compartmentalization of important micro and macromolecules. In pathological states, such as cancer, aberrant activity of export machinery results in expulsion of a number of key proteins and microRNAs resulting in their misexpression. Exosome mediated expulsion of intracellular drugs could be another barrier in the proper action of most of the commonly used therapeutics, targeted agents and their intracellular metabolites. Over the last decade, a number of studies have revealed that exosomes cross-talk and/or influence major tumor related pathways such as hypoxia driven EMT, cancer stemness, angiogenesis and metastasis involving many cell types within the tumor microenvironment. Emerging evidence suggest that exosome secreted proteins can also propel fibroblast growth, resulting in Desmoplastic reaction (DR); a major barrier in effective cancer drug delivery. This comprehensive review highlights the advancements in the understanding of the biology of exosomes secretions and the consequence on cancer drug resistance. We propose that the successful combination of cancer treatments to tackle exosome mediated drug resistance requires an interdisciplinary understanding of these cellular exclusion mechanisms, and how secreted biomolecules are involved in cellular cross-talk within the tumor microenvironment. PMID:23709120

  15. Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells.

    Science.gov (United States)

    Yan, Chen; Luo, Lan; Guo, Chang-Ying; Goto, Shinji; Urata, Yoshishige; Shao, Jiang-Hua; Li, Tao-Sheng

    2017-03-01

    Cancer stem cells (CSCs) are known to be drug resistant. Mitophagy selectively degrades unnecessary or damaged mitochondria by autophagy during cellular stress. To investigate the potential role of mitophagy in drug resistance in CSCs, we purified CD133 + /CD44 + CSCs from HCT8 human colorectal cancer cells and then exposed to doxorubicin (DXR). Compared with parental cells, CSCs were more resistant to DXR treatment. Although DXR treatment enhanced autophagy levels in both cell types, the inhibition of autophagy by ATG7 silencing significantly increased the toxicity of DXR only in parental cells, not in CSCs. Interestingly, the level of mitochondrial superoxide was detected to be significantly lower in CSCs than in parental cells after DXR treatment. Furthermore, the mitophagy level and expression of BNIP3L, a mitophagy regulator, were significantly higher in CSCs than in parental cells after DXR treatment. Silencing BNIP3L significantly halted mitophagy and enhanced the sensitivity to DXR in CSCs. Our data suggested that mitophagy, but not non-selective autophagy, likely contributes to drug resistance in CSCs isolated from HCT8 cells. Further studies in other cancer cell lines will be needed to confirm our findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Activities of selected medicinal plants against multi-drug resistant ...

    African Journals Online (AJOL)

    106 CFU/mL) prepared in MHB was then added. The turbidity .... seeds of this plant contain reducing sugars, phenols, alkaloids and .... Regional Soil Conservation ... Some Bio- chemical studies on the leaves and fruits of Persea ameri- cana.

  17. Inhibitory effect of Allium sativum and Zingiber officinale extracts on clinically important drug resistant pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Gull Iram

    2012-04-01

    Full Text Available Abstract Background Herbs and spices are very important and useful as therapeutic agent against many pathological infections. Increasing multidrug resistance of pathogens forces to find alternative compounds for treatment of infectious diseases. Methods In the present study the antimicrobial potency of garlic and ginger has been investigated against eight local clinical bacterial isolates. Three types of extracts of each garlic and ginger including aqueous extract, methanol extract and ethanol extract had been assayed separately against drug resistant Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Shigella sonnei, Staphylococcusepidermidis and Salmonella typhi. The antibacterial activity was determined by disc diffusion method. Results All tested bacterial strains were most susceptible to the garlic aqueous extract and showed poor susceptibility to the ginger aqueous extract. The (minimum inhibitory concentration MIC of different bacterial species varied from 0.05 mg/ml to 1.0 mg/ml. Conclusion In the light of several socioeconomic factors of Pakistan mainly poverty and poor hygienic condition, present study encourages the use of spices as alternative or supplementary medicine to reduce the burden of high cost, side effects and progressively increasing drug resistance of pathogens.

  18. Drug Resistance and Pseudoresistance: An Unintended Consequence of Enteric Coating Aspirin

    Science.gov (United States)

    Grosser, Tilo; Fries, Susanne; Lawson, John A.; Kapoor, Shiv C.; Grant, Gregory R.; FitzGerald, Garret A.

    2013-01-01

    Background Low dose aspirin reduces the secondary incidence of myocardial infarction and stroke. Drug resistance to aspirin might result in treatment failure. Despite this concern, no clear definition of “aspirin resistance” has emerged and estimates of its incidence have varied remarkably. We aimed to determine the commonality of a mechanistically consistent, stable and specific phenotype of true pharmacological resistance to aspirin – such as might be explained by genetic causes. Methods and Results Healthy volunteers (n=400) were screened for their response to a single oral dose of 325 mg immediate release or enteric coated aspirin. Response parameters reflected the activity of aspirin's molecular target, cyclooxygenase-1. Individuals who appeared “aspirin resistant” on one occasion underwent repeat testing and if still “resistant” were exposed to low dose enteric coated aspirin (81 mg) and clopidogrel (75 mg) for one week each. Variable absorption caused a high frequency of apparent resistance to a single dose of 325 mg enteric coated aspirin (up to 49%) but not to immediate release aspirin (0%). All individuals responded to aspirin upon repeated exposure, extension of the post dosing interval or addition of aspirin to their platelets ex vivo. Conclusions Pharmacological resistance to aspirin is rare; this study failed to identify a single case of true drug resistance. Pseudoresistance, reflecting delayed and reduced drug absorption, complicates enteric coated but not immediate release aspirin administration. Clinical Trial Registration Information clinicaltrials.gov. Identifier: NCT00948987. PMID:23212718

  19. Circumvention of inherent or acquired cytotoxic drug resistance in vitro using combinations of modulating agents.

    Science.gov (United States)

    Cadagan, David; Merry, Stephen

    2013-10-01

    Modulating agents are used to circumvent drug resistance in the clinical setting. However achievable serum concentrations are often lower than those which are optimal in vitro. Combination of modulating agents with non-overlapping toxicities may overcome this obstacle. We have investigated combinations of three modulating agents (quinine, verapamil, and cinnarizine) to circumvent inherent or acquired resistance to the cytotoxic drugs doxorubicin, vincristine and paclitaxel. Dose-response curves to cytotoxic drugs in the presence/absence of modulating agents were determined using colony formation and cell proliferation assays. Doxorubicin accumulation into cell monolayers was measured by fluorescence spectrophotometry. Greater (1.9-fold) sensitisation to particular cytotoxic drugs was observed for certain combinations of modulating agents compared to individual effects. The most effective combination was quinine-plus-verapamil with the cytotoxic drug doxorubicin. This increase in sensitivity was associated with increased doxorubicin accumulation. Such enhanced activity was, however, not observed for all combinations of modulating agents or for all studied cytotoxic drugs. The findings of the present study suggest certain combinations of modulating agents to have a clinical role in circumventing drug resistance. Particular combinations of modulating agents must be carefully chosen to suit particular cytotoxic drug treatments.

  20. Recent advances in novel heterocyclic scaffolds for the treatment of drug-resistant malaria.

    Science.gov (United States)

    Kumar, Sahil; Singh, Rajesh K; Patial, Babita; Goyal, Sachin; Bhardwaj, T R

    2016-01-01

    Malaria is a major public health problem all over the world, particularly in tropical and subtropical countries due to the development of resistance and most deadly infection is caused by Plasmodium falciparum. There is a direct need for the discovery of new drugs with unique structures and mechanism of action to treat sensitive and drug-resistant strains of various plasmodia for radical cure of this disease. Traditional compounds such as quinine and related derivatives represent a major source for the development of new drugs. This review presents recent modifications of 4-aminoquinoline and 8-aminoquinolone rings as leads to novel active molecules which are under clinical trials. The review also encompasses the other heterocyclic compounds emerged as potential antimalarial agents with promising results such as acridinediones and acridinone analogues, pyridines and quinolones as antimalarials. Miscellaneous heterocyclics such as tetroxane derivatives, indole derivatives, imidazolopiperazine derivatives, biscationic choline-based compounds and polymer-linked combined antimalarial drugs are also discussed. At last brief introduction to heterocyclics in natural products is also reviewed. Most of them have been under clinical trials and found to be promising in the treatment of drug-resistant strains of Plasmodium and others can be explored for the same purpose.

  1. HIV-1 diversity and drug-resistant mutations in infected individuals in Changchun, China.

    Directory of Open Access Journals (Sweden)

    Ming Yan

    Full Text Available OBJECTIVES: Human immunodeficiency virus type 1 (HIV-1 infection has been detected in all provinces of China. Although epidemiological and phylogenetic studies have been conducted in many regions, such analyses are lacking from Jilin province in northeastern China. METHOD: Epidemiological and phylogenetic analyses, as well as detection of drug-resistant mutations, were conducted on 57 HIV-1 infected patients from Changchun city identified and confirmed through annual surveillance by local Centers for Disease Control in Jilin province of northeastern China in 2012. RESULTS: Sexual contact was determined to be the major pathway for HIV-1 transmission in Jilin, where hetero- and homosexual activities contributed almost equally. Phylogenetic analyses detected multiple subtypes of HIV-1 including subtype G circulating in Jilin, with multiple origins for each of them. Both subtype B and CRF01_AE were dominant, and evidence of subtype B transmitting between different high-risk groups was observed. Mutations in the viral protease at position 71 indicated the presence of a selective pressure. Several drug-resistant mutations were detected, although they were predicted with low-level resistance to antiviral treatments. CONCLUSIONS: Information from this study fills the gap in knowledge of HIV-1 transmission in Changchun city, Jilin province, China. By revealing the origin and evolutionary status of local HIV-1 strains, this work contributes to ongoing efforts in the control and prevention of AIDS.

  2. [Biofeedback and drug-resistant epilepsy: back to an earlier treatment?].

    Science.gov (United States)

    Micoulaud-Franchi, J A; Lanteaume, L; Pallanca, O; Vion-Dury, J; Bartolomei, F

    2014-03-01

    Biofeedback is a complementary non-pharmacological and non-surgical therapeutic developed over the last thirty years in the management of drug-resistant epilepsy. Biofeedback allows learning cognitive and behavioral strategies via a psychophysiological feedback loop. Firstly, this paper describes the different types of biofeedback protocols used for the treatment of drug-refractory epilepsy and their physiological justifications. Secondly, this paper analyzes the evidence of effectiveness, from a medical point of view, on reducing the numbers of seizures, and from a neurophysiological point of view, on the changing brain activity. Electroencephalography (EEG) biofeedback (neurofeedback) protocol on sensorimotor rhythms (SMR) has been investigated in many studies, the main limitation being small sample sizes and lack of control groups. The newer neurofeedback protocol on slow cortical potential (SCP) and galvanic skin response (GSR) biofeedback protocols have been used in a smaller number of studies. But, these studies are more rigorous with larger sized samples, matched control groups, and attempts to control the placebo effect. These protocols also open the way for innovative neurophysiological researches and may predict a renewal of biofeedback techniques. Biofeedback would have legitimacy in the field of clinical drug-resistant epilepsy at the interface between therapeutic and clinical neurophysiology. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. A Novel Submicron Emulsion System Loaded with Doxorubicin Overcome Multi-Drug Resistance in MCF-7/ADR Cells.

    Science.gov (United States)

    Zhou, W P; Hua, H Y; Sun, P C; Zhao, Y X

    2015-01-01

    The purpose of the present study was to develop the Solutol HS15-based doxorubicin submicron emulsion with good stability and overcoming multi-drug resistance. In this study, we prepared doxorubicin submicron emulsion, and examined the stability after autoclaving, the in vitro cytotoxic activity, the intracellular accumulation and apoptpsis of doxorubicin submicron emulsion in MCF-7/ADR cells. The physicochemical properties of doxorubicin submicron emulsion were not significantly affected after autoclaving. The doxorubicin submicron emulsion significantly increased the intracellular accumulation of doxorubicin submicron emulsion and enhanced cytotoxic activity and apoptotic effects of doxorubicin. These results may be correlated to doxorubicin submicron emulsion inhibitory effects on efflux pumps through the progressive release of intracellular free Solutol HS15 from doxorubicin submicron emulsion. Furthermore, these in vitro results suggest that the Solutol HS15-based submicron emulsion may be a potentially useful drug delivery system to circumvent multi-drug resistance of tumor cells.

  4. Drug Resistance to EGFR Inhibitors in Lung Cancer | Office of Cancer Genomics

    Science.gov (United States)

    The discovery of mutations in epidermal growth factor receptor (EGFR) has dramatically changed the treatment of patients with non-small-cell lung cancer (NSCLC), the leading cause of cancer deaths worldwide. EGFR-targeted therapies show considerable promise, but drug resistance has become a substantial issue. We reviewed the literature to provide an overview of the drug resistance to EGFR tyrosine kinase inhibitors (TKIs) in NSCLC. The mechanisms causing primary, acquired and persistent drug resistance to TKIs vary.

  5. Molecular biological studies on the human radioresistance and drug resistance

    International Nuclear Information System (INIS)

    Kim, Chang Min; Hong, Weon Seon

    1992-04-01

    We irradiated the MKN45 and PC14 cell lines with 500 rads and also established the adriamycin-resistant and cis-platinum resistant cell line. The genomic DNA and total RNA were extracted and subjected to the Southern and Northern analysis using various probes including heat shock protein 70, MDR1, fos, TGFb etc. The mRNA transcript was increased 1 hour after the irradiation and sustained during the 48 hours and returned to the level of pre-irradiation. No significant change was observed with the drug resistant cell lines at the level of gene dosage. We suggest that the marked increase of the hsp70 transcript is very important finding and is believed to be a good candidate for the modulation of the cellular response to irradiation and the radioresistance. (Author)

  6. Molecular basis of antifungal drug resistance in yeasts

    DEFF Research Database (Denmark)

    Morio, Florent; Jensen, Rasmus Hare; Le Pape, Patrice

    2017-01-01

    Besides inherent differences in in vitro susceptibilities, clinically-relevant yeast species may acquire resistance upon exposure to most antifungal drugs used in the clinic. In recent years, major fundamental research studies have been conducted to improve our understanding of the molecular basis...... of antifungal resistance. This topic is of major interest as antifungal resistance in yeast is clearly evolving and is correlated with clinical failure. This minireview is an overview of the most recent findings about key molecular mechanisms evolving in human pathogenic yeasts, particularly Candida spp......., in the context of antifungal drug resistance. Also included are the methods currently available for in vitro antifungal susceptibility testing and for molecular detection of mutations associated with resistance. Finally, the genetic drivers of antifungal resistance are discussed in light of the spectra...

  7. HIV resistance testing and detected drug resistance in Europe

    DEFF Research Database (Denmark)

    Schultze, Anna; Phillips, Andrew N; Paredes, Roger

    2015-01-01

    to Southern Europe. CONCLUSIONS: Despite a concurrent decline in virological failure and testing, drug resistance was commonly detected. This suggests a selective approach to resistance testing. The regional differences identified indicate that policy aiming to minimize the emergence of resistance......OBJECTIVES: To describe regional differences and trends in resistance testing among individuals experiencing virological failure and the prevalence of detected resistance among those individuals who had a genotypic resistance test done following virological failure. DESIGN: Multinational cohort...... study. METHODS: Individuals in EuroSIDA with virological failure (>1 RNA measurement >500 on ART after >6 months on ART) after 1997 were included. Adjusted odds ratios (aORs) for resistance testing following virological failure and aORs for the detection of resistance among those who had a test were...

  8. Emerging drug -resistance and guidelines for treatment of malaria

    International Nuclear Information System (INIS)

    Khan, M.A.; Smego Jr, R.A.; Razi, S.T.; Beg, M.A.

    2004-01-01

    The increasing prevalence of multi-resistant Plasmodium falciparum malaria worldwide is a serious public health threat to the global control of malaria, especially in poor countries like Pakistan. In many countries chloroquine-resistance is a huge problem, accounting for more than 90% of malaria cases. In Pakistan, resistance to chloroquine is on the rise and reported in up to 16- 62% of Plasmodium falciparum. Four to 25% of Plasmodium falciparum also reported to be resistant to sulfadoxine-pyrimethamine and several cases of delayed parasite clearance have been observed in patients with Plasmodium falciparum malaria treated with quinine. In this article we have introduced the concept of artemisinin- based combination therapy (ACT) and emphasize the use of empiric combination therapy for all patients with Plasmodium falciparum malaria to prevent development of drug resistance and to obtain additive and synergistic killing of parasite. (author)

  9. SURGERY FOR DRUG-RESISTANT DESTRUCTIVE PULMONARY TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    S. N. Skornyakov

    2015-01-01

    Full Text Available The paper presents the experience in surgically treating 145 patients with destructive, mainly fibrocavernous pulmonary tuberculosis. All the patients completed treatment. In the preoperative preparation, particular emphasis is laid on the promptest determination of a spectrum of pathogen susceptibility/resistance, individualized chemotherapy, and collapse therapy options. Postoperative complications occurred in 27 (18.6% patients, fatal outcomes in 4 (2.7%. The former were recorded most frequently after pneumonectomy in 13 (37.1% cases, the later were seen in 3 (8.6%. Sputum culture conversion was generally achieved in 111 (78% patients, particularly in 97 (78.2% patients with multidrug-resistant tuberculosis and in 14 (66.7% with a broad drug resistance in the pathogen. Out of the 64 patients followed up for more than 3 years, 48 (75.0% were in clinical and bacteriological remission.

  10. Mechanisms of antifungal drug resistance in Candida dubliniensis.

    LENUS (Irish Health Repository)

    Coleman, David C

    2010-06-01

    Candida dubliniensis was first described in 1995 and is the most closely related species to the predominant human fungal pathogen Candida albicans. C. dubliniensis is significantly less prevalent and less pathogenic than C. albicans and is primarily associated with infections in HIV-infected individuals and other immunocompromised cohorts. The population structure of C. dubliniensis consists of three well-defined major clades and is significantly less diverse than C. albicans. The majority of C. dubliniensis isolates are susceptible to antifungal drugs commonly used to treat Candida infections. To date only two major patterns of antifungal drug resistance have been identified and the molecular mechanisms of these are very similar to the resistance mechanisms that have been described previously in C. albicans. However, significant differences are evident in the predominant antifungal drug mechanisms employed by C. dubliniensis, differences that reflect its more clonal nature, its lower prevalence and characteristics of its genome, the complete sequence of which has only recently been determined.

  11. Inhibition of PTEN and activation of Akt by menadione

    OpenAIRE

    Yoshikawa, Kyoko; Nigorikawa, Kiyomi; Tsukamoto, Mariko; Tamura, Namiko; Hazeki, Kaoru; Hazeki, Osamu

    2007-01-01

    Menadione (vitamin K3) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an...

  12. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Guillaume Chevereau

    Full Text Available The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the "morbidostat", a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations-an almost paradoxical behavior since this drug causes DNA damage and increases the mutation

  13. Knockdown of UbcH10 Enhances the Chemosensitivity of Dual Drug Resistant Breast Cancer Cells to Epirubicin and Docetaxel

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2015-03-01

    Full Text Available Breast cancer is one of the most common and lethal cancers in women. As a hub gene involved in a diversity of tumors, the ubiquitin-conjugating enzyme H10 (UbcH10, may also play some roles in the genesis and development of breast cancer. In the current study, we found that the expression of UbcH10 was up-regulated in some breast cancer tissues and five cell lines. We established a dual drug resistant cell line MCF-7/EPB (epirubicin/TXT (docetaxel and a lentiviral system expressing UbcH10 shRNA to investigate the effects of UbcH10 knockdown on the chemosensitivity of MCF-7/EPB/TXT cells to epirubicin and docetaxel. The knockdown of UbcH10 inhibited the proliferation of both MCF-7 and MCF-7/EPB/TXT cells, due to the G1 phase arrest in cell cycle. Furthermore, UbcH10 knockdown increased the sensitivity of MCF-7/EPB/TXT cells to epirubicin and docetaxel and promoted the apoptosis induced by these two drugs. Protein detection showed that, in addition to inhibiting the expression of Ki67 and cyclin D1, UbcH10 RNAi also impaired the increased BCL-2 and MDR-1 expression levels in MCF-7/EPB/TXT cells, which may contribute to abating the drug resistance in the breast cancer cells. Our research in the current study demonstrated that up-regulation of UbcH10 was involved in breast cancer and its knockdown can inhibit the growth of cancer cells and increase the chemosensitivity of the dual drug resistant breast cancer cells to epirubicin and docetaxel, suggesting that UbcH10 may be a promising target for the therapy of breast cancer.

  14. Molecular Genetics of Drug-resistance in Epilepsies

    Directory of Open Access Journals (Sweden)

    Kurupath Radhakrishnan

    2015-06-01

    Full Text Available Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive to antiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genes encoding the proteins that regulate the pharmacokinetics such as P-glycoprotein [ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1, ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7], and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABA receptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intense investigation to unravel the mysteries of AED-resistance. However, till today, a consistent and reliable result that could help the clinician either to predict drug resistance or to overcome it has not been forthcoming. The discrepant results may be related to variations in the definition of drug-resistance, heterogeneous patient populations, ethnic variations in the frequency distribution of single nucleotide polymorphisms (SNPs and the selection of SNPs. Understanding of these limitations of existing studies, hopefully, will help in designing better studies. Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive toantiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genesencoding the proteins that regulate the pharmacokinetics such as P-glycoprotein[ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1,ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7],and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABAreceptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intenseinvestigation to unravel the mysteries of AED-resistance. However, till today, aconsistent and reliable result that could help the clinician either to predict drugresistanceor to overcome it has not been forthcoming. The discrepant results may berelated to variations in the definition of drug-resistance, heterogeneous patientpopulations, ethnic

  15. Radiation induction of drug resistance in RIF-1: Correlation of tumor and cell culture results

    International Nuclear Information System (INIS)

    Moulder, J.E.; Hopwood, L.E.; Volk, D.M.; Davies, B.M.

    1991-01-01

    The RIF-1 tumor line contains cells that are resistant to various anti-neoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), adriamycin (ADR), and etoposide (VP16). The frequency of these drug-resistant cells is increased after irradiation. The frequency of drug-resistant cells and the magnitude of radiation-induced drug resistance are different in cell culture than in tumors. The dose-response and expression time relationships for radiation induction of drug resistance observed in RIF-1 tumors are unusual.We hypothesize that at high radiation doses in vivo, we are selecting for cells that are both drug resistant and radiation resistant due to microenvironmental factors, whereas at low radiation doses in vivo and all radiation doses in vitro, we are observing true mutants. These studies indicate that there can be significant differences in drug-resistance frequencies between tumors and their cell lines of origin, and that radiation induction of drug resistance depends significantly on whether the induction is done in tumors or in cell culture. These results imply that theories about the induction of drug resistance that are based on cell culture studies may be inapplicable to the induction of drug resistance in tumors

  16. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Polvi

    2016-10-01

    Full Text Available Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which

  17. Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens.

    Directory of Open Access Journals (Sweden)

    Shankar Thangamani

    Full Text Available Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90 were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated.

  18. Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens.

    Science.gov (United States)

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N

    2015-01-01

    Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90) were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA) in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated.

  19. Case Report of Urethritis in a Male Patient Infected with Two Different Isolates of Multiple Drug-Resistant Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Lamiaa Al-Madboly

    2017-11-01

    Full Text Available We report a brief description of a case suffering from bacterial urethritis, conjunctivitis, and arthritis, caused by two different isolates of multiple drug-resistant Neisseria gonorrhoeae. Initial diagnosis was dependent on the patient history, clinical findings, symptoms, and the bacteriological data. Polymerase chain reaction confirmed the identification of the pathogens. Random amplified polymorphic DNA revealed two different patterns. Susceptibility testing was performed using Kirby–Bauer disk diffusion method and the minimum inhibitory concentration was also determined. It revealed multiple drug resistance associated with β-lactamase production. Only gentamicin, rifampicin, and azithromycin were active against the test pathogens. A dual therapy was initiated using gentamicin as well as azithromycin to treat the possible co-infection with Chlamydia trachomatis. Complete recovery of the patient achieved with resolved symptoms a week later.

  20. Case Report of Urethritis in a Male Patient Infected with Two Different Isolates of Multiple Drug-Resistant Neisseria gonorrhoeae.

    Science.gov (United States)

    Al-Madboly, Lamiaa; Gheida, Shereen

    2017-01-01

    We report a brief description of a case suffering from bacterial urethritis, conjunctivitis, and arthritis, caused by two different isolates of multiple drug-resistant Neisseria gonorrhoeae . Initial diagnosis was dependent on the patient history, clinical findings, symptoms, and the bacteriological data. Polymerase chain reaction confirmed the identification of the pathogens. Random amplified polymorphic DNA revealed two different patterns. Susceptibility testing was performed using Kirby-Bauer disk diffusion method and the minimum inhibitory concentration was also determined. It revealed multiple drug resistance associated with β-lactamase production. Only gentamicin, rifampicin, and azithromycin were active against the test pathogens. A dual therapy was initiated using gentamicin as well as azithromycin to treat the possible co-infection with Chlamydia trachomatis . Complete recovery of the patient achieved with resolved symptoms a week later.

  1. Molecular Phylogenetics of Transmitted Drug Resistance in Newly Diagnosed HIV Type 1 Individuals in Denmark, a Nation-Wide Study

    DEFF Research Database (Denmark)

    Audelin, Anne Margrethe; Gerstoft, Jan; Obel, Niels

    2011-01-01

    Abstract Highly active antiretroviral treatment is compromised by viral resistance mutations. Transmitted drug resistance (TDR) is therefore monitored closely, but follow-up studies of these patients are limited. Virus from 1405 individuals diagnosed with HIV-1 in Denmark between 2001 and 2009...... without resistance mutations. We observed no difference in progression of the infection between individuals infected with TDR and individuals infected with wild-type HIV-1. The prevalence of TDR is low in Denmark and transmission of dual-drug-resistant HIV-1 is infrequent. The TDR isolates were shown...... resulting in a prevalence of 6.1%, with no changes over time. The main resistance mutations were nucleoside reverse transcriptase inhibitor (NRTI) mutation 215 revertants, as well as nonnucleoside reverse transcriptase inhibitor (NNRTI) mutation 103N/S and protease inhibitor (PI) mutations 90M and 85V...

  2. Molecular phylogenetics of transmitted drug resistance in newly diagnosed HIV Type 1 individuals in Denmark: a nation-wide study

    DEFF Research Database (Denmark)

    Audelin, Anne Margrethe; Gerstoft, Jan; Obel, Niels

    2011-01-01

    Abstract Highly active antiretroviral treatment is compromised by viral resistance mutations. Transmitted drug resistance (TDR) is therefore monitored closely, but follow-up studies of these patients are limited. Virus from 1405 individuals diagnosed with HIV-1 in Denmark between 2001 and 2009...... without resistance mutations. We observed no difference in progression of the infection between individuals infected with TDR and individuals infected with wild-type HIV-1. The prevalence of TDR is low in Denmark and transmission of dual-drug-resistant HIV-1 is infrequent. The TDR isolates were shown...... resulting in a prevalence of 6.1%, with no changes over time. The main resistance mutations were nucleoside reverse transcriptase inhibitor (NRTI) mutation 215 revertants, as well as nonnucleoside reverse transcriptase inhibitor (NNRTI) mutation 103N/S and protease inhibitor (PI) mutations 90M and 85V...

  3. Simple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosis.

    Science.gov (United States)

    Kamp, Jasper; Bolhuis, Mathieu S; Tiberi, Simon; Akkerman, Onno W; Centis, Rosella; de Lange, Wiel C; Kosterink, Jos G; van der Werf, Tjip S; Migliori, Giovanni B; Alffenaar, Jan-Willem C

    2017-06-01

    Linezolid is used increasingly for the treatment of multi-drug-resistant (MDR) and extensively-drug-resistant (XDR) tuberculosis (TB). However, linezolid can cause severe adverse events, such as peripheral and optical neuropathy or thrombocytopenia related to higher drug exposure. This study aimed to develop a population pharmacokinetic model to predict the area under the concentration curve (AUC) for linezolid using a limited number of blood samples. Data from patients with MDR-/XDR-TB who received linezolid and therapeutic drug monitoring as part of their TB treatment were used. Mw\\Pharm 3.82 (Mediware, Zuidhorn, The Netherlands) was used to develop a population pharmacokinetic model and limited sampling strategy (LSS) for linezolid. LSS was evaluated over a time span of 6 h. Blood sampling directly before linezolid administration and 2 h after linezolid administration were considered to be the most clinically relevant sampling points. The model and LSS were evaluated by analysing the correlation between AUC 12h,observed and AUC 12h,estimated . In addition, LSS was validated with an external group of patients with MDR-/XDR-TB from Sondalo, Italy. Fifty-two pharmacokinetic profiles were used to develop the model. Thirty-three profiles with a 300 mg dosing regimen and 19 profiles with a 600 mg dosing regimen were obtained. Model validation showed prediction bias of 0.1% and r 2 of 0.99. Evaluation of the most clinically relevant LSS showed prediction bias of 4.8% and r 2 of 0.97. The root mean square error corresponding to the most relevant LSS was 6.07%. The developed LSS could be used to enable concentration-guided dosing of linezolid. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  4. Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections.

    Science.gov (United States)

    Wang, Yao; Ding, Xiali; Chen, Yuan; Guo, Mingquan; Zhang, Yan; Guo, Xiaokui; Gu, Hongchen

    2016-09-01

    Drug-resistant bacterial infections have become one of the most serious risks in public health as they make the conventional antibiotics less efficient. There is an urgent need for developing new generations of antibacterial agents in this field. In this work, a nanoplatform of LEVO-loaded and silver core-embedded mesoporous silica nanovehicles (Ag@MSNs@LEVO) is demonstrated as a synergistic antibacterial agent for the treatment of drug-resistant infections both in vitro and in vivo. The combination of the inner Ag core and the loaded antibiotic drug in mesopores endows the single-particle nanoplatform with a synergistic effect on killing the drug-resistant bacteria. The nanoplatform of Ag@MSNs@LEVO exhibits superior antibacterial activity to LEVO-loaded MSNs (MSNs@LEVO) and silver core-embedded MSNs (Ag@MSNs) in vitro. In the in vivo acute peritonitis model, the infected drug-resistant Escherichia coli GN102 in peritoneal cavity of the mice is reduced by nearly three orders of magnitude and the aberrant pathological feature of spleen and peritoneum disappears after treatment with Ag@MSNs@LEVO. Importantly, this nanopaltform renders no obvious toxic side effect to the mice during the tested time. There is no doubt that this study strongly indicates a promising potential of Ag@MSNs@LEVO as a synergistic and safety therapy tool for the clinical drug-resistant infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Human Immunodeficiency Virus Type 1 Protease and the Emergence of Drug Resistance

    DEFF Research Database (Denmark)

    Poulsen, Nina Rødtness

    in multi-drug-resistant PRs. Computational analysis of a vast number of inhibitor-resistant HIV-1 PR variants can broaden the knowledge of how and why the mutations arise, which would be a great advantage in the design on resistance-evading inhibitors. Here we present a diverse system to select...... in the virus life cycle has made it a major target for drug development and active site competitive inhibitors have been successful in the battle against HIV. Unfortunately, the massive drug pressure along with high-level replication and lack of proofreading by the viral reverse transcriptase have resulted...... for catalytically active HIV-1 PR in the presence of inhibitor. The system is based on the protein AraC, which regulates transcription of the araA, araB and araD genes necessary for arabinose catabolism in Escherichia coli, and its effectiveness was demonstrated by the isolation of both known and unknown inhibitor-resistant...

  6. Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel

    Energy Technology Data Exchange (ETDEWEB)

    Pielak, Rafal M. [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (United States); Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115 (United States); Chou, James J., E-mail: chou@cmcd.hms.harvard.edu [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-08

    Research highlights: {yields} This paper reports the structure of the V27A drug resistant mutant of the M2 channel of influenza A virus. {yields} High quality NMR data allowed a better-defined structure for the C-terminal region of the M2 channel. {yields} Using the structure, we propose a proton transfer pathway during M2 proton conduction. {yields} Structural comparison between the wildtype, V27A and S31N variants allowed an in-depth analysis of possible modes of drug resistance. {yields} Distinct feature of the V27A channel pore also provides an explanation for its faster rate of proton conduction. -- Abstract: The M2 protein of influenza A virus forms a proton-selective channel that is required for viral replication. It is the target of the anti-influenza drugs, amantadine and rimantadine. Widespread drug resistant mutants, however, has greatly compromised the effectiveness of these drugs. Here, we report the solution NMR structure of the highly pathogenic, drug resistant mutant V27A. The structure reveals subtle structural differences from wildtype that maybe linked to drug resistance. The V27A mutation significantly decreases hydrophobic packing between the N-terminal ends of the transmembrane helices, which explains the looser, more dynamic tetrameric assembly. The weakened channel assembly can resist drug binding either by destabilizing the rimantadine-binding pocket at Asp44, in the case of the allosteric inhibition model, or by reducing hydrophobic contacts with amantadine in the pore, in the case of the pore-blocking model. Moreover, the V27A structure shows a substantially increased channel opening at the N-terminal end, which may explain the faster proton conduction observed for this mutant. Furthermore, due to the high quality NMR data recorded for the V27A mutant, we were able to determine the structured region connecting the channel domain to the C-terminal amphipathic helices that was not determined in the wildtype structure. The new structural

  7. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    2015-01-01

    for baseline toxicity. First, the reported effective concentrations (EC50) were divided by the respective water solubilities (Swater), since the obtained EC50/Swater ratio essentially equals the effective chemical activity (Ea50). The majority of EC50/Swater ratios were within the expected chemical activity...

  8. Inhibition of PTEN and activation of Akt by menadione.

    Science.gov (United States)

    Yoshikawa, Kyoko; Nigorikawa, Kiyomi; Tsukamoto, Mariko; Tamura, Namiko; Hazeki, Kaoru; Hazeki, Osamu

    2007-04-01

    Menadione (vitamin K(3)) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an intact cell system, menadione inhibited the effect of transfected PTEN on Akt. Thus, one mechanism of its action was considered the accelerated activation of Akt through inhibition of PTEN. This was not the sole mechanism responsible for the EGFR-independent activation of Akt, because menadione attenuated the rate of Akt dephosphorylation even in PTEN-null PC3 cells. The decelerated inactivation of Akt, probably through inhibition of some tyrosine phosphatases, was considered another mechanism of its action.

  9. Disinfectant-susceptibility of multi-drug-resistant Mycobacterium tuberculosis isolated in Japan

    Directory of Open Access Journals (Sweden)

    Noriko Shinoda

    2016-02-01

    Full Text Available Abstract Background Multi-drug-resistant Mycobacterium tuberculosis has been an important problem in public health around the world. However, limited information about disinfectant-susceptibility of multi-drug-resistant strain of M. tuberculosis was available. Findings We studied susceptibility of several Japanese isolates of multi-drug-resistant M. tuberculosis against disinfectants, which are commonly used in clinical and research laboratories. We selected a laboratory reference strain (H37Rv and eight Japanese isolates, containing five drug-susceptible strains and three multi-drug-resistant strains, and determined profiles of susceptibility against eight disinfectants. The M. tuberculosis strains were distinguished into two groups by the susceptibility profile. There was no relationship between multi-drug-resistance and disinfectant-susceptibility in the M. tuberculosis strains. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance. Conclusions Disinfectant-resistance is independent from multi-drug-resistance in M. tuberculosis. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance.

  10. Transferable and non-transferable drug resistance in enteric bacteria from hospital and from general practice

    DEFF Research Database (Denmark)

    Møller, JK; Bak, AL; Bülow, P

    1976-01-01

    Drug resistance to 8 different antibiotics in Enterobacteriaceae isolated from different hospitals and two groups of general practitioners was studied. Escherichia coli dominated among the 632 strains investigated. Drug resistance was found in 62% of the 512 hospital strains and in 38% of the 120...

  11. A meta-analysis of Drug resistant Tuberculosis in Sub-Saharan Africa

    African Journals Online (AJOL)

    Background: In Sub-Saharan Africa, the fight against tuberculosis (TB) has encountered a great challenge because of the emergence of drug resistant TB strains and the high prevalence of HIV infection. The aim of this meta-analysis was to determine the association of drug-resistant TB with anti-TB drug treatment history ...

  12. Drug resistance and genetic diversity of Plasmodium falciparum parasites from Suriname

    NARCIS (Netherlands)

    Peek, Ron; van Gool, Tom; Panchoe, Daynand; Greve, Sophie; Bus, Ellen; Resida, Lesley

    2005-01-01

    Plasmodium falciparum in Suriname was studied for the presence of drug resistance and genetic variation in blood samples of 86 patients with symptomatic malaria. Drug resistance was predicted by determining point mutations in the chloroquine resistance marker of the P. falciparum chloroquine

  13. A study on demographic characteristics of drug resistant Mycobacterium tuberculosis isolates in Belarus

    Directory of Open Access Journals (Sweden)

    L Surkova

    2012-01-01

    Conclusion: As Belarus is a high-burden MDR-TB country and treatment of drug-resistant TB is long and complicated, the findings of this study provided useful information to deliver effective community-based disease control measures and a proposed plane for the effective management of drug-resistant TB at the national level.

  14. Antituberculosis drug resistance in the south of Vietnam: prevalence and trends

    NARCIS (Netherlands)

    Huong, Nguyen T.; Lan, Nguyen T. N.; Cobelens, Frank G. J.; Duong, Bui D.; Co, Nguyen V.; Bosman, Maarten C.; Kim, Sang-Jae; van Soolingen, Dick; Borgdorff, Martien W.

    2006-01-01

    BACKGROUND: There is limited evidence that the DOTS (directly observed therapy, short course) strategy for tuberculosis (TB) control can contain the emergence and spread of drug resistance in the absence of second-line treatment. We compared drug-resistance levels between 1996 and 2001 in the south

  15. Distribution of red blood cell antigens in drug-resistant and drug ...

    African Journals Online (AJOL)

    sofo

    Frequency distribution of ABO, Rh-Hr, MN, Kell blood group system antigens were studied in 277 TB patients (151-drug-sensitive and 126 drug-resistant) of pulmonary tuberculosis to know whether there was any association between them, and also between drug resistance and sensitiveness. They were compared with 485 ...

  16. Radiation induction of drug resistance in RIF-1 tumors and tumor cells

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Moulder, J.E.

    1989-01-01

    The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not for ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance

  17. New-Onset Psychosis in a Multi-Drug Resistant Tuberculosis Patient ...

    African Journals Online (AJOL)

    Drug-resistant tuberculosis poses a serious challenge to global control of TB. These forms of TB do not respond to the standard six-month treatment; it can take two years or more to treat with category IV drugs that are less potent, more toxic and much more expensive. Treatment of multi-drug resistant tuberculosis is still ...

  18. Efficacy of verapamil as an adjunctive treatment in children with drug-resistant epilepsy

    DEFF Research Database (Denmark)

    Nicita, Francesco; Spalice, Alberto; Papetti, Laura

    2014-01-01

    Verapamil, a voltage-gated calcium channel blocker, has been occasionally reported to have some effect on reducing seizure frequency in drug-resistant epilepsy or status epilepticus. We aimed to investigate the efficacy of verapamil as add-on treatment in children with drug-resistant epilepsy....

  19. Relationship between triterpenoid anticancer drug resistance, autophagy, and caspase-1 in adult T-cell leukemia

    Directory of Open Access Journals (Sweden)

    Tsukasa Nakanishi

    2016-05-01

    Full Text Available We previously reported that the inflammasome inhibitor cucurbitacin D (CuD induces apoptosis in human leukemia cell lines. Here, we investigated the effects of CuD and a B-cell lymphoma extra-large (Bcl-xL inhibitor on autophagy in peripheral blood lymphocytes (PBL isolated from adult T-cell leukemia (ATL patients. CuD induced PBL cell death in patients but not in healthy donors. This effect was not significantly inhibited by treatment with rapamycin or 3-methyladenine (3-MA. The Bcl-xL inhibitor Z36 induced death in primary cells from ATL patients including that induced by CuD treatment, effects that were partly inhibited by 3-MA. Similarly, cell death induced by the steroid prednisolone was enhanced in the presence of Z36. A western blot analysis revealed that Z36 also promoted CuD-induced poly(ADP ribose polymerase cleavage. Interestingly, the effects of CuD and Z36 were attenuated in primary ATL patient cells obtained upon recurrence after umbilical cord blood transplantation, as compared to those obtained before chemotherapy. Furthermore, cells from this patient expressed a high level of caspase-1, and treatment with caspase-1 inhibitor-enhanced CuD-induced cell death. Taken together, these results suggest that rescue from resistance to steroid drugs can enhance chemotherapy, and that caspase-1 is a good marker for drug resistance in ATL patients.

  20. Surveillance of transmitted antiretroviral drug resistance among HIV-1 infected women attending antenatal clinics in Chitungwiza, Zimbabwe.

    Directory of Open Access Journals (Sweden)

    Mqondisi Tshabalala

    Full Text Available The rapid scale-up of highly active antiretroviral therapy (HAART and use of single dose Nevirapine (SD NVP for prevention of mother-to-child transmission (pMTCT have raised fears about the emergence of resistance to the first line antiretroviral drug regimens. A cross-sectional study was conducted to determine the prevalence of primary drug resistance (PDR in a cohort of young (<25 yrs HAART-naïve HIV pregnant women attending antenatal clinics in Chitungwiza, Zimbabwe. Whole blood was collected in EDTA for CD4 counts, viral load, serological estimation of duration of infection using the BED Calypte assay and genotyping for drug resistance. Four hundred and seventy-one women, mean age 21 years; SD: 2.1 were enrolled into the study between 2006 and 2007. Their median CD4 count was 371cells/µL; IQR: 255-511 cells/µL. Two hundred and thirty-six samples were genotyped for drug resistance. Based on the BED assay, 27% were recently infected (RI whilst 73% had long-term infection (LTI. Median CD4 count was higher (p<0.05 in RI than in women with LTI. Only 2 women had drug resistance mutations; protease I85V and reverse transcriptase Y181C. Prevalence of PDR in Chitungwiza, 4 years after commencement of the national ART program remained below WHO threshold limit (5%. Frequency of recent infection BED testing is consistent with high HIV acquisition during pregnancy. With the scale-up of long-term ART programs, maintenance of proper prescribing practices, continuous monitoring of patients and reinforcement of adherence may prevent the acquisition and transmission of PDR.

  1. Multi-targeted therapy for leprosy: insilico strategy to overcome multi drug resistance and to improve therapeutic efficacy.

    Science.gov (United States)

    Anusuya, Shanmugam; Natarajan, Jeyakumar

    2012-12-01

    Leprosy remains a major public health problem, since single and multi-drug resistance has been reported worldwide over the last two decades. In the present study, we report the novel multi-targeted therapy for leprosy to overcome multi drug resistance and to improve therapeutic efficacy. If multiple enzymes of an essential metabolic pathway of a bacterium were targeted, then the therapy would become more effective and can prevent the occurrence of drug resistance. The MurC, MurD, MurE and MurF enzymes of peptidoglycan biosynthetic pathway were selected for multi targeted therapy. The conserved or class specific active site residues important for function or stability were predicted using evolutionary trace analysis and site directed mutagenesis studies. Ten such residues which were present in at least any three of the four Mur enzymes (MurC, MurD, MurE and MurF) were identified. Among the ten residues G125, K126, T127 and G293 (numbered based on their position in MurC) were found to be conserved in all the four Mur enzymes of the entire bacterial kingdom. In addition K143, T144, T166, G168, H234 and Y329 (numbered based on their position in MurE) were significant in binding substrates and/co-factors needed for the functional events in any three of the Mur enzymes. These are the probable residues for designing newer anti-leprosy drugs in an attempt to reduce drug resistance. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Tenofovir-based regimens associated with less drug resistance in HIV-1-infected Nigerians failing first-line antiretroviral therapy.

    Science.gov (United States)

    Etiebet, Mary-Ann A; Shepherd, James; Nowak, Rebecca G; Charurat, Man; Chang, Harry; Ajayi, Samuel; Elegba, Olufunmilayo; Ndembi, Nicaise; Abimiku, Alashle; Carr, Jean K; Eyzaguirre, Lindsay M; Blattner, William A

    2013-02-20

    In resource-limited settings, HIV-1 drug resistance testing to guide antiretroviral therapy (ART) selection is unavailable. We retrospectively conducted genotypic analysis on archived samples from Nigerian patients who received targeted viral load testing to confirm treatment failure and report their drug resistance mutation patterns. Stored plasma from 349 adult patients on non-nucleoside reverse transcriptase inhibitor (NNRTI) regimens was assayed for HIV-1 RNA viral load, and samples with more than 1000 copies/ml were sequenced in the pol gene. Analysis for resistance mutations utilized the IAS-US 2011 Drug Resistance Mutation list. One hundred and seventy-five samples were genotyped; the majority of the subtypes were G (42.9%) and CRF02_AG (33.7%). Patients were on ART for a median of 27 months. 90% had the M184V/I mutation, 62% had at least one thymidine analog mutation, and 14% had the K65R mutation. 97% had an NNRTI resistance mutation and 47% had at least two etravirine-associated mutations. In multivariate analysis tenofovir-based regimens were less likely to have at least three nucleoside reverse transcriptase inhibitor (NRTI) mutations after adjusting for subtype, previous ART, CD4, and HIV viral load [P < 0.001, odds ratio (OR) 0.04]. 70% of patients on tenofovir-based regimens had at least two susceptible NRTIs to include in a second-line regimen compared with 40% on zidovudine-based regimens (P = 0.04, OR = 3.4). At recognition of treatment failure, patients on tenofovir-based first-line regimens had fewer NRTI drug-resistant mutations and more active NRTI drugs available for second-line regimens. These findings can inform strategies for ART regimen sequencing to optimize long-term HIV treatment outcomes in low-resource settings.

  3. Hepatitis C Virus NS3/4A Protease Inhibitors Incorporating Flexible P2 Quinoxalines Target Drug Resistant Viral Variants.

    Science.gov (United States)

    Matthew, Ashley N; Zephyr, Jacqueto; Hill, Caitlin J; Jahangir, Muhammad; Newton, Alicia; Petropoulos, Christos J; Huang, Wei; Kurt-Yilmaz, Nese; Schiffer, Celia A; Ali, Akbar

    2017-07-13

    A substrate envelope-guided design strategy is reported for improving the resistance profile of HCV NS3/4A protease inhibitors. Analogues of 5172-mcP1P3 were designed by incorporating diverse quinoxalines at the P2 position that predominantly interact with the invariant catalytic triad of the protease. Exploration of structure-activity relationships showed that inhibitors with small hydrophobic substituents at the 3-position of P2 quinoxaline maintain better potency against drug resistant variants, likely due to reduced interactions with residues in the S2 subsite. In contrast, inhibitors with larger groups at this position were highly susceptible to mutations at Arg155, Ala156, and Asp168. Excitingly, several inhibitors exhibited exceptional potency profiles with EC 50 values ≤5 nM against major drug resistant HCV variants. These findings support that inhibitors designed to interact with evolutionarily constrained regions of the protease, while avoiding interactions with residues not essential for substrate recognition, are less likely to be susceptible to drug resistance.

  4. Laboratory determination of chemotherapeutic drug resistance in tumor cells from patients with leukemia, using a fluorometric microculture cytotoxicity assay (FMCA).

    Science.gov (United States)

    Larsson, R; Kristensen, J; Sandberg, C; Nygren, P

    1992-01-21

    An automated fluorometric microculture cytotoxicity assay (FMCA) based on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate (FDA) to fluorescein was employed for chemotherapeutic-drug-sensitivity testing of tumor-cell suspensions from patients with leukemia. Fluorescence was linearly related to cell number, and reproducible measurements of drug sensitivity could be performed using fresh or cryopreserved leukemia cells. A marked heterogeneity with respect to chemotherapeutic drug sensitivity was observed for a panel of cytotoxic drugs tested in 43 samples from 35 patients with treated or untreated acute and chronic leukemia. For samples obtained from patients with chronic lymphocytic and acute myelocytic leukemia, sensitivity profiles for standard drugs corresponded to known clinical activity and the assay detected primary and acquired drug resistance. Individual in vitro/in vivo correlations indicated high specificity with respect to the identification of drug resistance. The results suggest that the FMCA may be a simple and rapid method for in vivo-representative determinations of chemotherapeutic drug resistance in tumor cells obtained from patients with leukemia.

  5. Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity

    Directory of Open Access Journals (Sweden)

    Magdalena Markowicz-Piasecka

    2017-01-01

    Full Text Available The results of epidemiological and pathophysiological studies suggest that type 2 diabetes mellitus (T2DM may predispose to Alzheimer’s disease (AD. The two conditions present similar glucose levels, insulin resistance, and biochemical etiologies such as inflammation and oxidative stress. The diabetic state also contributes to increased acetylcholinesterase (AChE activity, which is one of the factors leading to neurodegeneration in AD. The aim of this study was to assess in vitro the effects of metformin, phenformin, and metformin sulfenamide prodrugs on the activity of human AChE and butyrylcholinesterase (BuChE and establish the type of inhibition. Metformin inhibited 50% of the AChE activity at micromolar concentrations (2.35 μmol/mL, mixed type of inhibition and seemed to be selective towards AChE since it presented low anti-BuChE activity. The tested metformin prodrugs inhibited cholinesterases (ChE at nanomolar range and thus were more active than metformin or phenformin. The cyclohexyl sulfenamide prodrug demonstrated the highest activity towards both AChE (IC50 = 890 nmol/mL, noncompetitive inhibition and BuChE (IC50 = 28 nmol/mL, mixed type inhibition, while the octyl sulfenamide prodrug did not present anti-AChE activity, but exhibited mixed inhibition towards BuChE (IC50 = 184 nmol/mL. Therefore, these two bulkier prodrugs were concluded to be the most selective compounds for BuChE over AChE. In conclusion, it was demonstrated that biguanides present a novel class of inhibitors for AChE and BuChE and encourages further studies of these compounds for developing both selective and nonselective inhibitors of ChEs in the future.

  6. [A novel chemo-resistant gene MSX2 discovered by establishment of two pancreatic cancer drug resistant cell lines JF305/CDDP and PANC-1/GEM].

    Science.gov (United States)

    Yuan, W; Sui, C G; Ma, X; Ma, J

    2018-05-23

    Objective: To explore new multidrug resistant genes of pancreatic cancer by establishment and characterization of chemo-resistant cell lines. Methods: The cisplatin-resistant cell line JF305/CDDP and the gemcitabine-resistant cell line PANC-1/GEM were induced by high-dose intermittent treatment. CCK-8 assay was used to detect the 50% inhibiting concentration (IC(50)), drug resistance index (R), cross-resistance, and growth difference of different cells. The changes of cell cycle and migration ability of drug-resistant cells were determined by flow cytometry and transwell assay, respectively. And then real-time fluorescence quantitative PCR was used to detect the expression of multidrug resistance-related genes. Results: The drug resistance indexes of JF305/CDDP and PANC-1/GEM were 15.3 and 27.31, respectively, and there was cross-resistance. Compared with the parental cells, the proliferation rate of JF305/CDDP was decreased by 40% on the fourth day ( P PANC-1 cells upregulated MRP2 level ( P PANC-1/GEM, were successfully established. MSX2 might be a new drug resistance related gene in pancreatic cancer cells by up-regulation of MRP2 expression.

  7. Complement activation and inhibition: a delicate balance

    DEFF Research Database (Denmark)

    Sjöberg, A P; Trouw, L A; Blom, A M

    2009-01-01

    proteins, pentraxins, amyloid deposits, prions and DNA, all bind the complement activator C1q, but also interact with complement inhibitors C4b-binding protein and factor H. This contrasts to the interaction between C1q and immune complexes, in which case no inhibitors bind, resulting in full complement...

  8. Expansion of Viral Load Testing and the Potential Impact on HIV Drug Resistance.

    Science.gov (United States)

    Raizes, Elliot; Hader, Shannon; Birx, Deborah

    2017-12-01

    The US President's Emergency Plan for AIDS Relief (PEPFAR) supports aggressive scale-up of antiretroviral therapy (ART) in high-burden countries and across all genders and populations at risk toward global human immunodeficiency virus (HIV) epidemic control. PEPFAR recognizes the risk of HIV drug resistance (HIVDR) as a consequence of aggressive ART scale-up and is actively promoting 3 key steps to mitigate the impact of HIVDR: (1) routine access to routine viral load monitoring in all settings; (2) optimization of ART regimens; and (3) routine collection and analysis of HIVDR data to monitor the success of mitigation strategies. The transition to dolutegravir-based regimens in PEPFAR-supported countries and the continuous evolution of HIVDR surveillance strategies are essential elements of PEPFAR implementation. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance.

    Science.gov (United States)

    Song, Linlin; Jiang, Qiao; Liu, Jianbing; Li, Na; Liu, Qing; Dai, Luru; Gao, Yuan; Liu, Weili; Liu, Dongsheng; Ding, Baoquan

    2017-06-14

    We herein demonstrate that DNA origami can work as a multifunctional platform integrating a chemotherapeutic drug (doxorubicin), gold nanorods and a tumour-specific aptamer MUC-1, to realize the effective circumvention of drug resistance. Doxorubicin (DOX) was loaded efficiently onto DNA origami through base pair intercalation and surface-modified gold nanorods (AuNRs) were assembled onto the DNA origami through DNA hybridization. Due to the active targeting effect of the assembled aptamers, the multifunctional nanostructures achieved increased cellular internalization of DOX and AuNRs. Upon near-infrared (NIR) laser irradiation, the P-glycoprotein (multidrug resistance pump) expression of multidrug resistant MCF-7 (MCF-7/ADR) cells was down-regulated, achieving the synergistically chemotherapeutic (DOX) and photothermal (AuNRs) effects.

  10. A screen to identify drug resistant variants to target-directed anti-cancer agents

    Directory of Open Access Journals (Sweden)

    Azam Mohammad

    2003-01-01

    Full Text Available The discovery of oncogenes and signal transduction pathways important for mitogenesis has triggered the development of target-specific small molecule anti-cancer compounds. As exemplified by imatinib (Gleevec, a specific inhibitor of the Chronic Myeloid Leukemia (CML-associated Bcr-Abl kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using imatinib and BCR/ABL as a paradigm for a drug-target pair, we recently reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair.

  11. Recent transmission of drug-resistant Mycobacterium tuberculosis in a prison population in southern Brazil

    Directory of Open Access Journals (Sweden)

    Ana Julia Reis

    Full Text Available ABSTRACT We conducted a cross-sectional, retrospective study, characterized by classical and molecular epidemiology, involving M. tuberculosis isolates from a regional prison in southern Brazil. Between January of 2011 and August of 2014, 379 prisoners underwent sputum smear microscopy and culture; 53 (13.9% were diagnosed with active tuberculosis. Of those, 8 (22.9% presented with isoniazid-resistant tuberculosis. Strain genotyping was carried out by 15-locus mycobacterial interspersed repetitive unit-variable-number tandem-repeat analysis; 68.6% of the patients were distributed into five clusters, and 87.5% of the resistant cases were in the same cluster. The frequency of drug-resistant tuberculosis cases and the rate of recent transmission were high. Our data suggest the need to implement an effective tuberculosis control program within the prison system.

  12. Drug Resistance and the Kinetics of Metastatic Cancer

    Science.gov (United States)

    Blagoev, Krastan B.

    2012-02-01

    Most metastatic cancers after initial response to current drug therapies develop resistance to the treatment. We present cancer data and a theory that explains the observed kinetics of tumor growth in cancer patients and using a stochastic model based on this theory we relate the kinetics of tumor growth to Kaplan-Meyer survival curves. The theory points to the tumor growth rate as the most important parameter determining the outcome of a drug treatment. The overall tumor growth or decay rate is a reflection of the balance between cell division, senescence and apoptosis and we propose that the deviation of the decay rate from exponential is a measure of the emergence of drug resistance. In clinical trials the progression free survival, the overall survival, and the shape of the Kaplan-Meyer plots are determined by the tumor growth rate probability distribution among the patients in the trial. How drug treatments modify this distribution will also be described. At the end of the talk we will discuss the connection between the theory described here and the age related cancer mortality rates in the United States.

  13. CHANGES IN THE PREVALENCE OF DRUG RESISTANT TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    V. B. Galkin

    2017-01-01

    Full Text Available The tendency of tuberculosis prevalence reduction observed in the Russian Federation is mostly related to the cases without multiple drug resistance (MDR. In general the number of MDR TB cases still tends to be increasing in the Russian Federation. Confident long-term reduction is registered only in the Central and North-Western Districts with relatively low level of MDR TB prevalence. From 2017 MDR TB patients are expected to prevail in the structure of the sputum positive cases which surely provides negative impact on the treatment efficiency and epidemic trends. The system of dispensary follow-up allows evaluating the annual number of MDT TB cases and following the ways of its increase and reduction. Taking MDR TB sources on and off the register is less intensive compared to the same flows of non-MDR infectious cases. The number of MDR TB sources is increasing mostly due new tuberculosis cases however acquired MDR TB makes significant contribution to the growth of MDR TB sources number. The increase in the ratio of respiratory MDR TB patients with sputum conversion to those died reflects the success in the improvement of the treatment strategy of MDR TB patients.

  14. Molecular chess? Hallmarks of anti-cancer drug resistance.

    Science.gov (United States)

    Cree, Ian A; Charlton, Peter

    2017-01-05

    The development of resistance is a problem shared by both classical chemotherapy and targeted therapy. Patients may respond well at first, but relapse is inevitable for many cancer patients, despite many improvements in drugs and their use over the last 40 years. Resistance to anti-cancer drugs can be acquired by several mechanisms within neoplastic cells, defined as (1) alteration of drug targets, (2) expression of drug pumps, (3) expression of detoxification mechanisms, (4) reduced susceptibility to apoptosis, (5) increased ability to repair DNA damage, and (6) altered proliferation. It is clear, however, that changes in stroma and tumour microenvironment, and local immunity can also contribute to the development of resistance. Cancer cells can and do use several of these mechanisms at one time, and there is considerable heterogeneity between tumours, necessitating an individualised approach to cancer treatment. As tumours are heterogeneous, positive selection of a drug-resistant population could help drive resistance, although acquired resistance cannot simply be viewed as overgrowth of a resistant cancer cell population. The development of such resistance mechanisms can be predicted from pre-existing genomic and proteomic profiles, and there are increasingly sophisticated methods to measure and then tackle these mechanisms in patients. The oncologist is now required to be at least one step ahead of the cancer, a process that can be likened to 'molecular chess'. Thus, as well as an increasing role for predictive biomarkers to clinically stratify patients, it is becoming clear that personalised strategies are required to obtain best results.

  15. Prevalence and patterns of HIV transmitted drug resistance in Guatemala.

    Science.gov (United States)

    Avila-Ríos, Santiago; Mejía-Villatoro, Carlos R; García-Morales, Claudia; Soto-Nava, Maribel; Escobar, Ingrid; Mendizabal, Ricardo; Girón, Amalia; García, Leticia; Reyes-Terán, Gustavo

    2011-12-01

    To assess human immunodeficiency virus (HIV) diversity and the prevalence of transmitted drug resistance (TDR) in Guatemala. One hundred forty-five antiretroviral treatment-naïve patients referred to the Roosevelt Hospital in Guatemala City were enrolled from October 2010 to March 2011. Plasma HIV pol sequences were obtained and TDR was assessed with the Stanford algorithm and the World Health Organization (WHO) TDR surveillance mutation list. HIV subtype B was highly prevalent in Guatemala (96.6%, 140/145), and a 2.8% (4/145) prevalence of BF1 recombinants and 0.7% (1/145) prevalence of subtype C viruses were found. TDR prevalence for the study period was 8.3% (12/145) with the Stanford database algorithm (score > 15) and the WHO TDR surveillance mutation list. Most TDR cases were associated with non-nucleoside reverse transcriptase inhibitors (NNRTIs) (83.3%, 10/12); a low prevalence of nucleoside reverse transcriptase inhibitors and protease inhibitors was observed in the cohort (Guatemala. TDR prevalence in Guatemala was at the intermediate level. Most TDR cases were associated with NNRTIs. Further and continuous TDR surveillance is necessary to gain more indepth knowledge about TDR spread and trends in Guatemala and to optimize treatment outcomes in the country.

  16. "DRUG RESISTANCE PATTERN IN ISOLATED BACTERIA FROM BLOOD CULTURES"

    Directory of Open Access Journals (Sweden)

    A. Sobhani

    2004-05-01

    Full Text Available Bacteremia is an important infectious disease which may lead to death. Common bacteria and pattern of antibiotic resistance in different communities are different and understanding these differences is important. In the present study, relative frequency and pattern of drug resistance have been examined in bacteria isolated from blood cultures in Razi Hospital laboratory. The method of the study was descriptive. Data collection was carried out retrospectively. Total sample consisted of 311 positive blood cultures from 1999 to 2001. Variables under study were bacterial strains, antibiotics examined in antibiogram, microbial resistance, and patients' age and sex. The most common isolated bacteria were Salmonella typhi (22.2% and the least common ones were Citrobacter (1.6%. The highest antibiotic resistance was seen against amoxicillin (88.4%. The proportion of males to females was1: 1/1 and the most common age group was 15-44 (47.3%. Common bacteria and pattern of antibiotic resistance were different in some areas and this subject requires further studies in the future.

  17. Reaching consensus on drug resistance conferring mutations (Part 1

    Directory of Open Access Journals (Sweden)

    Daniela M Cirillo

    2016-01-01

    A user-friendly interface designed for nonexpert or expert operability.A standardized and validated analysis pipeline for variant analyses of M. tuberculosis next-generation sequencing (NGS data.Access to data beyond the published literature with dynamic and iterative updates of new data generated by global surveillance and clinical trials.A well-developed legal structure to ensure intellectual property rights and data ownership remain with contributors.A structured data-sharing architecture to restrict access to sensitive or unpublished data sets.Metadata standardization using CDISC: supports global, platform-independent data standards that enable information system interoperability.An emphasis on data quality and rigorous, expert curation with multiple quality control checks for whole-genome sequencing and other metadata.Validation of NGS analysis output by an expert committee with grading of resistance conferring mutations based on rigorous statistical standards.Regulatory-compliant analysis pipeline and database architecture. Successful execution of such an extensive database platform requires substantial collaboration from scientists investigating the genetic basis for drug resistance worldwide, and from developers with expertise in database design and implementation.

  18. Drug Resistance Mechanisms of Mycoplasma pneumoniae to Macrolide Antibiotics

    Directory of Open Access Journals (Sweden)

    Xijie Liu

    2014-01-01

    Full Text Available Throat swabs from children with suspected Mycoplasma pneumoniae (M. pneumoniae infection were cultured for the presence of M. pneumoniae and its species specificity using the 16S rRNA gene. Seventy-six M. pneumoniae strains isolated from 580 swabs showed that 70 were erythromycin resistant with minimum inhibitory concentrations (MIC around 32–512 mg/L. Fifty M. pneumoniae strains (46 resistant, 4 sensitive were tested for sensitivity to tetracycline, ciprofloxacin, and gentamicin. Tetracycline and ciprofloxacin had some effect, and gentamicin had an effect on the majority of M. pneumoniae strains. Domains II and V of the 23S rRNA gene and the ribosomal protein L4 and L22 genes, both of which are considered to be associated with macrolide resistance, were sequenced and the sequences were compared with the corresponding sequences in M129 registered with NCBI and the FH strain. The 70 resistant strains all showed a 2063 or 2064 site mutation in domain V of the 23S rRNA but no mutations in domain II. Site mutations of L4 or L22 can be observed in either resistant or sensitive strains, although it is not known whether this is associated with drug resistance.

  19. Status of drug-resistant tuberculosis in China: A systematic review and meta-analysis.

    Science.gov (United States)

    Zhang, Jingya; Gou, Haimei; Hu, Xuejiao; Hu, Xin; Shang, Mengqiao; Zhou, Juan; Zhou, Yi; Ye, Yuanxin; Song, Xingbo; Lu, Xiaojun; Chen, Xuerong; Ying, Binwu; Wang, Lanlan

    2016-06-01

    We conducted a systematic review and meta-analysis on drug-resistant tuberculosis in China to provide useful data for tuberculosis (TB) surveillance and treatment. Several databases, including PubMed, Embase, and the Chinese Biological Medical Database, were systematically searched between January 1, 1999, and August 31, 2015, using strict inclusion and exclusion criteria. The corresponding drug-resistant TB prevalence between the new and previously treated cases was significantly different in almost all of the economic regions. The Eastern coastal region is the most developed economic region with the lowest total drug-resistant TB prevalence (any drug resistance: 28%; 95% confidence interval [CI], 25%-32%; multidrug resistance: 9%; 95% CI, 8%-12%) and the lowest number of new cases (any drug resistance: 21%; 95% CI, 19%-23%; multidrug resistance: 4%; 95% CI, 3%-5%). The Northwest is the least developed area with the lowest drug-resistant TB prevalence for previously treated cases (any drug resistance: 45%; 95% CI, 36%-55%; multidrug resistance: 17%; 95% CI, 11%-26%). The prevalence (multidrug and first-line drug resistance) exhibited a downward trend from 1996-2014. The extensively drug-resistant prevalence in China was 3% (95% CI, 2%-5%) in this review. Overall, the status of drug-resistant tuberculosis in China is notably grim and exhibits regional epidemiologic characteristics. We are in urgent need of several comprehensive and effective control efforts to reverse this situation. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  20. The role of exosomes and miRNAs in drug-resistance of cancer cells.

    Science.gov (United States)

    Bach, Duc-Hiep; Hong, Ji-Young; Park, Hyen Joo; Lee, Sang Kook

    2017-07-15

    Chemotherapy, one of the principal approaches for cancer patients, plays a crucial role in controlling tumor progression. Clinically, tumors reveal a satisfactory response following the first exposure to the chemotherapeutic drugs in treatment. However, most tumors sooner or later become resistant to even chemically unrelated anticancer agents after repeated treatment. The reduced drug accumulation in tumor cells is considered one of the significant mechanisms by decreasing drug permeability and/or increasing active efflux (pumping out) of the drugs across the cell membrane. The mechanisms of treatment failure of chemotherapeutic drugs have been investigated, including drug efflux, which is mediated by extracellular vesicles (EVs). Exosomes, a subset of EVs with a size range of 40-150 nm and a lipid bilayer membrane, can be released by all cell types. They mediate specific cell-to-cell interactions and activate signaling pathways in cells they either fuse with or interact with, including cancer cells. Exosomal RNAs are heterogeneous in size but enriched in small RNAs, such as miRNAs. In the primary tumor microenvironment, cancer-secreted exosomes and miRNAs can be internalized by other cell types. MiRNAs loaded in these exosomes might be transferred to recipient niche cells to exert genome-wide regulation of gene expression. How exosomal miRNAs contribute to the development of drug resistance in the context of the tumor microenvironment has not been fully described. In this review, we will highlight recent studies regarding EV-mediated microRNA delivery in formatting drug resistance. We also suggest the use of EVs as an advancing method in antiresistance treatment. © 2017 UICC.

  1. Ovatodiolide Targets β-Catenin Signaling in Suppressing Tumorigenesis and Overcoming Drug Resistance in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Jar-Yi Ho

    2013-01-01

    Full Text Available Dysregulated β-catenin signaling is intricately involved in renal cell carcinoma (RCC carcinogenesis and progression. Determining potential β-catenin signaling inhibitors would be helpful in ameliorating drug resistance in advanced or metastatic RCC. Screening for β-catenin signaling inhibitors involved in silico inquiry of the PubChem Bioactivity database followed by TCF/LEF reporter assay. The biological effects of ovatodiolide were evaluated in 4 RCC cell lines in vitro and 2 RCC cell lines in a mouse xenograft model. The synergistic effects of ovatodiolide and sorafenib or sunitinib were examined in 2 TKI-resistant RCC cell lines. Ovatodiolide, a pure compound of Anisomeles indica, inhibited β-catenin signaling and reduced RCC cell viability, survival, migration/invasion, and in vitro cell or in vivo mouse tumorigenicity. Cytotoxicity was significantly reduced in a normal kidney epithelial cell line with the treatment. Ovatodiolide reduced phosphorylated β-catenin (S552 that inhibited β-catenin nuclear translocation. Moreover, ovatodiolide decreased β-catenin stability and impaired the association of β-catenin and transcription factor 4. Ovatodiolide combined with sorafenib or sunitinib overcame drug resistance in TKI-resistant RCC cells. Ovatodiolide may be a potent β-catenin signaling inhibitor, with synergistic effects with sorafenib or sunitinib, and therefore, a useful candidate for improving RCC therapy.

  2. Hili Inhibits HIV Replication in Activated T Cells.

    Science.gov (United States)

    Peterlin, B Matija; Liu, Pingyang; Wang, Xiaoyun; Cary, Daniele; Shao, Wei; Leoz, Marie; Hong, Tian; Pan, Tao; Fujinaga, Koh

    2017-06-01

    P-element-induced wimpy-like (Piwil) proteins restrict the replication of mobile genetic elements in the germ line. They are also expressed in many transformed cell lines. In this study, we discovered that the human Piwil 2 (Hili) protein can also inhibit HIV replication, especially in activated CD4 + T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express Hili, its expression was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of Hili increased levels of viral proteins and new viral particles. Further studies revealed that Hili binds to tRNA. Some of the tRNAs represent rare tRNA species, whose codons are overrepresented in the viral genome. Targeting tRNA Arg (UCU) with an antisense oligonucleotide replicated effects of Hili and also inhibited HIV replication. Finally, Hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, Hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements. IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germ line. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small Piwi-interacting RNAs (piRNAs). However, in some species and in human somatic cells, Piwil proteins bind primarily to tRNA. In this report, we demonstrate that human Piwil proteins, especially Hili, not only bind to select tRNA species, including rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of Hili in CD4 + T cells. Since Hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements. Copyright © 2017 American Society for Microbiology.

  3. Ammonium inhibition of nitrogenase activity in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Fu, H.; Burris, R.H. (Univ. of Wisconsin, Madison (USA))

    1989-06-01

    The effect of oxygen, ammonium ion, and amino acids on nitrogenase activity in the root-associated N{sub 2}-fixing bacterium Herbaspirillum seropedicae was investigated in comparison with Azospirillum spp. and Rhodospirillum rubrum. H. seropedicae is microaerophilic, and its optimal dissolved oxygen level is from 0.04 to 0.2 kPa for dinitrogen fixation but higher when it is supplied with fixed nitrogen. No nitrogenase activity was detected when the dissolved O{sub 2} level corresponded to 4.0 kPa. Ammonium, a product of the nitrogenase reaction, reversible inhibited nitrogenase activity when added to derepressed cell cultures. However, the inhibition of nitrogenase activity was only partial even with concentrations of ammonium chloride as high as 20 mM. Amides such as glutamine and asparagine partially inhibited nitrogenase activity, but glutamate did not. Nitrogenase in crude extracts prepared from ammonium-inhibited cells showed activity as high as in extracts from N{sub 2}-fixing cells. The pattern of the dinitrogenase and the dinitrogenase reductase revealed by the immunoblotting technique did not change upon ammonium chloride treatment of cells in vivo. No homologous sequences were detected with the draT-draG probe from Azospirillum lipoferum. There is no clear evidence that ADP-ribosylation of the dinitrogenase reductase is involved in the ammonium inhibition of H. seropedicae. The uncoupler carbonyl cyanide m-chlorophenylhydrazone decreased the intracellular ATP concentration and inhibited the nitrogenase activity of whole cells. The ATP pool was significantly disturbed when cultures were treated with ammonium in vivo.

  4. Cysteine-independent activation/inhibition of heme oxygenase-2

    Directory of Open Access Journals (Sweden)

    Dragic Vukomanovic

    2016-01-01

    Full Text Available Reactive thiols of cysteine (cys residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2 isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2 and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  5. Inhibition of existing denitrification enzyme activity by chloramphenicol

    Science.gov (United States)

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  6. Cysteine-independent activation/inhibition of heme oxygenase-2.

    Science.gov (United States)

    Vukomanovic, Dragic; Rahman, Mona N; Maines, Mahin D; Ozolinš, Terence Rs; Szarek, Walter A; Jia, Zongchao; Nakatsu, Kanji

    2016-03-01

    Reactive thiols of cysteine (cys) residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2) isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2) and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD) and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  7. THE QUORUM SENSİNG INHIBITION ACTIVITY OF THE ETHYL ACETATE EXTRACT OF STREPTOMYCES GRİSEOFLAVUS OC. 124-2

    Directory of Open Access Journals (Sweden)

    Gultekin Akdamar

    2016-05-01

    Full Text Available Streptomyces griseoflavus OC. 124-2 used in this study was isolated from the field soil of Dalaman Directorate of Agricultural Enterprises Muğla. As a result of phenotypic and molecular characterization, the isolate was identified as Streptomyces griseoflavus and named as OC. 124-2. The fermentation liquid of Streptomyces griseoflavus OC. 124-2 was obtained in optimum fermentation conditions, and then it was filtered and extracted with ethyl acetate 1:1. The extract containing the active compounds was obtained by evaporating the solvent. Biomonitor strains, Chromobacterium violaceum CV026 for the determination of anti-quorum sensing activity (anti-QS, Chromobacterium violaceum CV12472 for the determination of inhibition of violacein pigment production and Pseudomonas aeruginosa PA01 for the determination of anti-swarming activity were used at MIC and sub-MIC concentrations. The anti-quorum sensing and anti-swarming activities could not be detected for the extract. Violacein production was inhibited by 100%, 74.86%, 65.74% and 31.99% at MIC, MIC/2, MIC/4 and MIC/8 concentrations of the extract treatment, respectively. While the detected inhibition of violacein pigment production did not inhibit the bacterial growth, it was revealed that it inhibited the quorum-sensing-regulated signaling systems. Accordingly, it was shown that the active compounds obtained from ethyl acetate extract of OC. 124-2 constituted a non-selective pressure for the growth of drug resistant pathogen bacteria and they may be used as an alternative at treatment of these bacteria.

  8. Development of Classification Models for Identifying “True” P-glycoprotein (P-gp Inhibitors Through Inhibition, ATPase Activation and Monolayer Efflux Assays

    Directory of Open Access Journals (Sweden)

    Anna Maria Bianucci

    2012-06-01

    Full Text Available P-glycoprotein (P-gp is an efflux pump involved in the protection of tissues of several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug resistance and in the progression of many neurodegenerative diseases. The development of new and more effective therapeutics targeting P-gp thus represents an intriguing challenge in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to overcome drug resistance to many kinds of tumours characterized by the over-expression of this protein. This study aims to develop classification models from a unique dataset of 59 compounds for which there were homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer efflux. For each experiment, the dataset was split into a training and a test set comprising 39 and 20 molecules, respectively. Rational splitting was accomplished using a sphere-exclusion type algorithm. After a two-step (internal/external validation, the best-performing classification models were used in a consensus predicting task for the identification of compounds named as “true” P-gp inhibitors, i.e., molecules able to inhibit P-gp without being effluxed by P-gp itself and simultaneously unable to activate the ATPase function.

  9. Drug-resistant tuberculosis in two children in Greece: report of the first extensively drug-resistant case.

    Science.gov (United States)

    Katragkou, Aspasia; Antachopoulos, Charalampos; Hatziagorou, Elpis; Sdougka, Maria; Roilides, Emmanuel; Tsanakas, John

    2013-04-01

    Extensively drug-resistant (XDR) tuberculosis (TB) represents a serious and growing problem in both endemic and non-endemic countries. We describe a 2.5-year-old girl with XDR-pulmonary TB and an 18-month-old boy with pre-XDR-central nervous system TB. Patients received individualized treatment with second-line anti-TB agents based on genotypic and phenotypic drug susceptibility testing results. Both children achieved culture conversion 3 months and 1 month after treatment initiation, respectively. The child with XDR-pulmonary TB showed evidence of cure while treatment adverse events were managed without treatment interruption. The child with pre-XDR-central nervous system TB after 6-month hospitalization with multiple infectious complications had a dismal end due to hepatic insufficiency possibly related to anti-TB treatment. This is the first report of children with pre-XDR and XDR TB in Greece, emphasizing the public health dimensions and management complexity of XDR TB.

  10. Genetic Indicators of Drug Resistance in the Highly Repetitive Genome of Trichomonas vaginalis.

    Science.gov (United States)

    Bradic, Martina; Warring, Sally D; Tooley, Grace E; Scheid, Paul; Secor, William E; Land, Kirkwood M; Huang, Po-Jung; Chen, Ting-Wen; Lee, Chi-Ching; Tang, Petrus; Sullivan, Steven A; Carlton, Jane M

    2017-06-01

    Trichomonas vaginalis, the most common nonviral sexually transmitted parasite, causes ∼283 million trichomoniasis infections annually and is associated with pregnancy complications and increased risk of HIV-1 acquisition. The antimicrobial drug metronidazole is used for treatment, but in a fraction of clinical cases, the parasites can become resistant to this drug. We undertook sequencing of multiple clinical isolates and lab derived lines to identify genetic markers and mechanisms of metronidazole resistance. Reduced representation genome sequencing of ∼100 T. vaginalis clinical isolates identified 3,923 SNP markers and presence of a bipartite population structure. Linkage disequilibrium was found to decay rapidly, suggesting genome-wide recombination and the feasibility of genetic association studies in the parasite. We identified 72 SNPs associated with metronidazole resistance, and a comparison of SNPs within several lab-derived resistant lines revealed an overlap with the clinically resistant isolates. We identified SNPs in genes for which no function has yet been assigned, as well as in functionally-characterized genes relevant to drug resistance (e.g., pyruvate:ferredoxin oxidoreductase). Transcription profiles of resistant strains showed common changes in genes involved in drug activation (e.g., flavin reductase), accumulation (e.g., multidrug resistance pump), and detoxification (e.g., nitroreductase). Finally, we identified convergent genetic changes in lab-derived resistant lines of Tritrichomonas foetus, a distantly related species that causes venereal disease in cattle. Shared genetic changes within and between T. vaginalis and Tr. foetus parasites suggest conservation of the pathways through which adaptation has occurred. These findings extend our knowledge of drug resistance in the parasite, providing a panel of markers that can be used as a diagnostic tool. © The Author 2017. Published by Oxford University Press on behalf of the Society for

  11. Lung Tissue Concentrations of Pyrazinamide among Patients with Drug-Resistant Pulmonary Tuberculosis

    Science.gov (United States)

    Heinrichs, M. Tobias; Nikolaishvili, Ketino; Sabulua, Irina; Bablishvili, Nino; Gogishvili, Shota; Avaliani, Zaza; Tukvadze, Nestani; Little, Brent; Bernheim, Adam; Read, Timothy D.; Guarner, Jeannette; Derendorf, Hartmut; Peloquin, Charles A.; Blumberg, Henry M.; Vashakidze, Sergo

    2017-01-01

    ABSTRACT Improved knowledge regarding the tissue penetration of antituberculosis drugs may help optimize drug management. Patients with drug-resistant pulmonary tuberculosis undergoing adjunctive surgery were enrolled. Serial serum samples were collected, and microdialysis was performed using ex vivo lung tissue to measure pyrazinamide concentrations. Among 10 patients, the median pyrazinamide dose was 24.7 mg/kg of body weight. Imaging revealed predominant lung lesions as cavitary (n = 6 patients), mass-like (n = 3 patients), or consolidative (n = 1 patient). On histopathology examination, all tissue samples had necrosis; eight had a pH of ≤5.5. Tissue samples from two patients were positive for Mycobacterium tuberculosis by culture (pH 5.5 and 7.2). All 10 patients had maximal serum pyrazinamide concentrations within the recommended range of 20 to 60 μg/ml. The median lung tissue free pyrazinamide concentration was 20.96 μg/ml. The median tissue-to-serum pyrazinamide concentration ratio was 0.77 (range, 0.54 to 0.93). There was a significant inverse correlation between tissue pyrazinamide concentrations and the amounts of necrosis (R = −0.66, P = 0.04) and acid-fast bacilli (R = −0.75, P = 0.01) identified by histopathology. We found good penetration of pyrazinamide into lung tissue among patients with pulmonary tuberculosis with a variety of radiological lesion types. Our tissue pH results revealed that most lesions had a pH conducive to pyrazinamide activity. The tissue penetration of pyrazinamide highlights its importance in both drug-susceptible and drug-resistant antituberculosis treatment regimens. PMID:28373198

  12. Lung Tissue Concentrations of Pyrazinamide among Patients with Drug-Resistant Pulmonary Tuberculosis.

    Science.gov (United States)

    Kempker, Russell R; Heinrichs, M Tobias; Nikolaishvili, Ketino; Sabulua, Irina; Bablishvili, Nino; Gogishvili, Shota; Avaliani, Zaza; Tukvadze, Nestani; Little, Brent; Bernheim, Adam; Read, Timothy D; Guarner, Jeannette; Derendorf, Hartmut; Peloquin, Charles A; Blumberg, Henry M; Vashakidze, Sergo

    2017-06-01

    Improved knowledge regarding the tissue penetration of antituberculosis drugs may help optimize drug management. Patients with drug-resistant pulmonary tuberculosis undergoing adjunctive surgery were enrolled. Serial serum samples were collected, and microdialysis was performed using ex vivo lung tissue to measure pyrazinamide concentrations. Among 10 patients, the median pyrazinamide dose was 24.7 mg/kg of body weight. Imaging revealed predominant lung lesions as cavitary ( n = 6 patients), mass-like ( n = 3 patients), or consolidative ( n = 1 patient). On histopathology examination, all tissue samples had necrosis; eight had a pH of ≤5.5. Tissue samples from two patients were positive for Mycobacterium tuberculosis by culture (pH 5.5 and 7.2). All 10 patients had maximal serum pyrazinamide concentrations within the recommended range of 20 to 60 μg/ml. The median lung tissue free pyrazinamide concentration was 20.96 μg/ml. The median tissue-to-serum pyrazinamide concentration ratio was 0.77 (range, 0.54 to 0.93). There was a significant inverse correlation between tissue pyrazinamide concentrations and the amounts of necrosis ( R = -0.66, P = 0.04) and acid-fast bacilli ( R = -0.75, P = 0.01) identified by histopathology. We found good penetration of pyrazinamide into lung tissue among patients with pulmonary tuberculosis with a variety of radiological lesion types. Our tissue pH results revealed that most lesions had a pH conducive to pyrazinamide activity. The tissue penetration of pyrazinamide highlights its importance in both drug-susceptible and drug-resistant antituberculosis treatment regimens. Copyright © 2017 American Society for Microbiology.

  13. Phenotype, Genotype, and Drug Resistance in Subtype C HIV-1 Infection.

    Science.gov (United States)

    Derache, Anne; Wallis, Carole L; Vardhanabhuti, Saran; Bartlett, John; Kumarasamy, Nagalingeswaran; Katzenstein, David

    2016-01-15

    Virologic failure in subtype C is characterized by high resistance to first-line antiretroviral (ARV) drugs, including efavirenz, nevirapine, and lamivudine, with nucleoside resistance including type 2 thymidine analog mutations, K65R, a T69del, and M184V. However, genotypic algorithms predicting resistance are mainly based on subtype B viruses and may under- or overestimate drug resistance in non-B subtypes. To explore potential treatment strategies after first-line failure, we compared genotypic and phenotypic susceptibility of subtype C human immunodeficiency virus 1 (HIV-1) following first-line ARV failure. AIDS Clinical Trials Group 5230 evaluated patients failing an initial nonnucleoside reverse-transcriptase inhibitor (NNRTI) regimen in Africa and Asia, comparing the genotypic drug resistance and phenotypic profile from the PhenoSense (Monogram). Site-directed mutagenesis studies of K65R and T69del assessed the phenotypic impact of these mutations. Genotypic algorithms overestimated resistance to etravirine and rilpivirine, misclassifying 28% and 32%, respectively. Despite K65R with the T69del in 9 samples, tenofovir retained activity in >60%. Reversion of the K65R increased susceptibility to tenofovir and other nucleosides, while reversion of the T69del showed increased resistance to zidovudine, with little impact on other NRTI. Although genotype and phenotype were largely concordant for first-line drugs, estimates of genotypic resistance to etravirine and rilpivirine may misclassify subtype C isolates compared to phenotype. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  14. Aspergillus ficuum phytase activity is inhibited by cereal grain components.

    Science.gov (United States)

    Bekalu, Zelalem Eshetu; Madsen, Claus Krogh; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2017-01-01

    In the current study, we report for the first time that grain components of barley, rice, wheat and maize can inhibit the activity of Aspergillus ficuum phytase. The phytase inhibition is dose dependent and varies significantly between cereal species, between cultivars of barley and cultivars of wheat and between Fusarium graminearum infected and non-infected wheat grains. The highest endpoint level of phytase activity inhibition was 90%, observed with grain protein extracts (GPE) from F. graminearum infected wheat. Wheat GPE from grains infected with F. graminearum inhibits phytase activity significantly more than GPE from non-infected grains. For four barley cultivars studied, the IC50 value ranged from 0.978 ± 0.271 to 3.616 ± 0.087 mg×ml-1. For two non-infected wheat cultivars investigated, the IC50 values were varying from 2.478 ± 0.114 to 3.038 ± 0.097 mg×ml-1. The maize and rice cultivars tested gaveIC50 values on 0.983 ± 0.205 and 1.972 ± 0.019 mg×ml-1, respectively. After purifying the inhibitor from barley grains via Superdex G200, an approximately 30-35 kDa protein was identified. No clear trend for the mechanism of inhibition could be identified via Michaelis-Menten kinetics and Lineweaver-Burk plots. However, testing of the purified phytase inhibitor together with the A. ficuum phytase and the specific protease inhibitors pepstatin A, E64, EDTA and PMSF revealed that pepstatin A repealed the phytase inhibition. This indicates that the observed inhibition of A. ficuum phytase by cereal grain extracts is caused by protease activity of the aspartic proteinase type.

  15. High-level iron mitigates fusaricidin-induced membrane damage and reduces membrane fluidity leading to enhanced drug resistance in Bacillus subtilis.

    Science.gov (United States)

    Yu, Wen-Bang; Ye, Bang-Ce

    2016-05-01

    Fusaricidins are a class of cyclic lipopeptide antibiotics that have strong antifungal activities against plant pathogenic fungi and excellent bactericidal activities against Gram-positive bacteria. The mechanism through which fusaricidin exerts its action is not yet entirely clear. To investigate the mode of action of fusaricidin, we determined the physiological and transcriptional responses of Bacillus subtilis to fusaricidin treatment by using a systems-level approach. Our data show that fusaricidin rapidly induced the expression of σ(W) regulon and caused membrane damage in B. subtilis. We further demonstrated that ferric ions play multiple roles in the action of fusaricidin on B. subtilis. Iron deprivation blocked the formation of hydroxyl radical in the cells and significantly inhibited the bactericidal activity of fusaricidin. Conversely, high levels of iron (>2 mM) repressed the expression of BkdR regulon, resulting in a smaller cellular pool of branched-chain precursors for iso- and anteiso-branched fatty acids, which in turn led to a decrease in the proportion of branched-chain fatty acids in the membrane of B. subtilis. This change in membrane composition reduced its bilayer fluidity and increased its resistance to antimicrobial agents. In conclusion, our experiments uncovered some novel interactions and a synergism between cellular iron levels and drug resistance in Gram-positive bacteria. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Molecular identification of marine symbiont bacteria of gastropods from the waters of the Krakal coast Yogyakarta and its potential as a Multi-Drug Resistant (MDR) antibacterial agent

    Science.gov (United States)

    Bahry, Muhammad Syaifudien; Pringgenies, Delianis; Trianto, Agus

    2017-01-01

    The resistance of pathogenic bacteria may occur to many types of antibiotics, especially in cases of non-compliance use of antibiotics, which likely to allow the evolution of Multi-Drug Resistant (MDR) bacteria. Gastropods seas are marine invertebrates informed capable of production of secondary metabolites as antibacterial MDR. The purpose of the study was the isolation and identification of gastropod symbiont bacteria found in the waters of Krakal, Gunung Kidul, Yogyakarta, which has the ability to produce antibacterial compounds against MDR(Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, MRSA (methicillin-Resistant Staphylococcus aureus), Staphylococcus aureus, and Staphylococcus homunis) molecular. Stages of this research began with the isolation of bacteria, bacteria screening for anti-MDR compound, mass culture, and extraction, antibacterial activity test, DNA extraction, amplification by PCR 16S rDNA and sequencing. The results of the study showed that 19 isolates of bacteria were isolated from three species of gastropods namely Littorina scabra, Cypraea moneta and Conus ebraeus. Among them, 4 isolates showed activity against MDR test bacteria (E. coli, E. cloacae, K. pneumoniae, S. aureus and S. homunis). The highest activity was displayed by code LS.G1.8 isolate with the largest inhibition zone 15.47±0.45mm on S. humonis at 250 µg/disk concentration. Isolate CM.G2.1 showed largest inhibition zone, with 21.5±0.07mm on MRSA at 1000 µg/disk concentration and isolate the largest inhibition zone CM.G2.5 14.37±0.81mm on MRSA 14.37±0.81mm at concentrations 1000 µg/disk. The molecular identification of isolates LS.G1.8 has 99% homology with Bacillus subtilis and isolates CM.G2.1 has 99% homology with Bacillus pumillus.

  17. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    Science.gov (United States)

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  18. Transmission of HIV drug resistance and the predicted effect on current first-line regimens in Europe

    NARCIS (Netherlands)

    Hofstra, L. Marije; Sauvageot, Nicolas; Albert, Jan; Alexiev, Ivailo; Garcia, Federico; Struck, Daniel; Van De Vijver, David A M C; Åsjö, Birgitta; Beshkov, Danail; Coughlan, Suzie; Descamps, Diane; Griskevicius, Algirdas; Hamouda, Osamah; Horban, Andrzej; Van Kasteren, Marjo; Kolupajeva, Tatjana; Kostrikis, Leontios G.; Liitsola, Kirsi; Linka, Marek; Mor, Orna; Nielsen, Claus; Otelea, Dan; Paraskevis, Dimitrios; Paredes, Roger; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Sönnerborg, Anders; Staneková, Danica; Stanojevic, Maja; Van Laethem, Kristel; Zazzi, Maurizio; Lepej, Snjezana Zidovec; Boucher, Charles A B; Schmit, Jean Claude; Wensing, Annemarie M J; Puchhammer-Stockl, E.; Sarcletti, M.; Schmied, B.; Geit, M.; Balluch, G.; Vandamme, A. M.; Vercauteren, J.; Derdelinckx, I.; Sasse, A.; Bogaert, M.; Ceunen, H.; De Roo, A.; De Wit, S.; Echahidi, F.; Fransen, K.; Goffard, J. C.; Goubau, P.; Goudeseune, E.; Yombi, J. C.; Lacor, P.; Liesnard, C.; Moutschen, M.; Pierard, D.; Rens, R.; Schrooten, Y.; Vaira, D.; Vandekerckhove, L. P R; Van Den Heuvel, A.; Van Der Gucht, B.; Van Ranst, M.; Van Wijngaerden, E.; Vandercam, B.; Vekemans, M.; Verhofstede, C.; Clumeck, N.; Van Laethem, K.; Beshkov, D.; Alexiev, I.; Lepej, S. Zidovec; Begovac, J.; Kostrikis, Leontios G.; Demetriades, I.; Kousiappa, I.; Demetriou, V.; Hezka, J.; Linka, M.; Maly, M.; Machala, L.; Nielsen, C.; Jørgensen, L. B.; Gerstoft, J.; Mathiesen, L.; Pedersen, C.; Nielsen, H.; Laursen, A.; Kvinesdal, B.; Liitsola, K.; Ristola, M.; Suni, J.; Sutinen, J.; Descamps, D.; Assoumou, L.; Castor, G.; Grude, M.; Flandre, P.; Storto, A.; Hamouda, O.; Kücherer, C.; Berg, T.; Braun, P.; Poggensee, G.; Däumer, M.; Eberle, J.; Heiken, H.; Kaiser, R.; Knechten, H.; Korn, K.; Müller, H.; Neifer, S.; Schmidt, B.; Walter, H.; Gunsenheimer-Bartmeyer, B.; Harrer, T.; Paraskevis, D.; Hatzakis, A.; Zavitsanou, A.; Vassilakis, A.; Lazanas, M.; Chini, M.; Lioni, A.; Sakka, V.; Kourkounti, S.; Paparizos, V.; Antoniadou, A.; Papadopoulos, A.; Poulakou, G.; Katsarolis, I.; Protopapas, K.; Chryssos, G.; Drimis, S.; Gargalianos, P.; Xylomenos, G.; Lourida, G.; Psichogiou, M.; Daikos, G. L.; Sipsas, N. V.; Kontos, A.; Gamaletsou, M. N.; Koratzanis, G.; Sambatakou, E.; Mariolis, H.; Skoutelis, A.; Papastamopoulos, V.; Georgiou, O.; Panagopoulos, P.; Maltezos, E.; Coughlan, S.; De Gascun, C.; Byrne, C.; Duffy, M.; Bergin, C.; Reidy, D.; Farrell, G.; Lambert, J.; O'Connor, E.; Rochford, A.; Low, J.; Coakely, P.; O'Dea, S.; Hall, W.; Mor, O.; Levi, I.; Chemtob, D.; Grossman, Z.; Zazzi, M.; De Luca, A.; Balotta, C.; Riva, C.; Mussini, C.; Caramma, I.; Capetti, A.; Colombo, M. C.; Rossi, C.; Prati, F.; Tramuto, F.; Vitale, F.; Ciccozzi, M.; Angarano, G.; Rezza, G.; Kolupajeva, T.; Kolupajeva, T.; Vasins, O.; Griskevicius, A.; Lipnickiene, V.; Schmit, J. C.; Struck, D.; Sauvageot, N.; Hemmer, R.; Arendt, V.; Michaux, C.; Staub, T.; Sequin-Devaux, C.; Wensing, A. M J; Boucher, C. A B; Van Kessel, A.; Van Bentum, P. H M; Brinkman, K.; Connell, B. J.; Van Der Ende, M. E.; Hoepelman, I. M.; Van Kasteren, M.; Kuipers, M.; Langebeek, N.; Richter, C.; Santegoets, R. M W J; Schrijnders-Gudde, L.; Schuurman, R.; Van De Ven, B. J M; Åsjö, B.; Kran, A. M Bakken; Ormaasen, V.; Aavitsland, P.; Horban, A.; Stanczak, J. J.; Stanczak, G. P.; Firlag-Burkacka, E.; Wiercinska-Drapalo, A.; Jablonowska, E.; Maolepsza, E.; Leszczyszyn-Pynka, M.; Szata, W.; Camacho, R.; Palma, C.; Borges, F.; Paixão, T.; Duque, V.; Araújo, F.; Otelea, D.; Paraschiv, S.; Tudor, A. M.; Cernat, R.; Chiriac, C.; Dumitrescu, F.; Prisecariu, L. J.; Stanojevic, M.; Jevtovic, Dj; Salemovic, D.; Stanekova, D.; Habekova, M.; Chabadová, Z.; Drobkova, T.; Bukovinova, P.; Shunnar, A.; Truska, P.; Poljak, M.; Lunar, M.; Babic, D.; Tomazic, J.; Vidmar, L.; Vovko, T.; Karner, P.; Garcia, F.; Paredes, R.; Monge, S.; Moreno, S.; Del Amo, J.; Asensi, V.; Sirvent, J. L.; De Mendoza, C.; Delgado, R.; Gutiérrez, F.; Berenguer, J.; Garcia-Bujalance, S.; Stella, N.; De Los Santos, I.; Blanco, J. R.; Dalmau, D.; Rivero, M.; Segura, F.; Elías, M. J Pérez; Alvarez, M.; Chueca, N.; Rodríguez-Martín, C.; Vidal, C.; Palomares, J. C.; Viciana, I.; Viciana, P.; Cordoba, J.; Aguilera, A.; Domingo, P.; Galindo, M. J.; Miralles, C.; Del Pozo, M. A.; Ribera, E.; Iribarren, J. A.; Ruiz, L.; De La Torre, J.; Vidal, F.; Clotet, B.; Albert, J.; Heidarian, A.; Aperia-Peipke, K.; Axelsson, M.; Mild, M.; Karlsson, A.; Sönnerborg, A.; Thalme, A.; Navér, L.; Bratt, G.; Karlsson, A.; Blaxhult, A.; Gisslén, M.; Svennerholm, B.; Bergbrant, I.; Björkman, P.; Säll, C.; Lindholm, A.; Kuylenstierna, N.; Montelius, R.; Azimi, F.; Johansson, B.; Carlsson, M.; Johansson, E.; Ljungberg, B.; Ekvall, H.; Strand, A.; Mäkitalo, S.; Öberg, S.; Holmblad, P.; Höfer, M.; Holmberg, H.; Josefson, P.; Ryding, U.

    2016-01-01

    Background. Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management, these baseline

  19. The Association between Mycobacterium Tuberculosis Genotype and Drug Resistance in Peru.

    Directory of Open Access Journals (Sweden)

    Louis Grandjean

    Full Text Available The comparison of Mycobacterium tuberculosis bacterial genotypes with phenotypic, demographic, geospatial and clinical data improves our understanding of how strain lineage influences the development of drug-resistance and the spread of tuberculosis.To investigate the association of Mycobacterium tuberculosis bacterial genotype with drug-resistance. Drug susceptibility testing together with genotyping using both 15-loci MIRU-typing and spoligotyping, was performed on 2,139 culture positive isolates, each from a different patient in Lima, Peru. Demographic, geospatial and socio-economic data were collected using questionnaires, global positioning equipment and the latest national census.The Latin American Mediterranean (LAM clade (OR 2.4, p<0.001 was significantly associated with drug-resistance and alone accounted for more than half of all drug resistance in the region. Previously treated patients, prisoners and genetically clustered cases were also significantly associated with drug-resistance (OR's 2.5, 2.4 and 1.8, p<0.001, p<0.05, p<0.001 respectively.Tuberculosis disease caused by the LAM clade was more likely to be drug resistant independent of important clinical, genetic and socio-economic confounding factors. Explanations for this include; the preferential co-evolution of LAM strains in a Latin American population, a LAM strain bacterial genetic background that favors drug-resistance or the "founder effect" from pre-existing LAM strains disproportionately exposed to drugs.

  20. A typology and analysis of drug resistance strategies of rural Native Hawaiian youth.

    Science.gov (United States)

    Okamoto, Scott K; Helm, Susana; Giroux, Danielle; Kaliades, Alexis; Kawano, Kaycee Nahe; Kulis, Stephen

    2010-12-01

    This study examines the drug resistance strategies described by Native Hawaiian youth residing in rural communities. Sixty-four youth from 7 middle and intermediate schools on the Island of Hawai'i participated in a series of gender-specific focus groups. Youth responded to 15 drug-related problem situations developed and validated from prior research. A total of 509 responses reflecting primary or secondary drug resistance strategies were identified by the youth, which were qualitatively collapsed into 16 different categories. Primary drug resistance strategies were those that participants listed as a single response, or the first part of a two-part response, while secondary drug resistance strategies were those that were used in tandem with primary drug resistance strategies. Over half of the responses reflecting primary drug resistance strategies fell into three different categories ("refuse," "explain," or "angry refusal"), whereas over half of the responses reflecting secondary drug resistance strategies represented one category ("explain"). Significant gender differences were found in the frequency of using different strategies as well as variations in the frequency of using different strategies based on the type of drug offerer (family versus friends/peers). Implications for prevention practice are discussed.

  1. Effect of pretreatment HIV-1 drug resistance on immunological, virological, and drug-resistance outcomes of first-line antiretroviral treatment in sub-Saharan Africa: a multicentre cohort study

    NARCIS (Netherlands)

    Hamers, Raph L.; Schuurman, Rob; Sigaloff, Kim C. E.; Wallis, Carole L.; Kityo, Cissy; Siwale, Margaret; Mandaliya, Kishor; Ive, Prudence; Botes, Mariette E.; Wellington, Maureen; Osibogun, Akin; Wit, Ferdinand W.; van Vugt, Michèle; Stevens, Wendy S.; de Wit, Tobias F. Rinke

    2012-01-01

    Background The effect of pretreatment HIV-1 drug resistance on the response to first-line combination antiretroviral therapy (ART) in sub-Saharan Africa has not been assessed. We studied pretreatment drug resistance and virological, immunological, and drug-resistance treatment outcomes in a large

  2. Different frequencies of drug resistance mutations among HIV-1 subtypes circulating in China: a comprehensive study.

    Directory of Open Access Journals (Sweden)

    Hongshuai Sui

    Full Text Available The rapid spreading of HIV drug resistance is threatening the overall success of free HAART in China. Much work has been done on drug-resistant mutations, however, most of which were based on subtype B. Due to different genetic background, subtypes difference would have an effect on the development of drug-resistant mutations, which has already been proved by more and more studies. In China, the main epidemic subtypes are CRF07_BC, CRF08_BC, Thai B and CRF01_AE. The depiction of drug resistance mutations in those subtypes will be helpful for the selection of regimens for Chinese. In this study, the distributions difference of amino acids at sites related to HIV drug resistance were compared among subtype B, CRF01_AE, CRF07_BC and CRF08_BC strains prevalent in China. The amino acid composition of sequences belonging to different subtypes, which were obtained from untreated and treated individuals separately, were also compared. The amino acids proportions of 19 sites in RT among subtype B, CRF01_AE and CRF08_BC have significant difference in drug resistance groups (chi-square test, p<0.05. Genetic barriers analysis revealed that sites 69, 138, 181, 215 and 238 were significantly different among subtypes (Kruskal Wallis test, p<0.05. All subtypes shared three highest prevalent drug resistance sites 103, 181 and 184 in common. Many drug resistant sites in protease show surprising high proportions in almost all subtypes in drug-naïve patients. This is the first comprehensive study in China on different development of drug resistance among different subtypes. The detailed data will lay a foundation for HIV treatment regimens design and improve HIV therapy in China.

  3. Recruitment of Perisomatic Inhibition during Spontaneous Hippocampal Activity In Vitro.

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    Full Text Available It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs. Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro. Combining intracellular and extracellular recordings from pyramidal cells and interneurons, we confirm that inhibitory signals generated by basket cells can be recorded extracellularly, but our results suggest that, during spontaneous activity, eIPSPs are mostly confined to the CA3 rather than CA1 region. CA3 eIPSPs produced the powerful time-locked inhibition of multi-unit activity expected from perisomatic inhibition. Analysis of the temporal dynamics of spike discharges relative to eIPSPs suggests significant but moderate recruitment of excitatory and inhibitory neurons within the CA3 network on a 10 ms time scale, within which neurons recruit each other through recurrent collaterals and trigger powerful feedback inhibition. Such quantified parameters of neuronal interactions in the hippocampal network may serve as a basis for future characterisation of pathological conditions potentially affecting the interactions between excitation and inhibition in this circuit.

  4. Thrombomodulin inhibits the activation of eosinophils and mast cells.

    Science.gov (United States)

    Roeen, Ziaurahman; Toda, Masaaki; D'Alessandro-Gabazza, Corina N; Onishi, Masahiro; Kobayashi, Tetsu; Yasuma, Taro; Urawa, Masahito; Taguchi, Osamu; Gabazza, Esteban C

    2015-01-01

    Eosinophils and mast cells play critical roles in the pathogenesis of bronchial asthma. Activation of both cells leads to the release of pro-inflammatory mediators in the airway of asthmatic patients. Recently, we have shown that inhaled thrombomodulin inhibits allergic bronchial asthma in a mouse model. In the present study, we hypothesize that thrombomodulin can inhibit the activation of eosinophils and mast cells. The effect of thrombomodulin on the activation and release of inflammatory mediators from eosinophils and mast cells was evaluated. Thrombomodulin inhibited the eotaxin-induced chemotaxis, upregulation of CD11b and degranulation of eosinophils. Treatment with thrombomodulin also significantly suppressed the degranulation and synthesis of inflammatory cytokines and chemokines in eosinophils and mast cells. Mice treated with a low-dose of inhaled thrombomodulin have decreased number of eosinophils and activated mast cells and Th2 cytokines in the lungs compared to untreated mice. The results of this study suggest that thrombomodulin may modulate allergic responses by inhibiting the activation of both eosinophils and mast cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism.

    Science.gov (United States)

    Lin, Suyun; Zhang, Guowen; Liao, Yijing; Pan, Junhui

    2015-11-01

    Chrysin, a bioactive flavonoid, was investigated for its potential to inhibit the activity of xanthine oxidase (XO), a key enzyme catalyzing xanthine to uric acid and finally causing gout. The kinetic analysis showed that chrysin possessed a strong inhibition on XO ability in a reversible competitive manner with IC50 value of (1.26±0.04)×10(-6)molL(-1). The results of fluorescence titrations indicated that chrysin bound to XO with high affinity, and the interaction was predominately driven by hydrogen bonds and van der Waals forces. Analysis of circular dichroism demonstrated that chrysin induced the conformational change of XO with increases in α-helix and β-sheet and reductions in β-turn and random coil structures. Molecular simulation revealed that chrysin interacted with the amino acid residues Leu648, Phe649, Glu802, Leu873, Ser876, Glu879, Arg880, Phe1009, Thr1010, Val1011 and Phe1013 located within the active cavity of XO. The mechanism of chrysin on XO activity may be the insertion of chrysin into the active site occupying the catalytic center of XO to avoid the entrance of xanthine and causing conformational changes in XO. Furthermore, the interaction assays indicated that chrysin and its structural analog apigenin exhibited an additive effect on inhibition of XO. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. DNA damage protection and 5-lipoxygenase inhibiting activity of ...

    African Journals Online (AJOL)

    DNA damage caused by free radical is associated with mutation-based health impairment. The protective effect on DNA damage mediated by hydroxyl radical and peroxynitrite radical, and the inhibiting activity on 5-lipoxygenase of areca inflorescence extracts were studied in vitro. The results show that the boiling water ...

  7. Irregular activity arises as a natural consequence of synaptic inhibition

    International Nuclear Information System (INIS)

    Terman, D.; Rubin, J. E.; Diekman, C. O.

    2013-01-01

    Irregular neuronal activity is observed in a variety of brain regions and states. This work illustrates a novel mechanism by which irregular activity naturally emerges in two-cell neuronal networks featuring coupling by synaptic inhibition. We introduce a one-dimensional map that captures the irregular activity occurring in our simulations of conductance-based differential equations and mathematically analyze the instability of fixed points corresponding to synchronous and antiphase spiking for this map. We find that the irregular solutions that arise exhibit expansion, contraction, and folding in phase space, as expected in chaotic dynamics. Our analysis shows that these features are produced from the interplay of synaptic inhibition with sodium, potassium, and leak currents in a conductance-based framework and provides precise conditions on parameters that ensure that irregular activity will occur. In particular, the temporal details of spiking dynamics must be present for a model to exhibit this irregularity mechanism and must be considered analytically to capture these effects

  8. Irregular activity arises as a natural consequence of synaptic inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Terman, D., E-mail: terman@math.ohio-state.edu [Department of Mathematics, The Ohio State University, Columbus, Ohio 43210 (United States); Rubin, J. E., E-mail: jonrubin@pitt.edu [Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Diekman, C. O., E-mail: diekman@njit.edu [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2013-12-15

    Irregular neuronal activity is observed in a variety of brain regions and states. This work illustrates a novel mechanism by which irregular activity naturally emerges in two-cell neuronal networks featuring coupling by synaptic inhibition. We introduce a one-dimensional map that captures the irregular activity occurring in our simulations of conductance-based differential equations and mathematically analyze the instability of fixed points corresponding to synchronous and antiphase spiking for this map. We find that the irregular solutions that arise exhibit expansion, contraction, and folding in phase space, as expected in chaotic dynamics. Our analysis shows that these features are produced from the interplay of synaptic inhibition with sodium, potassium, and leak currents in a conductance-based framework and provides precise conditions on parameters that ensure that irregular activity will occur. In particular, the temporal details of spiking dynamics must be present for a model to exhibit this irregularity mechanism and must be considered analytically to capture these effects.

  9. Molecular detection of drug resistance in microbes by isotopic techniques: The IAEA experience

    International Nuclear Information System (INIS)

    Dar, L.; Boussaha, A.; Padhy, A.K.; Khan, B.

    2003-01-01

    The International Atomic Energy Agency (IAEA) supports various programmes on the uses of radionuclide techniques in the management of human communicable diseases. An important issue, being addressed through several technology transfer projects, is the detection of drug resistance in microbes by radioisotope based molecular-biology diagnostic procedures. The techniques employed include dot blot hybridisation with P-32 labelled oligonucleotide probes to detect point mutations, associated with drug resistance, in microbial genes amplified by the polymerase chain reaction (PCR). Molecular methods have been used for the detection of drug resistance in the malarial parasite, Plasmodium falciparum, and in Mycobacterium tuberculosis. Radioisotope based molecular-biology methods have been demonstrated to have comparative advantages in being sensitive, specific, cost-effective, and suitable for application to large-scale molecular surveillance for drug resistance. (author)

  10. An investigation of classification algorithms for predicting HIV drug resistance without genotype resistance testing

    CSIR Research Space (South Africa)

    Brandt, P

    2014-01-01

    Full Text Available is limited in low-resource settings. In this paper we investigate machine learning techniques for drug resistance prediction from routine treatment and laboratory data to help clinicians select patients for confirmatory genotype testing. The techniques...

  11. Pan Drug-Resistant Environmental Isolate of Acinetobacter baumannii from Croatia.

    Science.gov (United States)

    Goic-Barisic, Ivana; Seruga Music, Martina; Kovacic, Ana; Tonkic, Marija; Hrenovic, Jasna

    2017-06-01

    Acinetobacter baumannii is an emerging nosocomial pathogen with also emerging resistance to different antibiotics. Multidrug and pan drug-resistant clinical isolates were reported worldwide. Here we report the first evidence of pan drug-resistant environmental isolate of A. baumannii. The isolate was recovered from the effluent of secondary treated municipal wastewater of the City of Zagreb, Croatia. The isolate was resistant to penicillins/β-lactamase inhibitors, carbapenems, fluoroquinolones, aminoglycosides, folate pathway inhibitors, and polymyxins, except intermediately susceptible to minocycline and tigecycline. Intrinsic chromosomally located bla OXA-51-like gene and acquired plasmid-located bla OXA-23-like gene were related to clinical isolates. Pan drug-resistant A. baumannii can occur in natural environments outside of the hospital. Secondary treated municipal wastewater represents a potential epidemiological reservoir of pan drug-resistant A. baumannii and carbapenem resistance gene.

  12. Genetic Determinants of Drug Resistance in Mycobacterium tuberculosis and Their Diagnostic Value

    NARCIS (Netherlands)

    Farhat, M.R.; Sultana, R.; Iartchouk, O.; Bozeman, S.; Galagan, J.; Sisk, P.; Stolte, C.; Nebenzahl-Guimaraes, H.; Jacobson, K.; Sloutsky, A.; Kaur, D.; Posey, J.; Kreiswirth, B.N.; Kurepina, N.; Rigouts, L.; Streicher, E.M.; Victor, T.C.; Warren, R.M.; Soolingen, D. van; Murray, M.

    2016-01-01

    RATIONALE: The development of molecular diagnostics that detect both the presence of Mycobacterium tuberculosis in clinical samples and drug resistance-conferring mutations promises to revolutionize patient care and interrupt transmission by ensuring early diagnosis. However, these tools require the

  13. Mosaic Structure of a Multiple-Drug-Resistant, Conjugative Plasmid from Campylobacter jejuni

    National Research Council Canada - National Science Library

    Nirdnoy, Warawadee; Mason, Carl J; Guerry, Patricia

    2005-01-01

    ..., where it apparently integrated into the chromosome and expressed high-level resistance to multiple aminoglycoside antibiotics. This work provides new information about both the nature of drug resistance in C...

  14. Early Warning Indicators for Population-Based Monitoring of HIV Drug Resistance in 6 African Countries

    NARCIS (Netherlands)

    Sigaloff, Kim C. E.; Hamers, Raph L.; Menke, Jack; Labib, Moheb; Siwale, Margaret; Ive, Prudence; Botes, Mariette E.; Kityo, Cissy; Mandaliya, Kishor; Wellington, Maureen; Osibogun, Akin; Geskus, Ronald B.; Stevens, Wendy S.; van Vugt, Michèle; Rinke de Wit, Tobias F.

    2012-01-01

    Human immunodeficiency virus (HIV) RNA testing and HIV drug resistance (HIVDR) testing are not routinely available for therapeutic monitoring of patients receiving antiretroviral therapy (ART) in resource-limited settings. World Health Organization HIVDR early warning indicators (EWIs) assess ART

  15. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences

    KAUST Repository

    Coll, Francesc; McNerney, Ruth; Preston, Mark D; Guerra-Assunç ã o, José Afonso; Warry, Andrew; Hill-Cawthorne, Grant A.; Mallard, Kim; Nair, Mridul; Miranda, Anabela; Alves, Adriana; Perdigã o, Joã o; Viveiros, Miguel; Portugal, Isabel; Hasan, Zahra; Hasan, Rumina; Glynn, Judith R; Martin, Nigel; Pain, Arnab; Clark, Taane G

    2015-01-01

    Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data

  16. Tuberculosis drug resistance isolates from pulmonary tuberculosis patients, Kassala State, Sudan

    Directory of Open Access Journals (Sweden)

    Fatima A Khalid

    2015-01-01

    This study revealed that high resistance to rifampicin was associated with various point mutations in and out of the RRDR of the rpoB gene. Molecular methods are needed for early detection of TB disease and drug resistance.

  17. Drug resistant Salmonella in broiler chicken sold at local market in ...

    African Journals Online (AJOL)

    user

    2015-10-28

    Oct 28, 2015 ... Key words: Antibiogram, Salmonellosis, PCR, broiler chicken, drug resistance. ... of zoonotic origin and have gained their resistance in an animal host ..... dynamics of Salmonella enterica serotypes in commercial egg and.

  18. Repurposing and Revival of the Drugs: A New Approach to Combat the Drug Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Divakar Sharma

    2017-12-01

    Full Text Available Emergence of drug resistant tuberculosis like multi drug resistant tuberculosis (MDR-TB, extensively drug-resistant tuberculosis (XDR-TB and totally drug resistant tuberculosis (TDR-TB has created a new challenge to fight against these bad bugs of Mycobacterium tuberculosis. Repurposing and revival of the drugs are the new trends/options to combat these worsen situations of tuberculosis in the antibiotics resistance era or in the situation of global emergency. Bactericidal and synergistic effect of repurposed/revived drugs along with the latest drugs bedaquiline and delamanid used in the treatment of MDR-TB, XDR-TB, and TDR-TB might be the choice for future promising combinatorial chemotherapy against these bad bugs.

  19. Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1.

    Science.gov (United States)

    Wang, Ming-Yang; Chen, Pai-Sheng; Prakash, Ekambaranellore; Hsu, Hsing-Chih; Huang, Hsin-Yi; Lin, Ming-Tsan; Chang, King-Jen; Kuo, Min-Liang

    2009-04-15

    Connective tissue growth factor (CTGF) expression is elevated in advanced breast cancer and promotes metastasis. Chemotherapy response is only transient in most metastatic diseases. In the present study, we examined whether CTGF expression could confer drug resistance in human breast cancer. In breast cancer patients who received neoadjuvant chemotherapy, CTGF expression was inversely associated with chemotherapy response. Overexpression of CTGF in MCF7 cells (MCF7/CTGF) enhanced clonogenic ability, cell viability, and resistance to apoptosis on exposure to doxorubicin and paclitaxel. Reducing the CTGF level in MDA-MB-231 (MDA231) cells by antisense CTGF cDNA (MDA231/AS cells) mitigated this drug resistance capacity. CTGF overexpression resulted in resistance to doxorubicin- and paclitaxel-induced apoptosis by up-regulation of Bcl-xL and cellular inhibitor of apoptosis protein 1 (cIAP1). Knockdown of Bcl-xL or cIAP1 with specific small interfering RNAs abolished the CTGF-mediated resistance to apoptosis induced by the chemotherapeutic agents in MCF7/CTGF cells. Inhibition of extracellular signal-regulated kinase (ERK)-1/2 effectively reversed the resistance to apoptosis as well as the up-regulation of Bcl-xL and cIAP1 in MCF7/CTGF cells. A neutralizing antibody against integrin alpha(v)beta(3) significantly attenuated CTGF-mediated ERK1/2 activation and up-regulation of Bcl-xL and cIAP1, indicating that the integrin alpha(v)beta(3)/ERK1/2 signaling pathway is essential for CTGF functions. The Bcl-xL level also correlated with the CTGF level in breast cancer patients. We also found that a COOH-terminal domain peptide from CTGF could exert activities similar to full-length CTGF, in activation of ERK1/2, up-regulation of Bcl-xL/cIAP1, and resistance to apoptosis. We conclude that CTGF expression could confer resistance to chemotherapeutic agents through augmenting a survival pathway through ERK1/2-dependent Bcl-xL/cIAP1 up-regulation.

  20. Transcriptional control of drug resistance, virulence and immune system evasion in pathogenic fungi: a cross-species comparison.

    Directory of Open Access Journals (Sweden)

    Pedro Pais

    2016-10-01

    Full Text Available Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis and Candida tropicalis. Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.

  1. Transcriptional Control of Drug Resistance, Virulence and Immune System Evasion in Pathogenic Fungi: A Cross-Species Comparison.

    Science.gov (United States)

    Pais, Pedro; Costa, Catarina; Cavalheiro, Mafalda; Romão, Daniela; Teixeira, Miguel C

    2016-01-01

    Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis , and Candida tropicalis . Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.

  2. LAB Bacteriocins Controlling the Food Isolated (Drug-Resistant Staphylococci

    Directory of Open Access Journals (Sweden)

    Jesús Perales-Adán

    2018-06-01

    Full Text Available Staphylococci are a group of microorganisms that can be often found in processed food and they might pose a risk for human health. In this study we have determined the content of staphylococci in 7 different fresh goat-milk cheeses. These bacteria were present in all of them, ranging from 103 to 106 CFU/g based on growth on selective media. Thus, a set of 97 colonies was randomly picked for phenotypic and genotypic identification. They could be clustered by RAPD-PCR in 10 genotypes, which were assigned by 16S rDNA sequencing to four Staphylococcus species: Staphylococcus aureus, Staphylococcus chromogenes, S. simulans, and S. xylosus. Representative strains of these species (n = 25 were tested for antibiotic sensitivity, and 11 of them were resistant to at least one of the antibiotics tested, including erythromycin, amoxicillin-clavulanic acid and oxacillin. We also tested two bacteriocins produced by lactic acid bacteria (LAB, namely the circular bacteriocin AS-48 and the lantibiotic nisin. These peptides have different mechanism of action at the membrane level. Nevertheless, both were able to inhibit staphylococci growth at low concentrations ranging between 0.16–0.73 μM for AS-48 and 0.02–0.23 μM for nisin, including the strains that displayed antibiotic resistance. The combined effect of these bacteriocins were tested and the fractional inhibitory concentration index (FICI was calculated. Remarkably, upon combination, they were active at the low micromolar range with a significant reduction of the minimal inhibitory concentration. Our data confirms synergistic effect, either total or partial, between AS-48 and nisin for the control of staphylococci and including antibiotic resistant strains. Collectively, these results indicate that the combined use of AS-48 and nisin could help controlling (pathogenic staphylococci in food processing and preventing antibiotic-resistant strains reaching the consumer in the final products.

  3. HIV-1 evolution, drug resistance, and host genetics: The Indian scenario

    OpenAIRE

    Shankarkumar, U.; Pawar,Aruna; Ghosh,Kanjaksha

    2009-01-01

    U Shankarkumar, A Pawar, K GhoshNational Institute of Immunohaematology (ICMR), KEM Hospital, Parel, Mumbai, Maharashtra, IndiaAbstract: A regimen with varied side effects and compliance is of paramount importance to prevent viral drug resistance. Most of the drug-resistance studies, as well as interpretation algorithms, are based on sequence data from HIV-1 subtype B viruses. Increased resistance to antiretroviral drugs leads to poor prognosis by restricting treatment optio...

  4. Experimental studies on the ecology and evolution of drug-resistant malaria parasites

    OpenAIRE

    Huijben, Silvie

    2010-01-01

    Drug resistance is a serious problem in health care in general, and in malaria treatment in particular, rendering many of our previously considered ‘wonder drugs’ useless. Recently, large sums of money have been allocated for the continuous development of new drugs to replace the failing ones. We seem to be one step behind the evolution of antimalarial resistance; is it possible to get one step ahead? Are interventions which slow down the evolution and spread of drug-resistant ...

  5. Consensus Statement on Research Definitions for Drug-Resistant Tuberculosis in Children

    OpenAIRE

    Seddon, James A.; Perez-Velez, Carlos M.; Schaaf, H. Simon; Furin, Jennifer J.; Marais, Ben J.; Tebruegge, Marc; Detjen, Anne; Hesseling, Anneke C.; Shah, Sarita; Adams, Lisa V.; Starke, Jeffrey R.; Swaminathan, Soumya; Becerra, Mercedes C.

    2013-01-01

    Few children with drug-resistant (DR) tuberculosis (TB) are identified, diagnosed, and given an appropriate treatment. The few studies that have described this vulnerable population have used inconsistent definitions. TheWorld Health Organization (WHO) definitions used for adults with DR-TB and for children with drug-susceptible TB are not always appropriate for children with DR-TB. The Sentinel Project on Pediatric Drug-Resistant Tuberculosis was formed in 2011 as a network of experts and st...

  6. Dissecting the Mechanisms of Drug Resistance in BRCA1/2-Mutant Breast Cancers

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0600 TITLE: Dissecting the Mechanisms of Drug Resistance in BRCA1/2-Mutant Breast Cancers PRINCIPAL INVESTIGATOR: Dr...2017 4. TITLE AND SUBTITLE Dissecting the Mechanisms of Drug Resistance in BRCA1/2- Mutant Breast Cancers 5a. CONTRACT NUMBER W81XWH-16-1-0600 5b...therapeutic modality for targeting homologous recombination (HR) deficient tumors such as BRCA1 and BRCA2-mutated triple negative breast cancers

  7. Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants

    OpenAIRE

    Zhu, Qinchang; Yu, Zhiqiang; Kabashima, Tsutomu; Yin, Sheng; Dragusha, Shpend; El-Mahdy, Ahmed F. M.; Ejupi, Valon; Shibata, Takayuki; Kai, Masaaki

    2015-01-01

    Convenient drug-resistance testing of viral mutants is indispensable to effective treatment of viral infection. We developed a novel fluorometric assay for phenotypic differentiation of drug-resistant mutants of human immunodeficiency virus-I protease (HIV-PR) which uses enzymatic and peptide-specific fluorescence (FL) reactions and high-performance liquid chromatography (HPLC) of three HIV-PR substrates. This assay protocol enables use of non-purified enzyme sources and multiple substrates f...

  8. [Tuberculosis and drug-resistance tuberculosis in prisoners. Colombia, 2010-2012].

    Science.gov (United States)

    Gómez, Ingrid T; Llerena, Claudia R; Zabaleta, Angie P

    2015-01-01

    To characterize tuberculosis drug-resistance using anti-tuberculosis drug-sensitivity tests in Colombian prisoners. Descriptive-retrospective analyses were performed on cases of tuberculosis in prisoners. Samples were evaluated by the National Reference Laboratory. Conditions like gender, TB/VIH co-infection and drug-resistance were evaluated. Anti-tuberculosis drug-sensitivity tests were carried out on 72 prisoners. Results showed a distribution of 90.7 % of cases in males and 9.3 % of cases in females. 12 % of cases were TB/VIH co-infections, 94 % of the cases had not received any anti-tuberculosis treatment before, six isolates were drug-resistant corresponding to 8.8 % of total cases, and two cases were multi drug-resistant representing 1.3 % of the cases. Of the drug-resistant cases, 83.3 % were TB/VIH co-infected. Previously treated cases corresponded to 5.6 % of the total cases analyzed. One case with TB/VIH co-infection and rifampicin resistance was observed, representing 1.3 % of the total cases. The government must create a clear policy for prisoners in Colombia, because a high rate of disease in prisoners was observed. In addition, the results showed an association between drug-resistance and TB/VIH co-infection. Overcrowding and low quality of life in penitentiaries could become an important public health problem.

  9. Setting priorities for a research agenda to combat drug-resistant tuberculosis in children.

    Science.gov (United States)

    Velayutham, B; Nair, D; Ramalingam, S; Perez-Velez, C M; Becerra, M C; Swaminathan, S

    2015-12-21

    Numerous knowledge gaps hamper the prevention and treatment of childhood drug-resistant tuberculosis (TB). Identifying research priorities is vital to inform and develop strategies to address this neglected problem. To systematically identify and rank research priorities in childhood drug-resistant TB. Adapting the Child Health and Nutrition Research Initiative (CHNRI) methodology, we compiled 53 research questions in four research areas, then classified the questions into three research types. We invited experts in childhood drug-resistant TB to score these questions through an online survey. A total of 81 respondents participated in the survey. The top-ranked research question was to identify the best combination of existing diagnostic tools for early diagnosis. Highly ranked treatment-related questions centred on the reasons for and interventions to improve treatment outcomes, adverse effects of drugs and optimal treatment duration. The prevalence of drug-resistant TB was the highest-ranked question in the epidemiology area. The development type questions that ranked highest focused on interventions for optimal diagnosis, treatment and modalities for treatment delivery. This is the first effort to identify and rank research priorities for childhood drug-resistant TB. The result is a resource to guide research to improve prevention and treatment of drug-resistant TB in children.

  10. [Detection of CRISPR and its relationship to drug resistance in Shigella].

    Science.gov (United States)

    Wang, Linlin; Wang, Yingfang; Duan, Guangcai; Xue, Zerun; Guo, Xiangjiao; Wang, Pengfei; Xi, Yuanlin; Yang, Haiyan

    2015-04-04

    To detect clustered regularly interspaced short palindromic repeats (CRISPR) in Shigella, and to analyze its relationship to drug resistance. Four pairs of primers were used for the detection of convincing CRISPR structures CRISPR-S2 and CRISPR-S4, questionable CRISPR structures CRISPR-S1 and CRISPR-S3 in 60 Shigella strains. All primers were designed using sequences in CRISPR database. CRISPR Finder was used to analyze CRISPR and susceptibilities of Shigella strains were tested by agar diffusion method. Furthermore, we analyzed the relationship between drug resistance and CRISPR-S4. The positive rate of convincing CRISPR structures was 95%. The four CRISPR loci formed 12 spectral patterns (A-L), all of which contained convincing CRISPR structures except type K. We found one new repeat and 12 new spacers. The multi-drug resistance rate was 53. 33% . We found no significant difference between CRISPR-S4 and drug resistant. However, the repeat sequence of CRISPR-S4 in multi- or TE-resistance strains was mainly R4.1 with AC deletions in the 3' end, and the spacer sequences of CRISPR-S4 in multi-drug resistance strains were mainly Sp5.1, Sp6.1 and Sp7. CRISPR was common in Shigella. Variations df repeat sequences and diversities of spacer sequences might be related to drug resistance in Shigella.

  11. Early antiretroviral therapy and potent second-line drugs could decrease HIV incidence of drug resistance.

    Science.gov (United States)

    Shen, Mingwang; Xiao, Yanni; Rong, Libin; Meyers, Lauren Ancel; Bellan, Steven E

    2017-06-28

    Early initiation of antiretroviral therapy (ART) reduces the risk of drug-sensitive HIV transmission but may increase the transmission of drug-resistant HIV. We used a mathematical model to estimate the long-term population-level benefits of ART and determine the scenarios under which earlier ART (treatment at 1 year post-infection, on average) could decrease simultaneously both total and drug-resistant HIV incidence (new infections). We constructed an infection-age-structured mathematical model that tracked the transmission rates over the course of infection and modelled the patients' life expectancy as a function of ART initiation timing. We fitted this model to the annual AIDS incidence and death data directly, and to resistance data and demographic data indirectly among men who have sex with men (MSM) in San Francisco. Using counterfactual scenarios, we assessed the impact on total and drug-resistant HIV incidence of ART initiation timing, frequency of acquired drug resistance, and second-line drug effectiveness (defined as the combination of resistance monitoring, biomedical drug efficacy and adherence). Earlier ART initiation could decrease the number of both total and drug-resistant HIV incidence when second-line drug effectiveness is sufficiently high (greater than 80%), but increase the proportion of new infections that are drug resistant. Thus, resistance may paradoxically appear to be increasing while actually decreasing. © 2017 The Author(s).

  12. Structure-activity studies of Wnt/β-catenin inhibition in the Niclosamide chemotype: Identification of derivatives with improved drug exposure.

    Science.gov (United States)

    Mook, Robert A; Wang, Jiangbo; Ren, Xiu-Rong; Chen, Minyong; Spasojevic, Ivan; Barak, Larry S; Lyerly, H Kim; Chen, Wei

    2015-09-01

    The Wnt signaling pathway plays a key role in regulation of organ development and tissue homeostasis. Dysregulated Wnt activity is one of the major underlying mechanisms responsible for many diseases including cancer. We previously reported the FDA-approved anthelmintic drug Niclosamide inhibits Wnt/β-catenin signaling and suppresses colon cancer cell growth in vitro and in vivo. Niclosamide is a multi-functional drug that possesses important biological activity in addition to inhibition of Wnt/β-catenin signaling. Here, we studied the SAR of Wnt signaling inhibition in the anilide and salicylamide region of Niclosamide. We found that the 4'-nitro substituent can be effectively replaced by trifluoromethyl or chlorine and that the potency of inhibition was dependent on the substitution pattern in the anilide ring. Non-anilide, N-methyl amides and reverse amide derivatives lost significant potency, while acylated salicylamide derivatives inhibited signaling with potency similar to non-acyl derivatives. Niclosamide's low systemic exposure when dosed orally may hinder its use to treat systemic disease. To overcome this limitation we identified an acyl derivative of Niclosamide, DK-520 (compound 32), that significantly increased both the plasma concentration and the duration of exposure of Niclosamide when dosed orally. The studies herein provide a medicinal chemical foundation to improve the pharmacokinetic exposure of Niclosamide and Wnt-signaling inhibitors based on the Niclosamide chemotype. The identification of novel derivatives of Niclosamide that metabolize to Niclosamide and increase its drug exposure may provide important research tools for in vivo studies and provide drug candidates for treating cancers with dysregulated Wnt signaling including drug-resistant cancers. Moreover, since Niclosamide is a multi-functional drug, new research tools such as DK520 could directly result in novel treatments against bacterial and viral infection, lupus, and metabolic

  13. Structure–activity studies of Wnt/β-catenin inhibition in the Niclosamide chemotype: Identification of derivatives with improved drug exposure

    Science.gov (United States)

    Mook, Robert A.; Wang, Jiangbo; Ren, Xiu-Rong; Chen, Minyong; Spasojevic, Ivan; Barak, Larry S.; Lyerly, H. Kim; Chen, Wei

    2015-01-01

    The Wnt signaling pathway plays a key role in regulation of organ development and tissue homeostasis. Dysregulated Wnt activity is one of the major underlying mechanisms responsible for many diseases including cancer. We previously reported the FDA-approved anthelmintic drug Niclosamide inhibits Wnt/β-catenin signaling and suppresses colon cancer cell growth in vitro and in vivo. Niclosamide is a multi-functional drug that possesses important biological activity in addition to inhibition of Wnt/β-catenin signaling. Here, we studied the SAR of Wnt signaling inhibition in the anilide and salicylamide region of Niclosamide. We found that the 4′-nitro substituent can be effectively replaced by trifluoromethyl or chlorine and that the potency of inhibition was dependent on the substitution pattern in the anilide ring. Non-anilide, N-methyl amides and reverse amide derivatives lost significant potency, while acylated salicylamide derivatives inhibited signaling with potency similar to non-acyl derivatives. Niclosamide's low systemic exposure when dosed orally may hinder its use to treat systemic disease. To overcome this limitation we identified an acyl derivative of Niclosamide, DK-520 (compound 32), that significantly increased both the plasma concentration and the duration of exposure of Niclosamide when dosed orally. The studies herein provide a medicinal chemical foundation to improve the pharmacokinetic exposure of Niclosamide and Wnt-signaling inhibitors based on the Niclosamide chemotype. The identification of novel derivatives of Niclosamide that metabolize to Niclosamide and increase its drug exposure may provide important research tools for in vivo studies and provide drug candidates for treating cancers with dysregulated Wnt signaling including drug-resistant cancers. Moreover, since Niclosamide is a multifunctional drug, new research tools such as DK520 could directly result in novel treatments against bacterial and viral infection, lupus, and metabolic

  14. ZK DrugResist 2.0: A TextMiner to extract semantic relations of drug resistance from PubMed.

    Science.gov (United States)

    Khalid, Zoya; Sezerman, Osman Ugur

    2017-05-01

    Extracting useful knowledge from an unstructured textual data is a challenging task for biologists, since biomedical literature is growing exponentially on a daily basis. Building an automated method for such tasks is gaining much attention of researchers. ZK DrugResist is an online tool that automatically extracts mutations and expression changes associated with drug resistance from PubMed. In this study we have extended our tool to include semantic relations extracted from biomedical text covering drug resistance and established a server including both of these features. Our system was tested for three relations, Resistance (R), Intermediate (I) and Susceptible (S) by applying hybrid feature set. From the last few decades the focus has changed to hybrid approaches as it provides better results. In our case this approach combines rule-based methods with machine learning techniques. The results showed 97.67% accuracy with 96% precision, recall and F-measure. The results have outperformed the previously existing relation extraction systems thus can facilitate computational analysis of drug resistance against complex diseases and further can be implemented on other areas of biomedicine. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    Directory of Open Access Journals (Sweden)

    Mamaghani Shadi

    2009-04-01

    Full Text Available Abstract Background Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. Methods GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. Results GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-XL, and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. Conclusion GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard

  16. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    International Nuclear Information System (INIS)

    Mamaghani, Shadi; Patel, Satish; Hedley, David W

    2009-01-01

    Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-X L , and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard chemotherapy agent gemcitabine. This lack of synergy might be

  17. Luteolin, a flavonoid, inhibits AP-1 activation by basophils

    International Nuclear Information System (INIS)

    Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Matsuda, Hisashi; Yoshikawa, Masayuki; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Kawase, Ichiro; Tanaka, Toshio

    2006-01-01

    Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812 cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1

  18. Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria.

    Science.gov (United States)

    Roundhill, E A; Burchill, S A

    2012-03-13

    Overexpression of plasma membrane multi-drug resistance protein 1 (MRP-1) can lead to multidrug resistance. In this study, we describe for the first time the expression of mitochondrial MRP-1 in untreated human normal and cancer cells and tissues. MRP-1 expression and subcellular localisation in normal and cancer cells and tissues was examined by differential centrifugation and western blotting, and immunofluorescence microscopy. Viable mitochondria were isolated and MRP-1 efflux activity measured using the calcein-AM functional assay. MRP-1 expression was increased using retroviral infection and specific overexpression confirmed by RNA array. Cell viability was determined by trypan blue exclusion and annexin V-propidium iodide labelling of cells. MRP-1 was detected in the mitochondria of cancer and normal cells and tissues. The efflux activity of mitochondrial MRP-1 was more efficient (55-64%) than that of plasma membrane MRP-1 (11-22%; PMRP-1 expression resulted in a preferential increase in mitochondrial MRP-1, suggesting selective targeting to this organelle. Treatment with a non-lethal concentration of doxorubicin (0.85 nM, 8 h) increased mitochondrial and plasma membrane MRP-1, increasing resistance to MRP-1 substrates. For the first time, we have identified MRP-1 with efflux activity in human mitochondria. Mitochondrial MRP-1 may be an exciting new therapeutic target where historically MRP-1 inhibitor strategies have limited clinical success.

  19. Genotypic diversity of multidrug-, quinolone- and extensively drug-resistant Mycobacterium tuberculosis isolates in Thailand.

    Science.gov (United States)

    Disratthakit, Areeya; Meada, Shinji; Prammananan, Therdsak; Thaipisuttikul, Iyarit; Doi, Norio; Chaiprasert, Angkana

    2015-06-01

    Drug-resistant tuberculosis (TB), which includes multidrug-resistant (MDR-TB), quinolone-resistant (QR-TB) and extensively drug-resistant tuberculosis (XDR-TB), is a serious threat to TB control. We aimed to characterize the genotypic diversity of drug-resistant TB clinical isolates collected in Thailand to establish whether the emergence of drug-resistant TB is attributable to transmitted resistance or acquired resistance. We constructed the first molecular phylogeny of MDR-TB (n=95), QR-TB (n=69) and XDR-TB (n=28) in Thailand based on spoligotyping and proposed 24-locus multilocus variable-number of tandem repeat analysis (MLVA). Clustering analysis was performed using the unweighted pair group method with arithmetic mean. Spoligotyping identified the Beijing strain (SIT1) as the most predominant genotype (n=139; 72.4%). The discriminatory power of 0.9235 Hunter-Gaston Discriminatory Index (HGDI) with the 15-locus variable-number tandem repeats of mycobacterial interspersed repetitive units typing was improved to a 0.9574 HGDI with proposed 24-locus MLVA, thereby resulting in the subdivision of a large cluster of Beijing strains (SIT1) into 17 subclusters. We identified the spread of drug-resistant TB clones caused by three different MLVA types in the Beijing strain (SIT1) and a specific clone of XDR-TB caused by a rare genotype, the Manu-ancestor strain (SIT523). Overall, 49.5% of all isolates were clustered. These findings suggest that a remarkable transmission of drug-resistant TB occurred in Thailand. The remaining 50% of drug-resistant TB isolates were unique genotypes, which may have arisen from the individual acquisition of drug resistance. Our results suggest that transmitted and acquired resistance have played an equal role in the emergence of drug-resistant TB. Further characterization of whole genome sequences of clonal strains could help to elucidate the mycobacterial genetic factors relevant for drug resistance, transmissibility and virulence

  20. Spillover-mediated feedforward-inhibition functionally segregates interneuron activity

    Science.gov (United States)

    Coddington, Luke T.; Rudolph, Stephanie; Lune, Patrick Vande; Overstreet-Wadiche, Linda; Wadiche, Jacques I.

    2013-01-01

    Summary Neurotransmitter spillover represents a form of neural transmission not restricted to morphologically defined synaptic connections. Communication between climbing fibers (CFs) and molecular layer interneurons (MLIs) in the cerebellum is mediated exclusively by glutamate spillover. Here, we show how CF stimulation functionally segregates MLIs based on their location relative to glutamate release. Excitation of MLIs that reside within the domain of spillover diffusion coordinates inhibition of MLIs outside the diffusion limit. CF excitation of MLIs is dependent on extrasynaptic NMDA receptors that enhance the spatial and temporal spread of CF signaling. Activity mediated by functionally segregated MLIs converges onto neighboring Purkinje cells (PCs) to generate a long-lasting biphasic change in inhibition. These data demonstrate how glutamate release from single CFs modulates excitability of neighboring PCs, thus expanding the influence of CFs on cerebellar cortical activity in a manner not predicted by anatomical connectivity. PMID:23707614

  1. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  2. Vanillin Analogues o-Vanillin and 2,4,6-Trihydroxybenzaldehyde Inhibit NFĸB Activation and Suppress Growth of A375 Human Melanoma.

    Science.gov (United States)

    Marton, Annamária; Kúsz, Erzsébet; Kolozsi, Csongor; Tubak, Vilmos; Zagotto, Giuseppe; Buzás, Krisztina; Quintieri, Luigi; Vizler, Csaba

    2016-11-01

    Constitutive activation of nuclear factor kappa-B (NFĸB) is a hallmark of various cancer types, including melanoma. Chemotherapy may further increase tumour NFĸB activity, a phenomenon that, in turn, exacerbates drug resistance. This study aimed at preliminary screening of a panel of aromatic aldehydes, including vanillin, for cytotoxicity and suppression of tumour cell NFĸB activity. The cytotoxic and NFĸB-inhibitory effects of 10 aromatic aldehydes, including vanillin, were investigated in cultured A375 human melanoma cells. Each compound was assayed alone and in combination with the model NFĸB-activating drug doxorubicin. The most promising analogues were then tested alone and in combination with 4-hydroperoxycyclophosphamide in vitro, and with cyclophosphamide in mice bearing A375 xenografts. The vanillin analogues o-vanillin and 2,4,6-trihydroxybenzaldehyde exhibited cytotoxicity against cultured A375 cells, and inhibited doxorubicin- and 4-hydroperoxycyclophosphamide-induced NFĸB activation. They also suppressed A375 cell growth in mice. o-vanillin and 2,4,6-trihydroxybenzaldehyde deserve further evaluation as potential anticancer drugs. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Ursodeoxycholic acid pretreatment reduces oral bioavailability of the multiple drug resistance-associated protein 2 substrate baicalin in rats.

    Science.gov (United States)

    Wu, Tao; Li, Xi-Ping; Xu, Yan-Jiao; Du, Guang; Liu, Dong

    2013-11-01

    Baicalin is a major bioactive component of Scutellaria baicalensis and a substrate of multiple drug resistance-associated protein 2. Expression of multiple drug resistance-associated protein 2 is regulated by NF-E2-related factor 2. The aim of this study was to explore whether ursodeoxycholic acid, an NF-E2-related factor 2 activator, could influence the oral bioavailability of baicalin. A single dose of baicalin (200 mg/kg) was given orally to rats pretreated with ursodeoxycholic acid (75 mg/kg and 150 mg/kg, per day, intragastrically) or normal saline (per day, intragastrically) for six consecutive days. The plasma concentration of baicalin was measured with the HPLC method. The result indicated that the oral bioavailability of baicalin was significantly and dose-dependently reduced in rats pretreated with ursodeoxycholic acid. Compared with control rats, the mean area under concentration-time curve of baicalin was reduced from 13.25 ± 0.24 mg/L h to 7.62 ± 0.15 mg/L h and 4.97 ± 0.21 mg/L h, and the C(max) value was decreased from 1.31 ± 0.03 mg/L to 0.62 ± 0.05 mg/L and 0.36 ± 0.04 mg/L in rats pretreated with ursodeoxycholic acid at doses of 75 mg/kg and 150 mg/kg, respectively, for six consecutive days. Hence, ursodeoxycholic acid treatment reduced the oral bioavailability of baicalin in rats, probably due to the enhanced efflux of baicalin from the intestine and liver by multiple drug resistance-associated protein 2. Georg Thieme Verlag KG Stuttgart · New York.

  4. Artemisinin inhibits chloroplast electron transport activity: mode of action.

    Directory of Open Access Journals (Sweden)

    Adyasha Bharati

    Full Text Available Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo, behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the Q(B; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth.

  5. In Vitro Susceptibilities of Wild and Drug Resistant Leishmania donovani Amastigote Stages to Andrographolide Nanoparticle: Role of Vitamin E Derivative TPGS for Nanoparticle Efficacy

    Science.gov (United States)

    Mondal, Subhasish; Roy, Partha; Das, Suvadra; Halder, Asim; Mukherjee, Arup; Bera, Tanmoy

    2013-01-01

    Visceral leishmaniasis (VL) is a chronic protozoan infection in humans associated with significant global morbidity and mortality. There is an urgent need to develop drugs and strategy that will improve therapeutic response for effective clinical treatment of drug resistant VL. To address this need, andrographolide (AG) nanoparticles were designed with P-gp efflux inhibitor vitamin E TPGS (D-α-tocopheryl polyethyleneglycol 1000 succinate) for sensitivity against drug resistant Leishmania strains. AG loaded PLGA (50∶50) nanoparticles (AGnps) stabilized by vitamin E TPGS were prepared for delivery into macrophage cells infested with sensitive and drug resistant amastigotes of Leishmania parasites. Physico-chemical characterization of AGnps by photon correlation spectroscopy exhibited an average particle size of 179.6 nm, polydispersity index of 0.245 and zeta potential of −37.6 mV. Atomic force microscopy and transmission electron microscopy visualization revealed spherical nanoparticles with smooth surfaces. AGnps displayed sustained AG release up to 288 hours as well as minimal particle aggregation and drug loss even after three months study period. Antileishmanial activity as revealed from selectivity index in wild-type strain was found to be significant for AGnp with TPGS in about one-tenth of the dosage of the free AG and one-third of the dosage of the AGnp without TPGS. Similar observations were also found in case of in vitro generated drug resistant and field isolated resistant strains of Leishmania. Cytotoxicity of AGnp with and without TPGS was significantly less than standard antileishmanial chemotherapeutics like amphotericin B, paromomycin or sodium stibogluconate. Macrophage uptake of AGnps was almost complete within one hour as evident from fluorescent microscopy studies. Thus, based on these observations, it can be concluded that the low-selectivity of AG in in vitro generated drug resistant and field isolated resistant strains was improved in

  6. In vitro susceptibilities of wild and drug resistant leishmania donovani amastigote stages to andrographolide nanoparticle: role of vitamin E derivative TPGS for nanoparticle efficacy.

    Directory of Open Access Journals (Sweden)

    Subhasish Mondal

    Full Text Available Visceral leishmaniasis (VL is a chronic protozoan infection in humans associated with significant global morbidity and mortality. There is an urgent need to develop drugs and strategy that will improve therapeutic response for effective clinical treatment of drug resistant VL. To address this need, andrographolide (AG nanoparticles were designed with P-gp efflux inhibitor vitamin E TPGS (D-α-tocopheryl polyethyleneglycol 1000 succinate for sensitivity against drug resistant Leishmania strains. AG loaded PLGA (50∶50 nanoparticles (AGnps stabilized by vitamin E TPGS were prepared for delivery into macrophage cells infested with sensitive and drug resistant amastigotes of Leishmania parasites. Physico-chemical characterization of AGnps by photon correlation spectroscopy exhibited an average particle size of 179.6 nm, polydispersity index of 0.245 and zeta potential of -37.6 mV. Atomic force microscopy and transmission electron microscopy visualization revealed spherical nanoparticles with smooth surfaces. AGnps displayed sustained AG release up to 288 hours as well as minimal particle aggregation and drug loss even after three months study period. Antileishmanial activity as revealed from selectivity index in wild-type strain was found to be significant for AGnp with TPGS in about one-tenth of the dosage of the free AG and one-third of the dosage of the AGnp without TPGS. Similar observations were also found in case of in vitro generated drug resistant and field isolated resistant strains of Leishmania. Cytotoxicity of AGnp with and without TPGS was significantly less than standard antileishmanial chemotherapeutics like amphotericin B, paromomycin or sodium stibogluconate. Macrophage uptake of AGnps was almost complete within one hour as evident from fluorescent microscopy studies. Thus, based on these observations, it can be concluded that the low-selectivity of AG in in vitro generated drug resistant and field isolated resistant strains was

  7. Small-molecule synthetic compound norcantharidin reverses multi-drug resistance by regulating Sonic hedgehog signaling in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    Full Text Available Multi-drug resistance (MDR, an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC transporters and activated Sonic hedgehog (Shh signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX, we examined the effect and mechanism of norcantharidin (NCTD, a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S and DOX-resistant (MCF-7R cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.

  8. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background.

    Directory of Open Access Journals (Sweden)

    Saskia Decuypere

    Full Text Available The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L. donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread

  9. Differential inhibition of ex-vivo tumor kinase activity by vemurafenib in BRAF(V600E and BRAF wild-type metastatic malignant melanoma.

    Directory of Open Access Journals (Sweden)

    Andliena Tahiri

    Full Text Available Treatment of metastatic malignant melanoma patients harboring BRAF(V600E has improved drastically after the discovery of the BRAF inhibitor, vemurafenib. However, drug resistance is a recurring problem, and prognoses are still very bad for patients harboring BRAF wild-type. Better markers for targeted therapy are therefore urgently needed.In this study, we assessed the individual kinase activity profiles in 26 tumor samples obtained from patients with metastatic malignant melanoma using peptide arrays with 144 kinase substrates. In addition, we studied the overall ex-vivo inhibitory effects of vemurafenib and sunitinib on kinase activity status.Overall kinase activity was significantly higher in lysates from melanoma tumors compared to normal skin tissue. Furthermore, ex-vivo incubation with both vemurafenib and sunitinib caused significant decrease in phosphorylation of kinase substrates, i.e kinase activity. While basal phosphorylation profiles were similar in BRAF wild-type and BRAF(V600E tumors, analysis with ex-vivo vemurafenib treatment identified a subset of 40 kinase substrates showing stronger inhibition in BRAF(V600E tumor lysates, distinguishing the BRAF wild-type and BRAF(V600E tumors. Interestingly, a few BRAF wild-type tumors showed inhibition profiles similar to BRAF(V600E tumors. The kinase inhibitory effect of vemurafenib was subsequently analyzed in cell lines harboring different BRAF mutational status with various vemurafenib sensitivity in-vitro.Our findings suggest that multiplex kinase substrate array analysis give valuable information about overall tumor kinase activity. Furthermore, intra-assay exposure to kinase inhibiting drugs may provide a useful tool to study mechanisms of resistance, as well as to identify predictive markers.

  10. Emotion potentiates response activation and inhibition in masked priming.

    Science.gov (United States)

    Bocanegra, Bruno R; Zeelenberg, René

    2012-01-01

    Previous studies have shown that emotion can have 2-fold effects on perception. At the object-level, emotional stimuli benefit from a stimulus-specific boost in visual attention at the relative expense of competing stimuli. At the visual feature-level, recent findings indicate that emotion may inhibit the processing of small visual details and facilitate the processing of coarse visual features. In the present study, we investigated whether emotion can boost the activation and inhibition of automatic motor responses that are generated prior to overt perception. To investigate this, we tested whether an emotional cue affects covert motor responses in a masked priming task. We used a masked priming paradigm in which participants responded to target arrows that were preceded by invisible congruent or incongruent prime arrows. In the standard paradigm, participants react faster, and commit fewer errors responding to the directionality of target arrows, when they are preceded by congruent vs. incongruent masked prime arrows (positive congruency effect, PCE). However, as prime-target SOAs increase, this effect reverses (negative congruency effect, NCE). These findings have been explained as evidence for an initial activation and a subsequent inhibition of a partial response elicited by the masked prime arrow. Our results show that the presentation of fearful face cues, compared to neutral face cues, increased the size of both the PCE and NCE, despite the fact that the primes were invisible. This is the first demonstration that emotion prepares an individual's visuomotor system for automatic activation and inhibition of motor responses in the absence of visual awareness.

  11. COBRA1 inhibits AP-1 transcriptional activity in transfected cells

    International Nuclear Information System (INIS)

    Zhong Hongjun; Zhu Jianhua; Zhang Hao; Ding Lihua; Sun Yan; Huang Cuifen; Ye Qinong

    2004-01-01

    Mutations in the breast cancer susceptibility gene (BRCA1) account for a significant proportion of hereditary breast and ovarian cancers. Cofactor of BRCA1 (COBRA1) was isolated as a BRCA1-interacting protein and exhibited a similar chromatin reorganizing activity to that of BRCA1. However, the biological role of COBRA1 remains largely unexplored. Here, we report that ectopic expression of COBRA1 inhibited activator protein 1 (AP-1) transcriptional activity in transfected cells in a dose-dependent manner, whereas reduction of endogenous COBRA1 with a small interfering RNA significantly enhanced AP-1-mediated transcriptional activation. COBRA1 physically interacted with the AP-1 family members, c-Jun and c-Fos, and the middle region of COBRA1 bound to c-Fos. Lack of c-Fos binding site in the COBRA1 completely abolished the COBRA1 inhibition of AP-1 trans-activation. These findings suggest that COBRA1 may directly modulate AP-1 pathway and, therefore, may play important roles in cell proliferation, differentiation, apoptosis, and oncogenesis

  12. Pairwise and higher-order correlations among drug-resistance mutations in HIV-1 subtype B protease

    Directory of Open Access Journals (Sweden)

    Morozov Alexandre V

    2009-08-01

    Full Text Available Abstract Background The reaction of HIV protease to inhibitor therapy is characterized by the emergence of complex mutational patterns which confer drug resistance. The response of HIV protease to drugs often involves both primary mutations that directly inhibit the action of the drug, and a host of accessory resistance mutations that may occur far from the active site but may contribute to restoring the fitness or stability of the enzyme. Here we develop a probabilistic approach based on connected information that allows us to study residue, pair level and higher-order correlations within the same framework. Results We apply our methodology to a database of approximately 13,000 sequences which have been annotated by the treatment history of the patients from which the samples were obtained. We show that including pair interactions is essential for agreement with the mutational data, since neglect of these interactions results in order-of-magnitude errors in the probabilities of the simultaneous occurence of many mutations. The magnitude of these pair correlations changes dramatically between sequences obtained from patients that were or were not exposed to drugs. Higher-order effects make a contribution of as much as 10% for residues taken three at a time, but increase to more than twice that for 10 to 15-residue groups. The sequence data is insufficient to determine the higher-order effects for larger groups. We find that higher-order interactions have a significant effect on the predicted frequencies of sequences with large numbers of mutations. While relatively rare, such sequences are more prevalent after multi-drug therapy. The relative importance of these higher-order interactions increases with the number of drugs the patient had been exposed to. Conclusion Correlations are critical for the understanding of mutation patterns in HIV protease. Pair interactions have substantial qualitative effects, while higher-order interactions are

  13. Progress of implementation of the World Health Organization strategy for HIV drug resistance control in Latin America and the Caribbean.

    Science.gov (United States)

    Ravasi, Giovanni; Jack, Noreen; Alonso Gonzalez, Mónica; Sued, Omar; Pérez-Rosales, María Dolores; Gomez, Bertha; Vila, Marcelo; Riego, Amalia del; Ghidinelli, Massimo

    2011-12-01

    By the end of 2010, Latin America and the Caribbean (LAC) achieved 63% antiretroviral treatment (ART) coverage. Measures to control HIV drug resistance (HIVDR) at the country level are recommended to maximize the efficacy and sustainability of ART programs. Since 2006, the Pan American Health Organization has supported implementation of the World Health Organization (WHO) strategy for HIVDR prevention and assessment through regional capacity-building activities and direct technical cooperation in 30 LAC countries. By 2010, 85 sites in 19 countries reported early warning indicators, providing information about the extent of potential drivers of drug resistance at the ART site. In 2009, 41.9% of sites did not achieve the WHO target of 100% appropriate first-line prescriptions; 6.3% still experienced high rates (> 20%) of loss to follow-up, and 16.2% had low retention of patients (< 70%) on first-line prescriptions in the first year of treatment. Stock-outs of antiretroviral drugs occurred at 22.7% of sites. Haiti, Guyana, and the Mesoamerican region are planning and implementing WHO HIVDR monitoring surveys or threshold surveys. New HIVDR surveillance tools for concentrated epidemics would promote further scale-up. Extending the WHO HIVDR lab network in Latin America is key to strengthening regional lab capacity to support quality assured HIVDR surveillance. The WHO HIVDR control strategy is feasible and can be rolled out in LAC. Integrating HIVDR activities in national HIV care and treatment plans is key to ensuring the sustainability of this strategy.

  14. Overcoming drug resistance of MCF-7/ADR cells by altering intracellular distribution of doxorubicin via MVP knockdown with a novel siRNA polyamidoamine-hyaluronic acid complex.

    Science.gov (United States)

    Han, Min; Lv, Qing; Tang, Xin-Jiang; Hu, Yu-Lan; Xu, Dong-Hang; Li, Fan-Zhu; Liang, Wen-Quan; Gao, Jian-Qing

    2012-10-28

    Drug resistance is one of the critical reasons leading to failure in chemotherapy. Enormous studies have been focused on increasing intracellular drug accumulation through inhibiting P-glycoprotein (Pgp). Meanwhile, we found that major vault protein (MVP) may be also involved in drug resistance of human breast cancer MCF-7/ADR cells by transporting doxorubicin (DOX) from the action target (i.e. nucleus) to cytoplasma. Herein polyamidoamine (PAMAM) dendrimers was functionalized by a polysaccharide hyaluronic acid (HA) to effectively deliver DOX as well as MVP targeted small-interfering RNA (MVP-siRNA) to down regulate MVP expression and improve DOX chemotherapy in MCF-7/ADR cells. In comparison with DOX solution (IC50=48.5 μM), an enhanced cytotoxicity could be observed for DOX PAMAM-HA (IC50=11.3 μM) as well as enhanced tumor target, higher intracellular accumulation, increased blood circulating time and less in vivo toxicity. Furthermore, codelivery of siRNA and DOX by PAMAM-HA exhibited satisfactory gene silencing effect as well as enhanced stability and efficient intracellular delivery of siRNA, which allowed DOX access to nucleus and induced subsequent much more cytotoxicity than siRNA absent case as a result of MVP knockdown. This observation highlights a promising application of novel nanocarrier PAMAM-HA, which could co-deliver anticancer drug and siRNA, in reversing drug resistance by altering intracellular drug distribution. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. pH- and NIR Light-Responsive Polymeric Prodrug Micelles for Hyperthermia-Assisted Site-Specific Chemotherapy to Reverse Drug Resistance in Cancer Treatment.

    Science.gov (United States)

    Li, Zuhong; Wang, Haibo; Chen, Yangjun; Wang, Yin; Li, Huan; Han, Haijie; Chen, Tingting; Jin, Qiao; Ji, Jian

    2016-05-01

    Despite the exciting advances in cancer chemotherapy over past decades, drug resistance in cancer treatment remains one of the primary reasons for therapeutic failure. IR-780 loaded pH-responsive polymeric prodrug micelles with near infrared (NIR) photothermal effect are developed to circumvent the drug resistance in cancer treatment. The polymeric prodrug micelles are stable in physiological environment, while exhibit fast doxorubicin (DOX) release in acidic condition and significant temperature elevation under NIR laser irradiation. Phosphorylcholine-based biomimetic micellar shell and acid-sensitive drug conjugation endow them with prolonged circulation time and reduced premature drug release during circulation to conduct tumor site-specific chemotherapy. The polymeric prodrug micelles combined with NIR laser irradiation could significantly enhance intracellular DOX accumulation and synergistically induce the cell apoptosis in DOX-resistant MCF-7/ADR cells. Meanwhile, the tumor site-specific chemotherapy combined with hyperthermia effect induces significant inhibition of MCF-7/ADR tumor growth in tumor-bearing mice. These results demonstrate that the well-designed IR-780 loaded polymeric prodrug micelles for hyperthermia-assisted site-specific chemotherapy present an effective approach to reverse drug resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Polymyxin B in Combination with Enrofloxacin Exerts Synergistic Killing against Extensively Drug-Resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Lin, Yu-Wei; Yu, Heidi H; Zhao, Jinxin; Han, Mei-Ling; Zhu, Yan; Akter, Jesmin; Wickremasinghe, Hasini; Walpola, Hasini; Wirth, Veronika; Rao, Gauri G; Forrest, Alan; Velkov, Tony; Li, Jian

    2018-06-01

    Polymyxins are increasingly used as a last-resort class of antibiotics against extensively drug-resistant (XDR) Gram-negative bacteria. However, resistance to polymyxins can emerge with monotherapy. As nephrotoxicity is the major dose-limiting factor for polymyxin monotherapy, dose escalation to suppress the emergence of polymyxin resistance is not a viable option. Therefore, novel approaches are needed to preserve this last-line class of antibiotics. This study aimed to investigate the antimicrobial synergy of polymyxin B combined with enrofloxacin against Pseudomonas aeruginosa Static time-kill studies were conducted over 24 h with polymyxin B (1 to 4 mg/liter) and enrofloxacin (1 to 4 mg/liter) alone or in combination. Additionally, in vitro one-compartment model (IVM) and hollow-fiber infection model (HFIM) experiments were performed against P. aeruginosa 12196. Polymyxin B and enrofloxacin in monotherapy were ineffective against all of the P. aeruginosa isolates examined, whereas polymyxin B-enrofloxacin in combination was synergistic against P. aeruginosa , with ≥2 to 4 log 10 kill at 24 h in the static time-kill studies. In both IVM and HFIM, the combination was synergistic, and the bacterial counting values were below the limit of quantification on day 5 in the HFIM. A population analysis profile indicated that the combination inhibited the emergence of polymyxin resistance in P. aeruginosa 12196. The mechanism-based modeling suggests that the synergistic killing is a result of the combination of mechanistic and subpopulation synergy. Overall, this is the first preclinical study to demonstrate that the polymyxin-enrofloxacin combination is of considerable utility for the treatment of XDR P. aeruginosa infections and warrants future clinical evaluations. Copyright © 2018 American Society for Microbiology.

  17. Targeted therapy and personalized medicine in hepatocellular carcinoma: drug resistance, mechanisms, and treatment strategies

    Directory of Open Access Journals (Sweden)

    Galun D

    2017-07-01

    Full Text Available Danijel Galun,1,2 Tatjana Srdic-Rajic,3 Aleksandar Bogdanovic,1 Zlatibor Loncar,2,4 Marinko Zuvela1,2 1Hepato-Pancreato-Biliary Unit, University Clinic for Digestive Surgery, Clinical Center of Serbia, 2Medical School, University of Belgrade, 3Institute for Oncology and Radiology of Serbia/Unit for Experimental Oncology, 4Emergency Center, Clinical Center of Serbia, Belgrade, Serbia Abstract: Hepatocellular carcinoma (HCC is characterized by a growing number of new cases diagnosed each year that is nearly equal to the number of deaths from this cancer. In a majority of the cases, HCC is associated with the underlying chronic liver disease, and it is diagnosed in advanced stage of disease when curative treatment options are not applicable. Sorafenib is a treatment of choice for patients with performance status 1 or 2 and/or macrovascular invasion or extrahepatic spread, and regorafenib is the only systemic treatment found to provide survival benefit in HCC patients progressing on sorafenib treatment. Other drugs tested in different trials failed to demonstrate any benefit. Disappointing results of numerous trials testing the efficacy of various drugs indicate that HCC has low sensitivity to chemotherapy that is in great part caused by multidrug resistance. Immunotherapy for HCC is a new challenging treatment option and involves immune checkpoint inhibitors/antibody-based therapy and peptide-based vaccines. Another challenging approach is microRNA-based therapy that involves two strategies. The first aims to inhibit oncogenic miRNAs by using miRNA antagonists and the second strategy is miRNA replacement, which involves the reintroduction of a tumor-suppressor miRNA mimetic to restore a loss of function. Keywords: hepatocellular carcinoma, drug resistance, multimodal treatment, chemotherapy 

  18. MMS 1001 inhibits melanin synthesis via ERK activation.

    Science.gov (United States)

    Lee, Hyun-E; Song, Jiho; Kim, Su Yeon; Park, Kyoung-Chan; Min, Kyung Hoon; Kim, Dong-Seok

    2013-03-01

    Melanin plays major a role in pigmentation of hair, eyes, and skin in mammals. In this study, the inhibitory effects of MMS 1001 on alpha-MSH-stimulated melanogenesis were investigated in B16F10 melanoma cells. MMS 1001 did not show cytotoxic effects up to 10 microM. Melanin content and intracellular tyrosinase activity were inhibited by MMS 1001 treatment in a dose-dependent manner. In Western blot analysis, MITF expression was decreased by MMS 1001. In addition, tyrosinase expressions were also reduced after MMS 1001 treatment. Further results showed that the phosphorylation of ERK was induced by MMS 1001. Moreover, a specific MEK inhibitor, PD98059, abrogated the inhibitory effects of MMS 1001 on melanin production and tyrosinase expression. These results indicate that the hypopigmentary effects of MMS 1001 resulted from the inhibition of MITF and tyrosinase expression via phosphorylation of ERK. Thus, MMS 1001 could be developed as a new effective skin-whitening agent.

  19. HIV-1 evolution, drug resistance, and host genetics: The Indian scenario

    Directory of Open Access Journals (Sweden)

    U Shankarkumar

    2009-03-01

    Full Text Available U Shankarkumar, A Pawar, K GhoshNational Institute of Immunohaematology (ICMR, KEM Hospital, Parel, Mumbai, Maharashtra, IndiaAbstract: A regimen with varied side effects and compliance is of paramount importance to prevent viral drug resistance. Most of the drug-resistance studies, as well as interpretation algorithms, are based on sequence data from HIV-1 subtype B viruses. Increased resistance to antiretroviral drugs leads to poor prognosis by restricting treatment options. Due to suboptimal adherence to antiretroviral therapy there is an emergence of drug-resistant HIV-1 strains. The other factors responsible for this viral evolution are antiretroviral drug types and host genetics, especially major histocompatibility complex (MHC. Both primary and secondary drug resistances occur due to mutations in specific epitopes of viral protein regions which may influence the T cell recognition by immune system through MHC Class I and class II alleles. Mutations in viral epitopes enable the virus to escape the immune system. New drugs under clinical trials are being added but their exorbitant costs limit their access in developing countries. Thus the environmental consequences and, the impact of both viral and host genetic variations on the therapy in persons infected with HIV-1 clade C from India need to be determined.Keywords: HIV-1 C drug resistance, virus adaptation, HARRT, India

  20. Use of Lot Quality Assurance Sampling to Ascertain Levels of Drug Resistant Tuberculosis in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Julia Jezmir

    Full Text Available To classify the prevalence of multi-drug resistant tuberculosis (MDR-TB in two different geographic settings in western Kenya using the Lot Quality Assurance Sampling (LQAS methodology.The prevalence of drug resistance was classified among treatment-naïve smear positive TB patients in two settings, one rural and one urban. These regions were classified as having high or low prevalence of MDR-TB according to a static, two-way LQAS sampling plan selected to classify high resistance regions at greater than 5% resistance and low resistance regions at less than 1% resistance.This study classified both the urban and rural settings as having low levels of TB drug resistance. Out of the 105 patients screened in each setting, two patients were diagnosed with MDR-TB in the urban setting and one patient was diagnosed with MDR-TB in the rural setting. An additional 27 patients were diagnosed with a variety of mono- and poly- resistant strains.Further drug resistance surveillance using LQAS may help identify the levels and geographical distribution of drug resistance in Kenya and may have applications in other countries in the African Region facing similar resource constraints.

  1. Drug resistance pattern of M. tuberculosis in category II treatment failure pulmonary tuberculosis patients

    Directory of Open Access Journals (Sweden)

    Fahmida Rahman

    2013-01-01

    Full Text Available This study was designed to determine the extent of drug resistance of M. tuberculosis (MTB isolated from category II treatment failure pulmonary tuberculosis (PTB patients. A total of 100 Ziehl-Neelsen (Z-N smear positive category II failure PTB patients were included in this study. Sputum culture was done in Lowenstein-Jensen (L-J media. Conventional proportion method on Lowenstein-Jensen (L-J media was used to determine the drug susceptibility of M. tuberculosis to isoniazid (INH, rifampicin (RMP, ofloxacin (OFX and kanamycin (KA. Out of 100 sputum samples, a total of 87 samples were positive by culture. Drug susceptibility test (DST revealed that 82 (94.25% isolates were resistant to one or more anti -TB drugs. Resistance to isoniazide (INH, rifampicin (RMP, ofloxacin (OFX and kanamycin (KA was 94.25%, 82.75%, 29.90% and 3.45% respectively. Among these isolates, 79.31% and 3.45% isolates were multi-drug resistant (MDR and extended drug resistant (XDR M. tuberculosis respectively. High rate of anti-tubercular drug resistance was observed among the category II treatment failure TB patients. Ibrahim Med. Coll. J. 2013; 7(1: 9-11

  2. Treatment of a solid tumor using engineered drug-resistant immunocompetent cells and cytotoxic chemotherapy.

    Science.gov (United States)

    Dasgupta, Anindya; Shields, Jordan E; Spencer, H Trent

    2012-07-01

    Multimodal therapy approaches, such as combining chemotherapy agents with cellular immunotherapy, suffers from potential drug-mediated toxicity to immune effector cells. Overcoming such toxic effects of anticancer cellular products is a potential critical barrier to the development of combined therapeutic approaches. We are evaluating an anticancer strategy that focuses on overcoming such a barrier by genetically engineering drug-resistant variants of immunocompetent cells, thereby allowing for the coadministration of cellular therapy with cytotoxic chemotherapy, a method we refer to as drug-resistant immunotherapy (DRI). The strategy relies on the use of cDNA sequences that confer drug resistance and recombinant lentiviral vectors to transfer nucleic acid sequences into immunocompetent cells. In the present study, we evaluated a DRI-based strategy that incorporates the immunocompetent cell line NK-92, which has intrinsic antitumor properties, genetically engineered to be resistant to both temozolomide and trimetrexate. These immune effector cells efficiently lysed neuroblastoma cell lines, which we show are also sensitive to both chemotherapy agents. The antitumor efficacy of the DRI strategy was demonstrated in vivo, whereby neuroblastoma-bearing NOD/SCID/γ-chain knockout (NSG) mice treated with dual drug-resistant NK-92 cell therapy followed by dual cytotoxic chemotherapy showed tumor regression and significantly enhanced survival compared with animals receiving either nonengineered cell-based therapy and chemotherapy, immunotherapy alone, or chemotherapy alone. These data show there is a benefit to using drug-resistant cellular therapy when combined with cytotoxic chemotherapy approaches.

  3. Use of Lot Quality Assurance Sampling to Ascertain Levels of Drug Resistant Tuberculosis in Western Kenya.

    Science.gov (United States)

    Jezmir, Julia; Cohen, Ted; Zignol, Matteo; Nyakan, Edwin; Hedt-Gauthier, Bethany L; Gardner, Adrian; Kamle, Lydia; Injera, Wilfred; Carter, E Jane

    2016-01-01

    To classify the prevalence of multi-drug resistant tuberculosis (MDR-TB) in two different geographic settings in western Kenya using the Lot Quality Assurance Sampling (LQAS) methodology. The prevalence of drug resistance was classified among treatment-naïve smear positive TB patients in two settings, one rural and one urban. These regions were classified as having high or low prevalence of MDR-TB according to a static, two-way LQAS sampling plan selected to classify high resistance regions at greater than 5% resistance and low resistance regions at less than 1% resistance. This study classified both the urban and rural settings as having low levels of TB drug resistance. Out of the 105 patients screened in each setting, two patients were diagnosed with MDR-TB in the urban setting and one patient was diagnosed with MDR-TB in the rural setting. An additional 27 patients were diagnosed with a variety of mono- and poly- resistant strains. Further drug resistance surveillance using LQAS may help identify the levels and geographical distribution of drug resistance in Kenya and may have applications in other countries in the African Region facing similar resource constraints.

  4. Extensively Drug-Resistant Tuberculosis: Principles of Resistance, Diagnosis, and Management.

    Science.gov (United States)

    Wilson, John W; Tsukayama, Dean T

    2016-04-01

    Extensively drug-resistant (XDR) tuberculosis (TB) is an unfortunate by-product of mankind's medical and pharmaceutical ingenuity during the past 60 years. Although new drug developments have enabled TB to be more readily curable, inappropriate TB management has led to the emergence of drug-resistant disease. Extensively drug-resistant TB describes Mycobacterium tuberculosis that is collectively resistant to isoniazid, rifampin, a fluoroquinolone, and an injectable agent. It proliferates when established case management and infection control procedures are not followed. Optimized treatment outcomes necessitate time-sensitive diagnoses, along with expanded combinations and prolonged durations of antimicrobial drug therapy. The challenges to public health institutions are immense and most noteworthy in underresourced communities and in patients coinfected with human immunodeficiency virus. A comprehensive and multidisciplinary case management approach is required to optimize outcomes. We review the principles of TB drug resistance and the risk factors, diagnosis, and managerial approaches for extensively drug-resistant TB. Treatment outcomes, cost, and unresolved medical issues are also discussed. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  5. [Survey on the transmission of HIV drug resistance in Kunming, Yunnan province in 2010].

    Science.gov (United States)

    Chen, Min; Ma, Yan-ling; Chu, Cheng-xia; Xing, Hui; Xu, Yan-sheng; Su, Ying-zhen; Yang, Ying; Chen, Hui-chao; Luo, Hong-bing; Jia, Man-hong; Lu, Lin

    2012-01-01

    To study the HIV drug resistance (HIVDR) transmission in Kunming city of Yunnan province in 2010. Referring to the guidelines for HIV drug resistance threshold survey (HIVDR-TS) set by WHO, 62 plasma samples of recently reported HIV-infected individuals who were older than 25 years of age, were collected from January to August 2010. Genotyping of pol genetic mutations associated with HIVDR with reverse transcriptional PCR was performed and the prevalence of HIV-1 drug resistance transmission was evaluated. Of the 62 plasma samples, 54 were successfully sequenced and genotyped on pol sequence. Based on the pol sequences, HIV subtypes including CRF08_BC (53.2%), CRF07_BC (25.5%), CRF01_AE (19.1%) and C (2.1%) were identified. According to the time of sampling, the first 47 sequenced samples were used for drug resistance prevalence analysis. A protease inhibitor (PI) relative mutation was found in one sample. Based on the WHO standard, the prevalence of transmitted HIV-1 drug resistance was scientific management to AIDS patients seemed to be quite important.

  6. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    Juan D Unciti-Broceta

    2015-06-01

    Full Text Available African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.

  7. Carbapenems to Treat Multidrug and Extensively Drug-Resistant Tuberculosis: A Systematic Review.

    Science.gov (United States)

    Sotgiu, Giovanni; D'Ambrosio, Lia; Centis, Rosella; Tiberi, Simon; Esposito, Susanna; Dore, Simone; Spanevello, Antonio; Migliori, Giovanni Battista

    2016-03-12

    Carbapenems (ertapenem, imipenem, meropenem) are used to treat multidrug-resistant (MDR-) and extensively drug-resistant tuberculosis (XDR-TB), even if the published evidence is limited, particularly when it is otherwise difficult to identify the recommended four active drugs to be included in the regimen. No systematic review to date has ever evaluated the efficacy, safety, and tolerability of carbapenems. A search of peer-reviewed, scientific evidence was carried out, aimed at evaluating the efficacy/effectiveness, safety, and tolerability of carbapenem-containing regimens in individuals with pulmonary/extra-pulmonary disease which was bacteriologically confirmed as M/XDR-TB. We used PubMed to identify relevant full-text, English manuscripts up to the 20 December 2015, excluding editorials and reviews. Seven out of 160 studies satisfied the inclusion criteria: two on ertapenem, one on imipenem, and four on meropenem, all published between 2005 and 2016. Of seven studies, six were retrospective, four were performed in a single center, two enrolled children, two had a control group, and six reported a proportion of XDR-TB cases higher than 20%. Treatment success was higher than 57% in five studies with culture conversion rates between 60% and 94.8%. The safety and tolerability is very good, with the proportion of adverse events attributable to carbapenems below 15%.

  8. Pathogenicity of pan-drug-resistant Serratia marcescens harbouring blaNDM-1.

    Science.gov (United States)

    Gruber, Teresa M; Göttig, Stephan; Mark, Laura; Christ, Sara; Kempf, Volkhard A J; Wichelhaus, Thomas A; Hamprecht, Axel

    2015-04-01

    To characterize a pan-drug-resistant Serratia marcescens clinical isolate carrying the New Delhi metallo-β-lactamase (NDM)-1. The presence of β-lactamase genes was examined by PCR and sequencing. Antibiotic susceptibility was determined by antibiotic gradient test. Transformation assays, transconjugation assays, PFGE and PCR-based replicon typing were used for plasmid analysis. Horizontal gene transfer was evaluated by liquid mating using Escherichia coli J53 as a recipient. Pathogenicity of NDM-1 expressing S. marcescens was analysed using the Galleria mellonella infection model. S. marcescens isolate SM1890 was non-susceptible to all tested antibiotics, with minocycline retaining intermediate activity. blaNDM-1 was located on a 140 kb IncA/C-type plasmid which was transferable to E. coli and Klebsiella pneumoniae by conjugation. The LD50 of the NDM-positive, SM1890 isolate was higher than that of other, NDM-1 negative, S. marcescens strains. The presence of a blaNDM-1-harbouring IncA/C plasmid resulted in marked resistance to β-lactam antibiotics, but had no significant effect on virulence of isogenic strains. Because of the intrinsic resistance of S. marcescens to colistin and reduced susceptibility to tigecycline, treatment options for infections by NDM-1-positive isolates are extremely limited in this species. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. NANOMEDICINE: will it offer possibilities to overcome multiple drug resistance in cancer?

    Science.gov (United States)

    Friberg, Sten; Nyström, Andreas M

    2016-03-09

    This review is written with the purpose to review the current nanomedicine literature and provide an outlook on the developments in utilizing nanoscale drug constructs in treatment of solid cancers as well as in the potential treatment of multi-drug resistant cancers. No specific design principles for this review have been utilized apart from our active choice to avoid results only based on in vitro studies. Few drugs based on nanotechnology have progressed to clinical trials, since most are based only on in vitro experiments which do not give the necessary data for the research to progress towards pre-clinical studies. The area of nanomedicine has indeed spark much attention and holds promise for improved future therapeutics in the treatment of solid cancers. However, despite much investment few targeted therapeutics have successfully progressed to early clinical trials, indicating yet again that the human body is complicated and that much more understanding of the fundamentals of receptor interactions, physics of nanomedical constructs and their circulation in the body is indeed needed. We believe that nanomedical therapeutics can allow for more efficient treatments of resistant cancers, and may well be a cornerstone for RNA based therapeutics in the future given their general need for shielding from the harsh environment in the blood stream.

  10. Social and clinical predictors of drug-resistant tuberculosis in a public hospital, Monterrey, Mexico.

    Science.gov (United States)

    Young, Bonnie N; Burgos, Marcos; Handal, Alexis J; Baker, Jack; Rendón, Adrian; Rosas-Taraco, Adrian; Long, Jeffrey; Hunley, Keith

    2014-10-01

    Drug-resistant tuberculosis (DRTB) is steadily increasing in Mexico, but little is known of patient risk factors in the Mexico-United States border region. This preliminary case-control study included 95 patients with active pulmonary TB with drug susceptibility results attending the José E. González University Hospital in the urban hub of Nuevo León-the Monterrey Metropolitan Area. We report potential social and clinical risk factors of DRTB among this hospital-based sample. We collected data through face-to-face interviews and medical record reviews from 25 cases with DRTB and 70 drug-sensitive controls. DNA was collected to assess an effect of genetic ancestry on DRTB by using a panel of 291,917 genomic markers. We calculated crude and multivariate logistic regression. After adjusting for potential confounding factors, we found that prior TB treatment (odds ratio, 4.5; 95% confidence interval, 0.9-21.1) and use of crack cocaine (odds ratio, 4.6; 95% confidence interval, 1.1-18.7) were associated with DRTB. No other variables, including genetic ancestry and comorbidities, were predictive. Health care providers may benefit from recognizing predictors of DRTB in regions where routine drug susceptibility testing is limited. Prior TB treatment and illicit drug use, specifically crack cocaine, may be important risk factors for DRTB in this region. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Pathological histone acetylation in Parkinson's disease: Neuroprotection and inhibition of microglial activation through SIRT 2 inhibition.

    Science.gov (United States)

    Harrison, Ian F; Smith, Andrew D; Dexter, David T

    2018-02-14

    Parkinson's disease (PD) is associated with degeneration of nigrostriatal neurons due to intracytoplasmic inclusions composed predominantly of a synaptic protein called α-synuclein. Accumulations of α-synuclein are thought to 'mask' acetylation sites on histone proteins, inhibiting the action of histone acetyltransferase (HAT) enzymes in their equilibrium with histone deacetylases (HDACs), thus deregulating the dynamic control of gene transcription. It is therefore hypothesised that the misbalance in the actions of HATs/HDACs in neurodegeneration can be rectified with the use of HDAC inhibitors, limiting the deregulation of transcription and aiding neuronal homeostasis and neuroprotection in disorders such as PD. Here we quantify histone acetylation in the Substantia Nigra pars compacta (SNpc) in the brains of control, early and late stage PD cases to determine if histone acetylation is a function of disease progression. PD development is associated with Braak-dependent increases in histone acetylation. Concurrently, we show that as expected disease progression is associated with reduced markers of dopaminergic neurons and increased markers of activated microglia. We go on to demonstrate that in vitro, degenerating dopaminergic neurons exhibit histone hypoacetylation whereas activated microglia exhibit histone hyperacetylation. This suggests that the disease-dependent increase in histone acetylation observed in human PD cases is likely a combination of the contributions of both degenerating dopaminergic neurons and infiltrating activated microglia. The HDAC SIRT 2 has become increasingly implicated as a novel target for mediation of neuroprotection in PD: the neuronal and microglial specific effects of its inhibition however remain unclear. We demonstrate that SIRT 2 expression in the SNpc of PD brains remains relatively unchanged from controls and that SIRT 2 inhibition, via AGK2 treatment of neuronal and microglial cultures, results in neuroprotection of

  12. Metformin inhibits glutaminase activity and protects against hepatic encephalopathy.

    Directory of Open Access Journals (Sweden)

    Javier Ampuero

    Full Text Available AIM: To investigate the influence of metformin use on liver dysfunction and hepatic encephalopathy in a retrospective cohort of diabetic cirrhotic patients. To analyze the impact of metformin on glutaminase activity and ammonia production in vitro. METHODS: Eighty-two cirrhotic patients with type 2 diabetes were included. Forty-one patients were classified as insulin sensitizers experienced (metformin and 41 as controls (cirrhotic patients with type 2 diabetes mellitus without metformin treatment. Baseline analysis included: insulin, glucose, glucagon, leptin, adiponectin, TNFr2, AST, ALT. HOMA-IR was calculated. Baseline HE risk was calculated according to minimal hepatic encephalopathy, oral glutamine challenge and mutations in glutaminase gene. We performed an experimental study in vitro including an enzymatic activity assay where glutaminase inhibition was measured according to different metformin concentrations. In Caco2 cells, glutaminase activity inhibition was evaluated by ammonia production at 24, 48 and 72 hours after metformina treatment. RESULTS: Hepatic encephalopathy was diagnosed during follow-up in 23.2% (19/82: 4.9% (2/41 in patients receiving metformin and 41.5% (17/41 in patients without metformin treatment (logRank 9.81; p=0.002. In multivariate analysis, metformin use [H.R.11.4 (95% CI: 1.2-108.8; p=0.034], age at diagnosis [H.R.1.12 (95% CI: 1.04-1.2; p=0.002], female sex [H.R.10.4 (95% CI: 1.5-71.6; p=0.017] and HE risk [H.R.21.3 (95% CI: 2.8-163.4; p=0.003] were found independently associated with hepatic encephalopathy. In the enzymatic assay, glutaminase activity inhibition reached 68% with metformin 100 mM. In Caco2 cells, metformin (20 mM decreased glutaminase activity up to 24% at 72 hours post-treatment (p<0.05. CONCLUSIONS: Metformin was found independently related to overt hepatic encephalopathy in patients with type 2 diabetes mellitus and high risk of hepatic encephalopathy. Metformin inhibits glutaminase

  13. Diethyl 2-(Phenylcarbamoylphenyl Phosphorothioates: Synthesis, Antimycobacterial Activity and Cholinesterase Inhibition

    Directory of Open Access Journals (Sweden)

    Jarmila Vinšová

    2014-05-01

    Full Text Available A new series of 27 diethyl 2-(phenylcarbamoylphenyl phosphorothioates (thiophosphates was synthesized, characterized by NMR, IR and CHN analyses and evaluated against Mycobacterium tuberculosis H37Rv, Mycobacterium avium and two strains of Mycobacterium kansasii. The best activity against M. tuberculosis was found for O-{4-bromo-2-[(3,4-dichlorophenylcarbamoyl]phenyl} O,O-diethyl phosphorothioate (minimum inhibitory concentration of 4 µM. The highest activity against nontuberculous mycobacteria was exhibited by O-(5-chloro-2-{[4-(trifluoromethylphenyl]carbamoyl}-phenyl O,O-diethyl phosphorothioate with MIC values from 16 µM. Prepared thiophosphates were also evaluated against acetylcholinesterase from electric eel and butyrylcholinesterase from equine serum. Their inhibitory activity was compared to that of the known cholinesterases inhibitors galanthamine and rivastigmine. All tested compounds showed a higher (for AChE inhibition and comparable (for BChE inhibition activity to that of rivastigmine, with IC50s within the 8.04 to 20.2 µM range.

  14. AVS-1357 inhibits melanogenesis via prolonged ERK activation.

    Science.gov (United States)

    Kim, Dong-Seok; Lee, Hyun-Kyung; Park, Seo-Hyoung; Chae, Chong Hak; Park, Kyoung-Chan

    2009-08-01

    In this study, we demonstrated that a derivative of imidazole, AVS-1357, is a novel skin-whitening compound. AVS-1357 was found to significantly inhibit melanin production in a dose-dependent manner; however, it did not directly inhibit tyrosinase. Furthermore, we found that AVS-1357 induced prolonged activation of extracellular signal-regulated kinase (ERK) and Akt, while it downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase. It has been reported that the activation of ERK and/or Akt is involved in melanogenesis. Therefore, we examined the effects of AVS-1357 on melanogenesis in the absence or presence of PD98059 (a specific inhibitor of the ERK pathway) and/or LY294002 (a specific inhibitor of the Akt pathway). PD98059 dramatically increased melanogenesis, whereas LY294002 had no effect. Furthermore, PD98059 attenuated AVS-1357 induced ERK activation, as well as the downregulation of MITF and tyrosinase. These findings suggest that the effects of AVS-1357 occur via downregulation of MITF and tyrosinase, which is caused by AVS-1357-induced prolonged ERK activation. Taken together, our results indicate that AVS-1357 has the potential as a new skin whitening agent.

  15. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    International Nuclear Information System (INIS)

    Asmis, Lars; Tanner, Felix C.; Sudano, Isabella; Luescher, Thomas F.; Camici, Giovanni G.

    2010-01-01

    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysis showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 ± 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% ± 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 ± 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.

  16. A manganese photosensitive tricarbonyl molecule [Mn(CO)3(tpa-κ3N)]Br enhances antibiotic efficacy in a multi-drug-resistant Escherichia coli.

    Science.gov (United States)

    Rana, Namrata; Jesse, Helen E; Tinajero-Trejo, Mariana; Butler, Jonathan A; Tarlit, John D; von Und Zur Muhlen, Milena L; Nagel, Christoph; Schatzschneider, Ulrich; Poole, Robert K

    2017-10-01

    Carbon monoxide-releasing molecules (CORMs) are a promising class of new antimicrobials, with multiple modes of action that are distinct from those of standard antibiotics. The relentless increase in antimicrobial resistance, exacerbated by a lack of new antibiotics, necessitates a better understanding of how such novel agents act and might be used synergistically with established antibiotics. This work aimed to understand the mechanism(s) underlying synergy between a manganese-based photoactivated carbon monoxide-releasing molecule (PhotoCORM), [Mn(CO)3(tpa-κ 3 N)]Br [tpa=tris(2-pyridylmethyl)amine], and various classes of antibiotics in their activities towards Escherichia coli EC958, a multi-drug-resistant uropathogen. The title compound acts synergistically with polymyxins [polymyxin B and colistin (polymyxin E)] by damaging the bacterial cytoplasmic membrane. [Mn(CO)3(tpa-κ 3 N)]Br also potentiates the action of doxycycline, resulting in reduced expression of tetA, which encodes a tetracycline efflux pump. We show that, like tetracyclines, the breakdown products of [Mn(CO)3(tpa-κ 3 N)]Br activation chelate iron and trigger an iron starvation response, which we propose to be a further basis for the synergies observed. Conversely, media supplemented with excess iron abrogated the inhibition of growth by doxycycline and the title compound. In conclusion, multiple factors contribute to the ability of this PhotoCORM to increase the efficacy of antibiotics in the polymyxin and tetracycline families. We propose that light-activated carbon monoxide release is not the sole basis of the antimicrobial activities of [Mn(CO)3(tpa-κ 3 N)]Br.

  17. Hypoxia inhibits colonic ion transport via activation of AMP kinase.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2012-02-01

    BACKGROUND AND AIMS: Mucosal hypoxia is a common endpoint for many pathological processes including ischemic colitis, colonic obstruction and anastomotic failure. Previous studies suggest that hypoxia modulates colonic mucosal function through inhibition of chloride secretion. However, the molecular mechanisms underlying this observation are poorly understood. AMP-activated protein kinase (AMPK) is a metabolic energy regulator found in a wide variety of cells and has been linked to cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride secretion in several different tissues. We hypothesized that AMPK mediates many of the acute effects of hypoxia on human and rat colonic electrolyte transport. METHODS: The fluorescent chloride indicator dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide was used to measure changes in intracellular chloride concentrations in isolated single rat colonic crypts. Ussing chamber experiments in human colonic mucosa were conducted to evaluate net epithelial ion transport. RESULTS: This study demonstrates that acute hypoxia inhibits electrogenic chloride secretion via AMPK mediated inhibition of CFTR. Pre-treatment of tissues with the AMPK inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo [1,5-a] pyrimidine (compound C) in part reversed the effects of acute hypoxia on chloride secretion. CONCLUSION: We therefore suggest that AMPK is a key component of the adaptive cellular response to mucosal hypoxia in the colon. Furthermore, AMPK may represent a potential therapeutic target in diseased states or in prevention of ischemic intestinal injury.

  18. Antioxidant Activity and Acetylcholinesterase Inhibition of Grape Skin Anthocyanin (GSA

    Directory of Open Access Journals (Sweden)

    Mehnaz Pervin

    2014-07-01

    Full Text Available We aimed to investigate the antioxidant and acetylcholinesterase inhibitory activities of the anthocyanin rich extract of grape skin. Grape skin anthocyanin (GSA neutralized free radicals in different test systems, such as 2,-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS and 2,2-diphenyl-1-picrylhydrazyl (DPPH assays, to form complexes with Fe2+ preventing 2,2'-azobis(2-amidinopropane dihydrochloride (AAPH-induced erythrocyte hemolysis and oxidative DNA damage. Moreover, GSA decreased reactive oxygen species (ROS generation in isolated mitochondria thus inhibiting 2',-7'-dichlorofluorescin (DCFH oxidation. In an in vivo study, female BALB/c mice were administered GSA, at 12.5, 25, and 50 mg per kg per day orally for 30 consecutive days. Herein, we demonstrate that GSA administration significantly elevated the level of antioxidant enzymes in mice sera, livers, and brains. Furthermore, GSA inhibited acetylcholinesterase (AChE in the in vitro assay with an IC50 value of 363.61 µg/mL. Therefore, GSA could be an excellent source of antioxidants and its inhibition of cholinesterase is of interest with regard to neurodegenerative disorders such as Alzheimer’s disease.

  19. vPARP Adjusts MVP Expression in Drug-resistant Cell Lines in Conjunction with MDR Proteins.

    Science.gov (United States)

    Wojtowicz, Karolina; Januchowski, Radoslaw; Nowicki, Michal; Zabel, Maciej

    2017-06-01

    The definition of vault (ribonucleoprotein particles) function remains highly complex. Vaults may cooperate with multidrug resistance (MDR) proteins, supporting their role in drug resistance. This topic is the main theme of this publication. The cell viability was determined by an MTT assay. The protein expression was detected by western blot analysis. The proteins were knocked-down using siRNA. No major vault protein (MVP) in the LoVo/Dx and W1PR cell lines after tunicamycin treatment was shown. In W1PR cells with knocked-down MVP, a statistically significant decrease in cell viability was noted. In LoVo/Dx, W1TR and A2780TR cells were vault poly-ADP-ribose polymerase (vPARP) was knockdown, a decrease in cell viability was shown. Also, MVP silencing induced an increase in glycoprotein P (Pgp) expression in LoVo/Dx cells. MVP is important for the drug resistance of cancer cells, but it probably requires the presence of vPARP for full activation. Some correlations between MDR proteins and vaults exist. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Effective photodynamic therapy in drug-resistant prostate cancer cells utilizing a non-viral antitumor vector (a secondary publication).

    Science.gov (United States)

    Yamauchi, Masaya; Honda, Norihiro; Hazama, Hisanao; Tachikawa, Shoji; Nakamura, Hiroyuki; Kaneda, Yasufumi; Awazu, Kunio

    2016-03-31

    There is an urgent need to develop an efficient strategy for the treatment of drug-resistant prostate cancer. Photodynamic therapy (PDT), in which low incident levels of laser energy are used to activate a photosensitizer taken up by tumor cells, is expected as a novel therapy for the treatment of prostate cancer because of the minimal invasive nature of PDT. The present study was designed to assess the efficacy of a novel vector approach combined with a conventional porphyrin-based photosensitizer. Our group focused on a non-viral vector (hemagglutinating virus of Japan envelope; HVJ-E) combined with protoporphyrin IX (PpIX) lipid, termed the porphyrus envelope (PE). It has been previously confirmed that HVJ-E has drug-delivering properties and can induce cancer-specific cell death. The PE (HVJ-E contained in PpIX lipid) was developed as a novel photosensitizer. In this study, the antitumor and PDT efficacy of the PE against hormone-antagonistic human prostate cancer cells (PC-3) were evaluated. Our results demonstrated that, under specific circumstances, PDT using the PE was very effective against PC-3 cells. A novel therapy for drug-resistant prostate cancer based on this vector approach is eagerly anticipated.

  1. Diffusion and perfusion MRI for the localisation of epileptogenic foci in drug-resistant epilepsy

    International Nuclear Information System (INIS)

    Heiniger, P.; El-Koussy, M.; Kiefer, C.; Oswald, H.; Schroth, G.; Schindler, K.; Donati, F.; Loevblad, K.O.; Wissmeyer, M.; Mariani, L.; Weder, B.

    2002-01-01

    Drug-resistant epilepsy is an important clinical challenge, both diagnostically and therapeutically. More and more surgical options are being considered, but precise presurgical assessment is necessary. We prospectively studied eight patients with drug-resistant epilepsy, who underwent clinical examination, single photon emission computed tomography (SPECT) and interictal MRI, including diffusion- and perfusion-weighted echoplanar sequences. Lesions suspected on SPECT of being epileptogenic showed mild hypoperfusion, while the diffusion-weighted MRI (DWI) revealed increased apparent diffusion coefficients relative to the other side. However, these abnormalities were not visible on the corresponding maps. We showed that DWI and perfusion-weighted MRI could be used confirm the characteristics and site of an epileptogenic area in patients with drug-resistant epilepsy. (orig.)

  2. Antiretroviral drug resistance in HIV-1 therapy-naive patients in Cuba.

    Science.gov (United States)

    Pérez, Lissette; Kourí, Vivian; Alemán, Yoan; Abrahantes, Yeisel; Correa, Consuelo; Aragonés, Carlos; Martínez, Orlando; Pérez, Jorge; Fonseca, Carlos; Campos, Jorge; Álvarez, Delmis; Schrooten, Yoeri; Dekeersmaeker, Nathalie; Imbrechts, Stijn; Beheydt, Gertjan; Vinken, Lore; Soto, Yudira; Álvarez, Alina; Vandamme, Anne-Mieke; Van Laethem, Kristel

    2013-06-01

    In Cuba, antiretroviral therapy rollout started in 2001 and antiretroviral therapy coverage has reached almost 40% since then. The objectives of this study were therefore to analyze subtype distribution, and level and patterns of drug resistance in therapy-naive HIV-1 patients. Four hundred and one plasma samples were collected from HIV-1 therapy-naive patients in 2003 and in 2007-2011. HIV-1 drug resistance genotyping was performed in the pol gene and drug resistance was interpreted according to the WHO surveillance drug-resistance mutations list, version 2009. Potential impact on first-line therapy response was estimated using genotypic drug resistance interpretation systems HIVdb version 6.2.0 and Rega version 8.0.2. Phylogenetic analysis was performed using Neighbor-Joining. The majority of patients were male (84.5%), men who have sex with men (78.1%) and from Havana City (73.6%). Subtype B was the most prevalent subtype (39.3%), followed by CRF20-23-24_BG (19.5%), CRF19_cpx (18.0%) and CRF18_cpx (10.3%). Overall, 29 patients (7.2%) had evidence of drug resistance, with 4.0% (CI 1.6%-4.8%) in 2003 versus 12.5% (CI 7.2%-14.5%) in 2007-2011. A significant increase in drug resistance was observed in recently HIV-1 diagnosed patients, i.e. 14.8% (CI 8.0%-17.0%) in 2007-2011 versus 3.8% (CI 0.9%-4.7%) in 2003 (OR 3.9, CI 1.5-17.0, p=0.02). The majority of drug resistance was restricted to a single drug class (75.8%), with 55.2% patients displaying nucleoside reverse transcriptase inhibitor (NRTI), 10.3% non-NRTI (NNRTI) and 10.3% protease inhibitor (PI) resistance mutations. Respectively, 20.7% and 3.4% patients carried viruses containing drug resistance mutations against NRTI+NNRTI and NRTI+NNRTI+PI. The first cases of resistance towards other drug classes than NRTI were only detected from 2008 onwards. The most frequent resistance mutations were T215Y/rev (44.8%), M41L (31.0%), M184V (17.2%) and K103N (13.8%). The median genotypic susceptibility score for the

  3. Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants

    Science.gov (United States)

    Zhu, Qinchang; Yu, Zhiqiang; Kabashima, Tsutomu; Yin, Sheng; Dragusha, Shpend; El-Mahdy, Ahmed F. M.; Ejupi, Valon; Shibata, Takayuki; Kai, Masaaki

    2015-01-01

    Convenient drug-resistance testing of viral mutants is indispensable to effective treatment of viral infection. We developed a novel fluorometric assay for phenotypic differentiation of drug-resistant mutants of human immunodeficiency virus-I protease (HIV-PR) which uses enzymatic and peptide-specific fluorescence (FL) reactions and high-performance liquid chromatography (HPLC) of three HIV-PR substrates. This assay protocol enables use of non-purified enzyme sources and multiple substrates for the enzymatic reaction. In this study, susceptibility of HIV mutations to drugs was evaluated by selective formation of three FL products after the enzymatic HIV-PR reaction. This proof-of-concept study indicates that the present HPLC-FL method could be an alternative to current phenotypic assays for the evaluation of HIV drug resistance. PMID:25988960

  4. Acupuncture inhibits cue-induced heroin craving and brain activation.

    Science.gov (United States)

    Cai, Xinghui; Song, Xiaoge; Li, Chuanfu; Xu, Chunsheng; Li, Xiliang; Lu, Qi

    2012-11-25

    Previous research using functional MRI has shown that specific brain regions associated with drug dependence and cue-elicited heroin craving are activated by environmental cues. Craving is an important trigger of heroin relapse, and acupuncture may inhibit craving. In this study, we performed functional MRI in heroin addicts and control subjects. We compared differences in brain activation between the two groups during heroin cue exposure, heroin cue exposure plus acupuncture at the Zusanli point (ST36) without twirling of the needle, and heroin cue exposure plus acupuncture at the Zusanli point with twirling of the needle. Heroin cue exposure elicited significant activation in craving-related brain regions mainly in the frontal lobes and callosal gyri. Acupuncture without twirling did not significantly affect the range of brain activation induced by heroin cue exposure, but significantly changed the extent of the activation in the heroin addicts group. Acupuncture at the Zusanli point with twirling of the needle significantly decreased both the range and extent of activation induced by heroin cue exposure compared with heroin cue exposure plus acupuncture without twirling of the needle. These experimental findings indicate that presentation of heroin cues can induce activation in craving-related brain regions, which are involved in reward, learning and memory, cognition and emotion. Acupuncture at the Zusanli point can rapidly suppress the activation of specific brain regions related to craving, supporting its potential as an intervention for drug craving.

  5. Investigating the Antioxidant and Acetylcholinesterase Inhibition Activities of Gossypium herbaceam

    Directory of Open Access Journals (Sweden)

    Haji Akber Aisa

    2013-01-01

    Full Text Available Our previous research showed that standardized extract from the flowers of the Gossypium herbaceam labeled GHE had been used in clinical trials for its beneficial effects on brain functions, particularly in connection with age-related dementia and Alzheimer’s disease (AD. The aim of this work was to determine the components of this herb and the individual constituents of GHE. In order to better understand this herb for AD treatment, we investigated the acetylcholinesterase (AChE inhibition and antioxidant activity of GHE as well as the protective effects to PC12 cells against cytotoxicity induced by tertiary butyl hydroperoxide (tBHP using in vitro assays. The antioxidant activities were assessed by measuring their capabilities for scavenging 1,1-diphenyl-2-picylhydrazyl (DPPH and 2-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS free radical as well as in inhibiting lipid peroxidation. Our data showed that GHE exhibited certain activities against AChE and also is an efficient free radical scavenger, which may be helpful in preventing or alleviating patients suffering from AD.

  6. Zeno inhibition of polarization rotation in an optically active medium

    International Nuclear Information System (INIS)

    Gonzalo, Isabel; Luis, Alfredo; Porras, Miguel A

    2015-01-01

    We describe an experiment in which the rotation of the polarization of light propagating in an optically active water solution of D-fructose tends to be inhibited by frequent monitoring whether the polarization remains unchanged. This is an example of the Zeno effect that has remarkable pedagogical interest because of its conceptual simplicity, easy implementation, low cost, and because the same the Zeno effect holds at classical and quantum levels. An added value is the demonstration of the Zeno effect beyond typical idealized assumptions in a practical setting with real polarizers. (paper)

  7. Molecular approaches for detection of the multi-drug resistant tuberculosis (MDR-TB in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Tafsina Haque Aurin

    Full Text Available The principal obstacles in the treatment of tuberculosis (TB are delayed and inaccurate diagnosis which often leads to the onset of the drug resistant TB cases. To avail the appropriate treatment of the patients and to hinder the transmission of drug-resistant TB, accurate and rapid detection of resistant isolates is critical. Present study was designed to demonstrate the efficacy of molecular techniques inclusive of line probe assay (LPA and GeneXpert MTB/RIF methods for the detection of multi-drug resistant (MDR TB. Sputum samples from 300 different categories of treated and new TB cases were tested for the detection of possible mutation in the resistance specific genes (rpoB, inhA and katG through Genotype MTBDRplus assay or LPA and GeneXpert MTB/RIF tests. Culture based conventional drug susceptibility test (DST was also carried out to measure the efficacy of the molecular methods employed. Among 300 samples, 191 (63.7% and 193 (64.3% cases were found to be resistant against rifampicin in LPA and GeneXpert methods, respectively; while 189 (63% cases of rifampicin resistance were detected by conventional DST methods. On the other hand, 196 (65.3% and 191 (63.7% isolates showed isoniazid resistance as detected by LPA and conventional drug susceptibility test (DST, respectively. Among the drug resistant isolates (collectively 198 in LPA and 193 in conventional DST, 189 (95.6% and 187 (96.9% were considered to be MDR as examined by LPA and conventional DST, respectively. Category-II and -IV patients encountered higher frequency of drug resistance compared to those from category-I and new cases. Considering the higher sensitivity, specificity and accuracy along with the required time to results significantly shorter, our study supports the adoption of LPA and GeneXpert assay as efficient tools in detecting drug resistant TB in Bangladesh.

  8. Clinical and molecular surveillance of drug resistant vivax malaria in Myanmar (2009-2016).

    Science.gov (United States)

    Nyunt, Myat Htut; Han, Jin-Hee; Wang, Bo; Aye, Khin Myo; Aye, Kyin Hla; Lee, Seong-Kyun; Htut, Ye; Kyaw, Myat Phone; Han, Kay Thwe; Han, Eun-Taek

    2017-03-16

    One of the major challenges for control and elimination of malaria is ongoing spread and emergence of drug resistance. While epidemiology and surveillance of the drug resistance in falciparum malaria is being explored globally, there are few studies on drug resistance vivax malaria. To assess the spread of drug-resistant vivax malaria in Myanmar, a multisite, prospective, longitudinal study with retrospective analysis of previous therapeutic efficacy studies, was conducted. A total of 906 from nine study sites were included in retrospective analysis and 208 from three study sites in prospective study. Uncomplicated vivax mono-infected patients were recruited and monitored with longitudinal follow-up until day 28 after treatment with chloroquine. Amplification and sequence analysis of molecular markers, such as mutations in pvcrt-O, pvmdr1, pvdhps and pvdhfr, were done in day-0 samples in prospective study. Clinical failure cases were found only in Kawthaung, southern Myanmar and western Myanmar sites within 2009-2016. Chloroquine resistance markers, pvcrt-O 'AAG' insertion and pvmdr1 mutation (Y976F) showed higher mutant rate in southern and central Myanmar than western site: 66.7, 72.7 vs 48.3% and 26.7, 17.0 vs 1.7%, respectively. A similar pattern of significantly higher mutant rate of antifolate resistance markers, pvdhps (S382A, K512M, A553G) and pvdhfr (F57L/I, S58R, T61M, S117T/N) were noted. Although clinical failure rate was low, widespread distribution of chloroquine and antifolate resistance molecular makers alert to the emergence and spread of drug resistance vivax malaria in Myanmar. Proper strategy and action plan to eliminate and contain the resistant strain strengthened together with clinical and molecular surveillance on drug resistance vivax is recommended.

  9. Alteration of gene expression and DNA methylation in drug-resistant gastric cancer.

    Science.gov (United States)

    Maeda, Osamu; Ando, Takafumi; Ohmiya, Naoki; Ishiguro, Kazuhiro; Watanabe, Osamu; Miyahara, Ryoji; Hibi, Yoko; Nagai, Taku; Yamada, Kiyofumi; Goto, Hidemi

    2014-04-01

    The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.

  10. Assessment of clinical risk factors for drug-resistant epilepsy in children and teenagers

    Directory of Open Access Journals (Sweden)

    Marta Kasprzyk

    2014-09-01

    Full Text Available Introduction: Epilepsy is one of the most common neurological illnesses occurring in children. In approximately 20–30% of cases it is drug-resistant. Aim of the research: To assess the already-known risk factors, analyse the rarely described ones, and find new causes of epilepsy drug resistance in children, taking into account the level of impact of each factor. Material and methods : The study comprised 152 of all 383 children hospitalised in 2012 at the Neurology Department of the Polish Mother’s Memorial Hospital in Lodz due to epilepsy. Based on medical documentation, neurological examination, and our own questionnaire, we divided patients into two groups: drug-resistant epilepsy or drug-sensitive epilepsy. We compared the type, level of influence, and prevalence of different factors. For statistical analysis, the 2 test was used. Statistical significance was set at p < 0.05. Results: Drug-resistant epilepsy was found in 64 patients (42.1%, and drug-sensitive epilepsy was found in 88 patients (57.9%. Factors that were most probable to cause drug resistance included: high prevalence of seizures (Cramer’s V = 0.66, type of epileptic syndrome (V = 0.62, psychomotor developmental delay (V = 0.62, and occurrence of status epilepticus (V = 0.6. Factors such as infections of CNS in early childhood, repeated severe infections of airways in childhood, and mother’s infectious diseases with high fever during pregnancy were rare or non occurring (Cramer’s V = 0.41, 0.32, and 0.31, respectively. Conclusions : The study confirmed the previously known causes of drug resistance and indicated the significance of underestimated inflammatory and infectious factors involving pyrexia, in children and also in mothers during pregnancy.

  11. Assessing the potential impact of artemisinin and partner drug resistance in sub-Saharan Africa.

    Science.gov (United States)

    Slater, Hannah C; Griffin, Jamie T; Ghani, Azra C; Okell, Lucy C

    2016-01-06

    Artemisinin and partner drug resistant malaria parasites have emerged in Southeast Asia. If resistance were to emerge in Africa it could have a devastating impact on malaria-related morbidity and mortality. This study estimates the potential impact of artemisinin and partner drug resistance on disease burden in Africa if it were to emerge. Using data from Asia and Africa, five possible artemisinin and partner drug resistance scenarios are characterized. An individual-based malaria transmission model is used to estimate the impact of each resistance scenario on clinical incidence and parasite prevalence across Africa. Artemisinin resistance is characterized by slow parasite clearance and partner drug resistance is associated with late clinical failure or late parasitological failure. Scenarios with high levels of recrudescent infections resulted in far greater increases in clinical incidence compared to scenarios with high levels of slow parasite clearance. Across Africa, it is estimated that artemisinin and partner drug resistance at levels similar to those observed in Oddar Meanchey province in Cambodia could result in an additional 78 million cases over a 5 year period, a 7% increase in cases compared to a scenario with no resistance. A scenario with high levels of slow clearance but no recrudescence resulted in an additional 10 million additional cases over the same period. Artemisinin resistance is potentially a more pressing concern than partner drug resistance due to the lack of viable alternatives. However, it is predicted that a failing partner drug will result in greater increases in malaria cases and morbidity than would be observed from artemisinin resistance only.

  12. Update on HIV-1 acquired and transmitted drug resistance in Africa.

    Science.gov (United States)

    Ssemwanga, Deogratius; Lihana, Raphael W; Ugoji, Chinenye; Abimiku, Alash'le; Nkengasong, John; Dakum, Patrick; Ndembi, Nicaise

    2015-01-01

    The last ten years have witnessed a significant scale-up and access to antiretroviral therapy in Africa, which has improved patient quality of life and survival. One major challenge associated with increased access to antiretroviral therapy is the development of antiretroviral resistance due to inconsistent drug supply and/or poor patient adherence. We review the current state of both acquired and transmitted drug resistance in Africa over the past ten years (2001-2011) to identify drug resistance associated with the different drug regimens used on the continent and to help guide affordable strategies for drug resistance surveillance. A total of 161 references (153 articles, six reports and two conference abstracts) were reviewed. Antiretroviral resistance data was available for 40 of 53 African countries. A total of 5,541 adult patients from 99 studies in Africa were included in this analysis. The pooled prevalence of drug resistance mutations in Africa was 10.6%, and Central Africa had the highest prevalence of 54.9%. The highest prevalence of nucleoside reverse transcriptase inhibitor mutations was in the west (55.3%) and central (54.8%) areas; nonnucleoside reverse transcriptase inhibitor mutations were highest in East Africa (57.0%) and protease inhibitors mutations highest in Southern Africa (16.3%). The major nucleoside reverse transcriptase inhibitor mutation in all four African regions was M184V. Major nonnucleoside reverse transcriptase inhibitor as well as protease inhibitor mutations varied by region. The prevalence of drug resistance has remained low in several African countries although the emergence of drug resistance mutations varied across countries. Continued surveillance of antiretroviral therapy resistance remains crucial in gauging the effectiveness of country antiretroviral therapy programs and strategizing on effective and affordable strategies for successful treatment.

  13. Laboratory-Based Surveillance of Extensively Drug-Resistant Tuberculosis in Eastern China.

    Science.gov (United States)

    Huang, Yu; Wu, Qingqing; Xu, Shuiyang; Zhong, Jieming; Chen, Songhua; Xu, Jinghang; Zhu, Liping; He, Haibo; Wang, Xiaomeng

    2017-03-01

    With 25% of the global burden, China has the highest incidence of drug-resistant tuberculosis (TB) in the world. However, surveillance data on extensively drug-resistant TB (XDR-TB) from China are scant. To estimate the prevalence of XDR-TB in Zhejiang, Eastern China, 30 of 90 TB treatment centers in Zhejiang were recruited. Patients with suspected TB who reported to the clinics for diagnosis were requested to undergo a smear sputum test. Positive sputum samples were tested for drug susceptibility. Data on anti-TB drug resistance from 1999 to 2008 were also collected to assess drug resistance trends. A total of 931 cases were recruited for drug susceptibility testing (DST). Among these, 23.6% (95% confidence interval [CI], 18.8-24.4) were resistant to any of the following drugs: isoniazid, rifampin, streptomycin, and ethambutol. Multidrug resistant (MDR) strains were identified in 5.1% of all cases (95% CI, 3.61-6.49). Among MDR-TB cases, 6.4% were XDR (95% CI, 1.7-18.6) and 8.9% (95% CI, 7.0-10.8) of all cases were resistant to either isoniazid or rifampin (but not both). Among MDR-TB cases, 23.4% (95% CI, 12.8-38.4) were resistant to either fluoroquinolones or a second-line anti-TB injectable drug, but not both. From 1999 to 2014, the percentage of MDR cases decreased significantly, from 8.6% to 5.1% (p = 0.00). The Global Fund to Fight TB program showed signs of success in Eastern China. However, drug-resistant TB, MDR-TB, and XDR-TB still pose a challenge for TB control in Eastern China. High-quality directly observed treatment, short-course, and universal DST for TB cases to determine appropriate treatment regimens are urgently needed to prevent acquired drug resistance.

  14. Macropis fulvipes Venom component Macropin Exerts its Antibacterial and Anti-Biofilm Properties by Damaging the Plasma Membranes of Drug Resistant Bacteria.

    Science.gov (United States)

    Ko, Su Jin; Kim, Min Kyung; Bang, Jeong Kyu; Seo, Chang Ho; Luchian, Tudor; Park, Yoonkyung

    2017-11-29

    The abuse of antibiotics for disease treatment has led to the emergence of multidrug resistant bacteria. Antimicrobial peptides, found naturally in various organisms, have received increasing interest as alternatives to conventional antibiotics because of their broad spectrum antimicrobial activity and low cytotoxicity. In a previous report, Macropin, isolated from bee venom, exhibited antimicrobial activity against both gram-positive and negative bacteria. In the present study, Macropin was synthesized and its antibacterial and anti-biofilm activities were tested against bacterial strains, including gram-positive and negative bacteria, and drug resistant bacteria. Moreover, Macropin did not exhibit hemolytic activity and cytotoxicity to keratinocytes, whereas Melittin, as a positive control, showed very high toxicity. Circular dichroism assays showed that Macropin has an α-helical structure in membrane mimic environments. Macropin binds to peptidoglycan and lipopolysaccharide and kills the bacteria by disrupting their membranes. Moreover, the fractional inhibitory concentration index indicated that Macropin has additive and partially synergistic effects with conventional antibiotics against drug resistant bacteria. Thus, our study suggested that Macropin has potential for use of an antimicrobial agent for infectious bacteria, including drug resistant bacteria.

  15. Parallel screening of wild-type and drug-resistant targets for anti-resistance neuraminidase inhibitors.

    Directory of Open Access Journals (Sweden)

    Kai-Cheng Hsu

    Full Text Available Infection with influenza virus is a major public health problem, causing serious illness and death each year. Emergence of drug-resistant influenza virus strains limits the effectiveness of drug treatment. Importantly, a dual H275Y/I223R mutation detected in the pandemic influenza A 2009 virus strain results in multidrug resistance to current neuraminidase (NA drugs. Therefore, discovery of new agents for treating multiple drug-resistant (MDR influenza virus infections is important. Here, we propose a parallel screening strategy that simultaneously screens wild-type (WT and MDR NAs, and identifies inhibitors matching the subsite characteristics of both NA-binding sites. These may maintain their potency when drug-resistant mutations arise. Initially, we analyzed the subsite of the dual H275Y/I223R NA mutant. Analysis of the site-moiety maps of NA protein structures show that the mutant subsite has a relatively small volume and is highly polar compared with the WT subsite. Moreover, the mutant subsite has a high preference for forming hydrogen-bonding interactions with polar moieties. These changes may drive multidrug resistance. Using this strategy, we identified a new inhibitor, Remazol Brilliant Blue R (RB19, an anthraquinone dye, which inhibited WT NA and MDR NA with IC(50 values of 3.4 and 4.5 µM, respectively. RB19 comprises a rigid core scaffold and a flexible chain with a large polar moiety. The former interacts with highly conserved residues, decreasing the probability of resistance. The latter forms van der Waals contacts with the WT subsite and yields hydrogen bonds with the mutant subsite by switching the orientation of its flexible side chain. Both scaffolds of RB19 are good starting points for lead optimization. The results reveal a parallel screening strategy for identifying resistance mechanisms and discovering anti-resistance neuraminidase inhibitors. We believe that this strategy may be applied to other diseases with high

  16. Transmission of Drug-Resistant Leprosy in Guinea-Conakry Detected Using Molecular Epidemiological Approaches.

    Science.gov (United States)

    Avanzi, Charlotte; Busso, Philippe; Benjak, Andrej; Loiseau, Chloé; Fomba, Abdoulaye; Doumbia, Glodia; Camara, Idrissa; Lamou, André; Sock, Gouressy; Drame, Tiguidanké; Kodio, Mamadou; Sakho, Fatoumata; Sow, Samba O; Cole, Stewart T; Johnson, Roch Christian

    2016-12-01

    Molecular drug susceptibility testing was performed on skin biopsies from 24 leprosy patients from Guinea-Conakry for the first time. We identified primary drug resistance in 4 cases and a dapsone-resistant cluster caused by the same strain. Primary transmission of drug-resistant Mycobacterium leprae, including a rifampicin-resistant strain, is reported. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. Shifts in Mycobacterial Populations and Emerging Drug-Resistance in West and Central Africa.

    Directory of Open Access Journals (Sweden)

    Florian Gehre

    Full Text Available In this study, we retrospectively analysed a total of 605 clinical isolates from six West or Central African countries (Benin, Cameroon, Central African Republic, Guinea-Conakry, Niger and Senegal. Besides spoligotyping to assign isolates to ancient and modern mycobacterial lineages, we conducted phenotypic drug-susceptibility-testing for each isolate for the four first-line drugs. We showed that phylogenetically modern Mycobacterium tuberculosis strains are more likely associated with drug resistance than ancient strains and predict that the currently ongoing replacement of the endemic ancient by a modern mycobacterial population in West/Central Africa might result in increased drug resistance in the sub-region.

  18. Stability Analysis of an HIV/AIDS Dynamics Model with Drug Resistance

    Directory of Open Access Journals (Sweden)

    Qianqian Li

    2012-01-01

    Full Text Available A mathematical model of HIV/AIDS transmission incorporating treatment and drug resistance was built in this study. We firstly calculated the threshold value of the basic reproductive number (R0 by the next generation matrix and then analyzed stability of two equilibriums by constructing Lyapunov function. When R0<1, the system was globally asymptotically stable and converged to the disease-free equilibrium. Otherwise, the system had a unique endemic equilibrium which was also globally asymptotically stable. While an antiretroviral drug tried to reduce the infection rate and prolong the patients’ survival, drug resistance was neutralizing the effects of treatment in fact.

  19. Drug Resistance and Population Structure of Mycobacterium tuberculosis Beijing Strains Isolated in Poland.

    Science.gov (United States)

    Kozińska, Monika; Augustynowicz-Kopeć, Ewa

    2015-01-01

    In total, 1095 Mycobacterium tuberculosis clinical isolates from 282 patients with drug-resistant and 813 with drug-sensitive tuberculosis (TB) in Poland during 2007-2011 were analysed. Seventy-one (6.5%) patients were found to have strains of Beijing genotype as defined by spoligotyping. The majority of patients were Polish-born; among foreign-born a large proportion came from Chechnya and Vietnam. Analysis showed strong associations between Beijing genotype infection and MDR, pre-XDR and XDR resistance, with a considerable relative risk among new patients, suggesting that this is due to increased spread of drug-resistant strains rather than acquisition of resistance during treatment.

  20. Primary drug resistance in a region with high burden of tuberculosis. A critical problem.

    Science.gov (United States)

    Villa-Rosas, Cecilia; Laniado-Laborín, Rafael; Oceguera-Palao, Lorena

    2015-01-01

    To determine rates of drug resistance in new cases of pulmonary tuberculosis in a region with a high burden of the disease. New case suspects were referred for drug susceptibility testing. 28.9% of new cases were resistant to at least one first line drug; 3.9% had a multidrug-resistant strain, 15.6% a monoresistant strain and 9.4% a polyresistant strain. Our rate of drug resistant tuberculosis in new cases is very high; this has important clinical implications, since even monoresistance can have a negative impact on the outcome of new cases treated empirically with a six month regimen.

  1. Virulent poxviruses inhibit DNA sensing by preventing STING activation.

    Science.gov (United States)

    Georgana, Iliana; Sumner, Rebecca P; Towers, Greg J; Maluquer de Motes, Carlos

    2018-02-28

    Cytosolic recognition of DNA has emerged as a critical cellular mechanism of host immune activation upon pathogen invasion. The central cytosolic DNA sensor cGAS activates STING, which is phosphorylated, dimerises and translocates from the ER to a perinuclear region to mediate IRF-3 activation. Poxviruses are dsDNA viruses replicating in the cytosol and hence likely to trigger cytosolic DNA sensing. Here we investigated the activation of innate immune signalling by 4 different strains of the prototypic poxvirus vaccinia virus (VACV) in a cell line proficient in DNA sensing. Infection with the attenuated VACV strain MVA activated IRF-3 via cGAS and STING, and accordingly STING dimerised and was phosphorylated during MVA infection. Conversely, VACV strains Copenhagen and Western Reserve inhibited STING dimerisation and phosphorylation during infection and in response to transfected DNA and cGAMP, thus efficiently suppressing DNA sensing and IRF-3 activation. A VACV deletion mutant lacking protein C16, thought to be the only viral DNA sensing inhibitor acting upstream of STING, retained the ability to block STING activation. Similar inhibition of DNA-induced STING activation was also observed for cowpox and ectromelia viruses. Our data demonstrate that virulent poxviruses possess mechanisms for targeting DNA sensing at the level of the cGAS-STING axis and that these mechanisms do not operate in replication-defective strains such as MVA. These findings shed light on the role of cellular DNA sensing in poxvirus-host interactions and will open new avenues to determine its impact on VACV immunogenicity and virulence. IMPORTANCE Poxviruses are dsDNA viruses infecting a wide range of vertebrates and include the causative agent of smallpox (variola virus) and its vaccine vaccinia virus (VACV). Despite smallpox eradication VACV remains of interest as a therapeutic. Attenuated strains are popular vaccine candidates, whereas replication-competent strains are emerging as

  2. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles

    Science.gov (United States)

    Chen, Lijue; She, Xiaodong; Wang, Tao; He, Li; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-08-01

    effect and mechanism of 5-FU loaded EGF grafted HMSNs (EGF-HMSNs-5-FU) in overcoming acquired drug resistance in SW480/ADR cells were studied. The EGF-HMSNs were demonstrated to be specifically internalized in EGFR overexpressed SW480/ADR cells via a receptor-mediated endocytosis and can escape from endo-lysosomes. The EGF-HMSNs-5-FU exhibited much higher cytotoxicity on SW480/ADR cells than HMSNs-5-FU and free 5-FU while the plain HMSNs did not show significant cytotoxicity. The mechanism of EGF-HMSNs-5-FU in overcoming drug resistance in SW480/ADR cells could be attributed to the specific internalization of EGF-HMSNs-5-FU in EGFR overexpressed cells which can lead to high intracellular drug accumulation and cause cell death through S phase arrest. Electronic supplementary information (ESI) available: TEM image of EGF-HMSNs, characterization of HMSNs, EGFR expression in colorectal cancer cells, flow cytometry results, inhibition of endocytosis, confocal microscopy images of endosome escape and cell cycle distribution in SW480 cells. See DOI: 10.1039/C5NR03527A

  3. [The biochemical mechanisms of the action of N-alkyl-N-nitrosoureas. The possible reasons for drug resistance to these compounds].

    Science.gov (United States)

    Syrkin, A B; Gorbacheva, L B

    1996-01-01

    N-alkyl-N-nitrosoureas exhibit a wide spectrum of antitumor activity. They react as alkylating agents at nucleophilic sites in purine and pyrimidine moieties of DNA. The predominant site of this alkylation is N7 of guanine, which is followed by the site N3 of adenine and 06 of guanine. The formation and persistence of 0(6)-alkylguanine (0(6)-AG) may be of primary importance in cytotoxicity of the nitrosoureas. 0(6)-AG adducts of DNA of the tumor cells are repaired by protein 0(6)-alkylguanine-DNA transferase (0(6)-AGT) which transfers the alkyl group to internal cysteine residue being the acceptor protein for the alkyl group in an irreversible transfer reaction. 0(6)-AGT can protect the tumor cells against 0(6)-AG adducts by the way of inhibiting the formation of the DNA interstrand cross-links 0(6)-AGT plays an important role in the drug resistance because it repairs the DNA alkyl adducts at the 0(6) position of guanine. The 0(6)-AGT activity inversely correlates with the cytotoxic effect of the nitrosoureas. The agents like 0(6)-methylguanosine, 0(6)-methyl-2'-deoxyguanosine, and some 0(6)-benzylated guanine derivatives are effective inactivators of 0(6)-AGT, and thus can be used to enhance the cytotoxicity of N-nitrosoureas. The activation of 0(6)-AGT and other repairing enzymes such as alpha and beta DNA-polymerases as well as an increase in the level of reduced glutathione may be used in developing the resistance to the nitrosoureas.

  4. Synergy against drug-resistant HIV-1 with the microbicide antiretrovirals, dapivirine and tenofovir, in combination.

    Science.gov (United States)

    Schader, Susan M; Colby-Germinario, Susan P; Schachter, Jordana R; Xu, Hongtao; Wainberg, Mark A

    2011-08-24

    To evaluate the candidate antiretroviral microbicide compounds, dapivirine (DAP) and tenofovir (TFV), alone and in combination against the transmission of wild-type and nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 from different subtypes. We determined single-drug efficacy of the RTIs, DAP and TFV, against subtype B and non-B wild-type and NNRTI-resistant HIV-1 in vitro. To assess breadth of activity, compounds were tested alone and in combination against wild-type and NNRTI-resistant subtype C primary HIV-1 isolates and complimentary clonal HIV-1 from subtypes B, C and CRF02_AG to control for viral variation. Early infection was quantified by counting light units emitted from TZM-bl cells less than 48-h postinfection. Combination ratios were based on drug inhibitory concentrations (IC(50)s) and combined effects were determined by calculating combination indices. Both candidate microbicide antiretrovirals demonstrated potent anti-NNRTI-resistant HIV-1 activity in vitro, albeit the combination protected better than the single-drug treatments. Of particular interest, the DAP with TFV combination exhibited synergy (50% combination index, CI(50) = 0.567) against subtype C NNRTI-resistant HIV-1, whereas additivity (CI(50) = 0.987) was observed against the wild-type counterpart from the same patient. The effect was not compounded by the presence of subdominant viral fractions, as experiments using complimentary clonal subtype C wild-type (CI(50) = 0.968) and NNRTI-resistant (CI(50) = 0.672) HIV-1, in lieu of the patient quasispecies, gave similar results. This study supports the notion that antiretroviral drug combinations may retain antiviral activity against some drug-resistant HIV-1 despite subtype classification and quasispecies diversity.

  5. Hedgehog Signals Mediate Anti-Cancer Drug Resistance in Three-Dimensional Primary Colorectal Cancer Organoid Culture

    Directory of Open Access Journals (Sweden)

    Tatsuya Usui

    2018-04-01

    Full Text Available Colorectal cancer is one of the most common causes of cancer death worldwide. In patients with metastatic colorectal cancer, combination treatment with several anti-cancer drugs is employed and improves overall survival in some patients. Nevertheless, most patients with metastatic disease are not cured owing to the drug resistance. Cancer stem cells are known to regulate resistance to chemotherapy. In the previous study, we established a novel three-dimensional organoid culture model from tumor colorectal tissues of human patients using an air–liquid interface (ALI method, which contained numerous cancer stem cells and showed resistance to 5-fluorouracil (5-FU and Irinotecan. Here, we investigate which inhibitor for stem cell-related signal improves the sensitivity for anti-cancer drug treatment in tumor ALI organoids. Treatment with Hedgehog signal inhibitors (AY9944, GANT61 decreases the cell viability of organoids compared with Notch (YO-01027, DAPT and Wnt (WAV939, Wnt-C59 signal inhibitors. Combination treatment of AY9944 or GANT61 with 5-FU, Irinotecan or Oxaliplatin decreases the cell viability of tumor organoids compared with each anti-cancer drug alone treatment. Treatment with AY9944 or GANT61 inhibits expression of stem cell markers c-Myc, CD44 and Nanog, likely through the decrease of their transcription factor, GLI-1 expression. Combination treatment of AY9944 or GANT61 with 5-FU or Irinotecan also prevents colony formation of colorectal cancer cell lines HCT116 and SW480. These findings suggest that Hedgehog signals mediate anti-cancer drug resistance in colorectal tumor patient-derived ALI organoids and that the inhibitors are useful as a combinational therapeutic strategy against colorectal cancer.

  6. Fast inhibition of glutamate-activated currents by caffeine.

    Directory of Open Access Journals (Sweden)

    Nicholas P Vyleta

    Full Text Available BACKGROUND: Caffeine stimulates calcium-induced calcium release (CICR in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release. METHODOLOGY/PRINCIPAL FINDINGS: Using the whole-cell patch-clamp technique we found that caffeine (20 mM reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors. CONCLUSIONS/SIGNIFICANCE: Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses.

  7. Angiopoietin1 inhibits mast cell activation and protects against anaphylaxis.

    Directory of Open Access Journals (Sweden)

    Jun-Hua Yao

    Full Text Available Since morbidity and mortality rates of anaphylaxis diseases have been increasing year by year, how to prevent and manage these diseases effectively has become an important issue. Mast cells play a central regulatory role in allergic diseases. Angiopoietin1 (Ang-1 exhibits anti-inflammatory properties by inhibiting vascular permeability, leukocyte migration and cytokine production. However, Ang-1's function in mast cell activation and anaphylaxis diseases is unknown. The results of our study suggest that Ang-1 decreased lipopolysaccharide (LPS-induced pro-inflammatory cytokines production of mast cells by suppressing IκB phosphorylation and NF-κB nuclear translocation. Ang-1 also strongly inhibited compound 48/80 induced and FcεRI-mediated mast cells degranulation by decreasing intracellular calcium levels in vitro. In vivo lentivirus-mediated delivery of Ang-1 in mice exhibited alleviated leakage in IgE-dependent passive cutaneous anaphylaxis (PCA. Furthermore, exogenous Ang-1 intervention treatment prevented mice from compound 48/80-induced mesentery mast cell degranulation, attenuated increases in pro-inflammatory cytokines, relieved lung injury, and improved survival in anaphylaxis shock. The results of our study reveal, for the first time, the important role of Ang-1 in the activation of mast cells, and identify a therapeutic effect of Ang-1 on anaphylaxis diseases.

  8. Isolation, Characterization and Anti-Multiple Drug Resistant (MDR ...

    African Journals Online (AJOL)

    (MDR) Bacterial Activity of Endophytic Fungi Isolated from ... Institute of Protection & Development of Beibu Wan Ocean Resources, Qinzhou University, Qinzhou, Guangxi Province, ..... isolated from secondary metabolites of the mangrove.

  9. Antiretroviral Drug Resistance- implications for HIV/AIDS reduction ...

    African Journals Online (AJOL)

    Saharan Africa and other developing countries. ... Abstract: Background: The introduction of the highly active antiretroviral therapy in the mid-1990s has significantly reduced morbidities and prolonged the lifespan of people living with HIV. However ...

  10. Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity

    International Nuclear Information System (INIS)

    Gatti, Monica; Pattarozzi, Alessandra; Bajetto, Adriana; Würth, Roberto; Daga, Antonio; Fiaschi, Pietro; Zona, Gianluigi; Florio, Tullio; Barbieri, Federica

    2013-01-01

    Cancer stem cells (CSCs) or tumor initiating cells (TICs) drive glioblastoma (GBM) development, invasiveness and drug resistance. Distinct molecular pathways might regulate CSC biology as compared to cells in the bulk tumor mass, representing potential therapeutic targets. Chemokine CXCL12 and its receptor CXCR4 control proliferation, invasion and angiogenesis in GBM cell lines and primary cultures, but little is known about their activity in GBM CSCs. We demonstrate that CSCs, isolated from five human GBMs, express CXCR4 and release CXCL12 in vitro, although different levels of expression and secretion were observed in individual cultures, as expected for the heterogeneity of GBMs. CXCL12 treatment induced Akt-mediated significant pro-survival and self-renewal activities, while proliferation was induced at low extent. The role of CXCR4 signaling in CSC survival