WorldWideScience

Sample records for activation inhibits drug-resistant

  1. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.

    Science.gov (United States)

    Nishikawa, Joy L; Boeszoermenyi, Andras; Vale-Silva, Luis A; Torelli, Riccardo; Posteraro, Brunella; Sohn, Yoo-Jin; Ji, Fei; Gelev, Vladimir; Sanglard, Dominique; Sanguinetti, Maurizio; Sadreyev, Ruslan I; Mukherjee, Goutam; Bhyravabhotla, Jayaram; Buhrlage, Sara J; Gray, Nathanael S; Wagner, Gerhard; Näär, Anders M; Arthanari, Haribabu

    2016-02-25

    Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a

  2. 14-3-3ε boosts bleomycin-induced DNA damage response by inhibiting the drug-resistant activity of MVP.

    Science.gov (United States)

    Tang, Siwei; Bai, Chen; Yang, Pengyuan; Chen, Xian

    2013-06-07

    Major vault protein (MVP) is the predominant constituent of the vault particle, the largest known ribonuclear protein complex. Although emerging evidence have been establishing the links between MVP (vault) and multidrug resistance (MDR), little is known regarding exactly how the MDR activity of MVP is modulated during cellular response to drug-induced DNA damage (DDR). Bleomycin (BLM), an anticancer drug, induces DNA double-stranded breaks (DSBs) and consequently triggers the cellular DDR. Due to its physiological implications in hepatocellular carcinoma (HCC) and cell fate decision, 14-3-3ε was chosen as the pathway-specific bait protein to identify the critical target(s) responsible for HCC MDR. By using an LC-MS/MS-based proteomic approach, MVP was first identified in the BLM-induced 14-3-3ε interactome formed in HCC cells. Biological characterization revealed that MVP possesses specific activity to promote the resistance to the BLM-induced DDR. On the other hand, 14-3-3ε enhances BLM-induced DDR by interacting with MVP. Mechanistic investigation further revealed that 14-3-3ε, in a phosphorylation-dependent manner, binds to the phosphorylated sites at both Thr52 and Ser864 of the monomer of MVP. Consequently, the phosphorylation-dependent binding between 14-3-3ε and MVP inhibits the drug-resistant activity of MVP for an enhanced DDR to BLM treatment. Our findings provide an insight into the mechanism underlying how the BLM-induced interaction between 14-3-3ε and MVP modulates MDR, implicating novel strategy to overcome the chemotherapeutic resistance through interfering specific protein-protein interactions.

  3. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation.

    Directory of Open Access Journals (Sweden)

    Xiao-Na Pan

    Full Text Available Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA. Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.

  4. Taking aim at a moving target: designing drugs to inhibit drug-resistant HIV-1 reverse transcriptases.

    Science.gov (United States)

    Sarafianos, Stefan G; Das, Kalyan; Hughes, Stephen H; Arnold, Eddy

    2004-12-01

    HIV undergoes rapid genetic variation; this variation is caused primarily by the enormous number of viruses produced daily in an infected individual. Because of this variation, HIV presents a moving target for drug and vaccine development. The variation within individuals has led to the generation of diverse HIV-1 subtypes, which further complicates the development of effective drugs and vaccines. In general, it is more difficult to hit a moving target than a stationary target. Two broad strategies for hitting a moving target (in this case, HIV replication) are to understand the movement and to aim at the portions that move the least. In the case of anti-HIV drug development, the first option can be addressed by understanding the mechanism(s) of drug resistance and developing drugs that effectively inhibit mutant viruses. The second can be addressed by designing drugs that interact with portions of the viral machinery that are evolutionarily conserved, such as enzyme active sites.

  5. Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance.

    Directory of Open Access Journals (Sweden)

    Nadia Bakkour

    2007-10-01

    Full Text Available The development of multidrug-resistant viruses compromises antiretroviral therapy efficacy and limits therapeutic options. Therefore, it is an ongoing task to identify new targets for antiretroviral therapy and to develop new drugs. Here, we show that an indole derivative (IDC16 that interferes with exonic splicing enhancer activity of the SR protein splicing factor SF2/ASF suppresses the production of key viral proteins, thereby compromising subsequent synthesis of full-length HIV-1 pre-mRNA and assembly of infectious particles. IDC16 inhibits replication of macrophage- and T cell-tropic laboratory strains, clinical isolates, and strains with high-level resistance to inhibitors of viral protease and reverse transcriptase. Importantly, drug treatment of primary blood cells did not alter splicing profiles of endogenous genes involved in cell cycle transition and apoptosis. Thus, human splicing factors represent novel and promising drug targets for the development of antiretroviral therapies, particularly for the inhibition of multidrug-resistant viruses.

  6. Activity of siderophores against drug-resistant Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Gokarn K

    2018-01-01

    Full Text Available Karuna Gokarn,1,2 Ramprasad B Pal1 1Department of Microbiology, Sir Hurkisondas Nurrotumdas Medical Research Society, 2Caius Research Laboratory, St Xavier’s College, Mumbai, India Abstract: Infections by drug-resistant bacteria are life-threatening. As iron is a vital element for the growth of bacteria, iron-chelating agents (siderophores can be used to arrest their multiplication. Exogenous siderophores – exochelin-MS and deferoxamine-B – were evaluated for their inhibitory activity against methicillin-resistant Staphylococcus aureus and metallo-β-lactamase producers – Pseudomonas aeruginosa and Acinetobacter baumannii – by disc diffusion, micro-broth dilution, and turbidimetric growth assays. The drug-resistant isolates were inhibited by the synergistic activity of siderophores and antibiotics. Minimum inhibitory concentration of exochelin-MS+ampicillin for different isolates was between 0.05 and 0.5 mg/mL. Minimum inhibitory concentration of deferoxamine-B+ampicillin was 1.0 mg/mL and greater. Iron-chelation therapy could provide a complementary approach to overcome drug resistance in pathogenic bacteria. Keywords: iron-chelation, xenosiderophores, exochelin MS, deferoxamine B

  7. Alpinetin inhibits lung cancer progression and elevates sensitization drug-resistant lung cancer cells to cis-diammined dichloridoplatium

    Directory of Open Access Journals (Sweden)

    Wu L

    2015-11-01

    Full Text Available Lin Wu, Wei Yang, Su-ning Zhang, Ji-bin Lu Department of Thoracic Surgery, Sheng Jing Hospital of China Medical University, Shenyang, People’s Republic of China Objective: Alpinetin is a novel flavonoid that has demonstrated potent antitumor activity in previous studies. However, the efficacy and mechanism of alpinetin in treating lung cancer have not been determined. Methods: We evaluated the impact of different doses and durations of alpinetin treatment on the cell proliferation, the apoptosis of lung cancer cells, as well as the drug-resistant lung cancer cells. Results: This study showed that the alpinetin inhibited the cell proliferation, enhanced the apoptosis, and inhibited the PI3K/Akt signaling in lung cancer cells. Moreover, alpinetin significantly increased the sensitivity of drug-resistant lung cancer cells to the chemotherapeutic effect of cis-diammined dichloridoplatium. Taken together, this study demonstrated that alpinetin significantly suppressed the development of human lung cancer possibly by influencing mitochondria and the PI3K/Akt signaling pathway and sensitized drug-resistant lung cancer cells. Conclusion: Alpinetin may be used as a potential compound for combinatorial therapy or as a complement to other chemotherapeutic agents when multiple lines of treatments have failed to reduce lung cancer. Keywords: alpinetin, cell proliferation and apoptosis, drug resistance reversal, PI3K/Akt, lung cancer

  8. Potent inhibition of drug-resistant HIV protease variants by monoclonal antibodies

    Czech Academy of Sciences Publication Activity Database

    Bartoňová, Vanda; Král, Vlastimil; Sieglová, Irena; Brynda, Jiří; Fábry, Milan; Hořejší, Magdalena; Kožíšek, Milan; Grantz Šašková, Klára; Konvalinka, Jan; Sedláček, Juraj; Řezáčová, Pavlína

    2008-01-01

    Roč. 78, č. 3 (2008), s. 275-277 ISSN 0166-3542 R&D Projects: GA MZd NR8571 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z40550506 Keywords : HIV protease * drug resistance * Inhibiting antibody Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.613, year: 2008

  9. Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance.

    Science.gov (United States)

    Mohana, Krishnamoorthy; Achary, Anant

    2017-08-01

    Glutathione-S-transferase (GST) inhibition is a strategy to overcome drug resistance. Several isoforms of human GSTs are present and they are expressed in almost all the organs. Specific expression levels of GSTs in various organs are collected from the human transcriptome data and analysis of the organ-specific expression of GST isoforms is carried out. The variations in the level of expressions of GST isoforms are statistically significant. The GST expression differs in diseased conditions as reported by many investigators and some of the isoforms of GSTs are disease markers or drug targets. Structure analysis of various isoforms is carried out and literature mining has been performed to identify the differences in the active sites of the GSTs. The xenobiotic binding H site is classified into H1, H2, and H3 and the differences in the amino acid composition, the hydrophobicity and other structural features of H site of GSTs are discussed. The existing inhibition strategies are compared. The advent of rational drug design, mechanism-based inhibition strategies, availability of high-throughput screening, target specific, and selective inhibition of GST isoforms involved in drug resistance could be achieved for the reversal of drug resistance and aid in the treatment of diseases.

  10. Circumvention of the multidrug-resistance protein (MRP-1) by an antitumor drug through specific inhibition of gene transcription in breast tumor cells.

    Science.gov (United States)

    Mansilla, Sylvia; Rojas, Marta; Bataller, Marc; Priebe, Waldemar; Portugal, José

    2007-04-01

    Multidrug-resistance protein 1 (MRP-1) confers resistance to a number of clinically important chemotherapeutic agents. The promoter of the mrp-1 gene contains an Sp1-binding site, which we targeted using the antitumor bis-anthracycline WP631. When MCF-7/VP breast cancer cells, which overexpress MRP-1 protein, were incubated with WP631 the expression of the multidrug-resistance protein gene decreased. Conversely, doxorubicin did not alter mrp-1 gene expression. The inhibition of gene expression was followed by a decrease in the activity of the MRP-1 protein. The IC(75) for WP631 (drug concentration required to inhibit cell growth by 75%) circumvented the drug-efflux pump, without addition of resistant modifiers. After treatment with WP631, MCF-7/VP cells were committed to die after entering mitosis (mitotic catastrophe), while treatment with doxorubicin did not affect cell growth. This is the first report on an antitumor drug molecule inhibiting the mrp-1 gene directly, rather than being simply a poor substrate for the transporter-mediated efflux. However, both situations appeared to coexist, thereby a superior cytotoxic effect was attained. Ours results suggest that WP631 offers great potential for the clinical treatment of tumors displaying a multidrug-resistance phenotype.

  11. MDM2 Antagonist Nutlin-3a Reverses Mitoxantrone Resistance by Inhibiting Breast Cancer Resistance Protein Mediated Drug Transport

    Science.gov (United States)

    Zhang, Fan; Throm, Stacy L.; Murley, Laura L.; Miller, Laura A.; Zatechka, D. Steven; Guy, R. Kiplin; Kennedy, Rachel; Stewart, Clinton F.

    2011-01-01

    Breast cancer resistance protein (BCRP; ABCG2), a clinical marker for identifying the side population (SP) cancer stem cell subgroup, affects intestinal absorption, brain penetration, hepatobiliary excretion, and multidrug resistance of many anti-cancer drugs. Nutlin-3a is currently under pre-clinical investigation in a variety of solid tumor and leukemia models as a p53 reactivation agent, and has been recently demonstrated to also have p53 independent actions in cancer cells. In the present study, we first report that nutlin-3a can inhibit the efflux function of BCRP. We observed that although the nutlin-3a IC50 did not differ between BCRP over-expressing and vector control cells, nutlin-3a treatment significantly potentiated the cells to treatment with the BCRP substrate mitoxantrone. Combination index calculations suggested synergism between nutlin-3a and mitoxantrone in cell lines over-expressing BCRP. Upon further investigation, it was confirmed that nutlin-3a increased the intracellular accumulation of BCRP substrates such as mitoxantrone and Hoechst 33342 in cells expressing functional BCRP without altering the expression level or localization of BCRP. Interestingly, nutlin-3b, considered virtually “inactive” in disrupting the MDM2/p53 interaction, reversed Hoechst 33342 efflux with the same potency as nutlin-3a. Intracellular accumulation and bi-directional transport studies using MDCKII cells suggested that nutlin-3a is not a substrate of BCRP. Additionally, an ATPase assay using Sf9 insect cell membranes over-expressing wild-type BCRP indicated that nutlin-3a inhibits BCRP ATPase activity in a dose-dependent fashion. In conclusion, our studies demonstrate that nutlin-3a inhibits BCRP efflux function, which consequently reverses BCRP-related drug resistance. PMID:21459080

  12. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    2010-10-01

    Full Text Available Uncoupling protein-2 (UCP2 is known to suppress mitochondrial reactive oxygen species (ROS production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.

  13. The Inhibition of Folylpolyglutamate Synthetase (folC in the Prevention of Drug Resistance in Mycobacterium tuberculosis by Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Tzu-Chieh Hung

    2014-01-01

    Full Text Available Tuberculosis (TB is an infectious disease caused by many strains of mycobacteria, but commonly Mycobacterium tuberculosis. As a possible method of reducing the drug resistance of M. tuberculosis, this research investigates the inhibition of Folylpolyglutamate synthetase, a protein transcript from the resistance association gene folC. After molecular docking to screen the traditional Chinese medicine (TCM database, the candidate TCM compounds, with Folylpolyglutamate synthetase, were selected by molecular dynamics. The 10,000 ps simulation in association with RMSD analysis and total energy and structural variation defined the protein-ligand interaction. The selected TCM compounds Saussureamine C, methyl 3-O-feruloylquinate, and Labiatic acid have been found to inhibit the activity of bacteria and viruses and to regulate immunity. We also suggest the possible pathway in protein for each ligand. Compared with the control, similar interactions and structural variations indicate that these compounds might have an effect on Folylpolyglutamate synthetase. Finally, we suggest Saussureamine C is the best candidate compound as the complex has a high score, maintains its structural composition, and has a larger variation value than the control, thus inhibiting the drug resistance ability of Mycobacterium tuberculosis.

  14. mTOR Inhibition Induces EGFR Feedback Activation in Association with Its Resistance to Human Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2015-02-01

    Full Text Available The mammalian target of rapamycin (mTOR is dysregulated in diverse cancers and contributes to tumor progression and drug resistance. The first generation of mTOR inhibitors have failed to show clinical efficiency in treating pancreatic cancers due in part to the feedback relief of the insulin-like growth factor-1 receptor (IGF-1R-AKT signaling pathway. The second generation of mTOR inhibitors, such as AZD8055, could inhibit AKT activation upon mTOR complex 2 (mTORC2 inhibition. However, whether this generation of mTOR inhibitors can obtain satisfactory activities in pancreatic cancer therapy remains unclear. In this study, we found AZD8055 did not show great improvement compared with everolimus, AZD8055 induced a temporal inhibition of AKT kinase activities and AKT was then rephosphorylated. Additionally, we found that AZD8055-induced transient AKT inhibition increased the expression and activation of epidermal growth factor receptor (EGFR by releasing its transcriptional factors Fork-head box O 1/3a (FoxO1/3a, which might contribute to cell resistance to AZD8055. The in vitro and in vivo experiments further indicated the combination of AZD8055 and erlotinib synergistically inhibited the mTORC1/C2 signaling pathway, EGFR/AKT feedback activation, and cell growth, as well as suppressed the progression of pancreatic cancer in a xenograft model. This study provides a rationale and strategy for overcoming AZD8055 resistance by a combined treatment with the EGFR inhibitor erlotinib in pancreatic cancer therapy.

  15. A review of mechanisms of circumvention and modulation of chemotherapeutic drug resistance.

    Science.gov (United States)

    O'Connor, R

    2009-05-01

    Drug resistance is a serious limitation to the effective treatment of a number of common malignancies. Thirty years of laboratory and clinical research have greatly defined the molecular alterations underlying many drug resistance processes in cancer. Based on this knowledge, strategies to overcome the impact of resistance and increase the efficacy of cancer treatment have been translated from laboratory models to clinical trials. This article reviews laboratory and, in particular, clinical attempts at drug resistance circumvention from early forays in the inhibition of cellular efflux pump-mediated drug resistance through to more selective circumvention agent strategies and into inhibition of the other important mechanisms which can allow cancer cells to survive therapy, such as apoptosis resistance. Despite some promising results to date, resistance inhibition strategies have largely failed due to poor understanding of the pharmacology, dynamics and complexity of the resistance phenotype. With the realisation that new molecularly-targeted agents can also be rendered ineffectual by the actions of resistance mechanisms, a major focus is once again emerging on identifying new strategies/pharmaceuticals which can augment the activity of the arsenal of more conventional cytotoxics and newer targeted anti-cancer drugs. Future tactical directions where old and new resistance strategies may merge to overcome this challenge are discussed.

  16. P-glycoprotein inhibition of drug resistant cell lines by nanoparticles.

    Science.gov (United States)

    Singh, Manu Smriti; Lamprecht, Alf

    2016-01-01

    Several pharmaceutical excipients are known for their ability to interact with cell membrane lipids and reverse the phenomenon of multidrug resistance (MDR) in cancer. Interestingly, many excipients act as stabilizers and are key ingredients in a variety of nano-formulations. In this study, representatives of ionic and non-ionic excipients were used as surface active agents in nanoparticle (NP) formulations to utilize their MDR reversing potential. In-vitro assays were performed to elucidate particle-cell interaction and accumulation of P-glycoprotein (P-gp) substrates-rhodamine-123 and calcein AM, in highly drug resistant glioma cell lines. Chemosensitization achieved using NPs and their equivalent dose of free excipients was assessed with the co-administered anti-cancer drug doxorubicin. Among the excipients used, non-ionic surfactant, Cremophor® EL, and cationic surfactant, cetyltrimethylammonuium bromide (CTAB), demonstrated highest P-gp modulatory activity in both free solution form (up to 7-fold lower IC50) and as a formulation (up to 4.7-fold lower IC50) as compared to doxorubicin treatment alone. Solutol® HS15 and Tween® 80 exhibited considerable chemosensitization as free solution but not when incorporated into a formulation. Sodium dodecyl sulphate (SDS)-based nanocarriers resulted in slightly improved cytotoxicity. Overall, the results highlight and envisage the usage of excipient in nano-formulations in a bid to improve chemosensitization of drug resistant cancer cells towards anti-cancer drugs.

  17. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    International Nuclear Information System (INIS)

    Florea, Ana-Maria; Büsselberg, Dietrich

    2011-01-01

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects

  18. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    Energy Technology Data Exchange (ETDEWEB)

    Florea, Ana-Maria [Department of Neuropathology, Heinrich-Heine University, Düsseldorf (Germany); Büsselberg, Dietrich, E-mail: dib2015@qatar-med.cornell.edu [Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha (Qatar)

    2011-03-15

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects.

  19. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance

    Science.gov (United States)

    Azam, Mohammad; Nardi, Valentina; Shakespeare, William C.; Metcalf, Chester A.; Bohacek, Regine S.; Wang, Yihan; Sundaramoorthi, Raji; Sliz, Piotr; Veach, Darren R.; Bornmann, William G.; Clarkson, Bayard; Dalgarno, David C.; Sawyer, Tomi K.; Daley, George Q.

    2006-01-01

    Mutation in the ABL kinase domain is the principal mechanism of imatinib resistance in patients with chronic myelogenous leukemia. Many mutations favor active kinase conformations that preclude imatinib binding. Because the active forms of ABL and SRC resemble one another, we tested two dual SRC-ABL kinase inhibitors, AP23464 and PD166326, against 58 imatinib-resistant (IMR) BCR/ABL kinase variants. Both compounds potently inhibit most IMR variants, and in vitro drug selection demonstrates that active (AP23464) and open (PD166326) conformation-specific compounds are less susceptible to resistance than imatinib. Combinations of inhibitors suppressed essentially all resistance mutations, with the notable exception of T315I. Guided by mutagenesis studies and molecular modeling, we designed a series of AP23464 analogues to target T315I. The analogue AP23846 inhibited both native and T315I variants of BCR/ABL with submicromolar potency but showed nonspecific cellular toxicity. Our data illustrate how conformational dynamics of the ABL kinase accounts for the activity of dual SRC-ABL inhibitors against IMR-mutants and provides a rationale for combining conformation specific inhibitors to suppress resistance. PMID:16754879

  20. Nelfinavir augments proteasome inhibition by bortezomib in myeloma cells and overcomes bortezomib and carfilzomib resistance

    International Nuclear Information System (INIS)

    Kraus, M; Bader, J; Overkleeft, H; Driessen, C

    2013-01-01

    HIV protease inhibitors (HIV-PI) are oral drugs for HIV treatment. HIV-PI have antitumor activity via induction of ER-stress, inhibition of phospho-AKT (p-AKT) and the proteasome, suggesting antimyeloma activity. We characterize the effects of all approved HIV-PI on myeloma cells. HIV-PI were compared regarding cytotoxicity, proteasome activity, ER-stress induction and AKT phosphorylation using myeloma cells in vitro. Nelfinavir is the HIV-PI with highest cytotoxic activity against primary myeloma cells and with an IC 50 near therapeutic drug blood levels (8–14 μM), irrespective of bortezomib sensitivity. Only nelfinavir inhibited intracellular proteasome activity in situ at drug concentrations <40 μℳ. Ritonavir, saquinavir and lopinavir inhibited p-AKT comparable to nelfinavir, and showed similar synergistic cytotoxicity with bortezomib against bortezomib-sensitive cells. Nelfinavir had superior synergistic activity with bortezomib/carfilzomib in particular against bortezomib/carfilzomib-resistant myeloma cells. It inhibited not only the proteasomal β1/β5 active sites, similar to bortezomib/carfilzomib, but in addition the β2 proteasome activity not targeted by bortezomib/carfilzomib. Additional inhibition of β2 proteasome activity is known to sensitize cells for bortezomib and carfilzomib. Nelfinavir has unique proteasome inhibiting activity in particular on the bortezomib/carfilzomib-insensitive tryptic (β2) proteasome activity in intact myeloma cells, and is active against bortezomib/carfilzomib-resistant myeloma cells in vitro

  1. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells.

    Science.gov (United States)

    Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E; Sanderson, Michael W; Bodie, Wesley W; Kramer, Lora B; Orlowski, Robert Z; Grant, Steven

    2014-01-01

    The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.

  2. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Xin-Yan Pei

    Full Text Available The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.

  3. Ginger Phytochemicals Inhibit Cell Growth and Modulate Drug Resistance Factors in Docetaxel Resistant Prostate Cancer Cell.

    Science.gov (United States)

    Liu, Chi-Ming; Kao, Chiu-Li; Tseng, Yu-Ting; Lo, Yi-Ching; Chen, Chung-Yi

    2017-09-05

    Ginger has many bioactive compounds with pharmacological activities. However, few studies are known about these bioactive compounds activity in chemoresistant cells. The aim of the present study was to investigate the anticancer properties of ginger phytochemicals in docetaxel-resistant human prostate cancer cells in vitro. In this study, we isolated 6-gingerol, 10-gingerol, 4-shogaol, 6-shogaol, 10-shogaol, and 6-dehydrogingerdione from ginger. Further, the antiproliferation activity of these compounds was examined in docetaxel-resistant (PC3R) and sensitive (PC3) human prostate cancer cell lines. 6-gingerol, 10-gingerol, 6-shogaol, and 10-shogaol at the concentration of 100 μM significantly inhibited the proliferation in PC3R but 6-gingerol, 6-shogaol, and 10-shogaol displayed similar activity in PC3. The protein expression of multidrug resistance associated protein 1 (MRP1) and glutathione-S-transferase (GSTπ) is higher in PC3R than in PC3. In summary, we isolated the bioactive compounds from ginger. Our results showed that 6-gingerol, 10-gingerol, 6-shogaol, and 10-shogaol inhibit the proliferation of PC3R cells through the downregulation of MRP1 and GSTπ protein expression.

  4. CCR5 antibodies HGS004 and HGS101 preferentially inhibit drug-bound CCR5 infection and restore drug sensitivity of Maraviroc-resistant HIV-1 in primary cells

    International Nuclear Information System (INIS)

    Latinovic, Olga; Reitz, Marvin; Le, Nhut M.; Foulke, James S.; Faetkenheuer, Gerd; Lehmann, Clara; Redfield, Robert R.; Heredia, Alonso

    2011-01-01

    R5 HIV-1 strains resistant to the CCR5 antagonist Maraviroc (MVC) can use drug-bound CCR5. We demonstrate that MVC-resistant HIV-1 exhibits delayed kinetics of coreceptor engagement and fusion during drug-bound versus free CCR5 infection of cell lines. Antibodies directed against the second extracellular loop (ECL2) of CCR5 had greater antiviral activity against MVC-bound compared to MVC-free CCR5 infection. However, in PBMCs, only ECL2 CCR5 antibodies HGS004 and HGS101, but not 2D7, inhibited infection by MVC resistant HIV-1 more potently with MVC-bound than with free CCR5. In addition, HGS004 and HGS101, but not 2D7, restored the antiviral activity of MVC against resistant virus in PBMCs. In flow cytometric studies, CCR5 binding by the HGS mAbs, but not by 2D7, was increased when PBMCs were treated with MVC, suggesting MVC increases exposure of the relevant epitope. Thus, HGS004 and HGS101 have antiviral mechanisms distinct from 2D7 and could help overcome MVC resistance.

  5. Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens.

    Science.gov (United States)

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N

    2015-01-01

    Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90) were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA) in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated.

  6. Emetine inhibits replication of RNA and DNA viruses without generating drug-resistant virus variants.

    Science.gov (United States)

    Khandelwal, Nitin; Chander, Yogesh; Rawat, Krishan Dutt; Riyesh, Thachamvally; Nishanth, Chikkahonnaiah; Sharma, Shalini; Jindal, Naresh; Tripathi, Bhupendra N; Barua, Sanjay; Kumar, Naveen

    2017-08-01

    At a noncytotoxic concentration, emetine was found to inhibit replication of DNA viruses [buffalopoxvirus (BPXV) and bovine herpesvirus 1 (BHV-1)] as well as RNA viruses [peste des petits ruminants virus (PPRV) and Newcastle disease virus (NDV)]. Using the time-of-addition and virus step-specific assays, we showed that emetine treatment resulted in reduced synthesis of viral RNA (PPRV and NDV) and DNA (BPXV and BHV-1) as well as inhibiting viral entry (NDV and BHV-1). In addition, emetine treatment also resulted in decreased synthesis of viral proteins. In a cell free endogenous viral polymerase assay, emetine was found to significantly inhibit replication of NDV, but not BPXV genome, suggesting that besides directly inhibiting specific viral polymerases, emetine may also target other factors essentially required for efficient replication of the viral genome. Moreover, emetine was found to significantly inhibit BPXV-induced pock lesions on chorioallantoic membrane (CAM) along with associated mortality of embryonated chicken eggs. At a lethal dose 50 (LD 50 ) of 126.49 ng/egg and at an effective concentration 50 (EC 50 ) of 3.03 ng/egg, the therapeutic index of the emetine against BPXV was determined to be 41.74. Emetine was also found to significantly delay NDV-induced mortality in chicken embryos associated with reduced viral titers. Further, emetine-resistant mutants were not observed upon long-term (P = 25) sequential passage of BPXV and NDV in cell culture. Collectively, we have extended the effective antiviral activity of emetine against diverse groups of DNA and RNA viruses and propose that emetine could provide significant therapeutic value against some of these viruses without inducing an antiviral drug-resistant phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. DNA origami as a carrier for circumvention of drug resistance.

    Science.gov (United States)

    Jiang, Qiao; Song, Chen; Nangreave, Jeanette; Liu, Xiaowei; Lin, Lin; Qiu, Dengli; Wang, Zhen-Gang; Zou, Guozhang; Liang, Xingjie; Yan, Hao; Ding, Baoquan

    2012-08-15

    Although a multitude of promising anti-cancer drugs have been developed over the past 50 years, effective delivery of the drugs to diseased cells remains a challenge. Recently, nanoparticles have been used as drug delivery vehicles due to their high delivery efficiencies and the possibility to circumvent cellular drug resistance. However, the lack of biocompatibility and inability to engineer spatially addressable surfaces for multi-functional activity remains an obstacle to their widespread use. Here we present a novel drug carrier system based on self-assembled, spatially addressable DNA origami nanostructures that confronts these limitations. Doxorubicin, a well-known anti-cancer drug, was non-covalently attached to DNA origami nanostructures through intercalation. A high level of drug loading efficiency was achieved, and the complex exhibited prominent cytotoxicity not only to regular human breast adenocarcinoma cancer cells (MCF 7), but more importantly to doxorubicin-resistant cancer cells, inducing a remarkable reversal of phenotype resistance. With the DNA origami drug delivery vehicles, the cellular internalization of doxorubicin was increased, which contributed to the significant enhancement of cell-killing activity to doxorubicin-resistant MCF 7 cells. Presumably, the activity of doxorubicin-loaded DNA origami inhibits lysosomal acidification, resulting in cellular redistribution of the drug to action sites. Our results suggest that DNA origami has immense potential as an efficient, biocompatible drug carrier and delivery vehicle in the treatment of cancer.

  8. Mechanisms of drug resistance in cancer cells

    International Nuclear Information System (INIS)

    Iqbal, M.P.

    2003-01-01

    Development of drug resist chemotherapy. For the past several years, investigators have been striving hard to unravel mechanisms of drug resistance in cancer cells. Using different experimental models of cancer, some of the major mechanisms of drug resistance identified in mammalian cells include: (a) Altered transport of the drug (decreased influx of the drug; increased efflux of the drug (role of P-glycoprotein; role of polyglutamation; role of multiple drug resistance associated protein)), (b) Increase in total amount of target enzyme/protein (gene amplification), (c) alteration in the target enzyme/protein (low affinity enzyme), (d) Elevation of cellular glutathione, (e) Inhibition of drug-induced apoptosis (mutation in p53 tumor suppressor gene; increased expression of bcl-xl gene). (author)

  9. Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens.

    Directory of Open Access Journals (Sweden)

    Shankar Thangamani

    Full Text Available Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90 were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated.

  10. Kinetically Controlled Drug Resistance

    DEFF Research Database (Denmark)

    Sun, Xin E.; Hansen, Bjarne Gram; Hedstrom, Lizbeth

    2011-01-01

    The filamentous fungus Penicillium brevicompactum produces the immunosuppressive drug mycophenolic acid (MPA), which is a potent inhibitor of eukaryotic IMP dehydrogenases (IMPDHs). IMPDH catalyzes the conversion of IMP to XMP via a covalent enzyme intermediate, E-XMP*; MPA inhibits by trapping E...... of resistance is not apparent. Here, we show that, unlike MPA-sensitive IMPDHs, formation of E-XMP* is rate-limiting for both PbIMPDH-A and PbIMPDH-B. Therefore, MPA resistance derives from the failure to accumulate the drug-sensitive intermediate....

  11. Elucidating the Interdependence of Drug Resistance from Combinations of Mutations.

    Science.gov (United States)

    Ragland, Debra A; Whitfield, Troy W; Lee, Sook-Kyung; Swanstrom, Ronald; Zeldovich, Konstantin B; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2017-11-14

    HIV-1 protease is responsible for the cleavage of 12 nonhomologous sites within the Gag and Gag-Pro-Pol polyproteins in the viral genome. Under the selective pressure of protease inhibition, the virus evolves mutations within (primary) and outside of (secondary) the active site, allowing the protease to process substrates while simultaneously countering inhibition. The primary protease mutations impede inhibitor binding directly, while the secondary mutations are considered accessory mutations that compensate for a loss in fitness. However, the role of secondary mutations in conferring drug resistance remains a largely unresolved topic. We have shown previously that mutations distal to the active site are able to perturb binding of darunavir (DRV) via the protein's internal hydrogen-bonding network. In this study, we show that mutations distal to the active site, regardless of context, can play an interdependent role in drug resistance. Applying eigenvalue decomposition to collections of hydrogen bonding and van der Waals interactions from a series of molecular dynamics simulations of 15 diverse HIV-1 protease variants, we identify sites in the protease where amino acid substitutions lead to perturbations in nonbonded interactions with DRV and/or the hydrogen-bonding network of the protease itself. While primary mutations are known to drive resistance in HIV-1 protease, these findings delineate the significant contributions of accessory mutations to resistance. Identifying the variable positions in the protease that have the greatest impact on drug resistance may aid in future structure-based design of inhibitors.

  12. Telomerase and drug resistance in cancer

    OpenAIRE

    Lipinska, Natalia; Romaniuk, Aleksandra; Paszel-Jaworska, Anna; Toton, Ewa; Kopczynski, Przemyslaw; Rubis, Blazej

    2017-01-01

    It is well known that a decreased expression or inhibited activity of telomerase in cancer cells is accompanied by an increased sensitivity to some drugs (e.g., doxorubicin, cisplatin, or 5-fluorouracil). However, the mechanism of the resistance resulting from telomerase alteration remains elusive. There are theories claiming that it might be associated with telomere shortening, genome instability, hTERT translocation, mitochondria functioning modulation, or even alterations in ABC family gen...

  13. Hypoxia-induced cytotoxic drug resistance in osteosarcoma is independent of HIF-1Alpha.

    Directory of Open Access Journals (Sweden)

    Jennifer Adamski

    Full Text Available Survival rates from childhood cancer have improved dramatically in the last 40 years, such that over 80% of children are now cured. However in certain subgroups, including metastatic osteosarcoma, survival has remained stubbornly poor, despite dose intensive multi-agent chemotherapy regimens, and new therapeutic approaches are needed. Hypoxia is common in adult solid tumours and is associated with treatment resistance and poorer outcome. Hypoxia induces chemotherapy resistance in paediatric tumours including neuroblastoma, rhabdomyosarcoma and Ewing's sarcoma, in vitro, and this drug resistance is dependent on the oxygen-regulated transcription factor hypoxia inducible factor-1 (HIF-1. In this study the effects of hypoxia on the response of the osteosarcoma cell lines 791T, HOS and U2OS to the clinically relevant cytotoxics cisplatin, doxorubicin and etoposide were evaluated. Significant hypoxia-induced resistance to all three agents was seen in all three cell lines and hypoxia significantly reduced drug-induced apoptosis. Hypoxia also attenuated drug-induced activation of p53 in the p53 wild-type U2OS osteosarcoma cells. Drug resistance was not induced by HIF-1α stabilisation in normoxia by cobalt chloride nor reversed by the suppression of HIF-1α in hypoxia by shRNAi, siRNA, dominant negative HIF or inhibition with the small molecule NSC-134754, strongly suggesting that hypoxia-induced drug resistance in osteosarcoma cells is independent of HIF-1α. Inhibition of the phosphoinositide 3-kinase (PI3K pathway using the inhibitor PI-103 did not reverse hypoxia-induced drug resistance, suggesting the hypoxic activation of Akt in osteosarcoma cells does not play a significant role in hypoxia-induced drug resistance. Targeting hypoxia is an exciting prospect to improve current anti-cancer therapy and combat drug resistance. Significant hypoxia-induced drug resistance in osteosarcoma cells highlights the potential importance of hypoxia as a target

  14. Lack of cross-resistance to fostriecin in a human small-cell lung carcinoma cell line showing topoisomerase II-related drug resistance

    NARCIS (Netherlands)

    de Jong, Steven; Zijlstra, J G; Mulder, Nanno; de Vries, Liesbeth

    1991-01-01

    Cells exhibiting decreased topoisomerase II (Topo II) activity are resistant to several drugs that require Topo II as an intermediate. These drugs are cytotoxic due to the formation of a cleavable complex between the drug, Topo II and DNA. Fostriecin belongs to a new class of drugs that inhibit Topo

  15. Withanolide D Exhibits Similar Cytostatic Effect in Drug-Resistant and Drug-Sensitive Multiple Myeloma Cells

    Directory of Open Access Journals (Sweden)

    Mark E. Issa

    2017-09-01

    Full Text Available In spite of recent therapeutic advances, multiple myeloma (MM remains a malignancy with very low curability. This has been partly attributed to the existence of a drug-resistant subpopulation known as cancer stem cells (CSCs. MM-CSCs are equipped with the necessary tools that render them highly resistant to virtually all conventional therapies. In this study, the growth inhibitory effects of withanolide D (WND, a steroidal lactone isolated from Withania somnifera, on drug-sensitive tumoral plasma cells and drug-resistant MM cells have been investigated. In MTT/XTT assays, WND exhibited similar cytostatic effects between drug-resistant and drug-sensitive cell lines in the nM range. WND also induced cell death and apoptosis in MM-CSCs and RPMI 8226 cells, as examined by the calcein/ethidium homodimer and annexin V/propidium iodide stainings, respectively. To determine whether P-glycoprotein (P-gp efflux affected the cytostatic activity of WND, P-gp was inhibited with verapamil and results indicated that the WND cytostatic effect in MM-CSCs was independent of P-gp efflux. Furthermore, WND did not increase the accumulation of the fluorescent P-gp substrate rhodamine 123 in MM-CSCs, suggesting that WND may not inhibit P-gp at the tested relevant doses. Therefore, the WND-induced cytostatic effect may be independent of P-gp efflux. These findings warrant further investigation of WND in MM-CSC animal models.

  16. Chlorpheniramine Analogues Reverse Chloroquine Resistance in Plasmodium falciparum by Inhibiting PfCRT.

    Science.gov (United States)

    Deane, Karen J; Summers, Robert L; Lehane, Adele M; Martin, Rowena E; Barrow, Russell A

    2014-05-08

    The emergence and spread of malaria parasites that are resistant to chloroquine (CQ) has been a disaster for world health. The antihistamine chlorpheniramine (CP) partially resensitizes CQ-resistant (CQR) parasites to CQ but possesses little intrinsic antiplasmodial activity. Mutations in the parasite's CQ resistance transporter (PfCRT) confer resistance to CQ by enabling the protein to transport the drug away from its site of action, and it is thought that resistance-reversers such as CP exert their effect by blocking this CQ transport activity. Here, a series of new structural analogues and homologues of CP have been synthesized. We show that these compounds (along with other in vitro CQ resistance-reversers) inhibit the transport of CQ via a resistance-conferring form of PfCRT expressed in Xenopus laevis oocytes. Furthermore, the level of PfCRT-inhibition was found to correlate well with both the restoration of CQ accumulation and the level of CQ resensitization in CQR parasites.

  17. Structure-activity studies of Wnt/β-catenin inhibition in the Niclosamide chemotype: Identification of derivatives with improved drug exposure.

    Science.gov (United States)

    Mook, Robert A; Wang, Jiangbo; Ren, Xiu-Rong; Chen, Minyong; Spasojevic, Ivan; Barak, Larry S; Lyerly, H Kim; Chen, Wei

    2015-09-01

    The Wnt signaling pathway plays a key role in regulation of organ development and tissue homeostasis. Dysregulated Wnt activity is one of the major underlying mechanisms responsible for many diseases including cancer. We previously reported the FDA-approved anthelmintic drug Niclosamide inhibits Wnt/β-catenin signaling and suppresses colon cancer cell growth in vitro and in vivo. Niclosamide is a multi-functional drug that possesses important biological activity in addition to inhibition of Wnt/β-catenin signaling. Here, we studied the SAR of Wnt signaling inhibition in the anilide and salicylamide region of Niclosamide. We found that the 4'-nitro substituent can be effectively replaced by trifluoromethyl or chlorine and that the potency of inhibition was dependent on the substitution pattern in the anilide ring. Non-anilide, N-methyl amides and reverse amide derivatives lost significant potency, while acylated salicylamide derivatives inhibited signaling with potency similar to non-acyl derivatives. Niclosamide's low systemic exposure when dosed orally may hinder its use to treat systemic disease. To overcome this limitation we identified an acyl derivative of Niclosamide, DK-520 (compound 32), that significantly increased both the plasma concentration and the duration of exposure of Niclosamide when dosed orally. The studies herein provide a medicinal chemical foundation to improve the pharmacokinetic exposure of Niclosamide and Wnt-signaling inhibitors based on the Niclosamide chemotype. The identification of novel derivatives of Niclosamide that metabolize to Niclosamide and increase its drug exposure may provide important research tools for in vivo studies and provide drug candidates for treating cancers with dysregulated Wnt signaling including drug-resistant cancers. Moreover, since Niclosamide is a multi-functional drug, new research tools such as DK520 could directly result in novel treatments against bacterial and viral infection, lupus, and metabolic

  18. Structure–activity studies of Wnt/β-catenin inhibition in the Niclosamide chemotype: Identification of derivatives with improved drug exposure

    Science.gov (United States)

    Mook, Robert A.; Wang, Jiangbo; Ren, Xiu-Rong; Chen, Minyong; Spasojevic, Ivan; Barak, Larry S.; Lyerly, H. Kim; Chen, Wei

    2015-01-01

    The Wnt signaling pathway plays a key role in regulation of organ development and tissue homeostasis. Dysregulated Wnt activity is one of the major underlying mechanisms responsible for many diseases including cancer. We previously reported the FDA-approved anthelmintic drug Niclosamide inhibits Wnt/β-catenin signaling and suppresses colon cancer cell growth in vitro and in vivo. Niclosamide is a multi-functional drug that possesses important biological activity in addition to inhibition of Wnt/β-catenin signaling. Here, we studied the SAR of Wnt signaling inhibition in the anilide and salicylamide region of Niclosamide. We found that the 4′-nitro substituent can be effectively replaced by trifluoromethyl or chlorine and that the potency of inhibition was dependent on the substitution pattern in the anilide ring. Non-anilide, N-methyl amides and reverse amide derivatives lost significant potency, while acylated salicylamide derivatives inhibited signaling with potency similar to non-acyl derivatives. Niclosamide's low systemic exposure when dosed orally may hinder its use to treat systemic disease. To overcome this limitation we identified an acyl derivative of Niclosamide, DK-520 (compound 32), that significantly increased both the plasma concentration and the duration of exposure of Niclosamide when dosed orally. The studies herein provide a medicinal chemical foundation to improve the pharmacokinetic exposure of Niclosamide and Wnt-signaling inhibitors based on the Niclosamide chemotype. The identification of novel derivatives of Niclosamide that metabolize to Niclosamide and increase its drug exposure may provide important research tools for in vivo studies and provide drug candidates for treating cancers with dysregulated Wnt signaling including drug-resistant cancers. Moreover, since Niclosamide is a multifunctional drug, new research tools such as DK520 could directly result in novel treatments against bacterial and viral infection, lupus, and metabolic

  19. [Morphological signs of inflammatory activity in different clinical forms of drug-resistant pulmonary tuberculosis].

    Science.gov (United States)

    Elipashev, A A; Nikolsky, V O; Shprykov, A S

    to determine whether the activity of tuberculous inflammation is associated with different clinical forms of drug-resistant pulmonary tuberculosis. The material taken from 310 patients operated on in 2010-2015 were retrospectively examined. The patients underwent economical lung resections of limited extent (typical and atypical ones of up to 3 segments) for circumscribed forms of tuberculosis with bacterial excretion. A study group consisted of 161 (51.9%) patients with drug-resistant variants of pulmonary tuberculosis. A control group included 149 (48.1%) patients with preserved susceptibility of Mycobacterium tuberculosis to anti-TB drugs. The activity of specific changes in tuberculosis was morphologically evaluated in accordance with the classification proposed by B.M. Ariel in 1998. The highest activity of fourth-to-fifth degree specific inflammation, including that outside the primary involvement focus, was obtained in the drug-resistant pulmonary tuberculosis group due to the predominance of patients with cavernous and fibrous-cavernous tuberculosis versus those in whom the susceptibility to chemotherapeutic agents was preserved. A macroscopic study showed that the primary lesion focus had a median size in one-half of the all the examinees; but large tuberculomas, caverns, and fibrous caverns over 4 cm in diameter were multiple and detected in the drug-resistant pulmonary tuberculosis group. Multidrug resistance was observed in more than 60% of the patients with fibrous-cavernous pulmonary tuberculosis, extensive drug resistance was seen in those with cavernous tuberculosis, which is an aggravating factor. The data obtained from the morphological study of the intraoperative material can specify the clinical form of tuberculosis and evaluate the efficiency of preoperative specific therapy. The highest activity of specific inflammation was observed in patients with multiple drug-resistant pulmonary tuberculosis, the prevalence of third-to-fourth degree

  20. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy?

    Science.gov (United States)

    Callaghan, Richard; Luk, Frederick; Bebawy, Mary

    2014-04-01

    P-glycoprotein (P-gp) is a key player in the multidrug-resistant phenotype in cancer. The protein confers resistance by mediating the ATP-dependent efflux of an astonishing array of anticancer drugs. Its broad specificity has been the subject of numerous attempts to inhibit the protein and restore the efficacy of anticancer drugs. The general strategy has been to develop compounds that either compete with anticancer drugs for transport or act as direct inhibitors of P-gp. Despite considerable in vitro success, there are no compounds currently available to "block" P-gp-mediated resistance in the clinic. The failure may be attributed to toxicity, adverse drug interaction, and numerous pharmacokinetic issues. This review provides a description of several alternative approaches to overcome the activity of P-gp in drug-resistant cells. These include 1) drugs that specifically target resistant cells, 2) novel nanotechnologies to provide high-dose, targeted delivery of anticancer drugs, 3) compounds that interfere with nongenomic transfer of resistance, and 4) approaches to reduce the expression of P-gp within tumors. Such approaches have been developed through the pursuit of greater understanding of resistance mediators such as P-gp, and they show considerable potential for further application.

  1. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions.

    Science.gov (United States)

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-09-04

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g., DNA hypermethylation) are essential to maintain this drug-resistant phenotype. Thus, altered lipid synthesis may be linked to epigenetic mechanisms of drug resistance. We hypothesize that reversing DNA hypermethylation in resistant cells with an epigenetic drug could alter lipid synthesis, changing the cell membrane's biophysical properties to facilitate drug delivery to overcome drug resistance. Herein we show that treating drug-resistant breast cancer cells (MCF-7/ADR) with the epigenetic drug 5-aza-2'-deoxycytidine (decitabine) significantly alters cell lipid composition and biophysical properties, causing the resistant cells to acquire biophysical characteristics similar to those of sensitive cell (MCF-7) lipids. Following decitabine treatment, resistant cells demonstrated increased sphingomyelinase activity, resulting in a decreased sphingomyelin level that influenced lipid domain structures, increased membrane fluidity, and reduced P-glycoprotein expression. Changes in the biophysical characteristics of resistant cell lipids facilitated doxorubicin transport and restored endocytic function for drug delivery with a lipid-encapsulated form of doxorubicin, enhancing the drug efficacy. In conclusion, we have established a new mechanism for efficacy of an epigenetic drug, mediated through changes in lipid composition and biophysical properties, in reversing cancer drug resistance.

  2. ANTIBACTERIAL ACTIVITY OF DRACONTOMELON DAO EXTRACTS ON METHICILLIN-RESISTANT S. AUREUS (MRSA) AND E. COLI MULTIPLE DRUG RESISTANCE (MDR).

    Science.gov (United States)

    Yuniati, Yuniati; Hasanah, Nurul; Ismail, Sjarif; Anitasari, Silvia; Paramita, Swandari

    2018-01-01

    Staphylococcus aureus , methicillin-resistant and Escherichia coli , multidrug-resistant included in the list of antibiotic-resistant priority pathogens from WHO. As multidrug-resistant bacteria problem is increasing, it is necessary to probe new sources for identifying antimicrobial compounds. Medicinal plants represent a rich source of antimicrobial agents. One of the potential plants for further examined as antibacterial is Dracontomelon dao (Blanco) Merr. & Rolfe. The present study designed to find the antibacterial activity of D. dao stem bark extracts on Methicillin-resistant S. aureus (MRSA) and E. coli Multiple Drug Resistance (MDR), followed by determined secondary metabolites with antibacterial activity and determined the value of MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). D. dao stem bark extracted using 60% ethanol. Disc diffusion test methods used to find the antibacterial activity, following by microdilution methods to find the value of MIC and MBC. Secondary metabolites with antibacterial activity determined by bioautography using TLC (thin layer chromatography) methods. D. dao stem bark extracts are sensitive to MSSA, MRSA and E.coli MDR bacteria. The inhibition zone is 16.0 mm in MSSA, 11.7 mm in MRSA and 10.7 mm in E. coli MDR. The entire MBC/MIC ratios for MSSA, MRSA and E.coli MDR is lower than 4. The ratio showed bactericidal effects of D. dao stem bark extracts. In TLC results, colorless bands found to be secondary metabolites with antibacterial activity. D. dao stem bark extracts are potential to develop as antibacterial agent especially against MRSA and E. coli MDR strain.

  3. Chaetominine reduces MRP1-mediated drug resistance via inhibiting PI3K/Akt/Nrf2 signaling pathway in K562/Adr human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingyun; Wei, Xing [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai (China); Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai (China); Lu, Yanhua, E-mail: luyanhua@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai (China); Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai (China)

    2016-05-13

    Drug resistance limits leukemia treatment and chaetominine, a cytotoxic alkaloid that promotes apoptosis in a K562 human leukemia cell line via the mitochondrial pathway was studied with respect to chemoresistance in a K562/Adr human resistant leukemia cell line. Cytotoxicity assays indicated that K562/Adr resistance to adriamycin (ADR) did not occur in the presence of chaetominine and that chaetominine increased chemosensitivity of K562/Adr to ADR. Data show that chaetominine enhanced ADR-induced apoptosis and intracellular ADR accumulation in K562/Adr cells. Accordingly, chaetominine induced apoptosis by upregulating ROS, pro-apoptotic Bax and downregulating anti-apoptotic Bcl-2. RT-PCR and western-blot confirmed that chaetominine suppressed highly expressed MRP1 at mRNA and protein levels. But little obvious alternation of another drug transporter MDR1 mRNA was observed. Furthermore, inhibition of MRP1 by chaetominine relied on inhibiting Akt phosphorylation and nuclear Nrf2. In summary, chaetominine strongly reverses drug resistance by interfering with the PI3K/Akt/Nrf2 signaling, resulting in reduction of MRP1-mediated drug efflux and induction of Bax/Bcl-2-dependent apoptosis in an ADR-resistant K562/Adr leukemia cell line. - Highlights: • Chaetominine enhanced chemosensitivity of ADR against K562/Adr cells. • Chaetominine increased intracellular ADR levels via inhibiting MRP1. • Chaetominine induced apoptosis of K562/Adr cells through upregulation of ROS and modulation of Bax/Bcl-2. • Inhibition of MRP1 and Nrf2 by chaetominine treatment was correlative with blockade of PI3K/Akt signaling.

  4. Evaluating the Role of Multidrug Resistance Protein 3 (MDR3) Inhibition in Predicting Drug-Induced Liver Injury Using 125 Pharmaceuticals.

    Science.gov (United States)

    Aleo, Michael D; Shah, Falgun; He, Kan; Bonin, Paul D; Rodrigues, A David

    2017-05-15

    The role of bile salt export protein (BSEP) inhibition in drug-induced liver injury (DILI) has been investigated widely, while inhibition of the canalicular multidrug resistant protein 3 (MDR3) has received less attention. This transporter plays a pivotal role in secretion of phospholipids into bile and functions coordinately with BSEP to mediate the formation of bile acid-containing biliary micelles. Therefore, inhibition of MDR3 in human hepatocytes was examined across 125 drugs (70 of Most-DILI-concern and 55 of No-DILI-concern). Of these tested, 41% of Most-DILI-concern and 47% of No-DILI-concern drugs had MDR3 IC 50 values of <50 μM. A better distinction across DILI classifications occurred when systemic exposure was considered where safety margins of 50-fold had low sensitivity (0.29), but high specificity (0.96). Analysis of physical chemical property space showed that basic compounds were twice as likely to be MDR3 inhibitors as acids, neutrals, and zwitterions and that inhibitors were more likely to have polar surface area (PSA) values of <100 Å 2 and cPFLogD values between 1.5 and 5. These descriptors, with different cutoffs, also highlighted a group of compounds that shared dual potency as MDR3 and BSEP inhibitors. Nine drugs classified as Most-DILI-concern compounds (four withdrawn, four boxed warning, and one liver injury warning in their approved label) had intrinsic potency features of <20 μM in both assays, thereby reinforcing the notion that multiple inhibitory mechanisms governing bile formation (bile acid and phospholipid efflux) may confer additional risk factors that play into more severe forms of DILI as shown by others for BSEP inhibitors combined with multidrug resistance-associated protein (MRP2, MRP3, MRP4) inhibitory properties. Avoiding physical property descriptors that highlight dual BSEP and MDR3 inhibition or testing drug candidates for inhibition of multiple efflux transporters (e.g., BSEP, MDR3, and MRPs) may be an effective

  5. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    Science.gov (United States)

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria.

  6. RND-type Drug Efflux Pumps from Gram-negative bacteria: Molecular Mechanism and Inhibition

    Directory of Open Access Journals (Sweden)

    Henrietta eVenter

    2015-04-01

    Full Text Available Drug efflux protein complexes confer multidrug resistance on bacteria by transporting a wide spectrum of structurally diverse antibiotics. Moreover, organisms can only acquire resistance in the presence of an active efflux pump. The substrate range of drug efflux pumps is not limited to antibiotics, but it also includes toxins, dyes, detergents, lipids and molecules involved in quorum sensing; hence efflux pumps are also associated with virulence and biofilm formation. Inhibitors of efflux pumps are therefore attractive compounds to reverse multidrug resistance and to prevent the development of resistance in clinically relevant bacterial pathogens. Recent successes on the structure determination and functional analysis of the AcrB and MexB components of the AcrAB-TolC and MexAB-OprM drug efflux systems as well as the structure of the fully assembled, functional triparted AcrAB-TolC complex significantly contributed to our understanding of the mechanism of substrate transport and the options for inhibition of efflux. These data, combined with the well-developed methodologies for measuring efflux pump inhibition, could allow the rational design and subsequent experimental verification of potential efflux pump inhibitors. In this review we will explore how the available biochemical and structural information can be translated into the discovery and development of new compounds that could reverse drug resistance in Gram-negative pathogens. The current literature on efflux pump inhibitors will also be analysed and the reasons why no compounds have yet progressed into clinical use will be explored.

  7. Epigenetic Modulation of the Biophysical Properties of Drug-Resistant Cell Lipids to Restore Drug Transport and Endocytic Functions

    OpenAIRE

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-01-01

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g....

  8. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    International Nuclear Information System (INIS)

    Hembruff, Stacey L; Laberge, Monique L; Villeneuve, David J; Guo, Baoqing; Veitch, Zachary; Cecchetto, Melanie; Parissenti, Amadeo M

    2008-01-01

    Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7 DOX-2 ), epirubicin (MCF-7 EPI ), paclitaxel (MCF-7 TAX-2 ), or docetaxel (MCF-7 TXT ). During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does occur at the threshold dose, the magnitude of

  9. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance.

    Science.gov (United States)

    Khdair, Ayman; Chen, Di; Patil, Yogesh; Ma, Linan; Dou, Q Ping; Shekhar, Malathy P V; Panyam, Jayanth

    2010-01-25

    Tumor drug resistance significantly limits the success of chemotherapy in the clinic. Tumor cells utilize multiple mechanisms to prevent the accumulation of anticancer drugs at their intracellular site of action. In this study, we investigated the anticancer efficacy of doxorubicin in combination with photodynamic therapy using methylene blue in a drug-resistant mouse tumor model. Surfactant-polymer hybrid nanoparticles formulated using an anionic surfactant, Aerosol-OT (AOT), and a naturally occurring polysaccharide polymer, sodium alginate, were used for synchronized delivery of the two drugs. Balb/c mice bearing syngeneic JC tumors (mammary adenocarcinoma) were used as a drug-resistant tumor model. Nanoparticle-mediated combination therapy significantly inhibited tumor growth and improved animal survival. Nanoparticle-mediated combination treatment resulted in enhanced tumor accumulation of both doxorubicin and methylene blue, significant inhibition of tumor cell proliferation, and increased induction of apoptosis. These data suggest that nanoparticle-mediated combination chemotherapy and photodynamic therapy using doxorubicin and methylene blue has significant therapeutic potential against drug-resistant tumors. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Oridonin effectively reverses the drug resistance of cisplatin involving induction of cell apoptosis and inhibition of MMP expression in human acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2017-03-01

    Full Text Available Cisplatin is the first generation platinum-based chemotherapy agent. However, the extensive application of cisplatin inevitably causes drug resistance, which is a major obstacle to cancer chemotherapy. Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activity. The aim of our study is to investigate the role of oridonin to reverse the cisplatin-resistance in human acute myeloid leukemia (AML cells. The effect of oridonin on human AML cell proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays in cisplatin-resistant human AML cells. Furthermore, cell apoptosis was examined by flow cytometry. The inhibitive effect of oridonin in vivo was determined using xenografted nude mice. In addition, the expressions of MMP2 and MMP9 were detected by Western blot. There was a synergistic antitumor effect between cisplatin and oridonin on cisplatin-resistant human AML cells in vitro and in vivo. In addition, the combination of cisplatin and oridonin synergistically induced cell apoptosis. Furthermore, the combination treatment not only inhibited AML cell migration and invasion, but more significantly, decreased the expressions of MMP2 and MMP9 proteins. Our results suggest that the synergistic effect between both agents is likely to be driven by the inhibition of MMP expression and the resulting increased apoptosis.

  11. Antibacterial activity of herbal extracts against multi-drug resistant Escherichia coli recovered from retail chicken meat.

    Science.gov (United States)

    Shaheen, Arfat Yousaf; Sheikh, Ali Ahmad; Rabbani, Masood; Aslam, Asim; Bibi, Tasra; Liaqat, Fakhra; Muhammad, Javed; Rehmani, Shafqat Fatima

    2015-07-01

    Increasing incidence rate of multiple drug resistance in Escherichia coli (E. coli) due to extensive uses of antibiotics is a serious challenge to disease treatment. Contaminated retail chicken meat is one of the major sources of spread of multi drug resistant (MDR) E. coli. Current study has been conducted to study the prevalence of MDR E. coli in retail chicken meat samples from Lahore city of Pakistan and it was found that 73.86% of E. coli isolates have MDR pattern. In vitro evaluation of antibacterial activity of crude ethanolic extracts of six herbs against MDR E. coli phenotypes has revealed that clove and cinnamon have maximum zones of inhibition as compared to other herbal extracts. Mint and coriander gave the intermediate results while garlic and kalonji showed the least antibacterial activity against the MDR E. coli phenotypes using the agar well diffusion technique. Average Minimum Inhibitory Concentrations (MICs) for clove, mint, cinnamon, coriander, kalonji and garlic extracts were 1.15, 1.38, 0.5, 1.99, 2.41, 8.60 mg/mL respectively using the broth micro dilution method. The results obtained in present study were revealed that crude ethanol extracts of selected herbs have had significant antibacterial activity. Hence they can be used as promising alternatives of antimicrobials against MDR E. coli species and can be used for cooked food preservation.

  12. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    International Nuclear Information System (INIS)

    Asmis, Lars; Tanner, Felix C.; Sudano, Isabella; Luescher, Thomas F.; Camici, Giovanni G.

    2010-01-01

    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysis showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 ± 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% ± 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 ± 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.

  13. Intercellular Resistance to BRAF Inhibition Can Be Mediated by Extracellular Vesicle–Associated PDGFRβ

    Directory of Open Access Journals (Sweden)

    Laura J. Vella

    2017-11-01

    Full Text Available Treatment of BRAF mutant melanoma with kinase inhibitors has been associated with rapid tumor regression; however, this clinical benefit is short-lived, and most patients relapse. A number of studies suggest that the extracellular environment promotes BRAF inhibitor resistance and tumor progression. Extracellular vesicles, such as exosomes, are functional mediators in the extracellular environment. They are small vesicles known to carry a concentrated group of functional cargo and serve as intercellular communicators not only locally but also systemically. Increasingly, it is reported that extracellular vesicles facilitate the development of drug resistance in cancer; however, their role in BRAF inhibitor resistance in melanoma is unclear. Here we investigated if extracellular vesicles from BRAF inhibitor–resistant melanoma could influence drug sensitivity in recipient melanoma cells. We demonstrate that the resistance driver, PDGFRβ, can be transferred to recipient melanoma cells via extracellular vesicles, resulting in a dose-dependent activation of PI3K/AKT signaling and escape from MAPK pathway BRAF inhibition. These data suggest that the BRAF inhibitor–sensitive phenotype of metastatic melanoma can be altered by delivery of PDGFRβ by extracellular vesicles derived from neighboring drug-resistant melanoma cells.

  14. Tenofovir alafenamide demonstrates broad cross-genotype activity against wild-type HBV clinical isolates and maintains susceptibility to drug-resistant HBV isolates in vitro.

    Science.gov (United States)

    Liu, Yang; Miller, Michael D; Kitrinos, Kathryn M

    2017-03-01

    Tenofovir alafenamide (TAF) is a novel prodrug of tenofovir (TFV). This study evaluated the antiviral activity of TAF against wild-type genotype A-H HBV clinical isolates as well as adefovir-resistant, lamivudine-resistant, and entecavir-resistant HBV isolates. Full length HBV genomes or the polymerase/reverse transcriptase (pol/RT) region from treatment-naïve patients infected with HBV genotypes A-H were amplified and cloned into an expression vector under the control of a CMV promoter. In addition, 11 drug resistant HBV constructs were created by site-directed mutagenesis of a full length genotype D construct. Activity of TAF was measured by transfection of each construct into HepG2 cells and assessment of HBV DNA levels following treatment across a range of TAF concentrations. TAF activity in vitro was similar against wild-type genotype A-H HBV clinical isolates. All lamivudine- and entecavir-resistant isolates and 4/5 adefovir-resistant isolates were found to be sensitive to inhibition by TAF in vitro as compared to the wild-type isolate. The adefovir-resistant isolate rtA181V + rtN236T exhibited low-level reduced susceptibility to TAF. TAF is similarly active in vitro against wild-type genotype A-H HBV clinical isolates. The TAF sensitivity results for all drug-resistant isolates are consistent with what has been observed with the parent drug TFV. The in vitro cell-based HBV phenotyping assay results support the use of TAF in treatment of HBV infected subjects with diverse HBV genotypes, in both treatment-naive and treatment-experienced HBV infected patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Interplay between Mutations and Efflux in Drug Resistant Clinical Isolates of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Miguel Viveiros

    2017-04-01

    Full Text Available Numerous studies show efflux as a universal bacterial mechanism contributing to antibiotic resistance and also that the activity of the antibiotics subject to efflux can be enhanced by the combined use of efflux inhibitors. Nevertheless, the contribution of efflux to the overall drug resistance levels of clinical isolates of Mycobacterium tuberculosis is poorly understood and still is ignored by many. Here, we evaluated the contribution of drug efflux plus target-gene mutations to the drug resistance levels in clinical isolates of M. tuberculosis. A panel of 17 M. tuberculosis clinical strains were characterized for drug resistance associated mutations and antibiotic profiles in the presence and absence of efflux inhibitors. The correlation between the effect of the efflux inhibitors and the resistance levels was assessed by quantitative drug susceptibility testing. The bacterial growth/survival vs. growth inhibition was analyzed through the comparison between the time of growth in the presence and absence of an inhibitor. For the same mutation conferring antibiotic resistance, different MICs were observed and the different resistance levels found could be reduced by efflux inhibitors. Although susceptibility was not restored, the results demonstrate the existence of a broad-spectrum synergistic interaction between antibiotics and efflux inhibitors. The existence of efflux activity was confirmed by real-time fluorometry. Moreover, the efflux pump genes mmr, mmpL7, Rv1258c, p55, and efpA were shown to be overexpressed in the presence of antibiotics, demonstrating the contribution of these efflux pumps to the overall resistance phenotype of the M. tuberculosis clinical isolates studied, independently of the genotype of the strains. These results showed that the drug resistance levels of multi- and extensively-drug resistant M. tuberculosis clinical strains are a combination between drug efflux and the presence of target-gene mutations, a reality

  16. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations.

    Science.gov (United States)

    Tojo, Shigeo; Tanaka, Yukinori; Ochi, Kozo

    2015-12-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Drug-resistant gram-negative uropathogens: A review.

    Science.gov (United States)

    Khoshnood, Saeed; Heidary, Mohsen; Mirnejad, Reza; Bahramian, Aghil; Sedighi, Mansour; Mirzaei, Habibollah

    2017-10-01

    Urinary tract infection(UTI) caused by Gram-negative bacteria is the second most common infectious presentation in community medical practice. Approximately 150 million people are diagnosed with UTI each year worldwide. Drug resistance in Gram-negative uropathogens is a major global concern which can lead to poor clinical outcomes including treatment failure, development of bacteremia, requirement for intravenous therapy, hospitalization, and extended length of hospital stay. The mechanisms of drug resistance in these bacteria are important due to they are often not identified by routine susceptibility tests and have an exceptional potential for outbreaks. Treatment of UTIs depends on the access to effective drugs, which is now threatened by antibiotic resistant Gram-negative uropathogens. Although several effective antibiotics with activity against highly resistant Gram-negatives are available, there is not a unique antibiotic with activity against the high variety of resistance. Therefore, antimicrobial susceptibility tests, correlation between clinicians and laboratories, development of more rapid diagnostic methods, and continuous monitoring of drug resistance are urgent priorities. In this review, we will discuss about the current global status of drug-resistant Gram-negative uropathogens and their mechanisms of drug resistance to provide new insights into their treatment options. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains.

    Science.gov (United States)

    Boonyanugomol, Wongwarut; Kraisriwattana, Kairin; Rukseree, Kamolchanok; Boonsam, Kraisorn; Narachai, Panchaporn

    In this study, we determined the antibacterial and synergistic activities of the essential oil from Zingiber cassumunar against the extensively drug-resistant (XDR) Acinetobacter baumannii strains. The antibacterial and synergistic properties of the essential oil from Z. cassumunar were examined by agar disc diffusion tests. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated by broth microdilution using the resazurin assay. The in vitro time-kill antibacterial kinetics was analyzed using the plate count technique. We found that the essential oil from Z. cassumunar had antibacterial activity against A. baumannii, with MIC and MBC ranging from 7.00 to 9.24mg/ml. The essential oil could completely inhibit A. baumannii at 1h, and coccoid-shaped bacteria were found after treatment. In addition, the essential oil had a synergistic effect when combined with antibiotics, e.g., aminoglycosides, fluoroquinolones, tetracyclines, and folate pathway inhibitors. Thus, the essential oil from Z. cassumunar has strong antibacterial and synergistic activities against XDR A. baumannii, which may provide the basis for the development of a new therapy against drug-resistant bacteria. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Neratinib resistance and cross-resistance to other HER2-targeted drugs due to increased activity of metabolism enzyme cytochrome P4503A4.

    Science.gov (United States)

    Breslin, Susan; Lowry, Michelle C; O'Driscoll, Lorraine

    2017-02-28

    Neratinib is in Phase 3 clinical trials but, unfortunately, the development of resistance is inevitable. Here, we investigated the effects of acquired neratinib resistance on cellular phenotype and the potential mechanism of this resistance. Neratinib-resistant variants of HER2-positive breast cancer cells were developed and their cross-resistance investigated using cytotoxicity assays. Similarly, sensitivity of trastuzumab-resistant and lapatinib-resistant cells to neratinib was assessed. Cellular phenotype changes were evaluated using migration, invasion and anoikis assays. Immunoblotting for HER family members and drug efflux pumps, as well as enzyme activity assays were performed. Neratinib resistance conferred cross-resistance to trastuzumab, lapatinib and afatinib. Furthermore, the efficacy of neratinib was reduced in trastuzumab- and lapatinib-resistant cells. Neratinib-resistant cells were more aggressive than their drug-sensitive counterparts, with increased CYP3A4 activity identified as a novel mechanism of neratinib resistance. The potential of increased CYP3A4 activity as a biomarker and/or target to add value to neratinib warrants investigation.

  20. Micelle System Based on Molecular Economy Principle for Overcoming Multidrug Resistance and Inhibiting Metastasis.

    Science.gov (United States)

    Qi, Yan; Qin, Xianya; Yang, Conglian; Wu, Tingting; Qiao, Qi; Song, Qingle; Zhang, Zhiping

    2018-03-05

    The high mortality of cancer is mainly attributed to multidrug resistance (MDR) and metastasis. A simple micelle system was constructed here to codeliver doxorubicin (DOX), adjudin (ADD), and nitric oxide (NO) for overcoming MDR and inhibiting metastasis. It was devised based on the "molecular economy" principle as the micelle system was easy to fabricate and exhibited high drug loading efficiency, and importantly, each component of the micelles would exert one or more active functions. DOX acted as the main cell killing agent supplemented with ADD, NO, and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). MDR was overcome by synergistic effects of mitochondria inhibition agents, TPGS and ADD. A TPGS-based NO donor can be used as a drug carrier, and it can release NO to enhance drug accumulation and penetration in tumor, resulting in a positive cycle of drug delivery. This DOX-ADD conjugate self-assembly system demonstrated controlled drug release, increased cellular uptake and cytotoxicity, enhanced accumulation at tumor site, and improved in vivo metastasis inhibition of breast cancer. The micelles can fully take advantage of the functions of each component, and they provide a potential strategy for nanomedicine design and clinical cancer treatment.

  1. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer.

    Science.gov (United States)

    Ji, Runbi; Zhang, Bin; Zhang, Xu; Xue, Jianguo; Yuan, Xiao; Yan, Yongmin; Wang, Mei; Zhu, Wei; Qian, Hui; Xu, Wenrong

    2015-08-03

    Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.

  2. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    International Nuclear Information System (INIS)

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan; Xu, Chuan; Wang, Mei; Wang, Qinrui; Zhou, Zhansong; Xiang, Zhonghuai; Cui, Hongjuan

    2014-01-01

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer

  3. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Xu, Chuan [Division of Scientific Research and Training, General Hospital of PLA Chengdu Military Area Command, Chengdu, Sichuan 610083 (China); Wang, Mei; Wang, Qinrui [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Zhou, Zhansong, E-mail: zhouzhans@sina.com [Institute of Urinary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Xiang, Zhonghuai [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Cui, Hongjuan, E-mail: hcui@swu.edu.cn [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China)

    2014-03-28

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.

  4. Meropenem-Clavulanate is Effective Against Extensive Drug-Resistant Mycobacterium Tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Hugonnet, J.; Tremblay, L; Boshoff, H; Barry, C; Blanchard, J

    2009-01-01

    e-lactam antibiotics are ineffective against Mycobacterium tuberculosis, being rapidly hydrolyzed by the chromosomally encoded blaC gene product. The carbapenem class of e-lactams are very poor substrates for BlaC, allowing us to determine the three-dimensional structure of the covalent BlaC-meropenem covalent complex at 1.8 angstrom resolution. When meropenem was combined with the e-lactamase inhibitor clavulanate, potent activity against laboratory strains of M. tuberculosis was observed [minimum inhibitory concentration (MICmeropenem) less than 1 microgram per milliliter], and sterilization of aerobically grown cultures was observed within 14 days. In addition, this combination exhibited inhibitory activity against anaerobically grown cultures that mimic the 'persistent' state and inhibited the growth of 13 extensively drug-resistant strains of M. tuberculosis at the same levels seen for drug-susceptible strains. Meropenem and clavulanate are Food and Drug Administration-approved drugs and could potentially be used to treat patients with currently untreatable disease.

  5. In vitro and in vivo analysis of antimicrobial agents alone and in combination against multi-drug resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Songzhe eHE

    2015-05-01

    Full Text Available Objective To investigate the in vitro and in vivo antibacterial activities of tigecycline and other 13 common antimicrobial agents, alone or in combination, against multi-drug resistant Acinetobacter baumannii.MethodsAn in vitro susceptibility test of 101 Acinetobacter baumannii was used to detect minimal inhibitory concentrations (MICs. A mouse lung infection model of multi-drug resistant Acinetobacter baumannii,established by the ultrasonic atomization method, was used to define in vivo antimicrobial activities.Results Multi-drug resistant Acinetobacter baumannii showed high sensitivity to tigecycline (98% inhibition, polymyxin B (78.2% inhibition, and minocycline (74.2% inhibition. However, the use of these antimicrobial agents in combination with other antimicrobial agents produced synergistic or additive effects. In vivo data showed that white blood cell (WBC counts in drug combination groups C (minocycline + amikacin and D (minocycline + rifampicin were significantly higher than in groups A (tigecycline and B (polymyxin B (P < 0.05, after administration of the drugs 24h post-infection. Lung tissue inflammation gradually increased in the model group during the first 24h after ultrasonic atomization infection; vasodilation, congestion with hemorrhage were observed 48h post infection. After three days of anti-infective therapy in groups A, B, C and D, lung tissue inflammation in each group gradually recovered with clear structures. The mortality rates in drug combination groups (groups C and D were much lower than in groups A and B.ConclusionThe combination of minocycline with either rifampicin or amikacin is more effective against multidrug-resistant Acinetobacter baumannii than single-agent tigecycline or polymyxin B. In addition, the mouse lung infection by ultrasonic atomization is a suitable model for drug screening and analysis of infection mechanism.

  6. Inhibition of mild steel corrosion in acid solution by Pheniramine drug: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Ahamad, Ishtiaque; Prasad, Rajendra; Quraishi, M.A.

    2010-01-01

    Inhibition of mild steel corrosion in 1 M HCl solution by Pheniramine drug was studied using weight loss, electrochemical impedance spectroscopy, linear polarization resistance, and potentiodynamic polarization measurements. The values of activation energy (E a ) and different thermodynamic parameters such as adsorption equilibrium constant (K ads ), free energy of adsorption (ΔG ads o ), adsorption enthalpy (ΔH ads o ) and adsorption entropy (ΔS ads o ) were calculated and discussed. The adsorption process of studied drug on mild steel surface obeys the Langmuir adsorption isotherm. Potentiodynamic polarization measurements showed that Pheniramine is mixed-type inhibitor. Further, theoretical calculations were carried out and relations between computed parameters and experimental inhibition efficiency were discussed.

  7. Molecular mechanisms of drug resistance and tumor promotion involving mammalian ribonucleotide reductase

    Energy Technology Data Exchange (ETDEWEB)

    Choy, B.B.K.

    1991-01-01

    Mammalian ribonucleotide reductase is a highly regulated, rate-limiting activity responsible for converting ribonucleoside diphosphates to the deoxyribonucleotide precursors of DNA. The enzyme consists of two nonidentical proteins called M1 and M2, both of which are required for activity. Hydroxyurea is an antitumor agent which inhibits ribonucleotide reductase by interacting with the M2 component specifically at a unique tyrosyl free radical. Studies were conducted on a series of drug resistant mouse cell lines, selected by a step-wise procedure for increasing levels of resistance to the cytotoxic effects of hydroxyurea. Each successive drug selection step leading to the isolation of highly resistant cells was accompanied by stable elevations in cellular resistance and ribonucleotide reductase activity. The drug resistant cell lines exhibited gene amplification of the M2 gene, elevated M2 mRNA, and M2 protein. In addition to M2 gene amplification, posttranscriptional modulation also occurred during the drug selection. Studies of the biosynthesis rates with exogenously added iron suggest a role for iron in regulating the level of M2 protein when cells are cultured in the presence of hydroxyurea. The hydroxyurea-inactivated ribonucleotide reductase protein M2 has a destabilized iron centre, which readily releases iron. Altered expression of ferritin appears to be required for the development of hydroxyurea resistance in nammalian cells. The results show an interesting relationship between the expressions of ribonucleotide reductase and ferritin. The phorbol ester tumor promoter, TPA, is also able to alter the expression of M2. TPA was able to induce M2 mRNA levels transiently up to 18-fold within 1/2 hour. This rapid and large elevation of ribonucleotide reductase suggests that the enzyme may play a role in tumor promotion. Studies of the M2 promoter region were undertaken to better understand the mechanism of TPA induction of M2.

  8. Structure–activity studies of Wnt/β-catenin inhibition in the Niclosamide chemotype: Identification of derivatives with improved drug exposure

    OpenAIRE

    Mook, Robert A.; Wang, Jiangbo; Ren, Xiu-Rong; Chen, Minyong; Spasojevic, Ivan; Barak, Larry S.; Lyerly, H. Kim; Chen, Wei

    2015-01-01

    The Wnt signaling pathway plays a key role in regulation of organ development and tissue homeostasis. Dysregulated Wnt activity is one of the major underlying mechanisms responsible for many diseases including cancer. We previously reported the FDA-approved anthelmintic drug Niclosamide inhibits Wnt/β-catenin signaling and suppresses colon cancer cell growth in vitro and in vivo. Niclosamide is a multi-functional drug that possesses important biological activity in addition to inhibition of W...

  9. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem?

    Science.gov (United States)

    Armijo, Leisha M.; Jain, Priyanka; Malagodi, Angelina; Fornelli, F. Zuly; Hayat, Allison; Rivera, Antonio C.; French, Michael; Smyth, Hugh D. C.; Osiński, Marek

    2015-03-01

    Pseudomonas aeruginosa is among the top three leading causative opportunistic human pathogens, possessing one of the largest bacterial genomes and an exceptionally large proportion of regulatory genes therein. It has been known for more than a decade that the size and complexity of the P. aeruginosa genome is responsible for the adaptability and resilience of the bacteria to include its ability to resist many disinfectants and antibiotics. We have investigated the susceptibility of P. aeruginosa bacterial biofilms to iron oxide (magnetite) nanoparticles (NPs) with and without attached drug (tobramycin). We also characterized the susceptibility of zero-valent iron NPs, which are known to inactivate microbes. The particles, having an average diameter of 16 nm were capped with natural alginate, thus doubling the hydrodynamic size. Nanoparticle-drug conjugates were produced via cross-linking drug and alginate functional groups. Drug conjugates were investigated in the interest of determining dosage, during these dosage-curve experiments, NPs unbound to drug were tested in cultures as a negative control. Surprisingly, we found that the iron oxide NPs inhibited bacterial growth, and thus, biofilm formation without the addition of antibiotic drug. The inhibitory dosages of iron oxide NPs were investigated and the minimum inhibitory concentrations are presented. These findings suggest that NP-drug conjugates may overcome the antibiotic drug resistance common in P. aeruginosa infections.

  10. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer.

    Science.gov (United States)

    Lv, Li; Liu, Chunxia; Chen, Chuxiong; Yu, Xiaoxia; Chen, Guanghui; Shi, Yonghui; Qin, Fengchao; Ou, Jiebin; Qiu, Kaifeng; Li, Guocheng

    2016-05-31

    The combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated. Studies demonstrated that BNDQ was more effectively taken up with less efflux by doxorubicin-resistant MCF-7 breast cancer cells (MCF-7/ADR cells) than by the cells treated with the free drugs, single-drug-loaded nanoparticles, or non-biotin-decorated nanoparticles. BNDQ exhibited clear inhibition of both the activity and expression of P-glycoprotein in MCF-7/ADR cells. More importantly, it caused a significant reduction in doxorubicin resistance in MCF-7/ADR breast cancer cells both in vitro and in vivo, among all the groups. Overall, this study suggests that BNDQ has a potential role in the treatment of drug-resistant breast cancer.

  11. Mechanisms of Candida biofilm drug resistance

    Science.gov (United States)

    Taff, Heather T; Mitchell, Kaitlin F; Edward, Jessica A; Andes, David R

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involving both mechanisms similar to conventional, planktonic antifungal resistance, such as increased efflux pump activity, as well as mechanisms specific to the biofilm lifestyle. A unique biofilm property is the production of an extracellular matrix. Two components of this material, β-glucan and extracellular DNA, promote biofilm resistance to multiple antifungals. Biofilm formation also engages several stress response pathways that impair the activity of azole drugs. Resistance within a biofilm is often heterogeneous, with the development of a subpopulation of resistant persister cells. In this article we review the molecular mechanisms underlying Candida biofilm antifungal resistance and their relative contributions during various growth phases. PMID:24059922

  12. Inhibition of the NorA multi-drug transporter by oxygenated monoterpenes.

    Science.gov (United States)

    Coêlho, Mayara Ladeira; Ferreira, Josie Haydée Lima; de Siqueira Júnior, José Pinto; Kaatz, Glenn W; Barreto, Humberto Medeiros; de Carvalho Melo Cavalcante, Ana Amélia

    2016-10-01

    The aim of this study was to investigate intrinsic antimicrobial activity of three monoterpenes nerol, dimethyl octanol and estragole, against bacteria and yeast strains, as well as, investigate if these compounds are able to inhibit the NorA efflux pump related to fluoroquinolone resistance in Staphylococcus aureus. Minimal inhibitory concentrations (MICs) of the monoterpenes against Staphylococcus aureus, Escherichia coli and Candida albicans strains were determined by micro-dilution assay. MICs of the norfloxacin against a S. aureus strain overexpressing the NorA protein were determined in the absence or in the presence of the monoterpenes at subinhibitory concentrations, aiming to verify the ability of this compounds act as efflux pump inhibitors. The monoterpenes were inactive against S. aureus however the nerol was active against E. coli and C. albicans. The addition of the compounds to growth media at sub-inhibitory concentrations enhanced the activity of norfloxacin against S. aureus SA1199-B. This result shows that bioactives tested, especially the nerol, are able to inhibit NorA efflux pump indicating a potential use as adjuvants of norfloxacin for therapy of infections caused by multi-drug resistant S. aureus strains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Antibacterial activity of combined medicinal plants extract against multiple drug resistant strains

    Directory of Open Access Journals (Sweden)

    Rafiqul Islam

    2015-06-01

    Full Text Available Objective: To find out the combined antibacterial efficacy of Aegle marmelos, Aphanamixis polystachya, Cuscuta reflexa and Aesclynomene indica against bacterial pathogens. Methods: Antibacterial potency of combined plant extracts has been tested against Bacillus subtilis IFO 3026, Sarcina lutea IFO 3232, Xanthomonas campestris IAM 1671, Escherichia coli IFO 3007, Klebsiella pneumoniae ATTC 10031, Proteus vulgaris MTCC 321 and Pseudomonas denitrificans KACC 32026 by disc diffusion assay. Commercially available standard antibiotic discs were also used to find out antibiotic resistance pattern of test organisms. Results: Among the test organisms, Escherichia coli, Proteus vulgaris, Klebsiella pneumoniae and Proteus denitrificans showed resistance against multiple commercially available antibiotics. On the other hand, these multiple drug resistant organisms showed susceptibility against combined plant extracts. Conclusions: These combined plants extracts showed synergistic antibacterial activity and could lead to new antibacterial drug designing.

  14. Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Sørensen, Belinda Halling; Sauter, Daniel Rafael Peter

    2015-01-01

    to be an essential component of both VRAC and VSOAC. Reduced VRAC and VSOAC activities are seen in drug resistant cancer cells. ANO1 is a calcium-activated chloride channel expressed on the plasma membrane of e.g. secretory epithelia. ANO1 is amplified and highly expressed in a large number of carcinomas. The gene...... functions as well as their role in cancer and drug resistance....

  15. Inhibition of mild steel corrosion in acid solution by Pheniramine drug: Experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Ahamad, Ishtiaque [Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi 221 005 (India); Prasad, Rajendra [Department of Chemistry, SGB Amravati University, Amravati 444 602 (India); Quraishi, M.A., E-mail: maquraishi@rediffmail.co [Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi 221 005 (India)

    2010-09-15

    Inhibition of mild steel corrosion in 1 M HCl solution by Pheniramine drug was studied using weight loss, electrochemical impedance spectroscopy, linear polarization resistance, and potentiodynamic polarization measurements. The values of activation energy (E{sub a}) and different thermodynamic parameters such as adsorption equilibrium constant (K{sub ads}), free energy of adsorption ({Delta}G{sub ads}{sup o}), adsorption enthalpy ({Delta}H{sub ads}{sup o}) and adsorption entropy ({Delta}S{sub ads}{sup o}) were calculated and discussed. The adsorption process of studied drug on mild steel surface obeys the Langmuir adsorption isotherm. Potentiodynamic polarization measurements showed that Pheniramine is mixed-type inhibitor. Further, theoretical calculations were carried out and relations between computed parameters and experimental inhibition efficiency were discussed.

  16. Leveraging Hypoxia-Activated Prodrugs to Prevent Drug Resistance in Solid Tumors.

    Directory of Open Access Journals (Sweden)

    Danika Lindsay

    2016-08-01

    Full Text Available Experimental studies have shown that one key factor in driving the emergence of drug resistance in solid tumors is tumor hypoxia, which leads to the formation of localized environmental niches where drug-resistant cell populations can evolve and survive. Hypoxia-activated prodrugs (HAPs are compounds designed to penetrate to hypoxic regions of a tumor and release cytotoxic or cytostatic agents; several of these HAPs are currently in clinical trial. However, preliminary results have not shown a survival benefit in several of these trials. We hypothesize that the efficacy of treatments involving these prodrugs depends heavily on identifying the correct treatment schedule, and that mathematical modeling can be used to help design potential therapeutic strategies combining HAPs with standard therapies to achieve long-term tumor control or eradication. We develop this framework in the specific context of EGFR-driven non-small cell lung cancer, which is commonly treated with the tyrosine kinase inhibitor erlotinib. We develop a stochastic mathematical model, parametrized using clinical and experimental data, to explore a spectrum of treatment regimens combining a HAP, evofosfamide, with erlotinib. We design combination toxicity constraint models and optimize treatment strategies over the space of tolerated schedules to identify specific combination schedules that lead to optimal tumor control. We find that (i combining these therapies delays resistance longer than any monotherapy schedule with either evofosfamide or erlotinib alone, (ii sequentially alternating single doses of each drug leads to minimal tumor burden and maximal reduction in probability of developing resistance, and (iii strategies minimizing the length of time after an evofosfamide dose and before erlotinib confer further benefits in reduction of tumor burden. These results provide insights into how hypoxia-activated prodrugs may be used to enhance therapeutic effectiveness in the

  17. [Study of marine actinomycetes isolated from the central coast of Peru and their antibacterial activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis].

    Science.gov (United States)

    León, Jorge; Aponte, Juan José; Rojas, Rosario; Cuadra, D'Lourdes; Ayala, Nathaly; Tomás, Gloria; Guerrero, Marco

    2011-06-01

    To determine the antimicrobial potential of marine actinomycetes against drug-resistant pathogens represented by strains of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE). Strains of actinomycetes (29) isolated from marine sediment were evaluated by their characteristics in two culture media and by testing their inhibitory capacity by in vitro antagonism against multi-drug resistant (MDR) pathogenic bacteria for MRSA and VRE. Organic extracts of 3 selected actinomicetes were processed to determine the minimum inhibitory concentration (MIC) of the active compound. Most isolated actinomycetes belong to a homogeneous group of write-gray actinomycetes with a good growth in Marine Agar. The inhibitory rates of the isolates were above 85% for both pathogens with inhibition zones greater than 69 and 78 mm in diameter for MRSA and VRE respectively. Dichloromethane extracts of 3 isolates (I-400A, B1-T61, M10-77) showed strong inhibitory activity of both pathogens, M10-77 being the highest actinomycete strain with antibiotic activity against methicillin-resistant S. aureus ATCC 43300 and vancomycin-resistant E. faecalis ATCC 51299 with a minimum inhibitory concentrations (MIC) of 7.9 and 31.7 μg/ml respectively. Phylogenetic analysis of M10-77 strain showed 99% similarity with the marine species Streptomyces erythrogriseus. Marine sediments of the central coast of Peru, are a source of actinomycetes strains showing high capacity to produce bioactive compounds able to inhibit pathogens classified as multi-drug-resistant such as methicillin-resistant S. aureus and vancomycin-resistant E. faecalis.

  18. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    International Nuclear Information System (INIS)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng; Xia, Qiang

    2012-01-01

    Highlights: ► miR-199a-5p levels were significantly decreased after cisplatin treatment. ► Cisplatin treatment induced autophagy activation. ► Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  19. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China); Xia, Qiang, E-mail: xiaqiang1@yahoo.com.cn [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer miR-199a-5p levels were significantly decreased after cisplatin treatment. Black-Right-Pointing-Pointer Cisplatin treatment induced autophagy activation. Black-Right-Pointing-Pointer Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  20. Inhibition of Glutamine Synthetase: A Potential Drug Target in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Sherry L. Mowbray

    2014-08-01

    Full Text Available Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year. The impractically long treatment schedules (generally 6–9 months and unpleasant side effects of the current drugs often lead to poor patient compliance, which in turn has resulted in the emergence of multi-, extensively- and totally-drug resistant strains. The development of new classes of anti-tuberculosis drugs and new drug targets is of global importance, since attacking the bacterium using multiple strategies provides the best means to prevent resistance. This review presents an overview of the various strategies and compounds utilized to inhibit glutamine synthetase, a promising target for the development of drugs for TB therapy.

  1. Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1

    Science.gov (United States)

    Pirazzoli, Valentina; Nebhan, Caroline; Song, Xiaoling; Wurtz, Anna; Walther, Zenta; Cai, Guoping; Zhao, Zhongming; Jia, Peilin; de Stanchina, Elisa; Shapiro, Erik M.; Gale, Molly; Yin, Ruonan; Horn, Leora; Carbone, David P.; Stephens, Philip J; Miller, Vincent; Gettinger, Scott; Pao, William; Politi, Katerina

    2014-01-01

    SUMMARY Patients with EGFR-mutant lung adenocarcinomas (LUADs) who initially respond to first-generation TKIs develop resistance to these drugs. A combination of the irreversible TKI afatinib and the EGFR antibody cetuximab can be used to overcome resistance to first-generation TKIs; however, resistance to this drug combination eventually emerges. We identified activation of the mTORC1 signaling pathway as a mechanism of resistance to dual inhibition of EGFR in mouse models. Addition of rapamycin reversed resistance in vivo. Analysis of afatinib+cetuximab-resistant biopsy specimens revealed the presence of genomic alterations in genes that modulate mTORC1 signaling including NF2 and TSC1. These findings pinpoint enhanced mTORC1 activation as a mechanism of resistance to afatinib+cetuximab and identify genomic mechanisms that lead to activation of this pathway, revealing a potential therapeutic strategy for treating patients with resistance to these drugs. PMID:24813888

  2. Methylation of WTH3, a possible drug resistant gene, inhibits p53 regulated expression

    International Nuclear Information System (INIS)

    Tian, Kegui; Wang, Yuezeng; Huang, Yu; Sun, Boqiao; Li, Yuxin; Xu, Haopeng

    2008-01-01

    Previous results showed that over-expression of the WTH3 gene in MDR cells reduced MDR1 gene expression and converted their resistance to sensitivity to various anticancer drugs. In addition, the WTH3 gene promoter was hypermethylated in the MCF7/AdrR cell line and primary drug resistant breast cancer epithelial cells. WTH3 was also found to be directly targeted and up regulated by the p53 gene. Furthermore, over expression of the WTH3 gene promoted the apoptotic phenotype in various host cells. To further confirm WTH3's drug resistant related characteristics, we recently employed the small hairpin RNA (shRNA) strategy to knockdown its expression in HEK293 cells. In addition, since the WTH3 promoter's p53-binding site was located in a CpG island that was targeted by methylation, we were interested in testing the possible effect this epigenetic modification had on the p53 transcription factor relative to WTH3 expression. To do so, the in vitro methylation method was utilized to examine the p53 transgene's influence on either the methylated or non-methylated WTH3 promoter. The results generated from the gene knockdown strategy showed that reduction of WTH3 expression increased MDR1 expression and elevated resistance to Doxorubicin as compared to the original control cells. Data produced from the methylation studies demonstrated that DNA methylation adversely affected the positive impact of p53 on WTH3 promoter activity. Taken together, our studies provided further evidence that WTH3 played an important role in MDR development and revealed one of its transcription regulatory mechanisms, DNA methylation, which antagonized p53's positive impact on WTH3 expression

  3. Cytotoxicity of the indole alkaloid reserpine from Rauwolfia serpentina against drug-resistant tumor cells.

    Science.gov (United States)

    Abdelfatah, Sara A A; Efferth, Thomas

    2015-02-15

    The antihypertensive reserpine is an indole alkaloid from Rauwolfia serpentina and exerts also profound activity against cancer cells in vitro and in vivo. The present investigation was undertaken to investigate possible modes of action to explain its activity toward drug-resistant tumor cells. Sensitive and drug-resistant tumor cell lines overexpressing P-glycoprotein (ABCB1/MDR1), breast cancer resistance protein (ABCG2/BCRP), mutation-activated epidermal growth factor receptor (EGFR), wild-type and p53-knockout cells as well as the NCI panel of cell lines from different tumor origin were analyzed. Reserpine's cytotoxicity was investigated by resazurin and sulforhodamine assays, flow cytometry, and COMPARE and hierarchical cluster analyses of transcriptome-wide microarray-based RNA expressions. P-glycoprotein- or BCRP overexpressing tumor cells did not reveal cross-resistance to reserpine. EGFR-overexpressing cells were collateral sensitive and p53- Knockout cells cross-resistant to this drug compared to their wild-type parental cell lines. Reserpine increased the uptake of doxorubicin in P-glycoprotein-overexpressing cells, indicating that reserpine inhibited the efflux function of P-glycoprotein. Using molecular docking, we found that reserpine bound with even higher binding energy to P-glycoprotein and EGFR than the control drugs verapamil (P-glycoprotein inhibitor) and erlotinib (EGFR inhibitor). COMPARE and cluster analyses of microarray data showed that the mRNA expression of a panel of genes predicted the sensitivity or resistance of the NCI tumor cell line panel with statistical significance. The genes belonged to diverse pathways and biological functions, e.g. cell survival and apoptosis, EGFR activation, regulation of angiogenesis, cell mobility, cell adhesion, immunological functions, mTOR signaling, and Wnt signaling. The lack of cross-resistance to most resistance mechanisms and the collateral sensitivity in EGFR-transfectants compared to wild

  4. Danshen extract circumvents drug resistance and represses cell growth in human oral cancer cells.

    Science.gov (United States)

    Yang, Cheng-Yu; Hsieh, Cheng-Chih; Lin, Chih-Kung; Lin, Chun-Shu; Peng, Bo; Lin, Gu-Jiun; Sytwu, Huey-Kang; Chang, Wen-Liang; Chen, Yuan-Wu

    2017-12-29

    Danshen is a common traditional Chinese medicine used to treat neoplastic and chronic inflammatory diseases in China. However, the effects of Danshen on human oral cancer cells remain relatively unknown. This study investigated the antiproliferative effects of a Danshen extract on human oral cancer SAS, SCC25, OEC-M1, and KB drug-resistant cell lines and elucidated the possible underlying mechanism. We investigated the anticancer potential of the Danshen extract in human oral cancer cell lines and an in vivo oral cancer xenograft mouse model. The expression of apoptosis-related molecules was evaluated through Western blotting, and the concentration of in vivo apoptotic markers was measured using immunohistochemical staining. The antitumor effects of 5-fluorouracil and the Danshen extract were compared. Cell proliferation assays revealed that the Danshen extract strongly inhibited oral cancer cell proliferation. Cell morphology studies revealed that the Danshen extract inhibited the growth of SAS, SCC25, and OEC-M1 cells by inducing apoptosis. The Flow cytometric analysis indicated that the Danshen extract induced cell cycle G0/G1 arrest. Immunoblotting analysis for the expression of active caspase-3 and X-linked inhibitor of apoptosis protein indicated that Danshen extract-induced apoptosis in human oral cancer SAS cells was mediated through the caspase pathway. Moreover, the Danshen extract significantly inhibited growth in the SAS xenograft mouse model. Furthermore, the Danshen extract circumvented drug resistance in KB drug-resistant oral cancer cells. The study results suggest that the Danshen extract could be a potential anticancer agent in oral cancer treatment.

  5. Acquired Resistance of EGFR-Mutant Lung Adenocarcinomas to Afatinib plus Cetuximab Is Associated with Activation of mTORC1

    Directory of Open Access Journals (Sweden)

    Valentina Pirazzoli

    2014-05-01

    Full Text Available Patients with EGFR-mutant lung adenocarcinomas (LUADs who initially respond to first-generation tyrosine kinase inhibitors (TKIs develop resistance to these drugs. A combination of the irreversible TKI afatinib and the EGFR antibody cetuximab can be used to overcome resistance to first-generation TKIs; however, resistance to this drug combination eventually emerges. We identified activation of the mTORC1 signaling pathway as a mechanism of resistance to dual inhibition of EGFR in mouse models. The addition of rapamycin reversed resistance in vivo. Analysis of afatinib-plus-cetuximab-resistant biopsy specimens revealed the presence of genomic alterations in genes that modulate mTORC1 signaling, including NF2 and TSC1. These findings pinpoint enhanced mTORC1 activation as a mechanism of resistance to afatinib plus cetuximab and identify genomic mechanisms that lead to activation of this pathway, revealing a potential therapeutic strategy for treating patients with resistance to these drugs.

  6. The diarylquinoline TMC207 for multidrug-resistant tuberculosis

    NARCIS (Netherlands)

    Diacon, Andreas H.; Pym, Alexander; Grobusch, Martin; Patientia, Ramonde; Rustomjee, Roxana; Page-Shipp, Liesl; Pistorius, Christoffel; Krause, Rene; Bogoshi, Mampedi; Churchyard, Gavin; Venter, Amour; Allen, Jenny; Palomino, Juan Carlos; de Marez, Tine; van Heeswijk, Rolf P. G.; Lounis, Nacer; Meyvisch, Paul; Verbeeck, Johan; Parys, Wim; de Beule, Karel; Andries, Koen; Mc Neeley, David F.

    2009-01-01

    BACKGROUND: The diarylquinoline TMC207 offers a new mechanism of antituberculosis action by inhibiting mycobacterial ATP synthase. TMC207 potently inhibits drug-sensitive and drug-resistant Mycobacterium tuberculosis in vitro and shows bactericidal activity in patients who have drug-susceptible

  7. Gefitinib inhibits invasive phenotype and epithelial-mesenchymal transition in drug-resistant NSCLC cells with MET amplification.

    Directory of Open Access Journals (Sweden)

    Silvia La Monica

    Full Text Available Despite the initial response, all patients with epidermal growth factor receptor (EGFR-mutant non-small cell lung cancer (NSCLC eventually develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs. The EGFR-T790M secondary mutation is responsible for half of acquired resistance cases, while MET amplification has been associated with acquired resistance in about 5-15% of NSCLCs. Clinical findings indicate the retained addiction of resistant tumors on EGFR signaling. Therefore, we evaluated the molecular mechanisms supporting the therapeutic potential of gefitinib maintenance in the HCC827 GR5 NSCLC cell line harbouring MET amplification as acquired resistance mechanism. We demonstrated that resistant cells can proliferate and survive regardless of the presence of gefitinib, whereas the absence of the drug significantly enhanced cell migration and invasion. Moreover, the continuous exposure to gefitinib prevented the epithelial-mesenchymal transition (EMT with increased E-cadherin expression and down-regulation of vimentin and N-cadherin. Importantly, the inhibition of cellular migration was correlated with the suppression of EGFR-dependent Src, STAT5 and p38 signaling as assessed by a specific kinase array, western blot analysis and silencing functional studies. On the contrary, the lack of effect of gefitinib on EGFR phosphorylation in the H1975 cells (EGFR-T790M correlated with the absence of effects on cell migration and invasion. In conclusion, our findings suggest that certain EGFR-mutated patients may still benefit from a second-line therapy including gefitinib based on the specific mechanism underlying tumor cell resistance.

  8. Rational Design of Novel Allosteric Dihydrofolate Reductase Inhibitors Showing Antibacterial Effects on Drug-Resistant Escherichia coli Escape Variants.

    Science.gov (United States)

    Srinivasan, Bharath; Rodrigues, João V; Tonddast-Navaei, Sam; Shakhnovich, Eugene; Skolnick, Jeffrey

    2017-07-21

    In drug discovery, systematic variations of substituents on a common scaffold and bioisosteric replacements are often used to generate diversity and obtain molecules with better biological effects. However, this could saturate the small-molecule diversity pool resulting in drug resistance. On the other hand, conventional drug discovery relies on targeting known pockets on protein surfaces leading to drug resistance by mutations of critical pocket residues. Here, we present a two-pronged strategy of designing novel drugs that target unique pockets on a protein's surface to overcome the above problems. Dihydrofolate reductase, DHFR, is a critical enzyme involved in thymidine and purine nucleotide biosynthesis. Several classes of compounds that are structural analogues of the substrate dihydrofolate have been explored for their antifolate activity. Here, we describe 10 novel small-molecule inhibitors of Escherichia coli DHFR, EcDHFR, belonging to the stilbenoid, deoxybenzoin, and chalcone family of compounds discovered by a combination of pocket-based virtual ligand screening and systematic scaffold hopping. These inhibitors show a unique uncompetitive or noncompetitive inhibition mechanism, distinct from those reported for all known inhibitors of DHFR, indicative of binding to a unique pocket distinct from either substrate or cofactor-binding pockets. Furthermore, we demonstrate that rescue mutants of EcDHFR, with reduced affinity to all known classes of DHFR inhibitors, are inhibited at the same concentration as the wild-type. These compounds also exhibit antibacterial activity against E. coli harboring the drug-resistant variant of DHFR. This discovery is the first report on a novel class of inhibitors targeting a unique pocket on EcDHFR.

  9. Lysosomes as mediators of drug resistance in cancer.

    Science.gov (United States)

    Zhitomirsky, Benny; Assaraf, Yehuda G

    2016-01-01

    Drug resistance remains a leading cause of chemotherapeutic treatment failure and cancer-related mortality. While some mechanisms of anticancer drug resistance have been well characterized, multiple mechanisms remain elusive. In this respect, passive ion trapping-based lysosomal sequestration of multiple hydrophobic weak-base chemotherapeutic agents was found to reduce the accessibility of these drugs to their target sites, resulting in a markedly reduced cytotoxic effect and drug resistance. Recently we have demonstrated that lysosomal sequestration of hydrophobic weak base drugs triggers TFEB-mediated lysosomal biogenesis resulting in an enlarged lysosomal compartment, capable of enhanced drug sequestration. This study further showed that cancer cells with an increased number of drug-accumulating lysosomes are more resistant to lysosome-sequestered drugs, suggesting a model of drug-induced lysosome-mediated chemoresistance. In addition to passive drug sequestration of hydrophobic weak base chemotherapeutics, other mechanisms of lysosome-mediated drug resistance have also been reported; these include active lysosomal drug sequestration mediated by ATP-driven transporters from the ABC superfamily, and a role for lysosomal copper transporters in cancer resistance to platinum-based chemotherapeutics. Furthermore, lysosomal exocytosis was suggested as a mechanism to facilitate the clearance of chemotherapeutics which highly accumulated in lysosomes, thus providing an additional line of resistance, supplementing the organelle entrapment of chemotherapeutics away from their target sites. Along with these mechanisms of lysosome-mediated drug resistance, several approaches were recently developed for the overcoming of drug resistance or exploiting lysosomal drug sequestration, including lysosomal photodestruction and drug-induced lysosomal membrane permeabilization. In this review we explore the current literature addressing the role of lysosomes in mediating cancer drug

  10. Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines.

    Science.gov (United States)

    Chai, Stella; To, Kenneth Kw; Lin, Ge

    2010-07-25

    Multi-drug resistance (MDR) of cancer cells severely limits therapeutic outcomes. A proposed mechanism for MDR involves the efflux of anti-cancer drugs from cancer cells, primarily mediated by ATP-binding cassette (ABC) membrane transporters including P-glycoprotein. This article reviews the recent progress of using active ingredients, extracts and formulae from Chinese medicine (CM) in circumventing ABC transporters-mediated MDR. Among the ABC transporters, Pgp is the most extensively studied for its role in MDR reversal effects. While other MDR reversal mechanisms remain unclear, Pgp inhibition is a criterion for further mechanistic study. More mechanistic studies are needed to fully establish the pharmacological effects of potential MDR reversing agents.

  11. Emodin enhances the chemosensitivity of endometrial cancer by inhibiting ROS-mediated Cisplatin-resistance.

    Science.gov (United States)

    Ding, Ning; Zhang, Hong; Su, Shan; Ding, Yumei; Yu, Xiaohui; Tang, Yujie; Wang, Qingfang; Liu, Peishu

    2017-12-18

    Background Endometrial cancer is a common cause of death in gynecological malignancies. Cisplatin is a clinically chemotherapeutic agent. However, drug-resistance is the primary cause of treatment failure. Objective Emodin is commonly used clinically to increase the sensitivity of chemotherapeutic agents, yet whether Emodin promotes the role of Cisplatin in the treatment of endometrial cancer has not been studied. Method CCK-8 kit was utilized to determine the growth of two endometrial cancer cell lines, Ishikawa and HEC-IB. The apoptosis level of Ishikawa and HEC-IB cells was detected by Annexin V / propidium iodide double-staining assay. ROS level was detected by DCFH-DA and NADPH oxidase expression. Expressions of drug-resistant genes were examined by real-time PCR and Western blotting. Results Emodin combined with Cisplatin reduced cell growth and increased the apoptosis of endometrial cancer cells. Co-treatment of Emodin and Cisplatin increased chemosensitivity by inhibiting the expression of drug-resistant genes through reducing the ROS levels in endometrial cancer cells. In an endometrial cancer xenograft murine model, the tumor size was reduced and animal survival time was increased by co-treatment of Emodin and Cisplatin. Conclusion This study demonstrates that Emodin enhances the chemosensitivity of Cisplatin on endometrial cancer by inhibiting ROS-mediated expression of drug-resistance genes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. JNK1/2 Activation by an Extract from the Roots of Morus alba L. Reduces the Viability of Multidrug-Resistant MCF-7/Dox Cells by Inhibiting YB-1-Dependent MDR1 Expression

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2013-01-01

    Full Text Available Cancer cells acquire anticancer drug resistance during chemotherapy, which aggravates cancer disease. MDR1 encoded from multidrug resistance gene 1 mainly causes multidrug resistance phenotypes of different cancer cells. In this study, we demonstrate that JNK1/2 activation by an extract from the root of Morus alba L. (White mulberry reduces doxorubicin-resistant MCF-7/Dox cell viability by inhibiting YB-1 regulation of MDR1 gene expression. When MCF-7 or MCF-7/Dox cells, where MDR1 is highly expressed were treated with an extract from roots or leaves of Morus alba L., respectively, the root extract from the mulberry (REM but not the leaf extract (LEM reduced cell viabilities of both MCF-7 and MCF-7/Dox cells, which was enhanced by cotreatment with doxorubicin. REM but not LEM further inhibited YB-1 nuclear translocation and its regulation of MDR1 gene expression. Moreover, REM promoted phosphorylation of c-Jun NH2-terminal kinase 1/2 (JNK1/2 and JNK1/2 inhibitor, SP600125 and rescued REM inhibition of both MDR1 expression and viabilities in MCF-7/Dox cells. Consistently, overexpression of JNK1, c-Jun, or c-Fos inhibited YB-1-dependent MDR1 expression and reduced viabilities in MCF-7/Dox cells. In conclusion, our data indicate that REM-activated JNK-cJun/c-Fos pathway decreases the viability of MCF-7/Dox cells by inhibiting YB-1-dependent MDR1 gene expression. Thus, we suggest that REM may be useful for treating multidrug-resistant cancer cells.

  13. Improved Tumor-Specific Drug Accumulation by Polymer Therapeutics with pH-Sensitive Drug Release Overcomes Chemotherapy Resistance.

    Science.gov (United States)

    Heinrich, Anne-Kathrin; Lucas, Henrike; Schindler, Lucie; Chytil, Petr; Etrych, Tomáš; Mäder, Karsten; Mueller, Thomas

    2016-05-01

    The success of chemotherapy is limited by poor selectivity of active drugs combined with occurrence of tumor resistance. New star-like structured N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based drug delivery systems containing doxorubicin attached via a pH-sensitive hydrazone bond were designed and investigated for their ability to overcome chemotherapy resistance. These conjugates combine two strategies to achieve a high drug concentration selectively at the tumor site: (I) high accumulation by passive tumor targeting based on enhanced permeability and retention effect and (II) pH-sensitive site-specific drug release due to an acidic tumor microenvironment. Mice bearing doxorubicin-resistant xenograft tumors were treated with doxorubicin, PBS, poly HPMA (pHPMA) precursor or pHPMA-doxorubicin conjugate at different equivalent doses of 5 mg/kg bodyweight doxorubicin up to a 7-fold total dose using different treatment schedules. Intratumoral drug accumulation was analyzed by fluorescence imaging utilizing intrinsic fluorescence of doxorubicin. Free doxorubicin induced significant toxicity but hardly any tumor-inhibiting effects. Administering at least a 3-fold dose of pHPMA-doxorubicin conjugate was necessary to induce a transient response, whereas doses of about 5- to 6-fold induced strong regressions. Tumors completely disappeared in some cases. The onset of response was differential delayed depending on the tumor model, which could be ascribed to distinct characteristics of the microenvironment. Further fluorescence imaging-based analyses regarding underlying mechanisms of the delayed response revealed a related switch to a more supporting intratumoral microenvironment for effective drug release. In conclusion, the current study demonstrates that the concept of tumor site-restricted high-dose chemotherapy is able to overcome therapy resistance. Mol Cancer Ther; 15(5); 998-1007. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations.

    Directory of Open Access Journals (Sweden)

    Michal Yalon

    Full Text Available Inhibitors of poly[ADP-ribose] polymerase 1 (PARPis show promise for treatment of cancers which lack capacity for homologous recombination repair (HRR. However, new therapeutic strategies are required in order to overcome innate and acquired resistance to these drugs and thus expand the array of cancers that could benefit from them. We show that human cancer cell lines which respond poorly to ABT-888 (a PARPi, become sensitive to it when co-treated with vorinostat (a histone deacetylase inhibitor (HDACi. Vorinostat also sensitized PARPis insensitive cancer cell lines to 6-thioguanine (6-TG-a drug that targets PARPis sensitive cells. The sensitizing effect of vorinostat was associated with increased phosphorylation of eukaryotic initiation factor (eIF 2α which in and of itself increases the sensitivity of cancer cells to ABT-888. Importantly, these drug combinations did not affect survival of normal fibroblasts and breast cells, and significantly increased the inhibition of xenograft tumor growth relative to each drug alone, without affecting the mice weight or their liver and kidney function. Our results show that combination of vorinostat and ABT-888 could potentially prove useful for treatment of cancer with innate resistance to PARPis due to active HRR machinery, while the combination of vorinostat and 6-TG could potentially overcome innate or acquired resistance to PARPis due to secondary or reversal BRCA mutations, to decreased PARP-1 level or to increased expression of multiple drug resistant proteins. Importantly, drugs which increase phosphorylation of eIF2α may mimic the sensitizing effect of vorinostat on cellular response to PARPis or to 6-TG, without activating all of its downstream effectors.

  15. hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia.

    Science.gov (United States)

    Nogawa, Hisashi; Kawai, Tomoyuki

    2014-10-15

    Acquired long QT syndrome induced by non-cardiovascular drugs can cause lethal cardiac arrhythmia called torsades de points and is a significant problem in drug development. The prolongation of QT interval and cardiac action potential duration are mainly due to reduced physiological function of the rapidly activating voltage-dependent potassium channels encoded by human ether-a-go-go-related gene (hERG). Structurally diverse groups of drugs are known to directly inhibit hERG channel conductance. Therefore, the ability of acute hERG inhibition is routinely assessed at the preclinical stages in pharmaceutical testing. Recent findings indicated that chronic treatment with various drugs not only inhibits hERG channels but also decreases hERG channel expression in the plasma membrane of cardiomyocytes, which has become another concern in safety pharmacology. The mechanisms involve the disruption of hERG trafficking to the surface membrane or the acceleration of hERG protein degradation. From this perspective, we present a brief overview of mechanisms of drug-induced trafficking inhibition and pathological regulation. Understanding of drug-induced hERG trafficking inhibition may provide new strategies for predicting drug-induced QT prolongation and lethal cardiac arrhythmia in pharmaceutical drug development. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Antimicrobial (Drug) Resistance

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Antimicrobial (Drug) Resistance Go to Information for Researchers ► Credit: ... and infectious diseases. Why Is the Study of Antimicrobial (Drug) Resistance a Priority for NIAID? Over time, ...

  17. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.

    Directory of Open Access Journals (Sweden)

    Shantelle L LaFayette

    2010-08-01

    Full Text Available Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC, which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which

  18. Drug-resistant tuberculosis in Sindh

    International Nuclear Information System (INIS)

    Almani, S.A.; Memon, N.M.; Qureshi, A.F.

    2002-01-01

    Objective: To assess the prevalence of primary and secondary drug resistance amongst the clinical isolates of M.tuberculosis, to identify risk factors and how to overcome this problem. Design: A case series of 50 indoor patients with sputum smear-positive pulmonary tuberculosis. Place and duration of Study: Department of Medicine, Liaquat University of Medical and Health Sciences Jamshoro, Sindh, (Pakistan) from January 1999 to December 2000. Patients and methods: Four first line anti-tuberculous drugs rifampicine, ethambutol and streptomycin were tested for sensitivity pattern. Results: Twelve (26.66%) were sensitive to all four drugs, 12(26.66%) were resistant to one drug, 14 (31.11%) were resistant to two drugs, 2 (4.44%) were resistant to three drugs, and 5(11.11%) were resistant to all four drugs. Resistance to isoniazid was the most common in 27 cases (60%) with primary resistance in 6(13.33%) and secondary resistance in 21(46.66%), followed by resistance to streptomycin in 17 cases (37.77%) with primary resistance in 5(11.11%) and secondary resistance in 12 (26.66%). Resistance to ethambutol in 10 cases (22.22%) and rifampicine in 11 (24.44%) and all cases were secondary. Similarly multi-drugs resistance (MRD) TB was found in 11(24.44%) isolates. Conclusion: This study showed high prevalence of drug resistance among clinical isolates of M. tuberculosis. Their is a need to establish centers at number of places with adequate facilities for susceptibility testing so that the resistant pattern could be ascertained and treatment regimens tailored accordingly. (author)

  19. Melatonin Promotes Apoptosis of Oxaliplatin-resistant Colorectal Cancer Cells Through Inhibition of Cellular Prion Protein.

    Science.gov (United States)

    Lee, Jun Hee; Yoon, Yeo Min; Han, Yong-Seok; Yun, Chul Won; Lee, Sang Hun

    2018-04-01

    Drug resistance restricts the efficacy of chemotherapy in colorectal cancer. However, the detailed molecular mechanism of drug resistance in colorectal cancer cells remains unclear. The level of cellular prion protein (PrP C ) in oxaliplatin-resistant colorectal cancer (SNU-C5/Oxal-R) cells was assessed. PrP C level in SNU-C5/Oxal-R cells was significantly increased compared to that in wild-type (SNU-C5) cells. Superoxide dismutase and catalase activities were higher in SNU-C5/Oxal-R cells than in SNU-C5 cells. Treatment of SNU-C5/Oxal-R cells with oxaliplatin and melatonin reduced PrP C expression, while suppressing antioxidant enzyme activity and increasing superoxide anion generation. In SNU-C5/Oxal-R cells, endoplasmic reticulum stress and apoptosis were significantly increased following co-treatment with oxaliplatin and melatonin compared to treatment with oxaliplatin alone. Co-treatment with oxaliplatin and melatonin increased endoplasmic reticulum stress in and apoptosis of SNU-C5/Oxal-R cells through inhibition of PrP C , suggesting that PrP C could be a key molecule in oxaliplatin resistance of colorectal cancer cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. 20(S)-Protopanaxadiol (PPD) analogues chemosensitize multidrug-resistant cancer cells to clinical anticancer drugs.

    Science.gov (United States)

    Liu, Junhua; Wang, Xu; Liu, Peng; Deng, Rongxin; Lei, Min; Chen, Wantao; Hu, Lihong

    2013-07-15

    Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3-2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5μM) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines

    Directory of Open Access Journals (Sweden)

    Lin Ge

    2010-07-01

    Full Text Available Abstract Multi-drug resistance (MDR of cancer cells severely limits therapeutic outcomes. A proposed mechanism for MDR involves the efflux of anti-cancer drugs from cancer cells, primarily mediated by ATP-binding cassette (ABC membrane transporters including P-glycoprotein. This article reviews the recent progress of using active ingredients, extracts and formulae from Chinese medicine (CM in circumventing ABC transporters-mediated MDR. Among the ABC transporters, Pgp is the most extensively studied for its role in MDR reversal effects. While other MDR reversal mechanisms remain unclear, Pgp inhibition is a criterion for further mechanistic study. More mechanistic studies are needed to fully establish the pharmacological effects of potential MDR reversing agents.

  2. Dodecyltriphenylphosphonium inhibits multiple drug resistance in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Knorre, Dmitry A; Markova, Olga V; Smirnova, Ekaterina A; Karavaeva, Iuliia E; Sokolov, Svyatoslav S; Severin, Fedor F

    2014-08-08

    Multiple drug resistance pumps are potential drug targets. Here we asked whether the lipophilic cation dodecyltriphenylphosphonium (C12TPP) can interfere with their functioning. First, we found that suppression of ABC transporter gene PDR5 increases the toxicity of C12TPP in yeast. Second, C12TPP appeared to prevent the efflux of rhodamine 6G - a fluorescent substrate of Pdr5p. Moreover, C12TPP increased the cytostatic effects of some other known Pdr5p substrates. The chemical nature of C12TPP suggests that after Pdr5p-driven extrusion the molecules return to the plasma membrane and then into the cytosol, thus effectively competing with other substrates of the pump. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens.

    Science.gov (United States)

    Karuppiah, Ponmurugan; Rajaram, Shyamkumar

    2012-08-01

    To evaluate the antibacterial properties of Allium sativum (garlic) cloves and Zingiber officinale (ginger) rhizomes against multi-drug resistant clinical pathogens causing nosocomial infection. The cloves of garlic and rhizomes of ginger were extracted with 95% (v/v) ethanol. The ethanolic extracts were subjected to antibacterial sensitivity test against clinical pathogens. Anti-bacterial potentials of the extracts of two crude garlic cloves and ginger rhizomes were tested against five gram negative and two gram positive multi-drug resistant bacteria isolates. All the bacterial isolates were susceptible to crude extracts of both plants extracts. Except Enterobacter sp. and Klebsiella sp., all other isolates were susceptible when subjected to ethanolic extracts of garlic and ginger. The highest inhibition zone was observed with garlic (19.45 mm) against Pseudomonas aeruginosa (P. aeruginosa). The minimal inhibitory concentration was as low as 67.00 µg/mL against P. aeruginosa. Natural spices of garlic and ginger possess effective anti-bacterial activity against multi-drug clinical pathogens and can be used for prevention of drug resistant microbial diseases and further evaluation is necessary.

  4. Drug resistance in Mexico: results from the National Survey on Drug-Resistant Tuberculosis.

    Science.gov (United States)

    Bojorquez-Chapela, I; Bäcker, C E; Orejel, I; López, A; Díaz-Quiñonez, A; Hernández-Serrato, M I; Balandrano, S; Romero, M; Téllez-Rojo Solís, M M; Castellanos, M; Alpuche, C; Hernández-Ávila, M; López-Gatell, H

    2013-04-01

    To present estimations obtained from a population-level survey conducted in Mexico of prevalence rates of mono-, poly- and multidrug-resistant strains among newly diagnosed cases of pulmonary tuberculosis (TB), as well as the main factors associated with multidrug resistance (combined resistance to isoniazid and rifampicin). Study data came from the National Survey on TB Drug Resistance (ENTB-2008), a nationally representative survey conducted during 2008-2009 in nine states with a stratified cluster sampling design. Samples were obtained for all newly diagnosed cases of pulmonary TB in selected sites. Drug susceptibility testing (DST) was performed for anti-tuberculosis drugs. DST results were obtained for 75% of the cases. Of these, 82.2% (95%CI 79.5-84.7) were susceptible to all drugs. The prevalence of multidrug-resistant TB (MDR-TB) was estimated at 2.8% (95%CI 1.9-4.0). MDR-TB was associated with previous treatment (OR 3.3, 95%CI 1.1-9.4). The prevalence of drug resistance is relatively low in Mexico. ENTB-2008 can be used as a baseline for future follow-up of drug resistance.

  5. Inhibition of human anthracycline reductases by emodin — A possible remedy for anthracycline resistance

    International Nuclear Information System (INIS)

    Hintzpeter, Jan; Seliger, Jan Moritz; Hofman, Jakub; Martin, Hans-Joerg; Wsol, Vladimir; Maser, Edmund

    2016-01-01

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC 50 - and K i -values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects. - Highlights: • Natural and synthetic compounds were identified as inhibitors for human daunorubicin reductases. • Emodin is a potent inhibitor for human daunorubicin reductases.

  6. Overcoming STC2 mediated drug resistance through drug and gene co-delivery by PHB-PDMAEMA cationic polyester in liver cancer cells.

    Science.gov (United States)

    Cheng, Hongwei; Wu, Zhixian; Wu, Caisheng; Wang, Xiaoyuan; Liow, Sing Shy; Li, Zibiao; Wu, Yun-Long

    2018-02-01

    Stanniocalcin 2 (STC2) overexpression in hepatocellular carcinoma (HCC) could lead to poor prognosis, which might be due to its induced P-glycoprotein and Bcl-2 protein expression level increase. P-glycoprotein or membrane pump induced drug efflux and altered prosurvival Bcl-2 expression are key mechanisms for drug resistance leading to failure of chemotherapy in HCC. However, current strategy to overcome both P-glycoprotein and Bcl-2 protein induced drug resistance was rarely reported. In this work, we utilized an amphiphilic poly[(R)-3-hydroxybutyrate] (PHB)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) cationic polyester to encapsulate chemotherapeutic paclitaxel (PTX) in hydrophobic PHB domain and Bcl-2 convertor Nur77/ΔDBD gene (Nur77 without DNA binding domain for mitochondria localization) by formation of polyplex due to cationic PDMAEMA segment, to effectively inhibit the drug resistant HepG2/STC2 and SMCC7721/STC2 liver cancer cell growth. Thanks to the cationic nanoparticle complex formation ability and high transfection efficiency to express Bcl-2 conversion proteins, PHB-PDMAEMA/PTX@polyplex could partially impair P-glycoprotein induced PTX efflux and activate the apoptotic function of previous prosurvival Bcl-2 protein. This is the pioneer report of cationic amphiphilic polyester PHB-PDMAEMA to codeliver anticancer drug and therapeutic plasmid to overcome both pump and non-pump mediated chemotherapeutic resistance in liver cancer cells, which might be inspiring for the application of polyester in personalized cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1.

    Science.gov (United States)

    Ge, Rui; Liu, Lin; Dai, Wei; Zhang, Weigang; Yang, Yuqi; Wang, Huina; Shi, Qiong; Guo, Sen; Yi, Xiuli; Wang, Gang; Gao, Tianwen; Luan, Qi; Li, Chunying

    2016-06-01

    Xeroderma pigmentosum group A (XPA), a key protein in the nucleotide excision repair pathway, has been shown to promote the resistance of tumor cells to chemotherapeutic drugs by facilitating the DNA repair process. However, the role of XPA in the resistance of melanoma to platinum-based drugs like cisplatin is largely unknown. In this study, we initially found that XPA was expressed at higher levels in cisplatin-resistant melanoma cells than in cisplatin-sensitive ones. Furthermore, the knockdown of XPA not only increased cellular apoptosis but also inhibited cisplatin-induced autophagy, which rendered the melanoma cells more sensitive to cisplatin. Moreover, we discovered that the increased XPA in resistant melanoma cells promoted poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) activation and that the inhibition of PARP1 could attenuate the cisplatin-induced autophagy. Finally, we proved that the inhibition of PARP1 and the autophagy process made resistant melanoma cells more susceptible to cisplatin treatment. Our study shows that XPA can promote cell-protective autophagy in a DNA repair-independent manner by enhancing the activation of PARP1 in melanoma cells resistant to cisplatin and that the XPA-PARP1-mediated autophagy process can be targeted to overcome cisplatin resistance in melanoma chemotherapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Heterocyclic cyclohexanone monocarbonyl analogs of curcumin can inhibit the activity of ATP-binding cassette transporters in cancer multidrug resistance.

    Science.gov (United States)

    Revalde, Jezrael L; Li, Yan; Hawkins, Bill C; Rosengren, Rhonda J; Paxton, James W

    2015-02-01

    Curcumin (CUR) is a phytochemical that inhibits the xenobiotic ABC efflux transporters implicated in cancer multidrug resistance (MDR), such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins 1 and 5 (MRP1 and MRP5). The use of CUR in the clinic however, is complicated by its instability and poor pharmacokinetic profile. Monocarbonyl analogs of CUR (MACs) are compounds without CUR's unstable β-diketone moiety and were reported to have improved stability and in vivo disposition. Whether the MACs can be used as MDR reversal agents is less clear, as the absence of a β-diketone may negatively impact transporter inhibition. In this study, we investigated 23 heterocyclic cyclohexanone MACs for inhibitory effects against P-gp, BCRP, MRP1 and MRP5. Using flow cytometry and resistance reversal assays, we found that many of these compounds inhibited the transport activity of the ABC transporters investigated, often with much greater potency than CUR. Overall the analogs were most effective at inhibiting BCRP and we identified three compounds, A12 (2,6-bis((E)-2,5-dimethoxy-benzylidene)cyclohexanone), A13 (2,6-bis((E)-4-hydroxyl-3-methoxybenzylidene)-cyclohexanone) and B11 (3,5-bis((E)-2-fluoro-4,5-dimethoxybenzylidene)-1-methylpiperidin-4-one), as the most promising BCRP inhibitors. These compounds inhibited BCRP activity in a non-cell line, non-substrate-specific manner. Their inhibition occurred by direct transporter interaction rather than modulating protein or cell surface expression. From these results, we concluded that MACs, such as the heterocyclic cyclohexanone analogs in this study, also have potential as MDR reversal agents and may be superior alternatives to the unstable parent compound, CUR. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Keith P Romano

    Full Text Available Hepatitis C virus (HCV infects over 170 million people worldwide and is the leading cause of chronic liver diseases, including cirrhosis, liver failure, and liver cancer. Available antiviral therapies cause severe side effects and are effective only for a subset of patients, though treatment outcomes have recently been improved by the combination therapy now including boceprevir and telaprevir, which inhibit the viral NS3/4A protease. Despite extensive efforts to develop more potent next-generation protease inhibitors, however, the long-term efficacy of this drug class is challenged by the rapid emergence of resistance. Single-site mutations at protease residues R155, A156 and D168 confer resistance to nearly all inhibitors in clinical development. Thus, developing the next-generation of drugs that retain activity against a broader spectrum of resistant viral variants requires a comprehensive understanding of the molecular basis of drug resistance. In this study, 16 high-resolution crystal structures of four representative protease inhibitors--telaprevir, danoprevir, vaniprevir and MK-5172--in complex with the wild-type protease and three major drug-resistant variants R155K, A156T and D168A, reveal unique molecular underpinnings of resistance to each drug. The drugs exhibit differential susceptibilities to these protease variants in both enzymatic and antiviral assays. Telaprevir, danoprevir and vaniprevir interact directly with sites that confer resistance upon mutation, while MK-5172 interacts in a unique conformation with the catalytic triad. This novel mode of MK-5172 binding explains its retained potency against two multi-drug-resistant variants, R155K and D168A. These findings define the molecular basis of HCV N3/4A protease inhibitor resistance and provide potential strategies for designing robust therapies against this rapidly evolving virus.

  10. In vitro activity of potential old and new drugs against multidrug-resistant gram-negatives.

    Science.gov (United States)

    Rizek, Camila; Ferraz, Juliana Rosa; van der Heijden, Inneke Marie; Giudice, Mauro; Mostachio, Anna Karina; Paez, Jorge; Carrilho, Claudia; Levin, Anna Sara; Costa, Silvia F

    2015-02-01

    The aim of this study was to evaluate the in vitro susceptibility of MDR gram-negatives bacteria to old drugs such as polymyxin B, minocycline and fosfomycin and new drugs such as tigecycline. One hundred and fifty-three isolates from 4 Brazilian hospitals were evaluated. Forty-seven Acinetobacter baumannii resistant to carbapenens harboring adeB, blaOxA23, blaOxA51, blaOxA143 and blaIMP genes, 48 Stenotrophomonas maltophilia including isolates resistant to levofloxacin and/or trimethoprim-sulfamethoxazole harboring sul-1, sul-2 and qnrMR and 8 Serratia marcescens and 50 Klebsiella pneumoniae resistant to carbapenens harboring blaKPC-2 were tested to determine their minimum inhibitory concentrations (MICs) by microdilution to the following drugs: minocycline, ampicillin-sulbactam, tigecycline, and polymyxin B and by agar dilution to fosfomycin according with breakpoint criteria of CLSI and EUCAST (fosfomycin). In addition, EUCAST fosfomycin breakpoint for Pseudomonas spp. was applied for Acinetobacter spp and S. maltophilia, the FDA criteria for tigecycline was used for Acinetobacter spp and S. maltophilia and the Pseudomonas spp polymyxin B CLSI criterion was used for S. maltophilia. Tigecycline showed the best in vitro activity against the MDR gram-negative evaluated, followed by polymyxin B and fosfomycin. Polymyxin B resistance among K. pneumoniae was detected in 6 isolates, using the breakpoint of MIC > 8 ug/mL. Two of these isolates were resistant to tigecycline. Minocycline was tested only against S. maltophilia and A. baumannii and showed excellent activity against both. Fosfomycin seems to not be an option to treat infections due to the A. baumannii and S. maltophilia isolates according with EUCAST breakpoint, on the other hand, showed excellent activity against S. marcescens and K. pneumoniae. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole

    KAUST Repository

    Campos, Mônica C.

    2017-10-25

    Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects 5–8 million people in Latin America. Although the nitroheterocyclic compound benznidazole has been the front-line drug for several decades, treatment failures are common. Benznidazole is a pro-drug and is bio-activated within the parasite by the mitochondrial nitroreductase TcNTR-1, leading to the generation of reactive metabolites that have trypanocidal activity. To better assess drug action and resistance, we sequenced the genomes of T. cruzi Y strain (35.5 Mb) and three benznidazole-resistant clones derived from a single drug-selected population. This revealed the genome-wide accumulation of mutations in the resistant parasites, in addition to variations in DNA copy-number. We observed mutations in DNA repair genes, linked with increased susceptibility to DNA alkylating and inter-strand cross-linking agents. Stop-codon-generating mutations in TcNTR-1 were associated with cross-resistance to other nitroheterocyclic drugs. Unexpectedly, the clones were also highly resistant to the ergosterol biosynthesis inhibitor posaconazole, a drug proposed for use against T. cruzi infections, in combination with benznidazole. Our findings therefore identify the highly mutagenic activity of benznidazole metabolites in T. cruzi, demonstrate that this can result in multi-drug resistance, and indicate that vigilance will be required if benznidazole is used in combination therapy.

  12. Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug-Drug Interactions.

    Science.gov (United States)

    Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil

    2016-02-24

    Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug-drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug-drug interactions.

  13. MRJP1-containing glycoproteins isolated from honey, a novel antibacterial drug candidate with broad spectrum activity against multi-drug resistant clinical isolates

    Directory of Open Access Journals (Sweden)

    Katrina eBrudzynski

    2015-07-01

    Full Text Available The emergence of extended- spectrum β-lactamase (ESBL is the underlying cause of growing antibiotic resistance among Gram-negative bacteria to β-lactam antibiotics. We recently reported the discovery of honey glycoproteins (glps that exhibited a rapid, concentration-dependent antibacterial activity against both Gram-positive Bacillus subtilis and Gram-negative Escherichia coli that resembled action of cell wall-active β-lactam drugs. Glps showed sequence identity with the Major Royal Jelly Protein 1 (MRJP1 precursor that harbors three antimicrobial peptides: Jelleins 1, 2 and 4. Here, we used semi-quantitative radial diffusion assay and broth microdilution assay to evaluate susceptibility of a number of multi-drug resistant (MDR clinical isolates to the MRJP1-contaning honey glycoproteins. The MDR bacterial strains comprised 3 MRSA, 4 Pseudomonas aeruginosa, 2 Klebsiella pneumoniae, 2 VRE and 5 Extended-spectrum beta-lactamase (ESBL identified as 1 Proteus mirabilis, 3 Escherichia coli and 1 Escherichia coli NDM. Their resistance to different classes of antibiotics was confirmed using automated system Vitek 2. MDR isolates differred in their susceptibility to glps with MIC90 values ranging from 4.8μg/ml against B. subtilis to 14.4μg/ml against ESBL K. pneumoniae, Klebsiella spp ESBL and E. coli and up to 33μg/ml against highly resistant strains of P. aeruginosa. Glps isolated from different honeys showed a similar ability to overcome bacterial resistance to β-lactams suggesting that (a their mode of action is distinct from other classes of β-lactams and that (b the common glps structure was the lead structure responsible for the activity. The results of the current study together with our previous evidence of a rapid bactericidal activity of glps demonstrate that glps possess suitable characteristics to be considered a novel antibacterial drug candidate.

  14. Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells.

    Directory of Open Access Journals (Sweden)

    Ayako Nakano

    Full Text Available Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2, KG-1 (ABCB1 and HepG2 cells (ABCB1 and ABCG2. Interestingly, although side population (SP cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells.

  15. Synthetic (+)-antroquinonol exhibits dual actions against insulin resistance by triggering AMP kinase and inhibiting dipeptidyl peptidase IV activities.

    Science.gov (United States)

    Hsu, C Y; Sulake, R S; Huang, P-K; Shih, H-Y; Sie, H-W; Lai, Y-K; Chen, C; Weng, C F

    2015-01-01

    The fungal product (+)-antroquinonol activates AMP kinase (AMPK) activity in cancer cell lines. The present study was conducted to examine whether chemically synthesized (+)-antroquinonol exhibited beneficial metabolic effects in insulin-resistant states by activating AMPK and inhibiting dipeptidyl peptidase IV (DPP IV) activity. Effects of (+)-antroquinonol on DPP IV activity were measured with a DPPIV Assay Kit and effects on GLP-1-induced PKA were measured in AR42J cells. Translocation of the glucose transporter 4, GLUT4, induced either by insulin-dependent PI3K/AKT signalling or by insulin-independent AMPK activation, was assayed in differentiated myotubes. Glucose uptake and GLUT4 translocation were assayed in L6 myocytes. Mice with diet-induced obesity were used to assess effects of acute and chronic treatment with (+)-antroquinonol on glycaemic control in vivo. The results showed that of (+)-antroquinonol (100 μM ) inhibited the DPP IV activity as effectively as the clinically used inhibitor, sitagliptin. The phosphorylation of AMPK Thr(172) in differentiated myotubes was significantly increased by (+)-antroquinonol. In cells simultaneously treated with S961 (insulin receptor antagonist), insulin and (+)-antroquinonol, the combination of (+)-antroquinonol plus insulin still increased both GLUT4 translocation and glucose uptake. Further, (+)-antroquinonol and sitagliptin reduced blood glucose, when given acutely or chronically to DIO mice. Chemically synthesized (+)-antroquinonol exhibits dual effects to ameliorate insulin resistance, by increasing AMPK activity and GLUT4 translocation, along with inhibiting DPP IV activity. © 2014 The British Pharmacological Society.

  16. Fitness trade-offs in the evolution of dihydrofolate reductase and drug resistance in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Marna S Costanzo

    Full Text Available Patterns of emerging drug resistance reflect the underlying adaptive landscapes for specific drugs. In Plasmodium falciparum, the parasite that causes the most serious form of malaria, antifolate drugs inhibit the function of essential enzymes in the folate pathway. However, a handful of mutations in the gene coding for one such enzyme, dihydrofolate reductase, confer drug resistance. Understanding how evolution proceeds from drug susceptibility to drug resistance is critical if new antifolate treatments are to have sustained usefulness.We use a transgenic yeast expression system to build on previous studies that described the adaptive landscape for the antifolate drug pyrimethamine, and we describe the most likely evolutionary trajectories for the evolution of drug resistance to the antifolate chlorcycloguanil. We find that the adaptive landscape for chlorcycloguanil is multi-peaked, not all highly resistant alleles are equally accessible by evolution, and there are both commonalities and differences in adaptive landscapes for chlorcycloguanil and pyrimethamine.Our findings suggest that cross-resistance between drugs targeting the same enzyme reflect the fitness landscapes associated with each particular drug and the position of the genotype on both landscapes. The possible public health implications of these findings are discussed.

  17. Inhibition of human anthracycline reductases by emodin — A possible remedy for anthracycline resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hintzpeter, Jan, E-mail: hintzpeter@toxi.uni-kiel.de [Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel (Germany); Seliger, Jan Moritz [Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel (Germany); Hofman, Jakub [Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove (Czech Republic); Martin, Hans-Joerg [Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel (Germany); Wsol, Vladimir [Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove (Czech Republic); Maser, Edmund [Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel (Germany)

    2016-02-15

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC{sub 50}- and K{sub i}-values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects. - Highlights: • Natural and synthetic compounds were identified as inhibitors for human daunorubicin reductases. • Emodin is a potent inhibitor for human daunorubicin

  18. The effect of S1P receptor signaling pathway on the survival and drug resistance in multiple myeloma cells.

    Science.gov (United States)

    Fu, Di; Li, Yingchun; Li, Jia; Shi, Xiaoyan; Yang, Ronghui; Zhong, Yuan; Wang, Huihan; Liao, Aijun

    2017-01-01

    Multiple myeloma (MM) remains incurable by conventional chemotherapy. Sphingosine-1-phosphate (S1P) receptor-mediated signaling has been recently demonstrated to have critical roles in cell survival and drug resistance in a number of hematological malignancies. To dissect the roles of S1P receptor pathway in MM, we systematically examined cell viability and protein expression associated with cell survival and drug resistance in MM cell lines upon treatment with either pathway activator (S1P) or inhibitor (FTY720). Our results reveal that FTY720 inhibits cell proliferation by downregulating expression of target genes, while S1P has an opposite effect. Knocking down of S1P receptor S1P5R results in a reduction of cell survival-related gene expression; however, it does not have impacts on expression of drug resistance genes. These results suggest that S1P signaling plays a role in cell proliferation and drug resistance in MM, and targeting this pathway will provide a new therapeutic direction for MM management.

  19. Bone morphogenetic protein 4 is overexpressed in and promotes migration and invasion of drug-resistant cancer cells.

    Science.gov (United States)

    Zhou, Kairui; Shi, Xiaoli; Huo, Jinling; Liu, Weihua; Yang, Dongxiao; Yang, Tengjiao; Qin, Tiantian; Wang, Cong

    2017-08-01

    Drug resistance and metastasis significantly hinder chemotherapy and worsen prognoses in cancer. Bone morphogenetic protein 4 (BMP4) belongs to the TGF-β superfamily, has broad biological activities in cell proliferation and cartilage differentiation and is also able to induce migration and invasion. Herein, we investigated the role of BMP4 in the regulation of metastasis in paclitaxel-resistant human esophageal carcinoma EC109 cells (EC109/Taxol) and docetaxel-resistant human gastric cancer MGC803 cells (MGC/Doc). In these drug-resistant cell lines, we found the cell motility was enhanced and BMP4 was up-regulated relative to their respective parental cell lines. Consistent with in vitro assays, migration potential and BMP4 expression were increased in EC109/Taxol nude mice. Furthermore, to address whether BMP4 was required to enhance the metastatic in EC109/Taxol cells, the pharmacological inhibitor of BMP signaling dorsomorphin was used; meanwhile, we found that the migration and invasion abilities were inhibited. Moreover, the canonical Smad signaling pathway was investigated. Overall, our studies demonstrated that BMP4 participates in the regulation of invasion and migration by EC109/Taxol cells, and inhibition of BMP4 may be a novel strategy to interfere with metastasis in cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers

    International Nuclear Information System (INIS)

    Volkow, N.D.; Fowler, J.; Wang, G.J.; Telang, F.; Logan, J.; Jayne, M.; Ma, Y.; Pradhan, K.; Wong, C.T.; Swanson, J.M.

    2010-01-01

    Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior. We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video). Statistical parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3 ± 3, post 6 ± 3; p < 0.001) but not when subjects were instructed to inhibit craving (pre 3 ± 2, post 3 ± 3). Comparisons with baseline showed visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p < 0.001). Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p < 0.005), which was associated with right inferior frontal activation (r = -0.62, p < 0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to inhibit cue-induced craving. This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction.

  1. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Fowler, J.; Wang, G.J.; Telang, F.; Logan, J.; Jayne, M.; Ma, Y.; Pradhan, K.; Wong, C.T.; Swanson, J.M.

    2010-01-01

    Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior. We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video). Statistical parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3 {+-} 3, post 6 {+-} 3; p < 0.001) but not when subjects were instructed to inhibit craving (pre 3 {+-} 2, post 3 {+-} 3). Comparisons with baseline showed visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p < 0.001). Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p < 0.005), which was associated with right inferior frontal activation (r = -0.62, p < 0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to inhibit cue-induced craving. This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction.

  2. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase.

    Science.gov (United States)

    Chan, Ben C L; Ip, Margaret; Lau, Clara B S; Lui, S L; Jolivalt, Claude; Ganem-Elbaz, Carine; Litaudon, Marc; Reiner, Neil E; Gong, Huansheng; See, Raymond H; Fung, K P; Leung, P C

    2011-09-01

    Baicalein, the active constituent derived from Scutellaria baicalensis Georgi., has previously been shown to significantly restore the effectiveness of β-lactam antibiotics and tetracycline against methicillin-resistant Staphylococcus aureus (MRSA). With multiple therapeutic benefits, the antibacterial actions of baicalein may also be involved in overcoming other bacterial resistance mechanisms. The aim of the present study was to further investigate antibacterial activities of baicalein in association with various antibiotics against selected Staphylococcus aureus strains with known specific drug resistance mechanisms. A panel of clinical MRSA strains was used for further confirmation of the antibacterial activities of baicalein. The effect of baicalein on inhibiting the enzymatic activity of a newly discovered MRSA-specific pyruvate kinase (PK), which is essential for Staphylococcus aureus growth and survival was also examined. In the checkerboard dilution test and time-kill assay, baicalein at 16 μg/ml could synergistically restore the antibacterial actions of ciprofloxacin against the NorA efflux pump overexpressed SA-1199B, but not with the poor NorA substrate, pefloxacin. Moreover, synergistic effects were observed when baicalein was combined with ciprofloxacin against 12 out of 20 clinical ciprofloxacin resistant strains. For MRSA PK studies, baicalein alone could inhibit the enzymatic activity of MRSA PK in a dose-dependent manner. Our results demonstrated that baicalein could significantly reverse the ciprofloxacin resistance of MRSA possibly by inhibiting the NorA efflux pump in vitro. The inhibition of MRSA PK by baicalein could lead to a deficiency of ATP which might further contribute to the antibacterial actions of baicalein against MRSA. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Parallel screening of wild-type and drug-resistant targets for anti-resistance neuraminidase inhibitors.

    Directory of Open Access Journals (Sweden)

    Kai-Cheng Hsu

    Full Text Available Infection with influenza virus is a major public health problem, causing serious illness and death each year. Emergence of drug-resistant influenza virus strains limits the effectiveness of drug treatment. Importantly, a dual H275Y/I223R mutation detected in the pandemic influenza A 2009 virus strain results in multidrug resistance to current neuraminidase (NA drugs. Therefore, discovery of new agents for treating multiple drug-resistant (MDR influenza virus infections is important. Here, we propose a parallel screening strategy that simultaneously screens wild-type (WT and MDR NAs, and identifies inhibitors matching the subsite characteristics of both NA-binding sites. These may maintain their potency when drug-resistant mutations arise. Initially, we analyzed the subsite of the dual H275Y/I223R NA mutant. Analysis of the site-moiety maps of NA protein structures show that the mutant subsite has a relatively small volume and is highly polar compared with the WT subsite. Moreover, the mutant subsite has a high preference for forming hydrogen-bonding interactions with polar moieties. These changes may drive multidrug resistance. Using this strategy, we identified a new inhibitor, Remazol Brilliant Blue R (RB19, an anthraquinone dye, which inhibited WT NA and MDR NA with IC(50 values of 3.4 and 4.5 µM, respectively. RB19 comprises a rigid core scaffold and a flexible chain with a large polar moiety. The former interacts with highly conserved residues, decreasing the probability of resistance. The latter forms van der Waals contacts with the WT subsite and yields hydrogen bonds with the mutant subsite by switching the orientation of its flexible side chain. Both scaffolds of RB19 are good starting points for lead optimization. The results reveal a parallel screening strategy for identifying resistance mechanisms and discovering anti-resistance neuraminidase inhibitors. We believe that this strategy may be applied to other diseases with high

  4. Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer.

    Science.gov (United States)

    Yang, Wanli; Ma, Jiaojiao; Zhou, Wei; Cao, Bo; Zhou, Xin; Yang, Zhiping; Zhang, Hongwei; Zhao, Qingchuan; Fan, Daiming; Hong, Liu

    2017-11-01

    Systemic chemotherapy is a curative approach to inhibit gastric cancer cells proliferation. Despite the great progress in anti-cancer treatment achieved during the last decades, drug resistance and treatment refractoriness still extensively persists. Recently, accumulating studies have highlighted the role of miRNAs in drug resistance of gastric cancers by modulating some drug resistance-related proteins and genes expression. Pre-clinical reports indicate that miRNAs might serve as ideal biomarkers and potential targets, thus holding great promise for developing targeted therapy and personalized treatment for the patients with gastric cancer. Areas covered: This review provide a comprehensive overview of the current advances of miRNAs and molecular mechanisms underlying miRNA-mediated drug resistance in gastric cancer. We particularly focus on the potential values of drug resistance-related miRNAs as biomarkers and novel targets in gastric cancer therapy and envisage the future research developments of these miRNAs and challenges in translating the new findings into clinical applications. Expert opinion: Although the concrete mechanisms of miRNAs in drug resistance of gastric cancer have not been fully clarified, miRNA may be a promising theranostic approach. Further studies are still needed to facilitate the clinical applications of miRNAs in drug resistant gastric cancer.

  5. Inheritance and mechanism of resistance to herbicides inhibiting acetolactate synthase in Sonchus oleraceus L.

    Science.gov (United States)

    Boutsalis, P; Powles, S B

    1995-07-01

    A biotype of Sonchus oleraceus L. (Compositae) has developed resistance to herbicides inhibiting acetolactate synthase (ALS) following field selection with chlorsulfuron for 8 consecutive years. The aim of this study was to determine the inheritance and mechanism of resistance in this biotype. Determination of ALS activity and inhibition kinetics revealed that Km and Vmax did not vary greatly between the resistant and susceptible biotypes. ALS extracted from the resistant biotype was resistant to five ALS-inhibiting herbicides in an in vitro assay. ALS activity from the resistant biotype was 14 19, 2, 3 and 3 times more resistant to inhibition by chlorsulfuron, sulfometuron, imazethapyr, imazapyr and flumetsulam, respectively, than the susceptible biotype. Hybrids between the resistant and a susceptible biotype were produced, and inheritance was followed through the F1, F2 and F3 generations. F1 hybrids displayed a uniform intermediate level of resistance between resistant and susceptible parents. Three distinct phenotypes, resistant, intermediate and susceptible, were identified in the F2 generation following chlorsulfuron application. A segregation ratio of 1∶2∶1 was observed, indicative of the action of a single, nuclear, incompletely dominant gene. F3 families, derived from intermediate F2 individuals, segregated in a similar manner. Resistance to herbicides inhibiting ALS in this biotype of S. oleraceus is due to the effect of a single gene coding for a resistant form of the target enzyme, ALS.

  6. Preventing drug resistance in severe influenza

    Science.gov (United States)

    Dobrovolny, Hana; Deecke, Lucas

    2015-03-01

    Severe, long-lasting influenza infections are often caused by new strains of influenza. The long duration of these infections leads to an increased opportunity for the emergence of drug resistant mutants. This is particularly problematic for new strains of influenza since there is often no vaccine, so drug treatment is the first line of defense. One strategy for trying to minimize drug resistance is to apply periodic treatment. During treatment the wild-type virus decreases, but resistant virus might increase; when there is no treatment, wild-type virus will hopefully out-compete the resistant virus, driving down the number of resistant virus. We combine a mathematical model of severe influenza with a model of drug resistance to study emergence of drug resistance during a long-lasting infection. We apply periodic treatment with two types of antivirals: neuraminidase inhibitors, which block release of virions; and adamantanes, which block replication of virions. We compare the efficacy of the two drugs in reducing emergence of drug resistant mutants and examine the effect of treatment frequency on the emergence of drug resistant mutants.

  7. Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation.

    Science.gov (United States)

    Courtney, Colleen M; Goodman, Samuel M; Nagy, Toni A; Levy, Max; Bhusal, Pallavi; Madinger, Nancy E; Detweiler, Corrella S; Nagpal, Prashant; Chatterjee, Anushree

    2017-10-01

    The rise of multidrug-resistant (MDR) bacteria is a growing concern to global health and is exacerbated by the lack of new antibiotics. To treat already pervasive MDR infections, new classes of antibiotics or antibiotic adjuvants are needed. Reactive oxygen species (ROS) have been shown to play a role during antibacterial action; however, it is not yet understood whether ROS contribute directly to or are an outcome of bacterial lethality caused by antibiotics. We show that a light-activated nanoparticle, designed to produce tunable flux of specific ROS, superoxide, potentiates the activity of antibiotics in clinical MDR isolates of Escherichia coli , Salmonella enterica , and Klebsiella pneumoniae . Despite the high degree of antibiotic resistance in these isolates, we observed a synergistic interaction between both bactericidal and bacteriostatic antibiotics with varied mechanisms of action and our superoxide-producing nanoparticles in more than 75% of combinations. As a result of this potentiation, the effective antibiotic concentration of the clinical isolates was reduced up to 1000-fold below their respective sensitive/resistant breakpoint. Further, superoxide-generating nanoparticles in combination with ciprofloxacin reduced bacterial load in epithelial cells infected with S. enterica serovar Typhimurium and increased Caenorhabditis elegans survival upon infection with S. enterica serovar Enteriditis, compared to antibiotic alone. This demonstration highlights the ability to engineer superoxide generation to potentiate antibiotic activity and combat highly drug-resistant bacterial pathogens.

  8. Drug-resistant spinal tuberculosis

    Directory of Open Access Journals (Sweden)

    Anil K Jain

    2018-01-01

    Full Text Available Drug-resistant spinal tuberculosis (TB is an emerging health problem in both developing and developed countries. In this review article, we aim to define management protocols for suspicion, diagnosis, and treatment of such patients. Spinal TB is a deep-seated paucibacillary lesion, and the demonstration of acid-fast bacilli on Ziehl-Neelsen staining is possible only in 10%–30% of cases. Drug resistance is suspected in patients showing the failure of clinicoradiological improvement or appearance of a fresh lesion of osteoarticular TB while on anti tubercular therapy (ATT for a minimum period of 5 months. The conventional culture of Mycobacterium tuberculosis remains the gold standard for both bacteriological diagnosis and drug sensitivity testing (DST; however, the high turn around time of 2–6 weeks for detection with added 3 weeks for DST is a major limitation. To overcome this problem, rapid culture methods and molecular methods have been introduced. From a public health perspective, reducing the period between diagnosis and treatment initiation has direct benefits for both the patient and the community. For all patients of drug-resistant spinal TB, a complete Drug-O-Gram should be prepared which includes details of all drugs, their doses, and duration. Patients with confirmed multidrug-resistant TB strains should receive a regimen with at least five effective drugs, including pyrazinamide and one injectable. Patients with resistance to additional antitubercular drugs should receive individualized ATT as per their DST results.

  9. Oral Metronomic Topotecan Sensitizes Crizotinib Antitumor Activity in ALKF1174L Drug-Resistant Neuroblastoma Preclinical Models

    Directory of Open Access Journals (Sweden)

    Libo Zhang

    2017-08-01

    Full Text Available BACKGROUND: Anaplastic lymphoma kinase (ALK inhibitor crizotinib has proven to be effective in the treatment of ALK-mutated neuroblastoma, but crizotinib resistance was commonly observed in patients. We aimed to overcome crizotinib resistance by combining with the MEK inhibitor trametinib or low-dose metronomic (LDM topotecan in preclinical neuroblastoma models. METHODS: We selected a panel of neuroblastoma cell lines carrying various ALK genetic aberrations to assess the therapeutic efficacy on cell proliferation in vitro. Downstream signals of ALK activation, including phosphorylation of ERK1/2, Akt as well as HIF-1α expression were evaluated under normoxic and hypoxic conditions. Tumor growth inhibition was further assessed in NOD/SCID xenograft mouse models. RESULTS: All NBL cell lines responded to crizotinib treatment but at variable ED50 levels, ranging from 0.25 to 5.58 μM. ALK-mutated cell lines SH-SY5Y, KELLY, LAN-5, and CHLA-20 are more sensitive than ALK wild-type cell lines. In addition, we demonstrated that under hypoxic conditions, all NBL cell lines showed marked decrease of ED50s when compared to normoxia except for KELLY cells. Taking into consideration the hypoxia sensitivity to crizotinib, combined treatment with crizotinib and LDM topotecan demonstrated a synergistic effect in ALKF1174L-mutated SH-SY5Y cells. In vivo, single-agent crizotinib showed limited antitumor activity in ALKF1174L-mutated SH-SY5Y and KELLY xenograft models; however, when combined with topotecan, significantly delayed tumor development was achieved in both SH-SY5Y and KELLY tumor models. CONCLUSIONS: Oral metronomic topotecan reversed crizotinib drug resistance in the ALKF1174L-mutated neuroblastoma preclinical model.

  10. Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy.

    Science.gov (United States)

    Jing, Lijia; Qu, Haijing; Wu, Dongqi; Zhu, Chaojian; Yang, Yongbo; Jin, Xing; Zheng, Jian; Shi, Xiangsheng; Yan, Xiufeng; Wang, Yang

    2018-01-01

    Multidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients. In this study, a nanomedicine RGD-NPVs@MNPs/DOX was developed by encapsulating melanin nanoparticles (MNPs) and doxorubicin (DOX) inside RGD peptide (c(RGDyC))-modified nanoscale platelet vesicles (RGD-NPVs) to efficiently inhibit the growth and metastasis of drug-resistant tumors via a cancer cells and tumor vasculature dual-targeting strategy. Methods: The in vitro immune evasion potential and the targeting performance of RGD-NPVs@MNPs/DOX were examined using RAW264.7, HUVECs, MDA-MB-231 and MDA-MB-231/ADR cells lines. We also evaluated the pharmacokinetic behavior and the in vivo therapeutic performance of RGD-NPVs@MNPs/DOX using a MDA-MB-231/ADR tumor-bearing nude mouse model. Results: By taking advantage of the self-recognizing property of the platelet membrane and the conjugated RGD peptides, RGD-NPVs@MNPs/DOX was found to evade immune clearance and target the αvβ3 integrin on tumor vasculature and resistant breast tumor cells. Under irradiation with a NIR laser, RGD-NPVs@MNPs/DOX produced a multipronged effect, including reversal of cancer MDR, efficient killing of resistant cells by chemo-photothermal therapy, elimination of tumor vasculature for blocking metastasis, and long-lasting inhibition of the expressions of VEGF, MMP2 and MMP9 within the tumor. Conclusion: This versatile nanomedicine of RGD-NPVs@MNPs/DOX integrating unique biomimetic properties, excellent targeting performance, and comprehensive therapeutic strategies in one formulation might bring opportunities to MDR cancer therapy.

  11. Anti-diabetes drug pioglitazone ameliorates synaptic defects in AD transgenic mice by inhibiting cyclin-dependent kinase5 activity.

    Directory of Open Access Journals (Sweden)

    Jinan Chen

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a serine/threonine kinase that is activated by the neuron specific activators p35/p39 and plays many important roles in neuronal development. However, aberrant activation of Cdk5 is believed to be associated with the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease (AD and Parkinson's disease (PD. Here in the present study, enhanced Cdk5 activity was observed in mouse models of AD; whereas soluble amyloid-β oligomers (Aβ, which contribute to synaptic failures during AD pathogenesis, induced Cdk5 hyperactivation in cultured hippocampal neurons. Inhibition of Cdk5 activity by pharmacological or genetic approaches reversed dendritic spine loss caused by soluble amyloid-β oligomers (Aβ treatment. Interestingly, we found that the anti-diabetes drug pioglitazone could inhibit Cdk5 activity by decreasing p35 protein level. More importantly, pioglitazone treatment corrected long-term potentiation (LTP deficit caused by Aβ exposure in cultured slices and pioglitazone administration rescued impaired LTP and spatial memory in AD mouse models. Taken together, our study describes an unanticipated role of pioglitazone in alleviating AD and reveals a potential therapeutic drug for AD curing.

  12. Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B.

    Science.gov (United States)

    Jung, Hyun Ah; Bhakta, Himanshu Kumar; Min, Byung-Sun; Choi, Jae Sue

    2016-10-01

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.

  13. Gemfibrozil, a lipid lowering drug, inhibits the activation of primary human microglia via peroxisome proliferator-activated receptor β.

    Science.gov (United States)

    Jana, Malabendu; Pahan, Kalipada

    2012-08-01

    Microglial activation participates in the pathogenesis of various neuroinflammatory and neurodegenerative diseases. However, mechanisms by which microglial activation could be controlled are poorly understood. Peroxisome proliferator-activated receptors (PPAR) are transcription factors belonging to the nuclear receptor super family with diverse effect. This study underlines the importance of PPARβ/δ in mediating the anti-inflammatory effect of gemfibrozil, an FDA-approved lipid-lowering drug, in primary human microglia. Bacterial lipopolysachharides (LPS) induced the expression of various proinflammatory molecules and upregulated the expression of microglial surface marker CD11b in human microglia. However, gemfibrozil markedly suppressed proinflammatory molecules and CD11b in LPS-stimulated microglia. Human microglia expressed PPAR-β and -γ, but not PPAR-α. Interestingly, either antisense knockdown of PPAR-β or antagonism of PPAR-β by a specific chemical antagonist abrogated gemfibrozil-mediated inhibition of microglial activation. On the other hand, blocking of PPAR-α and -γ had no effect on gemfibrozil-mediated anti-inflammatory effect in microglia. These results highlight the fact that gemfibrozil regulates microglial activation by inhibiting inflammatory gene expression in a PPAR-β dependent pathway and further reinforce its therapeutic application in several neuroinflammatory and neurodegenerative diseases.

  14. Ouabain, a cardiac glycoside, inhibits the Fanconi anemia/BRCA pathway activated by DNA interstrand cross-linking agents.

    Directory of Open Access Journals (Sweden)

    Dong Wha Jun

    Full Text Available Modulation of the DNA repair pathway is an emerging target for the development of anticancer drugs. DNA interstrand cross-links (ICLs, one of the most severe forms of DNA damage caused by anticancer drugs such as cisplatin and mitomycin C (MMC, activates the Fanconi anemia (FA/BRCA DNA repair pathway. Inhibition of the FA/BRCA pathway can enhance the cytotoxic effects of ICL-inducing anticancer drugs and can reduce anticancer drug resistance. To find FA/BRCA pathway inhibitory small molecules, we established a cell-based high-content screening method for quantitating the activation of the FA/BRCA pathway by measuring FANCD2 foci on DNA lesions and then applied our method to chemical screening. Using commercial LOPAC1280 chemical library screening, ouabain was identified as a competent FA/BRCA pathway inhibitory compound. Ouabain, a member of the cardiac glycoside family, binds to and inhibits Na(+/K(+-ATPase and has been used to treat heart disease for many years. We observed that ouabain, as well as other cardiac glycoside family members--digitoxin and digoxin--down-regulated FANCD2 and FANCI mRNA levels, reduced monoubiquitination of FANCD2, inhibited FANCD2 foci formation on DNA lesions, and abrogated cell cycle arrest induced by MMC treatment. These inhibitory activities of ouabain required p38 MAPK and were independent of cellular Ca(2+ ion increase or the drug uptake-inhibition effect of ouabain. Furthermore, we found that ouabain potentiated the cytotoxic effects of MMC in tumor cells. Taken together, we identified an additional effect of ouabain as a FA/BRCA pathway-inhibiting chemosensitization compound. The results of this study suggest that ouabain may serve as a chemosensitizer to ICL-inducing anticancer drugs.

  15. The In vitro anti-acne activity of two unani drugs

    Directory of Open Access Journals (Sweden)

    Shahid Shah Chaudhary

    2013-01-01

    Full Text Available Background: Acne is the most common disorder treated by dermatologists. As many as 80-90% of all adolescents have some type of acne and 30% of them require medical treatment. It is an inflammatory disease of the pilosebaceous unit characterized by the formation of open and closed comedones, papules, pustules, nodules, and cysts. Aims: The present study was conducted to investigate the in vitro anti-acne activity of two Unani single drugs Darchini (Cinnamomum zeylanicum Bl. and Tukhm Khashkhash (Papaver somniferum L. seeds. Materials and Methods: The antibacterial activity of aqueous, ethanolic and hydroalcoholic extracts of both drugs were investigated against two acne causing bacteria, i.e., Propionibacterium acne and Staphylococcus epidermidis using well diffusion method. Results: The result showed that both drugs were active against the two bacteria. Against P. acne aqueous and ethanolic extract of Darchini and Tukhm Khashkhash showed the zone of inhibition of 18 ± 1.02 mm and 18 ± 1.6 mm and 13 ± 1.04 mm and 14 ± 1.8 mm, respectively. Against S. epidermidis aqueous, hydroalcoholic and ethanolic extracts of Darchini showed 22 ± 1.7 mm, 22 ± 1.2 mm and 15 ± 1.8 mm zone of inhibition respectively. Hydroalcoholic and ethanolic extracts of Tukhm Khashkhash showed 15 ± 1.09 mm and 13 ± 1.6 mm zone of inhibition respectively. Conclusion: This suggests that C. zeylanicum and P. somniferum have potential against acne causing bacteria and hence they can be used in topical anti-acne preparations and may address the antibiotic resistance of the bacteria.

  16. Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis

    Institute of Scientific and Technical Information of China (English)

    REBECCA L DUNNE; LINDA A DUNN; PETER UPCROFT; PETER J O'DONOGHUE; JACQUELINE A UPCROFT

    2003-01-01

    Trichomoniasis is the most common, sexually transmitted infection. It is caused by the flagellated protozoan parasite Trichomonas vaginalis. Symptoms include vaginitis and infections have been associated with preterm delivery, low birth weight and increased infant mortality, as well as predisposing to HIV/AIDS and cervical cancer. Trichomoniasis has the highest prevalence and incidence of any sexually transmitted infection. The 5-nitroimidazole drugs, of which metronidazole is the most prescribed, are the only approved,effective drugs to treat trichomoniasis. Resistance against metronidazole is frequently reported and crossresistance among the family of 5-nitroimidazole drugs is common, leaving no alternative for treatment, with some cases remaining unresolved. The mechanism of metronidazole resistance in T. vaginalis from treatment failures is not well understood, unlike resistance which is developed in the laboratory under increasing metronidazole pressure. In the latter situation, hydrogenosomal function which is involved in activation of the prodrug, metronidazole, is down-regulated. Reversion to sensitivity is incomplete after removal of drug pressure in the highly resistant parasites while clinically resistant strains, so far analysed, maintain their resistance levels in the absence of drug pressure. Although anaerobic resistance has been regarded as a laboratory induced phenomenon, it clearly has been demonstrated in clinical isolates. Pursuit of both approaches will allow dissection of the underlying mechanisms. Many alternative drugs and treatments have been tested in vivo in cases of refractory trichomoniasis, as well as in vitro with some successes including the broad spectrum anti-parasitic drug nitazoxanide. Drug resistance incidence in T. vaginalis appears to be on the increase and improved surveillance of treatment failures is urged.

  17. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Jun, H J; Acquaviva, J; Chi, D; Lessard, J; Zhu, H; Woolfenden, S; Bronson, R T; Pfannl, R; White, F; Housman, D E; Iyer, L; Whittaker, C A; Boskovitz, A; Raval, A; Charest, A

    2012-06-21

    Glioblastoma multiforme (GBM) is an aggressive brain tumor for which there is no cure. Overexpression of wild-type epidermal growth factor receptor (EGFR) and loss of the tumor suppressor genes Ink4a/Arf and PTEN are salient features of this deadly cancer. Surprisingly, targeted inhibition of EGFR has been clinically disappointing, demonstrating an innate ability for GBM to develop resistance. Efforts at modeling GBM in mice using wild-type EGFR have proven unsuccessful to date, hampering endeavors at understanding molecular mechanisms of therapeutic resistance. Here, we describe a unique genetically engineered mouse model of EGFR-driven gliomagenesis that uses a somatic conditional overexpression and chronic activation of wild-type EGFR in cooperation with deletions in the Ink4a/Arf and PTEN genes in adult brains. Using this model, we establish that chronic activation of wild-type EGFR with a ligand is necessary for generating tumors with histopathological and molecular characteristics of GBMs. We show that these GBMs are resistant to EGFR kinase inhibition and we define this resistance molecularly. Inhibition of EGFR kinase activity using tyrosine kinase inhibitors in GBM tumor cells generates a cytostatic response characterized by a cell cycle arrest, which is accompanied by a substantial change in global gene expression levels. We demonstrate that an important component of this pattern is the transcriptional activation of the MET receptor tyrosine kinase and that pharmacological inhibition of MET overcomes the resistance to EGFR inhibition in these cells. These findings provide important new insights into mechanisms of resistance to EGFR inhibition and suggest that inhibition of multiple targets will be necessary to provide therapeutic benefit for GBM patients.

  18. Study on drug resistance of mycobacterium tuberculosis in patients with pulmonary tuberculosis by drug resistance gene detecting

    International Nuclear Information System (INIS)

    Wang Wei; Li Hongmin; Wu Xueqiong; Wang Ansheng; Ye Yixiu; Wang Zhongyuan; Liu Jinwei; Chen Hongbing; Lin Minggui; Wang Jinhe; Li Sumei; Jiang Ping; Feng Bai; Chen Dongjing

    2004-01-01

    To investigate drug resistance of mycobacterium tuberculosis in different age group, compare detecting effect of two methods and evaluate their the clinical application value, all of the strains of mycobacterium tuberculosis were tested for resistance to RFP, INH SM PZA and EMB by the absolute concentration method on Lowenstein-Jensen medium and the mutation of the rpoB, katG, rpsL, pncA and embB resistance genes in M. tuberculosis was tested by PCR-SSCP. In youth, middle and old age group, the rate of acquired drug resistance was 89.2%, 85.3% and 67.6% respectively, the gene mutation rate was 76.2%, 81.3% and 63.2% respectively. The rate of acquired drug resistance and multiple drug resistance in youth group was much higher than those in other groups. The gene mutation was correlated with drug resistance level of mycobacterium tuberculosis. The gene mutation rate was higher in strains isolated from high concentration resistance than those in strains isolated from low concentration resistance. The more irregular treatment was longer, the rate of drug resistance was higher. Acquired drug resistance varies in different age group. It suggested that surveillance of drug resistence in different age group should be taken seriously, especially in youth group. PCR - SSCP is a sensitive and specific method for rapid detecting rpoB, katG, rpsL, pncA and embB genes mutations of MTB. (authors)

  19. Mechanism of inhibition of myeloperoxidase by anti-inflammatory drugs.

    Science.gov (United States)

    Kettle, A J; Winterbourn, C C

    1991-05-15

    Hypochlorous acid (HOCl) is the most powerful oxidant produced by human neutrophils, and should therefore be expected to contribute to the damage caused by these inflammatory cells. It is produced from H2O2 and Cl- by the heme enzyme myeloperoxidase (MPO). We used a H2O2-electrode to assess the ability of a variety of anti-inflammatory drugs to inhibit conversion of H2O2 to HOCl. Dapsone, mefenamic acid, sulfapyridine, quinacrine, primaquine and aminopyrine were potent inhibitors, giving 50% inhibition of the initial rate of H2O2 loss at concentrations of about 1 microM or less. Phenylbutazone, piroxicam, salicylate, olsalazine and sulfasalazine were also effective inhibitors. Spectral investigations showed that the inhibitors acted by promoting the formation of compound II, which is an inactive redox intermediate of MPO. Ascorbate reversed inhibition by reducing compound II back to the active enzyme. The characteristic properties that allowed the drugs to inhibit MPO reversibly were ascertained by determining the inhibitory capacity of related phenols and anilines. Inhibition increased as substituents on the aromatic ring became more electron withdrawing, until an optimum reduction potential was reached. Beyond this optimum, their inhibitory capacity declined. The best inhibitor was 4-bromoaniline which had an I50 of 45 nM. An optimum reduction potential enables inhibitors to reduce MPO to compound II, but prevents them from reducing compound II back to the active enzyme. Exploitation of this optimum reduction potential will help in targeting drugs against HOCl-dependent tissue damage.

  20. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus.

    Science.gov (United States)

    Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Conery, Annie L; Kim, Wooseong; Jayamani, Elamparithi; Kwon, Bumsup; Ausubel, Frederick M; Mylonakis, Eleftherios

    2015-01-01

    Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA) approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC): 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs). The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively), but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections.

  1. Leishmania donovani isolates with antimony-resistant but not -sensitive phenotype inhibit sodium antimony gluconate-induced dendritic cell activation.

    Directory of Open Access Journals (Sweden)

    Arun Kumar Haldar

    2010-05-01

    Full Text Available The inability of sodium antimony gluconate (SAG-unresponsive kala-azar patients to clear Leishmania donovani (LD infection despite SAG therapy is partly due to an ill-defined immune-dysfunction. Since dendritic cells (DCs typically initiate anti-leishmanial immunity, a role for DCs in aberrant LD clearance was investigated. Accordingly, regulation of SAG-induced activation of murine DCs following infection with LD isolates exhibiting two distinct phenotypes such as antimony-resistant (Sb(RLD and antimony-sensitive (Sb(SLD was compared in vitro. Unlike Sb(SLD, infection of DCs with Sb(RLD induced more IL-10 production and inhibited SAG-induced secretion of proinflammatory cytokines, up-regulation of co-stimulatory molecules and leishmanicidal effects. Sb(RLD inhibited these effects of SAG by blocking activation of PI3K/AKT and NF-kappaB pathways. In contrast, Sb(SLD failed to block activation of SAG (20 microg/ml-induced PI3K/AKT pathway; which continued to stimulate NF-kappaB signaling, induce leishmanicidal effects and promote DC activation. Notably, prolonged incubation of DCs with Sb(SLD also inhibited SAG (20 microg/ml-induced activation of PI3K/AKT and NF-kappaB pathways and leishmanicidal effects, which was restored by increasing the dose of SAG to 40 microg/ml. In contrast, Sb(RLD inhibited these SAG-induced events regardless of duration of DC exposure to Sb(RLD or dose of SAG. Interestingly, the inhibitory effects of isogenic Sb(SLD expressing ATP-binding cassette (ABC transporter MRPA on SAG-induced leishmanicidal effects mimicked that of Sb(RLD to some extent, although antimony resistance in clinical LD isolates is known to be multifactorial. Furthermore, NF-kappaB was found to transcriptionally regulate expression of murine gammaglutamylcysteine synthetase heavy-chain (mgammaGCS(hc gene, presumably an important regulator of antimony resistance. Importantly, Sb(RLD but not Sb(SLD blocked SAG-induced mgammaGCS expression in DCs by

  2. Loss of activating EGFR mutant gene contributes to acquired resistance to EGFR tyrosine kinase inhibitors in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Keisuke Tabara

    Full Text Available Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs. However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11-18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11-18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11-18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2 or BIBW2992 (pan-TKI of EGFR family proteins. Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance.

  3. Antibacterial Activity of Essential Oil of Sature jahortensis Against Multi-DrugResistant Bacteria

    Directory of Open Access Journals (Sweden)

    Saeide Saeidi

    2014-05-01

    Full Text Available Background: Development of resistance to many of the commonly used antibiotics is an impetus for further attempts to search for new antimicrobial agents. Objectives: In the present study, the antibacterial activity of Saturejahortensis essential oil against multi-drug resistant bacteria isolated from the urinary tract infections was investigated. Materials and Methods: During the years 2011 to 2012 a total of 36 strains of pathogenic bacteria including 12 Klebsiellapneumoniae, 12 Escherichia coli and 12 Staphylococcus aureus species were isolated from urine samples of hospitalized patients (Amir Al-Momenin Hospital, Zabol, South-eastern Iran suffering from urinary tract infections. After bacteriological confirmatory tests, the minimum inhibitory concentrations of the essential oil of Saturejahortensis were determined using micro-dilution method. Results: The antibiotic resistance profile of the E. coli isolates were as follows: ceftazidime (50% cefixime (41.6%, tetracycline (75%, erythromycin (58.3%. However K. pneumoniae isolates showed resistance to ceftazidime (33.3%, cefixime (58.3%, erythromycin (75% and S. aureus isolates were resistant to cefixime (33.3%, trimethoprim-sulfamethoxazole (41.66%, penicillin (50%, oxacillin (83.3%, ceftazidime (66.6% and vancomycin (8.3%. The essential oil of this plant had inhibitory effect against most isolates. More than 1/3 of the E. coli isolates showed the lowest MIC (10 ppm whereas more than 1/3 of the K. pneumoniae isolates showed the highest (250 ppm MIC values. In contrast ,equal number of S. aureus isolates showed the low MIC values (10 and 50 ppm, while the heighest MIC (250 ppm was seen in 1/3 of isolates and moderate MIC (100 ppm was seen in one isolate only. Conclusions: The Saturejahortensis essential oil has a potent antimicrobial activity against multi-drug resistant bacteria. The present study confirms the usefullness of this essential oil as antibacterial agent but further research is

  4. Small-molecule synthetic compound norcantharidin reverses multi-drug resistance by regulating Sonic hedgehog signaling in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    Full Text Available Multi-drug resistance (MDR, an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC transporters and activated Sonic hedgehog (Shh signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX, we examined the effect and mechanism of norcantharidin (NCTD, a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S and DOX-resistant (MCF-7R cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.

  5. MITF Modulates Therapeutic Resistance through EGFR Signaling.

    Science.gov (United States)

    Ji, Zhenyu; Erin Chen, Yiyin; Kumar, Raj; Taylor, Michael; Jenny Njauw, Ching-Ni; Miao, Benchun; Frederick, Dennie T; Wargo, Jennifer A; Flaherty, Keith T; Jönsson, Göran; Tsao, Hensin

    2015-07-01

    Response to targeted therapies varies significantly despite shared oncogenic mutations. Nowhere is this more apparent than in BRAF (V600E)-mutated melanomas where initial drug response can be striking and yet relapse is commonplace. Resistance to BRAF inhibitors have been attributed to the activation of various receptor tyrosine kinases (RTKs), although the underlying mechanisms have been largely uncharacterized. Here, we found that EGFR-induced vemurafenib resistance is ligand dependent. We employed whole-genome expression analysis and discovered that vemurafenib resistance correlated with the loss of microphthalmia-associated transcription factor (MITF), along with its melanocyte lineage program, and with the activation of EGFR signaling. An inverse relationship between MITF, vemurafenib resistance, and EGFR was then observed in patient samples of recurrent melanoma and was conserved across melanoma cell lines and patients' tumor specimens. Functional studies revealed that MITF depletion activated EGFR signaling and consequently recapitulated the resistance phenotype. In contrast, forced expression of MITF in melanoma and colon cancer cells inhibited EGFR and conferred sensitivity to BRAF/MEK inhibitors. These findings indicate that an "autocrine drug resistance loop" is suppressed by melanocyte lineage signal(s), such as MITF. This resistance loop modulates drug response and could explain the unique sensitivity of melanomas to BRAF inhibition.

  6. Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918.

    Science.gov (United States)

    Maliepaard, M; van Gastelen, M A; Tohgo, A; Hausheer, F H; van Waardenburg, R C; de Jong, L A; Pluim, D; Beijnen, J H; Schellens, J H

    2001-04-01

    This study was aimed at characterizing the role of BCRP/MXR/ABCP (BCRP) in resistance of the human ovarian tumor cell lines T8 and MX3 to camptothecins more extensively and investigating whether resistance can be reversed by inhibiting BCRP by GF120918. Camptothecins studied were topotecan, CPT-11, and its active metabolite SN-38, 9-aminocamptothecin, and the novel experimental camptothecins NX211, DX8951f, and BNP1350. Notably, DX8951f and BNP1350 appeared to be very poor substrates for BCRP, with much lower resistance factors observed both in T8 and MX3 cells than observed for the other camptothecins tested. In the presence of a nontoxic dose level of GF120918, the intracellular accumulation of topotecan in the T8 and MX3 cells was completely restored to the intracellular levels observed in the sensitive IGROV1 parental cell line. This resulted in almost complete reversal of drug resistance to topotecan and to most of the other topoisomerase I drugs tested in the T8 cell line and to complete reversal in the MX3 cells. However, coincubation of DX8951f or BNP1350 with GF120918 did not affect the cytotoxicity of either of these drugs significantly. From the combined data, we conclude that the affinities of topoisomerase I drugs for BCRP are, in decreasing order: SN-38 > topotecan > 9-aminocamptothecin approximately CPT-11 > NX211 > DX8951f > BNP1350. Furthermore, GF120918 appears to be a potent reversal agent of BCRP-mediated resistance to camptothecins, with almost complete reversal noted at 100 nM. Potential BCRP-mediated resistance to topoisomerase I inhibitors can also be avoided by using the BCRP-insensitive drugs DX8951f or BNP1350. This observation may have important clinical implications for future development of novel camptothecins.

  7. Inhibition of autophagy by andrographolide resensitizes cisplatin-resistant non-small cell lung carcinoma cells via activation of the Akt/mTOR pathway

    International Nuclear Information System (INIS)

    Mi, Shanwei; Xiang, Gang; Yuwen, Daolu; Gao, Jian; Guo, Wenjie; Wu, Xuefeng; Wu, Xudong; Sun, Yang; Su, Yongqian; Shen, Yan; Xu, Qiang

    2016-01-01

    Resistance to cisplatin is a major obstacle for the success of non-small cell lung cancer therapy. The mechanisms underlying cisplatin resistance are not fully understood. In this study, we found that the increase of basal auotophagy accompanied the development of cisplatin resistance. Meanwhile the blockade of the Akt/mTOR pathway occurred in the process. Inhibition of this pathway was induced by cisplatin treatment in the resistant non-small cell lung carcinoma cells. Andrographolide, a natural diterpenoid, promoted the activation of the Akt/mTOR signaling by downregulating PTEN and suppressed autophagy, which subsequently resensitized the resistant cells to cisplatin-mediated apoptosis. Cisplatin treatment in combination with andrographolide significantly prevented the growth of the resistant cells in vivo. These results highlight the involvement of autophagy in cisplatin-resistance development and suggest that inhibition of autophagy via tuning the Akt/mTOR signaling could be a promising strategy in the therapy for cisplatin-resistant non-small cell lung cancer. - Highlights: • The increase of basal auotophagy accompanied the development of cisplatin resistance in NSCLC cells. • Cisplatin induced the blockade of the Akt/mTOR pathway. • Andrographolide promoted the activation of the Akt/mTOR signaling. • Andrographolide downregulated PTEN expression. • Cisplatin treatment in combination with andrographolide resensitized the resistant cells to cisplatin.

  8. Inhibition of autophagy by andrographolide resensitizes cisplatin-resistant non-small cell lung carcinoma cells via activation of the Akt/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Shanwei; Xiang, Gang [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Yuwen, Daolu [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Gao, Jian; Guo, Wenjie; Wu, Xuefeng; Wu, Xudong; Sun, Yang [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Su, Yongqian [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Shen, Yan, E-mail: shenyan@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China)

    2016-11-01

    Resistance to cisplatin is a major obstacle for the success of non-small cell lung cancer therapy. The mechanisms underlying cisplatin resistance are not fully understood. In this study, we found that the increase of basal auotophagy accompanied the development of cisplatin resistance. Meanwhile the blockade of the Akt/mTOR pathway occurred in the process. Inhibition of this pathway was induced by cisplatin treatment in the resistant non-small cell lung carcinoma cells. Andrographolide, a natural diterpenoid, promoted the activation of the Akt/mTOR signaling by downregulating PTEN and suppressed autophagy, which subsequently resensitized the resistant cells to cisplatin-mediated apoptosis. Cisplatin treatment in combination with andrographolide significantly prevented the growth of the resistant cells in vivo. These results highlight the involvement of autophagy in cisplatin-resistance development and suggest that inhibition of autophagy via tuning the Akt/mTOR signaling could be a promising strategy in the therapy for cisplatin-resistant non-small cell lung cancer. - Highlights: • The increase of basal auotophagy accompanied the development of cisplatin resistance in NSCLC cells. • Cisplatin induced the blockade of the Akt/mTOR pathway. • Andrographolide promoted the activation of the Akt/mTOR signaling. • Andrographolide downregulated PTEN expression. • Cisplatin treatment in combination with andrographolide resensitized the resistant cells to cisplatin.

  9. Bioconjugated nano-bactericidal complex for potent activity against human and phytopathogens with concern of global drug resistant crisis.

    Science.gov (United States)

    Syed, Baker; Nagendra Prasad, M N; Mohan Kumar, K; Satish, S

    2018-05-09

    The present study emphasizes the need for novel antimicrobial agents to combat the global drug resistant crisis. The development of novel nanomaterials is reported to be of the alternative tool to combat drug resistant pathogens. In present investigation, bioconjugated nano-complex was developed from secondary metabolite secreted from endosymbiont. The endosymbiont capable of secreting antimicrobial metabolite was subjected to fermentation and the culture supernatant was assessed for purification of antimicrobial metabolite via bio-assay guided fraction techniques such as thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and column chromatography. The metabolite was characterized as 2,4-Diacetylphloroglucinol (2,4 DAPG) which was used to develop bioconjugated nano-complex by treating with 1 mM silver nitrate under optimized conditions. The purified metabolite 2,4 DAPG reduced silver nitrate to form bioconjugated nano-complex to form association with silver nanoparticles. The oxidized form of DAPG consists of four hard ligands that can conjugate on to the surface of silver nanoparticles cluster. The bioconjugation was confirmed with UV-visible spectroscopy which displayed the shift and shoulder peak in the absorbance spectra. This biomolecular interaction was further determined by the Fourier-transform spectroscopy (FTIR) and nuclear magnetic resonance (NMR) analyses which displayed different signals ascertaining the molecular binding of 2,4,DAPG with silver nanoparticles. The transmission electron microscopy (TEM) analysis revealed the cluster formation due to bioconjugation. The XRD analysis revealed the crystalline nature of nano-complex with the characteristic peaks indexed to Bragg's reflection occurring at 2θ angle which indicated the (111), (200), (220) and (311) planes. The activity of bioconjugated nano-complex was tested against 12 significant human and phytopathogens. Among all the test pathogens, Shigella flexneri (MTCC

  10. Development of Classification Models for Identifying “True” P-glycoprotein (P-gp Inhibitors Through Inhibition, ATPase Activation and Monolayer Efflux Assays

    Directory of Open Access Journals (Sweden)

    Anna Maria Bianucci

    2012-06-01

    Full Text Available P-glycoprotein (P-gp is an efflux pump involved in the protection of tissues of several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug resistance and in the progression of many neurodegenerative diseases. The development of new and more effective therapeutics targeting P-gp thus represents an intriguing challenge in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to overcome drug resistance to many kinds of tumours characterized by the over-expression of this protein. This study aims to develop classification models from a unique dataset of 59 compounds for which there were homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer efflux. For each experiment, the dataset was split into a training and a test set comprising 39 and 20 molecules, respectively. Rational splitting was accomplished using a sphere-exclusion type algorithm. After a two-step (internal/external validation, the best-performing classification models were used in a consensus predicting task for the identification of compounds named as “true” P-gp inhibitors, i.e., molecules able to inhibit P-gp without being effluxed by P-gp itself and simultaneously unable to activate the ATPase function.

  11. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ke; Gu, Xiuhui [School of Basic Medical Sciences, Chengdu Medical College, Chengdu (China); Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Yang, Ping; Li, Minhui [School of Basic Medical Sciences, Chengdu Medical College, Chengdu (China); Yang, Yuhan; Wang, Yuanyuan [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Peng, Quekun, E-mail: pengquekun@163.com [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Zhu, Li, E-mail: 1968403299@qq.com [Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Chengdu Medical College, Chengdu (China); Zhang, Kun, E-mail: zhangkunyyo@163.com [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China)

    2016-09-10

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. - Highlights: • Inhibition of DVL2 chemosensitizes resistant lung cancer to cisplatin. • DVL2 positively regulated the expression of BCRP, MRP4 and Survivin. • β-catenin mediated the DVL2-induced expression. • DVL2 increased the accumulation and nuclear translocation of β-catenin. • DVL2 up-regulated β-catenin via inhibiting GSK3β.

  12. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling

    International Nuclear Information System (INIS)

    Luo, Ke; Gu, Xiuhui; Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju; Yang, Ping; Li, Minhui; Yang, Yuhan; Wang, Yuanyuan; Peng, Quekun; Zhu, Li; Zhang, Kun

    2016-01-01

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. - Highlights: • Inhibition of DVL2 chemosensitizes resistant lung cancer to cisplatin. • DVL2 positively regulated the expression of BCRP, MRP4 and Survivin. • β-catenin mediated the DVL2-induced expression. • DVL2 increased the accumulation and nuclear translocation of β-catenin. • DVL2 up-regulated β-catenin via inhibiting GSK3β.

  13. In vitro antimicrobial activity of five essential oils on multi-drug resistant Gram-negative clinical isolates

    OpenAIRE

    Hercules Sakkas; Panagiota Gousia; Vangelis Economou; Vassilios Sakkas; Stefanos Petsios; Chrissanthy Papadopoulou

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneum...

  14. Extensively Drug-Resistant Tuberculosis: Principles of Resistance, Diagnosis, and Management.

    Science.gov (United States)

    Wilson, John W; Tsukayama, Dean T

    2016-04-01

    Extensively drug-resistant (XDR) tuberculosis (TB) is an unfortunate by-product of mankind's medical and pharmaceutical ingenuity during the past 60 years. Although new drug developments have enabled TB to be more readily curable, inappropriate TB management has led to the emergence of drug-resistant disease. Extensively drug-resistant TB describes Mycobacterium tuberculosis that is collectively resistant to isoniazid, rifampin, a fluoroquinolone, and an injectable agent. It proliferates when established case management and infection control procedures are not followed. Optimized treatment outcomes necessitate time-sensitive diagnoses, along with expanded combinations and prolonged durations of antimicrobial drug therapy. The challenges to public health institutions are immense and most noteworthy in underresourced communities and in patients coinfected with human immunodeficiency virus. A comprehensive and multidisciplinary case management approach is required to optimize outcomes. We review the principles of TB drug resistance and the risk factors, diagnosis, and managerial approaches for extensively drug-resistant TB. Treatment outcomes, cost, and unresolved medical issues are also discussed. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  15. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    Science.gov (United States)

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  16. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil

    Directory of Open Access Journals (Sweden)

    Tatiane eCoelho

    2015-04-01

    Full Text Available Drug resistant tuberculosis continues to increase and new approaches for its treatment are necessary. The identification of M. tuberculosis clinical isolates presenting efflux as part of their resistant phenotype has a major impact in tuberculosis treatment. In this work, we used a checkerboard procedure combined with the tetrazolium microplate-based assay (TEMA to study single combinations between antituberculosis drugs and efflux inhibitors (EIs against multidrug resistant M. tuberculosis clinical isolates using the fully susceptible strain H37Rv as reference. Efflux activity was studied on a real-time basis by a fluorometric method that uses ethidium bromide as efflux substrate. Quantification of efflux pump genes mRNA transcriptional levels were performed by RT-qPCR. The fractional inhibitory concentrations (FIC indicated synergistic activity for the interactions between isoniazid, rifampicin, amikacin, ofloxacin, and ethidium bromide plus the EIs verapamil, thioridazine and chlorpromazine. The FICs ranged from 0.25, indicating a four-fold reduction on the MICs, to 0.015, 64-fold reduction. The detection of active efflux by real-time fluorometry showed that all strains presented intrinsic efflux activity that contributes to the overall resistance which can be inhibited in the presence of the EIs. The quantification of the mRNA levels of the most important efflux pump genes on these strains shows that they are intrinsically predisposed to expel toxic compounds as the exposure to subinhibitory concentrations of antibiotics were not necessary to increase the pump mRNA levels when compared with the non-exposed counterpart. The results obtained in this study confirm that the intrinsic efflux activity contributes to the overall resistance in multidrug resistant clinical isolates of M. tuberculosis and that the inhibition of efflux pumps by the EIs can enhance the clinical effect of antibiotics that are their substrates.

  17. Implementation of a national anti-tuberculosis drug resistance survey in Tanzania

    Directory of Open Access Journals (Sweden)

    Mfaume Saidi M

    2008-12-01

    Full Text Available Abstract Background A drug resistance survey is an essential public health management tool for evaluating and improving the performance of National Tuberculosis control programmes. The current manuscript describes the implementation of the first national drug resistance survey in Tanzania. Methods Description of the implementation process of a national anti-tuberculosis drug resistance survey in Tanzania, in relation to the study protocol and Standard Operating Procedures. Results Factors contributing positively to the implementation of the survey were a continuous commitment of the key stakeholders, the existence of a well organized National Tuberculosis Programme, and a detailed design of cluster-specific arrangements for rapid sputum transportation. Factors contributing negatively to the implementation were a long delay between training and actual survey activities, limited monitoring of activities, and an unclear design of the data capture forms leading to difficulties in form-filling. Conclusion Careful preparation of the survey, timing of planned activities, a strong emphasis on data capture tools and data management, and timely supervision are essential for a proper implementation of a national drug resistance survey.

  18. Implementation of a national anti-tuberculosis drug resistance survey in Tanzania.

    Science.gov (United States)

    Chonde, Timothy M; Doulla, Basra; van Leth, Frank; Mfinanga, Sayoki G M; Range, Nyagosya; Lwilla, Fred; Mfaume, Saidi M; van Deun, Armand; Zignol, Matteo; Cobelens, Frank G; Egwaga, Saidi M

    2008-12-30

    A drug resistance survey is an essential public health management tool for evaluating and improving the performance of National Tuberculosis control programmes. The current manuscript describes the implementation of the first national drug resistance survey in Tanzania. Description of the implementation process of a national anti-tuberculosis drug resistance survey in Tanzania, in relation to the study protocol and Standard Operating Procedures. Factors contributing positively to the implementation of the survey were a continuous commitment of the key stakeholders, the existence of a well organized National Tuberculosis Programme, and a detailed design of cluster-specific arrangements for rapid sputum transportation. Factors contributing negatively to the implementation were a long delay between training and actual survey activities, limited monitoring of activities, and an unclear design of the data capture forms leading to difficulties in form-filling. Careful preparation of the survey, timing of planned activities, a strong emphasis on data capture tools and data management, and timely supervision are essential for a proper implementation of a national drug resistance survey.

  19. Drug accumulation in the presence of the multidrug resistance pump

    DEFF Research Database (Denmark)

    Ayesh, S; Litman, Thomas; Stein, W D

    1997-01-01

    We studied the interaction between the multidrug transporter, P-glycoprotein, and two compounds that interact with it: vinblastine, a classical substrate of the pump, and verapamil, a classical reverser. Steady-state levels of accumulation of these two drugs were determined in a multidrug resistant...... P388 leukemia cell line, P388/ADR. The time course of accumulation of these drugs, and the effect of energy starvation and the presence of chloroquine on the level of their steady-state accumulation were quite disparate. Vinblastine inhibited the accumulation of verapamil whereas it enhanced...

  20. Betulinic Acid Exerts Cytotoxic Activity Against Multidrug-Resistant Tumor Cells via Targeting Autocrine Motility Factor Receptor (AMFR

    Directory of Open Access Journals (Sweden)

    Mohamed E. M. Saeed

    2018-05-01

    Full Text Available Betulinic acid (BetA is a naturally occurring pentacyclic triterpene isolated from the outer bark of white-barked birch trees and many other medicinal plants. Here, we studied betulinic acid's cytotoxic activity against drug-resistant tumor cell lines. P-glycoprotein (MDR1/ABCB1 and BCRP (ABCG2 are known ATP-binding cassette (ABC drug transporters that mediating MDR. ABCB5 is a close relative to ABCB1, which also mediates MDR. Constitutive activation of the EGF receptor is tightly linked to the development of chemotherapeutic resistance. BetA inhibited P-gp, BCRP, ABCB5 and mutation activated EGFR overexpressing cells with similar efficacy as their drug-sensitive parental counterparts. Furthermore, the mRNA expressions of ABCB1, BCRP, ABCB5 and EGFR were not related to the 50% inhibition concentrations (IC50 for BetA in a panel of 60 cell lines of the National Cancer Institute (NCI, USA. In addition to well-established MDR mechanisms, we attempted to identify other molecular mechanisms that play a role in mediating BetA's cytotoxic activity. For this reason, we performed COMPARE and hierarchical cluster analyses of the transcriptome-wide microarray-based mRNA expression of the NCI cell lines panel. Various genes significantly correlating to BetA's activity were involved in different biological processes, e.g., cell cycle regulation, microtubule formation, signal transduction, transcriptional regulation, chromatin remodeling, cell adhesion, tumor suppression, ubiquitination and proteasome degradation. Immunoblotting and in silico analyses revealed that the inhibition of AMFR activity might be one of the mechanisms for BetA to overcome MDR phenotypes. In conclusion, BetA may have therapeutic potential for the treatment of refractory tumors.

  1. In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus.

    Science.gov (United States)

    Sathish, Kumar S R; Kokati, Venkata Bhaskara Rao

    2012-10-01

    To investigate the antibacterial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus (MDRSA). Fifty one actinobacterial strains were isolated from salt pans soil, costal area in Kothapattanam, Ongole, Andhra Pradesh. Primary screening was done using cross-streak method against MDRSA. The bioactive compounds are extracted from efficient actinobacteria using solvent extraction. The antimicrobial activity of crude and solvent extracts was performed using Kirby-Bauer method. MIC for ethyl acetate extract was determined by modified agar well diffusion method. The potent actinobacteria are identified using Nonomura key, Shirling and Gottlieb 1966 with Bergey's manual of determinative bacteriology. Among the fifty one isolates screened for antibacterial activity, SRB25 were found efficient against MDRSA. The ethyl acetate extracts showed high inhibition against test organism. MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000 µg/mL. The isolated actinobacteria are identified as Streptomyces sp with the help of Nonomura key. The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.

  2. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling.

    Science.gov (United States)

    Luo, Ke; Gu, Xiuhui; Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju; Yang, Ping; Li, Minhui; Yang, Yuhan; Wang, Yuanyuan; Peng, Quekun; Zhu, Li; Zhang, Kun

    2016-09-10

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Antiviral Activity of Approved and Novel Drugs against HIV-1 Mutations Evaluated under the Consideration of Dose-Response Curve Slope.

    Directory of Open Access Journals (Sweden)

    Shuai Chang

    Full Text Available This study was designed to identify common HIV-1 mutation complexes affecting the slope of inhibition curve, and to propose a new parameter incorporating both the IC50 and the slope to evaluate phenotypic resistance.Utilizing site-directed mutagenesis, we constructed 22 HIV-1 common mutation complexes. IC50 and slope of 10 representative approved drugs and a novel agent against these mutations were measured to determine the resistance phenotypes. The values of new parameter incorporating both the IC50 and the slope of the inhibition curve were calculated, and the correlations between parameters were assessed.Depending on the class of drug, there were intrinsic differences in how the resistance mutations affected the drug parameters. All of the mutations resulted in large increases in the IC50s of nucleoside reverse transcriptase inhibitors. The effects of the mutations on the slope were the most apparent when examining their effects on the inhibition of non-nucleoside reverse transcriptase inhibitors and protease inhibitors. For example, some mutations, such as V82A, had no effect on IC50, but reduced the slope. We proposed a new concept, termed IIPatoxic, on the basis of IC50, slope and the maximum limiting concentrations of the drug. The IIPatoxic values of 10 approved drugs and 1 novel agent were calculated, and were closely related to the IIPmax values (r > 0.95, p < 0.001.This study confirms that resistance mutations cannot be accurately assessed by IC50 alone, because it tends to underestimate the degree of resistance. The slope parameter is of very importance in the measurement of drug resistance and the effect can be applied to more complex patterns of resistance. This is the most apparent when testing the effects of the mutations on protease inhibitors activity. We also propose a new index, IIPatoxic, which incorporates both the IC50 and the slope. This new index could complement current IIP indices, thereby enabling predict the

  4. Molecular detection methods of resistance to antituberculosis drugs in Mycobacterium tuberculosis.

    Science.gov (United States)

    Brossier, F; Sougakoff, W

    2017-09-01

    Molecular methods predict drug resistance several weeks before phenotypic methods and enable rapid implementation of appropriate therapeutic treatment. We aimed to detail the most representative molecular tools used in routine practice for the rapid detection of resistance to antituberculosis drugs among Mycobacterium tuberculosis strains. The molecular diagnosis of resistance to antituberculosis drugs in clinical samples or from in vitro cultures is based on the detection of the most common mutations in the genes involved in the development of resistance in M. tuberculosis strains (encoding either protein targets of antibiotics, or antibiotic activating enzymes) by commercial molecular kits or by sequencing. Three hypotheses could explain the discrepancies between the genotypic results and the phenotypic drug susceptibility testing results: a low percentage of resistant mutants precluding the detection by genotypic methods on the primary culture; a low level of resistance not detected by phenotypic testing; and other resistance mechanisms not yet characterized. Molecular methods have varying sensitivity with regards to detecting antituberculosis drug resistance; that is why phenotypic susceptibility testing methods are mandatory for detecting antituberculosis drug-resistant isolates that have not been detected by molecular methods. The questionable ability of existing phenotypic and genotypic drug susceptibility testing to properly classify strains as susceptible or resistant, and at what level of resistance, was raised for several antituberculosis agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Genome Analysis of the First Extensively Drug-Resistant (XDR Mycobacterium tuberculosis in Malaysia Provides Insights into the Genetic Basis of Its Biology and Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Chee Sian Kuan

    Full Text Available The outbreak of extensively drug-resistant tuberculosis (XDR-TB has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia.

  6. Esters of the Marine-Derived Triterpene Sipholenol A Reverse P-GP-Mediated Drug Resistance

    Directory of Open Access Journals (Sweden)

    Yongchao Zhang

    2015-04-01

    Full Text Available Our previous studies showed that several sipholane triterpenes, sipholenol A, sipholenone E, sipholenol L and siphonellinol D, have potent reversal effect for multidrug resistance (MDR in cancer cells that overexpressed P-glycoprotein (P-gp/ABCB1. Through comparison of cytotoxicity towards sensitive and multi-drug resistant cell lines, we identified that the semisynthetic esters sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate potently reversed P-gp-mediated MDR but had no effect on MRP1/ABCC1 and BCRP/ABCG2-mediated MDR. The results from [3H]-paclitaxel accumulation and efflux studies suggested that these two triterpenoids were able to increase the intracellular accumulation of paclitaxel by inhibiting its active efflux. In addition, western blot analysis revealed that these two compounds did not alter the expression levels of P-gp when treated up to 72 h. These sipholenol derivatives also stimulated the ATPase activity of P-gp membranes, which suggested that they might be substrates of P-gp. Moreover, in silico molecular docking studies revealed the virtual binding modes of these two compounds into human homology model of P-gp. In conclusion, sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate efficiently inhibit the P-gp and may represent potential reversal agents for the treatment of multidrug resistant cancers.

  7. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition.

    Science.gov (United States)

    Morales, Eva; Cots, Francesc; Sala, Maria; Comas, Mercè; Belvis, Francesc; Riu, Marta; Salvadó, Margarita; Grau, Santiago; Horcajada, Juan P; Montero, Maria Milagro; Castells, Xavier

    2012-05-23

    We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  8. The Structure of Fitness Landscapes in Antibiotic-Resistant Bacteria

    Science.gov (United States)

    Deris, Barrett; Kim, Minsu; Zhang, Zhongge; Okano, Hiroyuki; Hermsen, Rutger; Gore, Jeff; Hwa, Terence

    2014-03-01

    To predict the emergence of antibiotic resistance, quantitative relations must be established between the fitness of drug-resistant organisms and the molecular mechanisms conferring resistance. We have investigated E. coli strains expressing resistance to translation-inhibiting antibiotics. We show that resistance expression and drug inhibition are linked in a positive feedback loop arising from an innate, global effect of drug-inhibited growth on gene expression. This feedback leads generically to plateau-shaped fitness landscapes and concomitantly, for strains expressing at least moderate degrees of drug resistance, gives rise to an abrupt drop in growth rates of cultures at threshold drug concentrations. A simple quantitative model of bacterial growth based on this innate feedback accurately predicts experimental observations without ad hoc parameter fitting. We describe how drug-inhibited growth rate and the threshold drug concentration (the minimum inhibitory concentration, or MIC) depend on the few biochemical parameters that characterize the molecular details of growth inhibition and drug resistance (e.g., the drug-target dissociation constant). And finally, we discuss how these parameters can shape fitness landscapes to determine evolutionary dynamics and evolvability.

  9. Radiosensitivity of drug-resistant human tumour xenografts

    International Nuclear Information System (INIS)

    Mattern, J.; Bak, M. Jr.; Volm, M.; Hoever, K.H.

    1989-01-01

    The radiosensitivity of three drug-resistant sublines of a human epidermoid lung carcinoma growing as xenografts in nude mice was investigated. Drug resistance to vincristine, actinomycin D and cisplatin was developed in vivo by repeated drug treatment. It was found that all three drug-resistant tumour lines were not cross-resistant to irradiation. (orig.) [de

  10. New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate.

    Science.gov (United States)

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-03

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24- phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents.

  11. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer.

    Science.gov (United States)

    Kim, Hak-Su; Wannatung, Tirawat; Lee, Sooho; Yang, Woo Kyeom; Chung, Sung Hyun; Lim, Jong-Seok; Choe, Wonchae; Kang, Insug; Kim, Sung-Soo; Ha, Joohun

    2012-09-01

    Tumor hypoxia is considered the best validated target in clinical oncology because of its significant contribution to chemotherapy failure and drug resistance. As an approach to target hypoxia, we assessed the potential of quercetin, a flavonoid widely distributed in plants, as a anticancer agent under hypoxic conditions and examined its pharmacological mechanisms by primarily focusing on the role of AMP-activated protein kinase (AMPK). Quercetin significantly attenuated tumor growth in an HCT116 cancer xenograft in vivo model with a substantial reduction of AMPK activity. In a cell culture system, quercetin more dramatically induced apoptosis of HCT116 cancer cells under hypoxic conditions than normoxic conditions, and this was tightly associated with inhibition of hypoxia-induced AMPK activity. An in vitro kinase assay demonstrated that quercetin directly inhibits AMPK activity. Inhibition of AMPK by expressing a dominant-negative form resulted in an increase of apoptosis under hypoxia, and a constitutively active form of AMPK effectively blocked quercetin-induced apoptosis under hypoxia. Collectively, our data suggest that quercetin directly inhibits hypoxia-induced AMPK, which plays a protective role against hypoxia. Quercetin also reduced the activity of hypoxia-inducible factor-1 (HIF-1), a major transcription factor for adaptive cellular response to hypoxia. Moreover, quercetin sensitized HCT116 cancer cells to the anticancer drugs cisplatin and etoposide under hypoxic conditions. Our findings suggest that AMPK may serve as a novel target for overcoming tumor hypoxia-associated negative aspects.

  12. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes.

    Science.gov (United States)

    Paudyal, Ranju; Barnes, Ruth H; Karatzas, Kimon Andreas G

    2018-02-01

    Here it is demonstrated a novel approach in disinfection regimes where specific molecular acid resistance systems are inhibited aiming to eliminate microorganisms under acidic conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for survival of Listeria monocytogenes and other pathogens under acidic conditions, its potential inhibition by specific compounds that could lead to its elimination from foods or food preparation premises has not been studied. The effects of maleic acid on the acid resistance of L. monocytogenes were investigated and found that it has a higher antimicrobial activity under acidic conditions than other organic acids, while this could not be explained by its pKa or Ka values. The effects were found to be more pronounced on strains with higher GAD activity. Maleic acid affected the extracellular GABA levels while it did not affect the intracellular ones. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes significantly enhancing its sensitivity to acidic conditions and together with its ability to remove biofilms, make a good candidate for disinfection regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. [A novel chemo-resistant gene MSX2 discovered by establishment of two pancreatic cancer drug resistant cell lines JF305/CDDP and PANC-1/GEM].

    Science.gov (United States)

    Yuan, W; Sui, C G; Ma, X; Ma, J

    2018-05-23

    Objective: To explore new multidrug resistant genes of pancreatic cancer by establishment and characterization of chemo-resistant cell lines. Methods: The cisplatin-resistant cell line JF305/CDDP and the gemcitabine-resistant cell line PANC-1/GEM were induced by high-dose intermittent treatment. CCK-8 assay was used to detect the 50% inhibiting concentration (IC(50)), drug resistance index (R), cross-resistance, and growth difference of different cells. The changes of cell cycle and migration ability of drug-resistant cells were determined by flow cytometry and transwell assay, respectively. And then real-time fluorescence quantitative PCR was used to detect the expression of multidrug resistance-related genes. Results: The drug resistance indexes of JF305/CDDP and PANC-1/GEM were 15.3 and 27.31, respectively, and there was cross-resistance. Compared with the parental cells, the proliferation rate of JF305/CDDP was decreased by 40% on the fourth day ( P PANC-1 cells upregulated MRP2 level ( P PANC-1/GEM, were successfully established. MSX2 might be a new drug resistance related gene in pancreatic cancer cells by up-regulation of MRP2 expression.

  14. Challenges of drug resistance in the management of pancreatic cancer.

    LENUS (Irish Health Repository)

    Sheikh, Rizwan

    2012-02-01

    The current treatment of choice for metastatic pancreatic cancer involves single-agent gemcitabine or a combination of gemcitabine with capecitabine or erlotinib (a tyrosine kinase inhibitor). Only 25–30% of patients respond to this treatment and patients who do respond initially ultimately exhibit disease progression. Median survival for pancreatic cancer patients has reached a plateau due to inherent and acquired resistance to these agents. Key molecular factors implicated in this resistance include: deficiencies in drug uptake, alteration of drug targets, activation of DNA repair pathways, resistance to apoptosis and the contribution of the tumor microenvironment. Moreover, for newer agents including tyrosine kinase inhibitors, overexpression of signaling proteins, mutations in kinase domains, activation of alternative pathways, mutations of genes downstream of the target and\\/or amplification of the target represent key challenges for treatment efficacy. Here we will review the contribution of known mechanisms and markers of resistance to key pancreatic cancer drug treatments.

  15. Prediction of resistance development against drug combinations by collateral responses to component drugs

    DEFF Research Database (Denmark)

    Munck, Christian; Gumpert, Heidi; Nilsson Wallin, Annika

    2014-01-01

    the genomes of all evolved E. coli lineages, we identified the mutational events that drive the differences in drug resistance levels and found that the degree of resistance development against drug combinations can be understood in terms of collateral sensitivity and resistance that occurred during...... adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance......Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability...

  16. In vitro antimicrobial activity of five essential oils on multi-drug resistant Gram-negative clinical isolates

    Directory of Open Access Journals (Sweden)

    Hercules Sakkas

    2016-09-01

    Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive or resistant and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. [J Complement Med Res 2016; 5(3.000: 212-218

  17. Plasmodium falciparum drug resistance in Angola.

    Science.gov (United States)

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-02-09

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information on malaria drug resistance in Angola, is reviewed and discussed. The review aims to inform but also to encourage future research studies that monitor and update the information on anti-malarial drug efficacy and prevalence of molecular markers of drug resistance, key fields in the context and objectives of elimination.

  18. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    Directory of Open Access Journals (Sweden)

    Morales Eva

    2012-05-01

    Full Text Available Abstract Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain. All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros. In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively. Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  19. Thermoresponsive Supramolecular Chemotherapy by "V"-Shaped Armed β-Cyclodextrin Star Polymer to Overcome Drug Resistance.

    Science.gov (United States)

    Fan, Xiaoshan; Cheng, Hongwei; Wang, Xiaoyuan; Ye, Enyi; Loh, Xian Jun; Wu, Yun-Long; Li, Zibiao

    2018-04-01

    Pump mediated drug efflux is the key reason to result in the failure of chemotherapy. Herein, a novel star polymer β-CD-v-(PEG-β-PNIPAAm) 7 consisting of a β-CD core, grafted with thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(ethylene glycol) (PEG) in the multiple "V"-shaped arms is designed and further fabricated into supramolecular nanocarriers for drug resistant cancer therapy. The star polymer could encapsulate chemotherapeutics between β-cyclodextrin and anti-cancer drug via inclusion complex (IC). Furthermore, the temperature induced chain association of PNIPAAm segments facilitated the IC to form supramolecular nanoparticles at 37 °C, whereas the presence of PEG impart great stability to the self-assemblies. When incubated with MDR-1 membrane pump regulated drug resistant tumor cells, much higher and faster cellular uptake of the supramolecular nanoparticles were detected, and the enhanced intracellular retention of drugs could lead to significant inhibition of cell growth. Further in vivo evaluation showed high therapeutic efficacy in suppressing drug resistant tumor growth without a significant impact on the normal functions of main organs. This work signifies thermo-responsive supramolecular chemotherapy is promising in combating pump mediated drug resistance in both in vitro and in vivo models, which may be encouraging for the advanced drug delivery platform design to overcome drug resistant cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Change in drug resistance of Staphylococcus aureus].

    Science.gov (United States)

    Lin, Yan; Liu, Yan; Luo, Yan-Ping; Liu, Chang-Ting

    2013-11-01

    To analyze the change in drug resistance of Staphylococcus aureus (SAU) in the PLA general hospital from January 2008 to December 2012, and to provide solid evidence to support the rational use of antibiotics for clinical applications. The SAU strains isolated from clinical samples in the hospital were collected and subjected to the Kirby-Bauer disk diffusion test. The results were assessed based on the 2002 American National Committee for Clinical Laboratory Standards (NCCLS) guidelines. SAU strains were mainly isolated from sputum, urine, blood and wound excreta and distributed in penology, neurology wards, orthopedics and surgery ICU wards. Except for glycopeptide drugs, methicillin-resistant Staphylococcus aureus (MRSA) had a higher drug resistance rate than those of the other drugs and had significantly more resistance than methicillin-sensitive Staphylococcus aureus (MSSA) (P resistance, we discovered a gradual increase in drug resistance to fourteen test drugs during the last five years. Drug resistance rate of SAU stayed at a higher level over the last five years; moreover, the detection ratio of MRSA keeps rising year by year. It is crucial for physicians to use antibiotics rationally and monitor the change in drug resistance in a dynamic way.

  1. Drug Resistance

    Science.gov (United States)

    ... Drug-resistance testing is also recommended for all pregnant women with HIV before starting HIV medicines and also in some pregnant women already taking HIV medicines. Pregnant women will work with their health ...

  2. Co-treatment with grapefruit juice inhibits while chronic administration activates intestinal P-glycoprotein-mediated drug efflux.

    Science.gov (United States)

    Panchagnula, R; Bansal, T; Varma, M V S; Kaul, C L

    2005-12-01

    P-Glycoprotein (P-gp) mediated efflux is recognized as a significant biochemical barrier affecting oral absorption for a number of drugs. Various conflicting reports have been published regarding the effects of grapefruit juice (GFJ) on P-gp-mediated drug efflux, in which GFJ has been shown both to inhibit and activate it. Hence, the present study adopted a two-way approach, involving both co-treatment and chronic administration. Bi-directional transport of paclitaxel (PCL) was carried out in the absence and presence of GFJ extract, in rat everted ileum sac. Further, the effect of chronic administration of GFJ to rats was characterized by permeability studies with indinavir (INDI). Co-treatment of GFJ extract at 100% concentration reduced the asymmetric transport of PCL (efflux ratio = 20.8) by increasing absorptive (A --> B) transport by 921% and reducing secretory (B --> A) transport by 41%. Further, GFJ showed a concentration dependent effect on PCL permeability. Imipramine, a passive permeability marker with absorptive permeability of 15.33 +/- 4.26 x 10(-6) cm/s showed no asymmetric transport and also no significant (P extract inhibited P-gp-mediated efflux in co-treatment, whereas chronic administration led to increased levels of P-gp expression, thus having a profound effect on intestinal absorption and GFJ-drug interactions in vivo.

  3. Drug resistance in leishmaniasis: current drug-delivery systems and future perspectives.

    Science.gov (United States)

    Yasinzai, Masoom; Khan, Momin; Nadhman, Akhtar; Shahnaz, Gul

    2013-10-01

    Leishmaniasis is a complex of diseases with numerous clinical manifestations for instance harshness from skin lesions to severe disfigurement and chronic systemic infection in the liver and spleen. So far, the most classical leishmaniasis therapy, despite its documented toxicities, remains pentavalent antimonial compounds. The arvailable therapeutic modalities for leishmaniasis are overwhelmed with resistance to leishmaniasis therapy. Mechanisms of classical drug resistance are often related with the lower drug uptake, increased efflux, the faster drug metabolism, drug target modifications and over-expression of drug transporters. The high prevalence of leishmaniasis and the appearance of resistance to classical drugs reveal the demand to develop and explore novel, less toxic, low cost and more promising therapeutic modalities. The review describes the mechanisms of classical drug resistance and potential drug targets in Leishmania infection. Moreover, current drug-delivery systems and future perspectives towards Leishmaniasis treatment are also covered.

  4. Clinical Management of HIV Drug Resistance

    Science.gov (United States)

    Cortez, Karoll J.; Maldarelli, Frank

    2011-01-01

    Combination antiretroviral therapy for HIV-1 infection has resulted in profound reductions in viremia and is associated with marked improvements in morbidity and mortality. Therapy is not curative, however, and prolonged therapy is complicated by drug toxicity and the emergence of drug resistance. Management of clinical drug resistance requires in depth evaluation, and includes extensive history, physical examination and laboratory studies. Appropriate use of resistance testing provides valuable information useful in constructing regimens for treatment-experienced individuals with viremia during therapy. This review outlines the emergence of drug resistance in vivo, and describes clinical evaluation and therapeutic options of the individual with rebound viremia during therapy. PMID:21994737

  5. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML.

    Science.gov (United States)

    Kung Sutherland, May S; Walter, Roland B; Jeffrey, Scott C; Burke, Patrick J; Yu, Changpu; Kostner, Heather; Stone, Ivan; Ryan, Maureen C; Sussman, Django; Lyon, Robert P; Zeng, Weiping; Harrington, Kimberly H; Klussman, Kerry; Westendorf, Lori; Meyer, David; Bernstein, Irwin D; Senter, Peter D; Benjamin, Dennis R; Drachman, Jonathan G; McEarchern, Julie A

    2013-08-22

    Outcomes in acute myeloid leukemia (AML) remain unsatisfactory, and novel treatments are urgently needed. One strategy explores antibodies and their drug conjugates, particularly those targeting CD33. Emerging data with gemtuzumab ozogamicin (GO) demonstrate target validity and activity in some patients with AML, but efficacy is limited by heterogeneous drug conjugation, linker instability, and a high incidence of multidrug resistance. We describe here the development of SGN-CD33A, a humanized anti-CD33 antibody with engineered cysteines conjugated to a highly potent, synthetic DNA cross-linking pyrrolobenzodiazepine dimer via a protease-cleavable linker. The use of engineered cysteine residues at the sites of drug linker attachment results in a drug loading of approximately 2 pyrrolobenzodiazepine dimers per antibody. In preclinical testing, SGN-CD33A is more potent than GO against a panel of AML cell lines and primary AML cells in vitro and in xenotransplantation studies in mice. Unlike GO, antileukemic activity is observed with SGN-CD33A in AML models with the multidrug-resistant phenotype. Mechanistic studies indicate that the cytotoxic effects of SGN-CD33A involve DNA damage with ensuing cell cycle arrest and apoptotic cell death. Together, these data suggest that SGN-CD33A has CD33-directed antitumor activity and support clinical testing of this novel therapeutic in patients with AML.

  6. Detection of First-Line Drug Resistance Mutations and Drug-Protein Interaction Dynamics from Tuberculosis Patients in South India.

    Science.gov (United States)

    Nachappa, Somanna Ajjamada; Neelambike, Sumana M; Amruthavalli, Chokkanna; Ramachandra, Nallur B

    2018-05-01

    Diagnosis of drug-resistant tuberculosis predominantly relies on culture-based drug susceptibility testing, which take weeks to produce a result and a more time-efficient alternative method is multiplex allele-specific PCR (MAS-PCR). Also, understanding the role of mutations in causing resistance helps better drug designing. To evaluate the ability of MAS-PCR in the detection of drug resistance and to understand the mechanism of interaction of drugs with mutant proteins in Mycobacterium tuberculosis. Detection of drug-resistant mutations using MAS-PCR and validation through DNA sequencing. MAS-PCR targeted five loci on three genes, katG 315 and inhA -15 for the drug isoniazid (INH), and rpoB 516, 526, and 531 for rifampicin (RIF). Furthermore, the sequence data were analyzed to study the effect on interaction of the anti-TB drug molecule with the target protein using in silico docking. We identified drug-resistant mutations in 8 out of 114 isolates with 2 of them as multidrug-resistant TB using MAS-PCR. DNA sequencing confirmed only six of these, recording a sensitivity of 85.7% and specificity of 99.3% for MAS-PCR. Molecular docking showed estimated free energy of binding (ΔG) being higher for RIF binding with RpoB S531L mutant. Codon 315 in KatG does not directly interact with INH but blocks the drug access to active site. We propose DNA sequencing-based drug resistance detection for TB, which is more accurate than MAS-PCR. Understanding the action of resistant mutations in disrupting the normal drug-protein interaction aids in designing effective drug alternatives.

  7. 2'-Fluoro-6'-methylene carbocyclic adenosine and its phosphoramidate prodrug: A novel anti-HBV agent, active against drug-resistant HBV mutants.

    Science.gov (United States)

    Singh, Uma S; Mulamoottil, Varughese A; Chu, Chung K

    2018-05-01

    Chronic hepatitis B (CHB) is one of the major causes of morbidity and mortality worldwide. Currently, clinically approved nucleos(t)ide analogs (NAs) are very efficient in reducing the load of hepatitis B virus (HBV) with minimum side effects. However, the long-term administration of antiviral drugs promotes HBV for potential drug resistance. To overcome this problem, combination therapies are administered, but HBV progressively altered mutations remain a threat. Therefore, optimally designed NAs are urgently needed to treat drug-resistant HBV. Herein, 2'-fluoro-6'-methylene carbocyclic adenosine (FMCA) and its phosphoramidate (FMCAP) have been discovered, which may be utilized in combination therapies for curing drug-resistant chronic hepatitis B. In preclinical studies, these carbocyclic NAs demonstrated potential anti-HBV activity against adefovir, as well as lamivudine (LMV/LAM) drug-resistant mutants. In vitro, these molecules have demonstrated significant activity against LMV/entecavir (ETV) triple mutants (L180M + S202G + M204V). Also, preliminary studies of FMCA/FMCAP in chimeric mice and female Non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mouse models having the LMV/ETV triple mutant have shown a high rate of reduction of HBV DNA levels compared to ETV. In this review, we have summarized preclinical studies of FMCA and its phosphoramidate prodrug (FMCAP). © 2018 Wiley Periodicals, Inc.

  8. Combination of Bifunctional Alkylating Agent and Arsenic Trioxide Synergistically Suppresses the Growth of Drug-Resistant Tumor Cells

    Directory of Open Access Journals (Sweden)

    Pei-Chih Lee

    2010-05-01

    Full Text Available Drug resistance is a crucial factor in the failure of cancer chemotherapy. In this study, we explored the effect of combining alkylating agents and arsenic trioxide (ATO on the suppression of tumor cells with inherited or acquired resistance to therapeutic agents. Our results showed that combining ATO and a synthetic derivative of 3a-aza-cyclopenta[a]indenes (BO-1012, a bifunctional alkylating agent causing DNA interstrand cross-links, was more effective in killing human cancer cell lines (H460, H1299, and PC3 than combining ATO and melphalan or thiotepa. We further demonstrated that the combination treatment of H460 cells with BO-1012 and ATO resulted in severe G2/M arrest and apoptosis. In a xenograft mouse model, the combination treatment with BO-1012 and ATO synergistically reduced tumor volumes in nude mice inoculated with H460 cells. Similarly, the combination of BO-1012 and ATO effectively reduced the growth of cisplatin-resistant NTUB1/P human bladder carcinoma cells. Furthermore, the repair of BO-1012-induced DNA interstrand cross-links was significantly inhibited by ATO, and consequently, γH2AX was remarkably increased and formed nuclear foci in H460 cells treated with this drug combination. In addition, Rad51 was activated by translocating and forming foci in nuclei on treatment with BO-1012, whereas its activation was significantly suppressed by ATO. We further revealed that ATO might mediate through the suppression of AKT activity to inactivate Rad51. Taken together, the present study reveals that a combination of bifunctional alkylating agents and ATO may be a rational strategy for treating cancers with inherited or acquired drug resistance.

  9. Drug-resistant tuberculosis--current dilemmas, unanswered questions, challenges, and priority needs.

    Science.gov (United States)

    Zumla, Alimuddin; Abubakar, Ibrahim; Raviglione, Mario; Hoelscher, Michael; Ditiu, Lucica; McHugh, Timothy D; Squire, S Bertel; Cox, Helen; Ford, Nathan; McNerney, Ruth; Marais, Ben; Grobusch, Martin; Lawn, Stephen D; Migliori, Giovanni-Battista; Mwaba, Peter; O'Grady, Justin; Pletschette, Michel; Ramsay, Andrew; Chakaya, Jeremiah; Schito, Marco; Swaminathan, Soumya; Memish, Ziad; Maeurer, Markus; Atun, Rifat

    2012-05-15

    Tuberculosis was declared a global emergency by the World Health Organization (WHO) in 1993. Following the declaration and the promotion in 1995 of directly observed treatment short course (DOTS), a cost-effective strategy to contain the tuberculosis epidemic, nearly 7 million lives have been saved compared with the pre-DOTS era, high cure rates have been achieved in most countries worldwide, and the global incidence of tuberculosis has been in a slow decline since the early 2000s. However, the emergence and spread of multidrug-resistant (MDR) tuberculosis, extensively drug-resistant (XDR) tuberculosis, and more recently, totally drug-resistant tuberculosis pose a threat to global tuberculosis control. Multidrug-resistant tuberculosis is a man-made problem. Laboratory facilities for drug susceptibility testing are inadequate in most tuberculosis-endemic countries, especially in Africa; thus diagnosis is missed, routine surveillance is not implemented, and the actual numbers of global drug-resistant tuberculosis cases have yet to be estimated. This exposes an ominous situation and reveals an urgent need for commitment by national programs to health system improvement because the response to MDR tuberculosis requires strong health services in general. Multidrug-resistant tuberculosis and XDR tuberculosis greatly complicate patient management within resource-poor national tuberculosis programs, reducing treatment efficacy and increasing the cost of treatment to the extent that it could bankrupt healthcare financing in tuberculosis-endemic areas. Why, despite nearly 20 years of WHO-promoted activity and >12 years of MDR tuberculosis-specific activity, has the country response to the drug-resistant tuberculosis epidemic been so ineffectual? The current dilemmas, unanswered questions, operational issues, challenges, and priority needs for global drug resistance screening and surveillance, improved treatment regimens, and management of outcomes and prevention of DR

  10. Gemfibrozil, a Lipid-lowering Drug, Inhibits the Induction of Nitric-oxide Synthase in Human Astrocytes*

    Science.gov (United States)

    Pahan, Kalipada; Jana, Malabendu; Liu, Xiaojuan; Taylor, Bradley S.; Wood, Charles; Fischer, Susan M.

    2007-01-01

    Gemfibrozil, a lipid-lowering drug, inhibited cytokine-induced production of NO and the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astrocytes. Similar to gemfibrozil, clofibrate, another fibrate drug, also inhibited the expression of iNOS. Inhibition of human iNOS promoter-driven luciferase activity by gemfibrozil in cytokine-stimulated U373MG astroglial cells suggests that this compound inhibits the transcription of iNOS. Since gemfibrozil is known to activate peroxisome proliferator-activated receptor-α (PPAR-α), we investigated the role of PPAR-α in gemfibrozil-mediated inhibition of iNOS. Gemfibrozil induced peroxisome proliferator-responsive element (PPRE)-dependent luciferase activity, which was inhibited by the expression of ΔhPPAR-α, the dominant-negative mutant of human PPAR-α. However, ΔhPPAR-α was unable to abrogate gemfibrozil-mediated inhibition of iNOS suggesting that gemfibrozil inhibits iNOS independent of PPAR-α. The human iNOS promoter contains consensus sequences for the binding of transcription factors, including interferon-γ (IFN-γ) regulatory factor-1 (IRF-1) binding to interferon-stimulated responsive element (ISRE), signal transducer and activator of transcription (STAT) binding to γ-activation site (GAS), nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and CCAAT/enhancer-binding protein β (C/EBPβ); therefore, we investigated the effect of gemfibrozil on the activation of these transcription factors. The combination of interleukin (IL)-1β and IFN-γ induced the activation of NF-κB, AP-1, C/EBPβ, and GAS but not that of ISRE, suggesting that IRF-1 may not be involved in cytokine-induced expression of iNOS in human astrocytes. Interestingly, gemfibrozil strongly inhibited the activation of NF-κB, AP-1, and C/EBPβ but not that of GAS in cytokine-stimulated astroglial cells. These results suggest that gemfibrozil inhibits the induction of iNOS probably by

  11. Simple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosis

    NARCIS (Netherlands)

    Kamp, Jasper; Bolhuis, Mathieu S.; Tiberi, Simon; Akkerman, Onno W.; Centis, Rosella; de lange, Wiel C.; Kosterink, Jos G.; van der Werf, Tjip S.; Migliori, Giovanni B.; Alffenaar, Jan-Willem C.

    Linezolid is used increasingly for the treatment of multi-drug-resistant (MDR) and extensively-drug-resistant (XDR) tuberculosis (TB). However, linezolid can cause severe adverse events, such as peripheral and optical neuropathy or thrombocytopenia related to higher drug exposure. This study aimed

  12. Genetic modification of haematopoietic cells for combined resistance to podophyllotoxins, other agents covered by MDR1-mediated efflux activity and nitrosoureas.

    Science.gov (United States)

    Baum, C; Peinert, S; Carpinteiro, A; Eckert, H G; Fairbairn, L J

    2000-05-01

    Genetic transfer and expression of drug-resistance functions into haematopoietic stem and progenitor cells is a promising means to overcome both the acute and longterm side-effects of cytotoxic drugs in bone marrow. Here, we describe a functional analysis of a retroviral vector that co-expresses human cDNAs for multidrug resistance 1/P-glycoprotein (MDR1) and a double mutant of O(6)-alkylguanine-alkyltransferase (hATPA/GA) to high levels. The hATPA/GA protein contains two amino acid substitutions that render it resistant to compounds such as O(6)-benzylguanine that inhibit the wild-type protein which is often overexpressed in resistant tumour cells. Evidence for simultaneous drug resistance of genetically modified primary murine progenitor cells to colchicine or the podophyllotoxin etoposide, both covered by MDR1-mediated efflux activity, and the nitrosourea BCNU, which is counteracted by hATPA/GA, is presented using in vitro colony assays.

  13. Systematic Functional Characterization of Resistance to PI3K Inhibition in Breast Cancer.

    Science.gov (United States)

    Le, Xiuning; Antony, Rajee; Razavi, Pedram; Treacy, Daniel J; Luo, Flora; Ghandi, Mahmoud; Castel, Pau; Scaltriti, Maurizio; Baselga, Jose; Garraway, Levi A

    2016-10-01

    PIK3CA (which encodes the PI3K alpha isoform) is the most frequently mutated oncogene in breast cancer. Small-molecule PI3K inhibitors have shown promise in clinical trials; however, intrinsic and acquired resistance limits their utility. We used a systematic gain-of-function approach to identify genes whose upregulation confers resistance to the PI3K inhibitor BYL719 in breast cancer cells. Among the validated resistance genes, Proviral Insertion site in Murine leukemia virus (PIM) kinases conferred resistance by maintaining downstream PI3K effector activation in an AKT-independent manner. Concurrent pharmacologic inhibition of PIM and PI3K overcame this resistance mechanism. We also observed increased PIM expression and activity in a subset of breast cancer biopsies with clinical resistance to PI3K inhibitors. PIM1 overexpression was mutually exclusive with PIK3CA mutation in treatment-naïve breast cancers, suggesting downstream functional redundancy. Together, these results offer new insights into resistance to PI3K inhibitors and support clinical studies of combined PIM/PI3K inhibition in a subset of PIK3CA-mutant cancers. PIM kinase overexpression confers resistance to small-molecule PI3K inhibitors. Combined inhibition of PIM and PI3K may therefore be warranted in a subset of breast cancers. Cancer Discov; 6(10); 1134-47. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1069. ©2016 American Association for Cancer Research.

  14. Identifying co-targets to fight drug resistance based on a random walk model

    Directory of Open Access Journals (Sweden)

    Chen Liang-Chun

    2012-01-01

    Full Text Available Abstract Background Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. Results We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. Conclusions With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.

  15. Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites.

    Science.gov (United States)

    Kevin Ii, Dion A; Meujo, Damaris Af; Hamann, Mark T

    2009-02-01

    As multidrug-resistant (MDR) pathogens continue to emerge, there is a substantial amount of pressure to identify new drug candidates. Carboxyl polyethers, also referred to as polyether antibiotics, are a unique class of compounds with outstanding potency against a variety of critical infectious disease targets including protozoa, bacteria and viruses. The characteristics of these molecules that are of key interest are their selectivity and high potency against several MDR etiological agents. Although many studies have been published about carboxyl polyether antibiotics, there are no recent reviews of this class of drugs. The purpose of this review is to provide the reader with an overview of the spectrum of activity of polyether antibiotics, their mechanism of action, toxicity and potential as drug candidates to combat drug-resistant infectious diseases. Polyether ionophores show a high degree of promise for the potential control of drug-resistant bacterial and parasitic infections. Despite the long history of use of this class of drugs, very limited medicinal chemistry and drug optimization studies have been reported, thus leaving the door open to these opportunities in the future. Scifinder and PubMed were the main search engines used to locate articles relevant to the topic presented in the present review. Keywords used in our search were specific names of each of the 88 compounds presented in the review as well as more general terms such as polyethers, ionophores, carboxylic polyethers and polyether antibiotics.

  16. Use-Dependent Inhibition of Synaptic Transmission by the Secretion of Intravesicularly Accumulated Antipsychotic Drugs

    DEFF Research Database (Denmark)

    Tischbirek, Carsten H.; Wenzel, Eva M.; Zheng, Fang

    2012-01-01

    Tischbirek et al. find that weak-base antipsychotic drugs are accumulated in synaptic vesicles and are secreted upon exocytosis, leading to increased extracellular drug concentrations following neuronal activity. The secretion of the drugs in turn inhibits synaptic transmission in a use-dependent...

  17. APC loss in breast cancer leads to doxorubicin resistance via STAT3 activation.

    Science.gov (United States)

    VanKlompenberg, Monica K; Leyden, Emily; Arnason, Anne H; Zhang, Jian-Ting; Stefanski, Casey D; Prosperi, Jenifer R

    2017-11-28

    Resistance to chemotherapy is one of the leading causes of death from breast cancer. We recently established that loss of Adenomatous Polyposis Coli (APC) in the Mouse Mammary Tumor Virus - Polyoma middle T (MMTV-PyMT) transgenic mouse model results in resistance to cisplatin or doxorubicin-induced apoptosis. Herein, we aim to establish the mechanism that is responsible for APC-mediated chemotherapeutic resistance. Our data demonstrate that MMTV-PyMT; Apc Min/+ cells have increased signal transducer and activator of transcription 3 (STAT3) activation. STAT3 can be constitutively activated in breast cancer, maintains the tumor initiating cell (TIC) population, and upregulates multidrug resistance protein 1 (MDR1). The activation of STAT3 in the MMTV-PyMT; Apc Min/+ model is independent of interleukin 6 (IL-6); however, enhanced EGFR expression in the MMTV-PyMT; Apc Min/+ cells may be responsible for the increased STAT3 activation. Inhibiting STAT3 with a small molecule inhibitor A69 in combination with doxorubicin, but not cisplatin, restores drug sensitivity. A69 also decreases doxorubicin enhanced MDR1 gene expression and the TIC population enhanced by loss of APC. In summary, these results have revealed the molecular mechanisms of APC loss in breast cancer that can guide future treatment plans to counteract chemotherapeutic resistance.

  18. Drug resistance

    NARCIS (Netherlands)

    Gorter, J.A.; Potschka, H.; Noebels, J.L.; Avoli, M.; Rogawski, M.A.; Olsen, R.W.; Delgado-Escueta, A.V.

    2012-01-01

    Drug resistance remains to be one of the major challenges in epilepsy therapy. Identification of factors that contribute to therapeutic failure is crucial for future development of novel therapeutic strategies for difficult-to-treat epilepsies. Several clinical studies have shown that high seizure

  19. Glucocorticoid resistance is reverted by LCK inhibition in pediatric T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Serafin, Valentina; Capuzzo, Giorgia; Milani, Gloria; Minuzzo, Sonia Anna; Pinazza, Marica; Bortolozzi, Roberta; Bresolin, Silvia; Porcù, Elena; Frasson, Chiara; Indraccolo, Stefano; Basso, Giuseppe; Accordi, Benedetta

    2017-12-21

    Pediatric T-acute lymphoblastic leukemia (T-ALL) patients often display resistance to glucocorticoid (GC) treatment. These patients, classified as prednisone poor responders (PPR), have poorer outcome than do the other pediatric T-ALL patients receiving a high-risk adapted therapy. Because glucocorticoids are administered to ALL patients during all the different phases of therapy, GC resistance represents an important challenge to improving the outcome for these patients. Mechanisms underlying resistance are not yet fully unraveled; thus our research focused on the identification of deregulated signaling pathways to point out new targeted approaches. We first identified, by reverse-phase protein arrays, the lymphocyte cell-specific protein-tyrosine kinase (LCK) as aberrantly activated in PPR patients. We showed that LCK inhibitors, such as dasatinib, bosutinib, nintedanib, and WH-4-023, are able to induce cell death in GC-resistant T-ALL cells, and remarkably, cotreatment with dexamethasone is able to reverse GC resistance, even at therapeutic drug concentrations. This was confirmed by specific LCK gene silencing and ex vivo combined treatment of cells from PPR patient-derived xenografts. Moreover, we observed that LCK hyperactivation in PPR patients upregulates the calcineurin/nuclear factor of activated T cells signaling triggering to interleukin-4 ( IL-4 ) overexpression. GC-sensitive cells cultured with IL-4 display an increased resistance to dexamethasone, whereas the inhibition of IL-4 signaling could increase GC-induced apoptosis in resistant cells. Treatment with dexamethasone and dasatinib also impaired engraftment of leukemia cells in vivo. Our results suggest a quickly actionable approach to supporting conventional therapies and overcoming GC resistance in pediatric T-ALL patients. © 2017 by The American Society of Hematology.

  20. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    Science.gov (United States)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  1. Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean

    OpenAIRE

    Feng, Paul C. C.; Baley, G. James; Clinton, William P.; Bunkers, Greg J.; Alibhai, Murtaza F.; Paulitz, Timothy C.; Kidwell, Kimberlee K.

    2005-01-01

    Glyphosate is a broad-spectrum herbicide used for the control of weeds in glyphosate-resistant crops. Glyphosate inhibits 5-enolpyruvyl shikimate 3-phosphate synthase, a key enzyme in the synthesis of aromatic amino acids in plants, fungi, and bacteria. Studies with glyphosate-resistant wheat have shown that glyphosate provided both preventive and curative activities against Puccinia striiformis f. sp. tritici and Puccinia triticina, which cause stripe and leaf rusts, respectively, in wheat. ...

  2. Nose-to-Brain Delivery of Antiviral Drugs: A Way to Overcome Their Active Efflux?

    Directory of Open Access Journals (Sweden)

    Alessandro Dalpiaz

    2018-03-01

    Full Text Available Although several viruses can easily infect the central nervous system (CNS, antiviral drugs often show dramatic difficulties in penetrating the brain from the bloodstream since they are substrates of active efflux transporters (AETs. These transporters, located in the physiological barriers between blood and the CNS and in macrophage membranes, are able to recognize their substrates and actively efflux them into the bloodstream. The active transporters currently known to efflux antiviral drugs are P-glycoprotein (ABCB1 or P-gp or MDR1, multidrug resistance-associated proteins (ABCC1 or MRP1, ABCC4 or MRP4, ABCC5 or MRP5, and breast cancer resistance protein (ABCG2 or BCRP. Inhibitors of AETs may be considered, but their co-administration causes serious unwanted effects. Nasal administration of antiviral drugs is therefore proposed in order to overcome the aforementioned problems, but innovative devices, formulations (thermoreversible gels, polymeric micro- and nano-particles, solid lipid microparticles, nanoemulsions, absorption enhancers (chitosan, papaverine, and mucoadhesive agents (chitosan, polyvinilpyrrolidone are required in order to selectively target the antiviral drugs and, possibly, the AET inhibitors in the CNS. Moreover, several prodrugs of antiretroviral agents can inhibit or elude the AET systems, appearing as interesting substrates for innovative nasal formulations able to target anti-Human Immunodeficiency Virus (HIV agents into macrophages of the CNS, which are one of the most important HIV Sanctuaries of the body.

  3. Antimicrobial Activity of Some Medicinal Plant Extracts against Multidrug Resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Majid Masoumian

    2017-11-01

    Full Text Available Background: Nowadays, it is necessary to discover new and efficient antifungal or antimicrobial drugs because of increasing drug resistance organisms. Using medicinal plants for natural treatment of diseases caused by bacterial origin has mainly been considered. Objectives: In this study, the impacts of antimicrobial medicinal plants extract were compared based on four bacteria in vitro. Methods: In this experimental study, disc diffusion assay and the minimum inhibitory concentration (MIC method were used to investigate the antibacterial effects of selected plant extract elicited by two different solvent on S. aureus, E. coli, P. aeruginosa and S. enteric. Data were analyzed with a statistical software program (SPSS 16. Results: The hydro-alcoholic extract of Myrtus communis (myrtle and water extract of Cinnamomun zeylanicum (cinnamon were the most active extracts screened for antimicrobial activities against different four bacteria as tested organisms. The diameter of inhibition zones ranged from 23 to 28 mm. Comparison of the antibacterial effect of plant extracts and commercial drug revealed that the size of inhibition zone of penicillin against Staphylococcus aureus bacterium was larger than the plant extracts. However, myrtle extract at the minimum inhibitory concentration (MIC of 30 mg/mL showed more powerful antibacterial activity compared to the other extracts and even penicillin. Petroselinum crispum (parsley, Nerium oleander (Oleander and Glycyrihiza glabra (licorice were found to have the least effect on the tested bacteria. Conclusions: In the present study, plant extracts with different compounds showed antibacterial activity (especially myrtle and cinnamon. Hence, they can be used as new source for antibacterial substances.

  4. Antimalarial activity and mechanisms of action of two novel 4-aminoquinolines against chloroquine-resistant parasites.

    Directory of Open Access Journals (Sweden)

    Anna Caroline Campos Aguiar

    Full Text Available Chloroquine (CQ is a cost effective antimalarial drug with a relatively good safety profile (or therapeutic index. However, CQ is no longer used alone to treat patients with Plasmodium falciparum due to the emergence and spread of CQ-resistant strains, also reported for P. vivax. Despite CQ resistance, novel drug candidates based on the structure of CQ continue to be considered, as in the present work. One CQ analog was synthesized as monoquinoline (MAQ and compared with a previously synthesized bisquinoline (BAQ, both tested against P. falciparum in vitro and against P. berghei in mice, then evaluated in vitro for their cytotoxicity and ability to inhibit hemozoin formation. Their interactions with residues present in the NADH binding site of P falciparum lactate dehydrogenase were evaluated using docking analysis software. Both compounds were active in the nanomolar range evaluated through the HRPII and hypoxanthine tests. MAQ and BAQ derivatives were not toxic, and both compounds significantly inhibited hemozoin formation, in a dose-dependent manner. MAQ had a higher selectivity index than BAQ and both compounds were weak PfLDH inhibitors, a result previously reported also for CQ. Taken together, the two CQ analogues represent promising molecules which seem to act in a crucial point for the parasite, inhibiting hemozoin formation.

  5. Antimalarial activity and mechanisms of action of two novel 4-aminoquinolines against chloroquine-resistant parasites.

    Science.gov (United States)

    Aguiar, Anna Caroline Campos; Santos, Raquel de Meneses; Figueiredo, Flávio Júnior Barbosa; Cortopassi, Wilian Augusto; Pimentel, André Silva; França, Tanos Celmar Costa; Meneghetti, Mario Roberto; Krettli, Antoniana Ursine

    2012-01-01

    Chloroquine (CQ) is a cost effective antimalarial drug with a relatively good safety profile (or therapeutic index). However, CQ is no longer used alone to treat patients with Plasmodium falciparum due to the emergence and spread of CQ-resistant strains, also reported for P. vivax. Despite CQ resistance, novel drug candidates based on the structure of CQ continue to be considered, as in the present work. One CQ analog was synthesized as monoquinoline (MAQ) and compared with a previously synthesized bisquinoline (BAQ), both tested against P. falciparum in vitro and against P. berghei in mice, then evaluated in vitro for their cytotoxicity and ability to inhibit hemozoin formation. Their interactions with residues present in the NADH binding site of P falciparum lactate dehydrogenase were evaluated using docking analysis software. Both compounds were active in the nanomolar range evaluated through the HRPII and hypoxanthine tests. MAQ and BAQ derivatives were not toxic, and both compounds significantly inhibited hemozoin formation, in a dose-dependent manner. MAQ had a higher selectivity index than BAQ and both compounds were weak PfLDH inhibitors, a result previously reported also for CQ. Taken together, the two CQ analogues represent promising molecules which seem to act in a crucial point for the parasite, inhibiting hemozoin formation.

  6. Gene expression analysis of two extensively drug-resistant tuberculosis isolates show that two-component response systems enhance drug resistance.

    Science.gov (United States)

    Yu, Guohua; Cui, Zhenling; Sun, Xian; Peng, Jinfu; Jiang, Jun; Wu, Wei; Huang, Wenhua; Chu, Kaili; Zhang, Lu; Ge, Baoxue; Li, Yao

    2015-05-01

    Global analysis of expression profiles using DNA microarrays was performed between a reference strain H37Rv and two clinical extensively drug-resistant isolates in response to three anti-tuberculosis drug exposures (isoniazid, capreomycin, and rifampicin). A deep analysis was then conducted using a combination of genome sequences of the resistant isolates, resistance information, and related public microarray data. Certain known resistance-associated gene sets were significantly overrepresented in upregulated genes in the resistant isolates relative to that observed in H37Rv, which suggested a link between resistance and expression levels of particular genes. In addition, isoniazid and capreomycin response genes, but not rifampicin, either obtained from published works or our data, were highly consistent with the differentially expressed genes of resistant isolates compared to those of H37Rv, indicating a strong association between drug resistance of the isolates and genes differentially regulated by isoniazid and capreomycin exposures. Based on these results, 92 genes of the studied isolates were identified as candidate resistance genes, 10 of which are known resistance-related genes. Regulatory network analysis of candidate resistance genes using published networks and literature mining showed that three two-component regulatory systems and regulator CRP play significant roles in the resistance of the isolates by mediating the production of essential envelope components. Finally, drug sensitivity testing indicated strong correlations between expression levels of these regulatory genes and sensitivity to multiple anti-tuberculosis drugs in Mycobacterium tuberculosis. These findings may provide novel insights into the mechanism underlying the emergence and development of drug resistance in resistant tuberculosis isolates and useful clues for further studies on this issue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria

    International Nuclear Information System (INIS)

    Bhave, Tejashree; Ghoderao, Prachi; Sanghavi, Sonali; Babrekar, Harshada; Bhoraskar, S V; Ganesan, V; Kulkarni, Anjali

    2013-01-01

    Tuberculosis (TB) is one of the most critical infectious diseases affecting the world today. Current TB treatment involves six months long daily administration of four oral doses of antibiotics. Due to severe side effects and the long treatment, a patient's adherence is low and this results in relapse of symptoms causing an alarming increase in the prevalence of multi-drug resistant (MDR) TB. Hence, it is imperative to develop a new drug delivery technology wherein these effects can be reduced. Rifampicin (RIF) is one of the widely used anti-tubercular drugs (ATD). The present study discusses the development of biocompatible nanoparticle–RIF complexes with superior inhibitory activity against both Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis). Iron oxide nanoparticles (NPs) synthesized by gas phase condensation and NP-RIF complexes were tested against M. smegmatis SN2 strain as well as M. tuberculosis H37Rv laboratory strain. These complexes showed significantly better inhibition of M. smegmatis SN2 strain at a much lower effective concentration (27.5 μg ml −1 ) as compared to neat RIF (125 μg ml −1 ). Similarly M. tuberculosis H37Rv laboratory strain was susceptible to both nanoparticle–RIF complex and neat RIF at a minimum inhibitory concentration of 0.22 and 1 μg ml −1 , respectively. Further studies are underway to determine the efficacy of NPs–RIF complexes in clinical isolates of M. tuberculosis as well as MDR isolates. (paper)

  8. Antimicrobial Activity and Mechanism of inhibition of Silver Nanoparticles against Extreme Halophilic Archaea

    Directory of Open Access Journals (Sweden)

    Rebecca Thombre

    2016-09-01

    Full Text Available Haloarchaea are salt-loving halophilic microorganism’s that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs as a potent and broad spectrum inhibitory agent is known however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300- 400µg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting programme. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540 and human breast adenocarcinoma cell line (MCF-7. The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death.

  9. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    Directory of Open Access Journals (Sweden)

    Mamaghani Shadi

    2009-04-01

    Full Text Available Abstract Background Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. Methods GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. Results GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-XL, and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. Conclusion GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard

  10. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    International Nuclear Information System (INIS)

    Mamaghani, Shadi; Patel, Satish; Hedley, David W

    2009-01-01

    Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-X L , and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard chemotherapy agent gemcitabine. This lack of synergy might be

  11. Novel drug-resistance mechanisms of pemetrexed-treated non-small cell lung cancer.

    Science.gov (United States)

    Tanino, Ryosuke; Tsubata, Yukari; Harashima, Nanae; Harada, Mamoru; Isobe, Takeshi

    2018-03-30

    Pemetrexed (PEM) improves the overall survival of patients with advanced non-small cell lung cancer (NSCLC) when administered as maintenance therapy. However, PEM resistance often appears during the therapy. Although thymidylate synthase is known to be responsible for PEM resistance, no other mechanisms have been investigated in detail. In this study, we explored new drug resistance mechanisms of PEM-treated NSCLC using two combinations of parental and PEM-resistant NSCLC cell lines from PC-9 and A549. PEM increased the apoptosis cells in parental PC-9 and the senescent cells in parental A549. However, such changes were not observed in the respective PEM-resistant cell lines. Quantitative RT-PCR analysis revealed that, besides an increased gene expression of thymidylate synthase in PEM-resistant PC-9 cells, the solute carrier family 19 member1 ( SLC19A1) gene expression was markedly decreased in PEM-resistant A549 cells. The siRNA-mediated knockdown of SLC19A1 endowed the parental cell lines with PEM resistance. Conversely, PEM-resistant PC-9 cells carrying an epidermal growth factor receptor (EGFR) mutation acquired resistance to a tyrosine kinase inhibitor erlotinib. Although erlotinib can inhibit the phosphorylation of EGFR and Erk, it is unable to suppress the phosphorylation of Akt in PEM-resistant PC-9 cells. Additionally, PEM-resistant PC-9 cells were less sensitive to the PI3K inhibitor LY294002 than parental PC-9 cells. These results indicate that SLC19A1 negatively regulates PEM resistance in NSCLC, and that EGFR-tyrosine-kinase-inhibitor resistance was acquired with PEM resistance through Akt activation in NSCLC harboring EGFR mutations.

  12. Overview of drug-resistant tuberculosis worldwide

    Directory of Open Access Journals (Sweden)

    Ali A Velayati

    2016-01-01

    Full Text Available Even in the 21st century, we are losing the battle against eradication of tuberculosis (TB. In 2015, 9.6 million people were estimated to have fallen ill with TB, of which 1.5 million people died. This is the real situation despite the well-structured treatment programs and availability of effective treatment options since the 1950s. The high mortality rate has been associated with other risk factors, such as the HIV epidemic, underlying diseases, and decline of socioeconomic standards. Furthermore, the problem of drug resistance that was recognized in the early days of the chemotherapeutic era raises serious concerns. Although resistance to a single agent is the most common type, resistance to multiple agents is less frequent but of greater concern. The World Health Organization estimated approximately 5% of all new TB cases involved multidrug-resistant (MDR-TB. The estimation for MDR-TB is 3.3% for new cases, and 20.5% for previously treated cases. Failure to identify and appropriately treat MDR-TB patients has led to more dangerous forms of resistant TB. Based on World Health Organization reports, 5% of global TB cases are now considered to be extensively drug resistant (XDR, defined as MDR with additional resistance to both fluoroquinolones and at least one second-line injectable drug. XDR-TB had been reported by 105 countries by 2015. An estimated 9.7% of people with MDR-TB have XDR-TB. More recently, another dangerous form of TB bacillus was identified, which was named totally drug resistant (TDR-TB or extremely drug resistant TB. These strains were resistant to all first- and second-line anti-TB drugs. Collectively, it is accepted that 2% of MDR-TB strains turn to be TDR-TB. This number, however, may not reflect the real situation, as many laboratories in endemic TB countries do not have proper facilities and updated protocols to detect the XDR or TDR-TB strains. Nevertheless, existing data emphasize the need for additional control

  13. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    Juan D Unciti-Broceta

    2015-06-01

    Full Text Available African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.

  14. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  15. Antibacterial and antibiotic resistance modifying activity of the extracts from Allanblackia gabonensis, Combretum molle and Gladiolus quartinianus against Gram-negative bacteria including multi-drug resistant phenotypes.

    Science.gov (United States)

    Fankam, Aimé G; Kuiate, Jules R; Kuete, Victor

    2015-06-30

    Bacterial resistance to antibiotics is becoming a serious problem worldwide. The discovery of new and effective antimicrobials and/or resistance modulators is necessary to tackle the spread of resistance or to reverse the multi-drug resistance. We investigated the antibacterial and antibiotic-resistance modifying activities of the methanol extracts from Allanblackia gabonensis, Gladiolus quartinianus and Combretum molle against 29 Gram-negative bacteria including multi-drug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the samples meanwhile the standard phytochemical methods were used for the preliminary phytochemical screening of the plant extracts. Phytochemical analysis showed the presence of alkaloids, flavonoids, phenols and tannins in all studied extracts. Other chemical classes of secondary metabolites were selectively presents. Extracts from A. gabonensis and C. molle displayed a broad spectrum of activity with MICs varying from 16 to 1024 μg/mL against about 72.41% of the tested bacteria. The extract from the fruits of A. gabonensis had the best activity, with MIC values below 100 μg/mL on 37.9% of tested bacteria. Percentages of antibiotic-modulating effects ranging from 67 to 100% were observed against tested MDR bacteria when combining the leaves extract from C. molle (at MIC/2 and MIC/4) with chloramphenicol, kanamycin, streptomycin and tetracycline. The overall results of the present study provide information for the possible use of the studied plant, especially Allanblackia gabonensis and Combretum molle in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.

  16. Development of Nano-Liposomal Formulations of Epidermal Growth Factor Receptor Inhibitors and their Pharmacological Interactions on Drug-Sensitive and Drug-Resistant Cancer Cell Lines

    Science.gov (United States)

    Trummer, Brian J.

    A rapidly expanding understanding of molecular derangements in cancer cell function has led to the development of selective, targeted chemotherapeutic agents. Growth factor signal transduction networks are frequently activated in an aberrant fashion, particularly through the activity of receptor tyrosine kinases (RTK). This has spurred an intensive effort to develop receptor tyrosine kinase inhibitors (RTKI) that are targeted to specific receptors, or receptor subfamilies. Chapter 1 reviews the pharmacology, preclinical, and clinical aspects of RTKIs that target the epidermal growth factor receptor (EGFR). EGFR inhibitors demonstrate significant success at inhibiting phosphorylation-based signaling pathways that promote cancer cell proliferation. Additionally RTKIs have physicochemical and structural characteristics that enable them to function as inhibitors of multi-drug resistance transport proteins. Thus EGFR inhibitors and other RTKIs have both on-target and off-target activities that could be beneficial in cancer therapy. However, these agents exert a number of side effects, some of which arise from their hydrophobic nature and large in vivo volume of distribution. Side effects of the EGFR inhibitor gefitinib include skin rash, severe myelotoxicity when combined with certain chemotherapeutic agents, and impairment of the blood brain barrier to xenobiotics. Weighing the preclinical and clinical observations with the EGFR inhibitors, we developed the primary overall hypothesis of this research: that drug-carrier formulations of RTKIs such as the EGFR inhibitors could be developed based on nanoparticulate liposomal carriers. Theoretically, this carrier strategy would ameliorate toxicity and improve the biodistribution and tumor selectivity of these agents. We hypothesized specifically that liposomal formulations could shift the biodistribution of EGFR inhibitors such as gefitinib away from skin, bone marrow, and the blood brain barrier, and toward solid tumors

  17. Effect of radiation decontamination on drug-resistant bacteria

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2006-01-01

    More than 80% of food poisoning bacteria such as Salmonella are reported as antibiotic-resistant to at least one type antibiotic, and more than 50% as resistant to two or more. For the decontamination of food poisoning bacteria in foods, radiation resistibility on drug-resistant bacteria were investigated compared with drug-sensitive bacteria. Possibility on induction of drug-resistant mutation by radiation treatment was also investigated. For these studies, type strains of Escherichia coli S2, Salmonella enteritidis YK-2 and Staphylococcus aureus H12 were used to induce drug-resistant strains with penicillin G. From the study of radiation sensitivity on the drug-resistant strain induced from E. coli S2, D 10 value was obtained to be 0.20 kGy compared with 0.25 kGy at parent strain. On S. enteritidis YK-2, D 10 value was obtained to be 0.14 kGy at drug-resistant strain compared with 0.16 kGy at parent strain. D 10 value was also obtained to be 0.15 kGy at drug-resistant strain compared with 0.21 kGy at parent strain of St. aureus H12. Many isolates of E. coli 157:H7 or other type of E. coli from meats such as beef were resistant to penicillin G, and looked to be no relationship on radiation resistivities between drug-resistant strains and sensitive strains. On the study of radiation sensitivity on E. coli S2 at plate agars containing antibiotics, higher survival fractions were obtained at higher doses compared with normal plate agar. The reason of higher survival fractions at higher doses on plate agar containing antibiotics should be recovery of high rate of injured cells by the relay of cell division, and drug-resistant strains by mutation are hardly induced by irradiation. (author)

  18. Target-site resistance to acetolactate synthase (ALS)-inhibiting herbicides in Amaranthus palmeri from Argentina.

    Science.gov (United States)

    Larran, Alvaro S; Palmieri, Valeria E; Perotti, Valeria E; Lieber, Lucas; Tuesca, Daniel; Permingeat, Hugo R

    2017-12-01

    Herbicide-resistant weeds are a serious problem worldwide. Recently, two populations of Amaranthus palmeri with suspected cross-resistance to acetolactate synthase (ALS)-inhibiting herbicides (R1 and R2) were found by farmers in two locations in Argentina (Vicuña Mackenna and Totoras, respectively). We conducted studies to confirm and elucidate the mechanism of resistance. We performed in vivo dose-response assays, and confirmed that both populations had strong resistance to chlorimuron-ethyl, diclosulam and imazethapyr when compared with a susceptible population (S). In vitro ALS activity inhibition tests only indicated considerable resistance to imazethapyr and chlorimuron-ethyl, indicating that other non-target mechanisms could be involved in diclosulam resistance. Subsequently, molecular analysis of als nucleotide sequences revealed three single base-pair mutations producing substitutions in amino acids previously associated with resistance to ALS inhibitors, A122, W574, and S653. This is the first report of als resistance alleles in A. palmeri in Argentina. The data support the involvement of a target-site mechanism of resistance to ALS-inhibiting herbicides. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Inhibition of GSK3B bypass drug resistance of p53-null colon carcinomas by enabling necroptosis in response to chemotherapy

    DEFF Research Database (Denmark)

    Grassilli, Emanuela; Narloch, Robert; Federzoni, Elena

    2013-01-01

    Evasion from chemotherapy-induced apoptosis due to p53 loss strongly contributes to drug resistance. Identification of specific targets for the treatment of drug-resistant p53-null tumors would therefore increase the effectiveness of cancer therapy....

  20. The antimalarial activity of Ru-chloroquine complexes against resistant Plasmodium falciparum is related to lipophilicity, basicity, and heme aggregation inhibition ability near water/n-octanol interfaces.

    Science.gov (United States)

    Martínez, Alberto; Rajapakse, Chandima S K; Jalloh, Dalanda; Dautriche, Cula; Sánchez-Delgado, Roberto A

    2009-08-01

    We have measured water/n-octanol partition coefficients, pK(a) values, heme binding constants, and heme aggregation inhibition activity of a series of ruthenium-pi-arene-chloroquine (CQ) complexes recently reported to be active against CQ-resistant strains of Plasmodium falciparum. Measurements of heme aggregation inhibition activity of the metal complexes near water/n-octanol interfaces qualitatively predict their superior antiplasmodial action against resistant parasites, in relation to CQ; we conclude that this modified method may be a better predictor of antimalarial potency than standard tests in aqueous acidic buffer. Some interesting tendencies emerge from our data, indicating that the antiplasmodial activity is related to a balance of effects associated with the lipophilicity, basicity, and structural details of the compounds studied.

  1. The antimalarial activity of Ru–chloroquine complexes against resistant Plasmodium falciparum is related to lipophilicity, basicity, and heme aggregation inhibition ability near water/n-octanol interfaces

    Science.gov (United States)

    Martínez, Alberto; Rajapakse, Chandima S. K.; Jalloh, Dalanda; Dautriche, Cula

    2012-01-01

    We have measured water/n-octanol partition coefficients, pKa values, heme binding constants, and heme aggregation inhibition activity of a series of ruthenium–πarene–chloroquine (CQ) complexes recently reported to be active against CQ-resistant strains of Plasmodium falciparum. Measurements of heme aggregation inhibition activity of the metal complexes near water/n-octanol interfaces qualitatively predict their superior antiplasmodial action against resistant parasites, in relation to CQ; we conclude that this modified method may be a better predictor of antimalarial potency than standard tests in aqueous acidic buffer. Some interesting tendencies emerge from our data, indicating that the antiplasmodial activity is related to a balance of effects associated with the lipophilicity, basicity, and structural details of the compounds studied. PMID:19343380

  2. Essential Oil from Origanum vulgare Completely Inhibits the Growth of Multidrug-Resistant Cystic Fibrosis Pathogens.

    Science.gov (United States)

    Pesavento, Giovanna; Maggini, Valentina; Maida, Isabel; Lo Nostro, Antonella; Calonico, Carmela; Sassoli, Chiara; Perrin, Elena; Fondi, Marco; Mengoni, Alessio; Chiellini, Carolina; Vannacci, Alfredo; Gallo, Eugenia; Gori, Luigi; Bogani, Patrizia; Bilia, Anna Rita; Campana, Silvia; Ravenni, Novella; Dolce, Daniela; Firenzuoli, Fabio; Fani, Renato

    2016-06-01

    Essential oils (EOs) are known to inhibit the growth of a wide range of microorganisms. Particularly interesting is the possible use of EOs to treat multidrug-resistant cystic fibrosis (CF) pathogens. We tested the essential oil (EO) from Origanum vulgare for in vitro antimicrobial activity, against three of the major human opportunistic pathogens responsible for respiratory infections in CF patients; these are methicillin-resistant Staphylococcus aureus, Stenotrophomonas maltophilia and Achromobacter xylosoxidans. Antibiotic susceptibility of each strain was previously tested by the standard disk diffusion method. Most strains were resistant to multiple antibiotics and could be defined as multi-drug-resistant (MDR). The antibacterial activity of O. vulgare EO (OEO) against a panel of 59 bacterial strains was evaluated, with MIC and MBC determined at 24, 48 and 72 hours by a microdilution method. The OEO was effective against all tested strains, although to a different extent. The MBC and MIC of OEO for S. aureus strains were either lower or equal to 0.50%, v/v, for A. xylosoxidans strains were lower or equal to 1% and 0.50%, v/v, respectively; and for S. maltophilia strains were lower or equal to 0.25%, v/v. The results from this study suggest that OEO might exert a role as an antimicrobial in the treatment of CF infections.

  3. Nonsteroidal Anti-inflammatory Drugs (NSAIDS) Inhibit the Growth and Reproduction of Chaetomium globosum and Other Fungi Associated with Water-Damaged Buildings.

    Science.gov (United States)

    Dalmont, Kelsey; Biles, Charles L; Konsure, Heather; Dahal, Sujita; Rowsey, Tyler; Broge, Matthew; Poudyal, Shubhra; Gurung, Tara; Shrestha, Sabina; Biles, Caleb L; Cluck, Terry; Howard, Alisha

    2017-12-01

    Indoor mold due to water damage causes serious human respiratory disorders, and the remediation to homes, schools, and businesses is a major expense. Prevention of mold infestation of building materials would reduce health problems and building remediation costs. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit yeasts and a limited number of filamentous fungi. The purpose of this research was to determine the possible inhibitory activity of nonsteroidal anti-inflammatory drugs (NSAIDs) on germination, fungal growth, and reproduction of Chaetomium globosum and other important filamentous fungi that occur in water-damaged buildings. Several NSAIDs were found to inhibit C. globosum germination, growth, and reproduction. The most effective NSAIDs inhibiting C. globosum were ibuprofen, diflunisal, and diclofenac. Fusarium oxysporum, Fusarium solani, Aspergillus niger, and Stachybotrys atra were also tested on the various media with similar results obtained. However, F. oxysporum and A. niger exhibited a higher level of resistance to aspirin and NaSAL when compared to the C. globosum isolates. The inhibition exhibited by NSAIDs was variable depending on growth media and stage of fungal development. These compounds have a great potential of inhibiting fungal growth on building materials such as gypsum board. Formulations of sprays or building materials with NSAID-like chemical treatments may hold promise in reducing mold in homes and buildings.

  4. Clinical characteristics, drug resistance, and treatment outcomes among tuberculosis patients with diabetes in Peru.

    Science.gov (United States)

    Magee, M J; Bloss, E; Shin, S S; Contreras, C; Huaman, H Arbanil; Ticona, J Calderon; Bayona, J; Bonilla, C; Yagui, M; Jave, O; Cegielski, J P

    2013-06-01

    Diabetes is a risk factor for active tuberculosis (TB). Data are limited regarding the association between diabetes and TB drug resistance and treatment outcomes. We examined characteristics of TB patients with and without diabetes in a Peruvian cohort at high risk for drug-resistant TB. Among TB patients with diabetes (TB-DM), we studied the association between diabetes clinical/management characteristics and TB drug resistance and treatment outcomes. During 2005-2008, adults with suspected TB with respiratory symptoms in Lima, Peru, who received rapid drug susceptibility testing (DST), were prospectively enrolled and followed during treatment. Bivariate and Kaplan-Meier analyses were used to examine the relationships of diabetes characteristics with drug-resistant TB and TB outcomes. Of 1671 adult TB patients enrolled, 186 (11.1%) had diabetes. TB-DM patients were significantly more likely than TB patients without diabetes to be older, have had no previous TB treatment, and to have a body mass index (BMI) >18.5 kg/m(2) (pdiabetes, and 12% and 28%, respectively, among TB-DM patients. Among 149 TB-DM patients with DST results, 104 (69.8%) had drug-susceptible TB and 45 (30.2%) had drug-resistant TB, of whom 29 had multidrug-resistant TB. There was no association between diabetes characteristics and drug-resistant TB. Of 136 TB-DM patients with outcome information, 107 (78.7%) had a favorable TB outcome; active diabetes management was associated with a favorable outcome. Diabetes was common in a cohort of TB patients at high risk for drug-resistant TB. Despite prevalent multidrug-resistant TB among TB-DM patients, the majority had a favorable TB treatment outcome. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  5. Competitive release of drug resistance following drug treatment of mixed Plasmodium chabaudi infections.

    Science.gov (United States)

    de Roode, Jacobus C; Culleton, Richard; Bell, Andrew S; Read, Andrew F

    2004-09-14

    Malaria infections are often genetically diverse, potentially leading to competition between co-infecting strains. Such competition is of key importance in the spread of drug resistance. The effects of drug treatment on within-host competition were studied using the rodent malaria Plasmodium chabaudi. Mice were infected simultaneously with a drug-resistant and a drug-sensitive clone and were then either drug-treated or left untreated. Transmission was assessed by feeding mice to Anopheles stephensi mosquitoes. In the absence of drugs, the sensitive clone competitively suppressed the resistant clone; this resulted in lower asexual parasite densities and also reduced transmission to the mosquito vector. Drug treatment, however, allowed the resistant clone to fill the ecological space emptied by the removal of the sensitive clone, allowing it to transmit as well as it would have done in the absence of competition. These results show that under drug pressure, resistant strains can have two advantages: (1) they survive better than sensitive strains and (2) they can exploit the opportunities presented by the removal of their competitors. When mixed infections are common, such effects could increase the spread of drug resistance.

  6. Distribution of red blood cell antigens in drug-resistant and drug ...

    African Journals Online (AJOL)

    sofo

    Frequency distribution of ABO, Rh-Hr, MN, Kell blood group system antigens were studied in 277 TB patients (151-drug-sensitive and 126 drug-resistant) of pulmonary tuberculosis to know whether there was any association between them, and also between drug resistance and sensitiveness. They were compared with 485 ...

  7. Molecular Basis for Drug Resistance in HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Celia A. Schiffer

    2010-11-01

    Full Text Available HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease’s function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.

  8. Drug-resistant tuberculosis in Mumbai, India: An agenda for operations research

    Science.gov (United States)

    Mistry, Nerges; Tolani, Monica; Osrin, David

    2012-01-01

    Operations research (OR) is well established in India and is also a prominent feature of the global and local agendas for tuberculosis (TB) control. India accounts for a quarter of the global burden of TB and of new cases. Multidrug-resistant TB is a significant problem in Mumbai, India’s most populous city, and there have been recent reports of totally resistant TB. Much thought has been given to the role of OR in addressing programmatic challenges, by both international partnerships and India’s Revised National TB Control Programme. We attempt to summarize the major challenges to TB control in Mumbai, with an emphasis on drug resistance. Specific challenges include diagnosis of TB and defining cure, detecting drug resistant TB, multiple sources of health care in the private, public and informal sectors, co-infection with human immunodeficiency virus (HIV) and a concurrent epidemic of non-communicable diseases, suboptimal prescribing practices, and infection control. We propose a local agenda for OR: modeling the effects of newer technologies, active case detection, and changes in timing of activities, and mapping hotspots and contact networks; modeling the effects of drug control, changing the balance of ambulatory and inpatient care, and adverse drug reactions; modeling the effects of integration of TB and HIV diagnosis and management, and preventive drug therapy; and modeling the effects of initiatives to improve infection control. PMID:24501697

  9. Bafetinib (INNO-406) reverses multidrug resistance by inhibiting the efflux function of ABCB1 and ABCG2 transporters

    Science.gov (United States)

    Zhang, Yun-Kai; Zhang, Guan-Nan; Wang, Yi-Jun; Patel, Bhargav A.; Talele, Tanaji T.; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-05-01

    ATP-Binding Cassette transporters are involved in the efflux of xenobiotic compounds and are responsible for decreasing drug accumulation in multidrug resistant (MDR) cells. Discovered by structure-based virtual screening algorithms, bafetinib, a Bcr-Abl/Lyn tyrosine kinase inhibitor, was found to have inhibitory effects on both ABCB1- and ABCG2-mediated MDR in this in-vitro investigation. Bafetinib significantly sensitized ABCB1 and ABCG2 overexpressing MDR cells to their anticancer substrates and increased the intracellular accumulation of anticancer drugs, particularly doxorubicin and [3H]-paclitaxel in ABCB1 overexpressing cells; mitoxantrone and [3H]-mitoxantrone in ABCG2 overexpressing cells, respectively. Bafetinib stimulated ABCB1 ATPase activities while inhibited ABCG2 ATPase activities. There were no significant changes in the expression level or the subcellular distribution of ABCB1 and ABCG2 in the cells exposed to 3 μM of bafetinib. Overall, our study indicated that bafetinib reversed ABCB1- and ABCG2-mediated MDR by blocking the drug efflux function of these transporters. These findings might be useful in developing combination therapy for MDR cancer treatment.

  10. Human Immunodeficiency Virus Type 1 Protease and the Emergence of Drug Resistance

    DEFF Research Database (Denmark)

    Poulsen, Nina Rødtness

    in multi-drug-resistant PRs. Computational analysis of a vast number of inhibitor-resistant HIV-1 PR variants can broaden the knowledge of how and why the mutations arise, which would be a great advantage in the design on resistance-evading inhibitors. Here we present a diverse system to select...... in the virus life cycle has made it a major target for drug development and active site competitive inhibitors have been successful in the battle against HIV. Unfortunately, the massive drug pressure along with high-level replication and lack of proofreading by the viral reverse transcriptase have resulted...... for catalytically active HIV-1 PR in the presence of inhibitor. The system is based on the protein AraC, which regulates transcription of the araA, araB and araD genes necessary for arabinose catabolism in Escherichia coli, and its effectiveness was demonstrated by the isolation of both known and unknown inhibitor-resistant...

  11. Resistance patterns and trends of extensively drug-resistant tuberculosis: 5-year experience

    Directory of Open Access Journals (Sweden)

    Amresh Kumar Singh

    2013-12-01

    Full Text Available Objective:Extensively drug-resistant tuberculosis (XDR-TB strains were emerged when multidrug-resistant TB (MDR- TB was inadequately treated. Inadequate treatment of MDR-TB cases may result in additional resistance especially non-XDR-TB and then XDR-TB. The aim of this study was to know the prevalence, resistance patterns and trends of the XDR-TB strains among the MDR-TB at a tertiary care hospital in Lucknow, India Methods: A total of 430 Mycobacterium isolates were underwent NAP test and TB MPT64 Ag test for the identification of Mycobacterium tuberculosis complex (MTBC. Drug-susceptibility test (DST was performed over MTBC for the first line drugs by 1% proportion method (Bactec and for the second-line drugs by 1% proportion method (Lowenstein- Jensen media. The XDR-TB status was further confirmed by line probe assay (GenoType® MTBDRsl assay. Results: Among the 430 isolates of mycobacterium, 365 (84.9% were MTBC and 139 (38.1% were MDR-TB respectively. Further 97 MDR-TB from “highly suspected drug resistant-TB (DR-TB” cases among MDR-TB were tested with second line drugs in which 15 (15.5% XDR-TB and 82 (84.5% were non-XDR-TB. Regarding XDR-TB status, using the 1% proportion method a 100% agreement was seen with the GenoType® MTBDRsl assay. Resistance patterns of XDR-TB were as; 10/15 (66.7% as isoniazid + rifampicin + ciprofloxacin + amikacin resistance and 5/15 (33.3% as isoniazid + rifampicin + ciprofloxacin + amikacin + kanamycin resistance. Conclusion:The prevalence of XDR-TB was 15.5% among MDR-TB. Hence laboratory testing of “highly suspected drug resistant-TB” isolates should be done for both first and second line drugs simultaneously especially in developing countries.J Microbiol Infect Dis 2013;3(4: 169-175

  12. Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance

    Science.gov (United States)

    Rabi, S. Alireza; Laird, Gregory M.; Durand, Christine M.; Laskey, Sarah; Shan, Liang; Bailey, Justin R.; Chioma, Stanley; Moore, Richard D.; Siliciano, Robert F.

    2013-01-01

    HIV-1 protease inhibitors (PIs) are among the most effective antiretroviral drugs. They are characterized by highly cooperative dose-response curves that are not explained by current pharmacodynamic theory. An unresolved problem affecting the clinical use of PIs is that patients who fail PI-containing regimens often have virus that lacks protease mutations, in apparent violation of fundamental evolutionary theory. Here, we show that these unresolved issues can be explained through analysis of the effects of PIs on distinct steps in the viral life cycle. We found that PIs do not affect virion release from infected cells but block entry, reverse transcription, and post–reverse transcription steps. The overall dose-response curves could be reconstructed by combining the curves for each step using the Bliss independence principle, showing that independent inhibition of multiple distinct steps in the life cycle generates the highly cooperative dose-response curves that make these drugs uniquely effective. Approximately half of the inhibitory potential of PIs is manifest at the entry step, likely reflecting interactions between the uncleaved Gag and the cytoplasmic tail (CT) of the Env protein. Sequence changes in the CT alone, which are ignored in current clinical tests for PI resistance, conferred PI resistance, providing an explanation for PI failure without resistance. PMID:23979165

  13. Drug Modulators of B Cell Signaling Pathways and Epstein-Barr Virus Lytic Activation.

    Science.gov (United States)

    Kosowicz, John G; Lee, Jaeyeun; Peiffer, Brandon; Guo, Zufeng; Chen, Jianmeng; Liao, Gangling; Hayward, S Diane; Liu, Jun O; Ambinder, Richard F

    2017-08-15

    Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus that establishes a latency reservoir in B cells. In this work, we show that ibrutinib, idelalisib, and dasatinib, drugs that block B cell receptor (BCR) signaling and are used in the treatment of hematologic malignancies, block BCR-mediated lytic induction at clinically relevant doses. We confirm that the immunosuppressive drugs cyclosporine and tacrolimus also inhibit BCR-mediated lytic induction but find that rapamycin does not inhibit BCR-mediated lytic induction. Further investigation shows that mammalian target of rapamycin complex 2 (mTORC2) contributes to BCR-mediated lytic induction and that FK506-binding protein 12 (FKBP12) binding alone is not adequate to block activation. Finally, we show that BCR signaling can activate EBV lytic induction in freshly isolated B cells from peripheral blood mononuclear cells (PBMCs) and that activation can be inhibited by ibrutinib or idelalisib. IMPORTANCE EBV establishes viral latency in B cells. Activation of the B cell receptor pathway activates lytic viral expression in cell lines. Here we show that drugs that inhibit important kinases in the BCR signaling pathway inhibit activation of lytic viral expression but do not inhibit several other lytic activation pathways. Immunosuppressant drugs such as cyclosporine and tacrolimus but not rapamycin also inhibit BCR-mediated EBV activation. Finally, we show that BCR activation of lytic infection occurs not only in tumor cell lines but also in freshly isolated B cells from patients and that this activation can be blocked by BCR inhibitors. Copyright © 2017 American Society for Microbiology.

  14. Characterization of p38 MAPK isoforms for drug resistance study using systems biology approach.

    Science.gov (United States)

    Peng, Huiming; Peng, Tao; Wen, Jianguo; Engler, David A; Matsunami, Risë K; Su, Jing; Zhang, Le; Chang, Chung-Che Jeff; Zhou, Xiaobo

    2014-07-01

    p38 mitogen-activated protein kinase activation plays an important role in resistance to chemotherapeutic cytotoxic drugs in treating multiple myeloma (MM). However, how the p38 mitogen-activated protein kinase signaling pathway is involved in drug resistance, in particular the roles that the various p38 isoforms play, remains largely unknown. To explore the underlying mechanisms, we developed a novel systems biology approach by integrating liquid chromatography-mass spectrometry and reverse phase protein array data from human MM cell lines with computational pathway models in which the unknown parameters were inferred using a proposed novel algorithm called modularized factor graph. New mechanisms predicted by our models suggest that combined activation of various p38 isoforms may result in drug resistance in MM via regulating the related pathways including extracellular signal-regulated kinase (ERK) pathway and NFкB pathway. ERK pathway regulating cell growth is synergistically regulated by p38δ isoform, whereas nuclear factor kappa B (NFкB) pathway regulating cell apoptosis is synergistically regulated by p38α isoform. This finding that p38δ isoform promotes the phosphorylation of ERK1/2 in MM cells treated with bortezomib was validated by western blotting. Based on the predicted mechanisms, we further screened drug combinations in silico and found that a promising drug combination targeting ERK1/2 and NFκB might reduce the effects of drug resistance in MM cells. This study provides a framework of a systems biology approach to studying drug resistance and drug combination selection. RPPA experimental Data and Matlab source codes of modularized factor graph for parameter estimation are freely available online at http://ctsb.is.wfubmc.edu/publications/modularized-factor-graph.php. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. High Levels of Transmitted HIV Drug Resistance in a Study in Papua New Guinea.

    Science.gov (United States)

    Lavu, Evelyn; Kave, Ellan; Mosoro, Euodia; Markby, Jessica; Aleksic, Eman; Gare, Janet; Elsum, Imogen A; Nano, Gideon; Kaima, Petronia; Dala, Nick; Gurung, Anup; Bertagnolio, Silvia; Crowe, Suzanne M; Myatt, Mark; Hearps, Anna C; Jordan, Michael R

    2017-01-01

    Papua New Guinea is a Pacific Island nation of 7.3 million people with an estimated HIV prevalence of 0.8%. ART initiation and monitoring are guided by clinical staging and CD4 cell counts, when available. Little is known about levels of transmitted HIV drug resistance in recently infected individuals in Papua New Guinea. Surveillance of transmitted HIV drug resistance in a total of 123 individuals recently infected with HIV and aged less than 30 years was implemented in Port Moresby (n = 62) and Mount Hagen (n = 61) during the period May 2013-April 2014. HIV drug resistance testing was performed using dried blood spots. Transmitted HIV drug resistance was defined by the presence of one or more drug resistance mutations as defined by the World Health Organization surveillance drug resistance mutations list. The prevalence of non-nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 16.1% (95% CI 8.8%-27.4%) and 8.2% (95% CI 3.2%-18.2%) in Port Moresby and Mount Hagen, respectively. The prevalence of nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 3.2% (95% CI 0.2%-11.7%) and 3.3% (95% CI 0.2%-11.8%) in Port Moresby and Mount Hagen, respectively. No protease inhibitor transmitted HIV drug resistance was observed. The level of non-nucleoside reverse transcriptase inhibitor drug resistance in antiretroviral drug naïve individuals recently infected with HIV in Port Moresby is amongst the highest reported globally. This alarming level of transmitted HIV drug resistance in a young sexually active population threatens to limit the on-going effective use of NNRTIs as a component of first-line ART in Papua New Guinea. To support the choice of nationally recommended first-line antiretroviral therapy, representative surveillance of HIV drug resistance among antiretroviral therapy initiators in Papua New Guinea should be urgently implemented.

  16. The selenazal drug ebselen potently inhibits indoleamine 2,3-dioxygenase by targeting enzyme cysteine residues.

    Science.gov (United States)

    Terentis, Andrew C; Freewan, Mohammed; Sempértegui Plaza, Tito S; Raftery, Mark J; Stocker, Roland; Thomas, Shane R

    2010-01-26

    The heme enzyme indoleamine 2,3-dioxygenase (IDO) plays an important immune regulatory role by catalyzing the oxidative degradation of l-tryptophan. Here we show that the selenezal drug ebselen is a potent IDO inhibitor. Exposure of human macrophages to ebselen inhibited IDO activity in a manner independent of changes in protein expression. Ebselen inhibited the activity of recombinant human IDO (rIDO) with an apparent inhibition constant of 94 +/- 17 nM. Optical and resonance Raman spectroscopy showed that ebselen altered the active site heme of rIDO by inducing a transition of the ferric heme iron from the predominantly high- to low-spin form and by lowering the vibrational frequency of the Fe-CO stretch of the CO complex, indicating an opening of the distal heme pocket. Substrate binding studies showed that ebselen enhanced nonproductive l-tryptophan binding, while circular dichroism indicated that the drug reduced the helical content and protein stability of rIDO. Thiol labeling and mass spectrometry revealed that ebselen reacted with multiple cysteine residues of IDO. Removal of cysteine-bound ebselen with dithiothreitol reversed the effects of the drug on the heme environment and significantly restored enzyme activity. These findings indicate that ebselen inhibits IDO activity by reacting with the enzyme's cysteine residues that result in changes to protein conformation and active site heme, leading to an increase in the level of nonproductive substrate binding. This study highlights that modification of cysteine residues is a novel and effective means of inhibiting IDO activity. It also suggests that IDO is under redox control and that the enzyme represents a previously unrecognized in vivo target of ebselen.

  17. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat.

    Science.gov (United States)

    Seluanov, Andrei; Hine, Christopher; Azpurua, Jorge; Feigenson, Marina; Bozzella, Michael; Mao, Zhiyong; Catania, Kenneth C; Gorbunova, Vera

    2009-11-17

    The naked mole-rat is the longest living rodent with a maximum lifespan exceeding 28 years. In addition to its longevity, naked mole-rats have an extraordinary resistance to cancer as tumors have never been observed in these rodents. Furthermore, we show that a combination of activated Ras and SV40 LT fails to induce robust anchorage-independent growth in naked mole-rat cells, while it readily transforms mouse fibroblasts. The mechanisms responsible for the cancer resistance of naked mole-rats were unknown. Here we show that naked mole-rat fibroblasts display hypersensitivity to contact inhibition, a phenomenon we termed "early contact inhibition." Contact inhibition is a key anticancer mechanism that arrests cell division when cells reach a high density. In cell culture, naked mole-rat fibroblasts arrest at a much lower density than those from a mouse. We demonstrate that early contact inhibition requires the activity of p53 and pRb tumor suppressor pathways. Inactivation of both p53 and pRb attenuates early contact inhibition. Contact inhibition in human and mouse is triggered by the induction of p27(Kip1). In contrast, early contact inhibition in naked mole-rat is associated with the induction of p16(Ink4a). Furthermore, we show that the roles of p16(Ink4a) and p27(Kip1) in the control of contact inhibition became temporally separated in this species: the early contact inhibition is controlled by p16(Ink4a), and regular contact inhibition is controlled by p27(Kip1). We propose that the additional layer of protection conferred by two-tiered contact inhibition contributes to the remarkable tumor resistance of the naked mole-rat.

  18. Antimicrobial potentials of Helicteres isora silver nanoparticles against extensively drug-resistant (XDR) clinical isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Mapara, Nikunj; Sharma, Mansi; Shriram, Varsha; Bharadwaj, Renu; Mohite, K C; Kumar, Vinay

    2015-12-01

    Pseudomonas aeruginosa is a leading opportunistic pathogen and its expanding drug resistance is a growing menace to public health. Its ubiquitous nature and multiple resistance mechanisms make it a difficult target for antimicrobial chemotherapy and require a fresh approach for developing new antimicrobial agents against it. The broad-spectrum antibacterial effects of silver nanoparticles (SNPs) make them an excellent candidate for use in the medical field. However, attempts made to check their potency against extensively drug-resistant (XDR) microbes are meager. This study describes the biosynthesis and biostabilization of SNPs by Helicteres isora aqueous fruit extract and their characterization by ultraviolet-visible spectroscopy, transmission electron microscopy, dynamic light scattering, X-ray diffraction, and Fourier transform infrared spectroscopy. Majority of SNPs synthesized were of 8--20-nm size. SNPs exhibited dose-dependent antibacterial activities against four XDR P. aeruginosa (XDR-PA) clinical isolates as revealed by growth curves, with a minimum inhibitory concentration of 300 μg/ml. The SNPs exhibited antimicrobial activity against all strains, with maximum zone of inhibition (16.4 mm) in XRD-PA-2 at 1000 μg/ml. Amongst four strains, their susceptibilities to SNPs were in the following order: XDR-PA-2 > XDR-PA-4 > XDR-PA-3 > XDR-PA-1. The exposure of bacterial cells to 300 μg/ml SNPs resulted into a substantial leakage of reducing sugars and proteins, inactivation of respiratory chain dehydrogenases, and eventual cell death. SNPs also induced lipid peroxidation, a possible underlying factor to membrane porosity. The effects were more pronounced in XDR-PA-2 which may be correlated with its higher susceptibility to SNPs. These results are indicative of SNP-induced turbulence of membranous permeability as an important causal factor in XDR-PA growth inhibition and death.

  19. Andrographolide Suppresses MV4-11 Cell Proliferation through the Inhibition of FLT3 Signaling, Fatty Acid Synthesis and Cellular Iron Uptake

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2017-08-01

    Full Text Available Background: Andrographolide (ADR, the main active component of Andrographis paniculata, displays anticancer activity in various cancer cell lines, among which leukemia cell lines exhibit the highest sensitivity to ADR. In particular, ADR was also reported to have reduced drug resistance in multidrug resistant cell lines. However, the mechanism of action (MOA of ADR’s anticancer and anti-drug-resistance activities remain elusive. Methods: In this study, we used the MV4-11 cell line, a FLT3 positive acute myeloid leukemia (AML cell line that displays multidrug resistance, as our experimental system. We first evaluated the effect of ADR on MV4-11 cell proliferation. Then, a quantitative proteomics approach was applied to identify differentially expressed proteins in ADR-treated MV4-11 cells. Finally, cellular processes and signal pathways affected by ADR in MV4-11 cell were predicted with proteomic analysis and validated with in vitro assays. Results: ADR inhibits MV4-11 cell proliferation in a dose- and time-dependent manner. With a proteomic approach, we discovered that ADR inhibited fatty acid synthesis, cellular iron uptake and FLT3 signaling pathway in MV4-11 cells. Conclusions: ADR inhibits MV4-11 cell proliferation through inhibition of fatty acid synthesis, iron uptake and protein synthesis. Furthermore, ADR reduces drug resistance by blocking FLT3 signaling.

  20. Antimicrobial Activity of Actinomycetes Against Multidrug Resistant ...

    African Journals Online (AJOL)

    Antimicrobial Activity of Actinomycetes Against Multidrug Resistant Staphylococcus aureus, E. coli and Various Other Pathogens. ... Purpose: The rapid emergence of drug resistance among pathogenic bacteria, especially multidrugresistant bacteria, underlines the need to look for new antibiotics. Methods: In the present ...

  1. Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer.

    Science.gov (United States)

    Kangaspeska, Sara; Hultsch, Susanne; Jaiswal, Alok; Edgren, Henrik; Mpindi, John-Patrick; Eldfors, Samuli; Brück, Oscar; Aittokallio, Tero; Kallioniemi, Olli

    2016-07-04

    The estrogen receptor (ER) inhibitor tamoxifen reduces breast cancer mortality by 31 % and has served as the standard treatment for ER-positive breast cancers for decades. However, 50 % of advanced ER-positive cancers display de novo resistance to tamoxifen, and acquired resistance evolves in 40 % of patients who initially respond. Mechanisms underlying resistance development remain poorly understood and new therapeutic opportunities are urgently needed. Here, we report the generation and characterization of seven tamoxifen-resistant breast cancer cell lines from four parental strains. Using high throughput drug sensitivity and resistance testing (DSRT) with 279 approved and investigational oncology drugs, exome-sequencing and network analysis, we for the first time, systematically determine the drug response profiles specific to tamoxifen resistance. We discovered emerging vulnerabilities towards specific drugs, such as ERK1/2-, proteasome- and BCL-family inhibitors as the cells became tamoxifen-resistant. Co-resistance to other drugs such as the survivin inhibitor YM155 and the chemotherapeutic agent paclitaxel also occurred. This study indicates that multiple molecular mechanisms dictate endocrine resistance, resulting in unexpected vulnerabilities to initially ineffective drugs, as well as in emerging co-resistances. Thus, combatting drug-resistant tumors will require patient-tailored strategies in order to identify new drug vulnerabilities, and to understand the associated co-resistance patterns.

  2. Inhibition of ABCB1 (MDR1 expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Michiro Susa

    2010-05-01

    Full Text Available The use of neo-adjuvant chemotherapy in treating osteosarcoma has improved patients' average 5 year survival rate from 20% to 70% in the past 30 years. However, for patients who progress after chemotherapy, its effectiveness diminishes due to the emergence of multi-drug resistance (MDR after prolonged therapy.In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure resulting from MDR, we designed and evaluated a novel drug delivery system for MDR1 siRNA delivery. Novel biocompatible, lipid-modified dextran-based polymeric nanoparticles were used as the platform for MDR1 siRNA delivery; and the efficacy of combination therapy with this system was evaluated. In this study, multi-drug resistant osteosarcoma cell lines (KHOS(R2 and U-2OS(R2 were treated with the MDR1 siRNA nanocarriers and MDR1 protein (P-gp expression, drug retention, and immunofluoresence were analyzed. Combination therapy of the MDR1 siRNA loaded nanocarriers with increasing concentrations of doxorubicin was also analyzed. We observed that MDR1 siRNA loaded dextran nanoparticles efficiently suppresses P-gp expression in the drug resistant osteosarcoma cell lines. The results also demonstrated that this approach may be capable of reversing drug resistance by increasing the amount of drug accumulation in MDR cell lines.Lipid-modified dextran-based polymeric nanoparticles are a promising platform for siRNA delivery. Nanocarriers loaded with MDR1 siRNA are a potential treatment strategy for reversing MDR in osteosarcoma.

  3. Evodiamine synergizes with doxorubicin in the treatment of chemoresistant human breast cancer without inhibiting P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Shengpeng Wang

    Full Text Available Drug resistance is one of the main hurdles for the successful treatment of breast cancer. The synchronous targeting of apoptosis resistance and survival signal transduction pathways may be a promising approach to overcome drug resistance. In this study, we determined that evodiamine (EVO, a major constituent of the Chinese herbal medicine Evodiae Fructus, could induce apoptosis of doxorubicin (DOX-sensitive MCF-7 and DOX-resistant MCF-7/ADR cells in a caspase-dependent manner, as confirmed by significant increases of cleaved poly(ADP-ribose polymerase (PARP, caspase-7/9, and caspase activities. Notably, the reversed phenomenon of apoptosis resistance by EVO might be attributed to its ability to inhibit the Ras/MEK/ERK pathway and the expression of inhibitors of apoptosis (IAPs. Furthermore, our results indicated that EVO enhanced the apoptotic action of DOX by inhibiting the Ras/MEK/ERK cascade and the expression of IAPs without inhibiting the expression and activity of P-glycoprotein (P-gp. Taken together, our data indicate that EVO, a natural product, may be useful applied alone or in combination with DOX for the treatment of resistant breast cancer.

  4. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA...... as several apoptosis-related genes, in particular STK17A and CRYAB. As MPP1 and CRYAB are also among the 14 genes differentially expressed in all three of the drug-resistant sublines, they represent the strongest candidates for resistance against DNA-damaging drugs....

  5. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    Science.gov (United States)

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-05

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune-mediated mechanism, are highly associated with potent inhibition of bile salt transport. Published by Elsevier Ireland Ltd.

  6. Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs.

    Science.gov (United States)

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; El-Kabbani, Ossama; Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki

    2017-08-15

    Human carbonyl reductase 1 (CBR1), a member of the short-chain dehydrogenase/reductase (SDR) superfamily, reduces a variety of carbonyl compounds including endogenous isatin, prostaglandin E 2 and 4-oxo-2-nonenal. It is also a major non-cytochrome P450 enzyme in the phase I metabolism of carbonyl-containing drugs, and is highly expressed in the intestine. In this study, we found that long-chain fatty acids and their CoA ester derivatives inhibit CBR1. Among saturated fatty acids, myristic, palmitic and stearic acids were inhibitory, and stearic acid was the most potent (IC 50 9µM). Unsaturated fatty acids (oleic, elaidic, γ-linolenic and docosahexaenoic acids) and acyl-CoAs (palmitoyl-, stearoyl- and oleoyl-CoAs) were more potent inhibitors (IC 50 1.0-2.5µM), and showed high inhibitory selectivity to CBR1 over its isozyme CBR3 and other SDR superfamily enzymes (DCXR and DHRS4) with CBR activity. The inhibition by these fatty acids and acyl-CoAs was competitive with respect to the substrate, showing the K i values of 0.49-1.2µM. Site-directed mutagenesis of the substrate-binding residues of CBR1 suggested that the interactions between the fatty acyl chain and the enzyme's Met141 and Trp229 are important for the inhibitory selectivity. We also examined CBR1 inhibition by oleic acid in cellular levels: The fatty acid effectively inhibited CBR1-mediated 4-oxo-2-nonenal metabolism in colon cancer DLD1 cells and increased sensitivity to doxorubicin in the drug-resistant gastric cancer MKN45 cells that highly express CBR1. The results suggest a possible new food-drug interaction through inhibition of CBR1-mediated intestinal first-pass drug metabolism by dietary fatty acids. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Emergence of Extensively Drug Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    Extensively drug-resistant tuberculosis (XDR TB) outbreaks have been reported in South Africa, and strains have been identified on 6 continents. Dr. Peter Cegielski, team leader for drug-resistant TB with the Division of Tuberculosis Elimination at CDC, comments on a multinational team's report on this emerging global public health threat.

  8. TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer.

    Science.gov (United States)

    Gong, Ke; Guo, Gao; Gerber, David E; Gao, Boning; Peyton, Michael; Huang, Chun; Minna, John D; Hatanpaa, Kimmo J; Kernstine, Kemp; Cai, Ling; Xie, Yang; Zhu, Hong; Fattah, Farjana J; Zhang, Shanrong; Takahashi, Masaya; Mukherjee, Bipasha; Burma, Sandeep; Dowell, Jonathan; Dao, Kathryn; Papadimitrakopoulou, Vassiliki A; Olivas, Victor; Bivona, Trever G; Zhao, Dawen; Habib, Amyn A

    2018-06-01

    Although aberrant EGFR signaling is widespread in cancer, EGFR inhibition is effective only in a subset of non-small cell lung cancer (NSCLC) with EGFR activating mutations. A majority of NSCLCs express EGFR wild type (EGFRwt) and do not respond to EGFR inhibition. TNF is a major mediator of inflammation-induced cancer. We find that a rapid increase in TNF level is a universal adaptive response to EGFR inhibition in NSCLC, regardless of EGFR status. EGFR signaling actively suppresses TNF mRNA levels by inducing expression of miR-21, resulting in decreased TNF mRNA stability. Conversely, EGFR inhibition results in loss of miR-21 and increased TNF mRNA stability. In addition, TNF-induced NF-κB activation leads to increased TNF transcription in a feed-forward loop. Inhibition of TNF signaling renders EGFRwt-expressing NSCLC cell lines and an EGFRwt patient-derived xenograft (PDX) model highly sensitive to EGFR inhibition. In EGFR-mutant oncogene-addicted cells, blocking TNF enhances the effectiveness of EGFR inhibition. EGFR plus TNF inhibition is also effective in NSCLC with acquired resistance to EGFR inhibition. We suggest concomitant EGFR and TNF inhibition as a potentially new treatment approach that could be beneficial for a majority of lung cancer patients.

  9. Fisetin, a dietary phytochemical, overcomes Erlotinib-resistance of lung adenocarcinoma cells through inhibition of MAPK and AKT pathways.

    Science.gov (United States)

    Zhang, Liang; Huang, Yi; Zhuo, Wenlei; Zhu, Yi; Zhu, Bo; Chen, Zhengtang

    2016-01-01

    Erlotinib (Tarceva) is a selective epidermal growth factor receptor tyrosine kinase inhibitor for treatment of non-small cell lung cancer (NSCLC). However, its efficacy is usually reduced by the occurrence of drug resistance. Our recent study showed that a flavonoid found in many plants, Fisetin, might have a potential to reverse the acquired Cisplatin-resistance of lung adenocarcinoma. In the present study, we aimed to test whether Fisetin could have the ability to reverse Erlotinib-resistance of lung cancer cells. Erlotinib-resistant lung adenocarcinoma cells, HCC827-ER, were cultured from the cell line HCC827, and the effects of Fisetin and Erlotinib on the cell viability and apoptosis were evaluated. The possible signaling pathways in this process were also detected. As expected, the results showed that Fisetin effectively increased sensitivity of Erlotinib-resistant lung cancer cells to Erlotinib, possibly by inhibiting aberrant activation of MAPK and AKT signaling pathways resulted from AXL suppression. In conclusion, Fisetin was a potential agent for reversing acquired Erlotinib-resistance of lung adenocarcinoma. Inactivation of AXL, MAPK and AKT pathways might play a partial role in this process.

  10. Imipramine is an orally active drug against both antimony sensitive and resistant Leishmania donovani clinical isolates in experimental infection.

    Directory of Open Access Journals (Sweden)

    Sandip Mukherjee

    Full Text Available BACKGROUND: In an endeavor to find an orally active and affordable antileishmanial drug, we tested the efficacy of a cationic amphiphilic drug, imipramine, commonly used for the treatment of depression in humans. The only available orally active antileishmanial drug is miltefosine with long half life and teratogenic potential limits patient compliance. Thus there is a genuine need for an orally active antileishmanial drug. Previously it was shown that imipramine, a tricyclic antidepressant alters the protonmotive force in promastigotes, but its in vivo efficacy was not reported. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that the drug is highly active against antimony sensitive and resistant Leishmania donovani in both promastigotes and intracellular amastigotes and in LD infected hamster model. The drug was found to decrease the mitochondrial transmembrane potential of Leishmania donovani (LD promastigotes and purified amastigotes after 8 h of treatment, whereas miltefosine effected only a marginal change even after 24 h. The drug restores defective antigen presenting ability of the parasitized macrophages. The status of the host protective factors TNF α, IFN γ and iNOS activity increased with the concomitant decrease in IL 10 and TGF β level in imipramine treated infected hamsters and evolution of matured sterile hepatic granuloma. The 10-day therapeutic window as a monotherapy, showing about 90% clearance of organ parasites in infected hamsters regardless of their SSG sensitivity. CONCLUSIONS: This study showed that imipramine possibly qualifies for a new use of an old drug and can be used as an effective orally active drug for the treatment of Kala-azar.

  11. Drug membrane interaction and the importance for drug transport, distribution, accumulation, efficacy and resistance.

    Science.gov (United States)

    Seydel, J K; Coats, E A; Cordes, H P; Wiese, M

    1994-10-01

    Some aspects of drug membrane interaction and its influence on drug transport, accumulation, efficacy and resistance have been discussed. The interactions manifest themselves macroscopically in changes in the physical and thermodynamic properties of "pure membranes" or bilayers. As various amounts of foreign molecules enter the membrane, in particular the main gel to liquid crystalline phase transition can be dramatically changed. This may change permeability, cell-fusion, cell resistance and may also lead to changes in conformation of the embedded receptor proteins. Furthermore, specific interactions with lipids may lead to drug accumulation in membranes and thus to much larger concentrations at the active site than present in the surrounding water phase. The lipid environment may also lead to changes in the preferred conformation of drug molecules. These events are directly related to drug efficacy. The determination of essential molecular criteria for the interaction could be used to design new and more selective therapeutics. This excursion in some aspects of drug membrane interaction underlines the importance of lipids and their interaction with drug molecules for our understanding of drug action, but this is not really a new thought but has been formulated in 1884 by THUDICUM: "Phospholipids are the centre, life and chemical soul of all bioplasm whatsoever, that of plants as well as of animals".

  12. Activities of colistin- and minocycline-based combinations against extensive drug resistant Acinetobacter baumannii isolates from intensive care unit patients

    Directory of Open Access Journals (Sweden)

    Li Jian

    2011-04-01

    Full Text Available Abstract Background Extensive drug resistance of Acinetobacter baumannii is a serious problem in the clinical setting. It is therefore important to find active antibiotic combinations that could be effective in the treatment of infections caused by this problematic 'superbug'. In this study, we analyzed the in vitro activities of three colistin-based combinations and a minocycline-based combination against clinically isolated extensive drug resistant Acinetobacter baumannii (XDR-AB strains. Methods Fourteen XDR-AB clinical isolates were collected. The clonotypes were determined by polymerase chain reaction-based fingerprinting. Susceptibility testing was carried out according to the standards of the Clinical and Laboratory Standards Institute. Activities of drug combinations were investigated against four selected strains and analyzed by mean survival time over 12 hours (MST12 h in a time-kill study. Results The time-kill studies indicated that the minimum inhibitory concentration (MIC of colistin (0.5 or 0.25 μg/mL completely killed all strains at 2 to 4 hours, but 0.5×MIC colistin showed no bactericidal activity. Meropenem (8 μg/mL, minocycline (1 μg/mL or rifampicin (0.06 μg/mL did not show bactericidal activity. However, combinations of colistin at 0.5×MIC (0.25 or 0.125 μg/mL with each of the above were synergistic and shown bactericidal activities against all test isolates. A combination of meropenem (16 μg/mL with minocycline (0.5×MIC, 4 or 2 μg/mL was synergitic to all test isolates, but neither showed bactericidal activity alone. The MST12 h values of drug combinations (either colistin- or minocycline-based combinations were significantly shorter than those of the single drugs (p Conclusions This study indicates that combinations of colistin/meropenem, colistin/rifampicin, colistin/minocycline and minocycline/meropenem are synergistic in vitro against XDR-AB strains.

  13. DMH1 (4-[6-(4-isopropoxyphenylpyrazolo[1,5-a]pyrimidin-3-yl]quinoline inhibits chemotherapeutic drug-induced autophagy

    Directory of Open Access Journals (Sweden)

    Yue Sheng

    2015-07-01

    Full Text Available Our previous work found that DMH1 (4-[6-(4-isopropoxyphenylpyrazolo [1,5-a]pyrimidin-3-yl]quinoline was a novel autophagy inhibitor. Here, we aimed to investigate the effects of DMH1 on chemotherapeutic drug-induced autophagy as well as the efficacy of chemotherapeutic drugs in different cancer cells. We found that DMH1 inhibited tamoxifen- and cispcis-diaminedichloroplatinum (II (CDDP-induced autophagy responses in MCF-7 and HeLa cells, and potentiated the anti-tumor activity of tamoxifen and CDDP for both cells. DMH1 inhibited 5-fluorouracil (5-FU-induced autophagy responses in MCF-7 and HeLa cells, but did not affect the anti-tumor activity of 5-FU for these two cell lines. DMH1 itself did not induce cell death in MCF-7 and HeLa cells, but inhibited the proliferation of these cells. In conclusion, DMH1 inhibits chemotherapeutic drug-induced autophagy response and the enhancement of efficacy of chemotherapeutic drugs by DMH1 is dependent on the cell sensitivity to drugs.

  14. Early antiretroviral therapy and potent second-line drugs could decrease HIV incidence of drug resistance.

    Science.gov (United States)

    Shen, Mingwang; Xiao, Yanni; Rong, Libin; Meyers, Lauren Ancel; Bellan, Steven E

    2017-06-28

    Early initiation of antiretroviral therapy (ART) reduces the risk of drug-sensitive HIV transmission but may increase the transmission of drug-resistant HIV. We used a mathematical model to estimate the long-term population-level benefits of ART and determine the scenarios under which earlier ART (treatment at 1 year post-infection, on average) could decrease simultaneously both total and drug-resistant HIV incidence (new infections). We constructed an infection-age-structured mathematical model that tracked the transmission rates over the course of infection and modelled the patients' life expectancy as a function of ART initiation timing. We fitted this model to the annual AIDS incidence and death data directly, and to resistance data and demographic data indirectly among men who have sex with men (MSM) in San Francisco. Using counterfactual scenarios, we assessed the impact on total and drug-resistant HIV incidence of ART initiation timing, frequency of acquired drug resistance, and second-line drug effectiveness (defined as the combination of resistance monitoring, biomedical drug efficacy and adherence). Earlier ART initiation could decrease the number of both total and drug-resistant HIV incidence when second-line drug effectiveness is sufficiently high (greater than 80%), but increase the proportion of new infections that are drug resistant. Thus, resistance may paradoxically appear to be increasing while actually decreasing. © 2017 The Author(s).

  15. Oxazolidinone resistance mutations in 23S rRNA of Escherichia coli reveal the central region of domain V as the primary site of drug action

    DEFF Research Database (Denmark)

    Xiong, L; Kloss, P; Douthwaite, S

    2000-01-01

    Oxazolidinone antibiotics inhibit bacterial protein synthesis by interacting with the large ribosomal subunit. The structure and exact location of the oxazolidinone binding site remain obscure, as does the manner in which these drugs inhibit translation. To investigate the drug-ribosome interaction......, we selected Escherichia coli oxazolidinone-resistant mutants, which contained a randomly mutagenized plasmid-borne rRNA operon. The same mutation, G2032 to A, was identified in the 23S rRNA genes of several independent resistant isolates. Engineering of this mutation by site-directed mutagenesis...

  16. Dragon (RGMb) induces oxaliplatin resistance in colon cancer cells.

    Science.gov (United States)

    Shi, Ying; Huang, Xiao-Xiao; Chen, Guo-Bin; Wang, Ying; Zhi, Qiang; Liu, Yuan-Sheng; Wu, Xiao-Ling; Wang, Li-Fen; Yang, Bing; Xiao, Chuan-Xing; Xing, Hui-Qin; Ren, Jian-Lin; Xia, Yin; Guleng, Bayasi

    2016-07-26

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer mortality. Chemotherapy resistance remains a major challenge for treating advanced CRC. Therefore, the identification of targets that induce drug resistance is a priority for the development of novel agents to overcome resistance. Dragon (also known as RGMb) is a member of the repulsive guidance molecule (RGM) family. We previously showed that Dragon expression increases with CRC progression in human patients. In the present study, we found that Dragon inhibited apoptosis and increased viability of CMT93 and HCT116 cells in the presence of oxaliplatin. Dragon induced resistance of xenograft tumor to oxaliplatinin treatment in mice. Mechanistically, Dragon inhibited oxaliplatin-induced JNK and p38 MAPK activation, and caspase-3 and PARP cleavages. Our results indicate that Dragon may be a novel target that induces drug resistance in CRC.

  17. Repurposing and Revival of the Drugs: A New Approach to Combat the Drug Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Divakar Sharma

    2017-12-01

    Full Text Available Emergence of drug resistant tuberculosis like multi drug resistant tuberculosis (MDR-TB, extensively drug-resistant tuberculosis (XDR-TB and totally drug resistant tuberculosis (TDR-TB has created a new challenge to fight against these bad bugs of Mycobacterium tuberculosis. Repurposing and revival of the drugs are the new trends/options to combat these worsen situations of tuberculosis in the antibiotics resistance era or in the situation of global emergency. Bactericidal and synergistic effect of repurposed/revived drugs along with the latest drugs bedaquiline and delamanid used in the treatment of MDR-TB, XDR-TB, and TDR-TB might be the choice for future promising combinatorial chemotherapy against these bad bugs.

  18. High Potency of Indolyl Aryl Sulfone Nonnucleoside Inhibitors towards Drug-Resistant Human Immunodeficiency Virus Type 1 Reverse Transcriptase Mutants Is Due to Selective Targeting of Different Mechanistic Forms of the Enzyme

    Science.gov (United States)

    Cancio, Reynel; Silvestri, Romano; Ragno, Rino; Artico, Marino; De Martino, Gabriella; La Regina, Giuseppe; Crespan, Emmanuele; Zanoli, Samantha; Hübscher, Ulrich; Spadari, Silvio; Maga, Giovanni

    2005-01-01

    Indolyl aryl sulfone (IAS) nonnucleoside inhibitors have been shown to potently inhibit the growth of wild-type and drug-resistant human immunodeficiency virus type 1 (HIV-1), but their exact mechanism of action has not been elucidated yet. Here, we describe the mechanism of inhibition of HIV-1 reverse transcriptase (RT) by selected IAS derivatives. Our results showed that, depending on the substitutions introduced in the IAS common pharmacophore, these compounds can be made selective for different enzyme-substrate complexes. Moreover, we showed that the molecular basis for this selectivity was a different association rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the nonnucleoside reverse transcriptase inhibitor-resistant mutant Lys103Asn, it was possible to hypothesize, on the basis of their mechanism of action, a rationale for the design of drugs which could overcome the steric barrier imposed by the Lys103Asn mutation. PMID:16251294

  19. Drug-resistant tuberculosis: emerging treatment options

    Directory of Open Access Journals (Sweden)

    Adhvaryu MR

    2011-12-01

    Full Text Available Meghna Adhvaryu1, Bhasker Vakharia21Department of Biotechnology, SRK Institute of Computer Education and Applied Sciences, 2R&D, Bhuma Research in Ayurvedic and Herbal Medicine, Surat, Gujarat, IndiaAbstract: Multidrug-resistant tuberculosis has emerged worldwide, with an increasing incidence due to failure of implementation of apparently effective first-line antituberculous therapy as well as primary infection with drug-resistant strains. Failure of current therapy is attributed to a long duration of treatment leading to nonadherence and irregular therapy, lack of patient education about the disease, poverty, irregular supply by care providers, drug–drug interactions in patients coinfected with human immunodeficiency virus (HIV, inadequate regulations causing market overlap and irresponsible drug usage in the private sector, and lack of research, with no addition of new drugs in the last four decades. Present standards of care for the treatment of drug-susceptible tuberculosis, multidrug-resistant tuberculosis, tuberculosis-HIV coinfection, and latent tuberculosis infection are all unsatisfactory. Since 2000, the World Health Organization (WHO has focused on drug development for tuberculosis, as well as research in all relevant aspects to discover new regimens by 2015 and to eliminate tuberculosis as a public health concern by 2050. As a result, some 20 promising compounds from 14 groups of drugs have been discovered. Twelve candidates from eight classes are currently being evaluated in clinical trials. Ongoing research should prioritize identification of novel targets and newer application of existing drugs, discovery of multitargeted drugs from natural compounds, strengthening host factors by immunopotentiation with herbal immunomodulators, as well as protective vaccines before and after exposure, consideration of surgical measures when indicated, development of tools for rapid diagnosis, early identification of resistant strains, and

  20. Mechanisms of first-line antimicrobial resistance in multi-drug and extensively drug resistant strains of Mycobacterium tuberculosis in KwaZulu-Natal, South Africa

    Directory of Open Access Journals (Sweden)

    Navisha Dookie

    2016-10-01

    Full Text Available Abstract Background In South Africa, drug resistant tuberculosis is a major public health crisis in the face of the colossal HIV pandemic. Methods In an attempt to understand the distribution of drug resistance in our setting, we analysed the rpoB, katG, inhA, pncA and embB genes associated with resistance to key drugs used in the treatment of tuberculosis in clinical isolates of Mycobacterium tuberculosis in the KwaZulu-Natal province. Results Classical mutations were detected in the katG, inhA and embB genes associated with resistance to isoniazid and ethambutol. Diverse mutations were recorded in the multidrug resistant (MDR and extensively drug resistant (XDR isolates for the rpoB and pncA gene associated with resistance to rifampicin and pyrazinamide. Conclusions M.tuberculosis strains circulating in our setting display a combination of previously observed mutations, each mediating resistance to a different drug. The MDR and XDR TB isolates analysed in this study displayed classical mutations linked to INH and EMB resistance, whilst diverse mutations were linked to RIF and PZA resistance. The similarity of the XDR strains confirms reports of the clonality of the XDR epidemic. The successful dissemination of the drug resistant strains in the province underscores the need for rapid diagnostics to effectively diagnose drug resistance and guide treatment.

  1. Ovatodiolide Targets β-Catenin Signaling in Suppressing Tumorigenesis and Overcoming Drug Resistance in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Jar-Yi Ho

    2013-01-01

    Full Text Available Dysregulated β-catenin signaling is intricately involved in renal cell carcinoma (RCC carcinogenesis and progression. Determining potential β-catenin signaling inhibitors would be helpful in ameliorating drug resistance in advanced or metastatic RCC. Screening for β-catenin signaling inhibitors involved in silico inquiry of the PubChem Bioactivity database followed by TCF/LEF reporter assay. The biological effects of ovatodiolide were evaluated in 4 RCC cell lines in vitro and 2 RCC cell lines in a mouse xenograft model. The synergistic effects of ovatodiolide and sorafenib or sunitinib were examined in 2 TKI-resistant RCC cell lines. Ovatodiolide, a pure compound of Anisomeles indica, inhibited β-catenin signaling and reduced RCC cell viability, survival, migration/invasion, and in vitro cell or in vivo mouse tumorigenicity. Cytotoxicity was significantly reduced in a normal kidney epithelial cell line with the treatment. Ovatodiolide reduced phosphorylated β-catenin (S552 that inhibited β-catenin nuclear translocation. Moreover, ovatodiolide decreased β-catenin stability and impaired the association of β-catenin and transcription factor 4. Ovatodiolide combined with sorafenib or sunitinib overcame drug resistance in TKI-resistant RCC cells. Ovatodiolide may be a potent β-catenin signaling inhibitor, with synergistic effects with sorafenib or sunitinib, and therefore, a useful candidate for improving RCC therapy.

  2. Etanercept overcomes P-glycoprotein-induced drug resistance in lymphocytes of patients with intractable rheumatoid arthritis.

    Science.gov (United States)

    Tsujimura, Shizuyo; Saito, Kazuyoshi; Nakayamada, Shingo; Tanaka, Yoshiya

    2010-04-01

    P-glycoprotein (P-gp) on activated lymphocytes is an adenosine triphosphate (ATP)-binding cassette transporter that causes drug resistance by exclusion of intracellular drugs in patients with active rheumatoid arthritis (RA). However, infliximab with methotrexate (MTX) can overcome P-gp-mediated drug resistance. We encounter patients who cannot continue infliximab or MTX. Here we tested how etanercept affected P-gp-mediated drug resistance in such intractable RA patients. Peripheral lymphocytes of 11 RA patients (3 switched from infliximab and 8 who could not be treated with MTX) were analyzed for P-gp expression by flow cytometry and for drug exclusion using radioisotope-labeled dexamethasone. Activated lymphocytes of RA patients overexpressed P-gp and coexpressed CD69. Incubation of these lymphocytes with dexamethasone in vitro reduced intracellular dexamethasone levels. Two-week etanercept therapy significantly reduced P-gp expression and eliminated such P-gp- and CD69-high-expressing subgroup. The reduction in P-gp resulted in recovery of intracellular dexamethasone levels in lymphocytes and improvement of disease activity, thus allowing tapering of corticosteroids. None of the patients experienced any severe adverse effects. Etanercept is useful for overcoming P-gp-mediated treatment resistance in intractable RA patients who have to discontinue infliximab or are intolerant to MTX.

  3. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Jianfang Chen

    Full Text Available Multidrug resistance (MDR is one of the major reasons chemotherapy-based treatments fail. Hypoxia is generally associated with tumor chemoresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1 and the multidrug resistance (MDR1 gene/transporter P-glycoprotein (P-gp remains unclear. This study aims to explore the molecular mechanisms of reversing colon cancer MDR by focusing on the target gene HIF-1α.A chemotherapeutic sensitivity assay was used to observe the efficiency of MDR reversal in LoVo multicellular spheroids (MCS. The apoptotic level induced by different drugs was examined by flow cytometry (FCM. Binding of HIF-1α to the MDR1 gene promoter was evaluated by Chromatin immunoprecipitation (ChIP. The relationship between HIF-1α/P-gp expression and sensitivity to chemotherapy was analyzed.The sensitivity of LoVo MCS to all four chemotherapy drugs was decreased to varying degrees under hypoxic conditions. After silencing the HIF-1α gene, the sensitivities of LoVo MCS to all four chemotherapy drugs were restored. The apoptotic levels that all the drugs induced were all decreased to various extents in the hypoxic group. After silencing HIF-1α, the apoptosis level induced by all four chemotherapy drugs increased. The expression of HIF-1α and P-gp was significantly enhanced in LoVo MCS after treatment with hypoxia. Inhibiting HIF-1α significantly decreased the expression of MDR1/P-gp mRNA or protein in both the LoVo monolayers and LoVo MCS. The ChIP assay showed that HIF-1α was bound to the MDR1 gene promoter. Advanced colon carcinoma patients with expression of both HIF-1α and P-gp were more resistant to chemotherapy than that with non expression.HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-gp. The expression of HIF-1α and MDR1/P-gp can be used as a predictive marker for chemotherapy resistance in colon cancer.

  4. Multidrug resistant to extensively drug resistant tuberculosis: What is ...

    Indian Academy of Sciences (India)

    Prakash

    The modern, ... World Health Organization is based on a four-drug regimen ... Better management and control of tuberculosis specially drug resistant TB by experienced and qualified .... a comprehensive approach including the major DOTS.

  5. Design and synthesis of new hybrids from 2-cyano-3,12-dioxooleana- 9-dien-28-oic acid and O2-(2,4-dinitrophenyl) diazeniumdiolate for intervention of drug-resistant lung cancer.

    Science.gov (United States)

    Kang, Fenghua; Ai, Yong; Zhang, Yihua; Huang, Zhangjian

    2018-04-10

    To search for new drugs for intervention of drug-resistant lung cancer, a series of hybrids 4-15 from 2-cyano-3,12-dioxooleana-9-dien-28-oic acid (CDDO) and O 2 -(2,4-dinitrophenyl) diazeniumdiolate were designed, synthesized and biologically evaluated. The most active compound 7 produced relatively high levels of nitric oxide (NO) and reactive oxygen species (ROS) in drug-resistant lung cancer A549/Taxol cells which over-express glutathione S-transferase π (GSTπ), and significantly inhibited the cells' proliferation (IC 50  = 0.349 ± 0.051 μM), superior to the positive controls CDDO-Me, JS-K and Taxol. The inhibitory activity of 7 could be attenuated by an NO scavenger, ROS scavenger or GSTπ inhibitor. In addition, 7 suppressed the Lon protease expression as well as induced cell apoptosis and cycle arrest in A549/Taxol cells more strongly than CDDO-Me or JS-K. Together, our findings suggest that 7 may be worth studying further for intervention of drug-resistant lung cancer. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer

    International Nuclear Information System (INIS)

    Kangaspeska, Sara; Hultsch, Susanne; Jaiswal, Alok; Edgren, Henrik; Mpindi, John-Patrick; Eldfors, Samuli; Brück, Oscar; Aittokallio, Tero; Kallioniemi, Olli

    2016-01-01

    The estrogen receptor (ER) inhibitor tamoxifen reduces breast cancer mortality by 31 % and has served as the standard treatment for ER-positive breast cancers for decades. However, 50 % of advanced ER-positive cancers display de novo resistance to tamoxifen, and acquired resistance evolves in 40 % of patients who initially respond. Mechanisms underlying resistance development remain poorly understood and new therapeutic opportunities are urgently needed. Here, we report the generation and characterization of seven tamoxifen-resistant breast cancer cell lines from four parental strains. Using high throughput drug sensitivity and resistance testing (DSRT) with 279 approved and investigational oncology drugs, exome-sequencing and network analysis, we for the first time, systematically determine the drug response profiles specific to tamoxifen resistance. We discovered emerging vulnerabilities towards specific drugs, such as ERK1/2-, proteasome- and BCL-family inhibitors as the cells became tamoxifen-resistant. Co-resistance to other drugs such as the survivin inhibitor YM155 and the chemotherapeutic agent paclitaxel also occurred. This study indicates that multiple molecular mechanisms dictate endocrine resistance, resulting in unexpected vulnerabilities to initially ineffective drugs, as well as in emerging co-resistances. Thus, combatting drug-resistant tumors will require patient-tailored strategies in order to identify new drug vulnerabilities, and to understand the associated co-resistance patterns. The online version of this article (doi:10.1186/s12885-016-2452-5) contains supplementary material, which is available to authorized users

  7. Cytostatic versus cytocidal activities of chloroquine analogues and inhibition of hemozoin crystal growth.

    Science.gov (United States)

    Gorka, Alexander P; Alumasa, John N; Sherlach, Katy S; Jacobs, Lauren M; Nickley, Katherine B; Brower, Jonathan P; de Dios, Angel C; Roepe, Paul D

    2013-01-01

    We report an improved, nonhazardous, high-throughput assay for in vitro quantification of antimalarial drug inhibition of β-hematin (hemozoin) crystallization performed under conditions that are more physiological relative to previous assays. The assay uses the differential detergent solubility of crystalline and noncrystalline forms of heme and is optimized via the use of lipid catalyst. Using this assay, we quantify the effect of pH on the crystal growth-inhibitory activities of current quinoline antimalarials, evaluate the catalytic efficiencies of different lipids, and test for a possible correlation between hemozoin inhibition by drugs versus their antiplasmodial activity. Consistent with several previous reports, we found a good correlation between hemozoin inhibition potency versus cytostatic antiplasmodial potency (50% inhibitory concentration) for a series of chloroquine (CQ) analogues. However, we found no correlation between hemozoin inhibition potency and cytocidal antiplasmodial potency (50% lethal dose) for the same drugs, suggesting that cellular targets for these two layers of 4-aminoquinoline drug activity differ. This important concept is also explored further for QN and its stereoisomers in the accompanying paper (A. P. Gorka, K. S. Sherlach, A. C. de Dios, and P. D. Roepe, Antimicrob. Agents Chemother. 57:365-374, 2013).

  8. Antifungal activity of terrestrial Streptomyces rochei strain HF391 against clinical azole -resistant Aspergillus fumigatus

    Science.gov (United States)

    Hadizadeh, S; Forootanfar, H; Shahidi Bonjar, GH; Falahati Nejad, M; Karamy Robati, A; Ayatollahi Mousavi, SA; Amirporrostami, S

    2015-01-01

    Background and Purpose: Actinomycetes have been discovered as source of antifungal compounds that are currently in clinical use. Invasive aspergillosis (IA) due to Aspergillus fumigatus has been identified as individual drug-resistant Aspergillus spp. to be an emerging pathogen opportunities a global scale. This paper described the antifungal activity of one terrestrial actinomycete against the clinically isolated azole-resistant A. fumigatus. Materials and Methods: Soil samples were collected from various locations of Kerman, Iran. Thereafter, the actinomycetes were isolated using starch-casein-nitrate-agar medium and the most efficient actinomycetes (capable of inhibiting A. fumigatus) were screened using agar block method. In the next step, the selected actinomycete was cultivated in starch-casein- broth medium and the inhibitory activity of the obtained culture broth was evaluated using agar well diffusion method. Results: The selected actinomycete, identified as Streptomyces rochei strain HF391, could suppress the growth of A. fumigatus isolates which was isolated from the clinical samples of patients treated with azoles. This strain showed higher inhibition zones on agar diffusion assay which was more than 15 mm. Conclusion: The obtained results of the present study introduced Streptomyces rochei strain HF391 as terrestrial actinomycete that can inhibit the growth of clinically isolated A. fumigatus. PMID:28680984

  9. A modified Plasmodium falciparum growth inhibition assay (GIA) to assess activity of plasma from malaria endemic areas.

    Science.gov (United States)

    Mlambo, Godfree; Kumar, Nirbhay

    2007-02-01

    Plasma samples from patients undergoing treatment in malaria endemic countries often contain anti-malaria drugs, that may overstate effects of specific antibodies in growth inhibition assays (GIA). We describe a modified assay that uses drug resistant P. falciparum parasites (W2) that circumvents the requirement for dialyzing samples that may likely contain drugs such as chloroquine and sulfadoxine/pyrimethamine (SP).

  10. Phytochemical study of Pilosocereus pachycladus and antibiotic-resistance modifying activity of syringaldehyde

    Directory of Open Access Journals (Sweden)

    Severino Gonçalves de Brito-Filho

    Full Text Available ABSTRACT Pilosocereus pachycladus F. Ritter, Cactaceae, popularly known as "facheiro", is used as food and traditional medicine in Brazilian caatinga ecoregion. The plant is used to treat prostate inflammation and urinary infection. The present work reports the first secondary metabolites isolated from P. pachycladus. Therefore, the isolated compound 4-hydroxy-3,5-dimethoxy benzaldehyde (syringaldehyde was evaluated as modulator of Staphylococcus aureus pump efflux-mediated antibiotic resistance. The isolation of compounds was performed using chromatographic techniques and the structural elucidation was carried out by spectroscopic methods. In order to evaluate syringaldehyde ability to modulate S. aureus antibiotic resistance, its minimum inhibitory concentrations (µg/ml was first determinate, then, the tested antibiotics minimum inhibitory concentrations were determined in the presence of the syringaldehyde in a sub-inhibitory concentration. The chromatographic procedures led to isolation of twelve compounds from P. pachycladus including fatty acids, steroids, chlorophyll derivatives, phenolics and a lignan. The syringaldehyde did not show any antibacterial activity at 256 µg/ml against S. aureus. On the other hand the compound was able to reduce the antibiotic concentration (tetracycline, norfloxacin, ethidium bromide required to inhibit the growth of drug-resistant bacteria, showing the ability of syringaldehyde of inhibiting the efflux pump on these bacteria.

  11. Inhibition of GRP78 abrogates radioresistance in oropharyngeal carcinoma cells after EGFR inhibition by cetuximab.

    Directory of Open Access Journals (Sweden)

    Chaonan Sun

    Full Text Available The EGFR-specific mAb cetuximab is one of the most effective treatments for oropharyngeal carcinoma, while patient responses to EGFR inhibitors given alone are modest. Combination treatment with radiation can improve the efficacy of treatment through increasing radiosensitivity, while resistance to radiation after administration of cetuximab limits its efficiency. Radiation and drugs can damage the endoplasmic reticulum (ER homeostatic state and result in ER stress (ERS, subsequently causing resistance to radiation and drugs. Whether the ERS pathway is involved in radioresistance after administration of cetuximab has not been reported. Herein, we show that cetuximab could increase the radiosensitivity of FaDu cells but not Detroit562 cells. In addition, cetuximab inhibited the radiation-induced activation of the ERS signalling pathway IRE1α/ATF6-GRP78 in FaDu cells, while this effect was absent in Detroit562 cells. Silencing GRP78 increased the radiosensitivity of oropharyngeal carcinoma cells and inhibited radiation-induced DNA double-strand-break (DSB repair and autophagy. More interestingly, silencing GRP78 abrogated resistance to cetuximab and radiation in Detroit562 cells and had a synergistic effect with cetuximab in increasing the radiosensitivity of FaDu cells. Immunohistochemistry showed that overexpression of both GRP78 and EGFR was associated with a poor prognosis in oropharyngeal carcinoma patients (P<0.05. Overall, the results of this study show that radioresistance after EGFR inhibition by cetuximab is mediated by the ERS signalling pathway IRE1α/ATF6-GRP78. This suppression was consequently unable to inhibit radiation-induced DSB repair and autophagy in oropharyngeal carcinoma cells, which conferred resistance to radiotherapy and cetuximab. These results suggest that the cooperative effects of radiotherapy and cetuximab could be further improved by inhibiting GRP78 in non-responsive oropharyngeal carcinoma patients.

  12. Deoxynybomycins inhibit mutant DNA gyrase and rescue mice infected with fluoroquinolone-resistant bacteria.

    Science.gov (United States)

    Parkinson, Elizabeth I; Bair, Joseph S; Nakamura, Bradley A; Lee, Hyang Y; Kuttab, Hani I; Southgate, Emma H; Lezmi, Stéphane; Lau, Gee W; Hergenrother, Paul J

    2015-04-24

    Fluoroquinolones are one of the most commonly prescribed classes of antibiotics, but fluoroquinolone resistance (FQR) is widespread and increasing. Deoxynybomycin (DNM) is a natural-product antibiotic with an unusual mechanism of action, inhibiting the mutant DNA gyrase that confers FQR. Unfortunately, isolation of DNM is difficult and DNM is insoluble in aqueous solutions, making it a poor candidate for development. Here we describe a facile chemical route to produce DNM and its derivatives. These compounds possess excellent activity against FQR methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci clinical isolates and inhibit mutant DNA gyrase in-vitro. Bacteria that develop resistance to DNM are re-sensitized to fluoroquinolones, suggesting that resistance that emerges to DNM would be treatable. Using a DNM derivative, the first in-vivo efficacy of the nybomycin class is demonstrated in a mouse infection model. Overall, the data presented suggest the promise of DNM derivatives for the treatment of FQR infections.

  13. Computational Studies of Drug Resistance

    DEFF Research Database (Denmark)

    da Silva Martins, João Miguel

    Drug resistance has been an increasing problem in patient treatment and drug development. Starting in the last century and becoming a major worry in the medical and scienti c communities in the early part of the current millennium, major research must be performed to address the issues of viral...... is of the utmost importance in developing better and less resistance-inducing drugs. A drug's in uence can be characterized in many diff erent ways, however, and the approaches I take in this work re ect those same different in uences. This is what I try to achieve in this work, through seemingly unrelated...... approaches that come together in the study of drug's and their in uence on proteins and vice-versa. In part I, I aim to understand through combined theoretical ensemble analysis and free energy calculations the e ects mutations have over the binding anity and function of the M2 proton channel. This research...

  14. Drug resistance patterns in pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Khoharo, H.K.; Shaikh, I.A.

    2011-01-01

    Objective: To determine the resistance patterns of mycobacterium tuberculosis (MTB) isolates among category I and II patients of pulmonary tuberculosis. Methods: This cross sectional study was conducted at the Department of Medicine, Liaquat University of Medical and Health Sciences Jamshoro, from November 2008 to September 2009. Patients were divided into category I and II. The sputa were collected, stained with Ziehl-Nielsen (Z-N) staining and ultimately inoculated on Lowenstein-Jensen (L-J) media for six weeks. Out of 890 pulmonary tuberculosis (PTB) patients, the growth was obtained in 285 cases. The Drug sensitivity testing (DST) for Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB) Pyrazinamide (PZA) and Streptomycin (SM) were performed. The data was analyzed on SPSS 10.0. A p-value of <0.05 was taken as significant. Result: Out of 285 cases, 176 (61.75%) were male and 109 (38.24%) female. The mean age was 37 +- 19.90 years. The DST showed drug sensitive and drug resistant isolates in 80 (28.05%) and 205 (71.92%) cases respectively (p=0.001). The drug resistant tuberculosis (DR-TB) rates for individual drugs; INH, RIF, EMB, PZA and SM were 51,22%, 15.4%, 13.33%, 9%12, and 3.85% respectively (p=0.03). The MDR-TB isolates were detected in 120 (42.10%) cases, including 5 (5.88%) in category I and 115 (57.50%) in category II patients (p=0.0001). Conclusion: Drug resistant and multidrug resistant tuberculosis was observed mainly in category II patients. However, primary MDR was also observed in category I patients and reflects dissemination of MDR cases within the community. (author)

  15. [Drug resistance reversal of HL-60/ADR cells by simultaneous suppression of XIAP and MRP].

    Science.gov (United States)

    Wang, Xiao-Fang; Wang, Chun; Qin, You-Wen; Yan, Shi-Ke; Gao, Yan-Rong

    2006-12-01

    This study was purposed to explore the mechanisms of drug resistance of HL-60/ADR cells and to compare the reversal drug-resistance effects of antisense oligonucleotides (AS ODN) of XIAP (X-linked inhibitor of apoptosis protein) and AS ODNs of MRP (multidrug resistance-associated protein) by use alone or in combination. Reverse transcription-PCR and Western blot were applied to detect the expression of XIAP, BCL-2, MRP and MDR1 in mRNA and protein levels of HL-60 cells and HL-60/ADR cells, respectively. Fully phosphorothioated AS ODN of XIAP and MRP was delivered into HL-60/ADR cells with Lipofectamine 2000 in the form of liposome-ODN complexes alone or in combination. CCK-8 cell viability assay was used to determine the effect of AS ODN of XIAP and MRP used alone or in combination on the chemotherapy sensitivity of HL-60/ADR cells to daunorubicin (DNR). Reverse transcription-PCR and Western blot were applied to examine the changes of XIAP, MRP in mRNA and protein levels respectively. The results showed that MRP and XIAP were both significantly higher in HL-60/ADR cells than those in HL-60 cells. AS ODN of XIAP and MRP down-regulated the expression of XIAP and MRP in HL-60/ADR cells and increased the sensitivity of HL-60/ADR cells to DNR, respectively. AS ODN of XIAP + MRP did not enhance the inhibition expression of XIAP in HL-60/ADR cells but increased the sensitivity of HL-60/ADR cells to DNR significantly as compared with AS ODN of XIAP (P MRP did not increase the concentration of DNR nor enhanced the inhibition expression of MRP in HL-60/ADR cells but increased the sensitivity of HL-60/ADR cells to DNR significantly (P MRP. It is concluded that both XIAP and MRP may be involved in the drug resistance mechanisms of HL-60/ADR cells. Drug-resistance of HL-60/ADR cells can be reversed significantly when antisense oligonucleotides of XIAP and MRP were used in combination.

  16. Rationale and uses of a public HIV drug-resistance database.

    Science.gov (United States)

    Shafer, Robert W

    2006-09-15

    Knowledge regarding the drug resistance of human immunodeficiency virus (HIV) is critical for surveillance of drug resistance, development of antiretroviral drugs, and management of infections with drug-resistant viruses. Such knowledge is derived from studies that correlate genetic variation in the targets of therapy with the antiretroviral treatments received by persons from whom the variant was obtained (genotype-treatment), with drug-susceptibility data on genetic variants (genotype-phenotype), and with virological and clinical response to a new treatment regimen (genotype-outcome). An HIV drug-resistance database is required to represent, store, and analyze the diverse forms of data underlying our knowledge of drug resistance and to make these data available to the broad community of researchers studying drug resistance in HIV and clinicians using HIV drug-resistance tests. Such genotype-treatment, genotype-phenotype, and genotype-outcome correlations are contained in the Stanford HIV RT and Protease Sequence Database and have specific usefulness.

  17. P53- and mevalonate pathway–driven malignancies require Arf6 for metastasis and drug resistance

    Science.gov (United States)

    Hashimoto, Ari; Oikawa, Tsukasa; Hashimoto, Shigeru; Sugino, Hirokazu; Yoshikawa, Ayumu; Otsuka, Yutaro; Handa, Haruka; Onodera, Yasuhito; Nam, Jin-Min; Oneyama, Chitose; Okada, Masato; Fukuda, Mitsunori

    2016-01-01

    Drug resistance, metastasis, and a mesenchymal transcriptional program are central features of aggressive breast tumors. The GTPase Arf6, often overexpressed in tumors, is critical to promote epithelial–mesenchymal transition and invasiveness. The metabolic mevalonate pathway (MVP) is associated with tumor invasiveness and known to prenylate proteins, but which prenylated proteins are critical for MVP-driven cancers is unknown. We show here that MVP requires the Arf6-dependent mesenchymal program. The MVP enzyme geranylgeranyl transferase II (GGT-II) and its substrate Rab11b are critical for Arf6 trafficking to the plasma membrane, where it is activated by receptor tyrosine kinases. Consistently, mutant p53, which is known to support tumorigenesis via MVP, promotes Arf6 activation via GGT-II and Rab11b. Inhibition of MVP and GGT-II blocked invasion and metastasis and reduced cancer cell resistance against chemotherapy agents, but only in cells overexpressing Arf6 and components of the mesenchymal program. Overexpression of Arf6 and mesenchymal proteins as well as enhanced MVP activity correlated with poor patient survival. These results provide insights into the molecular basis of MVP-driven malignancy. PMID:27044891

  18. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity.

    Science.gov (United States)

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-05-31

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs.

  19. Evidence for the contribution of the hemozoin synthesis pathway of the murine Plasmodium yoelii to the resistance to artemisinin-related drugs.

    Science.gov (United States)

    Witkowski, Benoit; Lelièvre, Joel; Nicolau-Travers, Marie-Laure; Iriart, Xavier; Njomnang Soh, Patrice; Bousejra-Elgarah, Fatima; Meunier, Bernard; Berry, Antoine; Benoit-Vical, Françoise

    2012-01-01

    Plasmodium falciparum malaria is a major global health problem, causing approximately 780,000 deaths each year. In response to the spreading of P. falciparum drug resistance, WHO recommended in 2001 to use artemisinin derivatives in combination with a partner drug (called ACT) as first-line treatment for uncomplicated falciparum malaria, and most malaria-endemic countries have since changed their treatment policies accordingly. Currently, ACT are often the last treatments that can effectively and rapidly cure P. falciparum infections permitting to significantly decrease the mortality and the morbidity due to malaria. However, alarming signs of emerging resistance to artemisinin derivatives along the Thai-Cambodian border are of major concern. Through long-term in vivo pressures, we have been able to select a murine malaria model resistant to artemisinins. We demonstrated that the resistance of Plasmodium to artemisinin-based compounds depends on alterations of heme metabolism and on a loss of hemozoin formation linked to the down-expression of the recently identified Heme Detoxification Protein (HDP). These artemisinins resistant strains could be able to detoxify the free heme by an alternative catabolism pathway involving glutathione (GSH)-mediation. Finally, we confirmed that artemisinins act also like quinolines against Plasmodium via hemozoin production inhibition. The work proposed here described the mechanism of action of this class of molecules and the resistance to artemisinins of this model. These results should help both to reinforce the artemisinins activity and avoid emergence and spread of endoperoxides resistance by focusing in adequate drug partners design. Such considerations appear crucial in the current context of early artemisinin resistance in Asia.

  20. HIV Genetic Diversity and Drug Resistance

    Science.gov (United States)

    Santos, André F.; Soares, Marcelo A.

    2010-01-01

    Most of the current knowledge on antiretroviral (ARV) drug development and resistance is based on the study of subtype B of HIV-1, which only accounts for 10% of the worldwide HIV infections. Cumulative evidence has emerged that different HIV types, groups and subtypes harbor distinct biological properties, including the response and susceptibility to ARV. Recent laboratory and clinical data highlighting such disparities are summarized in this review. Variations in drug susceptibility, in the emergence and selection of specific drug resistance mutations, in viral replicative capacity and in the dynamics of resistance acquisition under ARV selective pressure are discussed. Clinical responses to ARV therapy and associated confounding factors are also analyzed in the context of infections by distinct HIV genetic variants. PMID:21994646

  1. A Variant PfCRT Isoform Can Contribute to Plasmodium falciparum Resistance to the First-Line Partner Drug Piperaquine

    Directory of Open Access Journals (Sweden)

    Satish K. Dhingra

    2017-05-01

    Full Text Available Current efforts to reduce the global burden of malaria are threatened by the rapid spread throughout Asia of Plasmodium falciparum resistance to artemisinin-based combination therapies, which includes increasing rates of clinical failure with dihydroartemisinin plus piperaquine (PPQ in Cambodia. Using zinc finger nuclease-based gene editing, we report that addition of the C101F mutation to the chloroquine (CQ resistance-conferring PfCRT Dd2 isoform common to Asia can confer PPQ resistance to cultured parasites. Resistance was demonstrated as significantly higher PPQ concentrations causing 90% inhibition of parasite growth (IC90 or 50% parasite killing (50% lethal dose [LD50]. This mutation also reversed Dd2-mediated CQ resistance, sensitized parasites to amodiaquine, quinine, and artemisinin, and conferred amantadine and blasticidin resistance. Using heme fractionation assays, we demonstrate that PPQ causes a buildup of reactive free heme and inhibits the formation of chemically inert hemozoin crystals. Our data evoke inhibition of heme detoxification in the parasite’s acidic digestive vacuole as the primary mode of both the bis-aminoquinoline PPQ and the related 4-aminoquinoline CQ. Both drugs also inhibit hemoglobin proteolysis at elevated concentrations, suggesting an additional mode of action. Isogenic lines differing in their pfmdr1 copy number showed equivalent PPQ susceptibilities. We propose that mutations in PfCRT could contribute to a multifactorial basis of PPQ resistance in field isolates.

  2. Apoptosis-related molecular differences for response to tyrosin kinase inhibitors in drug-sensitive and drug-resistant human bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Jixia Li

    2013-01-01

    Full Text Available Context: The epidermal growth factor receptor (EGFR family is reportedly overexpressed in bladder cancer, and tyrosine kinaseinhibitors (TKIs have been suggested as treatment. Gefitinib is a selective inhibitor of the EGFR and lapatinib is a dual inhibitor of both the EGFR and HER2 (human EGFR type 2 receptor. Both compounds compete with the binding of adenosine triphosphate (ATP to the tyrosine kinase domain of the respective receptors to inhibit receptor autophosphorylation causing suppression of signal transduction. Unfortunately, resistance to these inhibitors is a major clinical problem. Aims: To compare the apoptosis signaling pathway(s induced by gefitinib and lapatinib, in UM-UC-5 (drug-sensitive and UM-UC-14 (drug-resistant bladder cancer cells and to identify molecular differences that might be useful predictors of their efficacy. Materials and Methods: Cell proliferation, cell cycle and apoptosis assay were used to detect the effect of TKIs on UM-UC-5 and UM-UC-14 cells. Molecular differences for response to TKIs were examined by protein array. Results: TKIs strongly inhibited cell proliferation and induced cell cycle G1 arrest and apoptosis in UM-UC-5 cells. Most notable apoptosis molecular differences included decreased claspin, trail, and survivin by TKIs in the sensitive cells. In contrast, TKIs had no effect on resistant cells. Conclusions: Claspin, trail, and survivin might be used to determine the sensitivity of bladder cancers to TKIs.

  3. Characterization of ibrutinib-sensitive and -resistant mantle lymphoma cells.

    Science.gov (United States)

    Ma, Jiao; Lu, Pin; Guo, Ailin; Cheng, Shuhua; Zong, Hongliang; Martin, Peter; Coleman, Morton; Wang, Y Lynn

    2014-09-01

    Ibrutinib inhibits Bruton tyrosine kinase (BTK), a key component of early B-cell receptor (BCR) signalling pathways. A multicentre phase 2 trial of ibrutinib in patients with relapsed/refractory mantle cell lymphoma (MCL) demonstrated a remarkable response rate. However, approximately one-third of patients have primary resistance to the drug while other patients appear to lose response and develop secondary resistance. Understanding the molecular mechanisms underlying ibrutinib sensitivity is of paramount importance. In this study, we investigated cell lines and primary MCL cells that display differential sensitivity to ibrutinib. We found that the primary cells display a higher BTK activity than normal B cells and MCL cells show differential sensitivity to BTK inhibition. Genetic knockdown of BTK inhibits the growth, survival and proliferation of ibrutinib-sensitive but not resistant MCL cell lines, suggesting that ibrutinib acts through BTK to produce its anti-tumour activities. Interestingly, inhibition of ERK1/2 and AKT, but not BTK phosphorylation per se, correlates well with cellular response to BTK inhibition in cell lines as well as in primary tumours. Our study suggests that, to prevent primary resistance or to overcome secondary resistance to BTK inhibition, a combinatory strategy that targets multiple components or multiple pathways may represent the most effective approach. © 2014 John Wiley & Sons Ltd.

  4. Deciphering mechanisms of drug sensitivity and resistance to Selective Inhibitor of Nuclear Export (SINE) compounds

    International Nuclear Information System (INIS)

    Crochiere, Marsha; Kashyap, Trinayan; Kalid, Ori; Shechter, Sharon; Klebanov, Boris; Senapedis, William; Saint-Martin, Jean-Richard; Landesman, Yosef

    2015-01-01

    Exportin 1 (XPO1) is a well-characterized nuclear export protein whose expression is up-regulated in many types of cancers and functions to transport key tumor suppressor proteins (TSPs) from the nucleus. Karyopharm Therapeutics has developed a series of small-molecule Selective Inhibitor of Nuclear Export (SINE) compounds, which have been shown to block XPO1 function both in vitro and in vivo. The drug candidate, selinexor (KPT-330), is currently in Phase-II/IIb clinical trials for treatment of both hematologic and solid tumors. The present study sought to decipher the mechanisms that render cells either sensitive or resistant to treatment with SINE compounds, represented by KPT-185, an early analogue of KPT-330. Using the human fibrosarcoma HT1080 cell line, resistance to SINE was acquired over a period of 10 months of constant incubation with increasing concentration of KPT-185. Cell viability was assayed by MTT. Immunofluorescence was used to compare nuclear export of TSPs. Fluorescence activated cell sorting (FACS), quantitative polymerase chain reaction (qPCR), and immunoblots were used to measure effects on cell cycle, gene expression, and cell death. RNA from naïve and drug treated parental and resistant cells was analyzed by Affymetrix microarrays. Treatment of HT1080 cells with gradually increasing concentrations of SINE resulted in > 100 fold decrease in sensitivity to SINE cytotoxicity. Resistant cells displayed prolonged cell cycle, reduced nuclear accumulation of TSPs, and similar changes in protein expression compared to parental cells, however the magnitude of the protein expression changes were more significant in parental cells. Microarray analyses comparing parental to resistant cells indicate that a number of key signaling pathways were altered in resistant cells including expression changes in genes involved in adhesion, apoptosis, and inflammation. While the patterns of changes in transcription following drug treatment are similar in parental

  5. Isothermal microcalorimetry - A quantitative method to monitor Trypanosoma congolense growth and growth inhibition by trypanocidal drugs in real time.

    Science.gov (United States)

    Gysin, M; Braissant, O; Gillingwater, K; Brun, R; Mäser, P; Wenzler, T

    2018-03-16

    Trypanosoma congolense is a protozoan parasite that is transmitted by tsetse flies, causing African Animal Trypanosomiasis, also known as Nagana, in sub-Saharan Africa. Nagana is a fatal disease of livestock that causes severe economic losses. Two drugs are available, diminazene and isometamidium, yet successful treatment is jeopardized by drug resistant T. congolense. Isothermal microcalorimetry is a highly sensitive tool that can be used to study growth of the extracellular T. congolense parasites or to study parasite growth inhibition after the addition of antitrypanosomal drugs. Time of drug action and time to kill can be quantified in a simple way by real time heat flow measurements. We established a robust protocol for the microcalorimetric studies of T. congolense and developed mathematical computations in R to calculate different parameters related to growth and the kinetics of drug action. We demonstrate the feasibility and benefit of the method exemplary with the two standard drugs, diminazene aceturate and isometamidium chloride. The method and the mathematical approach can be translated to study other pathogenic or non-pathogenic cells if they are metabolically active and grow under axenic conditions. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Spread of anti-malarial drug resistance: Mathematical model with implications for ACT drug policies

    Directory of Open Access Journals (Sweden)

    Dondorp Arjen M

    2008-11-01

    Full Text Available Abstract Background Most malaria-endemic countries are implementing a change in anti-malarial drug policy to artemisinin-based combination therapy (ACT. The impact of different drug choices and implementation strategies is uncertain. Data from many epidemiological studies in different levels of malaria endemicity and in areas with the highest prevalence of drug resistance like borders of Thailand are certainly valuable. Formulating an appropriate dynamic data-driven model is a powerful predictive tool for exploring the impact of these strategies quantitatively. Methods A comprehensive model was constructed incorporating important epidemiological and biological factors of human, mosquito, parasite and treatment. The iterative process of developing the model, identifying data needed, and parameterization has been taken to strongly link the model to the empirical evidence. The model provides quantitative measures of outcomes, such as malaria prevalence/incidence and treatment failure, and illustrates the spread of resistance in low and high transmission settings. The model was used to evaluate different anti-malarial policy options focusing on ACT deployment. Results The model predicts robustly that in low transmission settings drug resistance spreads faster than in high transmission settings, and treatment failure is the main force driving the spread of drug resistance. In low transmission settings, ACT slows the spread of drug resistance to a partner drug, especially at high coverage rates. This effect decreases exponentially with increasing delay in deploying the ACT and decreasing rates of coverage. In the high transmission settings, however, drug resistance is driven by the proportion of the human population with a residual drug level, which gives resistant parasites some survival advantage. The spread of drug resistance could be slowed down by controlling presumptive drug use and avoiding the use of combination therapies containing drugs with

  7. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    OpenAIRE

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i....

  8. ZK DrugResist 2.0: A TextMiner to extract semantic relations of drug resistance from PubMed.

    Science.gov (United States)

    Khalid, Zoya; Sezerman, Osman Ugur

    2017-05-01

    Extracting useful knowledge from an unstructured textual data is a challenging task for biologists, since biomedical literature is growing exponentially on a daily basis. Building an automated method for such tasks is gaining much attention of researchers. ZK DrugResist is an online tool that automatically extracts mutations and expression changes associated with drug resistance from PubMed. In this study we have extended our tool to include semantic relations extracted from biomedical text covering drug resistance and established a server including both of these features. Our system was tested for three relations, Resistance (R), Intermediate (I) and Susceptible (S) by applying hybrid feature set. From the last few decades the focus has changed to hybrid approaches as it provides better results. In our case this approach combines rule-based methods with machine learning techniques. The results showed 97.67% accuracy with 96% precision, recall and F-measure. The results have outperformed the previously existing relation extraction systems thus can facilitate computational analysis of drug resistance against complex diseases and further can be implemented on other areas of biomedicine. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Mechanism of activity, biosynthesis and identification of beta-lactam antimicrobial drugs

    Directory of Open Access Journals (Sweden)

    Marija Sedak

    2011-01-01

    Full Text Available Antimicrobal drugs are chemotherapeutics with a wide spectrum of use in human and veterinary medicine and livestock practice. Beta-lactams are the most widespread group of antimicrobal drugs and are most often used in human and veterinary medicine in the treatment of bacterial infections due to their powerful antimicrobial activity and very low toxicity. They are divided into the groups of penicillins, cefalosporins and monobactams. Penicillins are obtained from the filtrate of the mould cultures Penicillium notatum and Penicillium chrysogenum, while cefalosporins are obtained from the filtrate of the actinomycete cultures (Cephalosporium acremonium. Research has lead to the discovery of active groups of 6-amino-penicillin acids, whose isolation has made it possible to produce semi-synthetic penicillins that have surpassed the limitations of natural penicillin G. The physico-chemical properties of the beta-lactams can be altered by substituting hydrogen in the carboxyl group of penicillins, i.e. in modifying the side chain of cefalosporin. This increases the resistance to the activity of β-lactamase and expands the spectrum of activity. Beta-lactams, in therapy concentrations, act as a bacteriocide by inhibiting the synthesis of bacterial cell walls. Penicillins are important for antibacterial chemotherapy, often in combination with other antimicrobal drugs. Cefalosporins are usually used as a replacement for penicillin in treating infections caused by gram-negative bacteria and in prophylaxis for surgery. The use of beta-lactams in animals used for food can result in the residues of these drugs in meat and meat products or milk and eggs. The introduction of antimicrobal drugs in the human body via food is particularly dangerous due to their direct toxicity or carcinogenicity, influences on the composition of the intestinal microflora, possible allergic reactions in sensitive people, and the appearance of resistance of individual pathogenic

  10. Enzastaurin inhibits ABCB1-mediated drug efflux independently of effects on protein kinase C signalling and the cellular p53 status.

    Science.gov (United States)

    Michaelis, Martin; Rothweiler, Florian; Löschmann, Nadine; Sharifi, Mohsen; Ghafourian, Taravat; Cinatl, Jindrich

    2015-07-10

    The PKCβ inhibitor enzastaurin was tested in parental neuroblastoma and rhabdomyosarcoma cell lines, their vincristine-resistant sub-lines, primary neuroblastoma cells, ABCB1-transduced, ABCG2-transduced, and p53-depleted cells. Enzastaurin IC50s ranged from 3.3 to 9.5 μM in cell lines and primary cells independently of the ABCB1, ABCG2, or p53 status. Enzastaurin 0.3125 μM interfered with ABCB1-mediated drug transport. PKCα and PKCβ may phosphorylate and activate ABCB1 under the control of p53. However, enzastaurin exerted similar effects on ABCB1 in the presence or absence of functional p53. Also, enzastaurin inhibited PKC signalling only in concentrations ≥ 1.25 μM. The investigated cell lines did not express PKCβ. PKCα depletion reduced PKC signalling but did not affect ABCB1 activity. Intracellular levels of the fluorescent ABCB1 substrate rhodamine 123 rapidly decreased after wash-out of extracellular enzastaurin, and enzastaurin induced ABCB1 ATPase activity resembling the ABCB1 substrate verapamil. Computational docking experiments detected a direct interaction of enzastaurin and ABCB1. These data suggest that enzastaurin directly interferes with ABCB1 function. Enzastaurin further inhibited ABCG2-mediated drug transport but by a different mechanism since it reduced ABCG2 ATPase activity. These findings are important for the further development of therapies combining enzastaurin with ABC transporter substrates.

  11. Extracts of Coreopsis tinctoria Nutt. Flower Exhibit Antidiabetic Effects via the Inhibition of α-Glucosidase Activity

    Directory of Open Access Journals (Sweden)

    Wujie Cai

    2016-01-01

    Full Text Available The aim of this study was to assay the effects of Coreopsis tinctoria Nutt. flower extracts on hyperglycemia of diet-induced obese mice and the underlying mechanisms. Coreopsis tinctoria flower was extracted with ethanol and water, respectively. The total phenol, flavonoid levels, and the constituents of the extracts were measured. For the animal experiments, C57BL/6 mice were fed with a chow diet, high-fat diet, or high-fat diet mixed with 0.4% (w/w water and ethanol extracts of Coreopsis tinctoria flower for 8 weeks. The inhibitory effects of the extracts on α-glucosidase activity and the antioxidant properties were assayed in vitro. We found that the extracts blocked the increase of fasting blood glucose, serum triglyceride (TG, insulin, leptin, and liver lipid levels and prevented the development of glucose tolerance impairment and insulin resistance in the C57BL/6 mice induced by a high-fat diet. The extracts inhibited α-glycosidase activity and increased oxidant activity in vitro. In conclusion, Coreopsis tinctoria flower extracts may ameliorate high-fat diet-induced hyperglycemia and insulin resistance. The underling mechanism may be via the inhibition of α-glucosidase activity. Our data indicate that Coreopsis tinctoria flower could be used as a beverage supplement and a potential source of drugs for treatment of diabetics.

  12. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  13. Differential inhibition of ex-vivo tumor kinase activity by vemurafenib in BRAF(V600E and BRAF wild-type metastatic malignant melanoma.

    Directory of Open Access Journals (Sweden)

    Andliena Tahiri

    Full Text Available Treatment of metastatic malignant melanoma patients harboring BRAF(V600E has improved drastically after the discovery of the BRAF inhibitor, vemurafenib. However, drug resistance is a recurring problem, and prognoses are still very bad for patients harboring BRAF wild-type. Better markers for targeted therapy are therefore urgently needed.In this study, we assessed the individual kinase activity profiles in 26 tumor samples obtained from patients with metastatic malignant melanoma using peptide arrays with 144 kinase substrates. In addition, we studied the overall ex-vivo inhibitory effects of vemurafenib and sunitinib on kinase activity status.Overall kinase activity was significantly higher in lysates from melanoma tumors compared to normal skin tissue. Furthermore, ex-vivo incubation with both vemurafenib and sunitinib caused significant decrease in phosphorylation of kinase substrates, i.e kinase activity. While basal phosphorylation profiles were similar in BRAF wild-type and BRAF(V600E tumors, analysis with ex-vivo vemurafenib treatment identified a subset of 40 kinase substrates showing stronger inhibition in BRAF(V600E tumor lysates, distinguishing the BRAF wild-type and BRAF(V600E tumors. Interestingly, a few BRAF wild-type tumors showed inhibition profiles similar to BRAF(V600E tumors. The kinase inhibitory effect of vemurafenib was subsequently analyzed in cell lines harboring different BRAF mutational status with various vemurafenib sensitivity in-vitro.Our findings suggest that multiplex kinase substrate array analysis give valuable information about overall tumor kinase activity. Furthermore, intra-assay exposure to kinase inhibiting drugs may provide a useful tool to study mechanisms of resistance, as well as to identify predictive markers.

  14. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    International Nuclear Information System (INIS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-01-01

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer

  15. Drug Resistance of Mycobacterium tuberculosis Complex among ...

    African Journals Online (AJOL)

    BACKGROUND: In Burkina Faso, there is no recent data about the level of drug resistance in Mycobacterium tuberculosis strains among newly diagnosed tuberculosis cases. OBJECTIVE: To provide an update of the primary drug resistance of mycobacterium tuberculosis among patients in Burkina faso. METHODS: ...

  16. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Andrew S Bell

    Full Text Available The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  17. Antimicrobial (Drug) Resistance Prevention

    Science.gov (United States)

    ... June 6, 2018 HIV Vaccine Elicits Antibodies in Animals that Neutralize Dozens of HIV Strains , June 4, 2018 ... Antimicrobial (Drug) Resistance > Understanding share with facebook share with twitter share ...

  18. Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection.

    Science.gov (United States)

    Karuppiah, Ponmurugan; Mustaffa, Muhammed

    2013-09-01

    To investigate different Musa sp. leave extracts of hexane, ethyl acetate and methanol were evaluated for antibacterial activity against multi-drug resistant pathogens causing nosocomial infection by agar well diffusion method and also antioxidant activities. The four different Musa species leaves were extracted with hexane, ethyl acetate and methanol. Antibacterial susceptibility test, minimum inhibitory concentration and minimum inhibitory bacterial concentration were determined by agar well diffusion method. Total phenolic content and in vitro antioxidant activity was determined. All the Musa sp. extracts showed moderate antibacterial activities expect Musa paradisiaca with the inhibition zone ranging from 8.0 to 18.6 mm. Among four species ethyl acetate extracts of Musa paradisiaca showed highest activity against tested pathogens particularly E. coli, P. aeruginosa and Citrobacter sp. The minimum inhibitory concentrations were within the value of 15.63- 250 µg/mL and minimum bactericidal concentrations were ranging from 31.25- 250 µg/mL. Antioxidant activity of Musa acuminate exhibited maximum activity among other three Musa species. The present study concluded that among the different Musa species, Musa paradisiaca displayed efficient antibacterial activity followed by Musa acuminata against multi-drug resistant nosocomial infection causing pathogens. Further, an extensive study is needed to identify the bioactive compounds, mode of action and toxic effect in vivo of Musa sp.

  19. Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug–Drug Interactions

    Science.gov (United States)

    Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil

    2016-01-01

    Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug–drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug–drug interactions. PMID:26927160

  20. Disinfectant-susceptibility of multi-drug-resistant Mycobacterium tuberculosis isolated in Japan

    Directory of Open Access Journals (Sweden)

    Noriko Shinoda

    2016-02-01

    Full Text Available Abstract Background Multi-drug-resistant Mycobacterium tuberculosis has been an important problem in public health around the world. However, limited information about disinfectant-susceptibility of multi-drug-resistant strain of M. tuberculosis was available. Findings We studied susceptibility of several Japanese isolates of multi-drug-resistant M. tuberculosis against disinfectants, which are commonly used in clinical and research laboratories. We selected a laboratory reference strain (H37Rv and eight Japanese isolates, containing five drug-susceptible strains and three multi-drug-resistant strains, and determined profiles of susceptibility against eight disinfectants. The M. tuberculosis strains were distinguished into two groups by the susceptibility profile. There was no relationship between multi-drug-resistance and disinfectant-susceptibility in the M. tuberculosis strains. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance. Conclusions Disinfectant-resistance is independent from multi-drug-resistance in M. tuberculosis. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance.

  1. Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma

    Directory of Open Access Journals (Sweden)

    Kahl Brad S

    2008-05-01

    Full Text Available Abstract Background The proteasome inhibitor bortezomib can inhibit activation of the transcription factor NF-κB, a mechanism implicated in its anti-neoplastic effects observed in mantle cell lymphoma (MCL. However, NF-κB can be activated through many distinct mechanisms, including proteasome independent pathways. While MCL cells have been shown to harbor constitutive NF-κB activity, what fraction of this activity in primary MCL samples is sensitive or resistant to inhibition by bortezomib remains unclear. Results Proteasome activity in the EBV-negative MCL cell lines Jeko-1 and Rec-1 is inhibited by greater than 80% after exposure to 20 nM bortezomib for 4 hours. This treatment decreased NF-κB activity in Jeko-1 cells, but failed to do so in Rec-1 cells when assessed by electrophoretic mobility shift assay (EMSA. Concurrently, Rec-1 cells were more resistant to the cytotoxic effects of bortezomib than Jeko-1 cells. Consistent with a proteasome inhibitor resistant pathway of activation described in mouse B-lymphoma cells (WEHI231 and a breast carcinoma cell line (MDA-MB-468, the bortezomib-resistant NF-κB activity in Rec-1 cells is inhibited by calcium chelators, calmodulin inhibitors, and perillyl alcohol, a monoterpene capable of blocking L-type calcium channels. Importantly, the combination of perillyl alcohol and bortezomib is synergistic in eliciting Rec-1 cell cytotoxicity. The relevance of these results is illuminated by the additional finding that a considerable fraction of primary MCL samples (8 out of 10 displayed bortezomib-resistant constitutive NF-κB activity. Conclusion Our findings show that bortezomib-resistant NF-κB activity is frequently observed in MCL samples and suggest that this activity may be relevant to MCL biology as well as serve as a potential therapeutic target.

  2. Functional miRNAs in breast cancer drug resistance

    Directory of Open Access Journals (Sweden)

    Hu WZ

    2018-03-01

    Full Text Available Weizi Hu,1–3,* Chunli Tan,1–3,* Yunjie He,4 Guangqin Zhang,2 Yong Xu,3,5 Jinhai Tang1 1Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 2School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 3Nanjing Medical University Affiliated Cancer Hospital, 4The First Clinical School of Nanjing Medical University, 5Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: Owing to improved early surveillance and advanced therapy strategies, the current death rate due to breast cancer has decreased; nevertheless, drug resistance and relapse remain obstacles on the path to successful systematic treatment. Multiple mechanisms responsible for drug resistance have been elucidated, and miRNAs seem to play a major part in almost every aspect of cancer progression, including tumorigenesis, metastasis, and drug resistance. In recent years, exosomes have emerged as novel modes of intercellular signaling vehicles, initiating cell–cell communication through their fusion with target cell membranes, delivering functional molecules including miRNAs and proteins. This review particularly focuses on enumerating functional miRNAs involved in breast cancer drug resistance as well as their targets and related mechanisms. Subsequently, we discuss the prospects and challenges of miRNA function in drug resistance and highlight valuable approaches for the investigation of the role of exosomal miRNAs in breast cancer progression and drug resistance. Keywords: microRNA, exosome, breast cancer, drug resistance

  3. Phenotype, Genotype, and Drug Resistance in Subtype C HIV-1 Infection.

    Science.gov (United States)

    Derache, Anne; Wallis, Carole L; Vardhanabhuti, Saran; Bartlett, John; Kumarasamy, Nagalingeswaran; Katzenstein, David

    2016-01-15

    Virologic failure in subtype C is characterized by high resistance to first-line antiretroviral (ARV) drugs, including efavirenz, nevirapine, and lamivudine, with nucleoside resistance including type 2 thymidine analog mutations, K65R, a T69del, and M184V. However, genotypic algorithms predicting resistance are mainly based on subtype B viruses and may under- or overestimate drug resistance in non-B subtypes. To explore potential treatment strategies after first-line failure, we compared genotypic and phenotypic susceptibility of subtype C human immunodeficiency virus 1 (HIV-1) following first-line ARV failure. AIDS Clinical Trials Group 5230 evaluated patients failing an initial nonnucleoside reverse-transcriptase inhibitor (NNRTI) regimen in Africa and Asia, comparing the genotypic drug resistance and phenotypic profile from the PhenoSense (Monogram). Site-directed mutagenesis studies of K65R and T69del assessed the phenotypic impact of these mutations. Genotypic algorithms overestimated resistance to etravirine and rilpivirine, misclassifying 28% and 32%, respectively. Despite K65R with the T69del in 9 samples, tenofovir retained activity in >60%. Reversion of the K65R increased susceptibility to tenofovir and other nucleosides, while reversion of the T69del showed increased resistance to zidovudine, with little impact on other NRTI. Although genotype and phenotype were largely concordant for first-line drugs, estimates of genotypic resistance to etravirine and rilpivirine may misclassify subtype C isolates compared to phenotype. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  4. Drug Pollution from Manufacturing and Antimicrobial Resistance: How Does the European Union Manage the Potential Environmental and Health Risks of Importing Pharmaceutical Active Ingredients From Third Countries?

    DEFF Research Database (Denmark)

    le Gal, Elodie Jeanine Odette

    pollution and anti-micro-bacterial resistance within their own borders by buying and importing drugs manufactured in third countries, such as India and China. With a focus on drug pollution from manufacturing, the goal of this paper is to explore the European drug import safety regime. It intends to better...... and environmental failures. Over the past three decades, the scientific literature has been increasingly reporting case studies on environmental pollution from drug manufacturing, human excretions and improper disposal of unused or expired drug residues in different parts of the world. Active ingredients, which...... are responsible for the biological activity of drugs, have been identified as the main vector of pharmaceutical pollution. Associated with the environmental risk of pharmaceutical pollution in soils and waterways is the predicted risk of antimicrobial resistance (AMR) expected to increase and to dramatically...

  5. Managing anthelmintic resistance-Variability in the dose of drug reaching the target worms influences selection for resistance?

    Science.gov (United States)

    Leathwick, Dave M; Luo, Dongwen

    2017-08-30

    The concentration profile of anthelmintic reaching the target worms in the host can vary between animals even when administered doses are tailored to individual liveweight at the manufacturer's recommended rate. Factors contributing to variation in drug concentration include weather, breed of animal, formulation and the route by which drugs are administered. The implications of this variability for the development of anthelmintic resistance was investigated using Monte-Carlo simulation. A model framework was established where 100 animals each received a single drug treatment. The 'dose' of drug allocated to each animal (i.e. the concentration-time profile of drug reaching the target worms) was sampled at random from a distribution of doses with mean m and standard deviation s. For each animal the dose of drug was used in conjunction with pre-determined dose-response relationships, representing single and poly-genetic inheritance, to calculate efficacy against susceptible and resistant genotypes. These data were then used to calculate the overall change in resistance gene frequency for the worm population as a result of the treatment. Values for m and s were varied to reflect differences in both mean dose and the variability in dose, and for each combination of these 100,000 simulations were run. The resistance gene frequency in the population after treatment increased as m decreased and as s increased. This occurred for both single and poly-gene models and for different levels of dominance (survival under treatment) of the heterozygote genotype(s). The results indicate that factors which result in lower and/or more variable concentrations of active reaching the target worms are more likely to select for resistance. The potential of different routes of anthelmintic administration to play a role in the development of anthelmintic resistance is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Global Phenotypic Characterization of Effects of Fluoroquinolone Resistance Selection on the Metabolic Activities and Drug Susceptibilities of Clostridium perfringens Strains

    Directory of Open Access Journals (Sweden)

    Miseon Park

    2014-01-01

    Full Text Available Fluoroquinolone resistance affects toxin production of Clostridium perfringens strains differently. To investigate the effect of fluoroquinolone resistance selection on global changes in metabolic activities and drug susceptibilities, four C. perfringens strains and their norfloxacin-, ciprofloxacin-, and gatifloxacin-resistant mutants were compared in nearly 2000 assays, using phenotype microarray plates. Variations among mutant strains resulting from resistance selection were observed in all aspects of metabolism. Carbon utilization, pH range, osmotic tolerance, and chemical sensitivity of resistant strains were affected differently in the resistant mutants depending on both the bacterial genotype and the fluoroquinolone to which the bacterium was resistant. The susceptibilities to gentamicin and erythromycin of all resistant mutants except one increased, but some resistant strains were less susceptible to amoxicillin, cefoxitin, ceftriaxone, chloramphenicol, and metronidazole than their wild types. Sensitivity to ethidium bromide decreased in some resistant mutants and increased in others. Microarray analysis of two gatifloxacin-resistant mutants showed changes in metabolic activities that were correlated with altered expression of various genes. Both the chemical structures of fluoroquinolones and the genomic makeup of the wild types influenced the changes found in resistant mutants, which may explain some inconsistent reports of the effects of therapeutic use of fluoroquinolones on clinical isolates of bacteria.

  7. Emergence of Extensively Drug Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    2007-03-01

    Extensively drug-resistant tuberculosis (XDR TB) outbreaks have been reported in South Africa, and strains have been identified on 6 continents. Dr. Peter Cegielski, team leader for drug-resistant TB with the Division of Tuberculosis Elimination at CDC, comments on a multinational team's report on this emerging global public health threat.  Created: 3/1/2007 by Emerging Infectious Diseases.   Date Released: 3/26/2007.

  8. Patient participation in decision-making about cardiovascular preventive drugs - resistance as agency.

    Science.gov (United States)

    Hultberg, Josabeth; Rudebeck, Carl Edvard

    2017-09-01

    The aim of the study was to describe and explore patient agency through resistance in decision-making about cardiovascular preventive drugs in primary care. Six general practitioners from the southeast of Sweden audiorecorded 80 consultations. From these, 28 consultations with proposals from GPs for cardiovascular preventive drug treatments were chosen for theme-oriented discourse analysis. The study shows how patients participate in decision-making about cardiovascular preventive drug treatments through resistance in response to treatment proposals. Passive modes of resistance were withheld responses and minimal unmarked acknowledgements. Active modes were to ask questions, contest the address of an inclusive we, present an identity as a non-drugtaker, disclose non-adherence to drug treatments, and to present counterproposals. The active forms were also found in anticipation to treatment proposals from the GPs. Patients and GPs sometimes displayed mutual renouncement of responsibility for decision-making. The decision-making process appeared to expand both beyond a particular phase in the consultations and beyond the single consultation. The recognition of active and passive resistance from patients as one way of exerting agency may prove valuable when working for patient participation in clinical practice, education and research about patient-doctor communication about cardiovascular preventive medication. We propose particular attentiveness to patient agency through anticipatory resistance, patients' disclosures of non-adherence and presentations of themselves as non-drugtakers. The expansion of the decision-making process beyond single encounters points to the importance of continuity of care. KEY POINTS Guidelines recommend shared decision-making about cardiovascular preventive treatment. We need an understanding of how this is accomplished in actual consultations.This paper describes how patient agency in decision-making is displayed through different forms

  9. Investigating the activity of quinine analogues versus chloroquine resistant Plasmodium falciparum.

    Science.gov (United States)

    Dinio, Theresa; Gorka, Alexander P; McGinniss, Andrew; Roepe, Paul D; Morgan, Jeremy B

    2012-05-15

    Plasmodium falciparum, the deadliest malarial parasite species, has developed resistance against nearly all man-made antimalarial drugs within the past century. However, quinine (QN), the first antimalarial drug, remains efficacious worldwide. Some chloroquine resistant (CQR) P. falciparum strains or isolates show mild cross resistance to QN, but many do not. Further optimization of QN may provide a well-tolerated therapy with improved activity versus CQR malaria. Thus, using the Heck reaction, we have pursued a structure-activity relationship study, including vinyl group modifications of QN. Certain derivatives show good antiplasmodial activity in QN-resistant and QN-sensitive strains, with lower IC(50) values relative to QN. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa

    Science.gov (United States)

    Upcroft, Peter; Upcroft, Jacqueline A.

    2001-01-01

    The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract, fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent, and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined. Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently

  11. Quorum Sensing Inhibition and Structure–Activity Relationships of β-Keto Esters

    Directory of Open Access Journals (Sweden)

    Stephanie Forschner-Dancause

    2016-07-01

    Full Text Available Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS—a cell-cell communication system in bacteria—controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that β-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen β-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl β-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the β-keto ester panel will enable us to obtain more insight into the structure–activity relationships needed to allow for the development of novel anti-virulence agents.

  12. Synergy against drug-resistant HIV-1 with the microbicide antiretrovirals, dapivirine and tenofovir, in combination.

    Science.gov (United States)

    Schader, Susan M; Colby-Germinario, Susan P; Schachter, Jordana R; Xu, Hongtao; Wainberg, Mark A

    2011-08-24

    To evaluate the candidate antiretroviral microbicide compounds, dapivirine (DAP) and tenofovir (TFV), alone and in combination against the transmission of wild-type and nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 from different subtypes. We determined single-drug efficacy of the RTIs, DAP and TFV, against subtype B and non-B wild-type and NNRTI-resistant HIV-1 in vitro. To assess breadth of activity, compounds were tested alone and in combination against wild-type and NNRTI-resistant subtype C primary HIV-1 isolates and complimentary clonal HIV-1 from subtypes B, C and CRF02_AG to control for viral variation. Early infection was quantified by counting light units emitted from TZM-bl cells less than 48-h postinfection. Combination ratios were based on drug inhibitory concentrations (IC(50)s) and combined effects were determined by calculating combination indices. Both candidate microbicide antiretrovirals demonstrated potent anti-NNRTI-resistant HIV-1 activity in vitro, albeit the combination protected better than the single-drug treatments. Of particular interest, the DAP with TFV combination exhibited synergy (50% combination index, CI(50) = 0.567) against subtype C NNRTI-resistant HIV-1, whereas additivity (CI(50) = 0.987) was observed against the wild-type counterpart from the same patient. The effect was not compounded by the presence of subdominant viral fractions, as experiments using complimentary clonal subtype C wild-type (CI(50) = 0.968) and NNRTI-resistant (CI(50) = 0.672) HIV-1, in lieu of the patient quasispecies, gave similar results. This study supports the notion that antiretroviral drug combinations may retain antiviral activity against some drug-resistant HIV-1 despite subtype classification and quasispecies diversity.

  13. Multi drug resistance tuberculosis: pattern seen in last 13 years

    International Nuclear Information System (INIS)

    Iqbal, R.; Shabbir, I.; Munir, K.; Tabassum, M.N.; Khan, S.U.; Khan, M.Z.U.

    2011-01-01

    Background: Drug resistance in tuberculosis is a serious problem throughout the world especially, after the emergence of multi drug resistant TB strains. Objectives: To estimate drug resistance in TB patients and compare it with previous studies to see the changing trends. Materials and Methods: The PMRC Research Centre receives sputum samples from all the leading hospitals of Lahore. This retrospective analysis was done from 1996 to 2008 on the multi drug resistant TB strains that were seen during these years. Five first lines anti tuberculosis drugs were tested on Lowenstein Jensen medium using standard proportion method. Results: A total of 2661 confirmed isolates of Mycobacterium tuberculosis were seen over the past 13 years. Of the total, 2182 were pulmonary and 479 were extra pulmonary specimens. The patients comprised of those with and without history of previous treatment. These specimens were subjected to drug susceptibility testing. Almost half of the patient had some resistance; multiple drug resistance was seen in 12.3% and 23.0% cases without and with history of previous treatment respectively. Overall resistance to rifampicin was 26.4%, isoniazid 24.1% streptomycin 21.6% ethambutol 13.4% and pyrazinamide 28.4% respectively. Statistically significant difference was seen between primary and acquired resistance. When compared with the reports from previous studies from the same area, there was a trend of gradual increase of drug resistance. Conclusions Resistance to anti tuberculosis drugs is high. Policy message. TB Control Program should start 'DOTS Plus' schemes for which drug susceptibility testing facilities should be available for correctly managing the patients. (author)

  14. Multi drug resistance tuberculosis: pattern seen in last 13 years

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, R; Shabbir, I; Munir, K [King Edward Medical University Hospital, Lahore (Pakistan). Dept. of Research Centre; Tabassum, M N; Khan, S U; Khan, M Z.U. [King Edward Medical University Hospital, Lahore (Pakistan). Dept. of Chest Medicine

    2011-01-15

    Background: Drug resistance in tuberculosis is a serious problem throughout the world especially, after the emergence of multi drug resistant TB strains. Objectives: To estimate drug resistance in TB patients and compare it with previous studies to see the changing trends. Materials and Methods: The PMRC Research Centre receives sputum samples from all the leading hospitals of Lahore. This retrospective analysis was done from 1996 to 2008 on the multi drug resistant TB strains that were seen during these years. Five first lines anti tuberculosis drugs were tested on Lowenstein Jensen medium using standard proportion method. Results: A total of 2661 confirmed isolates of Mycobacterium tuberculosis were seen over the past 13 years. Of the total, 2182 were pulmonary and 479 were extra pulmonary specimens. The patients comprised of those with and without history of previous treatment. These specimens were subjected to drug susceptibility testing. Almost half of the patient had some resistance; multiple drug resistance was seen in 12.3% and 23.0% cases without and with history of previous treatment respectively. Overall resistance to rifampicin was 26.4%, isoniazid 24.1% streptomycin 21.6% ethambutol 13.4% and pyrazinamide 28.4% respectively. Statistically significant difference was seen between primary and acquired resistance. When compared with the reports from previous studies from the same area, there was a trend of gradual increase of drug resistance. Conclusions Resistance to anti tuberculosis drugs is high. Policy message. TB Control Program should start 'DOTS Plus' schemes for which drug susceptibility testing facilities should be available for correctly managing the patients. (author)

  15. Arginase inhibition prevents the development of hypertension and improves insulin resistance in obese rats.

    Science.gov (United States)

    Peyton, Kelly J; Liu, Xiao-Ming; Shebib, Ahmad R; Johnson, Fruzsina K; Johnson, Robert A; Durante, William

    2018-04-27

    This study investigated the temporal activation of arginase in obese Zucker rats (ZR) and determined if arginase inhibition prevents the development of hypertension and improves insulin resistance in these animals. Arginase activity, plasma arginine and nitric oxide (NO) concentration, blood pressure, and insulin resistance were measured in lean and obese animals. There was a chronological increase in vascular and plasma arginase activity in obese ZR beginning at 8 weeks of age. The increase in arginase activity in obese animals was associated with a decrease in insulin sensitivity and circulating levels of arginine and NO. The rise in arginase activity also preceded the increase in blood pressure in obese ZR detected at 12 weeks of age. Chronic treatment of 8-week-old obese animals with an arginase inhibitor or L-arginine for 4 weeks prevented the development of hypertension and improved plasma concentrations of arginine and NO. Arginase inhibition also improved insulin sensitivity in obese ZR while L-arginine supplementation had no effect. In conclusion, arginase inhibition prevents the development of hypertension and improves insulin sensitivity while L-arginine administration only mitigates hypertension in obese animals. Arginase represents a promising therapeutic target in ameliorating obesity-associated vascular and metabolic dysfunction.

  16. Defining the Timing of Action of Antimalarial Drugs against Plasmodium falciparum

    Science.gov (United States)

    Langer, Christine; Goodman, Christopher D.; McFadden, Geoffrey I.

    2013-01-01

    Most current antimalarials for treatment of clinical Plasmodium falciparum malaria fall into two broad drug families and target the food vacuole of the trophozoite stage. No antimalarials have been shown to target the brief extracellular merozoite form of blood-stage malaria. We studied a panel of 12 drugs, 10 of which have been used extensively clinically, for their invasion, schizont rupture, and growth-inhibitory activity using high-throughput flow cytometry and new approaches for the study of merozoite invasion and early intraerythrocytic development. Not surprisingly, given reported mechanisms of action, none of the drugs inhibited merozoite invasion in vitro. Pretreatment of erythrocytes with drugs suggested that halofantrine, lumefantrine, piperaquine, amodiaquine, and mefloquine diffuse into and remain within the erythrocyte and inhibit downstream growth of parasites. Studying the inhibitory activity of the drugs on intraerythrocytic development, schizont rupture, and reinvasion enabled several different inhibitory phenotypes to be defined. All drugs inhibited parasite replication when added at ring stages, but only artesunate, artemisinin, cycloheximide, and trichostatin A appeared to have substantial activity against ring stages, whereas the other drugs acted later during intraerythrocytic development. When drugs were added to late schizonts, only artemisinin, cycloheximide, and trichostatin A were able to inhibit rupture and subsequent replication. Flow cytometry proved valuable for in vitro assays of antimalarial activity, with the free merozoite population acting as a clear marker for parasite growth inhibition. These studies have important implications for further understanding the mechanisms of action of antimalarials, studying and evaluating drug resistance, and developing new antimalarials. PMID:23318799

  17. In vitro antileishmanial activity of fisetin flavonoid via inhibition of glutathione biosynthesis and arginase activity in Leishmania infantum.

    Science.gov (United States)

    Adinehbeigi, Keivan; Razi Jalali, Mohammad Hossein; Shahriari, Ali; Bahrami, Somayeh

    2017-06-01

    With the increasing emergence of drug resistant Leishmania sp. in recent years, combination therapy has been considered as a useful way to treat and control of Leishmaniasis. The present study was designed to evaluate the antileishmanial effects of the fisetin alone and combination of fisetin plus Meglumine antimoniate (Fi-MA) against Leishmania infantum. The IC50 values for fisetin were obtained 0.283 and 0.102 μM against promastigotes and amastigote forms, respectively. Meglumine antimoniate (MA, Glucantime) as control drug also revealed IC50 values of 0.247 and 0.105 μM for promastigotes and amastigotes of L. infantum, respectively. In order to determine the mode of action of fisetin and Meglumine antimoniate (MA, Glucantime), the activities of arginase (ARG), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) were measured. Moreover, intracellular glutathione (GSH) and nitric oxide (NO) levels in L. infantum-infected macrophages and L. infantum promastigotes which were treated with IC50 concentrations of fisetin, MA and Fi-MA were investigated. Our results showed that MA decreased CAT and SOD activity and increased NO levels in L. infantum-infected macrophages. In promastigotes, MA inhibited parasite SOD activity and reduced parasite NO production. The decreased levels of most of the antioxidant enzymes, accompanying by the raised level of NO in treated macrophages with MA, were observed to regain their normal profiles due to Fi-MA treatment. Furthermore, fisetin could prevent the growth of promastigotes by inhibition of ARG activity and reduction of GSH levels and NO production. In conclusion, these findings showed that fisetin improves MA side effects.

  18. PKCη confers protection against apoptosis by inhibiting the pro-apoptotic JNK activity in MCF-7 cells

    International Nuclear Information System (INIS)

    Rotem-Dai, Noa; Oberkovitz, Galia; Abu-Ghanem, Sara; Livneh, Etta

    2009-01-01

    Apoptosis is frequently regulated by different protein kinases including protein kinase C family enzymes. Both inhibitory and stimulatory effects were demonstrated for several of the different PKC isoforms. Here we show that the novel PKC isoform, PKCη, confers protection against apoptosis induced by the DNA damaging agents, UVC irradiation and the anti-cancer drug - Camptothecin, of the breast epithelial adenocarcinoma MCF-7 cells. The induced expression of PKCη in MCF-7 cells, under the control of the tetracycline-responsive promoter, resulted in increased cell survival and inhibition of cleavage of the apoptotic marker PARP-1. Activation of caspase-7 and 9 and the release of cytochrome c were also inhibited by the inducible expression of PKCη. Furthermore, JNK activity, required for apoptosis in MCF-7, as indicated by the inhibition of both caspase-7 cleavage and cytochrome c release from the mitochondria in the presence of the JNK inhibitor SP600125, was also suppressed by PKCη expression. Hence, in contrast to most PKC isoforms enhancing JNK activation, our studies show that PKCη is an anti-apoptotic protein, acting as a negative regulator of JNK activity. Thus, PKCη could represent a target for intervention aimed to reduce resistance to anti-cancer treatments.

  19. Predicted levels of HIV drug resistance

    DEFF Research Database (Denmark)

    Cambiano, Valentina; Bertagnolio, Silvia; Jordan, Michael R

    2014-01-01

    -term effects. METHODS: The previously validated HIV Synthesis model was calibrated to South Africa. Resistance was modeled at the level of single mutations, transmission potential, persistence, and effect on drug activity. RESULTS: We estimate 652 000 people (90% uncertainty range: 543 000-744 000) are living...... are maintained, in 20 years' time HIV incidence is projected to have declined by 22% (95% confidence interval, CI -23 to -21%), and the number of people carrying NNRTI resistance to be 2.9-fold higher. If enhancements in diagnosis and retention in care occur, and ART is initiated at CD4 cell count less than 500......  cells/μl, HIV incidence is projected to decline by 36% (95% CI: -37 to -36%) and the number of people with NNRTI resistance to be 4.1-fold higher than currently. Prevalence of people with viral load more than 500  copies/ml carrying NRMV is not projected to differ markedly according to future ART...

  20. Combined antiretroviral and anti- tuberculosis drug resistance ...

    African Journals Online (AJOL)

    these epidemics, many challenges remain.[3] Antiretroviral and anti-TB drug resistance pose considerable threats to the control of these epidemics.[4,5]. The breakdown in HIV/TB control within prisons is another emerging threat.[6,7] We describe one of the first reports of combined antiretroviral and anti-TB drug resistance ...

  1. Sulindac, a nonsteroidal anti-inflammatory drug, selectively inhibits interferon-γ-induced expression of the chemokine CXCL9 gene in mouse macrophages

    International Nuclear Information System (INIS)

    Sakaeda, Yoshiichi; Hiroi, Miki; Shimojima, Takahiro; Iguchi, Mayumi; Kanegae, Haruhide; Ohmori, Yoshihiro

    2006-01-01

    Sulindac, a non-steroidal anti-inflammatory drug, has been shown to exert an anti-tumor effect on several types of cancer. To determine the effect of sulindac on intracellular signaling pathways in host immune cells such as macrophages, we investigated the effect of the drug on interferon gamma (IFNγ)-induced expression of signal transducer and activator of transcription 1 (STAT1) and other genes in mouse macrophage-like cell line RAW264.7 cells. Sulindac, but not aspirin or sodium salicylate, inhibited IFNγ-induced expression of the CXC ligand 9 (CXCL9) mRNA, a chemokine for activated T cells, whereas the interferon-induced expression of CXCL10 or IFN regulatory factor-1 was not affected by sulindac. Luciferase reporter assay demonstrated that sulindac inhibited IFNγ-induced promoter activity of the CXCL9 gene. Surprisingly, sulindac had no inhibitory effect on IFNγ-induced STAT1 activation; however, constitutive nuclear factor κB activity was suppressed by the drug. These results indicate that sulindac selectively inhibited IFNγ-inducible gene expression without inhibiting STAT1 activation

  2. New Approaches for Quantitating the Inhibition of HIV-1 Replication by Antiviral Drugs in vitro and in vivo

    Science.gov (United States)

    McMahon, Moira A.; Shen, Lin; Siliciano, Robert F.

    2014-01-01

    Purpose of review With highly active anti-retroviral therapy (HAART), HIV-1 infection has become a manageable lifelong disease. Developing optimal treatment regimens requires understanding how to best measure anti-HIV activity in vitro and how drug dose response curves generated in vitro correlate with in vivo efficacy. Recent findings Several recent studies have indicated that conventional multi-round infectivity assays are inferior to single cycle assays at both low and high levels of inhibition. Multi-round infectivity assays can fail to detect subtle but clinically significant anti-HIV activity. The discoveries of the anti-HIV activity of the hepatitis B drug entecavir and the herpes simplex drug acyclovir were facilitated by single round infectivity assays. Recent studies using a single round infectivity assay have shown that a previously neglected parameter, the dose response curve slope, is an extremely important determinant of antiviral activity. Some antiretroviral drugs have steep slopes that result in extraordinary levels of antiviral activity. The instantaneous inhibitory potential (IIP), the log reduction in infectivity in a single round assay at clinical drug concentrations, has been proposed as a novel index for comparing antiviral activity. Summary Among in vitro measures of antiviral activity, single round infection assays have the advantage of measure instantaneous inhibition by a drug. Re-evaluating the antiviral activity of approved HIV-1 drugs has shown that the slope parameter is an important factor in drug activity. Determining the IIP by using a single round infectivity assay may provide important insights that can predict the in vivo efficacy of anti-HIV-1 drugs. PMID:19841584

  3. In vitro cytochrome P450 inhibition potential of methylenedioxy-derived designer drugs studied with a two-cocktail approach.

    Science.gov (United States)

    Dinger, Julia; Meyer, Markus R; Maurer, Hans H

    2016-02-01

    In vitro cytochrome P450 (CYP) inhibition assays are common approaches for testing the inhibition potential of drugs for predicting potential interactions. In contrast to marketed medicaments, drugs of abuse, particularly the so-called novel psychoactive substances, were not tested before distribution and consumption. Therefore, the inhibition potential of methylenedioxy-derived designer drugs (MDD) of different drug classes such as aminoindanes, amphetamines, benzofurans, cathinones, piperazines, pyrrolidinophenones, and tryptamines should be elucidated. The FDA-preferred test substrates, split in two cocktails, were incubated with pooled human liver microsomes and analysed after protein precipitation using LC-high-resolution-MS/MS. IC50 values were determined of MDD showing more than 50 % inhibition in the prescreening. Values were calculated by plotting the relative metabolite concentration formed over the logarithm of the inhibitor concentration. All MDD showed inhibition against CYP2D6 activity and most of them in the range of the clinically relevant CYP2D6 inhibitors quinidine and fluoxetine. In addition, the beta-keto compounds showed inhibition of the activity of CYP2B6, 5,6-MD-DALT of CYP1A2 and CYP3A, and MDAI of CYP2A6, all in the range of clinically relevant inhibitors. In summary, all MDD showed inhibition of the activity of CYP2D6, six of CYP1A2, three of CYP2A6, 13 of CYP2B6, two of CYP2C9, six of CYP2C19, one of CYP2E1, and six of CYP3A. These results showed that the CYP inhibition by MDD might be clinically relevant, but further studies are needed for final conclusions.

  4. Streptococcus pneumoniae Drugs Resistance in Acute Rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Chong Jie Hao

    2016-03-01

    Full Text Available Background: Acute rhinosinusitis that usually caused by Streptococcus pneumoniae becomes the reason why patients seek for medical care. Drugs resistance in Streptococcus pneumoniae is increasing worldwide. This study was conducted to determine drugs resistance of Streptococcus pneumonia from acute rhinosinusitis in Dr. Hasan Sadikin General Hospital. Methods: A descriptive laboratory study was conducted in June–October 2014 at the Laboratory of Microbiology Faculty of Medicine Universitas Padjadjaran. The sample was taken using nasopharyngeal swabbing from 100 acute rhinosinusitis patients in Dr. Hasan Sadikin General Hospital and planted on tryptic soy agar containing 5% sheep blood and 5 μg/ml of gentamicin sulphate and then incubated in 5% CO2 incubator at 37°C for 24 hours. The identification of Streptococcus pneumonia was performed by optochin test. The susceptibility test against Streptococcus pneumoniae was done using disk diffusion method.The antibiotic disks were trimethoprim-sulfamethoxazole, oxacillin, levofloxacin, azithromycin, and doxycycline. Results: Out of 100 samples, 8 of them were tested positive for Streptococcus pneumoniae. Three of Streptococcus pneumoniae isolates died with unknown reason after it were stored at -80 .The drugs resistance test showed the resistance of Streptococcus pneumonia to oxacillin, azithromycin and trimethoprim were 6, whereas levofloxacin and doxycycline are 4. Conclusions: Streptococcus pneumonia drugs resistance in acute rhinosinusitis shows the resistance of Streptococcus pneumoniae to oxacillin, azithromycin and trimethoprim are 6, whereas the resistance to levofloxacin and doxycycline are 4.

  5. A Structural View on Medicinal Chemistry Strategies against Drug Resistance.

    Science.gov (United States)

    Agnello, Stefano; Brand, Michael; Chellat, Mathieu F; Gazzola, Silvia; Riedl, Rainer

    2018-05-30

    The natural phenomenon of drug resistance represents a generic impairment that hampers the benefits of drugs in all major clinical indications. Antibacterials and antifungals are affected as well as compounds for the treatment of cancer, viral infections or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, underlying molecular processes have been identified to understand the emergence of resistance and to overcome this detrimental mechanism. Detailed structural information of the root causes for drug resistance is nowadays frequently available to design next generation drugs anticipated to suffer less from resistance. This knowledge-based approach is a prerequisite in the fight against the inevitable occurrence of drug resistance to secure the achievements of medicinal chemistry in the future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Changing prevalence and resistance patterns in children with drug-resistant tuberculosis in Mumbai.

    Science.gov (United States)

    Shah, Ira; Shah, Forum

    2017-05-01

    The prevalence of drug-resistant (DR) tuberculosis (TB) in children is increasing. Although, in India, multi-drug-resistant (MDR) TB rates have been relatively stable, the number of children with pre-extensively drug-resistant and extensively drug-resistant (XDR) TB is increasing. To determine whether the prevalence of DR TB in children in Mumbai is changing and to study the evolving patterns of resistance. A retrospective study was undertaken in 1311 paediatric patients referred between April 2007 and March 2013 to the Paediatric TB clinic at B. J. Wadia Hospital for Children, Mumbai. Children were defined as having DR TB on the basis of drug susceptibility testing (DST) of Mycobacterium tuberculosis grown on culture of body fluids (in the case of extra pulmonary TB) or from gastric lavage/bronchi-alveolar lavage/sputum in patients with pulmonary TB or from DST of the contacts. The prevalence of DR TB was calculated and the type of DR was evaluated yearly and in the pre-2010 and post-2010 eras. The overall prevalence of DR TB was 86 (6.6%) with an increase from 23 (5.6%) patients pre-2010 to 63 (7%) post-2010 (P = 0.40). Nine (10.4%) patients were diagnosed on the basis of contact with a parent with DR TB. Overall fluoroquinolone resistance increased from 9 (39.1%) pre-2010 to 59 (93.7%) post-2010 (P = 0.0001): moxifloxacin resistance increased from 2 (8.7%) to 29 (46%) (P = 0.0018) and ofloxacin resistance increased from 7 (30.4%) to 30 (47.6%) (P = 0.14). Ethionamide resistance also increased from 6 (26.1%) to 31 (49.2%) (P = 0.04), aminoglycoside resistance was one (4.3%) pre-2010 and 12 (19%) post-2010 (P = 0.17) and resistance remained virtually the same for both amikacin [0 pre-2010 and 6 (9.5%) after 2010] and kanamycin [one (4.3%) pre- and 6 (9.5%) post-2010]. Of the first-line drugs, resistance remained the same for isoniazid [23 (100%) to 61 (96.8%)], rifampicin [22 (95.7%) to 51 (80.9%),P = 0.17], pyrazinamide [15 (65.2%) to

  7. [Comparative observation on inhibition of hemozoin formation and their in vitro and in vivo anti-schistosome activity displayed by 7 antimalarial drugs].

    Science.gov (United States)

    Xue, Jian; Jiang, Bin; Liu, Cong-Shan; Sun, Jun; Xiao, Shu-Hua

    2013-06-01

    To observe and compare the inhibition of hemozoin formation and the in vitro as well as in vivo antischistosomal activity induced by seven antimalarial drugs. Inhibition of hemozoin formation displayed by chloroquine phosphate, quinine hydrochloride, quinidine, mefloquine hydrochloride, pyronaridine phosphate and lumefantrine at 25 micromol/L, and artemether at 100 micromol/L was performed by assay of inhibition of beta-hematin formation in 1 mol/L sodium acetate buffers containing hematin with various pH of 4.0, 4.2, 4.4, 4.6, 4.8, and 5.0. In in vitro antischistosomal study, the medium of RPMI 1640 supplemented by 10% calf serum was used to maintain the adult Schistosoma japonicum, and the 50% and 95% lethal concentrations (LC50 and LC95) to kill the adult worms of each drug were then determined. Meanwhile, the interaction of quinine, pyronaridine and chloroquine combined with hemin against adult schistosomes was also undertaken. As to in vivo test, the efficacy of seven antimalarial drugs administered orally or intraperitoneally to mice infected with adult schistosomes was observed. In the acidic acetate-hematin solution, 25 micromol/L pyronaridine showed significant inhibition of beta-hematin formation at pH 4.4-5.0 with inhibition rates of 81.3%-97.0%. At pH 4.6, the inhibition rates of beta-hematin formation in acetate-hematin solution induced by mefloquine, chloroquine or quinine at concentration of 25 beta mol/L were 79.7%, 72.8% or 65.8%, respectively, and the beta-hematin formation was continually inhibited by these 3 antimalarial drugs at pH 4.8 and 5.0 with inhibition rates of 83.1%-90.6%, 41.9%-49.0% or 53.2-62.0%. The inhibition rates of beta-hematin formation at pH 4.6 and 4.8-5.0 induced by lumefantrine 25 micromol/L were 74.3% and 40.4%-40.5%, respectively. While under the same concentration of quinidine, 53.4% and 50.9% inhibition rates of beta-hematin formation were observed at pH 4.8 and 5.0. As to artemether, higher concentration of 100

  8. Dual Drug Targeting of Mutant Bcr-Abl Induces Inactive Conformation: New Strategy for the Treatment of Chronic Myeloid Leukemia and Overcoming Monotherapy Resistance.

    Science.gov (United States)

    El Rashedy, Ahmed A; Olotu, Fisayo A; Soliman, Mahmoud E S

    2018-03-01

    Bcr-Abl is an oncogenic fusion protein which expression enhances tumorigenesis, and has been highly associated with chronic myeloid leukemia (CML). Acquired drug resistance in mutant Bcr-Abl has enhanced pathogenesis with the use of single therapy agents such as nilotinib. Moreover, allosteric targeting has been identified to consequentially inhibit Bcr-Abl activity, which led to the recent development of ABL-001 (asciminib) that selectively binds the myristoyl pocket. Experimental studies have revealed that the combination of nilotinib and ABL-001 induced a 'bent' conformation in the C-terminal helix of Bcr-Abl; a benchmark of inhibition, thereby exhibiting a greater potency in the treatment of CML, surmounting the setbacks of drug resistance, disease regression and relapse. Therefore, we report the first account of the dynamics and conformational analysis of oncogenic T334I Bcr-Abl by dual targeting. Our findings revealed that unlike in the Bcr-Abl-Nilotinib complex, dual targeting by both inhibitors induced the bent conformation in the C-terminal helix that varied with time. This was coupled with significant alteration in Bcr-Abl stability, flexibility, and compactness and an overall structural re-orientation inwards towards the hydrophobic core, which reduced the solvent-exposed residues indicative of protein folding. This study will facilitate allosteric targeting and the design of more potent allosteric inhibitors for resistive target proteins in cancer. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  9. Fitness of Leishmania donovani parasites resistant to drug combinations.

    Directory of Open Access Journals (Sweden)

    Raquel García-Hernández

    2015-04-01

    Full Text Available Drug resistance represents one of the main problems for the use of chemotherapy to treat leishmaniasis. Additionally, it could provide some advantages to Leishmania parasites, such as a higher capacity to survive in stress conditions. In this work, in mixed populations of Leishmania donovani parasites, we have analyzed whether experimentally resistant lines to one or two combined anti-leishmanial drugs better support the stress conditions than a susceptible line expressing luciferase (Luc line. In the absence of stress, none of the Leishmania lines showed growth advantage relative to the other when mixed at a 1:1 parasite ratio. However, when promastigotes from resistant lines and the Luc line were mixed and exposed to different stresses, we observed that the resistant lines are more tolerant of different stress conditions: nutrient starvation and heat shock-pH stress. Further to this, we observed that intracellular amastigotes from resistant lines present a higher capacity to survive inside the macrophages than those of the control line. These results suggest that resistant parasites acquire an overall fitness increase and that resistance to drug combinations presents significant differences in their fitness capacity versus single-drug resistant parasites, particularly in intracellular amastigotes. These results contribute to the assessment of the possible impact of drug resistance on leishmaniasis control programs.

  10. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes

    Directory of Open Access Journals (Sweden)

    Gudepalya Renukaiah Rudramurthy

    2016-06-01

    Full Text Available Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals. Antimicrobials are considered “miracle drugs” and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future.

  11. Activity of Topical Antimicrobial Agents Against Multidrug-Resistant Bacteria Recovered from Burn Patients

    Science.gov (United States)

    2010-01-01

    Spectrum of activity Pros Cons Resistance/ other Prior studies Bacitracin Polypeptide produced by Bacillus subtilis that inhibits cell wall synthesis and...concentrations (MICs) and zones of inhibition (ZI). Isolates had systemic antibiotic resistance and clonality determined. MDR included resistance to... antibiotics in three or more classes. Results: We assessed 22 ESBL-producing K. pneumoniae, 20 ABC (75% MDR), 20 P. aeruginosa (45% MDR), and 20 MRSA

  12. Aggressive chemotherapy and the selection of drug resistant pathogens.

    Directory of Open Access Journals (Sweden)

    Silvie Huijben

    2013-09-01

    Full Text Available Drug resistant pathogens are one of the key public health challenges of the 21st century. There is a widespread belief that resistance is best managed by using drugs to rapidly eliminate target pathogens from patients so as to minimize the probability that pathogens acquire resistance de novo. Yet strong drug pressure imposes intense selection in favor of resistance through alleviation of competition with wild-type populations. Aggressive chemotherapy thus generates opposing evolutionary forces which together determine the rate of drug resistance emergence. Identifying treatment regimens which best retard resistance evolution while maximizing health gains and minimizing disease transmission requires empirical analysis of resistance evolution in vivo in conjunction with measures of clinical outcomes and infectiousness. Using rodent malaria in laboratory mice, we found that less aggressive chemotherapeutic regimens substantially reduced the probability of onward transmission of resistance (by >150-fold, without compromising health outcomes. Our experiments suggest that there may be cases where resistance evolution can be managed more effectively with treatment regimens other than those which reduce pathogen burdens as fast as possible.

  13. Risk Factors for Acquisition of Drug Resistance during Multidrug-Resistant Tuberculosis Treatment, Arkhangelsk Oblast, Russia, 2005–2010

    Science.gov (United States)

    Ershova, Julia; Vlasova, Natalia; Nikishova, Elena; Tarasova, Irina; Eliseev, Platon; Maryandyshev, Andrey O.; Shemyakin, Igor G.; Kurbatova, Ekaterina; Cegielski, J. Peter

    2015-01-01

    Acquired resistance to antituberculosis drugs decreases effective treatment options and the likelihood of treatment success. We identified risk factors for acquisition of drug resistance during treatment for multidrug-resistant tuberculosis (MDR TB) and evaluated the effect on treatment outcomes. Data were collected prospectively from adults from Arkhangelsk Oblast, Russia, who had pulmonary MDR TB during 2005–2008. Acquisition of resistance to capreomycin and of extensively drug-resistant TB were more likely among patients who received 3 effective drugs (9.4% vs. 0% and 8.6% vs. 0.8%, respectively). Poor outcomes were more likely among patients with acquired capreomycin resistance (100% vs. 25.9%), acquired ofloxacin resistance (83.6% vs. 22.7%), or acquired extensive drug resistance (100% vs. 24.4%). To prevent acquired drug resistance and poor outcomes, baseline susceptibility to first- and second-line drugs should be determined quickly, and treatment should be adjusted to contain >3 effective drugs. PMID:25988954

  14. Mathematical modeling and computational prediction of cancer drug resistance.

    Science.gov (United States)

    Sun, Xiaoqiang; Hu, Bin

    2017-06-23

    Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of

  15. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli.

    Science.gov (United States)

    Bunnell, Bryan E; Escobar, Jillian F; Bair, Kirsten L; Sutton, Mark D; Crane, John K

    2017-01-01

    Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx) and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.

  16. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Bryan E Bunnell

    Full Text Available Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.

  17. Folate decorated dual drug loaded nanoparticle: role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Manasi Das

    Full Text Available Retinoblastoma is the most common intraocular tumor in children. Malfunctioning of many signaling pathways regulating cell survival or apoptosis, make the disease more vulnerable. Notably, resistance to chemotherapy mediated by MRP-1, lung-resistance protein (LRP is the most challenging aspect to treat this disease. Presently, much attention has been given to the recently developed anticancer drug nutlin-3a because of its non-genotoxic nature and potency to activate tumor suppressor protein p53. However, being a substrate of multidrug resistance protein MRP1 and Pgp its application has become limited. Currently, research has step towards reversing Multi drug resistance (MDR by using curcumin, however its clinical relevance is restricted by plasma instability and poor bioavailability. In the present investigation we tried to encapsulate nutlin-3a and curcumin in PLGA nanoparticle (NPs surface functionalized with folate to enhance therapeutic potential of nutlin-3a by modulating MDR. We document that curcumin can inhibit the expression of MRP-1 and LRP gene/protein in a concentration dependent manner in Y79 cells. In vitro cellular cytotoxicity, cell cycle analysis and apoptosis studies were done to compare the effectiveness of native drugs (single or combined and single or dual drug loaded nanoparticles (unconjugated/folate conjugated. The result demonstrated an augmented therapeutic efficacy of targeted dual drug loaded NPs (Fol-Nut-Cur-NPs over other formulation. Enhanced expression or down regulation of proapoptotic/antiapoptotic proteins respectively and down-regulation of bcl2 and NFκB gene/protein by Fol-Nut-Cur-NPs substantiate the above findings. This is the first investigation exploring the role of curcumin as MDR modulator to enhance the therapeutic potentiality of nutlin-3a, which may opens new direction for targeting cancer with multidrug resistance phenotype.

  18. HIV resistance testing and detected drug resistance in Europe

    DEFF Research Database (Denmark)

    Schultze, Anna; Phillips, Andrew N; Paredes, Roger

    2015-01-01

    to Southern Europe. CONCLUSIONS: Despite a concurrent decline in virological failure and testing, drug resistance was commonly detected. This suggests a selective approach to resistance testing. The regional differences identified indicate that policy aiming to minimize the emergence of resistance......OBJECTIVES: To describe regional differences and trends in resistance testing among individuals experiencing virological failure and the prevalence of detected resistance among those individuals who had a genotypic resistance test done following virological failure. DESIGN: Multinational cohort...... study. METHODS: Individuals in EuroSIDA with virological failure (>1 RNA measurement >500 on ART after >6 months on ART) after 1997 were included. Adjusted odds ratios (aORs) for resistance testing following virological failure and aORs for the detection of resistance among those who had a test were...

  19. Icotinib antagonizes ABCG2-mediated multidrug resistance, but not the pemetrexed resistance mediated by thymidylate synthase and ABCG2.

    Science.gov (United States)

    Wang, De-Shen; Patel, Atish; Shukla, Suneet; Zhang, Yun-Kai; Wang, Yi-Jun; Kathawala, Rishil J; Robey, Robert W; Zhang, Li; Yang, Dong-Hua; Talele, Tanaji T; Bates, Susan E; Ambudkar, Suresh V; Xu, Rui-Hua; Chen, Zhe-Sheng

    2014-06-30

    ABCG2 is a potential biomarker causing multidrug resistance (MDR) in Non-Small Cell Lung Cancer (NSCLC). We conducted this study to investigate whether Icotinib, a small-molecule inhibitor of EGFR tyrosine kinase, could interact with ABCG2 transporter in NSCLC. Our results showed that Icotinib reversed ABCG2-mediated MDR by antagonizing the drug efflux function of ABCG2. Icotinib stimulated the ATPase activity in a concentration-dependent manner and inhibited the photolabeling of ABCG2 with [125I]-Iodoarylazidoprazosin, demonstrating that it interacts at the drug-binding pocket. Homology modeling predicted the binding conformation of Icotinib at Asn629 centroid-based grid of ABCG2. However, Icotinib at reversal concentration did not affect the expression levels of AKT and ABCG2. Furthermore, a combination of Icotinib and topotecan exhibited significant synergistic anticancer activity against NCI-H460/MX20 tumor xenografts. However, the inhibition of transport activity of ABCG2 was insufficient to overcome pemetrexed resistance in NCI-H460/MX20 cells, which was due to the co-upregulated thymidylate synthase (TS) and ABCG2 expression. This is the first report to show that the up-regulation of TS in ABCG2-overexpressing cell line NCI-H460/MX20 may play a role of resistance to pemetrexate. Our findings suggested different possible strategies of overcoming the resistance of topotecan and pemetrexed in the NSCLC patients.

  20. FKBP12-Dependent Inhibition of Calcineurin Mediates Immunosuppressive Antifungal Drug Action in Malassezia.

    Science.gov (United States)

    Ianiri, Giuseppe; Applen Clancey, Shelly; Lee, Soo Chan; Heitman, Joseph

    2017-10-24

    has adverse side effects and is not recommended for long treatment periods. Calcineurin inhibitors have been proposed as a suitable alternative to treat patients affected by skin lesions caused by Malassezia Although calcineurin inhibitors are well-known as immunosuppressive drugs, they are also characterized by potent antimicrobial activity. In the present study, we investigated the mechanism of action of FK506 (tacrolimus), ascomycin (FK520), and pimecrolimus in M. furfur and M. sympodialis and found that the conserved immunophilin FKBP12 is the target of these drugs with which it forms a complex that directly binds calcineurin and inhibits its signaling activity. We found that FKBP12 is also required for the additive activity of calcineurin inhibitors with fluconazole. Furthermore, the increasing natural occurrence in fungal pathogen populations of mutator strains poses a high risk for the rapid emergence of drug resistance and adaptation to host defense. This led us to generate an engineered hypermutator msh2 Δ mutant strain of M. sympodialis and genetically evaluate mutational events resulting in a substantially increased rate of resistance to FK506 compared to that of the wild type. Our study paves the way for the novel clinical use of calcineurin inhibitors with lower immunosuppressive activity that could be used clinically to treat a broad range of fungal infections, including skin disorders caused by Malassezia . Copyright © 2017 Ianiri et al.

  1. Molecular chess? Hallmarks of anti-cancer drug resistance.

    Science.gov (United States)

    Cree, Ian A; Charlton, Peter

    2017-01-05

    The development of resistance is a problem shared by both classical chemotherapy and targeted therapy. Patients may respond well at first, but relapse is inevitable for many cancer patients, despite many improvements in drugs and their use over the last 40 years. Resistance to anti-cancer drugs can be acquired by several mechanisms within neoplastic cells, defined as (1) alteration of drug targets, (2) expression of drug pumps, (3) expression of detoxification mechanisms, (4) reduced susceptibility to apoptosis, (5) increased ability to repair DNA damage, and (6) altered proliferation. It is clear, however, that changes in stroma and tumour microenvironment, and local immunity can also contribute to the development of resistance. Cancer cells can and do use several of these mechanisms at one time, and there is considerable heterogeneity between tumours, necessitating an individualised approach to cancer treatment. As tumours are heterogeneous, positive selection of a drug-resistant population could help drive resistance, although acquired resistance cannot simply be viewed as overgrowth of a resistant cancer cell population. The development of such resistance mechanisms can be predicted from pre-existing genomic and proteomic profiles, and there are increasingly sophisticated methods to measure and then tackle these mechanisms in patients. The oncologist is now required to be at least one step ahead of the cancer, a process that can be likened to 'molecular chess'. Thus, as well as an increasing role for predictive biomarkers to clinically stratify patients, it is becoming clear that personalised strategies are required to obtain best results.

  2. Antitumor effects of cecropin B-LHRH’ on drug-resistant ovarian and endometrial cancer cells

    International Nuclear Information System (INIS)

    Li, Xiaoyong; Shen, Bo; Chen, Qi; Zhang, Xiaohui; Ye, Yiqing; Wang, Fengmei; Zhang, Xinmei

    2016-01-01

    Luteinizing hormone-releasing hormone receptor (LHRHr) represents a promising therapeutic target for treating sex hormone-dependent tumors. We coupled cecropin B, an antimicrobial peptide, to LHRH’, a form of LHRH modified at carboxyl-terminal residues 4–10, which binds to LHRHr without interfering with luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. This study aimed to assess the antitumor effects of cecropin B-LHRH’ (CB-LHRH’) in drug-resistant ovarian and endometrial cancers. To evaluate the antitumor effects of CB-LHRH’, three drug resistant ovarian cancer cell lines (SKOV-3, ES-2, NIH:OVCAR-3) and an endometrial cancer cell line (HEC-1A) were treated with CB-LHRH’. Cell morphology changes were assessed using inverted and electron microscopes. In addition, cell growth and cell cytotoxicity were measured by MTT assay and LDH release, respectively. In addition, hemolysis was measured. Furthermore, radioligand receptor binding, hypersensitization and minimal inhibitory concentrations (against Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, Pseudomonas aeruginosa, and Acinetobacter baumannii) were determined. Finally, the impact on tumor growth in BALB/c-nu mice was assessed in an ES-2 xenograft model. CB-LHRH’ bound LHRHr with high-affinity (dissociation constant, Kd = 0.252 ± 0.061nM). Interestingly, CB-LHRH’ significantly inhibited the cell viability of SKOV-3, ES-2, NIH:OVCAR-3 and HEC-1A, but not that of normal eukaryotic cells. CB-LHRH’ was active against bacteria at micromolar concentrations, and caused no hypersensitivity in guinea pigs. Furthermore, CB-LHRH’ inhibited tumor growth with a 23.8 and 20.4 % reduction in tumor weight at 50 and 25 mg/kg.d, respectively. CB-LHRH’ is a candidate for targeted chemotherapy against ovarian and endometrial cancers

  3. Venetoclax (ABT-199 Might Act as a Perpetrator in Pharmacokinetic Drug–Drug Interactions

    Directory of Open Access Journals (Sweden)

    Johanna Weiss

    2016-02-01

    Full Text Available Venetoclax (ABT-199 represents a specific B-cell lymphoma 2 (Bcl-2 inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR cells. We therefore scrutinized its drug–drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1, breast cancer resistance protein (BCRP, and organic anion transporting polypeptides (OATPs was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug–drug interactions.

  4. Malaria medicines to address drug resistance and support malaria elimination efforts.

    Science.gov (United States)

    Achan, Jane; Mwesigwa, Julia; Edwin, Chinagozi Precious; D'alessandro, Umberto

    2018-01-01

    Antimalarial drugs are essential weapons to fight malaria and have been used effectively since the 17 th century. However, P.falciparum resistance has been reported to almost all available antimalarial drugs, including artemisinin derivatives, raising concerns that this could jeopardize malaria elimination. Areas covered: In this article, we present a historical perspective of antimalarial drug resistance, review current evidence of resistance to available antimalarial drugs and discuss possible mitigating strategies to address this challenge. Expert commentary: The historical approach to drug resistance has been to change the national treatment policy to an alternative treatment. However, alternatives to artemisinin-based combination treatment are currently extremely limited. Innovative approaches utilizing available schizonticidal drugs such as triple combination therapies or multiple first line treatments could delay the emergence and spread of drug resistance. Transmission blocking drugs like primaquine may play a key role if given to a substantial proportion of malaria infected persons. Deploying antimalarial medicines in mass drug administration or mass screening and treatment campaigns could also contribute to containment efforts by eliminating resistant parasites in some settings. Ultimately, response to drug resistance should also include further investment in the development of new antimalarial drugs.

  5. Adaptation and evolution of drug-resistant Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Bergval, I.L.

    2013-01-01

    Many studies have been conducted on drug resistance and the evolution of Mycobacterium tuberculosis. Notwithstanding, many molecular mechanisms facilitating the emergence, adaptation and spread of drug-resistant tuberculosis have yet to be discovered. This thesis reports studies of the adaptive

  6. Drug resistance following irradiation of RIF-1 tumors: Influence of the interval between irradiation and drug treatment

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Davies, B.M.; Moulder, J.E.

    1990-01-01

    RIF-1 tumors contain a small number of cells (1 to 100 per 10(6) cells) that are resistant to 5-fluorouracil, methotrexate, or adriamycin. The frequency of drug-resistant cells among individual untreated tumors is highly variable. Radiation, delivered in vivo at doses of 3 to 12 Gy, increases the frequency of methotrexate- and 5-fluorouracil-resistant cells, but not the frequency of adriamycin-resistant cells. The magnitude of induction of 5-fluorouracil and methotrexate resistance shows a complex dependence on the radiation dose and on the interval between irradiation and assessment of drug resistance. For a dose of 3 Gy, induced 5-fluorouracil and methotrexate resistance is seen only after an interval of 5 to 7 days, whereas for a dose of 12 Gy, high levels of induced resistance are observed 1 to 3 days after irradiation. The maximum absolute risk for induction of resistance is 4 per 10(4) cells per Gy for methotrexate, and 3 per 10(6) cells per Gy for 5-fluorouracil. These results indicate that tumor hypoxia may play a role in the increased levels of drug resistance seen after irradiation, and that both genetic and environmental factors may influence radiation-induction of drug resistance. These studies provide essential data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be caused by radiation-induced drug resistance

  7. Exploiting Drug Addiction Mechanisms to Select against MAPKi-Resistant Melanoma.

    Science.gov (United States)

    Hong, Aayoung; Moriceau, Gatien; Sun, Lu; Lomeli, Shirley; Piva, Marco; Damoiseaux, Robert; Holmen, Sheri L; Sharpless, Norman E; Hugo, Willy; Lo, Roger S

    2018-01-01

    Melanoma resistant to MAPK inhibitors (MAPKi) displays loss of fitness upon experimental MAPKi withdrawal and, clinically, may be resensitized to MAPKi therapy after a drug holiday. Here, we uncovered and therapeutically exploited the mechanisms of MAPKi addiction in MAPKi-resistant BRAF MUT or NRAS MUT melanoma. MAPKi-addiction phenotypes evident upon drug withdrawal spanned transient cell-cycle slowdown to cell-death responses, the latter of which required a robust phosphorylated ERK (pERK) rebound. Generally, drug withdrawal-induced pERK rebound upregulated p38-FRA1-JUNB-CDKN1A and downregulated proliferation, but only a robust pERK rebound resulted in DNA damage and parthanatos-related cell death. Importantly, pharmacologically impairing DNA damage repair during MAPKi withdrawal augmented MAPKi addiction across the board by converting a cell-cycle deceleration to a caspase-dependent cell-death response or by furthering parthanatos-related cell death. Specifically in MEKi-resistant NRAS MUT or atypical BRAF MUT melanoma, treatment with a type I RAF inhibitor intensified pERK rebound elicited by MEKi withdrawal, thereby promoting a cell death-predominant MAPKi-addiction phenotype. Thus, MAPKi discontinuation upon disease progression should be coupled with specific strategies that augment MAPKi addiction. Significance: Discontinuing targeted therapy may select against drug-resistant tumor clones, but drug-addiction mechanisms are ill-defined. Using melanoma resistant to but withdrawn from MAPKi, we defined a synthetic lethality between supraphysiologic levels of pERK and DNA damage. Actively promoting this synthetic lethality could rationalize sequential/rotational regimens that address evolving vulnerabilities. Cancer Discov; 8(1); 74-93. ©2017 AACR. See related commentary by Stern, p. 20 This article is highlighted in the In This Issue feature, p. 1 . ©2017 American Association for Cancer Research.

  8. [Tuberculosis and drug-resistance tuberculosis in prisoners. Colombia, 2010-2012].

    Science.gov (United States)

    Gómez, Ingrid T; Llerena, Claudia R; Zabaleta, Angie P

    2015-01-01

    To characterize tuberculosis drug-resistance using anti-tuberculosis drug-sensitivity tests in Colombian prisoners. Descriptive-retrospective analyses were performed on cases of tuberculosis in prisoners. Samples were evaluated by the National Reference Laboratory. Conditions like gender, TB/VIH co-infection and drug-resistance were evaluated. Anti-tuberculosis drug-sensitivity tests were carried out on 72 prisoners. Results showed a distribution of 90.7 % of cases in males and 9.3 % of cases in females. 12 % of cases were TB/VIH co-infections, 94 % of the cases had not received any anti-tuberculosis treatment before, six isolates were drug-resistant corresponding to 8.8 % of total cases, and two cases were multi drug-resistant representing 1.3 % of the cases. Of the drug-resistant cases, 83.3 % were TB/VIH co-infected. Previously treated cases corresponded to 5.6 % of the total cases analyzed. One case with TB/VIH co-infection and rifampicin resistance was observed, representing 1.3 % of the total cases. The government must create a clear policy for prisoners in Colombia, because a high rate of disease in prisoners was observed. In addition, the results showed an association between drug-resistance and TB/VIH co-infection. Overcrowding and low quality of life in penitentiaries could become an important public health problem.

  9. Protective effect of Lactobacillus casei strain Shirota against lethal infection with multi-drug resistant Salmonella enterica serovar Typhimurium DT104 in mice.

    Science.gov (United States)

    Asahara, T; Shimizu, K; Takada, T; Kado, S; Yuki, N; Morotomi, M; Tanaka, R; Nomoto, K

    2011-01-01

    The anti-infectious activity of lactobacilli against multi-drug resistant Salmonella enterica serovar Typhimurium DT104 (DT104) was examined in a murine model of an opportunistic antibiotic-induced infection. Explosive intestinal growth and subsequent lethal extra-intestinal translocation after oral infection with DT104 during fosfomycin (FOM) administration was significantly inhibited by continuous oral administration of Lactobacillus casei strain Shirota (LcS), which is naturally resistant to FOM, at a dose of 10(8) colony-forming units per mouse daily to mice. Comparison of the anti-Salmonella activity of several Lactobacillus type strains with natural resistance to FOM revealed that Lactobacillus brevis ATCC 14869(T) , Lactobacillus plantarum ATCC 14917(T) , Lactobacillus reuteri JCM 1112(T) , Lactobacillus rhamnosus ATCC 7469(T) and Lactobacillus salivarius ATCC 11741(T) conferred no activity even when they obtained the high population levels almost similar to those of the effective strains such as LcS, Lact. casei ATCC 334(T) and Lactobacillus zeae ATCC 15820(T) . The increase in concentration of organic acids and maintenance of the lower pH in the intestine because of Lactobacillus colonization were correlated with the anti-infectious activity. Moreover, heat-killed LcS was not protective against the infection, suggesting that the metabolic activity of lactobacilli is important for the anti-infectious activity. These results suggest that certain lactobacilli in combination with antibiotics may be useful for prophylaxis against opportunistic intestinal infections by multi-drug resistant pathogens, such as DT104. Antibiotics such as FOM disrupt the metabolic activity of the intestinal microbiota that produce organic acids, and that only probiotic strains that are metabolically active in vivo should be selected to prevent intestinal infection when used clinically in combination with certain antibiotics. © 2010 The Authors. Journal of Applied Microbiology

  10. Apigenin Restricts FMDV Infection and Inhibits Viral IRES Driven Translational Activity

    Directory of Open Access Journals (Sweden)

    Suhong Qian

    2015-03-01

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of domestic and wild ruminants that is caused by FMD virus (FMDV. FMD outbreaks have occurred in livestock-containing regions worldwide. Apigenin, which is a flavonoid naturally existing in plant, possesses various pharmacological effects, including anti-inflammatory, anticancer, antioxidant and antiviral activities. Results show that apigenin can inhibit FMDV-mediated cytopathogenic effect and FMDV replication in vitro. Further studies demonstrate the following: (i apigenin inhibits FMDV infection at the viral post-entry stage; (ii apigenin does not exhibit direct extracellular virucidal activity; and (iii apigenin interferes with the translational activity of FMDV driven by internal ribosome entry site. Studies on applying apigein in vivo are required for drug development and further identification of potential drug targets against FDMV infection.

  11. Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity.

    Science.gov (United States)

    Qian, Suhong; Fan, Wenchun; Qian, Ping; Zhang, Dong; Wei, Yurong; Chen, Huanchun; Li, Xiangmin

    2015-03-31

    Foot-and-mouth disease (FMD) is a highly contagious disease of domestic and wild ruminants that is caused by FMD virus (FMDV). FMD outbreaks have occurred in livestock-containing regions worldwide. Apigenin, which is a flavonoid naturally existing in plant, possesses various pharmacological effects, including anti-inflammatory, anticancer, antioxidant and antiviral activities. Results show that apigenin can inhibit FMDV-mediated cytopathogenic effect and FMDV replication in vitro. Further studies demonstrate the following: (i) apigenin inhibits FMDV infection at the viral post-entry stage; (ii) apigenin does not exhibit direct extracellular virucidal activity; and (iii) apigenin interferes with the translational activity of FMDV driven by internal ribosome entry site. Studies on applying apigein in vivo are required for drug development and further identification of potential drug targets against FDMV infection.

  12. Sentinel surveillance of HIV-1 transmitted drug resistance, acute infection and recent infection.

    Directory of Open Access Journals (Sweden)

    Hong-Ha M Truong

    Full Text Available HIV-1 acute infection, recent infection and transmitted drug resistance screening was integrated into voluntary HIV counseling and testing (VCT services to enhance the existing surveillance program in San Francisco. This study describes newly-diagnosed HIV cases and characterizes correlates associated with infection.A consecutive sample of persons presenting for HIV VCT at the municipal sexually transmitted infections (STI clinic from 2004 to 2006 (N = 9,868 were evaluated by standard enzyme-linked immunoassays (EIA. HIV antibody-positive specimens were characterized as recent infections using a less-sensitive EIA. HIV-RNA pooled testing was performed on HIV antibody-negative specimens to identify acute infections. HIV antibody-positive and acute infection specimens were evaluated for drug resistance by sequence analysis. Multivariable logistic regression was performed to evaluate associations. The 380 newly-diagnosed HIV cases included 29 acute infections, 128 recent infections, and 47 drug-resistant cases, with no significant increases or decreases in prevalence over the three years studied. HIV-1 transmitted drug resistance prevalence was 11.0% in 2004, 13.4% in 2005 and 14.9% in 2006 (p = 0.36. Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTI was the most common pattern detected, present in 28 cases of resistance (59.6%. Among MSM, recent infection was associated with amphetamine use (AOR = 2.67; p<0.001, unprotected anal intercourse (AOR = 2.27; p<0.001, sex with a known HIV-infected partner (AOR = 1.64; p = 0.02, and history of gonorrhea (AOR = 1.62; p = 0.03.New HIV diagnoses, recent infections, acute infections and transmitted drug resistance prevalence remained stable between 2004 and 2006. Resistance to NNRTI comprised more than half of the drug-resistant cases, a worrisome finding given its role as the backbone of first-line antiretroviral therapy in San Francisco as well as worldwide. The integration of HIV-1 drug

  13. Inhibition of myostatin signaling through Notch activation following acute resistance exercise.

    Directory of Open Access Journals (Sweden)

    Matthew G MacKenzie

    Full Text Available Myostatin is a TGFβ family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9 ± 24.21% and remained high out to 48 h (56.5 ± 19.67% after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R(2 = 0.9996. The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.8 ± 147.14% at 3 h. The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFβ signaling, increased immediately following resistance exercise (83 ± 11.2% and stayed elevated out to 6 h (78 ± 16.6%. Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63 ± 13.4% that was equivalent to the canonical Notch target HES-1 (94.4 ± 7.32%. These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFβ inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy.

  14. Rapid detection of drug resistance and mutational patterns of extensively drug-resistant strains by a novel GenoType® MTBDRsl assay

    Directory of Open Access Journals (Sweden)

    A K Singh

    2013-01-01

    Full Text Available Background: The emergence of extensively drug-resistant tuberculosis (XDR-TB is a major concern in the India. The burden of XDR-TB is increasing due to inadequate monitoring, lack of proper diagnosis, and treatment. The GenoType ® Mycobacterium tuberculosis drug resistance second line (MTBDRsl assay is a novel line probe assay used for the rapid detection of mutational patterns conferring resistance to XDR-TB. Aim: The aim of this study was to study the rapid detection of drug resistance and mutational patterns of the XDR-TB by a novel GenoType ® MTBDRsl assay. Materials and Methods: We evaluated 98 multidrug-resistant (MDR M. tuberculosis isolates for second line drugs susceptibility testing by 1% proportion method (BacT/ALERT 3D system and GenoType ® MTBDRsl assay for rapid detection of conferring drug resistance to XDR-TB. Results: A total of seven (17.4% were identified as XDR-TB by using standard phenotypic method. The concordance between phenotypic and GenoType ® MTBDRsl assay was 91.7-100% for different antibiotics. The sensitivity and specificity of the MTBDRsl assay were 100% and 100% for aminoglycosides; 100% and 100% for fluoroquinolones; 91.7% and 100% for ethambutol. The most frequent mutations and patterns were gyrA MUT1 (A90V in seven (41.2% and gyrA + WT1-3 + MUT1 in four (23.5%; rrs MUT1 (A1401G in 11 (64.7%, and rrs WT1-2 + MUT1 in eight (47.1%; and embB MUT1B (M306V in 11 (64.7% strains. Conclusions: These data suggest that the GenoType ® MTBDRsl assay is rapid, novel test for detection of resistance to second line anti-tubercular drugs. This assay provides additional information about the frequency and mutational patterns responsible for XDR-TB resistance.

  15. Activation of MAPK signalling results in resistance to saracatinib (AZD0530) in ovarian cancer.

    Science.gov (United States)

    McGivern, Niamh; El-Helali, Aya; Mullan, Paul; McNeish, Iain A; Paul Harkin, D; Kennedy, Richard D; McCabe, Nuala

    2018-01-12

    SRC tyrosine kinase is frequently overexpressed and activated in late-stage, poor prognosis ovarian tumours, and preclinical studies have supported the use of targeted SRC inhibitors in the treatment of this disease. The SAPPROC trial investigated the addition of the SRC inhibitor saracatinib (AZD0530) to weekly paclitaxel for the treatment of platinum resistant ovarian cancer; however, this drug combination did not provide any benefit to progression free survival (PFS) of women with platinum resistant disease. In this study we aimed to identify mechanisms of resistance to SRC inhibitors in ovarian cancer cells. Using two complementary strategies; a targeted tumour suppressor gene siRNA screen, and a phospho-receptor tyrosine kinase array, we demonstrate that activation of MAPK signalling, via a reduction in NF1 (neurofibromin) expression or overexpression of HER2 and the insulin receptor, can drive resistance to AZD0530. Knockdown of NF1 in two ovarian cancer cell lines resulted in resistance to AZD0530, and was accompanied with activated MEK and ERK signalling. We also show that silencing of HER2 and the insulin receptor can partially resensitize AZD0530 resistant cells, which was associated with decreased phosphorylation of MEK and ERK. Furthermore, we demonstrate a synergistic effect of combining SRC and MEK inhibitors in both AZD0530 sensitive and resistant cells, and that MEK inhibition is sufficient to completely resensitize AZD0530 resistant cells. This work provides a preclinical rationale for the combination of SRC and MEK inhibitors in the treatment of ovarian cancer, and also highlights the need for biomarker driven patient selection for clinical trials.

  16. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Guillaume Chevereau

    Full Text Available The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the "morbidostat", a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations-an almost paradoxical behavior since this drug causes DNA damage and increases the mutation

  17. Resisting distraction and response inhibition trigger similar enhancements of future performance.

    Science.gov (United States)

    Bissett, Patrick G; Grant, Lauren D; Weissman, Daniel H

    2017-10-01

    Resisting distraction and response inhibition are crucial aspects of cognitive control. Interestingly, each of these abilities transiently improves just after it is utilized. Competing views differ, however, as to whether utilizing either of these abilities (e.g., resisting distraction) enhances future performance involving the other ability (e.g., response inhibition). To distinguish between these views, we combined a Stroop-like task that requires resisting distraction with a restraint variant of the stop-signal task that requires response inhibition. We observed similar sequential-trial effects (i.e., performance enhancements) following trials in which participants (a) resisted distraction (i.e., incongruent go trials) and (b) inhibited a response (i.e., congruent stop trials). First, the congruency effect in go trials, which indexes overall distractibility, was smaller after both incongruent go trials and congruent stop trials than it was after congruent go trials. Second, stop failures were less frequent after both incongruent go trials and congruent stop trials than after congruent go trials. A control experiment ruled out the possibility that perceptual conflict or surprise engendered by occasional stop signals triggers sequential-trial effects independent of stopping. Thus, our findings support a novel, integrated view in which resisting distraction and response inhibition trigger similar sequential enhancements of future performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Reverting doxorubicin resistance in colon cancer by targeting a key signaling protein, steroid receptor coactivator.

    Science.gov (United States)

    Xiong, Sang; Xiao, Gong-Wei

    2018-04-01

    Although there have been notable improvements in treatments against cancer, further research is required. In colon cancer, nearly all patients eventually experience drug resistance and stop responding to the approved drugs, making treatment difficult. Steroid receptor coactivator (SRC) is an oncogenic nuclear receptor coactivator that serves an important role in drug resistance. The present study generated a doxorubicin-resistant colon cancer cell line, in which the upregulation/activation of SRC was responsible for drug resistance, which in turn activated AKT. Overexpression of receptor tyrosine kinase-like epidermal growth factor receptor and insulin-like growth factor 1 receptor also induced SRC expression. It was observed that doxorubicin resistance in colon cancer also induced epithelial to mesenchymal transition, a decrease in expression of epithelial marker E-cadherin and an increase in the expression of mesenchymal markers, including N-cadherin and vimentin. Additionally, the present study indicated that SRC acts as a common signaling node, and inhibiting SRC in combination with doxorubicin treatment in doxorubicin-resistant cells aids in reversing the resistance. Thus, the present study suggests that activation of SRC is responsible for doxorubicin resistance in colon cancer. However, further research is required to understand the complete mechanism of how drug resistance occurs and how it may be tackled to treat patients.

  19. Targeting oncoprotein stability overcomes drug resistance caused by FLT3 kinase domain mutations.

    Directory of Open Access Journals (Sweden)

    Chuanjiang Yu

    Full Text Available FLT3 is the most frequently mutated kinase in acute myeloid leukemia (AML. Internal tandem duplications (ITDs in the juxta-membrane region constitute the majority of activating FLT3 mutations. Several FLT3 kinase inhibitors were developed and tested in the clinic with significant success. However, recent studies have reported the development of secondary drug resistance in patients treated with FLT3 inhibitors. Since FLT3-ITD is an HSP90 client kinase, we here explored if targeting the stability of drug-resistant FLT3 mutant protein could be a potential therapeutic option. We observed that HSP90 inhibitor treatment resulted in the degradation of inhibitor-resistant FLT3-ITD mutants and selectively induced toxicity in cells expressing FLT3-ITD mutants. Thus, HSP90 inhibitors provide a potential therapeutic choice to overcome secondary drug resistance following TKI treatment in FLT3-ITD positive AML.

  20. DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance.

    Science.gov (United States)

    Song, Linlin; Jiang, Qiao; Liu, Jianbing; Li, Na; Liu, Qing; Dai, Luru; Gao, Yuan; Liu, Weili; Liu, Dongsheng; Ding, Baoquan

    2017-06-14

    We herein demonstrate that DNA origami can work as a multifunctional platform integrating a chemotherapeutic drug (doxorubicin), gold nanorods and a tumour-specific aptamer MUC-1, to realize the effective circumvention of drug resistance. Doxorubicin (DOX) was loaded efficiently onto DNA origami through base pair intercalation and surface-modified gold nanorods (AuNRs) were assembled onto the DNA origami through DNA hybridization. Due to the active targeting effect of the assembled aptamers, the multifunctional nanostructures achieved increased cellular internalization of DOX and AuNRs. Upon near-infrared (NIR) laser irradiation, the P-glycoprotein (multidrug resistance pump) expression of multidrug resistant MCF-7 (MCF-7/ADR) cells was down-regulated, achieving the synergistically chemotherapeutic (DOX) and photothermal (AuNRs) effects.

  1. Enhanced Transmission of Drug-Resistant Parasites to Mosquitoes following Drug Treatment in Rodent Malaria

    OpenAIRE

    Bell, Andrew S.; Huijben, Silvie; Paaijmans, Krijn P.; Sim, Derek G.; Chan, Brian H. K.; Nelson, William A.; Read, Andrew F.

    2012-01-01

    The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasm...

  2. Knockdown of UbcH10 Enhances the Chemosensitivity of Dual Drug Resistant Breast Cancer Cells to Epirubicin and Docetaxel

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2015-03-01

    Full Text Available Breast cancer is one of the most common and lethal cancers in women. As a hub gene involved in a diversity of tumors, the ubiquitin-conjugating enzyme H10 (UbcH10, may also play some roles in the genesis and development of breast cancer. In the current study, we found that the expression of UbcH10 was up-regulated in some breast cancer tissues and five cell lines. We established a dual drug resistant cell line MCF-7/EPB (epirubicin/TXT (docetaxel and a lentiviral system expressing UbcH10 shRNA to investigate the effects of UbcH10 knockdown on the chemosensitivity of MCF-7/EPB/TXT cells to epirubicin and docetaxel. The knockdown of UbcH10 inhibited the proliferation of both MCF-7 and MCF-7/EPB/TXT cells, due to the G1 phase arrest in cell cycle. Furthermore, UbcH10 knockdown increased the sensitivity of MCF-7/EPB/TXT cells to epirubicin and docetaxel and promoted the apoptosis induced by these two drugs. Protein detection showed that, in addition to inhibiting the expression of Ki67 and cyclin D1, UbcH10 RNAi also impaired the increased BCL-2 and MDR-1 expression levels in MCF-7/EPB/TXT cells, which may contribute to abating the drug resistance in the breast cancer cells. Our research in the current study demonstrated that up-regulation of UbcH10 was involved in breast cancer and its knockdown can inhibit the growth of cancer cells and increase the chemosensitivity of the dual drug resistant breast cancer cells to epirubicin and docetaxel, suggesting that UbcH10 may be a promising target for the therapy of breast cancer.

  3. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli.

    Science.gov (United States)

    Dwivedi, Gaurav Raj; Tiwari, Nimisha; Singh, Aastha; Kumar, Akhil; Roy, Sudeep; Negi, Arvind Singh; Pal, Anirban; Chanda, Debabrata; Sharma, Ashok; Darokar, Mahendra P

    2016-03-01

    The purpose of the present study was to study the synergy potential of gallic acid-based derivatives in combination with conventional antibiotics using multidrug resistant cultures of Escherichia coli. Gallic acid-based derivatives significantly reduced the MIC of tetracycline against multidrug resistant clinical isolate of E. coli. The best representative, 3-(3',4,'5'-trimethoxyphenyl)-4,5,6-trimethoxyindanone-1, an indanone derivative of gallic acid, was observed to inhibit ethidium bromide efflux and ATPase which was also supported by in silico docking. This derivative extended the post-antibiotic effect and decreased the mutation prevention concentration of tetracycline. This derivative in combination with TET was able to reduce the concentration of TNFα up to 18-fold in Swiss albino mice. This derivative was nontoxic and well tolerated up to 300 mg/kg dose in subacute oral toxicity study in mice. This is the first report of gallic acid-based indanone derivative as drug resistance reversal agent acting through ATP-dependent efflux pump inhibition.

  4. Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: A review

    Directory of Open Access Journals (Sweden)

    Olliaro P

    2004-01-01

    Full Text Available The emergence and spread of drug resistant malaria represents a considerable challenge to controlling malaria. To date, malaria control has relied heavily on a comparatively small number of chemically related drugs, belonging to either the quinoline or the antifolate groups. Only recently have the artemisinin derivatives been used but mostly in south east Asia. Experience has shown that resistance eventually curtails the life-span of antimalarial drugs. Controlling resistance is key to ensuring that the investment put into developing new antimalarial drugs is not wasted. Current efforts focus on research into new compounds with novel mechanisms of action, and on measures to prevent or delay resistance when drugs are introduced. Drug discovery and development are long, risky and costly ventures. Antimalarial drug development has traditionally been slow but now various private and public institutions are at work to discover and develop new compounds. Today, the antimalarial development pipeline is looking reasonably healthy. Most development relies on the quinoline, antifolate and artemisinin compounds. There is a pressing need to have effective, easy to use, affordable drugs that will last a long time. Drug combinations that have independent modes of action are seen as a way of enhancing efficacy while ensuring mutual protection against resistance. Most research work has focused on the use of artesunate combined with currently used standard drugs, namely, mefloquine, amodiaquine, sulfadoxine/pyrimethamine, and chloroquine. There is clear evidence that combinations improve efficacy without increasing toxicity. However, the absolute cure rates that are achieved by combinations vary widely and depend on the level of resistance of the standard drug. From these studies, further work is underway to produce fixed dose combinations that will be packaged in blister packs. This review will summarise current antimalarial drug developments and outline recent

  5. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism.

    Science.gov (United States)

    Joyce, Helena; McCann, Andrew; Clynes, Martin; Larkin, Annemarie

    2015-05-01

    Chemotherapy involving the use of anticancer drugs remains an important strategy in the overall management of patients with metastatic cancer. Acquisition of multidrug resistance remains a major impediment to successful chemotherapy. Drug transporters in cell membranes and intracellular drug metabolizing enzymes contribute to the resistance phenotype and determine the pharmacokinetics of anticancer drugs in the body. ATP-binding cassette (ABC) transporters mediate the transport of endogenous metabolites and xenobiotics including cytotoxic drugs out of cells. Solute carrier (SLC) transporters mediate the influx of cytotoxic drugs into cells. This review focuses on the substrate interaction of these transporters, on their biology and what role they play together with drug metabolizing enzymes in eliminating therapeutic drugs from cells. The majority of anticancer drugs are substrates for the ABC transporter and SLC transporter families. Together, these proteins have the ability to control the influx and the efflux of structurally unrelated chemotherapeutic drugs, thereby modulating the intracellular drug concentration. These interactions have important clinical implications for chemotherapy because ultimately they determine therapeutic efficacy, disease progression/relapse and the success or failure of patient treatment.

  6. The role of exosomes and miRNAs in drug-resistance of cancer cells.

    Science.gov (United States)

    Bach, Duc-Hiep; Hong, Ji-Young; Park, Hyen Joo; Lee, Sang Kook

    2017-07-15

    Chemotherapy, one of the principal approaches for cancer patients, plays a crucial role in controlling tumor progression. Clinically, tumors reveal a satisfactory response following the first exposure to the chemotherapeutic drugs in treatment. However, most tumors sooner or later become resistant to even chemically unrelated anticancer agents after repeated treatment. The reduced drug accumulation in tumor cells is considered one of the significant mechanisms by decreasing drug permeability and/or increasing active efflux (pumping out) of the drugs across the cell membrane. The mechanisms of treatment failure of chemotherapeutic drugs have been investigated, including drug efflux, which is mediated by extracellular vesicles (EVs). Exosomes, a subset of EVs with a size range of 40-150 nm and a lipid bilayer membrane, can be released by all cell types. They mediate specific cell-to-cell interactions and activate signaling pathways in cells they either fuse with or interact with, including cancer cells. Exosomal RNAs are heterogeneous in size but enriched in small RNAs, such as miRNAs. In the primary tumor microenvironment, cancer-secreted exosomes and miRNAs can be internalized by other cell types. MiRNAs loaded in these exosomes might be transferred to recipient niche cells to exert genome-wide regulation of gene expression. How exosomal miRNAs contribute to the development of drug resistance in the context of the tumor microenvironment has not been fully described. In this review, we will highlight recent studies regarding EV-mediated microRNA delivery in formatting drug resistance. We also suggest the use of EVs as an advancing method in antiresistance treatment. © 2017 UICC.

  7. Enzalutamide inhibits proliferation of gemcitabine-resistant bladder cancer cells with increased androgen receptor expression.

    Science.gov (United States)

    Kameyama, Koji; Horie, Kengo; Mizutani, Kosuke; Kato, Taku; Fujita, Yasunori; Kawakami, Kyojiro; Kojima, Toshio; Miyazaki, Tatsuhiko; Deguchi, Takashi; Ito, Masafumi

    2017-01-01

    Advanced bladder cancer is treated mainly with gemcitabine and cisplatin, but most patients eventually become resistance. Androgen receptor (AR) signaling has been implicated in bladder cancer as well as other types of cancer including prostate cancer. In this study, we investigated the expression and role of AR in gemcitabine-resistant bladder cancer cells and also the potential of enzalutamide, an AR inhibitor, as a therapeutic for the chemoresistance. First of all, we established gemcitabine-resistant T24 cells (T24GR) from T24 bladder cancer cells and performed gene expression profiling. Microarray analysis revealed upregulation of AR expression in T24GR cells compared with T24 cells. AR mRNA and protein expression was confirmed to be increased in T24GR cells, respectively, by quantitative RT-PCR and western blot analysis, which was associated with more potent AR transcriptional activity as measured by luciferase reporter assay. The copy number of AR gene in T24GR cells determined by PCR was twice as many as that of T24 cells. AR silencing by siRNA transfection resulted in inhibition of proliferation of T24GR cells. Cell culture in charcoal-stripped serum and treatment with enzalutamide inhibited growth of T24GR cells, which was accompanied by cell cycle arrest. AR transcriptional activity was found to be reduced in T24GR cells by enzalutamide treatment. Lastly, enzalutamide also inhibited cell proliferation of HTB5 bladder cancer cells that express AR and possess intrinsic resistance to gemcitabine. Our results suggest that enzalutamide may have the potential to treat patients with advanced gemcitabine-resistant bladder cancer with increased AR expression.

  8. High-Throughput Cytochrome P450 Cocktail Inhibition Assay for Assessing Drug-Drug and Drug-Botanical Interactions.

    Science.gov (United States)

    Li, Guannan; Huang, Ke; Nikolic, Dejan; van Breemen, Richard B

    2015-11-01

    Detection of drug-drug interactions is essential during the early stages of drug discovery and development, and the understanding of drug-botanical interactions is important for the safe use of botanical dietary supplements. Among the different forms of drug interactions that are known, inhibition of cytochrome P450 (P450) enzymes is the most common cause of drug-drug or drug-botanical interactions. Therefore, a rapid and comprehensive mass spectrometry-based in vitro high-throughput P450 cocktail inhibition assay was developed that uses 10 substrates simultaneously against nine CYP isoforms. Including probe substrates for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and two probes targeting different binding sites of CYP3A4/5, this cocktail simultaneously assesses at least as many P450 enzymes as previous assays while remaining among the fastest due to short incubation times and rapid analysis using ultrahigh pressure liquid chromatography-tandem mass spectrometry. The method was validated using known inhibitors of each P450 enzyme and then shown to be useful not only for single-compound testing but also for the evaluation of potential drug-botanical interactions using the botanical dietary supplement licorice (Glycyrrhiza glabra) as an example. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Molecular Genetics of Drug-resistance in Epilepsies

    Directory of Open Access Journals (Sweden)

    Kurupath Radhakrishnan

    2015-06-01

    Full Text Available Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive to antiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genes encoding the proteins that regulate the pharmacokinetics such as P-glycoprotein [ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1, ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7], and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABA receptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intense investigation to unravel the mysteries of AED-resistance. However, till today, a consistent and reliable result that could help the clinician either to predict drug resistance or to overcome it has not been forthcoming. The discrepant results may be related to variations in the definition of drug-resistance, heterogeneous patient populations, ethnic variations in the frequency distribution of single nucleotide polymorphisms (SNPs and the selection of SNPs. Understanding of these limitations of existing studies, hopefully, will help in designing better studies. Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive toantiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genesencoding the proteins that regulate the pharmacokinetics such as P-glycoprotein[ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1,ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7],and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABAreceptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intenseinvestigation to unravel the mysteries of AED-resistance. However, till today, aconsistent and reliable result that could help the clinician either to predict drugresistanceor to overcome it has not been forthcoming. The discrepant results may berelated to variations in the definition of drug-resistance, heterogeneous patientpopulations, ethnic

  10. Oridonin Targets Multiple Drug-Resistant Tumor Cells as Determined by in Silico and in Vitro Analyses

    Directory of Open Access Journals (Sweden)

    Onat Kadioglu

    2018-04-01

    Full Text Available Drug resistance is one of the main reasons of chemotherapy failure. Therefore, overcoming drug resistance is an invaluable approach to identify novel anticancer drugs that have the potential to bypass or overcome resistance to established drugs and to substantially increase life span of cancer patients for effective chemotherapy. Oridonin is a cytotoxic diterpenoid isolated from Rabdosia rubescens with in vivo anticancer activity. In the present study, we evaluated the cytotoxicity of oridonin toward a panel of drug-resistant cancer cells overexpressing ABCB1, ABCG2, or ΔEGFR or with a knockout deletion of TP53. Interestingly, oridonin revealed lower degree of resistance than the control drug, doxorubicin. Molecular docking analyses pointed out that oridonin can interact with Akt/EGFR pathway proteins with comparable binding energies and similar docking poses as the known inhibitors. Molecular dynamics results validated the stable conformation of oridonin docking pose on Akt kinase domain. Western blot experiments clearly revealed dose-dependent downregulation of Akt and STAT3. Pharmacogenomics analyses pointed to a mRNA signature that predicted sensitivity and resistance to oridonin. In conclusion, oridonin bypasses major drug resistance mechanisms and targets Akt pathway and might be effective toward drug refractory tumors. The identification of oridonin-specific gene expressions may be useful for the development of personalized treatment approaches.

  11. Potential of berberine to enhance antimicrobial activity of commonly used antibiotics for dairy cow mastitis caused by multiple drug-resistant Staphylococcus epidermidis infection.

    Science.gov (United States)

    Zhou, X; Yang, C; Li, Y; Liu, X; Wang, Y

    2015-08-19

    Berberine is a plant alkaloid with antimicrobial activity against a variety of microorganisms. In this study, the antimicrobial properties of berberine against multi-drug resistant field isolates of Staphylococcus epidermidis were investigated using berberine alone or in combination with a commonly used antibiotics in veterinary clinics, including penicillin, lincomycin, and amoxicillin. The results indicated that the minimum inhibitory concentrations of berberine, penicillin, lincomycin, and amoxicillin against field S. epidermidis isolates were 2-512, 0.8-213, 0.4-1024, and 0.4-256 mg/mL, respectively. Furthermore, the synergistic effects of antimicrobial activity against these multi-drug resistant isolates were observed when the berberine was combined with penicillin, lincomycin, or amoxicillin; no antagonistic effect of the combination was detected in any of the clinical isolates. These observations were further confirmed using a time-killing assay, in which a combination of 2 agents yielded a greater than 2.03-2.44 log10 decrease in colony-forming unit/mL compared with each agent alone. These findings suggest that berberine is a promising compound for preventing and treating multi-drug resistant S. epidermidis infected mastitis in dairy cows either alone or in combination with other commonly used antibiotics, such as penicillin, lincomycin, and amoxicillin.

  12. Immunohistochemical Estimates of Angiogenesis, Proliferative Activity, p53 Expression, and Multiple Drug Resistance Have No Prognostic Impact in Osteosarcoma: A Comparative Clinicopathological Investigation

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Jensen, Kenneth; Vaeth, Michael

    2008-01-01

    Purpose. To investigate angiogenesis, multiple drug resistance (MDR) and proliferative activity as prognostic variables in patients suffering from osteosarcoma. Methods. Histologic biopsies from 117 patients treated in the period from 1972 through 1999 were immunohistologically investigated...

  13. GEAR: A database of Genomic Elements Associated with drug Resistance

    Science.gov (United States)

    Wang, Yin-Ying; Chen, Wei-Hua; Xiao, Pei-Pei; Xie, Wen-Bin; Luo, Qibin; Bork, Peer; Zhao, Xing-Ming

    2017-01-01

    Drug resistance is becoming a serious problem that leads to the failure of standard treatments, which is generally developed because of genetic mutations of certain molecules. Here, we present GEAR (A database of Genomic Elements Associated with drug Resistance) that aims to provide comprehensive information about genomic elements (including genes, single-nucleotide polymorphisms and microRNAs) that are responsible for drug resistance. Right now, GEAR contains 1631 associations between 201 human drugs and 758 genes, 106 associations between 29 human drugs and 66 miRNAs, and 44 associations between 17 human drugs and 22 SNPs. These relationships are firstly extracted from primary literature with text mining and then manually curated. The drug resistome deposited in GEAR provides insights into the genetic factors underlying drug resistance. In addition, new indications and potential drug combinations can be identified based on the resistome. The GEAR database can be freely accessed through http://gear.comp-sysbio.org. PMID:28294141

  14. Malaria epidemic and drug resistance, Djibouti.

    Science.gov (United States)

    Rogier, Christophe; Pradines, Bruno; Bogreau, H; Koeck, Jean-Louis; Kamil, Mohamed-Ali; Mercereau-Puijalon, Odile

    2005-02-01

    Analysis of Plasmodium falciparum isolates collected before, during, and after a 1999 malaria epidemic in Djibouti shows that, despite a high prevalence of resistance to chloroquine, the epidemic cannot be attributed to a sudden increase in drug resistance of local parasite populations.

  15. Collateral Resistance and Sensitivity Modulate Evolution of High-Level Resistance to Drug Combination Treatment in Staphylococcus aureus

    DEFF Research Database (Denmark)

    de Evgrafov, Mari Cristina Rodriguez; Gumpert, Heidi; Munck, Christian

    2015-01-01

    As drug-resistant pathogens continue to emerge, combination therapy will increasingly be relied upon to treat infections and to help combat further development of multidrug resistance. At present a dichotomy exists between clinical practice, which favors therapeutically synergistic combinations......, to reflect drug concentrations more likely to be encountered during treatment. We performed a series of adaptive evolution experiments using Staphylococcus aureus. Interestingly, no relationship between drug interaction type and resistance evolution was found as resistance increased significantly beyond wild......-type levels. All drug combinations, irrespective of interaction types, effectively limited resistance evolution compared with monotreatment. Cross-resistance and collateral sensitivity were found to be important factors in the extent of resistance evolution toward a combination. Comparative genomic analyses...

  16. Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Bret D.; Roberts, Adam B.; Pollet, Rebecca M.; Ingle, James D.; Biernat, Kristen A.; Pellock, Samuel J.; Venkatesh, Madhu Kumar; Guthrie, Leah; O’Neal, Sara K.; Robinson, Sara J.; Dollinger, Makani; Figueroa, Esteban; McShane, Sarah R.; Cohen, Rachel D.; Jin, Jian; Frye, Stephen V.; Zamboni, William C.; Pepe-Ranney, Charles; Mani, Sridhar; Kelly, Libusha; Redinbo, Matthew (Einstein); (UNC); (Cornell)

    2015-09-01

    The selective inhibition of bacterial β-glucuronidases was recently shown to alleviate drug-induced gastrointestinal toxicity in mice, including the damage caused by the widely used anticancer drug irinotecan. Here, we report crystal structures of representative β-glucuronidases from the Firmicutes Streptococcus agalactiae and Clostridium perfringens and the Proteobacterium Escherichia coli, and the characterization of a β-glucuronidase from the Bacteroidetes Bacteroides fragilis. While largely similar in structure, these enzymes exhibit marked differences in catalytic properties and propensities for inhibition, indicating that the microbiome maintains functional diversity in orthologous enzymes. Small changes in the structure of designed inhibitors can induce significant conformational changes in the β-glucuronidase active site. Finally, we establish that β-glucuronidase inhibition does not alter the serum pharmacokinetics of irinotecan or its metabolites in mice. Together, the data presented advance our in vitro and in vivo understanding of the microbial β-glucuronidases, a promising new set of targets for controlling drug-induced gastrointestinal toxicity.

  17. Genetic Indicators of Drug Resistance in the Highly Repetitive Genome of Trichomonas vaginalis.

    Science.gov (United States)

    Bradic, Martina; Warring, Sally D; Tooley, Grace E; Scheid, Paul; Secor, William E; Land, Kirkwood M; Huang, Po-Jung; Chen, Ting-Wen; Lee, Chi-Ching; Tang, Petrus; Sullivan, Steven A; Carlton, Jane M

    2017-06-01

    Trichomonas vaginalis, the most common nonviral sexually transmitted parasite, causes ∼283 million trichomoniasis infections annually and is associated with pregnancy complications and increased risk of HIV-1 acquisition. The antimicrobial drug metronidazole is used for treatment, but in a fraction of clinical cases, the parasites can become resistant to this drug. We undertook sequencing of multiple clinical isolates and lab derived lines to identify genetic markers and mechanisms of metronidazole resistance. Reduced representation genome sequencing of ∼100 T. vaginalis clinical isolates identified 3,923 SNP markers and presence of a bipartite population structure. Linkage disequilibrium was found to decay rapidly, suggesting genome-wide recombination and the feasibility of genetic association studies in the parasite. We identified 72 SNPs associated with metronidazole resistance, and a comparison of SNPs within several lab-derived resistant lines revealed an overlap with the clinically resistant isolates. We identified SNPs in genes for which no function has yet been assigned, as well as in functionally-characterized genes relevant to drug resistance (e.g., pyruvate:ferredoxin oxidoreductase). Transcription profiles of resistant strains showed common changes in genes involved in drug activation (e.g., flavin reductase), accumulation (e.g., multidrug resistance pump), and detoxification (e.g., nitroreductase). Finally, we identified convergent genetic changes in lab-derived resistant lines of Tritrichomonas foetus, a distantly related species that causes venereal disease in cattle. Shared genetic changes within and between T. vaginalis and Tr. foetus parasites suggest conservation of the pathways through which adaptation has occurred. These findings extend our knowledge of drug resistance in the parasite, providing a panel of markers that can be used as a diagnostic tool. © The Author 2017. Published by Oxford University Press on behalf of the Society for

  18. Pan Drug-Resistant Environmental Isolate of Acinetobacter baumannii from Croatia.

    Science.gov (United States)

    Goic-Barisic, Ivana; Seruga Music, Martina; Kovacic, Ana; Tonkic, Marija; Hrenovic, Jasna

    2017-06-01

    Acinetobacter baumannii is an emerging nosocomial pathogen with also emerging resistance to different antibiotics. Multidrug and pan drug-resistant clinical isolates were reported worldwide. Here we report the first evidence of pan drug-resistant environmental isolate of A. baumannii. The isolate was recovered from the effluent of secondary treated municipal wastewater of the City of Zagreb, Croatia. The isolate was resistant to penicillins/β-lactamase inhibitors, carbapenems, fluoroquinolones, aminoglycosides, folate pathway inhibitors, and polymyxins, except intermediately susceptible to minocycline and tigecycline. Intrinsic chromosomally located bla OXA-51-like gene and acquired plasmid-located bla OXA-23-like gene were related to clinical isolates. Pan drug-resistant A. baumannii can occur in natural environments outside of the hospital. Secondary treated municipal wastewater represents a potential epidemiological reservoir of pan drug-resistant A. baumannii and carbapenem resistance gene.

  19. Extensively and Pre-Extensively Drug Resistant Tuberculosis in Clinical Isolates of Multi-Drug Resistant Tuberculosis Using Classical Second Line Drugs (Levofloxacin and Amikacin)

    International Nuclear Information System (INIS)

    Mirza, I. A.; Khan, F. A.; Khan, K. A.; Satti, L.; Ghafoor, T.; Fayyaz, M.

    2015-01-01

    Objective:To find out the frequency of Extensively Drug Resistant (XDR) and pre-XDR tuberculosis in clinical isolates of Multi-Drug Resistant (MDR) Tuberculosis (TB) by determining the susceptibilities against Levofloxacin and Amikacin (classical second line antituberculosis drugs). Study Design: A descriptive cross-sectional study. Place and Duration of Study: Microbiology Department, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from September 2011 to August 2013. Methodology: Amikacin (AK) and Levofloxacin (LEVO) were obtained in chemically pure form from Sigma (Taufkirchen, Germany). The breakpoint concentration used for AK was 1.0 micro g/ml and for LEVO 2.0 micro g/ml. Mycobacterial Growth Indicator Tube (MGIT) 960 system was used to carry out drug susceptibility testing as per recommended protocol. Results: A total of 3 MDR-TB isolates (3 percentage) turned out to be XDR-TB based upon simultaneous resistance to injectable second line antituberculosis drug AK and one of the fluoro-quinolones (LEVO). A total of 24 MDR-TB isolates (24 percentage) were found to be pre-XDR based upon resistance to LEVO alone. Treatment status record of patients with XDR and pre-XDRTB isolates revealed that majority of patients had received fluoroquinolones (FQs) during the course of treatment. Conclusion: XDR-TB has started to emerge in MDR-TB isolates in our set up. The worrying sign is the high frequency of pre-XDR tuberculosis. Urgent steps need to be taken to stem the tide of pre-XDR-TB in our population. It is thus recommended to develop facilities to carry out drug susceptibility testing to monitor the status of pre-XDR and XDR-TB in our population. (author)

  20. Glycoprotein Mucin Molecular Brush on Cancer Cells and its Correlation with Resistance Against Drug Delivery

    Science.gov (United States)

    Wang, Xin; Shah, Aalok; Campbell, Robert; Wan, Kai-Tak

    2012-02-01

    Uptake of cytotoxic drugs by typical tumor cells is limited by the dense dendritic network of oligosaccharide mucin chains that forms a mechanical barrier. Atomic force microscopy is used to directly measure the force needed to pierce the mucin layer to reach the cell surface. Measurements are analyzed by deGennes' steric reputation theory. Multi-drug resistant ovarian tumor cells shows significantly larger penetration load compared to the wide type. A pool of pancreatic, lung, colorectal, and breast cells are also characterized. The chemotherapeutic agent, benzyl-α-GalNac, for inhibiting glycosylation is shown to be effective in reducing the mechanical barrier.

  1. Prevalence of drug resistant tuberculosis in Arsi Zone, Ethiopia ...

    African Journals Online (AJOL)

    Background: Wide spread of occurrence of multi-drug resistance tuberculosis is becoming a major challenge to effective tuberculosis control. Thus, it is imperative to monitor the sensitivity of anti-TB drugs regularly. Objective: To determine the prevalence resistance to anti-TB drugs in a well established control program area ...

  2. Antibacterial activities of medicinal plants against multidrug resistant urinary tract pathogens

    International Nuclear Information System (INIS)

    Aziz, M.A.; Adnan, M.; Rahman, H.; Allah, A.; Hashem, A.

    2017-01-01

    Urinary tract infections (UTI) caused by multi-drug resistant (MDR) bacterial pathogens have become a serious global health concern. Main etiological agents for UTI are Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa. Recently, medicinal plants have found great popularity in medical treatment for different kinds of infections including urinary tract infections. The study has been planned to evaluate the efficacy of alkaloids, flavonoids, saponins and crude extracts of medicinal plants i.e. Syzygium aromaticum, Glycerrhiza glabra,Laurus nobilis and Brassica rapa against MDR urinary tract pathogens through agar well diffusion method. To investigate the Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentration (MBCs), dilution method was used. Quantitative evaluations of phytochemicals indicated the presence of alkaloids in higher concentrations. Results obtained for the antibacterial activities, the crude extracts of the four plants showed significantly higher inhibition zones as compared to other phytochemicals. The MIC values obtained for different extracts varying from 7.5-15 mg/ml. Comparig the activities of the extracts of the the four medicinal plants it was found that Syzygium aromaticum was the most potent plant against the tested bacterial pathogens indicating its strong candidateship for the drug development. (author)

  3. Cetuximab-Induced MET Activation Acts as a Novel Resistance Mechanism in Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Na Song

    2014-04-01

    Full Text Available Aberrant MET expression and hepatocyte growth factor (HGF signaling are implicated in promoting resistance to targeted agents; however, the induced MET activation by epidermal growth factor receptor (EGFR inhibitors mediating resistance to targeted therapy remains elusive. In this study, we identified that cetuximab-induced MET activation contributed to cetuximab resistance in Caco-2 colon cancer cells. MET inhibition or knockdown sensitized Caco-2 cells to cetuximab-mediated growth inhibition. Additionally, SRC activation promoted cetuximab resistance by interacting with MET. Pretreatment with SRC inhibitors abolished cetuximab-mediated MET activation and rendered Caco-2 cells sensitive to cetuximab. Notably, cetuximab induced MET/SRC/EGFR complex formation. MET inhibitor or SRC inhibitor suppressed phosphorylation of MET and SRC in the complex, and MET inhibitor singly led to disruption of complex formation. These results implicate alternative targeting of MET or SRC as rational strategies for reversing cetuximab resistance in colon cancer.

  4. Emergence of fluoroquinolone resistance among drug resistant tuberculosis patients at a tertiary care facility in Karachi, Pakistan.

    Science.gov (United States)

    Zaidi, Syed Mohammad Asad; Haseeb, Abdul; Habib, Shifa Salman; Malik, Amyn; Khowaja, Saira; SaifUllah, Nausheen; Rizvi, Nadeem

    2017-07-25

    Pakistan is classified as one of the high multi-drug resistant tuberculosis (MDR-TB) burden countries. A poorly regulated private sector, over-prescription of antibiotics and self-medication has led to augmented rates of drug-resistance in the country. Pakistan's first national anti-tuberculosis drug resistance survey identified high prevalence of fluoroquinolone resistance among MDR-TB patients. Further institutional evidence of fluoroquinolone drug-resistance can support re-evaluation of treatment regimens as well as invigorate efforts to control antibiotic resistance in the country. In this study, data for drug-susceptibility testing (DST) was retrospectively analyzed for a total of 133 patients receiving MDR-TB treatment at the Chest Department of Jinnah Postgraduate Medical Center, Karachi, Pakistan. Frequency analyses for resistance patterns was carried out and association of fluoroquinolone (ofloxacin) resistance with demographics and past TB treatment category were assessed. Within first-line drugs, resistance to isoniazid was detected in 97.7% of cases, followed by rifampicin (96.9%), pyrazinamide (86.4%), ethambutol (69.2%) and streptomycin (64.6%). Within second-line drugs, ofloxacin resistance was detected in 34.6% of cases. Resistance to ethionamide and amikacin was 2.3% and 1.6%, respectively. Combined resistance of oflaxacin and isoniazid was detected in 33.9% of cases. Age, gender and past TB treatment category were not significantly associated with resistance to ofloxacin. Fluoroquinolone resistance was observed in an alarmingly high proportion of MDR-TB cases. Our results suggest caution in their use for empirical management of MDR-TB cases and recommended treatment regimens for MDR-TB may require re-evaluation. Greater engagement of private providers and stringent pharmacy regulations are urgently required.

  5. Quercetin-glutamic acid conjugate with a non-hydrolysable linker; a novel scaffold for multidrug resistance reversal agents through inhibition of P-glycoprotein.

    Science.gov (United States)

    Kim, Mi Kyoung; Kim, Yunyoung; Choo, Hyunah; Chong, Youhoon

    2017-02-01

    Previously, we have reported remarkable effect of a quercetin-glutamic acid conjugate to reverse multidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer agents through inhibition of P-glycoprotein (Pgp)-mediated drug efflux. Due to the hydrolysable nature, MDR-reversal activity of the quercetin conjugate was attributed to its hydrolysis product, quercetin. However, several lines of evidence demonstrated that the intact quercetin-glutamic acid conjugate has stronger MDR-reversal activity than quercetin. In order to evaluate this hypothesis and to identify a novel scaffold for MDR-reversal agents, we prepared quercetin conjugates with a glutamic acid attached at the 7-O position via a non-hydrolysable linker. Pgp inhibition assay, Pgp ATPase assay, and MDR-reversal activity assay were performed, and the non-hydrolysable quercetin conjugates showed significantly higher activities compared with those of quercetin. Unfortunately, the quercetin conjugates were not as effective as verapamil in Pgp-inhibition and thereby reversing MDR, but it is worth to note that the structurally modified quercetin conjugates with a non-cleavable linker showed significantly improved MDR-reversal activity compared with quercetin. Taken together, the quercetin conjugates with appropriate structural modifications were shown to have a potential to serve as a scaffold for the design of novel MDR-reversal agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. NSC30049 inhibits Chk1 pathway in 5-FU-resistant CRC bulk and stem cell populations.

    Science.gov (United States)

    Narayan, Satya; Jaiswal, Aruna S; Sharma, Ritika; Nawab, Akbar; Duckworth, Lizette Vila; Law, Brian K; Zajac-Kaye, Maria; George, Thomas J; Sharma, Jay; Sharma, Arun K; Hromas, Robert A

    2017-08-22

    The 5-fluorouracil (5-FU) treatment induces DNA damage and stalling of DNA replication forks. These stalled replication forks then collapse to form one sided double-strand breaks, leading to apoptosis. However, colorectal cancer (CRC) stem cells rapidly repair the stalled/collapsed replication forks and overcome treatment effects. Recent evidence suggests a critical role of checkpoint kinase 1 (Chk1) in preventing the replicative stress. Therefore, Chk1 kinase has been a target for developing mono or combination therapeutic agents. In the present study, we have identified a novel orphan molecule NSC30049 (NSC49L) that is effective alone, and in combination potentiates 5-FU-mediated growth inhibition of CRC heterogeneous bulk and FOLFOX-resistant cell lines in culture with minimal effect on normal colonic epithelial cells. It also inhibits the sphere forming activity of CRC stem cells, and decreases the expression levels of mRNAs of CRC stem cell marker genes. Results showed that NSC49L induces 5-FU-mediated S-phase cell cycle arrest due to increased load of DNA damage and increased γ-H2AX staining as a mechanism of cytotoxicity. The pharmacokinetic analysis showed a higher bioavailability of this compound, however, with a short plasma half-life. The drug is highly tolerated by animals with no pathological aberrations. Furthermore, NSC49L showed very potent activity in a HDTX model of CRC stem cell tumors either alone or in combination with 5-FU. Thus, NSC49L as a single agent or combined with 5-FU can be developed as a therapeutic agent by targeting the Chk1 pathway in 5-FU-resistant CRC heterogeneous bulk and CRC stem cell populations.

  7. Non-target-site resistance to ALS-inhibiting herbicides in a Sagittaria trifolia L. population.

    Science.gov (United States)

    Zhao, Bochui; Fu, Danni; Yu, Yang; Huang, Chengtian; Yan, Kecheng; Li, Pingsheng; Shafi, Jamil; Zhu, He; Wei, Songhong; Ji, Mingshan

    2017-08-01

    Sagittaria trifolia L. is one of the most competitive weeds in rice fields in northeastern China. The continuous use of acetolactate synthase (ALS)-inhibitors has led to the evolution of herbicide resistant S. trifolia. A subpopulation BC1, which was derived from the L1 population, was analyzed using DNA sequencing and ALS enzyme activity assays and levels of resistance to five ALS-inhibiting herbicides was determined. DNA sequencing and ALS enzyme assays revealed no amino acid substitutions and no significant differences in enzyme sensitivity between susceptible and resistant populations. Whole-plant dose-response experiments showed that the BC1 population exhibited different levels of resistance (resistance ratios ranging from 2.14 to 51.53) to five ALS herbicides, and the addition of malathion (P450 inhibitor) to bensulfuron-methyl, penoxsulam and bispyribac-sodium strongly reduced the dry weight accumulation of the BC1 population compared with the effects of the three herbicides alone. The results of the present study demonstrated that the BC1 population has evolved non-target-site resistance to ALS-inhibiting herbicides. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Verapamil inhibits tumor progression of chemotherapy-resistant pancreatic cancer side population cells

    Science.gov (United States)

    ZHAO, LU; ZHAO, YUE; SCHWARZ, BETTINA; MYSLIWIETZ, JOSEF; HARTIG, ROLAND; CAMAJ, PETER; BAO, QI; JAUCH, KARL-WALTER; GUBA, MAKUS; ELLWART, JOACHIM WALTER; NELSON, PETER JON; BRUNS, CHRISTIANE JOSEPHINE

    2016-01-01

    Tumor side population (SP) cells display stem-like properties that can be modulated by treatment with the calcium channel blocker verapamil. Verapamil can enhance the cytotoxic effects of chemotherapeutic drugs and multi-drug resistance by targeting the transport function of the P-glycoprotein (P-gp). This study focused on the therapeutic potential of verapamil on stem-like SP tumor cells, and further investigated its chemosensitizing effects using L3.6pl and AsPC-1 pancreatic carcinoma models. As compared to parental L3.6pl cells (0.9±0.22%), L3.6pl gemcitabine-resistant cells (L3.6plGres) showed a significantly higher percentage of SP cells (5.38±0.99%) as detected by Hoechst 33342/FACS assays. The L3.6plGres SP cells showed stable gemcitabine resistance, enhanced colony formation ability and increased tumorigenicity. Verapamil effectively inhibited L3.6plGres and AsPC-1 SP cell proliferation in vitro. A pro-apoptotic effect of verapamil was observed in L3.6pl cells, but not in L3.6plGres cells, which was linked to their differential expression of P-gp and equilibrative nucleoside transporter-1 (ENT-1). In an orthotopic pancreatic cancer mouse model, both low and high dose verapamil was shown to substantially reduce L3.6plGres-SP cell tumor growth and metastasis, enhance tumor apoptosis, and reduce microvascular density. PMID:27177126

  9. Antiretroviral drug resistance in HIV-1 therapy-naive patients in Cuba.

    Science.gov (United States)

    Pérez, Lissette; Kourí, Vivian; Alemán, Yoan; Abrahantes, Yeisel; Correa, Consuelo; Aragonés, Carlos; Martínez, Orlando; Pérez, Jorge; Fonseca, Carlos; Campos, Jorge; Álvarez, Delmis; Schrooten, Yoeri; Dekeersmaeker, Nathalie; Imbrechts, Stijn; Beheydt, Gertjan; Vinken, Lore; Soto, Yudira; Álvarez, Alina; Vandamme, Anne-Mieke; Van Laethem, Kristel

    2013-06-01

    In Cuba, antiretroviral therapy rollout started in 2001 and antiretroviral therapy coverage has reached almost 40% since then. The objectives of this study were therefore to analyze subtype distribution, and level and patterns of drug resistance in therapy-naive HIV-1 patients. Four hundred and one plasma samples were collected from HIV-1 therapy-naive patients in 2003 and in 2007-2011. HIV-1 drug resistance genotyping was performed in the pol gene and drug resistance was interpreted according to the WHO surveillance drug-resistance mutations list, version 2009. Potential impact on first-line therapy response was estimated using genotypic drug resistance interpretation systems HIVdb version 6.2.0 and Rega version 8.0.2. Phylogenetic analysis was performed using Neighbor-Joining. The majority of patients were male (84.5%), men who have sex with men (78.1%) and from Havana City (73.6%). Subtype B was the most prevalent subtype (39.3%), followed by CRF20-23-24_BG (19.5%), CRF19_cpx (18.0%) and CRF18_cpx (10.3%). Overall, 29 patients (7.2%) had evidence of drug resistance, with 4.0% (CI 1.6%-4.8%) in 2003 versus 12.5% (CI 7.2%-14.5%) in 2007-2011. A significant increase in drug resistance was observed in recently HIV-1 diagnosed patients, i.e. 14.8% (CI 8.0%-17.0%) in 2007-2011 versus 3.8% (CI 0.9%-4.7%) in 2003 (OR 3.9, CI 1.5-17.0, p=0.02). The majority of drug resistance was restricted to a single drug class (75.8%), with 55.2% patients displaying nucleoside reverse transcriptase inhibitor (NRTI), 10.3% non-NRTI (NNRTI) and 10.3% protease inhibitor (PI) resistance mutations. Respectively, 20.7% and 3.4% patients carried viruses containing drug resistance mutations against NRTI+NNRTI and NRTI+NNRTI+PI. The first cases of resistance towards other drug classes than NRTI were only detected from 2008 onwards. The most frequent resistance mutations were T215Y/rev (44.8%), M41L (31.0%), M184V (17.2%) and K103N (13.8%). The median genotypic susceptibility score for the

  10. Radiation induction of drug resistance in RIF-1 tumors and tumor cells

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Moulder, J.E.

    1989-01-01

    The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not for ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance

  11. Differential effects of antipsychotic and propsychotic drugs on prepulse inhibition and locomotor activity in Roman high- (RHA) and low-avoidance (RLA) rats

    DEFF Research Database (Denmark)

    Oliveras, Ignasi; Sánchez-González, Ana; Sampedro-Viana, Daniel

    2017-01-01

    acutely administered propsychotic (DOI, MK-801) and antipsychotic drugs (haloperidol, clozapine), as well as apomorphine, on prepulse inhibition (PPI) of startle and locomotor activity (activity cages). RESULTS: RHA-I rats display a consistent deficit of PPI compared with RLA-I rats. The typical...... antipsychotic haloperidol (dopamine D2 receptor antagonist) reversed the PPI deficit characteristic of RHA-I rats (in particular at 65 and 70 dB prepulse intensities) and reduced locomotion in both strains. The atypical antipsychotic clozapine (serotonin/dopamine receptor antagonist) did not affect PPI...

  12. Pattern of secondary acquired drug resistance to antituberculosis drug in Mumbai, India--1991-1995.

    Science.gov (United States)

    Chowgule, R V; Deodhar, L

    1998-01-01

    A retrospective observational study was conducted to find out whether secondary acquired drug resistance to isoniazid and ethambutol is high and to rifamycin and pyrazinamide is low, as is commonly believed in India. There were 2033 patients, whose sputum samples (6099) were reviewed from a specimen registry of the microbiology laboratory for the years 1991 to 1995. Of these, 521 (25.6%) patients [335 males and 186 females; age ranged from 11 to 75 years] had sputum positive culture and sensitivity for acid-fast bacilli (AFB). The drug resistance patterns in our study were: isoniazid (H) 15%, rifamycin (R) 66.8%, pyrazinamide (Z) 72.2%, ethambutol (E) 8.4%, streptomycin (S) 53.6%, cycloserine (C) 39.2% kanamycin (K) 25.1% and ethionamide (Eth) 65.3%. The resistance to streptomycin showed a significant fall over a year while there was a rise in resistance to cycloserine and kanamycin which is significant. The rate of secondary acquired resistance of isoniazid and ethambutol was low, and the rate of secondary acquired resistance to rifamycin and pyrazinamide was high, which is contarary to the common belief regarding these drugs in India. This implies that isoniazid is still a valuable drug in the treatment of multidrug resistance in India.

  13. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs

    Directory of Open Access Journals (Sweden)

    Geisla Mary Silva Soares

    2012-06-01

    Full Text Available Antibiotics are important adjuncts in the treatment of infectious diseases, including periodontitis. The most severe criticisms to the indiscriminate use of these drugs are their side effects and, especially, the development of bacterial resistance. The knowledge of the biological mechanisms involved with the antibiotic usage would help the medical and dental communities to overcome these two problems. Therefore, the aim of this manuscript was to review the mechanisms of action of the antibiotics most commonly used in the periodontal treatment (i.e. penicillin, tetracycline, macrolide and metronidazole and the main mechanisms of bacterial resistance to these drugs. Antimicrobial resistance can be classified into three groups: intrinsic, mutational and acquired. Penicillin, tetracycline and erythromycin are broad-spectrum drugs, effective against gram-positive and gram-negative microorganisms. Bacterial resistance to penicillin may occur due to diminished permeability of the bacterial cell to the antibiotic; alteration of the penicillin-binding proteins, or production of β-lactamases. However, a very small proportion of the subgingival microbiota is resistant to penicillins. Bacteria become resistant to tetracyclines or macrolides by limiting their access to the cell, by altering the ribosome in order to prevent effective binding of the drug, or by producing tetracycline/macrolide-inactivating enzymes. Periodontal pathogens may become resistant to these drugs. Finally, metronidazole can be considered a prodrug in the sense that it requires metabolic activation by strict anaerobe microorganisms. Acquired resistance to this drug has rarely been reported. Due to these low rates of resistance and to its high activity against the gram-negative anaerobic bacterial species, metronidazole is a promising drug for treating periodontal infections.

  14. Linezolid in the treatment of drug-resistant tuberculosis: the challenge of its narrow therapeutic index.

    Science.gov (United States)

    Wasserman, Sean; Meintjes, Graeme; Maartens, Gary

    2016-10-01

    Linezolid is an oxazolidinone with potent activity against M tuberculosis, and improves culture conversion and cure rates when added to treatment regimens for drug resistant tuberculosis. However, linezolid has a narrow therapeutic window, and the optimal dosing strategy that minimizes the substantial toxicity associated with linezolid's prolonged use in tuberculosis treatment has not been determined, limiting the potential impact of this anti-mycobacterial agent. This paper aims to review and summarize the current knowledge on linezolid for the treatment of drug-resistant tuberculosis. The focus is on the pharmacokinetic-pharmacodynamic determinants of linezolid's efficacy and toxicity in tuberculosis, and how this relates to defining an optimal dose. Mechanisms of linezolid toxicity and resistance, and the potential role of therapeutic drug monitoring are also covered. Expert commentary: Prospective pharmacokinetic-pharmacodynamic studies are required to define optimal therapeutic targets and to inform improved linezolid dosing strategies for drug-resistant tuberculosis.

  15. Hedgehog Signals Mediate Anti-Cancer Drug Resistance in Three-Dimensional Primary Colorectal Cancer Organoid Culture

    Directory of Open Access Journals (Sweden)

    Tatsuya Usui

    2018-04-01

    Full Text Available Colorectal cancer is one of the most common causes of cancer death worldwide. In patients with metastatic colorectal cancer, combination treatment with several anti-cancer drugs is employed and improves overall survival in some patients. Nevertheless, most patients with metastatic disease are not cured owing to the drug resistance. Cancer stem cells are known to regulate resistance to chemotherapy. In the previous study, we established a novel three-dimensional organoid culture model from tumor colorectal tissues of human patients using an air–liquid interface (ALI method, which contained numerous cancer stem cells and showed resistance to 5-fluorouracil (5-FU and Irinotecan. Here, we investigate which inhibitor for stem cell-related signal improves the sensitivity for anti-cancer drug treatment in tumor ALI organoids. Treatment with Hedgehog signal inhibitors (AY9944, GANT61 decreases the cell viability of organoids compared with Notch (YO-01027, DAPT and Wnt (WAV939, Wnt-C59 signal inhibitors. Combination treatment of AY9944 or GANT61 with 5-FU, Irinotecan or Oxaliplatin decreases the cell viability of tumor organoids compared with each anti-cancer drug alone treatment. Treatment with AY9944 or GANT61 inhibits expression of stem cell markers c-Myc, CD44 and Nanog, likely through the decrease of their transcription factor, GLI-1 expression. Combination treatment of AY9944 or GANT61 with 5-FU or Irinotecan also prevents colony formation of colorectal cancer cell lines HCT116 and SW480. These findings suggest that Hedgehog signals mediate anti-cancer drug resistance in colorectal tumor patient-derived ALI organoids and that the inhibitors are useful as a combinational therapeutic strategy against colorectal cancer.

  16. Evaluation of Activity and Combination Strategies with the Microtubule-Targeting Drug Sagopilone in Breast Cancer Cell Lines

    International Nuclear Information System (INIS)

    Eschenbrenner, Julia; Winsel, Sebastian; Hammer, Stefanie; Sommer, Anette; Mittelstaedt, Kevin; Drosch, Michael; Klar, Ulrich; Sachse, Christoph; Hannus, Michael; Seidel, Monika; Weiss, Bertram; Merz, Claudia; Siemeister, Gerhard; Hoffmann, Jens

    2011-01-01

    Sagopilone, a fully synthetic epothilone, is a microtubule-stabilizing agent optimized for high in vitro and in vivo activity against a broad range of tumor models, including those resistant to paclitaxel and other systemic treatments. Sagopilone development is accompanied by translational research studies to evaluate the molecular mode of action, to recognize mechanisms leading to resistance, to identify predictive response biomarkers, and to establish a rationale for combination with different therapies. Here, we profiled sagopilone activity in breast cancer cell lines. To analyze the mechanisms of mitotic arrest and apoptosis and to identify additional targets and biomarkers, an siRNA-based RNAi drug modifier screen interrogating 300 genes was performed in four cancer cell lines. Defects of the spindle assembly checkpoint (SAC) were identified to cause resistance against sagopilone-induced mitotic arrest and apoptosis. Potential biomarkers for resistance could therefore be functional defects like polymorphisms or mutations in the SAC, particularly in the central SAC kinase BUB1B. Moreover, chromosomal heterogeneity and polyploidy are also potential biomarkers of sagopilone resistance since they imply an increased tolerance for aberrant mitosis. RNAi screening further demonstrated that the sagopilone-induced mitotic arrest can be enhanced by concomitant inhibition of mitotic kinesins, thus suggesting a potential combination therapy of sagopilone with a KIF2C (MCAK) kinesin inhibitor. However, the combination of sagopilone and inhibition of the prophase kinesin KIF11 (EG5) is antagonistic, indicating that the kinesin inhibitor has to be highly specific to bring about the required therapeutic benefit.

  17. Evaluation of Activity and Combination Strategies with the Microtubule-Targeting Drug Sagopilone in Breast Cancer Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Eschenbrenner, Julia [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Institute for Biotechnology, Technical University Berlin, Berlin (Germany); Winsel, Sebastian [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Institute for Chemistry and Biochemistry, Free University Berlin, Berlin (Germany); Medical Biotechnology, VTT Technical Research Centre of Finland, Turku (Finland); Hammer, Stefanie [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Sommer, Anette [Global Drug Discovery, Target Discovery, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Mittelstaedt, Kevin [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Institute for Chemistry and Biochemistry, Free University Berlin, Berlin (Germany); Department of Medicine, The University of Melbourne, Melbourne, VIC (Australia); Drosch, Michael [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Center of Human Genetics, University of Bremen, Bremen (Germany); Klar, Ulrich [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Sachse, Christoph; Hannus, Michael; Seidel, Monika [Cenix BioScience GmbH, Dresden (Germany); Weiss, Bertram; Merz, Claudia [Global Drug Discovery, Target Discovery, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Siemeister, Gerhard [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Hoffmann, Jens, E-mail: jens.hoffmann@epo-berlin.com [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Experimentelle Pharmakologie und Onkologie Berlin-Buch GmbH, Berlin (Germany)

    2011-11-16

    Sagopilone, a fully synthetic epothilone, is a microtubule-stabilizing agent optimized for high in vitro and in vivo activity against a broad range of tumor models, including those resistant to paclitaxel and other systemic treatments. Sagopilone development is accompanied by translational research studies to evaluate the molecular mode of action, to recognize mechanisms leading to resistance, to identify predictive response biomarkers, and to establish a rationale for combination with different therapies. Here, we profiled sagopilone activity in breast cancer cell lines. To analyze the mechanisms of mitotic arrest and apoptosis and to identify additional targets and biomarkers, an siRNA-based RNAi drug modifier screen interrogating 300 genes was performed in four cancer cell lines. Defects of the spindle assembly checkpoint (SAC) were identified to cause resistance against sagopilone-induced mitotic arrest and apoptosis. Potential biomarkers for resistance could therefore be functional defects like polymorphisms or mutations in the SAC, particularly in the central SAC kinase BUB1B. Moreover, chromosomal heterogeneity and polyploidy are also potential biomarkers of sagopilone resistance since they imply an increased tolerance for aberrant mitosis. RNAi screening further demonstrated that the sagopilone-induced mitotic arrest can be enhanced by concomitant inhibition of mitotic kinesins, thus suggesting a potential combination therapy of sagopilone with a KIF2C (MCAK) kinesin inhibitor. However, the combination of sagopilone and inhibition of the prophase kinesin KIF11 (EG5) is antagonistic, indicating that the kinesin inhibitor has to be highly specific to bring about the required therapeutic benefit.

  18. Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein.

    Science.gov (United States)

    Chufan, Eduardo E; Kapoor, Khyati; Ambudkar, Suresh V

    2016-02-01

    P-glycoprotein (P-gp) is a member of the ATP-binding cassette transporter superfamily. This multidrug transporter utilizes energy from ATP hydrolysis for the efflux of a variety of hydrophobic and amphipathic compounds including anticancer drugs. Most of the substrates and modulators of P-gp stimulate its basal ATPase activity, although some inhibit it. The molecular mechanisms that are in play in either case are unknown. In this report, mutagenesis and molecular modeling studies of P-gp led to the identification of a pair of phenylalanine-tyrosine structural motifs in the transmembrane region that mediate the inhibition of ATP hydrolysis by certain drugs (zosuquidar, elacridar and tariquidar), with high affinity (IC50's ranging from 10 to 30nM). Upon mutation of any of these residues, drugs that inhibit the ATPase activity of P-gp switch to stimulation of the activity. Molecular modeling revealed that the phenylalanine residues F978 and F728 interact with tyrosine residues Y953 and Y310, respectively, in an edge-to-face conformation, which orients the tyrosines in such a way that they establish hydrogen-bond contacts with the inhibitor. Biochemical investigations along with transport studies in intact cells showed that the inhibitors bind at a high affinity site to produce inhibition of ATP hydrolysis and transport function. Upon mutation, they bind at lower affinity sites, stimulating ATP hydrolysis and only poorly inhibiting transport. These results also reveal that screening chemical compounds for their ability to inhibit the basal ATP hydrolysis can be a reliable tool to identify modulators with high affinity for P-gp. Published by Elsevier Inc.

  19. Extensively Drug-Resistant TB

    Centers for Disease Control (CDC) Podcasts

    2016-12-16

    Dr. Charlotte Kvasnovsky, a surgery resident and Ph.D. candidate in biostatistics, discusses various types of drug resistance in TB patients in South Africa.  Created: 12/16/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/16/2016.

  20. Development of botanicals to combat antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Pooja D. Gupta

    2017-10-01

    Full Text Available The discovery of antibiotics in the previous century lead to reduction in mortality and morbidity due to infectious diseases but their inappropriate and irrational use has resulted in emergence of resistant microbial populations. Alteration of target sites, active efflux of drugs and enzymatic degradations are the strategies employed by the pathogenic bacteria to develop intrinsic resistance to antibiotics. This has led to an increased interest in medicinal plants since 25–50% of current pharmaceuticals are plant derived. Crude extracts of medicinal plants could serve as an alternate source of resistance modifying agents owing to the wide variety of secondary metabolites. These metabolites (alkaloids, tannins, polyphenols etc. could act as potentials for antimicrobials and resistance modifiers. Plant extracts have the ability to bind to protein domains leading to modification or inhibition protein–protein interactions. This enables the herbals to also present themselves as effective modulators of host related cellular processes viz immune response, mitosis, apoptosis and signal transduction. Thus they may exert their activity not only by killing the microorganism but by affecting key events in the pathogenic process, thereby, the bacteria, fungi and viruses may have a reduced ability to develop resistance to botanicals. The article is meant to stimulate research wherein the cidal activity of the extract is not the only parameter considered but other mechanism of action by which plants can combat drug resistant microbes are investigated. The present article emphasizes on mechanisms involved in countering multi drug resistance.

  1. THE QUORUM SENSİNG INHIBITION ACTIVITY OF THE ETHYL ACETATE EXTRACT OF STREPTOMYCES GRİSEOFLAVUS OC. 124-2

    Directory of Open Access Journals (Sweden)

    Gultekin Akdamar

    2016-05-01

    Full Text Available Streptomyces griseoflavus OC. 124-2 used in this study was isolated from the field soil of Dalaman Directorate of Agricultural Enterprises Muğla. As a result of phenotypic and molecular characterization, the isolate was identified as Streptomyces griseoflavus and named as OC. 124-2. The fermentation liquid of Streptomyces griseoflavus OC. 124-2 was obtained in optimum fermentation conditions, and then it was filtered and extracted with ethyl acetate 1:1. The extract containing the active compounds was obtained by evaporating the solvent. Biomonitor strains, Chromobacterium violaceum CV026 for the determination of anti-quorum sensing activity (anti-QS, Chromobacterium violaceum CV12472 for the determination of inhibition of violacein pigment production and Pseudomonas aeruginosa PA01 for the determination of anti-swarming activity were used at MIC and sub-MIC concentrations. The anti-quorum sensing and anti-swarming activities could not be detected for the extract. Violacein production was inhibited by 100%, 74.86%, 65.74% and 31.99% at MIC, MIC/2, MIC/4 and MIC/8 concentrations of the extract treatment, respectively. While the detected inhibition of violacein pigment production did not inhibit the bacterial growth, it was revealed that it inhibited the quorum-sensing-regulated signaling systems. Accordingly, it was shown that the active compounds obtained from ethyl acetate extract of OC. 124-2 constituted a non-selective pressure for the growth of drug resistant pathogen bacteria and they may be used as an alternative at treatment of these bacteria.

  2. Cutting edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction.

    Science.gov (United States)

    An, Jie; Woodward, Joshua J; Sasaki, Tomikazu; Minie, Mark; Elkon, Keith B

    2015-05-01

    Type I IFN is strongly implicated in the pathogenesis of systemic autoimmune diseases, such as lupus, and rare monogenic IFNopathies, including Aicardi-Goutières syndrome. Recently, a new DNA-activated pathway involving the enzyme cyclic GMP-AMP synthase (cGAS) was described and potentially linked to Aicardi-Goutières syndrome. To identify drugs that could potentially inhibit cGAS activity, we performed in silico screening of drug libraries. By computational analysis, we identified several antimalarial drugs (AMDs) that were predicted to interact with the cGAS/dsDNA complex. Our studies validated that several AMDs were effective inhibitors of IFN-β production and that they functioned by inhibiting dsDNA stimulation of cGAS. Because AMDs have been widely used in human diseases and have an excellent safety profile, our findings suggest new therapeutic strategies for the treatment of severe debilitating diseases associated with type I IFNs due to cGAS activation. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. Resistance to Linezolid

    DEFF Research Database (Denmark)

    Vester, Birte; Ntokou, Eleni

    2017-01-01

    Linezolid is an antimicrobial agent that binds to the bacterial ribosome and thereby inhibits protein synthesis. Soon after its release as a clinical drug, it became clear that bacteria could become resistant to linezolid. The resistance mechanisms are mainly causing alteration of the drug target...... site, but probably efflux might also play a role. The resistance is still rare in surveillance studies, but outbreaks of resistant clones from hospitals have been observed. So far the main mechanisms of resistance are occurrence of mutations in ribosomal genes or obtaining plasmids with a gene coding...... for a methyltransferase providing resistance. The most obvious way to avoid resistance may be development of derivatives of linezolid overcoming the known resistance mechanisms....

  4. Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Al-Saeedi M

    2017-10-01

    Full Text Available Mashael Al-Saeedi, Sahal Al-Hajoj Department of Infection and Immunity, Mycobacteriology Research Section, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia Abstract: Despite the efficacy of antibiotics to protect humankind against many deadly pathogens, such as Mycobacterium tuberculosis, nothing can prevent the emergence of drug-resistant strains. Several mechanisms facilitate drug resistance in M. tuberculosis including compensatory evolution, epistasis, clonal interference, cell wall integrity, efflux pumps, and target mimicry. In this study, we present recent findings relevant to these mechanisms, which can enable the discovery of new drug targets and subsequent development of novel drugs for treatment of drug-resistant M. tuberculosis. Keywords: Mycobacterium tuberculosis, antibiotic resistance, compensatory evolution, epistasis, efflux pumps, fitness cost

  5. Forward genetic screening identifies a small molecule that blocks Toxoplasma gondii growth by inhibiting both host- and parasite-encoded kinases.

    Directory of Open Access Journals (Sweden)

    Kevin M Brown

    2014-06-01

    Full Text Available The simultaneous targeting of host and pathogen processes represents an untapped approach for the treatment of intracellular infections. Hypoxia-inducible factor-1 (HIF-1 is a host cell transcription factor that is activated by and required for the growth of the intracellular protozoan parasite Toxoplasma gondii at physiological oxygen levels. Parasite activation of HIF-1 is blocked by inhibiting the family of closely related Activin-Like Kinase (ALK host cell receptors ALK4, ALK5, and ALK7, which was determined in part by use of an ALK4,5,7 inhibitor named SB505124. Besides inhibiting HIF-1 activation, SB505124 also potently blocks parasite replication under normoxic conditions. To determine whether SB505124 inhibition of parasite growth was exclusively due to inhibition of ALK4,5,7 or because the drug inhibited a second kinase, SB505124-resistant parasites were isolated by chemical mutagenesis. Whole-genome sequencing of these mutants revealed mutations in the Toxoplasma MAP kinase, TgMAPK1. Allelic replacement of mutant TgMAPK1 alleles into wild-type parasites was sufficient to confer SB505124 resistance. SB505124 independently impacts TgMAPK1 and ALK4,5,7 signaling since drug resistant parasites could not activate HIF-1 in the presence of SB505124 or grow in HIF-1 deficient cells. In addition, TgMAPK1 kinase activity is inhibited by SB505124. Finally, mice treated with SB505124 had significantly lower tissue burdens following Toxoplasma infection. These data therefore identify SB505124 as a novel small molecule inhibitor that acts by inhibiting two distinct targets, host HIF-1 and TgMAPK1.

  6. Laboratory-Based Surveillance of Extensively Drug-Resistant Tuberculosis in Eastern China.

    Science.gov (United States)

    Huang, Yu; Wu, Qingqing; Xu, Shuiyang; Zhong, Jieming; Chen, Songhua; Xu, Jinghang; Zhu, Liping; He, Haibo; Wang, Xiaomeng

    2017-03-01

    With 25% of the global burden, China has the highest incidence of drug-resistant tuberculosis (TB) in the world. However, surveillance data on extensively drug-resistant TB (XDR-TB) from China are scant. To estimate the prevalence of XDR-TB in Zhejiang, Eastern China, 30 of 90 TB treatment centers in Zhejiang were recruited. Patients with suspected TB who reported to the clinics for diagnosis were requested to undergo a smear sputum test. Positive sputum samples were tested for drug susceptibility. Data on anti-TB drug resistance from 1999 to 2008 were also collected to assess drug resistance trends. A total of 931 cases were recruited for drug susceptibility testing (DST). Among these, 23.6% (95% confidence interval [CI], 18.8-24.4) were resistant to any of the following drugs: isoniazid, rifampin, streptomycin, and ethambutol. Multidrug resistant (MDR) strains were identified in 5.1% of all cases (95% CI, 3.61-6.49). Among MDR-TB cases, 6.4% were XDR (95% CI, 1.7-18.6) and 8.9% (95% CI, 7.0-10.8) of all cases were resistant to either isoniazid or rifampin (but not both). Among MDR-TB cases, 23.4% (95% CI, 12.8-38.4) were resistant to either fluoroquinolones or a second-line anti-TB injectable drug, but not both. From 1999 to 2014, the percentage of MDR cases decreased significantly, from 8.6% to 5.1% (p = 0.00). The Global Fund to Fight TB program showed signs of success in Eastern China. However, drug-resistant TB, MDR-TB, and XDR-TB still pose a challenge for TB control in Eastern China. High-quality directly observed treatment, short-course, and universal DST for TB cases to determine appropriate treatment regimens are urgently needed to prevent acquired drug resistance.

  7. Drug-resistant tuberculosis among HIV-infected patients starting antiretroviral therapy in Durban, South Africa.

    Directory of Open Access Journals (Sweden)

    Jeffrey K Hom

    Full Text Available To estimate the prevalence of drug-resistant tuberculosis (TB and describe the resistance patterns in patients commencing antiretroviral therapy (ART in an HIV clinic in Durban, South Africa.Cross-sectional cohort study.Consecutive HIV-infected adults (≥ 18y/o initiating HIV care were enrolled from May 2007-May 2008, regardless of signs or symptoms of active TB. Prior TB history and current TB treatment status were self-reported. Subjects expectorated sputum for culture (MGIT liquid and 7H11 solid medium. Positive cultures were tested for susceptibility to first- and second-line anti-tuberculous drugs. The prevalence of drug-resistant TB, stratified by prior TB history and current TB treatment status, was assessed.1,035 subjects had complete culture results. Median CD4 count was 92/µl (IQR 42-150/µl. 267 subjects (26% reported a prior history of TB and 210 (20% were receiving TB treatment at enrollment; 191 (18% subjects had positive sputum cultures, among whom the estimated prevalence of resistance to any antituberculous drug was 7.4% (95% CI 4.0-12.4. Among those with prior TB, the prevalence of resistance was 15.4% (95% CI 5.9-30.5 compared to 5.2% (95% CI 2.1-8.9 among those with no prior TB. 5.1% (95% CI 2.4-9.5 had rifampin or rifampin plus INH resistance.The prevalence of TB resistance to at least one drug was 7.4% among adults with positive TB cultures initiating ART in Durban, South Africa, with 5.1% having rifampin or rifampin plus INH resistance. Improved tools for diagnosing TB and drug resistance are urgently needed in areas of high HIV/TB prevalence.

  8. Incidence of multidrug-resistant, extensively drug-resistant and pan-drug-resistant bacteria in children hospitalized at Dr. Hasan Sadikin general hospital Bandung Indonesia

    Science.gov (United States)

    Adrizain, R.; Suryaningrat, F.; Alam, A.; Setiabudi, D.

    2018-03-01

    Antibiotic resistance has become a global issue, with 700,000 deaths attributable to multidrug-resistance (MDR) occurring each year. Centers for Disease Control and Prevention (CDC) show rapidly increasing rates of infection due to antibiotic-resistant bacteria. The aim of the study isto describe the incidence of MDR, extensively drug-resistant (XDR) and pan drug-resistant (PDR) in Enterococcus spp., Staphylococcus aureus, K. pneumonia, Acinetobacter baumanii, P. aeruginosin, and Enterobacter spp. (ESKAPE) pathogens in children admitted to Dr. Hasan Sadikin Hospital. All pediatric patients having blood culture drawn from January 2015 to December 2016 were retrospectively studied. Data include the number of drawn blood culture, number of positive results, type of bacteria, sensitivity pattern. International standard definitions for acquired resistance by ECDC and CDC was used as definitions for MDR, XDR and PDR bacteria. From January 2015 to December 2016, 299 from 2.542 (11.7%) blood culture was positive, with Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter spp., respectively 5, 6, 24, 5, 20 with total 60 (20%). The MDR and XDR pathogen found were 47 and 13 patients, respectively.

  9. Novel bacterial metabolite merochlorin A demonstrates in vitro activity against multi-drug resistant methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    George Sakoulas

    Full Text Available We evaluated the in vitro activity of a merochlorin A, a novel compound with a unique carbon skeleton, against a spectrum of clinically relevant bacterial pathogens and against previously characterized clinical and laboratory Staphylococcus aureus isolates with resistance to numerous antibiotics.Merochlorin A was isolated and purified from a marine-derived actinomycete strain CNH189. Susceptibility testing for merochlorin A was performed against previously characterized human pathogens using broth microdilution and agar dilution methods. Cytotoxicity was assayed in tissue culture assays at 24 and 72 hours against human HeLa and mouse sarcoma L929 cell lines.The structure of as new antibiotic, merochlorin A, was assigned by comprehensive spectroscopic analysis. Merochlorin A demonstrated in vitro activity against Gram-positive bacteria, including Clostridium dificile, but not against Gram negative bacteria. In S. aureus, susceptibility was not affected by ribosomal mutations conferring linezolid resistance, mutations in dlt or mprF conferring resistance to daptomycin, accessory gene regulator knockout mutations, or the development of the vancomycin-intermediate resistant phenotype. Merochlorin A demonstrated rapid bactericidal activity against MRSA. Activity was lost in the presence of 20% serum.The unique meroterpenoid, merochlorin A demonstrated excellent in vitro activity against S. aureus and C. dificile and did not show cross-resistance to contemporary antibiotics against Gram positive organisms. The activity was, however, markedly reduced in 20% human serum. Future directions for this compound may include evaluation for topical use, coating biomedical devices, or the pursuit of chemically modified derivatives of this compound that retain activity in the presence of serum.

  10. Clinical Significance of HER-2 Splice Variants in Breast Cancer Progression and Drug Resistance

    Directory of Open Access Journals (Sweden)

    Claire Jackson

    2013-01-01

    Full Text Available Overexpression of human epidermal growth factor receptor (HER-2 occurs in 20–30% of breast cancers and confers survival and proliferative advantages on the tumour cells making HER-2 an ideal therapeutic target for drugs like Herceptin. Continued delineation of tumour biology has identified splice variants of HER-2, with contrasting roles in tumour cell biology. For example, the splice variant 16HER-2 (results from exon 16 skipping increases transformation of cancer cells and is associated with treatment resistance; conversely, Herstatin (results from intron 8 retention and p100 (results from intron 15 retention inhibit tumour cell proliferation. This review focuses on the potential clinical implications of the expression and coexistence of HER-2 splice variants in cancer cells in relation to breast cancer progression and drug resistance. “Individualised” strategies currently guide breast cancer management; in accordance, HER-2 splice variants may prove valuable as future prognostic and predictive factors, as well as potential therapeutic targets.

  11. Carcinogenic Activities and Sperm Abnormalities of Methicillin Resistance Staphylococcus aureus and Inhibition of Their Virulence Potentials by Ayamycin.

    Science.gov (United States)

    El-Gendy, Mervat Morsy Abbas Ahmed; Abdel-Wahhab, Khaled G; Mannaa, Fathia A; Farghaly, Ayman A; El-Bondkly, Ahmed M A

    2017-11-01

    This investigation aimed to study the in vivo harmful effects of the subcutaneous injection of different methicillin resistance Staphylococcus aureus extracts (MRSA2, MRSA4, MRSA10, MRSA69, MRSA70, MRSA76, and MRSA78). Such strains represented the highest minimum inhibition concentration toward methicillin with various multidrug-resistant patterns. The obtained results revealed that rats injected with the MRSA4 extract died immediately after the last dose indicating the high cytotoxicity of MRSA4 strain (100% mortality). While the mortalities in other groups injected by the other MRSA extracts ranged from 50 to 75%. In comparison with the normal animal group, all MRSA extracts induced a hepatotoxic effect which was indicated from the significant (p study focused on fighting MRSA virulence factors by the new compound ayamycin, which proved to be potent anti-virulence factor against all MRSA strains under study by significant decreasing of their streptokinase activities, hemolysin synthesis, biofilm formation, and their cell surface hydrophobicity.

  12. Effect of pretreatment HIV-1 drug resistance on immunological, virological, and drug-resistance outcomes of first-line antiretroviral treatment in sub-Saharan Africa: a multicentre cohort study

    NARCIS (Netherlands)

    Hamers, Raph L.; Schuurman, Rob; Sigaloff, Kim C. E.; Wallis, Carole L.; Kityo, Cissy; Siwale, Margaret; Mandaliya, Kishor; Ive, Prudence; Botes, Mariette E.; Wellington, Maureen; Osibogun, Akin; Wit, Ferdinand W.; van Vugt, Michèle; Stevens, Wendy S.; de Wit, Tobias F. Rinke

    2012-01-01

    Background The effect of pretreatment HIV-1 drug resistance on the response to first-line combination antiretroviral therapy (ART) in sub-Saharan Africa has not been assessed. We studied pretreatment drug resistance and virological, immunological, and drug-resistance treatment outcomes in a large

  13. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  14. Evaluation of a series of 2-napthamide derivatives as inhibitors of the drug efflux pump AcrB for the reversal of antimicrobial resistance.

    Science.gov (United States)

    Wang, Yinhu; Mowla, Rumana; Guo, Liwei; Ogunniyi, Abiodun D; Rahman, Taufiq; De Barros Lopes, Miguel A; Ma, Shutao; Venter, Henrietta

    2017-02-15

    Drug efflux pumps confer multidrug resistance to dangerous pathogens which makes these pumps important drug targets. We have synthesised a novel series of compounds based on a 2-naphthamide pharmacore aimed at inhibiting the efflux pumps from Gram-negative bacteria. The archeatypical transporter AcrB from Escherichia coli was used as model efflux pump as AcrB is widely conserved throughout Gram-negative organisms. The compounds were tested for their antibacterial action, ability to potentiate the action of antibiotics and for their ability to inhibit Nile Red efflux by AcrB. None of the compounds were antimicrobial against E. coli wild type cells. Most of the compounds were able to inhibit Nile Red efflux indicating that they are substrates of the AcrB efflux pump. Three compounds were able to synergise with antibiotics and reverse resistance in the resistant phenotype. Compound A3, 4-(isopentyloxy)-2-naphthamide, reduced the MICs of erythromycin and chloramphenicol to the MIC levels of the drug sensitive strain that lacks an efflux pump. A3 had no effect on the MIC of the non-substrate rifampicin indicating that this compound acts specifically through the AcrB efflux pump. A3 also does not act through non-specific mechanisms such as outer membrane or inner membrane permeabilisation and is not cytotoxic against mammalian cell lines. Therefore, we have designed and synthesised a novel chemical compound with great potential to further optimisation as inhibitor of drug efflux pumps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The Association between Mycobacterium Tuberculosis Genotype and Drug Resistance in Peru.

    Directory of Open Access Journals (Sweden)

    Louis Grandjean

    Full Text Available The comparison of Mycobacterium tuberculosis bacterial genotypes with phenotypic, demographic, geospatial and clinical data improves our understanding of how strain lineage influences the development of drug-resistance and the spread of tuberculosis.To investigate the association of Mycobacterium tuberculosis bacterial genotype with drug-resistance. Drug susceptibility testing together with genotyping using both 15-loci MIRU-typing and spoligotyping, was performed on 2,139 culture positive isolates, each from a different patient in Lima, Peru. Demographic, geospatial and socio-economic data were collected using questionnaires, global positioning equipment and the latest national census.The Latin American Mediterranean (LAM clade (OR 2.4, p<0.001 was significantly associated with drug-resistance and alone accounted for more than half of all drug resistance in the region. Previously treated patients, prisoners and genetically clustered cases were also significantly associated with drug-resistance (OR's 2.5, 2.4 and 1.8, p<0.001, p<0.05, p<0.001 respectively.Tuberculosis disease caused by the LAM clade was more likely to be drug resistant independent of important clinical, genetic and socio-economic confounding factors. Explanations for this include; the preferential co-evolution of LAM strains in a Latin American population, a LAM strain bacterial genetic background that favors drug-resistance or the "founder effect" from pre-existing LAM strains disproportionately exposed to drugs.

  16. The prevalence and degree of resistance of Plasmodium falciparum to first-line antimalarial drugs: an in vitro study from a malaria endemic region in Yemen

    International Nuclear Information System (INIS)

    Al-Shamahy, H.; Al-Harazy, Abdulilah Hussein; Harmal, Nabil S.; Al-Kabsi, Abdulgudos N.

    2007-01-01

    Unpublished studies on antimalarial drug efficacy have found low levels of chloroquine resistance in Yemen. This study was carried out to determine the current prevalence of drug resistance in Plasmodium falciparum in Yemen to the main anti-malarial drugs and to determine the effective concentration (EC) values. The WHO standard protocol was used for the selection of subjects, collection of blood samples, culture techniques, examination of post-culture blood slides and interpretation of results. The in vitro micro-test Mark III was used for assessing susceptibility of P. falciparum isolates. The criteria for blood parasite density was met by 219 P. falciparum malaria patients. Chloroquine resistance was found in 47% of isolated P. falciparum schizonts. Mefloquine resistance was found in 5.2%. In addition, the EC50 and EC95 values in blood that inhibited schizont maturation in resistant isolates were higher than the normal therapeutic level for mefloquine. No resistance occurred against quinine or artemisinin, with no growth at the cut off level for quinine and inhibition at low concentrations of artemisinin. Our study confirmed the occurrence of chloroquine-resistant P. falciparum and a slow increase in the rate of this resistance will increase further and spread over all the foci of malaria in Yemen. The low rate of chloroquine-resistant P. falciparum was lower than that reported in Africa or Southeast Asia, but is the first report of the mefloquine resistance in Yemen. Finally, the isolates were sensitive to low concentrations of quinine and artemisinin. (author)

  17. Antituberculosis drug resistance patterns in adults with tuberculous meningitis

    DEFF Research Database (Denmark)

    Senbayrak, Seniha; Ozkutuk, Nuri; Erdem, Hakan

    2015-01-01

    BACKGROUND: Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis resistant to antituberculosis drugs is an increasingly common clinical problem. This study aimed to evaluate drug resistance profiles of TBM isolates in adult patients in nine European countries involving 32 centers...

  18. Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity

    Directory of Open Access Journals (Sweden)

    Magdalena Markowicz-Piasecka

    2017-01-01

    Full Text Available The results of epidemiological and pathophysiological studies suggest that type 2 diabetes mellitus (T2DM may predispose to Alzheimer’s disease (AD. The two conditions present similar glucose levels, insulin resistance, and biochemical etiologies such as inflammation and oxidative stress. The diabetic state also contributes to increased acetylcholinesterase (AChE activity, which is one of the factors leading to neurodegeneration in AD. The aim of this study was to assess in vitro the effects of metformin, phenformin, and metformin sulfenamide prodrugs on the activity of human AChE and butyrylcholinesterase (BuChE and establish the type of inhibition. Metformin inhibited 50% of the AChE activity at micromolar concentrations (2.35 μmol/mL, mixed type of inhibition and seemed to be selective towards AChE since it presented low anti-BuChE activity. The tested metformin prodrugs inhibited cholinesterases (ChE at nanomolar range and thus were more active than metformin or phenformin. The cyclohexyl sulfenamide prodrug demonstrated the highest activity towards both AChE (IC50 = 890 nmol/mL, noncompetitive inhibition and BuChE (IC50 = 28 nmol/mL, mixed type inhibition, while the octyl sulfenamide prodrug did not present anti-AChE activity, but exhibited mixed inhibition towards BuChE (IC50 = 184 nmol/mL. Therefore, these two bulkier prodrugs were concluded to be the most selective compounds for BuChE over AChE. In conclusion, it was demonstrated that biguanides present a novel class of inhibitors for AChE and BuChE and encourages further studies of these compounds for developing both selective and nonselective inhibitors of ChEs in the future.

  19. Drug-Drug Interactions Potential of Icariin and Its Intestinal Metabolites via Inhibition of Intestinal UDP-Glucuronosyltransferases

    Directory of Open Access Journals (Sweden)

    Yun-Feng Cao

    2012-01-01

    Full Text Available Icariin is known as an indicative constituent of the Epimedium genus, which has been commonly used in Chinese herbal medicine to enhance treat impotence and improve sexual function, as well as for several other indications for over 2000 years. In this study, we aimed to investigate the effects of icariin and its intestinal metabolites on the activities of human UDP-glucuronosyltransferase (UGT activities. Using a panel of recombinant human UGT isoforms, we found that icariin exhibited potent inhibition against UGT1A3. It is interesting that the intestinal metabolites of icariin exhibited a different inhibition profile compared with icariin. Different from icariin, icariside II was a potent inhibitor of UGT1A4, UGT1A7, UGT1A9, and UGT2B7, and icaritin was a potent inhibitor of UGT1A7 and UGT1A9. The potential for drug interactions in vivo was also quantitatively predicted and compared. The quantitative prediction of risks indicated that in vivo inhibition against intestinal UGT1A3, UGT1A4, and UGT1A7 would likely occur after oral administration of icariin products.

  20. Protein phosphatase 2A inhibition and circumvention of cisplatin cross-resistance by novel TCM-platinum anticancer agents containing demethylcantharidin.

    Science.gov (United States)

    To, Kenneth K W; Wang, Xinning; Yu, Chun Wing; Ho, Yee-Ping; Au-Yeung, Steve C F

    2004-09-01

    Novel TCM-platinum compounds [Pt(C(8)H(8)O(5))(NH(2)R)(2)] 1-5, derived from integrating demethylcantharidin, a modified component from a traditional Chinese medicine (TCM) with a platinum moiety, possess anticancer and protein phosphatase 2A inhibition properties. The compounds are able to circumvent cisplatin resistance by apparently targeting the DNA repair mechanism. Novel isosteric analogues [Pt(C(9)H(10)O(4))(NH(2)R)(2)] A and B, devoid of PP2A-inhibitory activity, were found to suffer from an enhanced DNA repair and were cross-resistant to cisplatin. The results advocate a well-defined structure-activity requirement associating the PP2A-inhibiting demethylcantharidin with the circumvention of cisplatin cross-resistance demonstrated by TCM-Pt compounds 1-5.

  1. Significance of MDR1 and multiple drug resistance in refractory human epileptic brain

    Directory of Open Access Journals (Sweden)

    Dini Gabriele

    2004-10-01

    Full Text Available Abstract Background The multiple drug resistance protein (MDR1/P-glycoprotein is overexpressed in glia and blood-brain barrier (BBB endothelium in drug refractory human epileptic tissue. Since various antiepileptic drugs (AEDs can act as substrates for MDR1, the enhanced expression/function of this protein may increase their active extrusion from the brain, resulting in decreased responsiveness to AEDs. Methods Human drug resistant epileptic brain tissues were collected after surgical resection. Astrocyte cell cultures were established from these tissues, and commercially available normal human astrocytes were used as controls. Uptake of fluorescent doxorubicin and radioactive-labeled Phenytoin was measured in the two cell populations, and the effect of MDR1 blockers was evaluated. Frozen human epileptic brain tissue slices were double immunostained to locate MDR1 in neurons and glia. Other slices were exposed to toxic concentrations of Phenytoin to study cell viability in the presence or absence of a specific MDR1 blocker. Results MDR1 was overexpressed in blood vessels, astrocytes and neurons in human epileptic drug-resistant brain. In addition, MDR1-mediated cellular drug extrusion was increased in human 'epileptic' astrocytes compared to 'normal' ones. Concomitantly, cell viability in the presence of cytotoxic compounds was increased. Conclusions Overexpression of MDR1 in different cell types in drug-resistant epileptic human brain leads to functional alterations, not all of which are linked to drug pharmacokinetics. In particular, the modulation of glioneuronal MDR1 function in epileptic brain in the presence of toxic concentrations of xenobiotics may constitute a novel cytoprotective mechanism.

  2. Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant

    DEFF Research Database (Denmark)

    Frogne, Thomas; Benjaminsen, Rikke; Sonne-Hansen, Katrine

    2008-01-01

    cell lines concomitant with inhibition of Erk and unaltered Akt activation. In concert, inhibition of Erk with U0126 preferentially reduced growth of resistant cell lines. Treatment with ErbB3 neutralizing antibodies inhibited ErbB3 activation and resulted in a modest but statistically significant...... activation was observed only in the parental MCF-7 cells. The downstream kinases pAkt and pErk were increased in five of seven and in all seven resistant cell lines, respectively. Treatment with the EGFR inhibitor gefitinib preferentially inhibited growth and reduced the S phase fraction in the resistant...... growth inhibition of two resistant cell lines. These data indicate that ligand activated ErbB3 and EGFR, and Erk signaling play important roles in fulvestrant resistant cell growth. Furthermore, the decreased level of ErbB4 in resistant cells may facilitate heterodimerization of ErbB3 with EGFR and ErbB2...

  3. Inhibition of the ATP Synthase Eliminates the Intrinsic Resistance of Staphylococcus aureus towards Polymyxins

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Nøhr-Meldgaard, Katrine; Bojer, Martin Saxtorph

    2017-01-01

    , linezolid, daptomycin, and oxacillin were unchanged. ATP synthase activity is known to be inhibited by oligomycin A, and the presence of this compound increased polymyxin B-mediated killing of S. aureus Our results demonstrate that the ATP synthase contributes to intrinsic resistance of S. aureus towards...

  4. Multi-drug resistant tuberculosis in Tanzania: Initial description of ...

    African Journals Online (AJOL)

    Background: Drug resistant Tuberculosis is well documented worldwide and is associated with increasing morbidity and mortality complicating Tuberculosis control with increasing costs of managing the disease. Broad. Objective: To describe clinical and laboratory characteristics of multi-drug resistant Tuberculosis ...

  5. Response inhibition moderates the association between drug use and risky sexual behavior.

    Science.gov (United States)

    Nydegger, Liesl A; Ames, Susan L; Stacy, Alan W; Grenard, Jerry L

    2014-09-01

    HIV infection is problematic among all drug users, not only injection drug users. Drug users are at risk for contracting HIV by engaging in risky sexual behaviors. The present study sought to determine whether inhibitory processes moderate the relationship between problematic drug use and HIV-risk behaviors (unprotected sex and multiple sex partners). One hundred ninety-six drug offenders enrolled in drug education programs were administered a battery of computer-based assessments. Measures included a cued go/no-go assessment of inhibitory processes, the Drug Abuse Screening Test (DAST) assessment of problematic drug use, and self-report assessment of condom use and multiple sex partners. Findings revealed that response inhibition assessed by the proportion of false alarms on the cued go/no-go moderated the relationship between problematic drug use and an important measure of HIV risk (condom nonuse) among drug offenders. However, response inhibition did not moderate the relationship between problematic drug use and another measure of HIV risk: multiple sex partners. Among this sample of drug offenders, we have found a relationship between problematic drug use and condom nonuse, which is exacerbated by poor control of inhibition. These findings have implications for the development of HIV intervention components among high-risk populations.

  6. Evaluation of the larval migration inhibition assay for detecting macrocyclic lactone resistance in Dirofilaria immitis.

    Science.gov (United States)

    Evans, Christopher C; Moorhead, Andrew R; Storey, Bobby E; Blagburn, Byron L; Wolstenholme, Adrian J; Kaplan, Ray M

    2017-11-15

    Anthelmintics of the macrocyclic lactone (ML) drug class are widely used as preventives against the canine heartworm (Dirofilaria immitis). Over the past several years, however, reports of ML lack of efficacy (LOE) have emerged, in which dogs develop mature heartworm infection despite the administration of monthly prophylactics. More recently, isolates from LOE cases have been used to infect laboratory dogs and the resistant phenotype has been confirmed by the establishment of adult worms in the face of ML treatment at normally preventive dosages. Testing for and monitoring resistance in D. immitis requires a validated biological or molecular diagnostic assay. In this study, we assessed a larval migration inhibition assay (LMIA) that we previously optimized for use with D. immitis third-stage larvae (L 3 ). We used this assay to measure the in vitro ML susceptibilities of a known-susceptible laboratory strain of D. immitis and three highly suspected ML-resistant isolates originating from three separate LOE cases; progeny from two of these isolates have been confirmed ML-resistant by treatment of an infected dog in a controlled setting. A nonlinear regression model was fit to the dose-response data, from which IC 50 values were calculated. The D. immitis LMIA yielded consistent and reproducible dose-response data; however, no statistically significant differences in drug susceptibility were observed between control and LOE parasites. Additionally, the drug concentrations needed to paralyze the L 3 were much higher than those third- and fourth-stage larvae would experience in vivo. IC 50 values ranged from 1.57 to 5.56μM (p≥0.19). These data could suggest that ML resistance in this parasite is not mediated through a reduced susceptibility of L 3 to the paralytic effects of ML drugs, and therefore motility-based assays are likely not appropriate for measuring the effects of MLs against D. immitis in this target stage. Published by Elsevier B.V.

  7. Molecular basis of antifungal drug resistance in yeasts

    DEFF Research Database (Denmark)

    Morio, Florent; Jensen, Rasmus Hare; Le Pape, Patrice

    2017-01-01

    Besides inherent differences in in vitro susceptibilities, clinically-relevant yeast species may acquire resistance upon exposure to most antifungal drugs used in the clinic. In recent years, major fundamental research studies have been conducted to improve our understanding of the molecular basis...... of antifungal resistance. This topic is of major interest as antifungal resistance in yeast is clearly evolving and is correlated with clinical failure. This minireview is an overview of the most recent findings about key molecular mechanisms evolving in human pathogenic yeasts, particularly Candida spp......., in the context of antifungal drug resistance. Also included are the methods currently available for in vitro antifungal susceptibility testing and for molecular detection of mutations associated with resistance. Finally, the genetic drivers of antifungal resistance are discussed in light of the spectra...

  8. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    Science.gov (United States)

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  9. RNA Virus Evolution via a Quasispecies-Based Model Reveals a Drug Target with a High Barrier to Resistance

    Directory of Open Access Journals (Sweden)

    Richard J. Bingham

    2017-11-01

    Full Text Available The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.

  10. RNA Virus Evolution via a Quasispecies-Based Model Reveals a Drug Target with a High Barrier to Resistance.

    Science.gov (United States)

    Bingham, Richard J; Dykeman, Eric C; Twarock, Reidun

    2017-11-17

    The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.

  11. Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1.

    Science.gov (United States)

    Wang, Ming-Yang; Chen, Pai-Sheng; Prakash, Ekambaranellore; Hsu, Hsing-Chih; Huang, Hsin-Yi; Lin, Ming-Tsan; Chang, King-Jen; Kuo, Min-Liang

    2009-04-15

    Connective tissue growth factor (CTGF) expression is elevated in advanced breast cancer and promotes metastasis. Chemotherapy response is only transient in most metastatic diseases. In the present study, we examined whether CTGF expression could confer drug resistance in human breast cancer. In breast cancer patients who received neoadjuvant chemotherapy, CTGF expression was inversely associated with chemotherapy response. Overexpression of CTGF in MCF7 cells (MCF7/CTGF) enhanced clonogenic ability, cell viability, and resistance to apoptosis on exposure to doxorubicin and paclitaxel. Reducing the CTGF level in MDA-MB-231 (MDA231) cells by antisense CTGF cDNA (MDA231/AS cells) mitigated this drug resistance capacity. CTGF overexpression resulted in resistance to doxorubicin- and paclitaxel-induced apoptosis by up-regulation of Bcl-xL and cellular inhibitor of apoptosis protein 1 (cIAP1). Knockdown of Bcl-xL or cIAP1 with specific small interfering RNAs abolished the CTGF-mediated resistance to apoptosis induced by the chemotherapeutic agents in MCF7/CTGF cells. Inhibition of extracellular signal-regulated kinase (ERK)-1/2 effectively reversed the resistance to apoptosis as well as the up-regulation of Bcl-xL and cIAP1 in MCF7/CTGF cells. A neutralizing antibody against integrin alpha(v)beta(3) significantly attenuated CTGF-mediated ERK1/2 activation and up-regulation of Bcl-xL and cIAP1, indicating that the integrin alpha(v)beta(3)/ERK1/2 signaling pathway is essential for CTGF functions. The Bcl-xL level also correlated with the CTGF level in breast cancer patients. We also found that a COOH-terminal domain peptide from CTGF could exert activities similar to full-length CTGF, in activation of ERK1/2, up-regulation of Bcl-xL/cIAP1, and resistance to apoptosis. We conclude that CTGF expression could confer resistance to chemotherapeutic agents through augmenting a survival pathway through ERK1/2-dependent Bcl-xL/cIAP1 up-regulation.

  12. HIF-1 activation induces doxorubicin resistance in MCF7 3-D spheroids via P-glycoprotein expression: a potential model of the chemo-resistance of invasive micropapillary carcinoma of the breast

    Directory of Open Access Journals (Sweden)

    Doublier Sophie

    2012-01-01

    Full Text Available Abstract Background Invasive micropapillary carcinoma (IMPC of the breast is a distinct and aggressive variant of luminal type B breast cancer that does not respond to neoadjuvant chemotherapy. It is characterized by small pseudopapillary clusters of cancer cells with inverted cell polarity. To investigate whether hypoxia-inducible factor-1 (HIF-1 activation may be related to the drug resistance described in this tumor, we used MCF7 cancer cells cultured as 3-D spheroids, which morphologically simulate IMPC cell clusters. Methods HIF-1 activation was measured by EMSA and ELISA in MCF7 3-D spheroids and MCF7 monolayers. Binding of HIF-1α to MDR-1 gene promoter and modulation of P-glycoprotein (Pgp expression was evaluated by ChIP assay and FACS analysis, respectively. Intracellular doxorubicin retention was measured by spectrofluorimetric assay and drug cytotoxicity by annexin V-FITC measurement and caspase activity assay. Results In MCF7 3-D spheroids HIF-1 was activated and recruited to participate to the transcriptional activity of MDR-1 gene, coding for Pgp. In addition, Pgp expression on the surface of cells obtained from 3-D spheroids was increased. MCF7 3-D spheroids accumulate less doxorubicin and are less sensitive to its cytotoxic effects than MCF7 cells cultured as monolayer. Finally, HIF-1α inhibition either by incubating cells with 3-(5'-hydroxymethyl-2'-furyl-1-benzylindazole (a widely used HIF-1α inhibitor or by transfecting cells with specific siRNA for HIF-1α significantly decreased the expression of Pgp on the surface of cells and increased the intracellular doxorubicin accumulation in MCF7 3-D spheroids. Conclusions MCF7 breast cancer cells cultured as 3-D spheroids are resistant to doxorubicin and this resistance is associated with an increased Pgp expression in the plasma membrane via activation of HIF-1. The same mechanism may be suggested for IMPC drug resistance.

  13. Structure-Based Design of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh,A.; Sridhar, P.; Leshchenko, S.; Hussain, A.; Li, J.; Kovalevsky, A.; Walters, D.; Wedelind, J.; Grum-Tokars, V.; et al.

    2006-01-01

    Structure-based design and synthesis of novel HIV protease inhibitors are described. The inhibitors are designed specifically to interact with the backbone of HIV protease active site to combat drug resistance. Inhibitor 3 has exhibited exceedingly potent enzyme inhibitory and antiviral potency. Furthermore, this inhibitor maintains impressive potency against a wide spectrum of HIV including a variety of multi-PI-resistant clinical strains. The inhibitors incorporated a stereochemically defined 5-hexahydrocyclopenta[b]furanyl urethane as the P2-ligand into the (R)-(hydroxyethylamino)sulfonamide isostere. Optically active (3aS,5R,6aR)-5-hydroxy-hexahydrocyclopenta[b]furan was prepared by an enzymatic asymmetrization of meso-diacetate with acetyl cholinesterase, radical cyclization, and Lewis acid-catalyzed anomeric reduction as the key steps. A protein-ligand X-ray crystal structure of inhibitor 3-bound HIV-1 protease (1.35 Angstroms resolution) revealed extensive interactions in the HIV protease active site including strong hydrogen bonding interactions with the backbone. This design strategy may lead to novel inhibitors that can combat drug resistance.

  14. Study of antagonistic effects of Lactobacillus strains as probiotics on multi drug resistant (MDR) bacteria isolated from urinary tract infections (UTIs).

    Science.gov (United States)

    Naderi, Atiyeh; Kasra-Kermanshahi, Roha; Gharavi, Sara; Imani Fooladi, Abbas Ali; Abdollahpour Alitappeh, Meghdad; Saffarian, Parvaneh

    2014-03-01

    Urinary tract infection (UTI) caused by bacteria is one of the most frequent infections in human population. Inappropriate use of antibiotics, often leads to appearance of drug resistance in bacteria. However, use of probiotic bacteria has been suggested as a partial replacement. This study was aimed to assess the antagonistic effects of Lactobacillus standard strains against bacteria isolated from UTI infections. Among 600 samples; those with ≥10,000 cfu/ml were selected as UTI positive samples. Enterococcus sp., Klebsiella pneumoniae, Enterobacter sp., and Escherichia coli were found the most prevalent UTI causative agents. All isolates were screened for multi drug resistance and subjected to the antimicrobial effects of three Lactobacillus strains by using microplate technique and the MICs amounts were determined. In order to verify the origin of antibiotic resistance of isolates, plasmid curing using ethidium bromide and acridine orange was carried out. No antagonistic activity in Lactobacilli suspension was detected against test on Enterococcus and Enterobacter strains and K. pneumoniae, which were resistant to most antibiotics. However, an inhibitory effect was observed for E. coli which were resistant to 8-9 antibiotics. In addition, L. casei was determined to be the most effective probiotic. RESULTS from replica plating suggested one of the plasmids could be related to the gene responsible for ampicillin resistance. Treatment of E. coli with probiotic suspension was not effective on inhibition of the plasmid carrying hypothetical ampicillin resistant gene. Moreover, the plasmid profiles obtained from probiotic-treated isolates were identical to untreated isolates.

  15. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222.

    Science.gov (United States)

    Yu, Dan-Dan; Wu, Ying; Zhang, Xiao-Hui; Lv, Meng-Meng; Chen, Wei-Xian; Chen, Xiu; Yang, Su-Jin; Shen, Hongyu; Zhong, Shan-Liang; Tang, Jin-Hai; Zhao, Jian-Hua

    2016-03-01

    Breast cancer (BCa) is one of the major deadly cancers in women. However, treatment of BCa is still hindered by the acquired-drug resistance. It is increasingly reported that exosomes take part in the development, metastasis, and drug resistance of BCa. However, the specific role of exosomes in drug resistance of BCa is poorly understood. In this study, we investigate whether exosomes transmit drug resistance through delivering miR-222. We established an adriamycin-resistant variant of Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line (MCF-7/Adr) from a drug-sensitive variant (MCF-7/S). Exosomes were isolated from cell supernatant by ultracentrifugation. Cell viability was assessed by MTT assay and apoptosis assay. Individual miR-222 molecules in BCa cells were detected by fluorescence in situ hybridization (FISH). Then, FISH was combined with locked nucleic acid probes and enzyme-labeled fluorescence (LNA-ELF-FISH). Individual miR-222 could be detected as bright photostable fluorescent spots and then the quantity of miR-222 per cell could be counted. Stained exosomes were taken in by the receipt cells. MCF-7/S acquired drug resistance after co-culture with exosomes from MCF-7/Adr (A/exo) but did not after co-culture with exosomes from MCF-7/S (S/exo). The quantity of miR-222 in A/exo-treated MCF-7/S was significantly greater than in S/exo-treated MCF-7/S. MCF-7/S transfected with miR-222 mimics acquired adriamycin resistance while MCF-7/S transfected with miR-222 inhibitors lost resistance. In conclusion, exosomes are effective in transmitting drug resistance and the delivery of miR-222 via exosomes may be a mechanism.

  16. Structural Basis for the Inhibition of RNase H Activity of HIV-1 Reverse Transcriptase by RNase H Active Site-Directed Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hua-Poo; Yan, Youwei; Prasad, G. Sridhar; Smith, Robert F.; Daniels, Christopher L.; Abeywickrema, Pravien D.; Reid, John C.; Loughran, H. Marie; Kornienko, Maria; Sharma, Sujata; Grobler, Jay A.; Xu, Bei; Sardana, Vinod; Allison, Timothy J.; Williams, Peter D.; Darke, Paul L.; Hazuda, Daria J.; Munshi, Sanjeev (Merck)

    2010-09-02

    HIV/AIDS continues to be a menace to public health. Several drugs currently on the market have successfully improved the ability to manage the viral burden in infected patients. However, new drugs are needed to combat the rapid emergence of mutated forms of the virus that are resistant to existing therapies. Currently, approved drugs target three of the four major enzyme activities encoded by the virus that are critical to the HIV life cycle. Although a number of inhibitors of HIV RNase H activity have been reported, few inhibit by directly engaging the RNase H active site. Here, we describe structures of naphthyridinone-containing inhibitors bound to the RNase H active site. This class of compounds binds to the active site via two metal ions that are coordinated by catalytic site residues, D443, E478, D498, and D549. The directionality of the naphthyridinone pharmacophore is restricted by the ordering of D549 and H539 in the RNase H domain. In addition, one of the naphthyridinone-based compounds was found to bind at a second site close to the polymerase active site and non-nucleoside/nucleotide inhibitor sites in a metal-independent manner. Further characterization, using fluorescence-based thermal denaturation and a crystal structure of the isolated RNase H domain reveals that this compound can also bind the RNase H site and retains the metal-dependent binding mode of this class of molecules. These structures provide a means for structurally guided design of novel RNase H inhibitors.

  17. Systems biology analysis of mitogen activated protein kinase inhibitor resistance in malignant melanoma.

    Science.gov (United States)

    Zecena, Helma; Tveit, Daniel; Wang, Zi; Farhat, Ahmed; Panchal, Parvita; Liu, Jing; Singh, Simar J; Sanghera, Amandeep; Bainiwal, Ajay; Teo, Shuan Y; Meyskens, Frank L; Liu-Smith, Feng; Filipp, Fabian V

    2018-04-04

    Kinase inhibition in the mitogen activated protein kinase (MAPK) pathway is a standard therapy for cancer patients with activating BRAF mutations. However, the anti-tumorigenic effect and clinical benefit are only transient, and tumors are prone to treatment resistance and relapse. To elucidate mechanistic insights into drug resistance, we have established an in vitro cellular model of MAPK inhibitor resistance in malignant melanoma. The cellular model evolved in response to clinical dosage of the BRAF inhibitor, vemurafenib, PLX4032. We conducted transcriptomic expression profiling using RNA-Seq and RT-qPCR arrays. Pathways of melanogenesis, MAPK signaling, cell cycle, and metabolism were significantly enriched among the set of differentially expressed genes of vemurafenib-resistant cells vs control. The underlying mechanism of treatment resistance and pathway rewiring was uncovered to be based on non-genomic adaptation and validated in two distinct melanoma models, SK-MEL-28 and A375. Both cell lines have activating BRAF mutations and display metastatic potential. Downregulation of dual specific phosphatases, tumor suppressors, and negative MAPK regulators reengages mitogenic signaling. Upregulation of growth factors, cytokines, and cognate receptors triggers signaling pathways circumventing BRAF blockage. Further, changes in amino acid and one-carbon metabolism support cellular proliferation despite MAPK inhibitor treatment. In addition, treatment-resistant cells upregulate pigmentation and melanogenesis, pathways which partially overlap with MAPK signaling. Upstream regulator analysis discovered significant perturbation in oncogenic forkhead box and hypoxia inducible factor family transcription factors. The established cellular models offer mechanistic insight into cellular changes and therapeutic targets under inhibitor resistance in malignant melanoma. At a systems biology level, the MAPK pathway undergoes major rewiring while acquiring inhibitor resistance

  18. Exosomes in development, metastasis and drug resistance of breast cancer.

    Science.gov (United States)

    Yu, Dan-dan; Wu, Ying; Shen, Hong-yu; Lv, Meng-meng; Chen, Wei-xian; Zhang, Xiao-hui; Zhong, Shan-liang; Tang, Jin-hai; Zhao, Jian-hua

    2015-08-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  19. Activities of doripenem against nosocomial bacteremic drug-resistant Gram-negative bacteria in a medical center in Taiwan.

    Science.gov (United States)

    Dong, Shao-Xing; Wang, Jann-Tay; Chang, Shan-Chwen

    2012-12-01

    The majority of nosocomial infections in Taiwan hospitals are caused by drug-resistant Gram-negative bacteria (GNB), including Pseudomonas aeruginosa, Acinetobacter baumannii, and various species of Enterobacteriaceae. Carbapenems are important agents for treating infections caused by these GNB. Recently, doripenem was approved for use in Taiwan in August 2009. However, data on its in vitro activity against nosocomial GNB isolated from Taiwan remain limited. The study was designed to look into this clinical issue. A total of 400 nonduplicated nosocomial blood isolates isolated in 2009, inclusive of P. aeruginosa (n = 100), A. baumannii (n = 100), and Enterobacteriaceae (n = 200), were randomly selected from the bacterial bank preserved at National Taiwan University Hospital. Susceptibilities of these 400 isolates to various antibiotics, including doripenem, imipenem, meropenem, ceftazidime, amikacin, ciprofloxacin, colistin, and tigecycline were determined by using Etest. Doripenem demonstrated similar in vitro activity to imipenem and meropenem against P. aeruginosa (87%, vs. 85% and 89%), A. baumannii (56%, vs. 60% and 60%), and Enterobacteriaceae (100%, vs. 98.5% and 99.5%). The prevalence of carbapenem-resistant (any one of three tested carbapenems) P. aeruginosa, A. baumannii, and Enterobacteriaceae isolates was 15%, 44%, and 0.5%, respectively. Doripenem was as effective as imipenem and meropenem in our study. However, there was a significant proportion of carbapenem resistance among the tested isolates. Hence, longitudinal surveillance is necessary to monitor the resistance trend. Copyright © 2012. Published by Elsevier B.V.

  20. Transmission pattern of drug-resistant tuberculosis and its implication for tuberculosis control in eastern rural China.

    Directory of Open Access Journals (Sweden)

    Yi Hu

    with additional strategies, including active case finding at the village level, effective treatment for patients with cavities and drug susceptibility testing for patients at increased risk for drug-resistance.

  1. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN

    Science.gov (United States)

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions () in mitochondria, either by chemical inhibition of complex I or by genetic silencing of -dismutating mitochondrial Sod2. The -dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated -induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with , PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316

  2. Localization and activity of multidrug resistance protein 1 in the secretory pathway of Leishmania parasites.

    Science.gov (United States)

    Dodge, Matthew A; Waller, Ross F; Chow, Larry M C; Zaman, Muhammad M; Cotton, Leanne M; McConville, Malcolm J; Wirth, Dyann F

    2004-03-01

    Upregulation of the multidrug resistance protein 1 (LeMDR1) in the protozoan parasite, Leishmania enriettii, confers resistance to hydrophobic drugs such as vinblastine, but increases the sensitivity of these parasites to the mitochondrial drug, rhodamine 123. In order to investigate the mechanism of action of LeMDR1, the subcellular localization of green fluorescent protein (GFP)-tagged versions of LeMDR1 and the fate of the traceable-fluorescent LeMDR1 substrate calcein AM were examined in both Leishmania mexicana and L. enriettii LeMDR1 -/- and overexpressing cell lines. The LeMDR1-GFP chimera was localized by fluorescence microscopy to a number of secretory and endocytic compartments, including the Golgi apparatus, endoplasmic reticulum (ER) and a multivesicular tubule (MVT)-lysosome. Pulse-chase labelling experiments with calcein AM suggested that the Golgi and ER pools, but not the MVT-lysosome pool, of LeMDR1 were active in pumping calcein AM out of the cell. Cells labelled with calcein AM under conditions that slow vesicular transport (low temperature and stationary growth) inhibited export and resulted in the accumulation of fluorescent calcein in both the Golgi and the mitochondria. We propose that LeMDR1 substrates are pumped into secretory compartments and exported from the parasite by exocytosis. Accumulation of MDR substrates in the ER can result in alternative transport to the mitochondrion, explaining the reciprocal sensitivity of drug-resistant Leishmania to vinblastine and rhodamine 123.

  3. Impact of treatment heterogeneity on drug resistance and supply chain costs.

    Science.gov (United States)

    Spiliotopoulou, Eirini; Boni, Maciej F; Yadav, Prashant

    2013-09-01

    The efficacy of scarce drugs for many infectious diseases is threatened by the emergence and spread of resistance. Multiple studies show that available drugs should be used in a socially optimal way to contain drug resistance. This paper studies the tradeoff between risk of drug resistance and operational costs when using multiple drugs for a specific disease. Using a model for disease transmission and resistance spread, we show that treatment with multiple drugs, on a population level, results in better resistance-related health outcomes, but more interestingly, the marginal benefit decreases as the number of drugs used increases. We compare this benefit with the corresponding change in procurement and safety stock holding costs that result from higher drug variety in the supply chain. Using a large-scale simulation based on malaria transmission dynamics, we show that disease prevalence seems to be a less important factor when deciding the optimal width of drug assortment, compared to the duration of one episode of the disease and the price of the drug(s) used. Our analysis shows that under a wide variety of scenarios for disease prevalence and drug cost, it is optimal to simultaneously deploy multiple drugs in the population. If the drug price is high, large volume purchasing discounts are available, and disease prevalence is high, it may be optimal to use only one drug. Our model lends insights to policy makers into the socially optimal size of drug assortment for a given context.

  4. MRP- and BCL-2-mediated drug resistance in human SCLC: effects of apoptotic sphingolipids in vitro.

    Science.gov (United States)

    Khodadadian, M; Leroux, M E; Auzenne, E; Ghosh, S C; Farquhar, D; Evans, R; Spohn, W; Zou, Y; Klostergaard, J

    2009-10-01

    Multidrug-resistance-associated protein (MRP) and BCL-2 contribute to drug resistance expressed in SCLC. To establish whether MRP-mediated drug resistance affects sphingolipid (SL)-induced apoptosis in SCLC, we first examined the human SCLC cell line, UMCC-1, and its MRP over-expressing, drug-resistant subline, UMCC-1/VP. Despite significantly decreased sensitivity to doxorubicin (Dox) and to the etoposide, VP-16, the drug-selected line was essentially equally as sensitive to treatment with exogenous ceramide (Cer), sphingosine (Sp) or dimethyl-sphingosine (DMSP) as the parental line. Next, we observed that high BCL-2-expressing human H69 SCLC cells, that were approximately 160-fold more sensitive to Dox than their combined BCL-2 and MRP-over-expressing (H69AR) counterparts, were only approximately 5-fold more resistant to DMSP. Time-lapse fluorescence microscopy of either UMCC cell line treated with DMSP-Coumarin revealed comparable extents and kinetics of SL uptake, further ruling out MRP-mediated effects on drug uptake. DMSP potentiated the cytotoxic activity of VP-16 and Taxol, but not Dox, in drug-resistant UMCC-1/VP cells. However, this sensitization did not appear to involve DMSP-mediated effects on the function of MRP in drug export; nor did DMSP strongly shift the balance of pro-apoptotic Sps and anti-apoptotic Sp-1-Ps in these cells. We conclude that SL-induced apoptosis markedly overcomes or bypasses MRP-mediated drug resistance relevant to SCLC and may suggest a novel therapeutic approach to chemotherapy for these tumors.

  5. Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014.

    Science.gov (United States)

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert; Stephan, Roger

    2016-06-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis.

  6. Imatinib mesylate inhibits Leydig cell tumor growth: evidence for in vitro and in vivo activity.

    Science.gov (United States)

    Basciani, Sabrina; Brama, Marina; Mariani, Stefania; De Luca, Gabriele; Arizzi, Mario; Vesci, Loredana; Pisano, Claudio; Dolci, Susanna; Spera, Giovanni; Gnessi, Lucio

    2005-03-01

    Leydig cell tumors are usually benign tumors of the male gonad. However, if the tumor is malignant, no effective treatments are currently available. Leydig cell tumors express platelet-derived growth factor (PDGF), kit ligand and their respective receptors, PDGFR and c-kit. We therefore evaluated the effects of imatinib mesylate (imatinib), a selective inhibitor of the c-kit and PDGFR tyrosine kinases, on the growth of rodent Leydig tumor cell lines in vivo and in vitro, and examined, in human Leydig cell tumor samples, the expression of activated PDGFR and c-kit and the mutations in exons of the c-kit gene commonly associated with solid tumors. Imatinib caused concentration-dependent decreases in the viability of Leydig tumor cell lines, which coincided with apoptosis and inhibition of proliferation and ligand-stimulated phosphorylation of c-kit and PDGFRs. Mice bearing s.c. allografts of a Leydig tumor cell line treated with imatinib p.o., had an almost complete inhibition of tumor growth, less tumor cell proliferation, increased apoptosis, and a lesser amount of tumor-associated mean vessel density compared with controls. No drug-resistant tumors appeared during imatinib treatment but tumors regrew after drug withdrawal. Human Leydig cell tumors showed an intense expression of the phosphorylated form of c-kit and a less intense expression of phosphorylated PDGFRs. No activating mutations in common regions of mutation of the c-kit gene were found. Our studies suggest that Leydig cell tumors might be a potential target for imatinib therapy.

  7. pH- and NIR Light-Responsive Polymeric Prodrug Micelles for Hyperthermia-Assisted Site-Specific Chemotherapy to Reverse Drug Resistance in Cancer Treatment.

    Science.gov (United States)

    Li, Zuhong; Wang, Haibo; Chen, Yangjun; Wang, Yin; Li, Huan; Han, Haijie; Chen, Tingting; Jin, Qiao; Ji, Jian

    2016-05-01

    Despite the exciting advances in cancer chemotherapy over past decades, drug resistance in cancer treatment remains one of the primary reasons for therapeutic failure. IR-780 loaded pH-responsive polymeric prodrug micelles with near infrared (NIR) photothermal effect are developed to circumvent the drug resistance in cancer treatment. The polymeric prodrug micelles are stable in physiological environment, while exhibit fast doxorubicin (DOX) release in acidic condition and significant temperature elevation under NIR laser irradiation. Phosphorylcholine-based biomimetic micellar shell and acid-sensitive drug conjugation endow them with prolonged circulation time and reduced premature drug release during circulation to conduct tumor site-specific chemotherapy. The polymeric prodrug micelles combined with NIR laser irradiation could significantly enhance intracellular DOX accumulation and synergistically induce the cell apoptosis in DOX-resistant MCF-7/ADR cells. Meanwhile, the tumor site-specific chemotherapy combined with hyperthermia effect induces significant inhibition of MCF-7/ADR tumor growth in tumor-bearing mice. These results demonstrate that the well-designed IR-780 loaded polymeric prodrug micelles for hyperthermia-assisted site-specific chemotherapy present an effective approach to reverse drug resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Vanillin Analogues o-Vanillin and 2,4,6-Trihydroxybenzaldehyde Inhibit NFĸB Activation and Suppress Growth of A375 Human Melanoma.

    Science.gov (United States)

    Marton, Annamária; Kúsz, Erzsébet; Kolozsi, Csongor; Tubak, Vilmos; Zagotto, Giuseppe; Buzás, Krisztina; Quintieri, Luigi; Vizler, Csaba

    2016-11-01

    Constitutive activation of nuclear factor kappa-B (NFĸB) is a hallmark of various cancer types, including melanoma. Chemotherapy may further increase tumour NFĸB activity, a phenomenon that, in turn, exacerbates drug resistance. This study aimed at preliminary screening of a panel of aromatic aldehydes, including vanillin, for cytotoxicity and suppression of tumour cell NFĸB activity. The cytotoxic and NFĸB-inhibitory effects of 10 aromatic aldehydes, including vanillin, were investigated in cultured A375 human melanoma cells. Each compound was assayed alone and in combination with the model NFĸB-activating drug doxorubicin. The most promising analogues were then tested alone and in combination with 4-hydroperoxycyclophosphamide in vitro, and with cyclophosphamide in mice bearing A375 xenografts. The vanillin analogues o-vanillin and 2,4,6-trihydroxybenzaldehyde exhibited cytotoxicity against cultured A375 cells, and inhibited doxorubicin- and 4-hydroperoxycyclophosphamide-induced NFĸB activation. They also suppressed A375 cell growth in mice. o-vanillin and 2,4,6-trihydroxybenzaldehyde deserve further evaluation as potential anticancer drugs. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Viability, biofilm formation, and MazEF expression in drug-sensitive and drug-resistant Mycobacterium tuberculosis strains circulating in Xinjiang, China.

    Science.gov (United States)

    Zhao, Ji-Li; Liu, Wei; Xie, Wan-Ying; Cao, Xu-Dong; Yuan, Li

    2018-01-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is one of the most common chronic infectious amphixenotic diseases worldwide. Prevention and control of TB are greatly difficult, due to the increase in drug-resistant TB, particularly multidrug-resistant TB. We speculated that there were some differences between drug-sensitive and drug-resistant MTB strains and that mazEF 3,6,9 toxin-antitoxin systems (TASs) were involved in MTB viability. This study aimed to investigate differences in viability, biofilm formation, and MazEF expression between drug-sensitive and drug-resistant MTB strains circulating in Xinjiang, China, and whether mazEF 3,6,9 TASs contribute to MTB viability under stress conditions. Growth profiles and biofilm-formation abilities of drug-sensitive, drug-resistant MTB strains and the control strain H37Rv were monitored. Using molecular biology experiments, the mRNA expression of the mazF 3, 6, and 9 toxin genes, the mazE 3, 6, and 9 antitoxin genes, and expression of the MazF9 protein were detected in the different MTB strains, H37RvΔ mazEF 3,6,9 mutants from the H37Rv parent strain were generated, and mutant viability was tested. Ex vivo culture analyses demonstrated that drug-resistant MTB strains exhibit higher survival rates than drug-sensitive strains and the control strain H37Rv. However, there was no statistical difference in biofilm-formation ability in the drug-sensitive, drug-resistant, and H37Rv strains. mazE 3,6 mRNA-expression levels were relatively reduced in the drug-sensitive and drug-resistant strains compared to H37Rv. Conversely, mazE 3,9 expression was increased in drug-sensitive strains compared to drug-resistant strains. Furthermore, compared with the H37Rv strain, mazF 3,6 expression was increased in drug-resistant strains, mazF 9 expression was increased in drug-sensitive strains, and mazF 9 exhibited reduced expression in drug-resistant strains compared with drug-sensitive strains. Protein expression of mazF9

  10. Economic implications of resistance to antimalarial drugs.

    Science.gov (United States)

    Phillips, M; Phillips-Howard, P A

    1996-09-01

    The widespread evolution of drug resistance in malarial parasites has seriously hampered efforts to control this debilitating disease. Chloroquine, the mainstay of malaria treatment for many decades, is now proving largely ineffective in many parts of the world, particularly against the most severe form of malaria--falciparum. Alternative drugs have been developed, but they are frequently less safe and are all between 50 and 700% more expensive than chloroquine. Choice of drug clearly has important budgetary implications and national malaria control programmes need to weigh up the costs and benefits in deciding whether to change to more effective but more expensive drugs. The growth in drug resistance also has implications for the choice of diagnostic tool. Clinical diagnosis of malaria is relatively cheap, but less specific than some technological approaches. As more expensive drugs are employed, the cost of wasted treatment on suspected cases who do not in fact have malaria rises and the more worthwhile it becomes to invest in more specific diagnostic techniques. This paper presents an economic framework for analysing the various malaria drug and diagnostic tool options available. It discusses the nature of the key factors that need to be considered when making choices of malaria treatment (including treatment costs, drug resistance, the costs of treatment failure and compliance) and diagnosis (including diagnosis cost and accuracy, and the often overlooked costs associated with delayed treatment), and uses some simple equations to illustrate the impact of these on the relative cost effectiveness of the alternatives being considered. On the basis of some simplifying assumptions and illustrative calculations, it appears that in many countries more effective drugs and more specific and rapid diagnostic approaches will be worth adopting even although they imply additional expense.

  11. Extracts Obtained from Pterocarpus angolensis DC and Ziziphus mucronata Exhibit Antiplasmodial Activity and Inhibit Heat Shock Protein 70 (Hsp70 Function

    Directory of Open Access Journals (Sweden)

    Tawanda Zininga

    2017-07-01

    Full Text Available Malaria parasites are increasingly becoming resistant to currently used antimalarial therapies, therefore there is an urgent need to expand the arsenal of alternative antimalarial drugs. In addition, it is also important to identify novel antimalarial drug targets. In the current study, extracts of two plants, Pterocarpus angolensis and Ziziphus mucronata were obtained and their antimalarial functions were investigated. Furthermore, we explored the capability of the extracts to inhibit Plasmodium falciparum heat shock protein 70 (Hsp70 function. Heat shock protein 70 (Hsp70 are molecular chaperones whose function is to facilitate protein folding. Plasmodium falciparum the main agent of malaria, expresses two cytosol-localized Hsp70s: PfHsp70-1 and PfHsp70-z. The PfHsp70-z has been reported to be essential for parasite survival, while inhibition of PfHsp70-1 function leads to parasite death. Hence both PfHsp70-1 and PfHsp70-z are potential antimalarial drug targets. Extracts of P. angolensis and Z. mucronata inhibited the basal ATPase and chaperone functions of the two parasite Hsp70s. Furthermore, fractions of P. angolensis and Z. mucronata inhibited P. falciparum 3D7 parasite growth in vitro. The extracts obtained in the current study exhibited antiplasmodial activity as they killed P. falciparum parasites maintained in vitro. In addition, the findings further suggest that some of the compounds in P. angolensis and Z. mucronata may target parasite Hsp70 function.

  12. Drug Resistance and Pseudoresistance: An Unintended Consequence of Enteric Coating Aspirin

    Science.gov (United States)

    Grosser, Tilo; Fries, Susanne; Lawson, John A.; Kapoor, Shiv C.; Grant, Gregory R.; FitzGerald, Garret A.

    2013-01-01

    Background Low dose aspirin reduces the secondary incidence of myocardial infarction and stroke. Drug resistance to aspirin might result in treatment failure. Despite this concern, no clear definition of “aspirin resistance” has emerged and estimates of its incidence have varied remarkably. We aimed to determine the commonality of a mechanistically consistent, stable and specific phenotype of true pharmacological resistance to aspirin – such as might be explained by genetic causes. Methods and Results Healthy volunteers (n=400) were screened for their response to a single oral dose of 325 mg immediate release or enteric coated aspirin. Response parameters reflected the activity of aspirin's molecular target, cyclooxygenase-1. Individuals who appeared “aspirin resistant” on one occasion underwent repeat testing and if still “resistant” were exposed to low dose enteric coated aspirin (81 mg) and clopidogrel (75 mg) for one week each. Variable absorption caused a high frequency of apparent resistance to a single dose of 325 mg enteric coated aspirin (up to 49%) but not to immediate release aspirin (0%). All individuals responded to aspirin upon repeated exposure, extension of the post dosing interval or addition of aspirin to their platelets ex vivo. Conclusions Pharmacological resistance to aspirin is rare; this study failed to identify a single case of true drug resistance. Pseudoresistance, reflecting delayed and reduced drug absorption, complicates enteric coated but not immediate release aspirin administration. Clinical Trial Registration Information clinicaltrials.gov. Identifier: NCT00948987. PMID:23212718

  13. Chemical inhibition of host toxicity as a means of overcoming tumor resistance

    International Nuclear Information System (INIS)

    Yuhas, J.M.; Pardini, M.C.; Children's Hospital of Philadelphia, PA)

    1983-01-01

    Largely because we have accumulated so much information on WR-2721 in the past decade, we know that this drug is not a universal panacea which will solve all the problems which confront us. However, in those instances where it would appear applicable, clinical testing would appear appropriate. Thanks largely to the efforts of M.M. Kligerman, these studies have been initiated. In those instances where WR-2721 would appear inappropriate or not of sufficient activity, the information we have already accumulated should point the way to the development of qualitatively and/or quantitatively superior drugs which selectively inhibit host toxicity

  14. Resistance to different classes of drugs is associated with impaired apoptosis in childhood acute lymphoblastic leukemia

    NARCIS (Netherlands)

    A. Holleman (Amy); M.L. den Boer (Monique); K.M. Kazemier (Karin); G.E. Janka-Schaub (Gritta); R. Pieters (Rob)

    2003-01-01

    textabstractResistance of leukemic cells to chemotherapeutic agents is associated with an unfavorable outcome in pediatric acute lymphoblastic leukemia (ALL). To investigate the underlying mechanisms of cellular drug resistance, the activation of various apoptotic parameters in

  15. Gelatin Nano-coating for Inhibiting Surface Crystallization of Amorphous Drugs.

    Science.gov (United States)

    Teerakapibal, Rattavut; Gui, Yue; Yu, Lian

    2018-01-05

    Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. For indomethacin (weak acid, pK a  = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pK a  = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.

  16. Drug-resistance in chronic tuberculosis cases in Southern Nigeria ...

    African Journals Online (AJOL)

    Nigeria has a high burden of tuberculosis but the drug resistant situationwas previously unknown. This report evaluates the firstline drug resistance and associated factors among chronic tuberculosis cases from the tuberculosis control programme in South south and South east zones ofNigeria. Descriptive study of chronic ...

  17. Isolation And Partial Characterization Of Bacteria Activity Associated With Gorgonian Euplexaura sp. Against Methicillin-Resistant Staphylococcus aureus (MRSA)

    Science.gov (United States)

    Kristiana, R.; Ayuningrum, D.; Asagabaldan, M. A.; Nuryadi, H.; Sabdono, A.; Radjasa, O. K.; Trianto, A.

    2017-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infection has emerged in around the world and has been resistance to ciprofloxacin, erythromycin, clindamycin. The aims of this study were to isolate, to investigate and to characterize bacterial symbionts gorgonian having activity against MRSA. Euplexaura sp. was collected from Panjang Island, Jepara, Indonesia by snorkling 2-5 m in depth. Bacterias were isolated by using spesific media with dilution method. Bacterias were conducted by using the streak method. Antibacterial activity was investigated by overlay method. The potent bacteria was identified by using molecular identification (DNA extraction, electrophoresis, PCR and phylogenetic analysis using 16S rDNA genes with actinobacteria-spesific primers) and bio-chemical test (among 5 isolated bacteria from gorgonian showed activity against MRSA). The strain PG-344 was the best candidat that has an inhibition zone against MRSA. The result of sequencing bacteria is 100% closely related with Virgibacillus salarius. This becomes a potential new bioactive compounds to against MRSA that can be a new drug discovery.

  18. High prevalence of drug-resistant tuberculosis, Republic of Lithuania, 2002

    DEFF Research Database (Denmark)

    Dewan, P; Sosnovskaja, A; Thomsen, V

    2005-01-01

    BACKGROUND: Nations of the former Soviet Union have the world's highest reported levels of resistance to anti-tuberculosis drugs. We conducted the first national survey of anti-tuberculosis drug resistance in the Republic of Lithuania. METHODS: We tested Mycobacterium tuberculosis isolates from all...... isolates, 475 (41%) were resistant to at least one first-line drug, and 263 (23%) were resistant to at least INH and RMP (MDR); this included 76/818 (9.3%) from new patients and 187/345 (54%) from previously treated patients. Of 52 MDR isolates randomly selected for extended testing at an international...

  19. Young Women's Experiences of Resisting Invitations to Use Illicit Drugs

    Science.gov (United States)

    Koehn, Corinne V.; O'Neill, Linda K.

    2011-01-01

    Ten young women were interviewed regarding their experiences of resisting invitations to use illicit drugs. Hermeneutic phenomenology was used to gather and analyze information. One key theme was the motivations that inspired women to refuse drug offers. Young women resisted drug invitations because of their desires to be authentic, protect their…

  20. Status of drug-resistant tuberculosis in China: A systematic review and meta-analysis.

    Science.gov (United States)

    Zhang, Jingya; Gou, Haimei; Hu, Xuejiao; Hu, Xin; Shang, Mengqiao; Zhou, Juan; Zhou, Yi; Ye, Yuanxin; Song, Xingbo; Lu, Xiaojun; Chen, Xuerong; Ying, Binwu; Wang, Lanlan

    2016-06-01

    We conducted a systematic review and meta-analysis on drug-resistant tuberculosis in China to provide useful data for tuberculosis (TB) surveillance and treatment. Several databases, including PubMed, Embase, and the Chinese Biological Medical Database, were systematically searched between January 1, 1999, and August 31, 2015, using strict inclusion and exclusion criteria. The corresponding drug-resistant TB prevalence between the new and previously treated cases was significantly different in almost all of the economic regions. The Eastern coastal region is the most developed economic region with the lowest total drug-resistant TB prevalence (any drug resistance: 28%; 95% confidence interval [CI], 25%-32%; multidrug resistance: 9%; 95% CI, 8%-12%) and the lowest number of new cases (any drug resistance: 21%; 95% CI, 19%-23%; multidrug resistance: 4%; 95% CI, 3%-5%). The Northwest is the least developed area with the lowest drug-resistant TB prevalence for previously treated cases (any drug resistance: 45%; 95% CI, 36%-55%; multidrug resistance: 17%; 95% CI, 11%-26%). The prevalence (multidrug and first-line drug resistance) exhibited a downward trend from 1996-2014. The extensively drug-resistant prevalence in China was 3% (95% CI, 2%-5%) in this review. Overall, the status of drug-resistant tuberculosis in China is notably grim and exhibits regional epidemiologic characteristics. We are in urgent need of several comprehensive and effective control efforts to reverse this situation. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  1. Circumvention of inherent or acquired cytotoxic drug resistance in vitro using combinations of modulating agents.

    Science.gov (United States)

    Cadagan, David; Merry, Stephen

    2013-10-01

    Modulating agents are used to circumvent drug resistance in the clinical setting. However achievable serum concentrations are often lower than those which are optimal in vitro. Combination of modulating agents with non-overlapping toxicities may overcome this obstacle. We have investigated combinations of three modulating agents (quinine, verapamil, and cinnarizine) to circumvent inherent or acquired resistance to the cytotoxic drugs doxorubicin, vincristine and paclitaxel. Dose-response curves to cytotoxic drugs in the presence/absence of modulating agents were determined using colony formation and cell proliferation assays. Doxorubicin accumulation into cell monolayers was measured by fluorescence spectrophotometry. Greater (1.9-fold) sensitisation to particular cytotoxic drugs was observed for certain combinations of modulating agents compared to individual effects. The most effective combination was quinine-plus-verapamil with the cytotoxic drug doxorubicin. This increase in sensitivity was associated with increased doxorubicin accumulation. Such enhanced activity was, however, not observed for all combinations of modulating agents or for all studied cytotoxic drugs. The findings of the present study suggest certain combinations of modulating agents to have a clinical role in circumventing drug resistance. Particular combinations of modulating agents must be carefully chosen to suit particular cytotoxic drug treatments.

  2. Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel

    Energy Technology Data Exchange (ETDEWEB)

    Pielak, Rafal M. [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (United States); Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115 (United States); Chou, James J., E-mail: chou@cmcd.hms.harvard.edu [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-08

    Research highlights: {yields} This paper reports the structure of the V27A drug resistant mutant of the M2 channel of influenza A virus. {yields} High quality NMR data allowed a better-defined structure for the C-terminal region of the M2 channel. {yields} Using the structure, we propose a proton transfer pathway during M2 proton conduction. {yields} Structural comparison between the wildtype, V27A and S31N variants allowed an in-depth analysis of possible modes of drug resistance. {yields} Distinct feature of the V27A channel pore also provides an explanation for its faster rate of proton conduction. -- Abstract: The M2 protein of influenza A virus forms a proton-selective channel that is required for viral replication. It is the target of the anti-influenza drugs, amantadine and rimantadine. Widespread drug resistant mutants, however, has greatly compromised the effectiveness of these drugs. Here, we report the solution NMR structure of the highly pathogenic, drug resistant mutant V27A. The structure reveals subtle structural differences from wildtype that maybe linked to drug resistance. The V27A mutation significantly decreases hydrophobic packing between the N-terminal ends of the transmembrane helices, which explains the looser, more dynamic tetrameric assembly. The weakened channel assembly can resist drug binding either by destabilizing the rimantadine-binding pocket at Asp44, in the case of the allosteric inhibition model, or by reducing hydrophobic contacts with amantadine in the pore, in the case of the pore-blocking model. Moreover, the V27A structure shows a substantially increased channel opening at the N-terminal end, which may explain the faster proton conduction observed for this mutant. Furthermore, due to the high quality NMR data recorded for the V27A mutant, we were able to determine the structured region connecting the channel domain to the C-terminal amphipathic helices that was not determined in the wildtype structure. The new structural

  3. CHEMOTHERAPY, WITHIN-HOST ECOLOGY AND THE FITNESS OF DRUG-RESISTANT MALARIA PARASITES

    OpenAIRE

    Huijben, Silvie; Nelson, William A.; Wargo, Andrew R.; Sim, Derek G.; Drew, Damien R.; Read, Andrew F.

    2010-01-01

    A major determinant of the rate at which drug-resistant malaria parasites spread through a population is the ecology of resistant and sensitive parasites sharing the same host. Drug treatment can significantly alter this ecology by removing the drug-sensitive parasites, leading to competitive release of resistant parasites. Here, we test the hypothesis that the spread of resistance can be slowed by reducing drug treatment and hence restricting competitive release. Using the rodent malaria mod...

  4. Exosomes in Cancer Development, Metastasis and Drug Resistance: A Comprehensive Review

    Science.gov (United States)

    Azmi, Asfar S.; Bao, Bin; Sarkar, Fazlul H.

    2013-01-01

    Trafficking of biological material across membranes is an evolutionary conserved mechanism and is part of any normal cell homeostasis. Such transport is comprised of active, passive, export through microparticles and vesicular transport (exosomes) that collectively maintain proper compartmentalization of important micro and macromolecules. In pathological states, such as cancer, aberrant activity of export machinery results in expulsion of a number of key proteins and microRNAs resulting in their misexpression. Exosome mediated expulsion of intracellular drugs could be another barrier in the proper action of most of the commonly used therapeutics, targeted agents and their intracellular metabolites. Over the last decade, a number of studies have revealed that exosomes cross-talk and/or influence major tumor related pathways such as hypoxia driven EMT, cancer stemness, angiogenesis and metastasis involving many cell types within the tumor microenvironment. Emerging evidence suggest that exosome secreted proteins can also propel fibroblast growth, resulting in Desmoplastic reaction (DR); a major barrier in effective cancer drug delivery. This comprehensive review highlights the advancements in the understanding of the biology of exosomes secretions and the consequence on cancer drug resistance. We propose that the successful combination of cancer treatments to tackle exosome mediated drug resistance requires an interdisciplinary understanding of these cellular exclusion mechanisms, and how secreted biomolecules are involved in cellular cross-talk within the tumor microenvironment. PMID:23709120

  5. Inhibition of human aromatase complex (CYP19) by antiepileptic drugs

    DEFF Research Database (Denmark)

    Jacobsen, Naja Wessel; Halling-Sørensen, Bent; Birkved, Franziska Maria A Kramer

    2008-01-01

    of 1.4-49.7 mM. Carbamazepine, gabapentin, primidone, topiramate and vigabatrin showed no inhibition. Additionally, binary drug combinations were tested to investigate if combination therapy could potentiate the aromatase inhibition. Additive inhibition was seen in combination experiments...... with valproate and phenobarbital. When adding carbamazepine to a range of valproate concentrations no additional inhibition was seen. The data for some of the AEDs show that side effects on steroid synthesis in humans due to inhibition of aromatase should be considered....

  6. Tuberculosis drug resistance in the Western Cape | Weyer | South ...

    African Journals Online (AJOL)

    Objectives: Drug resistance is a serious problem in the treatment of tuberculosis and a threat to successful tuberculosis control programmes. Local health workers have expressed concern that the increasing tuberculosis epidemic in the Western Cape is partly attributable to drug resistance. The aim of this study was to ...

  7. Quercetin suppresses drug-resistant spheres via the p38 MAPK-Hsp27 apoptotic pathway in oral cancer cells.

    Directory of Open Access Journals (Sweden)

    Su-Feng Chen

    Full Text Available BACKGROUND: Treatment failure in oral squamous cell carcinoma (OSCC leading to local recurrence(s and metastases is mainly due to drug resistance. Cancer stem cells (CSCs are thought be responsible for the development of drug resistance. However, the correlations between CSCs, drug resistance, and new strategy against drug resistance in OSCC remain elusive. METHODS: A drug-resistant sphere (DRSP model was generated by using a nonadhesive culture system to induce drug-resistant cells from SCC25 oral cancer cells. A comparative analysis was performed between the parent control cells and DRSPs with a related treatment strategy focusing on the expression of epithelial-mesenchymal transition (EMT-associated markers, drug-resistance-related genes, and CSC properties in vitro, as well as tumorigenicity and the regimen for tumor regression in vivo. RESULTS: Our data show the presence of a phenomenon of EMT with gradual cellular transition from an epithelioid to mesenchymal-like spheroid morphology during induction of drug resistance. The characterization of DRSPs revealed the upregulation of the drug-resistance-related genes ABCG2 and MDR-1 and of CSC-representative markers, suggesting that DRSPs have greater resistance to cisplatin (Cis and stronger CSC properties compared with the control. Moreover, overexpression of phosphorylated heat-shock protein 27 (p-Hsp27 via the activation of p38 MAPK signaling was observed in DRSPs. Knockdown of Hsp27 decreased Cis resistance and induced apoptosis in DRSPs. Furthermore, an inhibitor of Hsp27, quercetin (Qu, suppressed p-Hsp27 expression, with alterations of the EMT signature, leading to the promotion of apoptosis in DRSPs. A xenographic study also confirmed the increase of tumorigenicity in DRSPs. The combination of Qu and Cis can reduce tumor growth and decrease drug resistance in OSCC. CONCLUSIONS: The p38 MAPK-Hsp27 axis plays an important role in CSCs-mediated drug resistance in OSCC. Targeting this axis

  8. Establishing Drug Resistance in Microorganisms by Mass Spectrometry

    Science.gov (United States)

    Demirev, Plamen A.; Hagan, Nathan S.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and 13C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  9. Initial drug resistance in India

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Initial drug resistance in India. There is gradual increase in primary MDR all over India : Pondi= Pondicherry 1985; Bangalore =1986; Jaipur = 1991; Jaipur =2000. Overall the MDR is less than 3% (TRC studies).

  10. Hypoxia-induced tumor cell resistance is overcome by synergistic GAPDH-siRNA and chemotherapy co-delivered by long-circulating and cationic-interior liposomes

    NARCIS (Netherlands)

    Guan, J.; Sun, J.; Sun, F.; Lou, B.; Zhang, D.; Mashayekhi, V.; Sadeghi, N.; Storm, G.; Mastrobattista, E.; He, Z.

    2017-01-01

    Chemotherapeutic drug resistance of tumor cells under hypoxic conditions is caused by the inhibition of apoptosis by autophagy and drug efflux via adenosine triphosphate (ATP)-dependent transporter activation, among other factors. Here, we demonstrate that disrupting glyceraldehyde-3-phosphate

  11. Zinc-selective inhibition of the promiscuous bacterial amide-hydrolase DapE: implications of metal heterogeneity for evolution and antibiotic drug design.

    Science.gov (United States)

    Uda, Narasimha Rao; Upert, Grégory; Angelici, Gaetano; Nicolet, Stefan; Schmidt, Tobias; Schwede, Torsten; Creus, Marc

    2014-01-01

    The development of resistance to virtually all current antibiotics makes the discovery of new antimicrobial compounds with novel protein targets an urgent challenge. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is an essential metallo-enzyme for growth and proliferation in many bacteria, acting in the desuccinylation of N-succinyl-L,L-diaminopimelic acid (SDAP) in a late stage of the anabolic pathway towards both lysine and a crucial building block of the peptidoglycan cell wall. L-Captopril, which has been shown to exhibit very promising inhibitory activity in vitro against DapE and has attractive drug-like properties, nevertheless does not target DapE in bacteria effectively. Here we show that L-captopril targets only the Zn(2+)-metallo-isoform of the enzyme, whereas the Mn(2+)-enzyme, which is also a physiologically relevant isoform in bacteria, is not inhibited. Our finding provides a rationale for the failure of this promising lead-compound to exhibit any significant antibiotic activity in bacteria and underlines the importance of addressing metallo-isoform heterogeneity in future drug design. Moreover, to our knowledge, this is the first example of metallo-isoform heterogeneity in vivo that provides an evolutionary advantage to bacteria upon drug-challenge.

  12. Pairwise and higher-order correlations among drug-resistance mutations in HIV-1 subtype B protease

    Directory of Open Access Journals (Sweden)

    Morozov Alexandre V

    2009-08-01

    Full Text Available Abstract Background The reaction of HIV protease to inhibitor therapy is characterized by the emergence of complex mutational patterns which confer drug resistance. The response of HIV protease to drugs often involves both primary mutations that directly inhibit the action of the drug, and a host of accessory resistance mutations that may occur far from the active site but may contribute to restoring the fitness or stability of the enzyme. Here we develop a probabilistic approach based on connected information that allows us to study residue, pair level and higher-order correlations within the same framework. Results We apply our methodology to a database of approximately 13,000 sequences which have been annotated by the treatment history of the patients from which the samples were obtained. We show that including pair interactions is essential for agreement with the mutational data, since neglect of these interactions results in order-of-magnitude errors in the probabilities of the simultaneous occurence of many mutations. The magnitude of these pair correlations changes dramatically between sequences obtained from patients that were or were not exposed to drugs. Higher-order effects make a contribution of as much as 10% for residues taken three at a time, but increase to more than twice that for 10 to 15-residue groups. The sequence data is insufficient to determine the higher-order effects for larger groups. We find that higher-order interactions have a significant effect on the predicted frequencies of sequences with large numbers of mutations. While relatively rare, such sequences are more prevalent after multi-drug therapy. The relative importance of these higher-order interactions increases with the number of drugs the patient had been exposed to. Conclusion Correlations are critical for the understanding of mutation patterns in HIV protease. Pair interactions have substantial qualitative effects, while higher-order interactions are

  13. Development of drug resistance mutations in patients on highly active antiretroviral therapy: does competitive advantage drive evolution.

    Science.gov (United States)

    Kolber, Michael A

    2007-01-01

    Most physicians that treat individuals with HIV-1 disease are able to successfully suppress viral replication with the pharmacologic armamentarium available today. For the majority of patients this results in immune reconstitution and improved quality of life. However, a large fraction of these patients have transient elevations in their viral burden and even persistence of low-level viremia. In fact, many individuals whose viral load is suppressed to < 50 c/ml have evidence of low-level viral replication. The impact of low-level viremia and persistent viral replication is an area of significant study and interest owing to the potential for the development of drug resistance mutations. Here the fundamental question is whether and perhaps what factors provide a venue for the development of resistant virus. The concern is clearly the eventual progression of disease with the exhaustion of treatment options. The purpose of this review is to evaluate the current literature regarding the effect of low-level viremia on the development of drug resistance mutations. Herein, we discuss the impact of different levels of viral suppression on the development of mutations. In addition, we look at the role that resistance and fitness play in determining the survival of a breakthrough mutation within the background of drug.

  14. Mesenchymal change and drug resistance in neuroblastoma.

    Science.gov (United States)

    Naiditch, Jessica A; Jie, Chunfa; Lautz, Timothy B; Yu, Songtao; Clark, Sandra; Voronov, Dimitry; Chu, Fei; Madonna, Mary Beth

    2015-01-01

    Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P change via multiple pathways in the transition to a drug-resistant state. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Detection of low frequency multi-drug resistance and novel putative maribavir resistance in immunocompromised paediatric patients with cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Charlotte Jane Houldcroft

    2016-09-01

    Full Text Available Human cytomegalovirus (HCMV is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed paediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1-27 weeks. Changes in consensus sequence and resistance mutations were analysed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54 and C480F (UL97. In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of eleven subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome.

  16. A mechanism for overcoming P-glycoprotein-mediated drug resistance: novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC.

    Science.gov (United States)

    Seebacher, Nicole A; Richardson, Des R; Jansson, Patric J

    2016-12-01

    The intracellular distribution of a drug can cause significant variability in both activity and selectivity. Herein, we investigate the mechanism by which the anti-cancer agents, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and the clinically trialed, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), re-instate the efficacy of doxorubicin (DOX), in drug-resistant P-glycoprotein (Pgp)-expressing cells. Both Dp44mT and DpC potently target and kill Pgp-expressing tumors, while DOX effectively kills non-Pgp-expressing cancers. Thus, the combination of these agents should be considered as an effective rationalized therapy for potently treating advanced and resistant tumors that are often heterogeneous in terms of Pgp-expression. These studies demonstrate that both Dp44mT and DpC are transported into lysosomes via Pgp transport activity, where they induce lysosomal-membrane permeabilization to release DOX trapped within lysosomes. This novel strategy of loading lysosomes with DOX, followed by permeabilization with Dp44mT or DpC, results in the relocalization of stored DOX from its lysosomal 'safe house' to its nuclear targets, markedly enhancing cellular toxicity against resistant tumor cells. Notably, the combination of Dp44mT or DpC with DOX showed a very high level of synergism in multiple Pgp-expressing cell types, for example, cervical, breast and colorectal cancer cells. These studies revealed that the level of drug synergy was proportional to Pgp activity. Interestingly, synergism was ablated by inhibiting Pgp using the pharmacological inhibitor, Elacridar, or by inhibiting Pgp-expression using Pgp-silencing, demonstrating the importance of Pgp in the synergistic interaction. Furthermore, lysosomal-membrane stabilization inhibited the relocalization of DOX from lysosomes to the nucleus upon combination with Dp44mT or DpC, preventing synergism. This latter observation demonstrated the importance of lysosomal

  17. Update on HIV-1 acquired and transmitted drug resistance in Africa.

    Science.gov (United States)

    Ssemwanga, Deogratius; Lihana, Raphael W; Ugoji, Chinenye; Abimiku, Alash'le; Nkengasong, John; Dakum, Patrick; Ndembi, Nicaise

    2015-01-01

    The last ten years have witnessed a significant scale-up and access to antiretroviral therapy in Africa, which has improved patient quality of life and survival. One major challenge associated with increased access to antiretroviral therapy is the development of antiretroviral resistance due to inconsistent drug supply and/or poor patient adherence. We review the current state of both acquired and transmitted drug resistance in Africa over the past ten years (2001-2011) to identify drug resistance associated with the different drug regimens used on the continent and to help guide affordable strategies for drug resistance surveillance. A total of 161 references (153 articles, six reports and two conference abstracts) were reviewed. Antiretroviral resistance data was available for 40 of 53 African countries. A total of 5,541 adult patients from 99 studies in Africa were included in this analysis. The pooled prevalence of drug resistance mutations in Africa was 10.6%, and Central Africa had the highest prevalence of 54.9%. The highest prevalence of nucleoside reverse transcriptase inhibitor mutations was in the west (55.3%) and central (54.8%) areas; nonnucleoside reverse transcriptase inhibitor mutations were highest in East Africa (57.0%) and protease inhibitors mutations highest in Southern Africa (16.3%). The major nucleoside reverse transcriptase inhibitor mutation in all four African regions was M184V. Major nonnucleoside reverse transcriptase inhibitor as well as protease inhibitor mutations varied by region. The prevalence of drug resistance has remained low in several African countries although the emergence of drug resistance mutations varied across countries. Continued surveillance of antiretroviral therapy resistance remains crucial in gauging the effectiveness of country antiretroviral therapy programs and strategizing on effective and affordable strategies for successful treatment.

  18. An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Ankit Rai

    Full Text Available Using cell based screening assay, we identified a novel anti-tubulin agent (Z-5-((5-(4-bromo-3-chlorophenylfuran-2-ylmethylene-2-thioxothiazolidin-4-one (BCFMT that inhibited proliferation of human cervical carcinoma (HeLa (IC(50, 7.2 ± 1.8 µM, human breast adenocarcinoma (MCF-7 (IC(50, 10.0 ± 0.5 µM, highly metastatic breast adenocarcinoma (MDA-MB-231 (IC(50, 6.0 ± 1 µM, cisplatin-resistant human ovarian carcinoma (A2780-cis (IC(50, 5.8 ± 0.3 µM and multi-drug resistant mouse mammary tumor (EMT6/AR1 (IC(50, 6.5 ± 1 µM cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 µM, BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably state by 135% and reduced the dynamicity (dimer exchange per unit time of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 ± 1.8 µM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K(i of 5.2 ± 1.5 µM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2 at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug

  19. HIV-1 evolution, drug resistance, and host genetics: The Indian scenario

    Directory of Open Access Journals (Sweden)

    U Shankarkumar

    2009-03-01

    Full Text Available U Shankarkumar, A Pawar, K GhoshNational Institute of Immunohaematology (ICMR, KEM Hospital, Parel, Mumbai, Maharashtra, IndiaAbstract: A regimen with varied side effects and compliance is of paramount importance to prevent viral drug resistance. Most of the drug-resistance studies, as well as interpretation algorithms, are based on sequence data from HIV-1 subtype B viruses. Increased resistance to antiretroviral drugs leads to poor prognosis by restricting treatment options. Due to suboptimal adherence to antiretroviral therapy there is an emergence of drug-resistant HIV-1 strains. The other factors responsible for this viral evolution are antiretroviral drug types and host genetics, especially major histocompatibility complex (MHC. Both primary and secondary drug resistances occur due to mutations in specific epitopes of viral protein regions which may influence the T cell recognition by immune system through MHC Class I and class II alleles. Mutations in viral epitopes enable the virus to escape the immune system. New drugs under clinical trials are being added but their exorbitant costs limit their access in developing countries. Thus the environmental consequences and, the impact of both viral and host genetic variations on the therapy in persons infected with HIV-1 clade C from India need to be determined.Keywords: HIV-1 C drug resistance, virus adaptation, HARRT, India

  20. Synthesis, antitubercular activity and mechanism of resistance of highly effective thiacetazone analogues.

    Directory of Open Access Journals (Sweden)

    Geoffrey D Coxon

    Full Text Available Defining the pharmacological target(s of currently used drugs and developing new analogues with greater potency are both important aspects of the search for agents that are effective against drug-sensitive and drug-resistant Mycobacterium tuberculosis. Thiacetazone (TAC is an anti-tubercular drug that was formerly used in conjunction with isoniazid, but removed from the antitubercular chemotherapeutic arsenal due to toxic side effects. However, several recent studies have linked the mechanisms of action of TAC to mycolic acid metabolism and TAC-derived analogues have shown increased potency against M. tuberculosis. To obtain new insights into the molecular mechanisms of TAC resistance, we isolated and analyzed 10 mutants of M. tuberculosis that were highly resistant to TAC. One strain was found to be mutated in the methyltransferase MmaA4 at Gly101, consistent with its lack of oxygenated mycolic acids. All remaining strains harbored missense mutations in either HadA (at Cys61 or HadC (at Val85, Lys157 or Thr123, which are components of the β-hydroxyacyl-ACP dehydratase complex that participates in the mycolic acid elongation step. Separately, a library of 31 new TAC analogues was synthesized and evaluated against M. tuberculosis. Two of these compounds, 15 and 16, exhibited minimal inhibitory concentrations 10-fold lower than the parental molecule, and inhibited mycolic acid biosynthesis in a dose-dependent manner. Moreover, overexpression of HadAB HadBC or HadABC in M. tuberculosis led to high level resistance to these compounds, demonstrating that their mode of action is similar to that of TAC. In summary, this study uncovered new mutations associated with TAC resistance and also demonstrated that simple structural optimization of the TAC scaffold was possible and may lead to a new generation of TAC-derived drug candidates for the potential treatment of tuberculosis as mycolic acid inhibitors.

  1. Simulations of CYP51A from Aspergillus fumigatus in a model bilayer provide insights into triazole drug resistance.

    Science.gov (United States)

    Nash, Anthony; Rhodes, Johanna

    2018-04-01

    Azole antifungal drugs target CYP51A in Aspergillus fumigatus by binding with the active site of the protein, blocking ergosterol biosynthesis. Resistance to azole antifungal drugs is now common, with a leucine to histidine amino acid substitution at position 98 the most frequent, predominantly conferring resistance to itraconazole, although cross-resistance has been reported in conjunction with other mutations. In this study, we create a homology model of CYP51A using a recently published crystal structure of the paralog protein CYP51B. The derived structures, wild type, and L98H mutant are positioned within a lipid membrane bilayer and subjected to molecular dynamics simulations in order improve the accuracy of both models. The structural analysis from our simulations suggests a decrease in active site surface from the formation of hydrogen bonds between the histidine substitution and neighboring polar side chains, potentially preventing the binding of azole drugs. This study yields a biologically relevant structure and set of dynamics of the A. fumigatus Lanosterol 14 alpha-demethylase enzyme and provides further insight into azole antifungal drug resistance.

  2. Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells.

    Science.gov (United States)

    Yan, Chen; Luo, Lan; Guo, Chang-Ying; Goto, Shinji; Urata, Yoshishige; Shao, Jiang-Hua; Li, Tao-Sheng

    2017-03-01

    Cancer stem cells (CSCs) are known to be drug resistant. Mitophagy selectively degrades unnecessary or damaged mitochondria by autophagy during cellular stress. To investigate the potential role of mitophagy in drug resistance in CSCs, we purified CD133 + /CD44 + CSCs from HCT8 human colorectal cancer cells and then exposed to doxorubicin (DXR). Compared with parental cells, CSCs were more resistant to DXR treatment. Although DXR treatment enhanced autophagy levels in both cell types, the inhibition of autophagy by ATG7 silencing significantly increased the toxicity of DXR only in parental cells, not in CSCs. Interestingly, the level of mitochondrial superoxide was detected to be significantly lower in CSCs than in parental cells after DXR treatment. Furthermore, the mitophagy level and expression of BNIP3L, a mitophagy regulator, were significantly higher in CSCs than in parental cells after DXR treatment. Silencing BNIP3L significantly halted mitophagy and enhanced the sensitivity to DXR in CSCs. Our data suggested that mitophagy, but not non-selective autophagy, likely contributes to drug resistance in CSCs isolated from HCT8 cells. Further studies in other cancer cell lines will be needed to confirm our findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Relationship between triterpenoid anticancer drug resistance, autophagy, and caspase-1 in adult T-cell leukemia

    Directory of Open Access Journals (Sweden)

    Tsukasa Nakanishi

    2016-05-01

    Full Text Available We previously reported that the inflammasome inhibitor cucurbitacin D (CuD induces apoptosis in human leukemia cell lines. Here, we investigated the effects of CuD and a B-cell lymphoma extra-large (Bcl-xL inhibitor on autophagy in peripheral blood lymphocytes (PBL isolated from adult T-cell leukemia (ATL patients. CuD induced PBL cell death in patients but not in healthy donors. This effect was not significantly inhibited by treatment with rapamycin or 3-methyladenine (3-MA. The Bcl-xL inhibitor Z36 induced death in primary cells from ATL patients including that induced by CuD treatment, effects that were partly inhibited by 3-MA. Similarly, cell death induced by the steroid prednisolone was enhanced in the presence of Z36. A western blot analysis revealed that Z36 also promoted CuD-induced poly(ADP ribose polymerase cleavage. Interestingly, the effects of CuD and Z36 were attenuated in primary ATL patient cells obtained upon recurrence after umbilical cord blood transplantation, as compared to those obtained before chemotherapy. Furthermore, cells from this patient expressed a high level of caspase-1, and treatment with caspase-1 inhibitor-enhanced CuD-induced cell death. Taken together, these results suggest that rescue from resistance to steroid drugs can enhance chemotherapy, and that caspase-1 is a good marker for drug resistance in ATL patients.

  4. Erectile Dysfunction Drugs Changed the Protein Expressions and Activities of Drug-Metabolising Enzymes in the Liver of Male Rats

    Directory of Open Access Journals (Sweden)

    Salah A. Sheweita

    2016-01-01

    Full Text Available Erectile dysfunction (ED is a major health problem and is mainly associated with the persistent inability of men to maintain sufficient erection for satisfactory sexual performance. Millions of men are using sildenafil, vardenafil, and/or tadalafil for ED treatment. Cytochrome P450s (CYPs play a central role in the metabolism of a wide range of xenobiotics as well as endogenous compounds. Susceptibility of individuals to the adverse effects of different drugs is mainly dependent on the expression of CYPs proteins. Therefore, changes in activities of phase I drug-metabolising enzymes [arylhydrocarbon hydroxylase (AHH, dimethylnitrosamine N-demethylase (DMN-dI, 7-ethoxycoumarin-O-deethylase (ECOD, and ethoxyresorufin-O-deethylase ((EROD] and the protein expression of different CYPs isozymes (CYP1A2, CYP2E1, CYP2B1/2, CYP3A4, CYP2C23, and CYP2C6 were determined after treatment of male rats with either low or high doses of sildenafil (Viagra, tadalafil (Cialis, and/or vardenafil (Levitra for 3 weeks. The present study showed that low doses of tadalafil and vardenafil increased DMN-dI activity by 32 and 23%, respectively. On the other hand, high doses of tadalafil, vardenafil, and sildenafil decreased such activity by 50, 56, and 52%, respectively. In addition, low doses of tadalafil and vardenafil induced the protein expression of CYP2E1. On the other hand, high doses of either tadalafil or sildenafil were more potent inhibitors to CYP2E1 expression than vardenafil. Moreover, low doses of both vardenafil and sildenafil markedly increased AHH activity by 162 and 247%, respectively, whereas high doses of tadalafil, vardenafil, and sildenafil inhibited such activity by 36, 49, and 57% and inhibited the EROD activity by 39, 49, and 33%, respectively. Low and high doses of tadalafil, vardenafil, and sildenafil inhibited the activity of NADPH-cytochrome c reductase as well as its protein expression. In addition, such drugs inhibited the expression of CYP

  5. Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Bertran-Alamillo, Jordi; Molina, Miguel Angel

    2017-01-01

    Non-small-cell lung cancer patients with activating epidermal growth factor receptor (EGFR) mutations typically benefit from EGFR tyrosine kinase inhibitor treatment. However, virtually all patients succumb to acquired EGFR tyrosine kinase inhibitor resistance that occurs via diverse mechanisms....... The diversity and unpredictability of EGFR tyrosine kinase inhibitor resistance mechanisms presents a challenge for developing new treatments to overcome EGFR tyrosine kinase inhibitor resistance. Here, we show that Akt activation is a convergent feature of acquired EGFR tyrosine kinase inhibitor resistance......, across a spectrum of diverse, established upstream resistance mechanisms. Combined treatment with an EGFR tyrosine kinase inhibitor and Akt inhibitor causes apoptosis and synergistic growth inhibition in multiple EGFR tyrosine kinase inhibitor-resistant non-small-cell lung cancer models. Moreover...

  6. Drug resistance in the mouse cancer clinic

    NARCIS (Netherlands)

    Rottenberg, Sven; Borst, Piet

    2012-01-01

    Drug resistance is one of the most pressing problems in treating cancer patients today. Local and regional disease can usually be adequately treated, but patients eventually die from distant metastases that have become resistant to all available chemotherapy. Although work on cultured tumor cell

  7. Surveillance of drug resistance for tuberculosis control: why and how?

    Science.gov (United States)

    Chaulet, P; Boulahbal, F; Grosset, J

    1995-12-01

    The resistance of Mycobacterium tuberculosis to antibiotics, which reflects the quality of the chemotherapy applied in the community, is one of the elements of epidemiological surveillance used in national tuberculosis programmes. Measurement of drug resistance poses problems for biologists in standardization of laboratory methods and quality control. The definition of rates of acquired and primary drug resistance also necessitates standardization in the methods used to collect information transmitted by clinicians. Finally, the significance of the rates calculated depends on the choice of the patients sample on which sensitivity tests have been performed. National surveys of drug resistance therefore require multidisciplinary participation in order to select the only useful indicators: rates of primary resistance and of acquired resistance. These indicators, gathered in representative groups of patients over a long period, are a measurement of the impact of modern chemotherapy regimens on bacterial ecology.

  8. Inhibition of PKMzeta in nucleus accumbens core abolishes long-term drug reward memory.

    Science.gov (United States)

    Li, Yan-qin; Xue, Yan-xue; He, Ying-ying; Li, Fang-qiong; Xue, Li-fen; Xu, Chun-mei; Sacktor, Todd Charlton; Shaham, Yavin; Lu, Lin

    2011-04-06

    During abstinence, memories of drug-associated cues persist for many months, and exposure to these cues often provokes relapse to drug use. The mechanisms underlying the maintenance of these memories are unknown. A constitutively active atypical protein kinase C (PKC) isozyme, protein kinase M ζ (PKMζ), is required for maintenance of spatial memory, conditioned taste aversion, and other memory forms. We used conditioned place preference (CPP) and conditioned place aversion (CPA) procedures to study the role of nucleus accumbens PKMζ in the maintenance of drug reward and aversion memories in rats. Morphine CPP training (10 mg/kg, 4 pairings) increased PKMζ levels in accumbens core but not shell. Injections of the PKMζ inhibitor ζ inhibitory peptide (ZIP) into accumbens core but not shell after CPP training blocked morphine CPP expression for up to 14 d after injections. This effect was mimicked by the PKC inhibitor chelerythrine, which inhibits PKMζ, but not by the conventional and novel PKC inhibitor staurosporine, which does not effectively inhibit PKMζ. ZIP injections into accumbens core after training also blocked the expression of cocaine (10 mg/kg) and high-fat food CPP but had no effect on CPA induced by naloxone-precipitated morphine withdrawal. Accumbens core injections of Tat-GluR2(3Y), which inhibits GluR2-dependent AMPA receptor endocytosis, prevented the impairment in morphine CPP induced by local ZIP injections, indicating that the persistent effect of PKMζ is on GluR2-containing AMPA receptors. Results indicate that PKMζ activity in accumbens core is a critical cellular substrate for the maintenance of memories of relapse-provoking reward cues during prolonged abstinence periods.

  9. New-Onset Psychosis in a Multi-Drug Resistant Tuberculosis Patient ...

    African Journals Online (AJOL)

    Drug-resistant tuberculosis poses a serious challenge to global control of TB. These forms of TB do not respond to the standard six-month treatment; it can take two years or more to treat with category IV drugs that are less potent, more toxic and much more expensive. Treatment of multi-drug resistant tuberculosis is still ...

  10. The role of compensatory mutations in the emergence of drug resistance.

    Directory of Open Access Journals (Sweden)

    Andreas Handel

    2006-10-01

    Full Text Available Pathogens that evolve resistance to drugs usually have reduced fitness. However, mutations that largely compensate for this reduction in fitness often arise. We investigate how these compensatory mutations affect population-wide resistance emergence as a function of drug treatment. Using a model of gonorrhea transmission dynamics, we obtain generally applicable, qualitative results that show how compensatory mutations lead to more likely and faster resistance emergence. We further show that resistance emergence depends on the level of drug use in a strongly nonlinear fashion. We also discuss what data need to be obtained to allow future quantitative predictions of resistance emergence.

  11. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes

    Science.gov (United States)

    2012-01-01

    Background The present work was designed to evaluate the antibacterial properties of the methanol extracts of eleven selected Cameroonian spices on multi-drug resistant bacteria (MDR), and their ability to potentiate the effect of some common antibiotics used in therapy. Results The extract of Cinnamomum zeylanicum against Escherichia coli ATCC 8739 and AG100 strains showed the best activities, with the lowest minimal inhibitory concentration (MIC) of 64 μg/ml. The extract of Dorstenia psilurus was the most active when tested in the presence of an efflux pump inhibitor, phenylalanine Arginine-β- Naphtylamide (PAβN), a synergistic effect being observed in 56.25 % of the tested bacteria when it was combined with Erythromycin (ERY). Conclusion The present work evidently provides information on the role of some Cameroonian spices in the fight against multi-resistant bacteria. PMID:22709668

  12. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes

    Directory of Open Access Journals (Sweden)

    Voukeng Igor K

    2012-06-01

    Full Text Available Abstract Background The present work was designed to evaluate the antibacterial properties of the methanol extracts of eleven selected Cameroonian spices on multi-drug resistant bacteria (MDR, and their ability to potentiate the effect of some common antibiotics used in therapy. Results The extract of Cinnamomum zeylanicum against Escherichia coli ATCC 8739 and AG100 strains showed the best activities, with the lowest minimal inhibitory concentration (MIC of 64 μg/ml. The extract of Dorstenia psilurus was the most active when tested in the presence of an efflux pump inhibitor, phenylalanine Arginine-β- Naphtylamide (PAβN, a synergistic effect being observed in 56.25 % of the tested bacteria when it was combined with Erythromycin (ERY. Conclusion The present work evidently provides information on the role of some Cameroonian spices in the fight against multi-resistant bacteria.

  13. Evolution of drug resistance in HIV infected patients remaining on a virologically failing cART regimen

    DEFF Research Database (Denmark)

    Cozzi-Lepri, A; Phillips, AN; Ruiz, L

    2007-01-01

    OBJECTIVE: To estimate the extent of drug resistance accumulation in patients kept on a virologically failing regimen and its determinants in the clinical setting. DESIGN: The study focused on 110 patients of EuroSIDA on an unchanged regimen who had two genotypic tests performed at two time points...... (t0 and t1) when viral load was > 400 copies/ml. METHODS: Accumulation of resistance between t0 and t1 was measured using genotypic susceptibility scores (GSS) obtained by counting the total number of active drugs (according to the Rega system v6.4.1) among all licensed antiretrovirals as of 1...... January 2006. Patients were grouped according to the number of active drugs in the failing regimen at t0 (GSS_f-t0). RESULTS: At t0, patients had been on the failing combination antiretroviral therapy (cART) for a median of 11 months (range, 6-50 months). Even patients with extensive resistance...

  14. Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat.

    Science.gov (United States)

    Choi, Sin Young; Kee, Hae Jin; Jin, Li; Ryu, Yuhee; Sun, Simei; Kim, Gwi Ran; Jeong, Myung Ho

    2018-05-01

    Histone deacetylase (HDAC) inhibitors are gaining increasing attention as potential therapeutics for cardiovascular diseases as well as cancer. We recently reported that the class II HDAC inhibitor, MC1568, and the phytochemical, gallic acid, lowered high blood pressure in mouse models of hypertension. We hypothesized that class II HDACs may be involved in the regulation of hypertension. The aim of this study was to determine and compare the effects of well-known HDAC inhibitors (TMP269, panobinostat, and MC1568), phytochemicals (gallic acid, sulforaphane, and piceatannol), and anti-hypertensive drugs (losartan, carvedilol, and furosemide) on activities of class IIa HDACs (HDAC4, 5, 7, and 9). The selective class IIa HDAC inhibitor, TMP269, and the pan-HDAC inhibitor, panobinostat, but not MC1568, clearly inhibited class IIa HDAC activities. Among the three phytochemicals, gallic acid showed remarkable inhibition, whereas sulforaphane presented mild inhibition of class IIa HDACs. Piceatannol inhibited only HDAC7 activity. As expected, the anti-hypertensive drugs losartan, carvedilol, and furosemide did not affect the activity of any class IIa HDAC. In addition, we evaluated the inhibitory effect of several compounds on the activity of class l HDACs (HDAC1, 2, 3, and 8) and class IIb HDAC (HDAC6). MC1568 did not affect the activities of HDAC1, HDAC2, and HDAC3, but it reduced the activity of HDAC8 at concentrations of 1 and 10 μM. Gallic acid weakly inhibited HDAC1 and HDAC6 activities, but strongly inhibited HDAC8 activity with effectiveness comparable to that of trichostatin A. Inhibition of HDAC2 activity by sulforaphane was stronger than that by piceatnnaol. These results indicated that gallic acid is a powerful dietary inhibitor of HDAC8 and class IIa/b HDAC activities. Sulforaphane may also be used as a dietary inhibitor of HDAC2 and class IIa HDAC. Our findings suggest that the class II HDAC inhibitor, MC1568, does not inhibit class IIa HDAC, but inhibits

  15. H19 mediates methotrexate resistance in colorectal cancer through activating Wnt/β-catenin pathway

    International Nuclear Information System (INIS)

    Wu, Ke-feng; Liang, Wei-Cheng; Feng, Lu; Pang, Jian-xin; Waye, Mary Miu-Yee; Zhang, Jin-Fang; Fu, Wei-Ming

    2017-01-01

    Colorectal cancer (CRC) is a common malignancy, most of which remain unresponsive to chemotherapy. As one of the earliest cytotoxic drugs, methotrexate (MTX) serves as an anti-metabolite and anti-folate chemotherapy for various cancers. Unfortunately, MTX resistance prevents its clinical application in cancer therapy. Thereby, overcoming the drug resistance is an alternative strategy to maximize the therapeutic efficacy of MTX in clinics. Long noncoding RNAs (lncRNAs) have gained widespread attention in recent years. More and more emerging evidences have demonstrated that they play important regulatory roles in various biological activities and disease progression including drug resistance. In the present study, a MTX-resistant colorectal cell line HT-29 (HT-29-R) was developed, which displayed the active proliferation and shortened cell cycle. LncRNA H19 was found to be significantly upregulated in this resistant cell line. Further investigation showed that H19 knockdown sensitized the MTX resistance in HT-29-R cells while its overexpression improved the MTX resistance in the parental cells, suggesting that H19 mediate MTX resistance. The Wnt/β-catenin signaling was activated in HT-29-R cells, and H19 knockdown suppressed this signaling in the parental cells. In conclusion, H19 mediated MTX resistance via activating Wnt/β-catenin signaling, which help to develop H19 as a promising therapeutic target for MTX resistant CRC. - Highlights: • A methotrexate (MTX) -resistant colorectal cancer cell line HT-29 (HT-29-R) has been developed. • H19 was upregulated in HT-29-R cells. • H19 mediated MTX resistance in colorectal cancer (CRC). • Wnt/β-catenin pathway was involved in the H19-mediated MTX resistance in CRC cells.

  16. H19 mediates methotrexate resistance in colorectal cancer through activating Wnt/β-catenin pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ke-feng [Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong (China); Liang, Wei-Cheng [School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (China); Feng, Lu [Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong (China); Pang, Jian-xin [School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 (China); Waye, Mary Miu-Yee [School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (China); Zhang, Jin-Fang [Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong (China); Fu, Wei-Ming, E-mail: fuweiming76@smu.edu.cn [School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 (China)

    2017-01-15

    Colorectal cancer (CRC) is a common malignancy, most of which remain unresponsive to chemotherapy. As one of the earliest cytotoxic drugs, methotrexate (MTX) serves as an anti-metabolite and anti-folate chemotherapy for various cancers. Unfortunately, MTX resistance prevents its clinical application in cancer therapy. Thereby, overcoming the drug resistance is an alternative strategy to maximize the therapeutic efficacy of MTX in clinics. Long noncoding RNAs (lncRNAs) have gained widespread attention in recent years. More and more emerging evidences have demonstrated that they play important regulatory roles in various biological activities and disease progression including drug resistance. In the present study, a MTX-resistant colorectal cell line HT-29 (HT-29-R) was developed, which displayed the active proliferation and shortened cell cycle. LncRNA H19 was found to be significantly upregulated in this resistant cell line. Further investigation showed that H19 knockdown sensitized the MTX resistance in HT-29-R cells while its overexpression improved the MTX resistance in the parental cells, suggesting that H19 mediate MTX resistance. The Wnt/β-catenin signaling was activated in HT-29-R cells, and H19 knockdown suppressed this signaling in the parental cells. In conclusion, H19 mediated MTX resistance via activating Wnt/β-catenin signaling, which help to develop H19 as a promising therapeutic target for MTX resistant CRC. - Highlights: • A methotrexate (MTX) -resistant colorectal cancer cell line HT-29 (HT-29-R) has been developed. • H19 was upregulated in HT-29-R cells. • H19 mediated MTX resistance in colorectal cancer (CRC). • Wnt/β-catenin pathway was involved in the H19-mediated MTX resistance in CRC cells.

  17. Recent advances in novel heterocyclic scaffolds for the treatment of drug-resistant malaria.

    Science.gov (United States)

    Kumar, Sahil; Singh, Rajesh K; Patial, Babita; Goyal, Sachin; Bhardwaj, T R

    2016-01-01

    Malaria is a major public health problem all over the world, particularly in tropical and subtropical countries due to the development of resistance and most deadly infection is caused by Plasmodium falciparum. There is a direct need for the discovery of new drugs with unique structures and mechanism of action to treat sensitive and drug-resistant strains of various plasmodia for radical cure of this disease. Traditional compounds such as quinine and related derivatives represent a major source for the development of new drugs. This review presents recent modifications of 4-aminoquinoline and 8-aminoquinolone rings as leads to novel active molecules which are under clinical trials. The review also encompasses the other heterocyclic compounds emerged as potential antimalarial agents with promising results such as acridinediones and acridinone analogues, pyridines and quinolones as antimalarials. Miscellaneous heterocyclics such as tetroxane derivatives, indole derivatives, imidazolopiperazine derivatives, biscationic choline-based compounds and polymer-linked combined antimalarial drugs are also discussed. At last brief introduction to heterocyclics in natural products is also reviewed. Most of them have been under clinical trials and found to be promising in the treatment of drug-resistant strains of Plasmodium and others can be explored for the same purpose.

  18. Identification of novel small molecules that inhibit STAT3-dependent transcription and function.

    Directory of Open Access Journals (Sweden)

    Iryna Kolosenko

    Full Text Available Activation of Signal Transducer and Activator of Transcription 3 (STAT3 has been linked to several processes that are critical for oncogenic transformation, cancer progression, cancer cell proliferation, survival, drug resistance and metastasis. Inhibition of STAT3 signaling has shown a striking ability to inhibit cancer cell growth and therefore, STAT3 has become a promising target for anti-cancer drug development. The aim of this study was to identify novel inhibitors of STAT-dependent gene transcription. A cellular reporter-based system for monitoring STAT3 transcriptional activity was developed which was suitable for high-throughput screening (Z' = 0,8. This system was used to screen a library of 28,000 compounds (the ENAMINE Drug-Like Diversity Set. Following counter-screenings and toxicity studies, we identified four hit compounds that were subjected to detailed biological characterization. Of the four hits, KI16 stood out as the most promising compound, inhibiting STAT3 phosphorylation and transcriptional activity in response to IL6 stimulation. In silico docking studies showed that KI16 had favorable interactions with the STAT3 SH2 domain, however, no inhibitory activity could be observed in the STAT3 fluorescence polarization assay. KI16 inhibited cell viability preferentially in STAT3-dependent cell lines. Taken together, using a targeted, cell-based approach, novel inhibitors of STAT-driven transcriptional activity were discovered which are interesting leads to pursue further for the development of anti-cancer therapeutic agents.

  19. Drug resistance and genetic diversity of Plasmodium falciparum parasites from Suriname

    NARCIS (Netherlands)

    Peek, Ron; van Gool, Tom; Panchoe, Daynand; Greve, Sophie; Bus, Ellen; Resida, Lesley

    2005-01-01

    Plasmodium falciparum in Suriname was studied for the presence of drug resistance and genetic variation in blood samples of 86 patients with symptomatic malaria. Drug resistance was predicted by determining point mutations in the chloroquine resistance marker of the P. falciparum chloroquine

  20. Cancer stem cells and drug resistance: the potential of nanomedicine

    Science.gov (United States)

    Vinogradov, Serguei; Wei, Xin

    2012-01-01

    Properties of the small group of cancer cells called tumor-initiating or cancer stem cells (CSCs) involved in drug resistance, metastasis and relapse of cancers can significantly affect tumor therapy. Importantly, tumor drug resistance seems to be closely related to many intrinsic or acquired properties of CSCs, such as quiescence, specific morphology, DNA repair ability and overexpression of antiapoptotic proteins, drug efflux transporters and detoxifying enzymes. The specific microenvironment (niche) and hypoxic stability provide additional protection against anticancer therapy for CSCs. Thus, CSC-focused therapy is destined to form the core of any effective anticancer strategy. Nanomedicine has great potential in the development of CSC-targeting drugs, controlled drug delivery and release, and the design of novel gene-specific drugs and diagnostic modalities. This review is focused on tumor drug resistance-related properties of CSCs and describes current nanomedicine approaches, which could form the basis of novel combination therapies for eliminating metastatic and CSCs. PMID:22471722