WorldWideScience

Sample records for activation analysis laboratory

  1. Engineering Water Analysis Laboratory Activity.

    Science.gov (United States)

    Schlenker, Richard M.

    The purposes of water treatment in a marine steam power plant are to prevent damage to boilers, steam-operated equipment, and steam and condensate lives, and to keep all equipment operating at the highest level of efficiency. This laboratory exercise is designed to provide students with experiences in making accurate boiler water tests and to…

  2. Applications of neutrons for laboratory and industrial activation analysis problems

    International Nuclear Information System (INIS)

    Szabo, Elek; Bakos, Laszlo

    1986-01-01

    This chapter presents some particular applications and case studies of neutrons in activation analysis for research and industrial development purposes. The reactor neutrons have been applied in Hungarian laboratories for semiconductor research, for analysis of geological (lunar) samples, and for a special comparator measurement of samples. Some industrial applications of neutron generator and sealed sources for analytical problems are presented. Finally, prompt neutron activation analysis is outlined briefly. (R.P.)

  3. The Medical Activation Analysis Research Programme of the IAEA Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Parr, R. M. [Medical Applications Section, International Atomic Energy Agency, Vienna (Austria)

    1970-07-01

    Analyses carried out under the Agency's laboratory programme in medical activation analysis commended in 1967. This paper describes the laboratory facilities and experimental methods now in use, and reports briefly on results obtained to date. The analytical scheme places greatest emphasis on non-destructive methods (i.e. without radiochemistry), and by the use of a Ge(Li) detector and a 2-parameter Nal(Tl) gamma-ray spectrometer, presently allows the determination of up to 12 elements in unprocessed tissue samples. Projects completed or underway include (i) an investigation into the uniformity of distribution of mineral elements in human liver, (ii) studies of tissue concentrations of trace elements in relation to malnutrition and cardiovascular diseases, and (iii) the determination of iodine in food, natural waters and other biological materials in relation to the epidemiology of endemic goitre. (author)

  4. Practical aspects of operating a neutron activation analysis laboratory

    International Nuclear Information System (INIS)

    1990-07-01

    This book is intended to advise in everyday practical problems related to operating a neutron activation analysis (NAA) laboratory. It gives answers to questions like ''what to use NAA for'', ''how to find relevant research problems'', ''how to find users for the technique'', ''how to estimate the cost of the analysis and how to finance the work'', ''how to organize the work in a rational way'' and ''how to perform the quality control''. It gives advice in choosing staff, equipment, and consumables and how to design facilities and procedures according to need and available resources. Potential applications of economic or environmental importance, reactor facilities, counting and measuring equipment of the lab, cooperation with other analytical groups and competitiveness of NAA are discussed by experienced analysts. The compiled 8 tables of data useful for neutron activation analysts are a valuable asset for research labs as well as industrial quality control units. Refs, figs and tabs

  5. Quality Assurance and Control in Laboratory using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Chung, Y. S.; Moon, J. H.; Sun, G. M.; Kim, S. H.; Baek, S. Y.; Lim, J. M.; Kim, H. R.

    2007-01-01

    In accordance with the increment of international trade associated with the worldwide globalization, the importance of quality assurance and control for the commodity produced from one's own country has been stressed. ISO (International Organization for Standards) defines quality control as 'the operational techniques and activities that are used to fulfill the requirements for quality'. Since 1996, the HANARO research reactor in the Korea Atomic Energy Research Institute has been operated thereafter initial critical operation on April 1995. Neutron activation analysis system and applied techniques which is one of a nuclear analytical technologies using reactor neutrons has been developed for user's supporting and the establishment of the quality system for a measurement and analysis, testing and inspection was implemented successfully. On the basis of the qualified NAA system, the test and measurement of more than 1500 samples which is requested from 30 organizations including industrial companies, universities and institutes carried out in NAA laboratory annually. Moreover, as the goal of mutual recognition agreement (MRA) which can be removed a technical barrier in international trade, the objectivity and the confidence of analytical quality in NAA laboratory became established through the installation of international accreditation system by implementing analytical quality system in accordance with international standards in 2001. The aim of the report was to summarize the technical management of introduction, methods and the results for a quality control and assurance which should be performed in NAA technique using the HANARO research reactor. The report will help building up effective quality control strategy in the future

  6. Absolute instrumental neutron activation analysis at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Heft, R.E.

    1977-01-01

    The Environmental Science Division at Lawrence Livermore Laboratory has in use a system of absolute Instrumental Neutron Activation Analysis (INAA). Basically, absolute INAA is dependent upon the absolute measurement of the disintegration rates of the nuclides produced by neutron capture. From such disintegration rate data, the amount of the target element present in the irradiated sample is calculated by dividing the observed disintegration rate for each nuclide by the expected value for the disintegration rate per microgram of the target element that produced the nuclide. In absolute INAA, the expected value for disintegration rate per microgram is calculated from nuclear parameters and from measured values of both thermal and epithermal neutron fluxes which were present during irradiation. Absolute INAA does not depend on the concurrent irradiation of elemental standards but does depend on the values for thermal and epithermal neutron capture cross-sections for the target nuclides. A description of the analytical method is presented

  7. Quality Assurance and Control in Laboratory using Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Sun, G. M.; Kim, S. H.; Baek, S. Y.; Lim, J. M.; Kim, H. R

    2007-01-15

    In accordance with the increment of international trade associated with the worldwide globalization, the importance of quality assurance and control for the commodity produced from one's own country has been stressed. ISO (International Organization for Standards) defines quality control as 'the operational techniques and activities that are used to fulfill the requirements for quality'. Since 1996, the HANARO research reactor in the Korea Atomic Energy Research Institute has been operated thereafter initial critical operation on April 1995. Neutron activation analysis system and applied techniques which is one of a nuclear analytical technologies using reactor neutrons has been developed for user's supporting and the establishment of the quality system for a measurement and analysis, testing and inspection was implemented successfully. On the basis of the qualified NAA system, the test and measurement of more than 1500 samples which is requested from 30 organizations including industrial companies, universities and institutes carried out in NAA laboratory annually. Moreover, as the goal of mutual recognition agreement (MRA) which can be removed a technical barrier in international trade, the objectivity and the confidence of analytical quality in NAA laboratory became established through the installation of international accreditation system by implementing analytical quality system in accordance with international standards in 2001. The aim of the report was to summarize the technical management of introduction, methods and the results for a quality control and assurance which should be performed in NAA technique using the HANARO research reactor. The report will help building up effective quality control strategy in the future.

  8. An analysis of laboratory activities found in "Applications In Biology/Chemistry: A Contextual Approach to Laboratory Science"

    Science.gov (United States)

    Haskins, Sandra Sue

    The purpose of this study was to quantitatively determine whether the material found in ABC promotes scientific inquiry through the inclusion of science process skills, and to quantitatively determine the type (experimental, comparative, or descriptive) and character (wet-lab, paper and pencil, model, or computer) of laboratory activities. The research design allowed for an examination of the frequency and type of science process skills required of students in 79 laboratory activities sampled from all 12 units utilizing a modified 33-item laboratory analysis inventory (LAI) (Germane et al, 1996). Interrater reliability for the science process skills was completed on 19 of the laboratory activities with a mean score of 86.1%. Interrater reliability for the type and character of the laboratory, on the same 19 laboratory activities, was completed with mean scores of 79.0% and 96.5%, respectively. It was found that all laboratory activities provide a prelaboratory activity. In addition, the science process skill category of student performance is required most often of students with the skill of learning techniques or manipulating apparatus occurring 99% of the time. The science process skill category observed the least was student planning and design, occurring only 3% of the time. Students were rarely given the opportunity to practice science process skills such as developing and testing hypotheses through experiments they have designed. Chi-square tests, applied at the .05 level of significance, revealed that there was a significant difference in the type of laboratory activities; comparative laboratory activities appeared more often (59%). In addition the character of laboratory activities, "wet-lab" activities appeared more often (90%) than any of the others.

  9. Proton activation analysis at the Harvard Cyclotron Laboratory

    International Nuclear Information System (INIS)

    Sisterson, J.M.; Koehler, A.M.

    1984-01-01

    High-energy proton activation analysis (PAA), a simple non-destructive technique, has been developed for use as an adjunct to neutron activation analysis. Potential advantages of protons include the ability to achieve very precise localization of the activation volume over a pre-determined depth in the target. To demonstrate the versatility of PAA, results are reported on the measurement of the whole body calcium content in animals and on the determination of the Ca/P molar ratio in small quantities (<50 mg) of chemical and biological samples. The animal experiments demonstrate the ability to achieve a uniform irradiation over a large volume and utilizes large NaI crystals with a special chamber for uniform combined detection efficiency, where the Ca/P molar ratio determination requires a Ge/Li detector and analysis of the resulting gamma ray spectrum. The feasibility is being assessed of using proton beam activation of the eye to measure blood flow in the rabbit choroid, based on earlier work where it was used to measure blood in mouse skeletal tissue. 6 references, 7 figures, 4 tables

  10. Inquiry-based Laboratory Activities on Drugs Analysis for High School Chemistry Learning

    Science.gov (United States)

    Rahmawati, I.; Sholichin, H.; Arifin, M.

    2017-09-01

    Laboratory activity is an important part of chemistry learning, but cookbook instructions is still commonly used. However, the activity with that way do not improve students thinking skill, especially students creativity. This study aims to improve high school students creativity through inquiry-based laboratory on drugs analysis activity. Acid-base titration is used to be method for drugs analysis involving a color changing indicator. The following tools were used to assess the activity achievement: creative thinking test on acid base titration, creative attitude and action observation sheets, questionnaire of inquiry-based lab activities, and interviews. The results showed that the inquiry-based laboratory activity improving students creative thinking, creative attitude and creative action. The students reacted positively to this teaching strategy as demonstrated by results from questionnaire responses and interviews. This result is expected to help teachers to overcome the shortcomings in other laboratory learning.

  11. Internal quality control of neutron activation analysis laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Mun, J. H.; BaeK, S. Y.; Jung, Y. S.; Kim, Y. J. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    The importance for quality assurance and control in analytical laboratories has been emphasized, day by day. Internal quality control using certified reference materials(CRMs) can be one of effective methods for this purpose. In this study, 10 kinds of CRMs consisting of soil, sediment and biological matrix were analyzed. To evaluate the confidence of analytical results and the validation of testing method and procedure, the accuracy and the precision of the measured elements were treated statistically and the reproducibility was compared with those values produced before 2003.

  12. Summary of failure analysis activities at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Cowgill, M.G.; Czajkowski, C.J.; Franz, E.M.

    1996-10-01

    Brookhaven National Laboratory has for many years conducted examinations related to the failures of nuclear materials and components. These examinations included the confirmation of root cause analyses, the determination of the causes of failure, identification of the species that accelerate corrosion, and comparison of the results of nondestructive examinations with those obtained by destructive examination. The results of those examinations, which had previously appeared in various formats (formal and informal reports, journal articles, etc.), have been collected together and summarized in the present report. The report is divided into sections according to the general subject matter (for example, corrosion, fatigue, etc.). Each section presents summaries of the information contained in specific reports and publications, all of which are fully identified as to title, authors, report number or journal reference, date of publication, and FIN number under which the work was performed

  13. Analysis of traces at ORNL's new high-flux neutron activation laboratory

    International Nuclear Information System (INIS)

    Ricci, E.; Handley, T.H.; Dyer, F.F.

    1974-01-01

    The investigations are outlined, which are carried out in order to develop (preferably instrumental) methods for multielement analysis of various trace elements. For this reason a new High-Flux NAA Laboratory was constructed at ORNL's. A general review is given on the Laboratory, further some methods and applications are shown. In the field of comparator activation analysis comparative data are given on mercury determinations in various matrices, and on arsenic determination in grasshoppers. This later method was used to trace the transport of arsenic containing pesticides. Some data are given on absolute activation analysis of Na, Ci, Mn, Br, and Au, too. (K.A.)

  14. Analytical laboratory quality assurance guidance in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    1994-05-01

    This document introduces QA guidance pertaining to design and implementation of laboratory procedures and processes for collecting DOE Environmental Restoration and Waste Management (EM) ESAA (environmental sampling and analysis activities) data. It addresses several goals: identifying key laboratory issues and program elements to EM HQ and field office managers; providing non-prescriptive guidance; and introducing environmental data collection program elements for EM-263 assessment documents and programs. The guidance describes the implementation of laboratory QA elements within a functional QA program (development of the QA program and data quality objectives are not covered here)

  15. Thermogravimetric Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Thermogravimetric Analysis Laboratory in Morgantown, WV, researchers study how chemical looping combustion (CLC) can be applied to fossil energy systems....

  16. Neutron activation analysis in an industrial laboratory using an off-site nuclear reactor

    International Nuclear Information System (INIS)

    Osborn, T.W.; Broering, W.B.

    1977-01-01

    A multifunctional research laboratory, such as Procter and Gamble's Miami Valley Laboratories, requires elemental analyses on many materials. A general survey technique is important even if the information it provides is incomplete or is less precise than single element analyses. Procter and Gamble has developed neutron activation analysis (NAA) capabilities using a nuclear reactor several hundred miles away. The concentration of 40 to 50 elements can be determined in a variety of matrices. We have found NAA to be a powerful supplement to some of the more classical analytical techniques even without having an on-site neutron source. We have also found an automated data acquisition system to be essential for the successful application of NAA in an industrial laboratory

  17. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Science.gov (United States)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  18. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Energy Technology Data Exchange (ETDEWEB)

    Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.; Peña, M., E-mail: mlpena@sgc.gov.co; Sierra, O., E-mail: osierra@sgc.gov.co; Porras, A.; Alonso, D.; Herrera, D. C., E-mail: dherrera@sgc.gov.co; Orozco, J. [Colombian Geological Survey, Nuclear Affairs Technical Division, Neutron Activation Analysis Laboratory, Bogota D. C. (Colombia)

    2016-07-07

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  19. USE OF MULTIPARAMETER ANALYSIS OF LABORATORY BIOMARKERS TO ASSESS RHEUMATOID ARTHRITIS ACTIVITY

    Directory of Open Access Journals (Sweden)

    A. A. Novikov

    2015-01-01

    Full Text Available The key component in the management of patients with rheumatoid arthritis (RA is regular control of RA activity. The quantitative assessment of a patient’s status allows the development of standardized indications for anti-rheumatic therapy.Objective: to identify the laboratory biomarkers able to reflect RA activity.Subjects and methods. Fifty-eight patients with RA and 30 age- and sex-matched healthy donors were examined. The patients were divided into high/moderate and mild disease activity groups according to DAS28. The serum concentrations of 30 biomarkers were measured using immunonephelometric assay, enzyme immunoassay, and xMAP technology.Results and discussion. Multivariate analysis could identify the factors mostly related to high/moderate RA activity according to DAS28, such as fibroblast growth factor-2, monocyte chemoattractant protein-1, interleukins (IL 1α, 6, and 15, and tumor necrosis factor-α and could create a prognostic model for RA activity assessment. ROC analysis has shown that this model has excellent diagnostic efficiency in differentiating high/moderate versus low RA activity.Conclusion. To create a subjective assessment-independent immunological multiparameter index of greater diagnostic accuracy than the laboratory parameters routinely used in clinical practice may be a qualitatively new step in assessing and monitoring RA activity.

  20. Activities of the neutron activation analysis laboratory of the radiochemistry division of IPEN - CNEN/SP

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.

    1988-10-01

    Neutron activation analysis (NAA) is one of the relevant applications of nuclear research reactors. Due to the high neutron fluxes available in these reactors, an excellent sensitivity of analysis is attained for many elements. NAA is one of the most sensitive, precise and accurate analytical methods for trace element determination. NAA has been one of the main activities of the Radiochemistry Division of IPEN, since the beginning of the operation of the nuclear reactor IEA-R1. Most of the effort was devoted to research work, aimed to improvements in the method as well as to its applications to several kinds of matrixes (geological, biological, metallic, environmental, forensic). Besides, analytical services were also offered, to the CNEN, to industries, universities, mining companies and research institutes. In the present paper, a review is made of the research work being developed presently at the Radiochesmitry Division of IPEN. A discussion is also made of the planned expansion of the analytical services offered [pt

  1. The method of Sample Management in Neutron Activation Analysis Laboratory-Serpong

    International Nuclear Information System (INIS)

    Elisabeth-Ratnawati

    2005-01-01

    In the testing laboratory used by neutron activation analysis method, sample preparation is the main factor and it can't be neglect. The error in the sample preparation can give result with lower accuracy. In this article is explained the scheme of sample preparation i.e sample receive administration, the separate of sample, fluid and solid sample preparation, sample grouping, irradiation, sample counting and holding the sample post irradiation. If the management of samples were good application based on Standard Operation Procedure, therefore each samples has good traceability. To optimize the management of samples is needed the trained and skilled personal and good facility. (author)

  2. Automatization of the neutron activation analysis method in the nuclear analysis laboratory

    International Nuclear Information System (INIS)

    Gonzalez, N.R.; Rivero, D del C.; Gonzalez, M.A.; Larramendi, F.

    1993-01-01

    In the present paper the work done to automatice the Neutron Activation Analysis technic with a neutron generator is described. An interface between an IBM compatible microcomputer and the equipment in use to make this kind of measurement was developed. including the specialized software for this system

  3. Neutron activation analysis of alternative waste forms at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Johns, R.A.

    1981-01-01

    A remotely controlled system for neutron activation of candidate high-level waste (HLW) isolation forms was built by the Savannah River Laboratory at a Savannah River Plant reactor. With this system, samples can be irradiated for up to 24 hours and transferred through pneumatic tubing to a shielded repository unitl their activity is low enough for them to be handled in a radiobench. The principal use of the system is to support the Alternative Waste Forms Leach Testing (AWFLT) Program in which the comparative leachability of the various waste forms will be determined. The experimental method used in this work is based on neutron activation analysis techniques. Neutron irradiation of the solid waste form containing simulated HLW sludge activates elements in the sample. After suitable leaching of the solid matrix in standard solutions, the leachate and solid are assayed for gamma-emitting nuclides. From these measurements, the fraction of a specific element leached can be determined al half-lives with experimental ones, over a range of 24 orders of magnitude was obtained. This is a strong argument that the alpha decay could be considered a fission process with very high mass asymmetry and charge density asymmetry

  4. 100 mg 251Cf activation analysis facility at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    MacMurdo, K.W.; Bowman, W.W.

    1975-01-01

    The 252 Cf Activation Analysis Facility at the Savannah River Laboratory (SRL) is used routinely for multielement analyses of a wide variety of solid and liquid samples (e.g., metal alloys, fly ash and other airborne particles, rocks, and aqueous and nonaqueous solutions). An automated absolute activation analysis technique, developed to use neutron transport codes to calculate multienergy group neutron spectra and fluxes, converts counting data directly into elemental concentrations expressed in parts per million. The facility contains four sources of 252 Cf totaling slightly over 100 mg. A pneumatic ''rabbit'' system permits automatic irradiation/decay/counting regimes to be performed unattended on up to 100 samples. Detection sensitivities of less than or equal to 400 ppb natural uranium and less than or equal to 0.5 nCi/g for 239 Pu are observed. Detection limits for over 65 elements have been determined. Over 40 elements are detectable at the one part per million level or less. Overall accuracies of +- 10 percent are observed for most elements. (auth)

  5. Performance of IPEN/CNEN-SP Neutron Activation Analysis Laboratory for microelement determinations in proficiency testing

    International Nuclear Information System (INIS)

    Armelin, Maria Jose A.; Saiki, Mitiko; Souza, Gilberto B. de; Nogueira, Ana Rita A.

    2009-01-01

    The performance of Neutron Activation Laboratory, IPEN - CNEN/SP, was evaluated for the Ca, Fe, K, Mn, Na and Zn determinations in animal feed samples for ruminants through a proficiency test (PT) program. This PT program is organized by EMBRAPA Cattle Southeast to evaluate laboratories that analyze animal feed samples. Considering the fractions of satisfactory z-scores (%) of evaluated analytes to determine the laboratories performance, the general performance indicator obtained by IPEN - CNEN/SP ranged from 90 to 95% of the satisfactory results during the period of participation in the evaluation, four years. (author)

  6. Determination of the chromium content of laboratory rabbit skeletal muscles by neutron activation analysis

    International Nuclear Information System (INIS)

    Lux, F.; Trebert Haeberlin, S.; Erhardt, W.

    1986-01-01

    The chromium content of skeletal muscle of laboratory rabbits has been determined using neutron activation analysis. The procedure for separation of 51 Cr by distillation of chromium oxychloride, described in the literature, has been improved. The arrangements necessary to minimize the chromium blank values are described. The main component of this blank is caused by the residual chromium contamination of the surface of the sample vial; typical values of this component are 0.049 ng Cr (without lyophilization) and 0.12 ng Cr (with lyophilization). The analyses of standard reference materials (SRM) yielded values of the chromium contents that are in agreement (I) with the certified value in the case of NBS Citrus Leaves, and (II) with the latest published value of 9.2+-2.5 ng/g in the case of IAEA animals muscle (H-4). NBS Orchard Leaves was found not to be an appropriate SRM for testing the method. In analyses of samples of thigh muscle of bastard rabbits chromium contents of 6.2-22.9 ng/g (fresh weight basis) were obtained. Comparison of these data with a previously found value of 1.2 ng/g, the literature value [de

  7. Quality assurance guidance for laboratory assessment plates in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    1994-05-01

    This document is one of several guidance documents developed to support the EM (DOE Environmental Restoration and Waste Management) Analytical Services program. Its purpose is to introduce assessment plates that can be used to conduct performance assessments of an organization's or project's ability to meet quality goals for analytical laboratory activities. These assessment plates are provided as non-prescriptive guidance to EM-support organizations responsible for collection of environmental data for remediation and waste management programs at DOE facilities. The assessments evaluate objectively all components of the analytical laboratory process to determine their proper selection and use

  8. Exploration Laboratory Analysis

    Science.gov (United States)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  9. Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements

    Science.gov (United States)

    Hiranuma, N.; Kohn, M.; Pekour, M. S.; Nelson, D. A.; Shilling, J. E.; Cziczo, D. J.

    2011-10-01

    Droplets produced in a cloud condensation nuclei chamber (CCNC) as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer (AMS) and the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (hygroscopic salts) but not the other (polystyrene latex spheres or adipic acid). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from ambient measurements using this technique and AMS analysis were inconclusive, showing little chemical differentiation between ambient aerosol and activated droplet residuals, largely due to low signal levels. When employing as single particle mass spectrometer for compositional analysis, however, we observed enhancement of sulfate in droplet residuals.

  10. Utilization of the intense pulsed neutron source (IPNS) at Argonne National Laboratory for neutron activation analysis

    International Nuclear Information System (INIS)

    Heinrich, R.R.; Greenwood, L.R.; Popek, R.J.; Schulke, A.W. Jr.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) neutron scattering facility (NSF) has been investigated for its applicability to neutron activation analysis. A polyethylene insert has been added to the vertical hole VT3 which enhances the thermal neutron flux by a factor of two. The neutron spectral distribution at this position has been measured by the multiple-foil technique which utilized 28 activation reactions and the STAYSL computer code. The validity of this spectral measurement was tested by two irradiations of National Bureau of Standards SRM-1571 (orchard leaves), SRM-1575 (pine needles), and SRM-1645 (river sediment). The average thermal neutron flux for these irradiations normalized to 10 μamp proton beam is 4.0 x 10 11 n/cm 2 -s. Concentrations of nine trace elements in each of these SRMs have been determined by gamma-ray spectrometry. Agreement of measured values to certified values is demonstrated to be within experiment error

  11. Active shield technology for space craft protection revisited in new laboratory results and analysis

    Science.gov (United States)

    Bamford, R.; Gibson, K. J.; Thornton, A. T.; Bradford, J.; Bingham, R.; Gargate, L.; Silva, L. O.; Fonseca, R. A.; Hapgood, M.; Norberg, C.; Todd, T.; Stamper, R.

    2009-04-01

    Energetic ions in the solar wind plasma are a known hazard to both spacecraft electronics and to astronaut's health. Of primary concern is the exposure to keV--MeV protons on manned space flights to the Moon and Mars that extend over long periods of time. Attempts to protect the spacecraft include active shields that are reminiscent of Star Trek "deflector" shields. Here we describe a new experiment to test the shielding concept of a dipole-like magnetic field and plasma, surrounding the spacecraft forming a "mini magnetosphere". Initial laboratory experiments have been conducted to determine the effectiveness of a magnetized plasma barrier to be able to expel an impacting, low beta, supersonic flowing energetic plasma representing the Solar Wind. Optical and Langmuir probe data of the plasma density, the plasma flow velocity, and the intensity of the dipole field clearly show the creation of a narrow transport barrier region and diamagnetic cavity virtually devoid of energetic plasma particles. This demonstrates the potential viability of being able to create a small "hole" in a Solar Wind plasma, of the order of the ion Larmor orbit width, in which an inhabited spacecraft could reside in relative safety. The experimental results have been quantitatively compared to a 3D particle-in-cell ‘hybrid' code simulation that uses kinetic ions and fluid electrons, showing good qualitative agreement and excellent quantitative agreement. Together the results demonstrate the pivotal role of particle kinetics in determining generic plasma transport barriers. [1] [1] R Bamford et al., "The interaction of a flowing plasma with a dipole magnetic field: measurements and modelling of a diamagnetic cavity relevant to spacecraft protection." 2008 Plasma Phys. Control. Fusion 50 124025 (11pp) doi: 10.1088/0741-3335/50/12/124025

  12. Activities of the Laboratory of Neutron Activation Analysis in the Radiochemistry Division - IPEN/CNEN/SP/Brazil

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.

    1988-01-01

    Neutron activation analysis (NAA) is one of the relevant applications of nuclear research reactors. Due to the high neutron fluxes available in these reactors, an excellent sensitivity of analysis is attained for many elements. NAA is one of the most sensitive, precise and accurate analytical methods for trace element determination. NAA has been one of the main activities of the Radiochemistry Division of IPEN, since the befinning of the operation of the nuclear reactor IEA-R1. Most of the effort was devoted to research work, aimed to improvements in the method as well as to its applications to several kinds of matrixes (geological, biological, metallic, environmental, forensic). Besides, analytical services were also offered, to the CNEN, to industries, universities, mining companies and research institutes. In the present paper, a review is made of the research work being developed presently at the Radiochemistry Division of IPEN. A discussion is also made of the planned expansion of the analytical services offered. (author) [pt

  13. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  14. Neutron activation analysis and ICP-AES to determine metal traces in antarctic krill. CNEA laboratories participation in the certification of a reference material

    International Nuclear Information System (INIS)

    Smichowski, Patricia N.; Farias, Silvia S.; Resnizky, Sara M.; Marrero, Julieta G.

    1999-01-01

    For the international certification of a reference material based on krill, As and Hg were determined by instrumental neutron activation analysis and Br, Co and Se by radiochemical neutron activation analysis. Inductive coupling plasma atomic emission spectrometry (ICP-AES) was used to determine Cu, Fe, Mn, and Zn. The results, which are in good agreement with those obtained by other laboratories, are discussed

  15. Medical application of in-vivo neutron activation analysis at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Zanzi, I.; Aloia, J.F.

    1979-01-01

    Total-body calcium measurements utilizing TBNAA have been used in studies of osteoporosis to establish absolute and relative deficits of calcium in patients with this disease in comparison to a normal contrast population. Changes in total-body calcium (skeletal mass) have also been useful for quantitating the efficacy of various therapies in osteoporosis. Serial measurements over periods of years provide long-term balance data by direct measurement with a higher precision (+-2%) than is possible by the use of any other technique. In the renal osteodystrophy observed in patients with renal failure, disorders of both calcium and phosphorus, as well as electrolyte disturbances, have been studied. The measurement of bone changes in endocrine dysfunction have been studied, particularly in patients with thyroid and parathyroid disorders. In parathyroidectomy, the measurement of total-body calcium, post-operatively, can indicate the degree of bone resorption. Skeletal metabolism and body composition in acromegaly and Cushing's disease have also been investigated by TBNAA. Levels of cadmium in liver and kidney have also been measured in vivo by prompt-gamma neutron activation and associated with hypertension, emphysema and cigarette smoking. Total-body nitrogen and potassium measurements serve as indices of muscle mass and are useful in studies of the interrelation of cancer, diet and nutrition. An essential requirement in these studies is the in-vivo measurement of changes in body composition, primarily revealed by nitrogen content. Currently the optimal method for measurement of total-body nitrogen is prompt-gamma neutron activation. There can be little question that in-vivo neutron activation is a useful addition to the techniques for medical research which provides new and previously unavailable information

  16. Metal metabolism in laboratory animals and human tissues as investigated by neutron activation analysis: current status and perspectives

    International Nuclear Information System (INIS)

    Sabbioni, E.; Pietra, R.; Marafante, E.

    1982-01-01

    The definition of dose-response relationships in man is the essential requisite to set scientifically health protection standards for the evaluation of a safe level exposure of humans to heavy metals. The derivation of these relationships requires sequential multidisciplinary informations including data on metabolic patterns and biochemical effects in mammals. Unfortunately, sufficient data are not available to establish dose-response curves expecially in long term-low level exposure conditions and a need exists to gather such informations for each metal on absorption, distribution and excretion in laboratory animals and humans. This paper: (1) discuss main problems related to the use of neutron activation analysis (NAA) in metallobiochemistry of present levels of trace elements; (2) report data on the current applications of NAA in metallobiochemistry in relation to the work carried out in the context of a project Heavy Metal Pollution of CEC JRC - Ispra. Applications deal with in vivo studies on laboratory animals, in vitro studies on biochemical systems and experiments on tissues of human origin; (3) discuss the perspectives of the use of the nuclear techniques in the environmental toxicology. (author)

  17. The 3"r"d inter laboratory comparison in the determination of elements in foodstuff with neutron activation analysis method

    International Nuclear Information System (INIS)

    Muji Wiyono; Dadong Iskandar; Wahyudi

    2010-01-01

    The 3"r"d inter laboratory comparison in the determination of elements in the foodstuff with NAA method held by PTBIN-BATAN Laboratory has been carried out. Six laboratories in BATAN were participated in the program with each code were: Lab. 01, Lab. 02, Lab. 03, Lab. 04, Lab. 05 and Lab. 06. Lab KKL PTKMR-BATAN was a participant with Lab. 06 code number. The received samples of foodstuff were prepared and irradiated in the RS-03 rabbit system of GA. Siwabessy multi purpose reactor. The irradiated samples were counted by using gamma spectrometer with HPGe detector to determine the content of elements. Result of the analysis was reported to the coordinator to be evaluated whether the sample was passed or rejected. Result of the coordinator laboratory evaluated that, 9 elements identified by Lab. KKL PTKMR-BATAN had four elements such as; Al, K, Cu and Se were passed (accepted) and other elements such as; Mn, Na, Ca, Fe and Zn were rejected. The elements number that passed in the 3"r"d inter laboratory comparison was less than those of earlier inter laboratory comparison, this was due to elemental content in the analyzed samples was very low. (author)

  18. Study on the mercury evolution in a laboratory multi specific aquatic system by using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Bubach, Debora; Guevara, Sergio Ribeiro; Arribere, Maria A.; Pechen de d'Angelo, Ana; Ferrari, Ana; Venturino, Andres

    1999-01-01

    A preliminary study on the evolution of mercury in the organisms of a laboratory multi specific aquatic system was performed using Instrumental Neutron Activation Analysis (INAA). Some of the possible effects of mercury toxicity were monitored by analyzing early biochemical indicators. The system consisted of an aquarium with bed sediments, aquatic macrophytes (Myriophyllum sp.), bivalves (Diplodom sp.) and exotic fish, simulating a long term contamination situation of unknown causes, where the sediments are the contaminant reservoir. Samples of the abiotic components of the system were analyzed at the beginning of the experiment, and again when the organisms were sampled. Fish carcass, kidney and liver samples, bivalve hepatopancreas, and whole macrophytes were extracted ana analyzed for mercury and other elements by INAA at the beginning of the experiment, and after 48 and 96 hours. Since some crustal elements such as Sc and La were detected in the hepatopancreas and macrophyte samples, enrichment factors for mercury, with respect to the <63 μm sediment fraction, were computed to discriminate the metabolized Hg content from that associated to the particulate. The hepatopancreas index, some indicators of oxidative stress (γ-Glutamyl-cysteinyl-glycine content and lipid peroxidation) and brain acetilcolinesterasa were measured as early indicators of toxicity. (author)

  19. The central gamma-activation laboratory

    International Nuclear Information System (INIS)

    Ermakov, K.S.; Yantsen, V.A.; Popov, V.S.

    2004-01-01

    Full text: In the report necessity of use of gamma - activation analysis (GAA) for express quantitative definition of the contents of gold in representative weights of powder samples is proved. The history of creation of a method and GAA laboratory on mine 'Muruntau' is stated. The description of work of installation of GAA and calculation of the contents of gold in analyzed samples is given. Now scheduled productivity of Central laboratory GAA (CL GAA) has reached 3000 analyses in day (500 thousand tests one year at five-day working week and work in two shifts). Since time of creation of laboratory it is executed about 9 million analyses of tests. The method allows to carry out the analysis of samples with the contents of gold from above 0,3 - 0,7 g/t (depending on presence of preventing elements) without restriction of the top limit under the contents of gold (at use of corresponding standards)

  20. Biomass Compositional Analysis Laboratory Procedures | Bioenergy | NREL

    Science.gov (United States)

    Biomass Compositional Analysis Laboratory Procedures Biomass Compositional Analysis Laboratory Procedures NREL develops laboratory analytical procedures (LAPs) for standard biomass analysis. These procedures help scientists and analysts understand more about the chemical composition of raw biomass

  1. Exploration Laboratory Analysis FY13

    Science.gov (United States)

    Krihak, Michael; Perusek, Gail P.; Fung, Paul P.; Shaw, Tianna, L.

    2013-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk, which is stated as the Risk of Inability to Adequately Treat an Ill or Injured Crew Member, and ExMC Gap 4.05: Lack of minimally invasive in-flight laboratory capabilities with limited consumables required for diagnosing identified Exploration Medical Conditions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability in future exploration missions. Mission architecture poses constraints on equipment and procedures that will be available to treat evidence-based medical conditions according to the Space Medicine Exploration Medical Conditions List (SMEMCL), and to perform human research studies on the International Space Station (ISS) that are supported by the Human Health and Countermeasures (HHC) element. Since there are significant similarities in the research and medical operational requirements, ELA hardware development has emerged as a joint effort between ExMC and HHC. In 2012, four significant accomplishments were achieved towards the development of exploration laboratory analysis for medical diagnostics. These achievements included (i) the development of high priority analytes for research and medical operations, (ii) the development of Level 1 functional requirements and concept of operations documentation, (iii) the selection and head-to-head competition of in-flight laboratory analysis instrumentation, and (iv) the phase one completion of the Small Business Innovation Research (SBIR) projects under the topic Smart Phone Driven Blood-Based Diagnostics. To utilize resources efficiently, the associated documentation and advanced technologies were integrated into a single ELA plan that encompasses ExMC and HHC development efforts. The requirements and high priority analytes was used in the selection of the four in-flight laboratory analysis performers. Based upon the

  2. The Effect of Motion Analysis Activities in a Video-Based Laboratory in Students' Understanding of Position, Velocity and Frames of Reference

    Science.gov (United States)

    Koleza, Eugenia; Pappas, John

    2008-01-01

    In this article, we present the results of a qualitative research project on the effect of motion analysis activities in a Video-Based Laboratory (VBL) on students' understanding of position, velocity and frames of reference. The participants in our research were 48 pre-service teachers enrolled in Education Departments with no previous strong…

  3. Laboratory simulation of maintenance activity

    International Nuclear Information System (INIS)

    Kantowitz, B.H.

    1988-01-01

    Laboratory research in highly controlled settings can augment, but not replace, studies in plant or training center locations. A laboratory simulation involves abstraction of the human information processing and social interactions required in prototypical maintenance tasks. A variety of independent variables can be studied quickly, efficiently, and at relatively low cost. Sources of human error can be identified in terms of models of human perception, cognition, action, attention, and social/organizational processes. This paper discusses research in progress at the Battelle Human Performance Laboratory. Both theoretical aspects and practical implications are considered. Directions for future human factors research are indicated

  4. laboratory activities and students practical performance

    African Journals Online (AJOL)

    unesco

    as necessary and important, very little justification was given for their .... Chemistry laboratory activities refer to the practical activities which students ..... equations, formulae, definitions, terminology, physical properties, hazards or disposal.

  5. Activities of IPEN Nuclear Metrology Laboratory

    International Nuclear Information System (INIS)

    Dias, M.S.; Koskinas, M.F.; Pocobi, E.; Silva, C.A.M.; Machado, R.R.

    1987-01-01

    The activities of IPEN Nuclear Metrology Laboratory, which the principal objective is radionuclides activities determination for supplying sources and standard radioactive solutions in activity are presented. The systems installed, the activity bands and some of standards radionuclides are shown. (C.G.C.) [pt

  6. Hanford Laboratories monthly activities report, November 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-12-15

    This is the monthly report for the Hanford Laboratories Operation, November 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research.

  7. Hanford Laboratories monthly activities report, March 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-04-15

    This is the monthly report for the Hanford Laboratories Operation March 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  8. Hanford Laboratories monthly activities report, December 1963

    Energy Technology Data Exchange (ETDEWEB)

    1964-01-15

    The monthly report for the Hanford Laboratories Operation, December 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operations are discussed.

  9. Hanford Laboratories monthly activities report, October 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-11-15

    This is the monthly report for the Hanford Laboratories Operation, October 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  10. Hanford Laboratories monthly activities report, January 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-02-14

    This is the monthly report for the Hanford Laboratories Operation, January 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  11. Hanford Laboratories monthly activities report, August 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-09-16

    This is the monthly report for the Hanford Laboratories Operation, August 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  12. Hanford Laboratories monthly activities report, May 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-06-15

    This is the monthly report for the Hanford Laboratories Operation, May 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  13. Hanford Laboratories monthly activities report, January 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-02-15

    This is the monthly report for the Hanford Laboratories Operation January 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  14. Hanford Laboratories monthly activities report, September 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-10-15

    This is the monthly report for the Hanford Laboratories Operation, September 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  15. Hanford Laboratories monthly activities report, July 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-08-15

    This is the monthly report for the Hanford Laboratories Operation, July 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  16. Hanford Laboratories monthly activities report, May 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-06-14

    The monthly report for the Hanford Laboratories Operation, May 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operation are discussed.

  17. Hanford Laboratories monthly activities report, February 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-03-16

    This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.

  18. Hanford Laboratories monthly activities report, June 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-07-15

    This is the monthly report for the Hanford Laboratories Operation, June 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  19. Hanford Laboratories monthly activities report, April 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-05-15

    This is the monthly report for the Hanford Laboratories Operation, April 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  20. Hanford Laboratories monthly activities report, July 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-14

    This is the monthly report for the Hanford Laboratories Operation, July 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  1. Hanford Laboratories monthly activities report, March 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-04-15

    The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.

  2. Hanford Laboratories monthly activities report, April, 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-05-15

    This is the monthly report for the Hanford Laboratories Operation, April, 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics operation, programming, and radiation protection operation discussed.

  3. Hanford Laboratories monthly activities report, August 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-09-15

    The monthly report for the Hanford Laboratories Operation, August 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operations are discussed.

  4. Hanford Laboratories monthly activities report, October 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-11-16

    The monthly report for the Hanford Laboratories Operation, October 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operations are discussed.

  5. Database activities at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Trahern, C.G.

    1995-01-01

    Brookhaven National Laboratory is a multi-disciplinary lab in the DOE system of research laboratories. Database activities are correspondingly diverse within the restrictions imposed by the dominant relational database paradigm. The authors discuss related activities and tools used in RHIC and in the other major projects at BNL. The others are the Protein Data Bank being maintained by the Chemistry department, and a Geographical Information System (GIS)--a Superfund sponsored environmental monitoring project under development in the Office of Environmental Restoration

  6. Physics Laboratory technical activities, 1991. Final report

    International Nuclear Information System (INIS)

    Gebbie, K.B.

    1992-02-01

    The report summarizes research projects, measurement method development, calibration and testing, and data evaluation activities that were carried out during calendar year 1991 in the NIST Physics Laboratory. These activities fall in the areas of electron and optical physics, atomic physics, molecular physics, radiometric physics, quantum metrology, ionizing radiation, time and frequency, quantum physics, and fundamental constants

  7. NGSI student activities in open source information analysis in support of the training program of the U.S. DOE laboratories for the entry into force of the additional protocol

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, M Analisa [Los Alamos National Laboratory; Uribe, Eva C [Los Alamos National Laboratory; Sandoval, Marisa N [Los Alamos National Laboratory; Boyer, Brian D [Los Alamos National Laboratory; Stevens, Rebecca S [Los Alamos National Laboratory

    2009-01-01

    In 2008 a joint team from Los Alamos National Laboratory (LANL) and Brookhaven National Laboratory (BNL) consisting of specialists in training of IAEA inspectors in the use of complementary access activities formulated a training program to prepare the U.S. Doe laboratories for the entry into force of the Additional Protocol. As a major part of the support of the activity, LANL summer interns provided open source information analysis to the LANL-BNL mock inspection team. They were a part of the Next Generation Safeguards Initiative's (NGSI) summer intern program aimed at producing the next generation of safeguards specialists. This paper describes how they used open source information to 'backstop' the LANL-BNL team's effort to construct meaningful Additional Protocol Complementary Access training scenarios for each of the three DOE laboratories, Lawrence Livermore National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory.

  8. The activities of the IAEA Laboratories, Vienna. Annual report 1981

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1983-06-01

    The report presents the activities of the IAEA Laboratories at Seibersdorf during the year 1981, with emphasis on the twofold purpose of the Laboratories: to support the Technical Cooperation activities of the Agency, and to operate the Safeguards Analytical Laboratory (SAL). The section dealing with the IAEA Technical Cooperation reports the programs of research where methods developed in Vienna are used throughout the world. Another section deals with the advanced techniques for chemical analysis and the interlaboratory comparisons programme. The training of specialists from member states is also described. The SAL, which became a separate part of the Laboratory, and its role in the Agency's Safeguards programme is also described. Reports and publications of Laboratory members are also listed

  9. Source Code Analysis Laboratory (SCALe)

    Science.gov (United States)

    2012-04-01

    products (including services) and processes. The agency has also published ISO / IEC 17025 :2005 General Requirements for the Competence of Testing...SCALe undertakes. Testing and calibration laboratories that comply with ISO / IEC 17025 also operate in accordance with ISO 9001. • NIST National...assessed by the accreditation body against all of the requirements of ISO / IEC 17025 : 2005 General requirements for the competence of testing and

  10. Quality control activities in the environmental radiology laboratory

    International Nuclear Information System (INIS)

    Llaurado, M.; Quesada, D.; Rauret, G.; Tent, J.; Zapata, D.

    2006-01-01

    During the last twenty years many analytical laboratories have implemented quality assurance systems. A quality system implementation requires documentation of all activities (technical and management), evaluation of these activities and its continual improvement. Implementation and adequate management of all the elements a quality system includes are not enough to guarantee quality of the analytical results generated at a time. That is the aim of a group of specific activities labelled as quality control activities. The Laboratori de Radiologia Ambiental (Environmental Radiology Laboratory; LRA) at the University of Barcelona was created in 1984 to carry out part of the quality control assays of the Environmental Radiology Monitoring Programs around some of the Spanish nuclear power plants, which are developed by the Servei Catala d'Activitats Energetiques (SCAR) and the Consejo de Seguridad Nuclear (CSN), organisations responsible for nuclear security and radiological protection. In these kind of laboratories, given the importance of the results they give, quality control activities become an essential aspect. In order to guarantee the quality of its analytical results, the LRA Direction decided to adopt the international standard UNE-EN ISO/IEC 17025 for its internal quality system and to accreditate some of the assays it carries out. In such as system, it is established, the laboratory shall monitor the validity of tests undertaken and data shall be recorded in such a way that trends are detectable. The present work shows the activities carried out in this way by the LRA, which are: Equipment control activities which in the special case of radiochemical techniques include measurement of backgrounds and blanks as well as periodical control of efficiency and resolution. Activities to assure the specifications settled by method validation, which are testing of reference materials and periodical analysis of control samples. Evaluation of the laboratory work quality

  11. k0-INAA application at IPEN Neutron Activation Laboratory by using the k0-IAEA program: biological sample analysis

    International Nuclear Information System (INIS)

    Puerta, Daniel Correa

    2013-01-01

    The results obtained in the application of the k 0 -standardization method at LAN-IPEN for biological matrices analysis, by using the k 0 -IAEA software, provided by the International Atomic Energy Agency (IAEA), are presented. The flux parameters f and a of the IEA-R1 reactor were determined for the pneumatic irradiation facility and for one selected irradiation position, 24B/shelf2, for short and long irradiations, respectively. In order to obtain these parameters, the bare triple-monitor method with 197 Au- 96 Zr- 94 Zr was used. In order to evaluate the accuracy and precision of the methodology, the biological reference materials Peach Leaves (NIST SRM 1547), Mixed Polish Herbs (INCT-MPH-2) e Tomato Leaves (NIST SRM 1573a) were analyzed. The statistical criteria Relative Errors (bias, %), Coefficient of Variation (CV) and U-score were applied to the obtained results (mean of six replicates). The relative errors (bias, %) in relation to certified values, were, for most elements, in the range of 0 e 30. The Coefficients of Variation were below 20%, showing a good reproducibility of the results. The U-score test showed that all results, except Na in Peach Leaves and in Tomato Leaves, were within 95% confidence interval. These results point out to a promising use of the k 0 -INAA method at LAN-IPEN for biological sample analysis. (author)

  12. A laboratory activity for teaching natural radioactivity

    Science.gov (United States)

    Pilakouta, M.; Savidou, A.; Vasileiadou, S.

    2017-01-01

    This paper presents an educational approach for teaching natural radioactivity using commercial granite samples. A laboratory activity focusing on the topic of natural radioactivity is designed to develop the knowledge and understanding of undergraduate university students on the topic of radioactivity, to appreciate the importance of environmental radioactivity and familiarize them with the basic technology used in radioactivity measurements. The laboratory activity is divided into three parts: (i) measurements of the count rate with a Geiger-Muller counter of some granite samples and the ambient background radiation rate, (ii) measurement of one of the samples using gamma ray spectrometry with a NaI detector and identification of the radioactive elements of the sample, (iii) using already recorded 24 h gamma ray spectra of the samples from the first part (from the Granite Gamma-Ray Spectrum Library (GGRSL) of our laboratory) and analyzing selected peaks in the spectrum, students estimate the contribution of each radioactive element to the total specific activity of each sample. A brief description of the activity as well as some results and their interpretation are presented.

  13. Supplement analysis of transuranic waste characterization and repackaging activities at the Idaho National Engineering Laboratory in support of the Waste Isolation Pilot Plant test program

    International Nuclear Information System (INIS)

    1991-03-01

    This supplement analysis has been prepared to describe new information relevant to waste retrieval, handling, and characterization at the Idaho National Engineering Laboratory (INEL) and to evaluate the need for additional documentation to satisfy the National Environmental Policy Act (NEPA). The INEL proposes to characterize and repackage contact-handled transuranic waste to support the Waste Isolation Pilot Plant (WIPP) Test Phase. Waste retrieval, handling and processing activities in support of test phase activities at the WIPP were addressed in the Supplemental Environmental Impact Statement (SEIS) for the WIPP. To ensure that test-phase wastes are properly characterized and packaged, waste containers would be retrieved, nondestructively examined, and transported from the Radioactive Waste Management Complex (RWMC) to the Hot-Fuel Examination Facility for headspace gas analysis, visual inspections to verify content code, and waste acceptance criteria compliance, then repackaging into WIPP experimental test bins or returned to drums. Following repackaging the characterized wastes would be returned to the RWMC. Waste characterization would help DOE determine WIPP compliance with US Environmental Protection Agency regulations governing disposal of transuranic waste and hazardous waste. Additionally, this program supports onsite compliance with Resource Conservation and Recovery Act (RCRA) requirements, compliance with the terms of the No-Migration Variance at WIPP, and provides data to support future waste shipments to WIPP. This analysis will help DOE determine whether there have been substantial changes made to the proposed action at the INEL, or if preparation of a supplement to the WIPP Final Environmental Impact Statement (DOE, 1980) and SEIS (DOE, 1990a) is required. This analysis is based on current information and includes details not available to the SEIS

  14. Managing quality in laboratory analysis

    International Nuclear Information System (INIS)

    Piciorea, Iuliana

    2007-01-01

    For the results of analyses to be reliable, the laboratories has to be authorized or to prove that they follows ISO/CEI standard no. 17025:2005 'General requirements for the competence of testing and calibration laboratories'. Analytic measurements are the results of analytic methods and procedures. It is considered that the chosen analytic method or procedure is appropriated for the desired purpose. From the legal point of view 'matching for a purpose' means that all methods and procedures are valid and this validation is made using qualified and verified equipment. Using state of art equipment in a laboratory, it is not enough to obtain correct results. The type, the extension and management of a validation action permit to obtain conclusions regarding the existence of adequate equipment, showing at the same time that the lab has an adequate management and competent personnel. To give results of required quality ensuring the conformity with national and international regulations, hence to prove its qualifications and competence some of measures are required as follows: - the usage of validated testing methods; - the usage of their quality control procedures; - participating to capability testing of the lab; -accreditation according to the requirements of an international standard as ISO/CEI 17025:2005. This accreditation is a set of technical and organization requirements about equipment checking, the way of choosing test methods, personal competence, determination of measurement uncertainty, etc. According to ISO, the validation represents the confirmation throughout examination and supplying of realistic proofs showing that the necessary requirements needed for utilization are fulfilled. The object of validation is checking the fact that the measurement conditions and the equation used to get the final result include all influences that could affect it. For validation studies, a series of checks is made: - linearity check - it is checked if the method is

  15. Sandia Laboratories technical capabilities: systems analysis

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-06-01

    The systems analysis capabilities at Sandia Laboratories are summarized. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. (U.S.)

  16. Sandia Laboratories technical capabilities: engineering analysis

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-12-01

    This report characterizes the engineering analysis capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  17. Preliminary results for the k0-INAA methodology implementation at the Neutron Activation Analysis Laboratory, LAN-IPEN, using k0-IAEA software

    International Nuclear Information System (INIS)

    Mariano, Davi B.; Figueiredo, Ana Maria G.; Semmler, Renato

    2009-01-01

    The present paper presents the preliminary results obtained in the implementation of the k 0 standardization method at the Neutron Activation Laboratory (LAN) at IPEN, Sao Paulo, Brazil, using the program k 0 -IAEA, provided by The International Atomic Energy Agency (IAEA). This method is an important alternative for the comparative neutron activation analysis, which has been used for several years at LAN-IPEN. This quasiabsolute standardization method presents a great advantage with relation to the comparative method, since it does not require the preparation of accurate individual standards for each analysed element, which is very laborious and time-consuming. The k 0 method allows the determination of almost all elements whose gammaray peaks are present in the gamma spectrum. The analysis of gamma-ray spectra and the calculation of concentration are performed by the k 0 software, thus the analysis time is shortened: the time spent to calculate, for instance, the concentration of 25 elements in 10 samples takes about 5 minutes.The efficiency curve of one of the gamma-ray spectrometers used at LAN was determined by measuring calibrated radioactive sources at the usually utilised counting geometries. The parameters α and f were determined by irradiating a Certified Nuclear Reference Material IRMM-530R Al-0,1% Au alloys and high purity zirconium comparators at the IEA-R1 nuclear reactor of IPEN. In order to evaluate the efficiency of the methodology, the geological reference material basalt JB-1 (GSJ) was analysed. The preliminary results obtained showed promising results in spite of some discrepancies of the data in comparison to certified values. These preliminary results indicate that some improvements in the parameters required for the use of the k 0 -IAEA software should be made so that the k 0 - NAA software can be completely successful. (author)

  18. Is activation analysis still active?

    International Nuclear Information System (INIS)

    Chai Zhifang

    2001-01-01

    This paper reviews some aspects of neutron activation analysis (NAA), covering instrumental neutron activation analysis (INAA), k 0 method, prompt gamma-ray neutron activation analysis (PGNAA), radiochemical neutron activation analysis (RNAA) and molecular activation analysis (MAA). The comparison of neutron activation analysis with other analytical techniques are also made. (author)

  19. Mobile Robotics Activities in DOE Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Ron Lujan; Jerry Harbour; John T. Feddema; Sharon Bailey; Jacob Barhen; David Reister

    2005-03-01

    This paper will briefly outline major activities in Department of Energy (DOE) Laboratories focused on mobile platforms, both Unmanned Ground Vehicles (UGV’s) as well as Unmanned Air Vehicles (UAV’s). The activities will be discussed in the context of the science and technology construct used by the DOE Technology Roadmap for Robotics and Intelligent Machines (RIM)1 published in 1998; namely, Perception, Reasoning, Action, and Integration. The activities to be discussed span from research and development to deployment in field operations. The activities support customers in other agencies. The discussion of "perception" will include hyperspectral sensors, complex patterns discrimination, multisensor fusion and advances in LADAR technologies, including real-world perception. "Reasoning" activities to be covered include cooperative controls, distributed systems, ad-hoc networks, platform-centric intelligence, and adaptable communications. The paper will discuss "action" activities such as advanced mobility and various air and ground platforms. In the RIM construct, "integration" includes the Human-Machine Integration. Accordingly the paper will discuss adjustable autonomy and the collaboration of operator(s) with distributed UGV’s and UAV’s. Integration also refers to the applications of these technologies into systems to perform operations such as perimeter surveillance, large-area monitoring and reconnaissance. Unique facilities and test beds for advanced mobile systems will be described. Given that this paper is an overview, rather than delve into specific detail in these activities, other more exhaustive references and sources will be cited extensively.

  20. k0-NAA implementation and application at IPEN neutron activation laboratory by using the k0-IAEA software: application to geological sample analysis

    International Nuclear Information System (INIS)

    Mariano, Davi Brigatto

    2011-01-01

    The Neutron Activation Analysis Laboratory (LAN-IPEN) has been analysing geological samples such as rocks, soils and sediments, for many years with the INAA comparative method, for geochemical and environmental research. This study presents the results obtained in the implementation of the k 0 -standardization method at LAN - IPEN, for geological sample analysis, by using the program k 0 - IAEA, provided by the International Atomic Energy Agency (IAEA). The thermal to epithermal flux ratio f and the shape factor α of the epithermal flux distribution of the IPEN IEA-R1 nuclear reactor were determined for the pneumatic irradiation facility and one selected irradiation position, for short and long irradiations, respectively. To obtain these factors, the 'are triple-monitor' method with 197 Au- 96 Zr- 94 Zr was used. In order to validate the methodology, the geological reference materials basalts JB-1 (GSJ) and BE-N (IWG-GIT), andesite AGV-1 (USGS), granite GS-N (ANRT), SOIL-7 (IAEA) and sediment Buffalo River Sediment (NIST - BRS-8704), which represent different geological matrices, were analysed. The concentration results obtained agreed with assigned values, with bias less than 10% except for Zn in AGV-1 (11.4%) and Mg in GS-N (13.4%). Three different scores were used to evaluate the results: z-score, zeta-score and Uscore. The z-score showed that the results can be considered satisfactory (z 3) for Mn in BE-N, Mg, Ce and La in GS-N, Mg in JB-1, and Th and Eu in Buffalo River Sediment. The U-score test showed that all results, except Mg in JB-1, were within 95% confidence interval. These results indicate excellent possibilities of using this parametric method at the LAN-IPEN for geological samples analysis in geochemical and environmental studies. (author)

  1. Report of Laboratory Activity, 1996 - 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This report presents the activity of the Laboratory of Particle Physics and Cosmology of College de France on the years 1996-1997 in the fields of Cosmic Physics, Observational Cosmology, Neutrino Experiments, HELLAZ Project, Instrumentation, DELPHI Experiment, Research of Quark-Gluon Plasma, Research on Dark Matter, Theory, Parallel Processing. Also, are mentioned the activities in computer software, electronics, mechanics, general service, publications, external relations, seminars and collaborations. In the field of Cosmic Physics there are described the current experiments on cosmic gamma rays, the work with AUGER observatory and simulations. In the field of observational cosmology there are mentioned the search for baryonic dark matter and studies on type Ia supernovae. In the field of neutrino studies there are described the searches on neutrino oscillations on a 1 km base, while in the framework of HELLAZ project there is reported the work on solar neutrinos. In the field of instrumentation there are mentioned the work on Hybrid Photon Detector and the contribution of the laboratory to the LHC-B Experiment at CERN and on long-base RICH experiment. In the framework of DELPHI experiment at LEP there are reported investigations on beauty particles, new particles and detector performances. There are given results obtained in the field of Quark-Gluon Plasma studies. There are described the research and development works with the dark matter detectors. In the field of theory there are reported studies on the proton structure, photon-photon collisions, the physics of the excited leptons and studies on neutron stars. Also, in this field there is reported the studies in Quantum Chromodynamics and physics of top quark. In the section devoted to parallel processing there are mentioned the research activities related to actinide burning by accelerators and simulations in nuclear medicine issues, electron channelling in crystals and beam-beam effect in colliders. The

  2. Neutron activation analysis

    International Nuclear Information System (INIS)

    Taure, I.; Riekstina, D.; Veveris, O.

    2004-01-01

    Neutron activation analysis (NAA) in Latvia began to develop after 1961 when nuclear reactor in Salaspils started to work. It provided a powerful neuron source, which is necessary for this analytical method. In 1963 at Institute of Physics of the Latvian Academy of Sciences the Laboratory of Neutron Activation Analysis was formed. At the first stage of development the main tasks were of theoretical and technical aspects of NAA. Later the NAA was used to solve problems in technology, biology, and medicine. In the beginning of the 80-ties more attention was focussed to the use of NAA in the environmental research. Environmental problems stayed the main task till the closing the nuclear reactor in Salaspils in 1998 that ceased the main the existence of the laboratory and of NAA, this significant and powerful analytical method in Latvia and Baltic in general. (authors)

  3. Constructivist Learning Environment During Virtual and Real Laboratory Activities

    Directory of Open Access Journals (Sweden)

    Ari Widodo

    2017-04-01

    Full Text Available Laboratory activities and constructivism are two notions that have been playing significant roles in science education. Despite common beliefs about the importance of laboratory activities, reviews reported inconsistent results about the effectiveness of laboratory activities. Since laboratory activities can be expensive and take more time, there is an effort to introduce virtual laboratory activities. This study aims at exploring the learning environment created by a virtual laboratory and a real laboratory. A quasi experimental study was conducted at two grade ten classes at a state high school in Bandung, Indonesia. Data were collected using a questionnaire called Constructivist Learning Environment Survey (CLES before and after the laboratory activities. The results show that both types of laboratories can create constructivist learning environments. Each type of laboratory activity, however, may be stronger in improving certain aspects compared to the other. While a virtual laboratory is stronger in improving critical voice and personal relevance, real laboratory activities promote aspects of personal relevance, uncertainty and student negotiation. This study suggests that instead of setting one type of laboratory against the other, lessons and follow up studies should focus on how to combine both types of laboratories to support better learning.

  4. A virtual laboratory for medical image analysis

    NARCIS (Netherlands)

    Olabarriaga, Sílvia D.; Glatard, Tristan; de Boer, Piter T.

    2010-01-01

    This paper presents the design, implementation, and usage of a virtual laboratory for medical image analysis. It is fully based on the Dutch grid, which is part of the Enabling Grids for E-sciencE (EGEE) production infrastructure and driven by the gLite middleware. The adopted service-oriented

  5. Activity report of Synchrotron Radiation Laboratory 2001

    International Nuclear Information System (INIS)

    2002-11-01

    After moved from Tanashi to Kashiwa Campus in the spring of 2000, the Synchrotron Radiation Laboratory (SRL) has been promoting the High-brilliance Light Source project, Super SOR project, in cooperation with the nationwide user group as well as with the users of the University of Tokyo. In May of 2001, the project has met with a dramatic progress. The Ministry of Education, Science, Sports and Culture organized the Advisory Board and started to discuss the future synchrotron radiation facilities in EUV and SX regime in Japan. Based on extensive discussion, they proposed the new facility consisting of a 1.8 GeV storage ring of 3rd generation type. The University of Tokyo approved to construct the proposed facility in the Kashiwa campus. The plan is supported not only by researchers in academic institutions but also bio- and chemical-industries. We strongly hope the plan will be realized in near future. On the other hand, SRL maintains a branch laboratory in the Photon Factory (PF) High Energy Accelerator Research Organization (KEK) at Tsukuba with a Revolver undulator, two beamlines and three experimental stations (BL-18A, 19A and 19B), which are and fully opened to the outside users. In the fiscal year of 2001, the operation time of the beamlines was more than 5000 hours and the number of the users was about 200. The main scientific interests and activities in the SRL at KEK-PF are directed to the electronic structures of new materials with new transport, magnetic and optical properties. The electronic structures of solid surfaces and interfaces are also intensively studied by photoelectron spectroscopy and photoelectron microscopy. The accelerator group of SRL is carrying out research works of the accelerator physics and developing the accelerator-related technology, many parts of which will be directly applied to the new light source project. This report contains the activities of the staff members of SRL and users of the three beamlines in FY2001. The status of

  6. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    Science.gov (United States)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.

    2013-07-01

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and

  7. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    Energy Technology Data Exchange (ETDEWEB)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D. [Ion Beam Modification and Analysis Laboratory, University of North Texas, Department of Physics, 1155 Union Circle 311427, Denton, Texas 76203 (United States)

    2013-07-03

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and

  8. Laboratories of commons: experimentation, recursivity and activism

    Directory of Open Access Journals (Sweden)

    Adolfo Estalella Fernández

    2013-03-01

    Full Text Available The urban public space, digital creations or the air, all of them are objects that have been traditionally thought within the dichotomous logic of the public and private property but in the last decade they have started to be considered as common resources. Commons is an old concept that has been recovered with intensity in the last decade; it refers to collective resources and goods that are governed collectively and whose property regime is different from the public and private. This article introduces the contributions to a monograph devoted to the topic of ‘Laboratories of commons’. Contributors discuss the diverse modalities of commons in different social domains like art, activism, the rural and the urban domain. This introduction contextualizes these contributions and identifies some of the issues that cross the different articles. In this exercise we introduce a tentative argument according to which the commons and the commons research take an exceptional configuration in Spain. Very briefly: commons are brought into existence as an epistemic object, an experimental domain quite different from the conventional conceptualizations that conceive it as a property regime or a type of good. This peculiar configuration gives a distinctive condition to commons in Spain that are different from other geographies; this is evidenced in a double shift: the emergence of new objects that are thought as commons and the location of their research in the domain of cultural and creative production.

  9. Battery Test Facility- Electrochemical Analysis and Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Electrochemical Analysis and Diagnostics Laboratory (EADL) provides battery developers with reliable, independent, and unbiased performance evaluations of their...

  10. Fuel quality control: Five years of activity in laboratories

    International Nuclear Information System (INIS)

    Bettinelli, M.; Cimini, G.; Durello, G.; Lucchesi, P.L.

    1991-01-01

    A description of how ENEL (Italian National Electricity Board) carries out the activity of fuel quality control is given, and the results of the Round Robin circuit which has been operating for five years in laboratories regulary performing the control analyses of these products are reported. The laboratories taking part in the Round Robin circuit are 41 (out of which 35 are ENEL laboratories and 6 are owned by external companies) and they are situated throughout Italy; the controlled parameters are the following: heat of combustion (PCS), sulphur (S), vanadium (V) and asphaltenes (ASF); the adopted methods are the official ASTM or IP ones. The statistical analysis of the results has permitted, for every parameter, the calculation of the repeatability and the reproducibility which, in most cases, have turned out to be in keeping with the values provided for in the regulations. Among the collateral initiatives promoted in the framework of this Round Robin, the following are reported: preparation of standards of fuel oil with a known content of a sulphur and vanadium; expediting visits to all the ENEL laboratories participating in the RRT; publication of a handbook of the adopted analysis methods (in Italian); definition of guide-lines on the right selection of new automatic equipment

  11. Activation analysis in Greece

    International Nuclear Information System (INIS)

    Grimanis, A.P.

    1985-01-01

    A review of research and development on NAA as well as examples of applications of this method are presented, taken from work carried out over the last 21 years at the Radioanalytical Laboratory of the Department of Chemistry in the Greek Nuclear Research Center ''Demokritos''. Improved and faster radiochemical NAA methods have been developed for the determination of Au, Ni, Cl, As, Cu, U, Cr, Eu, Hg and Mo in several materials, for the simultaneous determination of Br and I; Mg, Sr and Ni; As and Cu; As, Sb and Hg; Mn, Sr and Ba; Cd and Zn; Se and As; Mo and Cr in biological materials. Instrumental NAA methods have also been developed for the determination of Ag, Cl and Na in lake waters, Al, Ca, Mg and V in wines, 7 trace elements in biological materials, 17 trace elements in sediments and 20 minor and trace elements in ceramics. A comprehensive computer program for routine activation analysis using Ge(Li) detectors have been worked out. A rather extended charged-particle activation analysis program is carried out for the last 10 years, including particle induced X-ray emission (PIXE) analysis, particle induced prompt gamma-ray emission analysis (PIGE), other nuclear reactions and proton activation analysis. A special neutron activation method, the delayed fission neutron counting method is used for the analysis of fissionable elements, as U, Th, Pu, in samples of the whole nuclear fuel cycle including geological, enriched and nuclear safeguards samples

  12. Sandia National Laboratories analysis code data base

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  13. Sandia National Laboratories analysis code data base

    Science.gov (United States)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  14. Miniaturization and globalization of clinical laboratory activities.

    Science.gov (United States)

    Melo, Murilo R; Clark, Samantha; Barrio, Daniel

    2011-04-01

    Clinical laboratories provide an invaluable service to millions of people around the world in the form of quality diagnostic care. Within the clinical laboratory industry the impetus for change has come from technological development (miniaturization, nanotechnology, and their collective effect on point-of-care testing; POCT) and the increasingly global nature of laboratory services. Potential technological gains in POCT include: the development of bio-sensors, microarrays, genetics and proteomics testing, and enhanced web connectivity. In globalization, prospective opportunities lie in: medical tourism, the migration of healthcare workers, cross-border delivery of testing, and the establishment of accredited laboratories in previously unexplored markets. Accompanying these impressive opportunities are equally imposing challenges. Difficulty transitioning from research to clinical use, poor infrastructure in developing countries, cultural differences and national barriers to global trade are only a few examples. Dealing with the issues presented by globalization and the impact of developing technology on POCT, and on the clinical laboratory services industry in general, will be a daunting task. Despite such concerns, with appropriate countermeasures it will be possible to address the challenges posed. Future laboratory success will be largely dependent on one's ability to adapt in this perpetually shifting landscape.

  15. The laboratory activities of the IAEA Laboratories, Vienna. Annual report 1979

    International Nuclear Information System (INIS)

    Cook, G.B.

    1981-03-01

    The report gives a fairly comprehensive view of the activities and results of the IAEA Laboratories in Seibersdorf, during the year 1979. These activities are presented under the following main categories: Metrology of the radiations; Dosimetry; Chemistry; Safeguards analytical laboratory; Isotope hydrology; Medical applications; Agriculture: soils; Entomology; Plant breeding; Electronics

  16. Activity report of Synchrotron Radiation Laboratory 2005

    International Nuclear Information System (INIS)

    2006-11-01

    Since 1980s, the Synchrotron Radiation Laboratory (SRL) has been promoting the 'Super-SOR' project, the new synchrotron radiation facility dedicated to sciences in vacuum ultraviolet and soft X-ray regions. The University of Tokyo considered the project as one of the most important future academic plans and strongly endorsed to construct the new facility with an electron storage ring of third generation type in the Kashiwa campus. During last year, the design of the accelerator system was slightly modified to obtain stronger support of the people in the field of bio-sciences, such as medicine, pharmacy, agriculture, etc. The energy of the storage ring was increased to 2.4 GeV, which is determined to obtain undulator radiation with sufficient brightness in X-ray region for the protein crystallography experiments. The value was also optimised to avoid considerable degradation of undulator radiation in the VUV and soft X-ray regions. However, in October last year, the president office of the University found out that the promotion of the project was very difficult for financial reasons. The budget for the new facility project is too big to be supported by a single university. The decision was intensively discussed by the International Review Committee on the Institute for Solid State Physics (ISSP), which was held at ISSP from November 14 to 16. The committee understood that the restructuring of the University system in Japan would overstrain the financial resources of the University of Tokyo and accepted the decision by the University. Presently, SRL has inclined to install beamlines using undulator radiation in other SR facilities instead of constructing a facility with a light source accelerator. At new beamlines, SRL will promote advanced materials sciences utilizing high brilliance and small emittance of synchrotron radiation which have been considered in the Super-SOR project. They are those such as microscopy and time-resolved experiments, which will only be

  17. Measles in Italy, laboratory surveillance activity during 2010

    Directory of Open Access Journals (Sweden)

    Claudia Fortuna

    2014-12-01

    Full Text Available INTRODUCTION: The European Regional Office of the World Health Organization (WHO/Europe developed a strategic approach to stop the indigenous transmission of measles in its 53 Member States by 2015. This study describes the measles laboratory surveillance activity performed by the National Reference Laboratory for Measles and Rubella at the Italian National Institute of Health (Istituto Superiore di Sanità during 2010. METHODS: Urine, oral fluid and capillary blood samples from 211 suspected measles cases arrived to the NRL from different regions of Italy for confirmation of the clinical diagnosis. Serological and/or molecular assays were performed; after molecular detection, positive samples were sequenced and genotyped. RESULTS AND DISCUSSION: 85% (180/211 of the specimens were confirmed as measles cases and 139 of these were analyzed phylogenetically. The phylogenetic analysis revealed a co-circulation of D4 and D8 genotypes for the reviewed period.

  18. Bio-Oil Analysis Laboratory Procedures | Bioenergy | NREL

    Science.gov (United States)

    Bio-Oil Analysis Laboratory Procedures Bio-Oil Analysis Laboratory Procedures NREL develops laboratory analytical procedures (LAPs) for the analysis of raw and upgraded pyrolysis bio-oils. These standard procedures have been validated and allow for reliable bio-oil analysis. Procedures Determination

  19. Preliminary analysis of environmental regulations related to remedial action activities at the Oak Ridge National Laboratory: Environmental Sciences Division Publication No. 2695

    International Nuclear Information System (INIS)

    Voorhees, L.D.; Saylor, R.E.

    1986-11-01

    Past research and development activities at Oak Ridge National Laboratory (ORNL) have resulted in the presence of several areas where low-level radioactive and/or hazardous waste have been disposed of or that have been contaminated through accidental spills or planned releases of radionuclides. Although these areas have been monitored and controlled to ensure that on-site and off-site releases of contaminants are within applicable Department of Energy (DOE) guidelines, ORNL established the Environmental Restoration and Facilities Upgrade (ERFU) Program to address formally the immediate and long-range needs of meeting all applicable federal and state regulations regarding waste disposal. The environmental laws, regulations, and DOE Orders governing the cleanup activities are numerous and complex. Hence, a synthesis of the principal regulations related to the ERFU Program is presented to facilitate efficient planning for characterization and cleanup of contaminated sites. Because of regulatory decisions made after this report was finalized, several statements presented herein may no longer apply to the ERFU Program. Nevertheless, the report is issued as originally written so that ORNL's early planning efforts to comply with environmental laws and legislation are formally documented. Several general principles to consider when developing a plan for environmental compliance - which would be of use to others who must comply with legislation related to the cleanup of sites contaminated with radionuclides and hazardous chemicals - are also discussed

  20. Idaho National Laboratory Quarterly Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  1. Idaho National Laboratory Quarterly Occurrence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).

  2. In vivo neutron activation facility at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R.; Yasumura, Seiichi; Dilmanian, F.A.

    1997-11-01

    Seven important body elements, C, N, Ca, P, K, Na, and Cl, can be measured with great precision and accuracy in the in vivo neutron activation facilities at Brookhaven National Laboratory. The facilities include the delayed-gamma neutron activation, the prompt-gamma neutron activation, and the inelastic neutron scattering systems. In conjunction with measurements of total body water by the tritiated-water dilution method several body compartments can be defined from the contents of these elements, also with high precision. In particular, body fat mass is derived from total body carbon together with total body calcium and nitrogen; body protein mass is derived from total body nitrogen; extracellular fluid volume is derived from total body sodium and chlorine; lean body mass and body cell mass are derived from total body potassium; and, skeletal mass is derived from total body calcium. Thus, we suggest that neutron activation analysis may be valuable for calibrating some of the instruments routinely used in clinical studies of body composition. The instruments that would benefit from absolute calibration against neutron activation analysis are bioelectric impedance analysis, infrared interactance, transmission ultrasound, and dual energy x-ray/photon absorptiometry.

  3. Laboratory analysis of phacoemulsifier compliance and capacity.

    Science.gov (United States)

    Nejad, Mitra; Injev, Valentine P; Miller, Kevin M

    2012-11-01

    To compare the compliance and capacity of 7 fluidics modules used by 6 phacoemulsifiers from 3 manufacturers. Jules Stein Eye Institute, Los Angeles, California, USA. Experimental study. Previous-model and current-model phacoemulsifiers from 3 manufacturers were subjected to laboratory analysis of compliance and capacity. Previous-generation models tested included the Legacy Advantec, Whitestar Sovereign Phacoemulsification System, and Millennium Microsurgical System. Current models tested were the Infiniti Vision System with standard and Intrepid cassettes, Whitestar Signature Phacoemulsification System, and Stellaris Vision Enhancement System. To measure compliance, the aspiration line was connected to an electronic pressure transducer and small volumes of fluid were injected or aspirated. To measure capacity, the space between the distal end of the aspiration line and the pump was filled with methylene blue-dyed fluid. The Legacy was the most compliant phacoemulsifier. The old and new Whitestar systems, Millennium system, and Stellaris system showed similar midrange compliances. The Infiniti Vision System with the Intrepid fluidic management system was the least compliant. The Infiniti cassettes had the greatest capacity, which is a detriment from a surge-control perspective, and Signature cassettes had the least capacity. The Infiniti Intrepid system had the lowest compliance of the 6 units tested, which is optimum from a surge-control perspective. All other things being equal, the Infiniti should have the safest occlusion-break surge response. Mr. Injev is an employee of Alcon Laboratories. Dr. Miller is a consultant to and investigator for Alcon Laboratories. Ms. Nejad has no financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. NASA Laboratory Analysis for Manned Exploration Missions

    Science.gov (United States)

    Krihak, Michael K.; Shaw, Tianna E.

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  5. Neutronics analysis of the Laboratory Microfusion Facility

    International Nuclear Information System (INIS)

    Tobin, M.T.; Singh, M.S.; Meier, W.R.

    1988-01-01

    The radiological safety hazards of the experimental area (EA) for the proposed Inertial Confinement Fusion (ICF) Laboratory Microfusion Facility (LMF) have been examined. The EA includes those structures required to establish the proper pre-shot environment, point the beams, contain the pellet yield, and measure many different facets of the experiments. The radiation dose rates from neutron activation of representative target chamber materials, the laser beam tubes and the argon gas they contain, the air surrounding the chamber, and the concrete walls of the experimental area are given. Combining these results with the allowable dose rates for workers, we show how radiological considerations affect access to the inside of the target chamber and to the diagnostic platform area located outside the chamber. Waste disposal and tritium containment issues are summarized. Other neutronics issues, such as radiation damage to the final optics and neutron heating of materials placed close to the target, are also addressed. 16 refs., 2 figs., 1 tab

  6. Mars Science Laboratory Heatshield Flight Data Analysis

    Science.gov (United States)

    Mahzari, Milad; White, Todd

    2017-01-01

    NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.

  7. Biennial activity report of Reactor Engineering Laboratory - 1983 and 1984

    International Nuclear Information System (INIS)

    Swaminathan, K.; Prahlad, B.

    1986-01-01

    This report summarises activities of the Reactor Engineering Laboratory for the period January 1983 to December 1984. The report consists of four sections dealing with development of reactor components, prototype tests in sodium, instrumentation development and measurement techniques and noise analysis techniques respectively. As is customary, the activities have been reported in brief but where detailed reports have been prepared the same are referred. The main thrust of the work of the laboratory was still in support of the FBTR which is in an advanced stage of construction and commissioning at Kalpakkam site. Purification of 100 tonnes of commercial grade sodium to reactor grade, pouring of the liquid metal seals and the construction and commissioning of a sodium loop for calibration of the hydrogen leak detector in all represented significant contribution towards FBTR. The section on development of reactor components describes efforts on construction of both electromagnetic and small mechanical sodium pumps. Sodium removal from the control rod drive mechanism by means of vacuum distillation technique has been a useful experience despite some difficulties faced due, possibly, to the presence of extraneous matter in the decontamination set-up. The section on instrumentation development and measurement techniques describes interesting development concerning ultrasonic imaging for under sodium viewing. The last section on noise analysis techniques describes some experience gained in the detection of cavitation in dummy fuel subassembly by means of acoustic technique. The developmental efforts on construction of high temperature acoustic sensors of both piezoelectric and magnetostrictive type have been encouraging. At the end of the report is included a list of technical publications of the laboratory. (author)

  8. The activities of the IAEA laboratories Vienna. Annual report - 1980

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1982-03-01

    The report outlines the activities of the laboratory of the International Atomic Energy Agency at Seibersdorf in the province of Lower Austria. The report covers the following sections of the laboratory: chemistry, medical applications, dosimetry, soil science, entomology, plant breeding, electronics and measurement laboratory, isotope hydrology and the safeguards analytical laboratory. The extension to the main laboratory buildings - a new wing for medical applications and dosimetry - was fitted out and fully integrated into the laboratory by the end of the year. In July 1980 the high-level cobalt-60 dosimetry equipment (a teletherapy unit) was transferred from the old IAEA headquarters building in the centre of Vienna and installed in a specially designed annex to the new wing. A successful 8 week training course was given in the agriculture laboratory and arrangements were made for several of the course members to stay on as research fellows for several months after the course had ended

  9. The Plutonium Fuel Laboratory at Studsvik and Its Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hultgren, A.; Berggren, G.; Brown, A.; Eng, H. U.; Forsyth, R. S. [AB Atomenergi, Studsvik (Sweden)

    1967-09-15

    The plutonium fuel laboratory at Studsvik is engaged in development work on plutonium-enriched fuel. At present, low enriched fuel for thermal reactors is being studied: work on fuel with a higher plutonium content for fast reactors is foreseen at a later date. So far only the pellet technique is under consideration, and a number of pellet rod specimens will be produced and irradiated in the reactor R2. These specimens include pellets from both co-precipitated uranium-plutonium salts and from physically mixed oxides. Comparison of these two materials will be extended to different density levels and different heat ratings. The methods and techniques used and studied include wet chemical work for powder preparation (continuous precipitation of Pu(IV)-oxalate with oxalic acid, continuous co-precipitation of plutonium and uranium with ammonia, optimization of.precipitation conditions using U(IV) and U(VI) respectively) ; powder preparation (drying, calcination, reduction, mixing, milling, binder addition, granulation); pellet preparation (pressing, debonding, sintering, inspection): encapsulation (charging, welding of end plug, helium filling, end sealing by welding, leak detection, decontamination); metallography (specimen preparation (moulding, polishing), etching, microscopy); structure investigations (thermal analysis (TG, DTA), X-ray diffraction, neutron diffraction, data handling by computer analysis); radiometric methods (direct plutonium determination by gamma spectrometry, non-destructive burn-up analysis by high resolution gamma spectrometry, using a Ge(Li) detector) ; rework of waste (recovery of plutonium from fuel waste by extraction with trilauryl amine and anion exchange). The plutonium fuel laboratory forms part of the Active Central Laboratory. The equipment is contained in four adjacent 10 x 15 m rooms; .for diffraction work and inactive uranium work additional space is available. All the forty glove boxes in operation except two are of AB Atomenergi

  10. 1994 activity report: Stanford Synchrotron Radiation Laboratory

    International Nuclear Information System (INIS)

    Cantwell, K.; Dunn, L.

    1994-01-01

    The SSRL facility delivered 89% of the scheduled user beam to 25 experimental stations during 6.5 months of user running. Users from private industry were involved in 31% of these experiments. The SPEAR accelerator ran very well with no major component failures and an unscheduled down time of only 2.9%. In addition to this increased reliability, there was a significant improvement in the stability of the beam. The enhancements to the SPEAR orbit as part of a concerted three-year program were particularly noticeable to users. The standard deviation of beam movement (both planes) in the last part of the run was 80 microns, major progress toward the ultimate goal of 50-micron stability. This was a significant improvement from the previous year when the movement was 400 microns in the horizontal and 200 microns in the vertical. A new accelerator Personal Protection System (PPS), built with full redundancy and providing protection from both radiation exposure and electrical hazards, was installed in 1994. It is not possible to describe in this summary all of the scientific experimentation which was performed during the run. However, the flavor of current research projects and the many significant accomplishments can be realized by the following highlights: A multinational collaboration performed several experiments involving x-ray scattering from nuclear resonances; Studies related to nuclear waste remediation by groups from Los Alamos National Laboratory and Pacific Northwest Laboratories continued in 1994; Diffraction data sets for a number of important protein crystals were obtained; During the past two years a collaboration consisting of groups from Hewlett Packard, Intel, Fisons Instruments and SSRL has been exploring the utility of synchrotron radiation for total reflection x-ray fluorescence (TRXRF); and High-resolution angle-resolved photoemission experiments have continued to generate exciting new results from highly correlated and magnetic materials

  11. 1994 activity report: Stanford Synchrotron Radiation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K.; Dunn, L. [eds.

    1994-01-01

    The SSRL facility delivered 89% of the scheduled user beam to 25 experimental stations during 6.5 months of user running. Users from private industry were involved in 31% of these experiments. The SPEAR accelerator ran very well with no major component failures and an unscheduled down time of only 2.9%. In addition to this increased reliability, there was a significant improvement in the stability of the beam. The enhancements to the SPEAR orbit as part of a concerted three-year program were particularly noticeable to users. The standard deviation of beam movement (both planes) in the last part of the run was 80 microns, major progress toward the ultimate goal of 50-micron stability. This was a significant improvement from the previous year when the movement was 400 microns in the horizontal and 200 microns in the vertical. A new accelerator Personal Protection System (PPS), built with full redundancy and providing protection from both radiation exposure and electrical hazards, was installed in 1994. It is not possible to describe in this summary all of the scientific experimentation which was performed during the run. However, the flavor of current research projects and the many significant accomplishments can be realized by the following highlights: A multinational collaboration performed several experiments involving x-ray scattering from nuclear resonances; Studies related to nuclear waste remediation by groups from Los Alamos National Laboratory and Pacific Northwest Laboratories continued in 1994; Diffraction data sets for a number of important protein crystals were obtained; During the past two years a collaboration consisting of groups from Hewlett Packard, Intel, Fisons Instruments and SSRL has been exploring the utility of synchrotron radiation for total reflection x-ray fluorescence (TRXRF); and High-resolution angle-resolved photoemission experiments have continued to generate exciting new results from highly correlated and magnetic materials.

  12. Reliability on intra-laboratory and inter-laboratory data of hair mineral analysis comparing with blood analysis.

    Science.gov (United States)

    Namkoong, Sun; Hong, Seung Phil; Kim, Myung Hwa; Park, Byung Cheol

    2013-02-01

    Nowadays, although its clinical value remains controversial institutions utilize hair mineral analysis. Arguments about the reliability of hair mineral analysis persist, and there have been evaluations of commercial laboratories performing hair mineral analysis. The objective of this study was to assess the reliability of intra-laboratory and inter-laboratory data at three commercial laboratories conducting hair mineral analysis, compared to serum mineral analysis. Two divided hair samples taken from near the scalp were submitted for analysis at the same time, to all laboratories, from one healthy volunteer. Each laboratory sent a report consisting of quantitative results and their interpretation of health implications. Differences among intra-laboratory and interlaboratory data were analyzed using SPSS version 12.0 (SPSS Inc., USA). All the laboratories used identical methods for quantitative analysis, and they generated consistent numerical results according to Friedman analysis of variance. However, the normal reference ranges of each laboratory varied. As such, each laboratory interpreted the patient's health differently. On intra-laboratory data, Wilcoxon analysis suggested they generated relatively coherent data, but laboratory B could not in one element, so its reliability was doubtful. In comparison with the blood test, laboratory C generated identical results, but not laboratory A and B. Hair mineral analysis has its limitations, considering the reliability of inter and intra laboratory analysis comparing with blood analysis. As such, clinicians should be cautious when applying hair mineral analysis as an ancillary tool. Each laboratory included in this study requires continuous refinement from now on for inducing standardized normal reference levels.

  13. Cause analysis for unsatisfactory results in proficiency testing activities: a case study of Brazilian calibration laboratories accredited under ISO/IEC 17025:2005⋆

    Directory of Open Access Journals (Sweden)

    Silva M.A.F.

    2013-01-01

    Full Text Available This work presents the results of a survey carried out among Brazilian calibration laboratories accredited under ISO/IEC 17025:2005 with the objective to identify how these laboratories investigate the root causes of unsatisfactory results in proficiency testing. The survey was coordinated by the Brazilian accreditation body, the General Coordination for Accreditation (Cgcre, of the Institute of Metrology, Quality and Technology (Inmetro.

  14. Tritium Research Laboratory safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment. (ERB)

  15. Tritium Research Laboratory safety analysis report

    International Nuclear Information System (INIS)

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment

  16. Hanford Laboratories Operation monthly activities report, August 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-09-15

    This is the monthly report of the Hanford Laboratories Operation, August 1958. Reactor fuels, chemistry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, employee relations, plutonium recycling, programming, radiation protection, laboratory auxiliaries operation, and inventions are discussed.

  17. Hanford Laboratories Operation monthly activities report, September 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-10-19

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for September 1956.

  18. Hanford Laboratories Operation monthly activities report, June 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-07-15

    This is the monthly report for the Hanford Laboratories Operation, June, 1958. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics, instrumentation research, employee relations, operations research, synthesis operation, programming, radiation protection, and laboratory auxiliaries operation are discussed.

  19. Hanford Laboratories Operation monthly activities report, November 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-12-15

    The monthly report for the Hanford Laboratories Operation, November 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, programming, laboratory auxiliaries operation, and technical administration operation are discussed.

  20. Hanford Laboratories operation monthly activities report, November 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-12-21

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operations research, inventions, visits, and personnel status are discussed. This report is for November, 1956.

  1. Hanford Laboratories Operation monthly activities report, October 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-11-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for October 1958.

  2. Hanford Laboratories Operation monthly activities report, December 1961

    Energy Technology Data Exchange (ETDEWEB)

    1962-01-15

    The monthly report for the Hanford Laboratories Operation, May 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, programming, laboratory auxiliaries operation, and technical administration operation are discussed.

  3. Hanford Laboratories operation monthly activities report, November 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-12-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for November 1957.

  4. The activities of the IAEA Laboratories, Vienna. Annual report 1982

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1983-10-01

    A brief account is given on the main activities of the IAEA Laboratory in Seibersdorf during 1982. The following areas are specified: Plant breeding; Soil science; Entomology; Agrochemicals; Human nutrition; Radiation dosimetry; Electronics; Chemistry; Isotope hydrology; Safeguards Analytical Laboratory (SAL); Health physics

  5. Hanford Laboratories Operation monthly activities report, June 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-07-15

    The monthly report for the Hanford Laboratories Operation, June 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, programming, laboratory auxiliaries operation, and professional placement and relations practices are discussed.

  6. Hanford Laboratories Operation monthly activities report, October 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-11-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for October 1957.

  7. Hanford Laboratories Operation monthly activities report, April 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-05-15

    This is the monthly report for the Hanford Laboratories Operation, April, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities. Biology operation, physics and instrumentation research, employee relations, operations research and synthesis operation programming, radiation protection, and laboratory auxiliaries operation are discussed.

  8. Hanford Laboratories Operation monthly activities report, July 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-08-15

    This is the monthly report for the Hanford Laboratories Operation, July, 1958. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, employee relations, operations research and synthesis operation, programming, radiation protection, and laboratory auxiliaries operation area discussed.

  9. Hanford Laboratories operation monthly activities report, January 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-02-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for January 1957.

  10. Hanford Laboratories Operation monthly activities report, March 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-04-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for March 1960.

  11. Hanford Laboratories Operation monthly activities report, May 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-06-15

    This is the monthly report for the Hanford Laboratories Operation, May, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, employee relations, operations research and synthesis operation, programming, radiation protection, and laboratory auxiliaries operation area discussed.

  12. Hanford Laboratories Operation monthly activities report, May 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-06-15

    This is the monthly report for the Hanford Laboratories Operation, May 1958. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, employee relations, operations research and synthesis operation, programming, radiation protection, and laboratory auxiliaries operation area discussed.

  13. Hanford Laboratories Operation monthly activities report, September 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-10-15

    This is the monthly report for the Hanford Laboratories Operation, September, 1958. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, 4000 program research and development, operations research and synthesis operation, programming, radiation protection, and laboratory auxiliaries operation are discussed.

  14. Hanford Laboratories operation monthly activities report, February 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-03-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for February 1958.

  15. Hanford Laboratories Operation monthly activities report, December 1957

    Energy Technology Data Exchange (ETDEWEB)

    1958-01-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for December 1957.

  16. Automated activation-analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Hensley, W.K.; Denton, M.M.; Garcia, S.R.

    1981-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. The system and its mode of operation for a large reconnaissance survey are described

  17. Automated activation-analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.; Denton, M.M.

    1982-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day

  18. Hanford Laboratories Operation monthly activities report, August 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-09-14

    This is the monthly report for the Hanford Laboratories Operation August 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  19. Hanford Laboratories Operation monthly activities report, February 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-03-15

    This is the monthly report for the Hanford Laboratories Operation, February, 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  20. Hanford Laboratories Operation monthly activities report, March 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-04-16

    This is the monthly report for the Hanford Laboratories Operation March 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  1. Hanford Laboratories Operation monthly activities report, February 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-03-15

    The monthly report for the Hanford Laboratories Operation, February 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, and programming are discussed.

  2. Hanford Laboratories Operation monthly activities report, April 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-05-15

    This is the monthly report for the Hanford Laboratories Operation, April 1961. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  3. Hanford Laboratories Operation monthly activities report, December 1962

    Energy Technology Data Exchange (ETDEWEB)

    1963-01-15

    This is the monthly report for the Hanford Laboratories Operation, December 1962. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  4. Hanford Laboratories Operation monthly activities report, July 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-08-15

    This is the monthly report for the Hanford Laboratories Operation July 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  5. Hanford Laboratories Operation monthly activities report, March 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-04-15

    This is the monthly report for the Hanford Laboratories Operation, April 1961. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  6. Hanford Laboratories Operation monthly activities report, July 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-08-15

    This is the monthly report for the Hanford Laboratories Operation, July, 1959. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  7. Hanford Laboratories Operation monthly activities report, May 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-06-15

    This is the monthly report for the Hanford Laboratories Operation, May, 1957. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  8. Hanford Laboratories Operation monthly activities report, October 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-11-15

    This is the monthly report for the Hanford Laboratories Operation, October 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  9. Hanford Laboratories Operation monthly activities report, June 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-07-16

    This is the monthly report for the Hanford Laboratories Operation June 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  10. Hanford Laboratories Operation monthly activities report, September 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-10-15

    The monthly report for the Hanford Laboratories Operation, September 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, and programming are discussed.

  11. Hanford Laboratories Operation monthly activities report, October 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-11-15

    This is the monthly report for the Hanford Laboratories Operation October 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  12. Hanford Laboratories Operation monthly activities report, November 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-12-15

    This is the monthly report for the Hanford Laboratories Operation, November 1959. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  13. Hanford Laboratories Operation monthly activities report, March 1957

    Energy Technology Data Exchange (ETDEWEB)

    Albaugh, E.W.

    1957-04-15

    This is the monthly report of the Hanford Laboratories Operation, March, 1957. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  14. Hanford Laboratories Operation monthly activities report, February 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-03-15

    This is the monthly report for the Hanford Laboratories Operation, February 1961. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  15. Hanford Laboratories Operation monthly activities report, September 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-10-15

    This is the monthly report for the Hanford Laboratories Operation, October, 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  16. Hanford Laboratories Operation monthly activities report, September 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-10-15

    This is the monthly report for the Hanford Laboratories Operation, October 1959. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  17. Hanford Laboratories Operation monthly activities report, July 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-08-15

    This is the monthly report for the Hanford Laboratories Operation, July 1969. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  18. Hanford Laboratories Operation monthly activities report, August 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-09-15

    This is the monthly report for the Hanford Laboratories Operation, August, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations, and operations research and synthesis operation are discussed.

  19. Hanford Laboratories Operation monthly activities report, January 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-02-15

    This is the monthly report for the Hanford Laboratories Operation, January 1961. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  20. Hanford Laboratories Operation monthly activities report, June 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-07-15

    This is the monthly report for the Hanford Laboratories Operation, July 1957. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  1. Hanford Laboratories Operation monthly activities report, December 1959

    Energy Technology Data Exchange (ETDEWEB)

    1960-01-15

    This is the monthly report for the Hanford Laboratories Operation, January 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  2. Hanford Laboratories Operation monthly activities report, October 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-11-15

    This is the monthly report for the Hanford Laboratories Operation October 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  3. INFN halts the activities of Gran Sasso Laboratories

    CERN Multimedia

    2003-01-01

    Due to the rising doubts about the tightness of the sewers, the executive board of INFN has decided as a precaution to halt all activities requiring manipulation of any kind of liquid over the whole Laboratories (1 paragraph).

  4. Hanford Laboratories Operation monthly activities report, November 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-12-14

    This is the monthly report for the Hanford Laboratories Operation, November 1962. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  5. Hanford Laboratories Operation monthly activities report, November 1960

    Energy Technology Data Exchange (ETDEWEB)

    Sale, W.

    1960-12-15

    This is the monthly report for the Hanford Laboratories Operation, November 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  6. Hanford Laboratories Operation monthly activities report, August 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-09-15

    This is the monthly report for the Hanford Laboratories Operation August 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  7. An Analysis of Laboratory Safety in Texas.

    Science.gov (United States)

    Fuller, Edward J.; Picucci, Ali Callicoatte; Collins, James W.; Swann, Philip

    This paper reports on a survey to discover the types of laboratory accidents that occur in Texas public schools, the factors associated with such accidents, and the practices of schools with regard to current laboratory safety requirements. The purpose of the survey is to better understand safety conditions in Texas public schools and to help…

  8. [superscript 1]H NMR Spectroscopy-Based Configurational Analysis of Mono- and Disaccharides and Detection of ß-Glucosidase Activity: An Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Periyannan, Gopal R.; Lawrence, Barbara A.; Egan, Annie E.

    2015-01-01

    A [superscript 1]H NMR spectroscopy-based laboratory experiment explores mono- and disaccharide structural chemistry, and the enzyme-substrate specificity of glycosidic bond cleavage by ß-glucosidase towards cellobiose (ß-linked gluco-disaccharide) and maltose (a-linked gluco-disaccharide). Structural differences between cellobiose, maltose, and…

  9. Stanford Synchrotron Radiation Laboratory 1992 activity report

    International Nuclear Information System (INIS)

    Cantwell, K.

    1993-01-01

    Under SLAC's supervision, the SPEAR ring and injector system were operated for the first time in a truly dedicated mode for user experimentation. In October, SSRL became a division of SLAC. With that organizational change, SSRL became fully responsible for the operation, maintenance and improvement of SPEAR and its injection accelerators. At the same time, other radiation sources were studied. Free electron lasers providing enormous peak brightnesses and time average brightnesses about two orders of magnitude greater than the machines presently being constructed or commissioned were the object of one line of analysis. Ultra-short pulse beams at lower photons energies were also studied. These, as well, are described in Chapter 2. Significant gains were also made on the beam lines. Perhaps the most dramatic was the introduction of YB 66 crystals into the Jumbo monochromator, as described in Chapter 3. Looking to the future, SSRL held a workshop on Fourth Generation Light Sources in February and two workshops in conjunction with the Users Meeting. The impact of the high quality running is demonstrated by the many high quality experimental programs performed on SPEAR during the year. These are described in Chapter 6

  10. NVLAP activities at Department of Defense calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, D.M. [Defense Nuclear Agency, Alexandria, VA (United States)

    1993-12-31

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts.

  11. NVLAP activities at Department of Defense calibration laboratories

    International Nuclear Information System (INIS)

    Schaeffer, D.M.

    1993-01-01

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts

  12. Activation analysis. Chapter 4

    International Nuclear Information System (INIS)

    1976-01-01

    The principle, sample and calibration standard preparation, activation by neutrons, charged particles and gamma radiation, sample transport after activation, activity measurement, and chemical sample processing are described for activation analysis. Possible applications are shown of nondestructive activation analysis. (J.P.)

  13. AMETH laboratories network activities; Activites du reseau de Laboratoires AMETH

    Energy Technology Data Exchange (ETDEWEB)

    Marimbordes, T.; Ould El Moctar, A.; Peerhossaini, H. [Nantes Univ., Ecole Polytechnique, UMR CNRS 6607, Lab. de Thermocinetique, 44 (France)] [and others

    2000-07-01

    The AMETH laboratories are a network for the improvement of thermal exchanges for one or two phases. This meeting of the 15 november 2000, dealt with the activities of this network of laboratories in the following topics: thermal-hydrodynamic instabilities and control of the limit layer; transfers with change in the liquid-vapor phase; transfers with change in the solid-liquid phase. Ten papers were presented. (A.L.B.)

  14. Canadian inter-laboratory organically bound tritium (OBT) analysis exercise.

    Science.gov (United States)

    Kim, S B; Olfert, J; Baglan, N; St-Amant, N; Carter, B; Clark, I; Bucur, C

    2015-12-01

    Tritium emissions are one of the main concerns with regard to CANDU reactors and Canadian nuclear facilities. After the Fukushima accident, the Canadian Nuclear Regulatory Commission suggested that models used in risk assessment of Canadian nuclear facilities be firmly based on measured data. Procedures for measurement of tritium as HTO (tritiated water) are well established, but there are no standard methods and certified reference materials for measurement of organically bound tritium (OBT) in environmental samples. This paper describes and discusses an inter-laboratory comparison study in which OBT in three different dried environmental samples (fish, Swiss chard and potato) was measured to evaluate OBT analysis methods currently used by CANDU Owners Group (COG) members. The variations in the measured OBT activity concentrations between all laboratories were less than approximately 20%, with a total uncertainty between 11 and 17%. Based on the results using the dried samples, the current OBT analysis methods for combustion, distillation and counting are generally acceptable. However, a complete consensus OBT analysis methodology with respect to freeze-drying, rinsing, combustion, distillation and counting is required. Also, an exercise using low-level tritium samples (less than 100 Bq/L or 20 Bq/kg-fresh) would be useful in the near future to more fully evaluate the current OBT analysis methods. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Conference on instrumental activation analysis IAA 92

    International Nuclear Information System (INIS)

    Frana, J.; Obrusnik, I.

    1992-05-01

    The publication contains 26 abstracts primarily concerned with neutron activation analysis, although other analytical techniques based on X-ray fluorescence analysis, PIXE, PIGE, RBS are also included. Some contributions deal with aspects of quality practice and assurance in radioanalytical laboratories, with marketing of instrumental neutron activation analysis services, with hard- and software aspects of radiation detection, etc. (Z.S.)

  16. VALIDATION GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    Science.gov (United States)

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following guidelines for laboratories engaged in the forensic analysis of chemical evidence associated with terrorism. This document provides a baseline framework and guidance for...

  17. Enhancing laboratory activity with computer-based tutorials

    Directory of Open Access Journals (Sweden)

    Gordon Ritchie

    1995-12-01

    Full Text Available In a degree course in electronic engineering, great importance is attached to laboratory work, in which students have the opportunity to develop their creative skills in a practical environment. For example, in the first year of the course they are expected to design and test some basic circuits using data available on the characteristics of the semiconductor devices to be used. Many of the students cannot be prepared sufficiently for this activity by attendance at lectures, in which basic principles are expounded to large classes. Firstyear students have widely differing knowledge, experience and ability in circuit design. Therefore, without individual tuition many of them are insufficiently prepared for their laboratory work. Weaker students often neglect to study the laboratory documentation thoroughly in advance and they make poor progress in the laboratory.

  18. A Discussion of Water Pollution in the United States and Mexico; with High School Laboratory Activities for Analysis of Lead, Atrazine, and Nitrate.

    Science.gov (United States)

    Kelter, Paul B.; Grundman, Julie; Hage, David S.; Carr, James D.; Castro-Acuna, Carlos Mauricio

    1997-01-01

    Presents discussions on sources, health impacts, methods of analysis as well as lengthy discussions of lead, nitrates, and atrazine as related to water pollution and the interdisciplinary nature of the modern chemistry curriculum. (DKM)

  19. Writing Activities Embedded in Bioscience Laboratory Courses to Change Students' Attitudes and Enhance Their Scientific Writing

    Science.gov (United States)

    Lee, Susan E.; Woods, Kyra J.; Tonissen, Kathryn F.

    2011-01-01

    We introduced writing activities into a project style third year undergraduate biomolecular science laboratory to assist the students to produce a final report in the form of a journal article. To encourage writing while the experimental work was proceeding, the embedded writing activities required ongoing analysis of experimental data. After…

  20. Gran Sasso National Laboratory: Outreach and communication activities

    Science.gov (United States)

    Antolini, R.; Di Giovanni, A.; Galeota, M.; Sebastiani, S.

    2010-01-01

    Due to its fascinating structures, the Gran Sasso National Laboratory (LNGS) offers huge opportunities for communication and outreach activities conceived for students and general public. A great effort is devoted to the organisation of the "OPEN DAY", in which the scientific staff of Gran Sasso introduces non expert people to the main relevant research topics of the laboratory through interactive demonstrations and particle detectors. In particular, a portable cosmic rays telescope has been realized: the detector is used by LNGS team in pubblic events as well as to promote the scientific activities of the Laboratory. In order to point out the importance of the scientific culture for young people, LNGS is involved in the organisation of several training courses for students and teachers focused on the improvement of the knowledge on modern physics topics. Since May 2008 is operating in Teramo the "Galileium", an interactive museum for physics and astrophysics.

  1. The Alcohol Dehydrogenase Kinetics Laboratory: Enhanced Data Analysis and Student-Designed Mini-Projects

    Science.gov (United States)

    Silverstein, Todd P.

    2016-01-01

    A highly instructive, wide-ranging laboratory project in which students study the effects of various parameters on the enzymatic activity of alcohol dehydrogenase has been adapted for the upper-division biochemistry and physical biochemistry laboratory. Our two main goals were to provide enhanced data analysis, featuring nonlinear regression, and…

  2. Investigating the status and barriers of science laboratory activities ...

    African Journals Online (AJOL)

    This study aims at investigating the barriers encountered by science teachers in laboratory activities in Rwandan teacher training colleges (TTCs) using questionnaires and interviews. The results confirmed that teachers face barriers like time limitation, material scarcity and lack of improvising skills in their everyday science ...

  3. VKTA Rossendorf: Laboratory for Environmental and Radionuclide Analysis

    International Nuclear Information System (INIS)

    Koehler, M.; Knappik, R.; Fiola, K.

    2015-01-01

    The VKTA (Nuclear Engineering and Analytics Inc.) is charged by the Free State of Saxony with the decommissioning and waste management of the nuclear installations at the research site Dresden-Rossendorf. This task includes the safe management and disposal of fissile material and radioactive wastes. The acquired expertise and our solution-oriented way of working are the basis for a varied range of services especially the environmental and radionuclide analyzes. The Laboratory for Environmental and Radionuclide Analysis is accredited according to DIN EN ISO/IEC 17025 and provides a sound range of analytical and metrological services including their coordination and management. The personnel and the rooms, measuring and technical equipment are particularly designed for our special field, the measuring of radioactivity. We are focussed on measuring artificial and natural radionuclides in a wide range of activity and in different sample matrices (e.g., urine, faeces, metals, soil, concrete, food, liquids). With the flexible accreditation of the radionuclide analytics the Laboratory is able to react shortly to changing requirements in decommissioning, environmental monitoring and radiation protection. Essential chemical and radiochemical methods are e.g.: · Alpha particle spectrometry, · Liquid scintillation counting, · gamma ray spectrometry, including Ultra-Low-Level, · High-resolution ICP-MS, · Chromatographic methods such as ion chromatography, gas chromatography, HPLC, · Electrochemical measuring methods such as potentiometry, voltammetry. The Laboratory offers analytical services to the research site Dresden-Rossendorf and national and international customers adapting its analytical procedures to the special needs of customers. The presentation demonstrates on the basis of examples the work of Laboratory within the scope of decommissioning of nuclear facilities, especially at a research site, from radiological preliminary investigation to declaration of

  4. Automation of activation analysis

    International Nuclear Information System (INIS)

    Ivanov, I.N.; Ivanets, V.N.; Filippov, V.V.

    1985-01-01

    The basic data on the methods and equipment of activation analysis are presented. Recommendations on the selection of activation analysis techniques, and especially the technique envisaging the use of short-lived isotopes, are given. The equipment possibilities to increase dataway carrying capacity, using modern computers for the automation of the analysis and data processing procedure, are shown

  5. Environmental Measurements Laboratory fiscal year 1998: Accomplishments and technical activities

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, M.D.

    1999-01-01

    The Environmental Measurements Laboratory (EML) is government-owned, government-operated, and programmatically under the DOE Office of Environmental Management. The Laboratory is administered by the Chicago Operations Office. EML provides program management, technical assistance and data quality assurance for measurements of radiation and radioactivity relating to environmental restoration, global nuclear nonproliferation, and other priority issues for the Department of Energy, as well as for other government, national, and international organizations. This report presents the technical activities and accomplishments of EML for Fiscal Year 1998.

  6. APPLICATION OF INTERACTIVE ONLINE SIMULATIONS IN THE PHYSICS LABORATORY ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Nina P. Dementievska

    2013-09-01

    Full Text Available Physics teachers should have professional competences, aimed at the use of online technologies associated with physical experiments. Lack of teaching materials for teachers in Ukrainian language leads to the use of virtual laboratories and computer simulations by traditional methods of education, not by the latest innovative modern educational technology, which may limit their use and greatly reduce their effectiveness. Ukrainian teaching literature has practically no information about the assessment of competencies, research skills of students for the laboratory activities. The aim of the article is to describe some components of instructional design for the Web site with simulations in school physical experiments and their evaluation.

  7. On-site laboratory support of Oak Ridge National Laboratory environmental restoration field activities

    International Nuclear Information System (INIS)

    Burn, J.L.E.

    1995-07-01

    A remedial investigation/feasibility study has been undertaken at Oak Ridge National Laboratory (ORNL). Bechtel National, Inc. and partners CH2M Hill, Ogden Environmental and Energy Services, and PEER Consultants are contracted to Lockheed Martin Energy Systems, performing this work for ORNL's Environmental Restoration (ER) Program. An on-site Close Support Laboratory (CSL) established at the ER Field Operations Facility has evolved into a laboratory where quality analytical screening results can be provided rapidly (e.g., within 24 hours of sampling). CSL capabilities include three basic areas: radiochemistry, chromatography, and wet chemistry. Radiochemical analyses include gamma spectroscopy, tritium and carbon-14 screens using liquid scintillation analysis, and gross alpha and beta counting. Cerenkov counting and crown-ether-based separation are the two rapid methods used for radiostrontium determination in water samples. By extending count times where appropriate, method detection limits can match those achieved by off-site contract laboratories. Volatile organic compounds are detected by means of gas chromatography using either headspace or purge and trap sample introduction (based on EPA 601/602). Ionic content of water samples is determined using ion chromatography and alkalinity measurement. Ion chromatography is used to quantify both anions (based on EPA 300) and cations. Wet chemistry procedures performed at the CSL include alkalinity, pH (water and soil), soil resistivity, and dissolved/suspended solids. Besides environmental samples, the CSL routinely screens health and safety and waste management samples. The cost savings of the CSL are both direct and indirect

  8. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  9. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009

    International Nuclear Information System (INIS)

    2010-01-01

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  10. Quality assurance for animal feed analysis laboratories

    NARCIS (Netherlands)

    Balthrop, J.; Brand, B.; Cowie, R.A.; Danier, J.; Boever, de J.L.; Jonge, de L.H.; Jackson, F.; Makkar, H.P.S.; Piotrowski, C.

    2011-01-01

    Every sector of the livestock industry, the associated services and the wellbeing of both animals and humans are influenced by animal feeding. The availability of accurate, reliable and reproducible analytical data is imperative for proper feed formulation. Only reliable analysis can lead to the

  11. MEMS cost analysis from laboratory to industry

    CERN Document Server

    Freng, Ron Lawes

    2016-01-01

    The World of MEMS; Chapter 2: Basic Fabrication Processes; Chapter 3: Surface Microengineering. High Aspect Ratio Microengineering; Chapter 5: MEMS Testing; Chapter 6: MEMS Packaging. Clean Rooms, Buildings and Plant; Chapter 8: The MEMSCOST Spreadsheet; Chapter 9: Product Costs - Accelerometers. Product Costs - Microphones. MEMS Foundries. Financial Reporting and Analysis. Conclusions.

  12. Neutron Scattering Activity at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Bourke, M.A.M.

    2015-01-01

    The nondestructive and bulk penetrating aspects of neutron scattering techniques make them well suited to the study of materials from the nuclear energy sector (particularly those which are radioactive). This report provides a summary of the facility, LANSCE, which is used at Los Alamos National laboratory for these studies. It also provides a brief description of activities related to line broadening studies of radiation damage and recent imaging and offers observations about the outlook for future activity. The work alluded to below was performed during the period of the CRP by researchers that included but were not limited to; Sven Vogel and Don Brown of Los Alamos National Laboratory; and Anton Tremsin of the University of California, Berkeley. (author)

  13. Activation analysis. Detection limits

    International Nuclear Information System (INIS)

    Revel, G.

    1999-01-01

    Numerical data and limits of detection related to the four irradiation modes, often used in activation analysis (reactor neutrons, 14 MeV neutrons, photon gamma and charged particles) are presented here. The technical presentation of the activation analysis is detailed in the paper P 2565 of Techniques de l'Ingenieur. (A.L.B.)

  14. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    with limited management filtering to encourage the creativity of individual researchers. The competition is open to all BNL staff in programmatic, scientific, engineering, and technical support areas. Researchers submit their project proposals to the Assistant Laboratory Director for Policy and Strategic Planning. A portion of the LDRD budget is held for the Strategic LDRD (S-LDRD) category. Projects in this category focus on innovative R&D activities that support the strategic agenda of the Laboratory. The Laboratory Director entertains requests or articulates the need for S-LDRD funds at any time. Strategic LDRD Proposals also undergo rigorous peer review; the approach to review is tailored to the size and scope of the proposal. These Projects are driven by special opportunities, including: (1) Research project(s) in support of Laboratory strategic initiatives as defined and articulated by the Director; (2) Research project(s) in support of a Laboratory strategic hire; (3) Evolution of Program Development activities into research and development activities; and (4) ALD proposal(s) to the Director to support unique research opportunities. The goals and objectives of BNL's LDRD Program can be inferred fronl the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. To be one of the premier DOE National Laboratories, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program

  15. Fast neutron activation analysis

    International Nuclear Information System (INIS)

    Pepelnik, R.

    1986-01-01

    Since 1981 numerous 14 MeV neutron activation analyses were performed at Korona. On the basis of that work the advantages of this analysis technique and therewith obtained results are compared with other analytical methods. The procedure of activation analysis, the characteristics of Korona, some analytical investigations in environmental research and material physics, as well as sources of systematic errors in trace analysis are described. (orig.) [de

  16. Laboratory Activity Worksheet to Train High Order Thinking Skill of Student on Surface Chemistry Lecture

    Science.gov (United States)

    Yonata, B.; Nasrudin, H.

    2018-01-01

    A worksheet has to be a set with activity which is help students to arrange their own experiments. For this reason, this research is focused on how to train students’ higher order thinking skills in laboratory activity by developing laboratory activity worksheet on surface chemistry lecture. To ensure that the laboratory activity worksheet already contains aspects of the higher order thinking skill, it requires theoretical and empirical validation. From the data analysis results, it shows that the developed worksheet worth to use. The worksheet is worthy of theoretical and empirical feasibility. This conclusion is based on the findings: 1) Assessment from the validators about the theoretical feasibility aspects in the category is very feasible with an assessment range of 95.24% to 97.92%. 2) students’ higher thinking skill from N Gain values ranges from 0.50 (enough) to 1.00 (high) so it can be concluded that the laboratory activity worksheet on surface chemistry lecture is empirical in terms of worth. The empirical feasibility is supported by the responses of the students in very reasonable categories. It is expected that the laboratory activity worksheet on surface chemistry lecture can train students’ high order thinking skills for students who program surface chemistry lecture.

  17. A Content Analysis of General Chemistry Laboratory Manuals for Evidence of Higher-Order Cognitive Tasks

    Science.gov (United States)

    Domin, Daniel S.

    1999-01-01

    The science laboratory instructional environment is ideal for fostering the development of problem-solving, manipulative, and higher-order thinking skills: the skills needed by today's learner to compete in an ever increasing technology-based society. This paper reports the results of a content analysis of ten general chemistry laboratory manuals. Three experiments from each manual were examined for evidence of higher-order cognitive activities. Analysis was based upon the six major cognitive categories of Bloom's Taxonomy of Educational Objectives: knowledge, comprehension, application, analysis, synthesis, and evaluation. The results of this study show that the overwhelming majority of general chemistry laboratory manuals provide tasks that require the use of only the lower-order cognitive skills: knowledge, comprehension, and application. Two of the laboratory manuals were disparate in having activities that utilized higher-order cognition. I describe the instructional strategies used within these manuals to foster higher-order cognitive development.

  18. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  19. BWR stability analysis at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.; Rohatgi, U.S.

    1991-01-01

    Following the unexpected, but safely terminated, power and flow oscillations in the LaSalle-2 Boiling Water Reactor (BWR) on March 9, 1988, the Nuclear Regulatory Commission (NRC) Offices of Nuclear Reactor Regulation (NRR) and of Analysis and Evaluation of Operational Data (AEOD) requested that the Office of Nuclear Regulatory Research (RES) carry out BWR stability analyses, centered around fourteen specific questions. Ten of the fourteen questions address BWR stability issues in general and are dealt with in this paper. The other four questions address local, out-of-phase oscillations and matters of instrumentation; they fall outside the scope of the work reported here. It was the purpose of the work documented in this report to answer ten of the fourteen NRC-stipulated questions. Nine questions are answered by analyzing the LaSalle-2 instability and related BWR transients with the BNL Engineering Plant Analyzer (EPA) and by performing an uncertainty assessment of the EPA predictions. The tenth question is answered on the basis of first principles. The ten answers are summarized

  20. Activity-based costing methodology as tool for costing in hematopathology laboratory

    Directory of Open Access Journals (Sweden)

    Gujral Sumeet

    2010-01-01

    Full Text Available Background: Cost analysis in laboratories represents a necessary phase in their scientific progression. Aim: To calculate indirect cost and thus total cost per sample of various tests at Hematopathology laboratory (HPL Settings and Design: Activity-based costing (ABC method is used to calculate per cost test of the hematopathology laboratory. Material and Methods: Information is collected from registers, purchase orders, annual maintenance contracts (AMCs, payrolls, account books, hospital bills and registers along with informal interviews with hospital staff. Results: Cost per test decreases as total number of samples increases. Maximum annual expense at the HPL is on reagents and consumables followed by manpower. Cost per test is higher for specialized tests which interpret morphological or flow data and are done by a pathologist. Conclusions: Despite several limitations and assumptions, this was an attempt to understand how the resources are consumed in a large size government-run laboratory. The rate structure needs to be revised for most of the tests, mainly for complete blood counts (CBC, bone marrow examination, coagulation tests and Immunophenotyping. This costing exercise is laboratory specific and each laboratory needs to do its own costing. Such an exercise may help a laboratory redesign its costing structure or at least understand the economics involved in the laboratory management.

  1. Activity-based costing methodology as tool for costing in hematopathology laboratory.

    Science.gov (United States)

    Gujral, Sumeet; Dongre, Kanchan; Bhindare, Sonal; Subramanian, P G; Narayan, Hkv; Mahajan, Asim; Batura, Rekha; Hingnekar, Chitra; Chabbria, Meenu; Nair, C N

    2010-01-01

    Cost analysis in laboratories represents a necessary phase in their scientific progression. To calculate indirect cost and thus total cost per sample of various tests at Hematopathology laboratory (HPL). Activity-based costing (ABC) method is used to calculate per cost test of the hematopathology laboratory. Information is collected from registers, purchase orders, annual maintenance contracts (AMCs), payrolls, account books, hospital bills and registers along with informal interviews with hospital staff. Cost per test decreases as total number of samples increases. Maximum annual expense at the HPL is on reagents and consumables followed by manpower. Cost per test is higher for specialized tests which interpret morphological or flow data and are done by a pathologist. Despite several limitations and assumptions, this was an attempt to understand how the resources are consumed in a large size government-run laboratory. The rate structure needs to be revised for most of the tests, mainly for complete blood counts (CBC), bone marrow examination, coagulation tests and Immunophenotyping. This costing exercise is laboratory specific and each laboratory needs to do its own costing. Such an exercise may help a laboratory redesign its costing structure or at least understand the economics involved in the laboratory management.

  2. Laboratory Computerization: The Case for a Prospective Analysis

    OpenAIRE

    Hurdle, John F.; Schwamm, Harry A.

    1982-01-01

    The argument is made that computerization of a laboratory should be preceeded by a thorough prospective analysis of laboratory operations. Points to be pondered include complementation of retrospective data, system cost justification, system performance justification, post-installation personnel adjustments, improved system utilization, improved manual performance, and insight into “how much” system to buy. A brief, general outline is offered describing how to approach such a study.

  3. Clinical laboratory as an economic model for business performance analysis.

    Science.gov (United States)

    Buljanović, Vikica; Patajac, Hrvoje; Petrovecki, Mladen

    2011-08-15

    To perform SWOT (strengths, weaknesses, opportunities, and threats) analysis of a clinical laboratory as an economic model that may be used to improve business performance of laboratories by removing weaknesses, minimizing threats, and using external opportunities and internal strengths. Impact of possible threats to and weaknesses of the Clinical Laboratory at Našice General County Hospital business performance and use of strengths and opportunities to improve operating profit were simulated using models created on the basis of SWOT analysis results. The operating profit as a measure of profitability of the clinical laboratory was defined as total revenue minus total expenses and presented using a profit and loss account. Changes in the input parameters in the profit and loss account for 2008 were determined using opportunities and potential threats, and economic sensitivity analysis was made by using changes in the key parameters. The profit and loss account and economic sensitivity analysis were tools for quantifying the impact of changes in the revenues and expenses on the business operations of clinical laboratory. Results of simulation models showed that operational profit of €470 723 in 2008 could be reduced to only €21 542 if all possible threats became a reality and current weaknesses remained the same. Also, operational gain could be increased to €535 804 if laboratory strengths and opportunities were utilized. If both the opportunities and threats became a reality, the operational profit would decrease by €384 465. The operational profit of the clinical laboratory could be significantly reduced if all threats became a reality and the current weaknesses remained the same. The operational profit could be increased by utilizing strengths and opportunities as much as possible. This type of modeling may be used to monitor business operations of any clinical laboratory and improve its financial situation by implementing changes in the next fiscal

  4. Clinical laboratory as an economic model for business performance analysis

    Science.gov (United States)

    Buljanović, Vikica; Patajac, Hrvoje; Petrovečki, Mladen

    2011-01-01

    Aim To perform SWOT (strengths, weaknesses, opportunities, and threats) analysis of a clinical laboratory as an economic model that may be used to improve business performance of laboratories by removing weaknesses, minimizing threats, and using external opportunities and internal strengths. Methods Impact of possible threats to and weaknesses of the Clinical Laboratory at Našice General County Hospital business performance and use of strengths and opportunities to improve operating profit were simulated using models created on the basis of SWOT analysis results. The operating profit as a measure of profitability of the clinical laboratory was defined as total revenue minus total expenses and presented using a profit and loss account. Changes in the input parameters in the profit and loss account for 2008 were determined using opportunities and potential threats, and economic sensitivity analysis was made by using changes in the key parameters. The profit and loss account and economic sensitivity analysis were tools for quantifying the impact of changes in the revenues and expenses on the business operations of clinical laboratory. Results Results of simulation models showed that operational profit of €470 723 in 2008 could be reduced to only €21 542 if all possible threats became a reality and current weaknesses remained the same. Also, operational gain could be increased to €535 804 if laboratory strengths and opportunities were utilized. If both the opportunities and threats became a reality, the operational profit would decrease by €384 465. Conclusion The operational profit of the clinical laboratory could be significantly reduced if all threats became a reality and the current weaknesses remained the same. The operational profit could be increased by utilizing strengths and opportunities as much as possible. This type of modeling may be used to monitor business operations of any clinical laboratory and improve its financial situation by

  5. Sampling and Analysis Instruction for the Demolition of the Masonry Block for the 108-F Biological Laboratory

    International Nuclear Information System (INIS)

    Byrnes, M. E.

    1999-01-01

    This sampling and analysis instruction (SAI) has been prepared to clearly define the sampling and analysis activities to be performed in support of the demolition and disposition (or disposal) of the 108-F Biological Laboratory masonry block walls

  6. Study on the mercury evolution in a laboratory multi specific aquatic system by using instrumental neutron activation analysis; Estudio de la evolucion del mercurio en un sistema acuatico de laboratorio multiespecifico utilizando analisis por activacion neutronica instrumental

    Energy Technology Data Exchange (ETDEWEB)

    Bubach, Debora; Guevara, Sergio Ribeiro; Arribere, Maria A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche. Lab. de Analisis por Activacion Nautronica; Pechen de d`Angelo, Ana; Ferrari, Ana; Venturino, Andres [Universidad Nacional del Comahue, Neuquen (Argentina). Facultad de Ingenieria

    1999-11-01

    A preliminary study on the evolution of mercury in the organisms of a laboratory multi specific aquatic system was performed using Instrumental Neutron Activation Analysis (INAA). Some of the possible effects of mercury toxicity were monitored by analyzing early biochemical indicators. The system consisted of an aquarium with bed sediments, aquatic macrophytes (Myriophyllum sp.), bivalves (Diplodom sp.) and exotic fish, simulating a long term contamination situation of unknown causes, where the sediments are the contaminant reservoir. Samples of the abiotic components of the system were analyzed at the beginning of the experiment, and again when the organisms were sampled. Fish carcass, kidney and liver samples, bivalve hepatopancreas, and whole macrophytes were extracted ana analyzed for mercury and other elements by INAA at the beginning of the experiment, and after 48 and 96 hours. Since some crustal elements such as Sc and La were detected in the hepatopancreas and macrophyte samples, enrichment factors for mercury, with respect to the <63 {mu}m sediment fraction, were computed to discriminate the metabolized Hg content from that associated to the particulate. The hepatopancreas index, some indicators of oxidative stress ({gamma}-Glutamyl-cysteinyl-glycine content and lipid peroxidation) and brain acetilcolinesterasa were measured as early indicators of toxicity. (author) 23 refs., 4 tabs.

  7. Flow injection analysis: Emerging tool for laboratory automation in radiochemistry

    International Nuclear Information System (INIS)

    Egorov, O.; Ruzicka, J.; Grate, J.W.; Janata, J.

    1996-01-01

    Automation of routine and serial assays is a common practice of modern analytical laboratory, while it is virtually nonexistent in the field of radiochemistry. Flow injection analysis (FIA) is a general solution handling methodology that has been extensively used for automation of routine assays in many areas of analytical chemistry. Reproducible automated solution handling and on-line separation capabilities are among several distinctive features that make FI a very promising, yet under utilized tool for automation in analytical radiochemistry. The potential of the technique is demonstrated through the development of an automated 90 Sr analyzer and its application in the analysis of tank waste samples from the Hanford site. Sequential injection (SI), the latest generation of FIA, is used to rapidly separate 90 Sr from interfering radionuclides and deliver separated Sr zone to a flow-through liquid scintillation detector. The separation is performed on a mini column containing Sr-specific sorbent extraction material, which selectively retains Sr under acidic conditions. The 90 Sr is eluted with water, mixed with scintillation cocktail, and sent through the flow cell of a flow through counter, where 90 Sr radioactivity is detected as a transient signal. Both peak area and peak height can be used for quantification of sample radioactivity. Alternatively, stopped flow detection can be performed to improve detection precision for low activity samples. The authors current research activities are focused on expansion of radiochemical applications of FIA methodology, with an ultimate goal of creating a set of automated methods that will cover the basic needs of radiochemical analysis at the Hanford site. The results of preliminary experiments indicate that FIA is a highly suitable technique for the automation of chemically more challenging separations, such as separation of actinide elements

  8. A History of Classified Activities at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Quist, A.S.

    2001-01-30

    The facilities that became Oak Ridge National Laboratory (ORNL) were created in 1943 during the United States' super-secret World War II project to construct an atomic bomb (the Manhattan Project). During World War II and for several years thereafter, essentially all ORNL activities were classified. Now, in 2000, essentially all ORNL activities are unclassified. The major purpose of this report is to provide a brief history of ORNL's major classified activities from 1943 until the present (September 2000). This report is expected to be useful to the ORNL Classification Officer and to ORNL's Authorized Derivative Classifiers and Authorized Derivative Declassifiers in their classification review of ORNL documents, especially those documents that date from the 1940s and 1950s.

  9. Forensic neutron activation analysis

    International Nuclear Information System (INIS)

    Kishi, T.

    1987-01-01

    The progress of forensic neutron activation analysis (FNAA) in Japan is described. FNAA began in 1965 and during the past 20 years many cases have been handled; these include determination of toxic materials, comparison examination of physical evidences (e.g., paints, metal fragments, plastics and inks) and drug sample differentiation. Neutron activation analysis is applied routinely to the scientific criminal investigation as one of multielement analytical techniques. This paper also discusses these routine works. (author) 14 refs

  10. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, D.L. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States)], E-mail: david.chichester@inl.gov; Seabury, E.H.; Zabriskie, J.M.; Wharton, J.; Caffrey, A.J. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2009-06-15

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2x10{sup 8} n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1x10{sup 7} n/s), and {sup 252}Cf spontaneous fission neutron sources (6.96x10{sup 7} n/s, 30 {mu}g). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for {sup 252}Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  11. 15-year-activity of Electron Linear Accelerator Laboratory

    International Nuclear Information System (INIS)

    Karolczak, S.

    1999-01-01

    The purchase of the Russian Electron Linear Accelerator ELU-6E by Institute of Radiation Technique of Lodz Technical University in 1978 started the activity of the ELA Laboratory. The accelerator itself and many additional scientific equipment designed and built during past 15 years have became the basic investigation tool for the ITR now. The most important measuring systems based on electron beam as irradiation source are: pulse radiolysis system with detection in IR, UV and visible region of the spectra, radiation induced conductometry, Faraday chamber and computerized data acquisition and processing system

  12. Web-Based Virtual Laboratory for Food Analysis Course

    Science.gov (United States)

    Handayani, M. N.; Khoerunnisa, I.; Sugiarti, Y.

    2018-02-01

    Implementation of learning on food analysis course in Program Study of Agro-industrial Technology Education faced problems. These problems include the availability of space and tools in the laboratory that is not comparable with the number of students also lack of interactive learning tools. On the other hand, the information technology literacy of students is quite high as well the internet network is quite easily accessible on campus. This is a challenge as well as opportunities in the development of learning media that can help optimize learning in the laboratory. This study aims to develop web-based virtual laboratory as one of the alternative learning media in food analysis course. This research is R & D (research and development) which refers to Borg & Gall model. The results showed that assessment’s expert of web-based virtual labs developed, in terms of software engineering aspects; visual communication; material relevance; usefulness and language used, is feasible as learning media. The results of the scaled test and wide-scale test show that students strongly agree with the development of web based virtual laboratory. The response of student to this virtual laboratory was positive. Suggestions from students provided further opportunities for improvement web based virtual laboratory and should be considered for further research.

  13. CFD analysis of laboratory scale phase equilibrium cell operation

    Science.gov (United States)

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process.: Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  14. CFD analysis of laboratory scale phase equilibrium cell operation.

    Science.gov (United States)

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  15. Analysis of laboratory intercomparison data: a matter of independence

    Directory of Open Access Journals (Sweden)

    Mauro F. Rebelo

    2003-05-01

    Full Text Available When laboratory intercomparison exercises are conducted, there is no a priori dependence of the concentration of a certain compound determined in one laboratory to that determined by another(s. The same applies when comparing different methodologies. A existing data set of total mercury readings in fish muscle samples involved in a Brazilian intercomparison exercise was used to show that correlation analysis is the most effective statistical tool in this kind of experiments. Problems associated with alternative analytical tools such as mean or paired 't'-test comparison and regression analysis are discussed.

  16. A cost benefit analysis of outsourced laboratory services.

    Science.gov (United States)

    Bowers, J A

    1995-11-01

    As healthcare moves toward increased capitation, hospital administrators must be aware of all costs associated with patient services. This article describes the cost benefit analysis process used by northern Indiana hospital consumers during 1994-1995 to evaluate a local laboratory service outsource provider, South Bend Medical Foundation (SBMF). In an effort to meet the best interests of the community at large, three competing hospitals, medical leadership, and the local outsource provider joined forces to ensure that cost effective quality services would be provided. Laboratory utilization patterns for common DRGs were also analyzed. The team created a reconfiguration analysis to help develop benchmark figures for consideration in future contract negotiations.

  17. Invention activities as preparation for learning laboratory data handling skills

    Science.gov (United States)

    Day, James

    2012-10-01

    Undergraduate physics laboratories are often driven by a mix of goals, and usually enough of them to cause cognitive overload for the student. Our recent findings align well with studies indicating that students often exit a physics lab without having properly learned how to handle real data. The value of having students explore the underlying structure of a problem before being able to solve it has been shown as an effective way to ready students for learning. Borrowing on findings from the fields of education and cognitive psychology, we use ``invention activities'' to precede direct instruction and bolster learning. In this talk I will show some of what we have learned about students' data handling skills, explain how an invention activity works, and share some observations of successful transfer.

  18. A comparison of designer activity using core design situations in the laboratory and practice

    DEFF Research Database (Denmark)

    Cash, Philip; Hicks, Ben J.; Culley, Steve J.

    2013-01-01

    using a mixed methods approach. Based on this it is concluded that laboratory studies are important research tools and that clear and definable relationships do exist between design activity in practice and the laboratory. © 2013 Elsevier Ltd. All rights reserved....... situations commonly studied by design researchers: information seeking, ideation and design review. This comparison is instantiated through three complementary studies: an observational study of practice and two experimental studies. These reveal a range of similarities and differences that are described......In 2011 one quarter of all articles published in Design Studies and the Journal of Engineering Design used experimental studies. However, there is little work exploring the relationship between laboratory and practice. This paper addresses this by detailing an analysis of designer activity in three...

  19. Laboratory Activity on Sample Handling and Maintaining a Laboratory Notebook through Simple pH Measurements

    Science.gov (United States)

    Erdmann, Mitzy A.; March, Joe L.

    2016-01-01

    Sample handling and laboratory notebook maintenance are necessary skills but can seem abstract if not presented to students in context. An introductory exercise focusing on proper sample handling, data collection and laboratory notebook keeping for the general chemistry laboratory was developed to emphasize the importance of keeping an accurate…

  20. Amchitka Island Environmental Analysis at Idaho National Laboratory

    International Nuclear Information System (INIS)

    Gracy Elias; W. F. Bauer; J.G. Eisenmenger; C.C. Jensen; B.K. Schuetz; T. C. Sorensen; B.M. White; A. L. Freeman; M. E. McIlwain

    2005-01-01

    The Idaho National Laboratory (INL) provided support to Consortium for Risk Evaluation with Stakeholder Participation (CRESP) in their activities which is supported by the Department of Energy (DOE) to assess the impact of past nuclear testing at Amchitka Island on the ecosystem of the island and surrounding ocean. INL participated in this project in three phases, Phase 1, Phase 2 and Phase 3

  1. Incorporating Basic Optical Microscopy in the Instrumental Analysis Laboratory

    Science.gov (United States)

    Flowers, Paul A.

    2011-01-01

    A simple and versatile approach to incorporating basic optical microscopy in the undergraduate instrumental analysis laboratory is described. Attaching a miniature CCD spectrometer to the video port of a standard compound microscope yields a visible microspectrophotometer suitable for student investigations of fundamental spectrometry concepts,…

  2. Transport Energy Impact Analysis; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.

    2015-05-13

    Presented at the Sustainable Transportation Energy Pathways Spring 2015 Symposium on May 13, 2015, this presentation by Jeff Gonder of the National Renewable Energy Laboratory (NREL) provides information about NREL's transportation energy impact analysis of connected and automated vehicles.

  3. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  4. FAO/IAEA Agriculture and Biotechnology Laboratories. Activities Report 2010

    International Nuclear Information System (INIS)

    2012-02-01

    Almost two thirds of the world's farm population is raised in developing countries where livestock production constitutes an important resource for the subsistence of more than 70% of the impoverished people living there. Animals represent an essential source of protein and contribute to the economic development of these countries and to overall food security. However, production losses caused by animal diseases, estimated to be around 20% worldwide, have huge negative impact on livestock productivity. The Animal Production and Health Laboratory (APHL), within the Animal Production and Health Section, conducts applied research activities to develop diagnostic tools and assists in the transfer of these tools to FAO and IAEA Member States in their efforts to improve livestock productivity, ensure food security and fight against hunger. The aims of the Food and Environmental Protection Laboratory (FEPL), as a component of the Food and Environmental Protection (FEP) Section, are to provide assistance and support to developing countries in their efforts to ensure the safety and quality of food and agricultural commodities, thereby safeguarding the health of consumers and facilitating international trade. The focus of the FEPL's work is on improving Member States' laboratory and regulatory practices and methodologies, The main areas of activity in pursuit of the FEPL objectives are applied R and D, technology transfer and support of the development of international standards and guidelines. The Insect Pest Control Laboratory (IPCL) is an integral part of the Insect Pest Control Section and contributes to its global objectives of increasing food security, reducing food losses and insecticide use, overcoming constraints to sustainable rural development, and facilitating international trade in agriculture commodities. The IPCL achieves these goals through the development and transfer of the sterile insect technique (SIT) package for key insect pests of crops, livestock and

  5. Intervention of hydrogen analysis laboratory for radioactive materials study

    International Nuclear Information System (INIS)

    Bruno, N.; Vinces, H.; Figueroa, S.

    1996-01-01

    The objective of the practice was the measurement of the hydrogen concentration on structural material from the Central Nuclear Atucha I (CNA-I) cooling channels using a LECO gas analyser. Original samples were previously separated into fractions at the Laboratiorio para Ensayos de Post-Irradiacion (LAPEP), Centro Atomico Ezeiza. The practice and the preliminary conditions of the laboratory and equipment to reduce the occupational dose for personnel and the work area contamination are described in this paper. In addition to the training activity for workers, the radiological control performed during the intervention and procedure followed to decontaminate LECO and the laboratory are summarized here. (authors)

  6. Identification and analysis of the environmental management documentation related to the activities of environmental and chemical analysis laboratories; Identificacao e analise da documentacao pertinente a gestao ambiental relacionada as atividades de laboratorios de analises quimicas e ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Otomo, Juliana Ikebe; Brandalise, Michele; Romano, Renato Lahos; Marques, Roberto; Szarota, Rosa Maria; Raduan, Rosane Napolitano; Salvetti, Tereza Cristina; Egute, Nayara dos Santos; Almeida, Josimar Ribeiro de; Aquino, Afonso Rodrigues de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: araquino@ipen.br

    2009-08-15

    In the last years, many documents were elaborated by several countries and entities, concerning the environmental question. The implantation of and Environmental Management System requires specific documentation so that a company or laboratory can adjust themselves to the environmental quality. For laboratories of chemical, environmental analyses and also nuclear materials, the needs of attendance to the requirements of the following municipal, state and federal institutions were identified: Corpo de Bombeiros, CNEN - Comissao Nacional de Energia Nuclear, IBAMA - Instituto Brasileiro do Meio Ambiente e dos Recursos Renovaveis, ANVISA - Agencia Nacional de Vigilancia Sanitaria, PMSP - Prefeitura Municipal de Sao Paulo e a CETESB - Companhia Ambiental do Estado de Sao Paulo. (author)

  7. Treatment systems for liquid wastes generated in chemical analysis laboratories

    International Nuclear Information System (INIS)

    Linda Berrio; Oscar Beltran; Edison Agudelo; Santiago Cardona

    2012-01-01

    Nowadays, handling of liquid wastes from chemical analysis laboratories is posing problems to different public and private organizations because of its requirements of an integrated management. This article reviews various treatment technologies and its removal efficiencies in order to establish criteria for selecting the system and the appropriate variables to achieve research objectives as well as environmental sustainability. Review begins with a description of the problem and continues with the study of treatments for laboratory wastes. These technologies are segregated into physicochemical and biological treatments that comprise a variety of processes, some of which are considered in this review.

  8. The Binary System Laboratory Activities Based on Students Mental Model

    Science.gov (United States)

    Albaiti, A.; Liliasari, S.; Sumarna, O.; Martoprawiro, M. A.

    2017-09-01

    Generic science skills (GSS) are required to develop student conception in learning binary system. The aim of this research was to know the improvement of students GSS through the binary system labotoratory activities based on their mental model using hypothetical-deductive learning cycle. It was a mixed methods embedded experimental model research design. This research involved 15 students of a university in Papua, Indonesia. Essay test of 7 items was used to analyze the improvement of students GSS. Each items was designed to interconnect macroscopic, sub-microscopic and symbolic levels. Students worksheet was used to explore students mental model during investigation in laboratory. The increase of students GSS could be seen in their N-Gain of each GSS indicators. The results were then analyzed descriptively. Students mental model and GSS have been improved from this study. They were interconnect macroscopic and symbolic levels to explain binary systems phenomena. Furthermore, they reconstructed their mental model with interconnecting the three levels of representation in Physical Chemistry. It necessary to integrate the Physical Chemistry Laboratory into a Physical Chemistry course for effectiveness and efficiency.

  9. Google+ as a Tool for Use in Cooperative Laboratory Activities between Universities

    Science.gov (United States)

    Puig-Ortiz, Joan; Pàmies-Vilà, Rosa; Martinez Miralles, Jordi Ramon

    2015-01-01

    The following is a proposal for collaboration between universities with the aim to improve curricula that require laboratory activities. A methodology is suggested to implement an innovative educational project involving the exchange of laboratory activities. The exchange of laboratory activities can be carried out on different levels of…

  10. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Bess, John D.; Marshall, Margaret A.; Gorham, Mackenzie L.; Christensen, Joseph; Turnbull, James C.; Clark, Kim

    2011-01-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) (1) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) (2) were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  11. Low and medium activity nuclear waste disposal characterisation laboratory. Example of Spanish E1 Cabril Disposal Centre Laboratory

    International Nuclear Information System (INIS)

    Boulanger, G.; Augustin, X.

    1993-01-01

    Low and medium activity radioactive waste generated in Spain by power reactors, research laboratories, etc. is stored in the E1 Cabril Disposal Centre. This Centre, based on a French design, provides a characterisation function for the stored waste and corresponding containers. Technicatome, prime contractor for the French disposal centre, and contributing to the design and construction of the E1 Cabril Centre, played an important part in the R and D work for this laboratory, and the manufacture of certain items of equipment. This laboratory, applying experience acquired in France by the CEA, comprises a set of buildings providing for active and inactive test operations

  12. The laboratory activities of the IAEA laboratories, Vienna. Annual report - 1978

    International Nuclear Information System (INIS)

    1980-02-01

    The report presents in ten sections the work done during 1978 by the laboratory of the International Atomic Energy Agency located in Seibersdorf in the province of Lower Austria. The ten sections are: 1) metrology, 2) dosimetry, 3) chemistry, 4) safeguards analytical laboratory, 5) isotope hydrology, 6) medical applications, 7) agriculture - soils, 8) entomology, 9) plant breeding, 10) electronics and workshop. Lists of publications of the staff of the laboratory are appended

  13. Analysis of graphical representation among freshmen in undergraduate physics laboratory

    Science.gov (United States)

    Adam, A. S.; Anggrayni, S.; Kholiq, A.; Putri, N. P.; Suprapto, N.

    2018-03-01

    Physics concept understanding is the importance of the physics laboratory among freshmen in the undergraduate program. These include the ability to interpret the meaning of the graph to make an appropriate conclusion. This particular study analyses the graphical representation among freshmen in an undergraduate physics laboratory. This study uses empirical study with quantitative approach. The graphical representation covers 3 physics topics: velocity of sound, simple pendulum and spring system. The result of this study shows most of the freshmen (90% of the sample) make a graph based on the data from physics laboratory. It means the transferring process of raw data which illustrated in the table to physics graph can be categorised. Most of the Freshmen use the proportional principle of the variable in graph analysis. However, Freshmen can't make the graph in an appropriate variable to gain more information and can't analyse the graph to obtain the useful information from the slope.

  14. Activation Analysis of Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Brune, Dag

    1961-01-15

    An analysis of pure aluminium alloyed with magnesium was per- formed by means of gamma spectrometry , Chemical separations were not employed. The isotopes to be determined were obtained in conditions of optimum activity by suitably choosing the time of irradiation and decay. The following elements were detected and measured quantitatively: Iron, zinc, copper, gallium, manganese, chromium, scandium and hafnium.

  15. Establishment of a clean chemistry laboratory at JAERI. Clean laboratory for environmental analysis and research (CLEAR)

    Energy Technology Data Exchange (ETDEWEB)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2003-02-01

    The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for analyses of ultra trace amounts of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. One of the special features of the CLEAR is that it meets double requirements of a cleanroom and for handling of nuclear materials. As another feature of the CLEAR, much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using considerable amounts of corrosive acids. The air conditioning and purification system, specially designed experimental equipment to provide clean work surfaces, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials and other heavy elements in environmental samples. (author)

  16. Analysis of Dextromethorphan in Cough Drops and Syrups: A Medicinal Chemistry Laboratory

    Science.gov (United States)

    Hamilton, Todd M.; Wiseman, Frank L., Jr.

    2009-01-01

    Fluorescence spectroscopy is used to determine the quantity of dextromethorphan hydrobromide (DM) in over-the-counter (OTC) cough drops and syrups. This experiment is appropriate for an undergraduate medicinal chemistry laboratory course when studying OTC medicines and active ingredients. Students prepare the cough drops and syrups for analysis,…

  17. The Effect of Chemistry Laboratory Activities on Students' Chemistry Perception and Laboratory Anxiety Levels

    Science.gov (United States)

    Aydogdu, Cemil

    2017-01-01

    Chemistry lesson should be supported with experiments to understand the lecture effectively. For safety laboratory environment and to prevent laboratory accidents; chemical substances' properties, working principles for chemical substances' usage should be learnt. Aim of the present study was to analyze the effect of experiments which depend on…

  18. Experience of Brazilian safeguards analytical laboratory in DA analysis

    International Nuclear Information System (INIS)

    Bezerra, J.H.B.; Araujo, R.M.S.; Pereira, J.C.A.

    2001-01-01

    Full text: The Brazilian Safeguards Analytical Laboratory, inaugurated in September 1983, performs uranium analysis in samples of nuclear materials taken during national safeguards inspections as well as in samples taken during ABACC's inspections performed in Argentina. The Laboratory analyzes Intercomparison samples provided by IAEA, NBL, ABACC, CEN and EQRAIN. The method used to perform uranium analysis is the Davies and Gray/NBL. All the steps of the analytical procedures, such as chemical kinetics of the reactions and instrumental parameters, are rigorously controlled. An internal Quality Control of the measurements is made by means of analysis of Certified Reference Materials and the performance of the results meets the ESARDA's Target Values for Random and Systematic Components both in Intercomparison Samples and in samples taken during inspections. The typical precision, expressed as relative standard deviation, and accuracy obtained in a routine basis for nuclear grade materials is 0.1% and 0.14% respectively. The performance of the results obtained are comparable to the best international laboratories which perform uranium analysis in nuclear materials for safeguards purposes. (author)

  19. Computer-automated neutron activation analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.

    1983-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. 5 references

  20. Laboratory Activity to Teach about the Proliferation of Salmonella in Vegetables

    Directory of Open Access Journals (Sweden)

    Massimiliano Marvasi

    2015-08-01

    Full Text Available We designed a three-week laboratory experience that can complement any microbiology teaching laboratory to expand students’ knowledge of the ecology of human enteric pathogens outside of their animal hosts. Through their participation in this laboratory activity, students learned that vegetative and reproductive plant parts could be a natural habitat for enteric bacteria such as non-typhoidal strains of Salmonella enterica. This field was recently brought to the forefront of the scientific community and public interest by outbreaks of human illness linked to the consumption of fresh fruits and vegetables. Students were encouraged to develop their own testable hypotheses to compare proliferation of Salmonella enterica sv Typhimurium LT2 in different vegetables: cherry and regular-size  tomatoes, onions, lettuce, and yellow and red bell peppers (Escherichia coli can be substituted for BSL1 laboratories. Upon completion of the laboratory experience, students were able to: 1 Develop testable hypotheses addressing the ability of a human pathogen, Salmonella enterica, to colonize and proliferate in vegetables; 2 Determine that different vegetables support the growth of Salmonella to different extents; 3 Conduct statistical analysis and identify any significant differences. The teaching-learning process was assessed with a pre-/posttest, with an average increase in content understanding from ~15% to 85%. We also measured students’ proficiency while conducting specific technical tasks, revealing no major difficulties while conducting the experiments. Students indicated satisfaction with the organization and content of the practices. All of the students (100% agreed that the exercises improved their knowledge of this subject. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the ASM Curriculum

  1. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    International Nuclear Information System (INIS)

    Joh, Eunha; Park, Jang Guen

    2014-01-01

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future

  2. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Eunha; Park, Jang Guen [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future.

  3. The proposed Diagnostic Instrumentation and Analysis Laboratory, Mississippi State University

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    The Department of Energy (DOE) proposes to authorize Mississippi State University (MSU) to proceed with the detailed design, construction and equipping of the proposed Diagnostic Instrumentation and Analysis Laboratory (DIAL). DOE grant funds are available to the University for the limited purpose of performing preliminary studies, including analysis necessary to conduct this environmental assessment. The proposed facility would be located in the Mississippi Research and Technology Park, adjacent to the Mississippi Agriculture and Forestry Experiment Station campus in Starkville, Mississippi. Total project cost is estimated at $7,953,600. This proposed laboratory would be designed to conduct research into combustion devices related to waste management and environmental restoration that is of importance to industry and government. The proposed facility`s role would be to develop diagnostic instrumentation capabilities in the area of combustion and related processes.

  4. Needs analysis and project schedule for the Los Alamos National Laboratory (LANL) Health Physics Analysis Laboratory (HPAL) upgrade

    International Nuclear Information System (INIS)

    Rhea, T.A.; Rucker, T.L.; Stafford, M.W.

    1990-01-01

    This report is a needs assessment and project schedule for the Health Physics Analysis Laboratory (HPAL) upgrade project at Los Alamos National Laboratory (LANL). After reviewing current and projected HPAL operations, two custom-developed laboratory information management systems (LIMS) for similar facilities were reviewed; four commercially available LIMS products were also evaluated. This project is motivated by new regulations for radiation protection and training and by increased emphasis on quality assurance (QA). HPAL data are used to: protect the health of radiation workers; document contamination levels for transportation of radioactive materials and for release of materials to the public for uncontrolled use; and verify compliance with environmental emission regulations. Phase 1 of the HPAL upgrade project concentrates on four types of counting instruments which support in excess of 90% of the sample workload at the existing central laboratories. Phase 2 is a refinement phase and also integrates summary-level databases on the central Health, Safety, and Environment (HSE) VAX. Phase 3 incorporates additional instrument types and integrates satellite laboratories into the HPAL LIMS. Phase 1 will be a multi-year, multimillion dollar project. The temptation to approach the upgrade of the HPAL program in a piece meal fashion should be avoided. This is a major project, with clearly-defined goals and priorities, and should be approached as such. Major programmatic and operational impacts will be felt throughout HSE as a result of this upgrade, so effective coordination with key customer contacts will be critical

  5. Source Code Analysis Laboratory (SCALe) for Energy Delivery Systems

    Science.gov (United States)

    2010-12-01

    technical competence for the type of tests and calibrations SCALe undertakes. Testing and calibration laboratories that comply with ISO / IEC 17025 ...and exec t [ ISO / IEC 2005]. f a software system indicates that the SCALe analysis di by a CERT secure coding standard. Successful conforma antees that...to be more secure than non- systems. However, no study has yet been performed to p t ssment in accordance with ISO / IEC 17000: “a demonstr g to a

  6. Certification of biological reference materials: participation of the Neutron Activation Laboratory (LAN-IPEN/CNEN-SP)

    International Nuclear Information System (INIS)

    Ticianelli, Regina B.; Figueiredo, Ana Maria G.

    2007-01-01

    Analytical laboratories have as one of their important goals to demonstrate their competence allowing international acceptance and comparison of analytical data. The IPEN Neutron Activation Laboratory (LAN-IPEN) has implemented its Quality Assurance Program which comprises, among other activities, the participation in intercomparison runs. As a part of this Quality Assurance Program, LAN-IPEN has participated in interlaboratorial trials to analyze two biological candidate reference materials: INCT-CF-3 Corn Flour and INCT-SBF-4 Soya Bean Flour from the Institute of Nuclear Chemistry And Technology (Warszawa, Poland). The elements Br, Ca, Co, Cs, Fe, K, Na, Rb and Zn were analyzed in the candidate reference materials by instrumental neutron activation analysis (INAA). The performance of the laboratory was statistically evaluated in relation to the consensus values for these materials using the Z-Score test. This laboratory evaluation method has been accepted as a standard by ISO/IUPAC. In the present study, adequate Z-Score values (|Z|<2) were observed for all of the analyzed elements, confirming the accuracy of the nuclear methodology employed. The contribution of LAN-IPEN in the certification of the reference materials analyzed was very important, since the results provided were used in the statistical evaluation of the certified value. (author)

  7. Utilization of Multimedia Laboratory: An Acceptance Analysis using TAM

    Science.gov (United States)

    Modeong, M.; Palilingan, V. R.

    2018-02-01

    Multimedia is often utilized by teachers to present a learning materials. Learning that delivered by multimedia enables people to understand the information of up to 60% of the learning in general. To applying the creative learning to the classroom, multimedia presentation needs a laboratory as a space that provides multimedia needs. This study aims to reveal the level of student acceptance on the multimedia laboratories, by explaining the direct and indirect effect of internal support and technology infrastructure. Technology Acceptance Model (TAM) is used as the basis of measurement on this research, through the perception of usefulness, ease of use, and the intention, it’s recognized capable of predicting user acceptance about technology. This study used the quantitative method. The data analysis using path analysis that focuses on trimming models, it’s performed to improve the model of path analysis structure by removing exogenous variables that have insignificant path coefficients. The result stated that Internal Support and Technology Infrastructure are well mediated by TAM variables to measure the level of technology acceptance. The implications suggest that TAM can measure the success of multimedia laboratory utilization in Faculty of Engineering UNIMA.

  8. Heavy ion activation analysis

    International Nuclear Information System (INIS)

    Lass, B.D.; Roche, N.G.; Sanni, A.O.; Schweikert, E.A.; Ojo, J.F.

    1982-01-01

    A report on radioactivation with ion beams of 3 6 Li and 14 N is presented with some analytical applications: the determination of C via 12 C( 6 Li,αn) 13 N; the determination of Li and Be, using 14 N activation. Next, examples, with limitations in selectivity. The detection limits using a 1 μA h of activation irradiation are 5 ppm for C and 1 ppm for Li or Be. With 9 Be suitable for analytical applications are: sup(10,11)B( 9 Be,xn) 18 F and 14 N( 9 Be,αn) 18 F. Assuming a 1 μA h irradiation the detection limits for N and B are 1.5 ng and 0.5 ng, respectively, using a 7.8 MeV 9 Be beam. For activation with 12 C, experimental results with 12 MeV 12 C beam demonstrate that the beam is best suited for 7 Li analysis by the reaction 7 Li( 12 C,n) 18 F. The detection limit for a 1 μA h irradiation is 1 ng and the only other low Z elements activated are B and C. Finally, 12 C radioactivation was further combined with autoradiography for positional analysis. The spatial resolution of the technique was estimated to be 40 μm for an exposure corresponding to 6x10 5 disintegrations. As low as 10 -12 g of Li was readily detected by autoradiography. (author)

  9. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  10. The dynamic analysis facility at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Argue, D.S.; Howatt, W.T.

    1979-10-01

    The Dynamic Analysis Facility at the Chalk River Nuclear Laboratories (CRNL) of Atomic Energy of Canada Limited (AECL) comprises a Hybrid Computer, consisting of two Applied Dynamic International AD/FIVE analog computers and a Digital Equipment Corporation (DEC) PDP-11/55 digital computer, and a Program Development System based on a DEC PDP-11/45 digital computer. This report describes the functions of the various hardware components of the Dynamic Analysis Facility and the interactions between them. A brief description of the software available to the user is also given. (auth)

  11. 76 FR 9025 - Agency Information Collection Activities; Proposed Collection; Comment Request; Good Laboratory...

    Science.gov (United States)

    2011-02-16

    ...; (3) equipment inspection, maintenance, calibration, and testing records; (4) documentation of feed...] Agency Information Collection Activities; Proposed Collection; Comment Request; Good Laboratory Practice... for public comment in response to the notice. This notice solicits comments on the good laboratory...

  12. Stanford Synchrotron Radiation Laboratory activity report for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.; Cantwell, K. [eds.

    1988-12-31

    During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

  13. Laboratory experience in the analysis of orphan waste

    International Nuclear Information System (INIS)

    Leventhal, L.; Kharkar, D.P.

    1986-01-01

    Energy related low level radioactive waste mixed with inorganic and organic hazardous waste derive from all stages of the fuel cycle. In order to comply with EPA and NRC regulations, prior to disposal this waste must be analyzed. For the analytical laboratory, the samples comprise both a potential radiation and chemical hazard. Screening procedures for handling such samples are described. Sophisticated instrumentation is necessary to identify the contaminants with the sensitivity required by the EPA and NRC. Aliquotting and dilution techniques have been adequate to reduce the activity levels sufficiently to allow operations in an uncontrolled laboratory and meet the minimum detection levels. Higher level samples are analyzed in a controlled area employing dedicated instrumentation and health physics precautions

  14. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  15. Analysis of laboratory compaction methods of roller compacted concrete

    Science.gov (United States)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  16. Los Alamos National Laboratory Economic Analysis Capability Overview

    Energy Technology Data Exchange (ETDEWEB)

    Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group

    2016-04-19

    Los Alamos National Laboratory has developed two types of models to compute the economic impact of infrastructure disruptions. FastEcon is a fast running model that estimates first-­order economic impacts of large scale events such as hurricanes and floods and can be used to identify the amount of economic activity that occurs in a specific area. LANL’s Computable General Equilibrium (CGE) model estimates more comprehensive static and dynamic economic impacts of a broader array of events and captures the interactions between sectors and industries when estimating economic impacts.

  17. Standard reference materials analysis for MINT Radiocarbon Laboratory

    International Nuclear Information System (INIS)

    Noraishah Othman; Kamisah Alias; Nasasni Nasrul

    2004-01-01

    As a follow-up to the setting up of the MINT Radiocarbon Dating facility. an exercise on the IAEA standard reference materials was carried out. Radiocarbon laboratories frequently used these 8 natural samples to verify their systems. The materials were either pretreated or analysed directly to determine the activity of 14 C isotopes of the five samples expressed in % Modern (pMC) terms and to make recommendations on further use of these materials. We present the results of the five materials and discuss the analyses that were undertaken. (Author)

  18. The Lawrence Livermore National Laboratory Intelligent Actinide Analysis System

    International Nuclear Information System (INIS)

    Buckley, W.M.; Carlson, J.B.; Koenig, Z.M.

    1993-07-01

    The authors have developed an Intelligent Actinide Analysis System (IAAS) for Materials Management to use in the Plutonium Facility at the Lawrence Livermore National Laboratory. The IAAS will measure isotopic ratios for plutonium and other actinides non-destructively by high-resolution gamma-ray spectrometry. This system will measure samples in a variety of matrices and containers. It will provide automated control of many aspects of the instrument that previously required manual intervention and/or control. The IAAS is a second-generation instrument, based on the authors' experience in fielding gamma isotopic systems, that is intended to advance non-destructive actinide analysis for nuclear safeguards in performance, automation, ease of use, adaptability, systems integration and extensibility to robotics. It uses a client-server distributed monitoring and control architecture. The IAAS uses MGA 3 as the isotopic analysis code. The design of the IAAS reduces the need for operator intervention, operator training, and operator exposure

  19. The Lawrence Livermore National Laboratory Intelligent Actinide Analysis System

    International Nuclear Information System (INIS)

    Buckley, W.M.; Carlson, J.B.; Koenig, Z.M.

    1993-01-01

    The authors have developed an Intelligent Actinide Analysis System (IAAS) for Materials Management to use in the Plutonium Facility at the Lawrence Livermore National Laboratory. The IAAS will measure isotopic ratios for plutonium and other actinides non-destructively by high-resolution gamma-ray spectrometry. This system will measure samples in a variety of matrices and containers. It will provide automated control of many aspects of the instrument that previously required manual intervention and/or control. The IAAS is a second-generation instrument, based on experience in fielding gamma isotopic systems, that is intended to advance non-destructive actinide analysis for nuclear safeguards in performance, automation, ease of use, adaptability, systems integration and extensibility to robotics. It uses a client-server distributed monitoring and control architecture. The IAAS uses MGA as the isotopic analysis code. The design of the IAAS reduces the need for operator intervention, operator training, and operator exposure

  20. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    International Nuclear Information System (INIS)

    Wu, Sangik; Kim, Y. K.; Kim, H. R.

    2007-05-01

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future

  1. Investigating the status and barriers of science laboratory activities ...

    African Journals Online (AJOL)

    Amy Stambach

    of 1502 secondary schools) schools having science laboratories (MINEDUC, 2014). ... focusing on primary teacher‟s pre-service education in terms of trainability ..... teaching approaches used in teaching „science and elementary technology ...

  2. Hanford Laboratories Operation monthly activities report, May 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-06-15

    This is the monthly report for the Hanford Laboratories Operation, May, 1962. Reactor fuels, chemistry, dosimetry, separation process, reactor technology employee relations, operations research and synthesis operation, programming, and radiation protection are discussed.

  3. Laboratory Evaluation of Insecticidal Activities of Some Botanicals ...

    African Journals Online (AJOL)

    user

    IJAAAR 11 (1&2): 172-182, 2015 International Journal of Applied Agricultural and Apicultural Research. © Faculty of Agricultural Sciences, LAUTECH, Ogbomoso, Nigeria, 2015. Laboratory ...... gratissimum L. Bioscience Discovery. 3(1):20-24.

  4. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  5. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  6. Neutron activation analysis

    International Nuclear Information System (INIS)

    Okada, Yukiko

    2005-01-01

    Trends and progress in neutron activation analysis (NAA) for the period starting in 1999 to 2003 are presented. Numbers of published reports on NAA are decreasing year by year as investigated from the database JST and NUCLEN. Summary reports on the international conferences held on NAA are followed by classifying according to the fields: various measurement techniques and application fields. Specially focused topics are newly developed techniques for measuring trace elements with high sensitivity and high accuracy such as (1) by diminishing the Compton-background gamma-rays using anti-coincidence technique, (2) by using prompt-gamma rays measurement method (PGAA) and (3) by using a gamma-ray detector array (GEMINI), which has succeeded in a simultaneous quantification of 27 elements from a standard rock sample having a weight of only 10 milligrams, and others. These techniques will be applied in the space and earth sciences and medical fields. (S. Ohno)

  7. LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory

    Science.gov (United States)

    Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.

    2017-08-01

    MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.

  8. A MASSive Laboratory Tour. An Interactive Mass Spectrometry Outreach Activity for Children

    Science.gov (United States)

    Jungmann, Julia H.; Mascini, Nadine E.; Kiss, Andras; Smith, Donald F.; Klinkert, Ivo; Eijkel, Gert B.; Duursma, Marc C.; Cillero Pastor, Berta; Chughtai, Kamila; Chughtai, Sanaullah; Heeren, Ron M. A.

    2013-07-01

    It is imperative to fascinate young children at an early stage in their education for the analytical sciences. The exposure of the public to mass spectrometry presently increases rapidly through the common media. Outreach activities can take advantage of this exposure and employ mass spectrometry as an exquisite example of an analytical science in which children can be fascinated. The presented teaching modules introduce children to mass spectrometry and give them the opportunity to experience a modern research laboratory. The modules are highly adaptable and can be applied to young children from the age of 6 to 14 y. In an interactive tour, the students explore three major scientific concepts related to mass spectrometry; the building blocks of matter, charged particle manipulation by electrostatic fields, and analyte identification by mass analysis. Also, the students carry out a mass spectrometry experiment and learn to interpret the resulting mass spectra. The multistage, inquiry-based tour contains flexible methods, which teach the students current-day research techniques and possible applications to real research topics. Besides the scientific concepts, laboratory safety and hygiene are stressed and the students are enthused for the analytical sciences by participating in "hands-on" work. The presented modules have repeatedly been successfully employed during laboratory open days. They are also found to be extremely suitable for (early) high school science classes during laboratory visit-focused field trips.

  9. High accuracy laboratory spectroscopy to support active greenhouse gas sensing

    Science.gov (United States)

    Long, D. A.; Bielska, K.; Cygan, A.; Havey, D. K.; Okumura, M.; Miller, C. E.; Lisak, D.; Hodges, J. T.

    2011-12-01

    Recent carbon dioxide (CO2) remote sensing missions have set precision targets as demanding as 0.25% (1 ppm) in order to elucidate carbon sources and sinks [1]. These ambitious measurement targets will require the most precise body of spectroscopic reference data ever assembled. Active sensing missions will be especially susceptible to subtle line shape effects as the narrow bandwidth of these measurements will greatly limit the number of spectral transitions which are employed in retrievals. In order to assist these remote sensing missions we have employed frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) [2], a high-resolution, ultrasensitive laboratory technique, to measure precise line shape parameters for transitions of O2, CO2, and other atmospherically-relevant species within the near-infrared. These measurements have led to new HITRAN-style line lists for both 16O2 [3] and rare isotopologue [4] transitions in the A-band. In addition, we have performed detailed line shape studies of CO2 transitions near 1.6 μm under a variety of broadening conditions [5]. We will address recent measurements in these bands as well as highlight recent instrumental improvements to the FS-CRDS spectrometer. These improvements include the use of the Pound-Drever-Hall locking scheme, a high bandwidth servo which enables measurements to be made at rates greater than 10 kHz [6]. In addition, an optical frequency comb will be utilized as a frequency reference, which should allow for transition frequencies to be measured with uncertainties below 10 kHz (3×10-7 cm-1). [1] C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, et al., J. Geophys. Res.-Atmos. 112, D10314 (2007). [2] J. T. Hodges, H. P. Layer, W. W. Miller, G. E. Scace, Rev. Sci. Instrum. 75, 849-863 (2004). [3] D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, et al., J. Quant. Spectrosc. Radiat. Transfer 111, 2021-2036 (2010). [4] D. A. Long, D. K. Havey, S. S. Yu, M. Okumura, et al., J. Quant. Spectrosc

  10. Molecular activation analysis for chemical species studies

    International Nuclear Information System (INIS)

    Chai Zhifang; Mao Xueying; Wang Yuqi; Sun Jingxin; Qian Qingfang; Hou Xiaolin; Zhang Peiqun; Chen Chunying; Feng Weiyu; Ding Wenjun; Li Xiaolin; Li Chunsheng; Dai Xiongxin

    2001-01-01

    The Molecular Activation Analysis (MAA) mainly refers to an activation analysis method that is able to provide information about the chemical species of elements in systems of interest, though its exact definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the bulk contents or concentrations are often insignificant for judging biological, environmental or geochemical effects of elements. In this paper, the features, methodology and limitation of MAA were outlined. Further, the up-to-date MAA progress made in our laboratory was introduced as well. (author)

  11. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  12. 9 CFR 590.960 - Small importations for consignee's personal use, display, or laboratory analysis.

    Science.gov (United States)

    2010-01-01

    ... personal use, display, or laboratory analysis. 590.960 Section 590.960 Animals and Animal Products FOOD... personal use, display, or laboratory analysis. Any egg products which are offered for importation, exclusively for the consignee's personal use, display, or laboratory analysis, and not for sale or...

  13. Pacific Northwest Laboratory monthly activities report, April 1965

    Energy Technology Data Exchange (ETDEWEB)

    1965-05-14

    This report discusses research at the Pacific Northwest Laboratory on topics relating to hanford production reactors. The topic deal with: reactor and material technology; reactor physics and instruments; chemistry; biology and medicine; applied mathematics; radiation protection; and test reactor and engineering services.

  14. The contaminant analysis automation robot implementation for the automated laboratory

    International Nuclear Information System (INIS)

    Younkin, J.R.; Igou, R.E.; Urenda, T.D.

    1995-01-01

    The Contaminant Analysis Automation (CAA) project defines the automated laboratory as a series of standard laboratory modules (SLM) serviced by a robotic standard support module (SSM). These SLMs are designed to allow plug-and-play integration into automated systems that perform standard analysis methods (SAM). While the SLMs are autonomous in the execution of their particular chemical processing task, the SAM concept relies on a high-level task sequence controller (TSC) to coordinate the robotic delivery of materials requisite for SLM operations, initiate an SLM operation with the chemical method dependent operating parameters, and coordinate the robotic removal of materials from the SLM when its commands and events has been established to allow ready them for transport operations as well as performing the Supervisor and Subsystems (GENISAS) software governs events from the SLMs and robot. The Intelligent System Operating Environment (ISOE) enables the inter-process communications used by GENISAS. CAA selected the Hewlett-Packard Optimized Robot for Chemical Analysis (ORCA) and its associated Windows based Methods Development Software (MDS) as the robot SSM. The MDS software is used to teach the robot each SLM position and required material port motions. To allow the TSC to command these SLM motions, a hardware and software implementation was required that allowed message passing between different operating systems. This implementation involved the use of a Virtual Memory Extended (VME) rack with a Force CPU-30 computer running VxWorks; a real-time multitasking operating system, and a Radiuses PC compatible VME computer running MDS. A GENISAS server on The Force computer accepts a transport command from the TSC, a GENISAS supervisor, over Ethernet and notifies software on the RadiSys PC of the pending command through VMEbus shared memory. The command is then delivered to the MDS robot control software using a Windows Dynamic Data Exchange conversation

  15. Designing laboratory activities in elementary school oriented to scientific approach for teachers SD-Kreatif Bojonegoro

    Science.gov (United States)

    Dwikoranto; Surasmi, W. A.; Suparto, A.; Tresnaningsih, S.; Sambada, D.; Setyowati, T.; Faqih, A.; Setiani, R.

    2018-03-01

    Important science lessons are introduced to elementary school students through inquiry. This training is important to do because one key determinant of succesful laboratory activities is teachers. This course aims to enable teachers to design an inquiry-based Laboratory Activity and be able to apply it in the classroom. The training was conducted at SD-Kreatif Bojonegoro by Modeling, Design Laboratory activities and Implementing. The results of Laboratory Activities designed to trace the seven aspects that can support the development of inquiry skills in either category. The teacher's response in this activity is positive. The conclusion of this training can improve the ability of teachers in designing and implementing laboratory activities of Science and then expected to positively affect the frequency of science laboratory activities. Usually teachers use learning by using this Laboratory Activity, it will be affected on the pattern of inquiry behavior to the students as well so that will achieve the expected goals. Teachers are expected to continue for other topics, even for other similarly characterized subjects. This habitation is important so that the teacher's skill in making Laboratory Activity continues to be well honed and useful for the students.

  16. Activities of the IPEN laboratory (CNEN/SP - Brazil) of nuclear metrology

    International Nuclear Information System (INIS)

    Dias, M.S.; Koskinas, M.F.; Pocobi, E.; Silva, C.A.M.; Machado, R.R.

    1987-01-01

    The determination of radionuclide activity for radioactive sources and standardized solutions is reported as the main purpose of the IPEN laboratory of nuclear metrology. The measurement systems installed in the laboratory, the measurable activity intervals and some of the standardized radionuclides (emphasizing the ones used in nuclear medicine) are presented. (M.A.C.) [pt

  17. Testing activities at the National Battery Test Laboratory

    Science.gov (United States)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  18. Proficiency Testing Activities of Frequency Calibration Laboratories in Taiwan, 2009

    Science.gov (United States)

    2009-11-01

    cht.com.tw Abstract In order to meet the requirements of ISO 17025 and the demand of TAF (Taiwan Accreditation Foundation) for calibration inter... IEC 17025 General requirements for the competence of testing and calibration laboratories. The proficiency testing results are then important...on-site evaluation, an assessment team is organized to examine the technical competence of the labs and their compliance with the requirements of ISO

  19. Shielded analytical laboratory activities supporting waste isolation programs

    International Nuclear Information System (INIS)

    McCown, J.J.

    1985-08-01

    The Shielded Analytical Laboratory (SAL) is a six cell manipulator-equipped facility which was built in 1962 as an addition to the 325 Radiochemistry Bldg. in the 300 Area at Hanford. The facility provides the capability for handling a wide variety of radioactive materials and performing chemical dissolutions, separations and analyses on nuclear fuels, components, waste forms and materials from R and D programs

  20. Precision of Carbon-14 analysis in a single laboratory

    International Nuclear Information System (INIS)

    Nashriyah Mat; Misman Sumin; Holland, P.T.

    2009-01-01

    In a single laboratory, one operator has used a Biological Material Oxidizer (BMO) unit to prepare (combust) solid samples before analyzing (counting) the radioactivity by using various Liquid Scintillation Counters (LSCs). The different batches of commercially available solid Certified Reference Material (CRM, Amersham, UK) standards were analyzed depending on the time of analysis over a period of seven years. The certified radioactivity and accuracy of the C-14 standards as cellulose tabs, designated as the Certified Reference Material (CRM), was 5000 + 3% DPM. Each analysis was carried out using triplicate tabs. The medium of counting was commercially available cocktail containing the sorbent solution for the oxidizer gases, although of different batches were used depending on the date of analysis. The mean DPM of the solutions was measured after correction for quenching by the LSC internal standard procedure and subtracting the mean DPM of control. The precisions of the standard and control counts and of the recovery percentage for the CRM were measured as the coefficients of variation (CV), for the C-14 determination over the seven year period. The results from a recently acquired Sample Oxidizer unit were also included for comparison. (Author)

  1. Recent advances in the designing and the equipment of high activity laboratories

    International Nuclear Information System (INIS)

    Bazire, R.; Duhamel, F.

    1960-01-01

    The authors described the general principles governing the design of a laboratory for experimenting and handling radioactive substances. The difficulties encountered are of two types: 1) those due to the dangers of external irradiation; 2) those due to the dangers of internal contamination. As an example, the authors describe the French achievements in this field and in particular: - the high-activity laboratories at Saclay; - the laboratory for the examination of irradiated fuels at Saclay; - the 'hot' laboratory of the CEN-Grenoble; - the alpha, beta and gamma laboratories of the CEN-Fontenay-aux-Roses. Finally, the report describes the protective materials used for these installations. (author) [fr

  2. An overview of analytical activities of control laboratory in NFC

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Subba Rao, Y.; Saibaba, N.

    2015-01-01

    As per the mandate of Department of Atomic Energy (DAE), Nuclear Fuel Complex (NFC) was established in 1971 for manufacturing Fuel Sub-assemblies for both PHWRs and BWRs operating in India on industrial scale. Control Laboratory (C.Lab) was envisaged as a centralized analytical facility to achieve the objectives of NFC on the similar lines of its predecessor, Analytical Chemistry Division at BARC. With highest ever production of 1200 MT of PHWR Fuel and 16 lakhs PHWR Fuel Tubes achieved during production year of 2014-15 and with increase in demand further for fuel requirements, NFC has got demanding situation in next year and accordingly, C. Lab has also geared up to meet the challenging demands of all the production plant. The average annual analytical load comes around 5 Lakhs estimations and to manage such a massive analytical load a proper synergy between good chemistry, process conditions and analytical methods is a necessity and laboratory is able to meet this important requirement consistently

  3. Activation analysis in water chemistry

    International Nuclear Information System (INIS)

    Szabo, A.; Toth, A.

    1978-01-01

    The potential applications of activation analysis in water chemistry are discussed. The principle, unit operations, the radiation sources and measuring instruments of activation analysis are described. The sensitivity of activation analysis is given in tabulated form for some elements of major importance in water chemistry and the elements readily accessible to determination by measurement of the spontaneous gamma radiation are listed. A few papers selected from the recent international professional literature are finally reviewed, in which the authors report on the results obtained by activation analysis applied to water chemistry. (author)

  4. Overview of the current and planned activities in the French underground research laboratory at Bure

    International Nuclear Information System (INIS)

    Delay, J.

    2006-01-01

    In November 1999 Andra began building an Underground Research Laboratory (URL) on the border of the Meuse and Haute-Marne departments in eastern France. The research activities of the URL are dedicated to reversible, deep geological disposal of high-activity, long-lived radioactive wastes in an argillaceous host rock. The studies covered four complementary aspects: acquisition of data (waste packages, material behaviour and clay medium), repository design and reversibility studies, analysis of the long term behaviour of the repository, safety analyses. For the next phase starting in 2007, Andra will carry out integrated tests of a technological scope, i.e. trial drift, demonstrator of current drift. The results should make it possible to assess the safety of a disposal over several tens and even hundreds of thousands of years and submit in 2015 a file for permission request for the HLW and ILW deep disposal. (author)

  5. Service activities of chemical analysis division

    International Nuclear Information System (INIS)

    Eom, Tae Yoon; Suh, Moo Yul; Park, Kyoung Kyun; Jung, Ki Suk; Joe, Kih Soo; Jee, Kwang Yong; Jung, Woo Sik; Sohn, Se Chul; Yeo, In Heong; Han, Sun Ho

    1988-12-01

    Progress of the Division during the year of 1988 was described on the service activities for various R and D projects carrying out in the Institute, for the fuel fabrication and conversion plant, and for the post-irradiation examination facility. Relevant analytical methodologies developed for the chemical analysis of an irradiated fuel, safeguards chemical analysis, and pool water monitoring were included such as chromatographic separation of lanthanides, polarographic determination of dissolved oxygen in water, and automation on potentiometric titration of uranium. Some of the laboratory manuals revised were also included in this progress report. (Author)

  6. Ultra-Short-Pulse Laser Effects Research and Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables research into advanced laser countermeasure techniques.DESCRIPTION: This laser facility has a capability to produce very high peak power levels of...

  7. IAEA laboratory activities. The IAEA laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo. 3rd report

    International Nuclear Information System (INIS)

    1966-01-01

    This third 'IAEA Laboratory Activities' report describes development and work during the year 1965. It includes activities of the IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries at Cairo

  8. IAEA Laboratory activities. The IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo. Sixth report

    International Nuclear Information System (INIS)

    1969-01-01

    This sixth 'IAEA Laboratory Activities' report describes development and work during the year 1968. It includes activities of the IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries at Cairo. (author)

  9. IAEA Laboratory activities. The IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo. Fourth report

    International Nuclear Information System (INIS)

    1967-01-01

    This fourth 'IAEA Laboratory Activities' report describes development and work during the year 1966. It includes activities of the IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries at Cairo. (author)

  10. Time and Frequency Activities at the NASA Jet Propulsion Laboratory

    National Research Council Canada - National Science Library

    Tjoelker, R. L

    2007-01-01

    ...). When implemented into the DSN Frequency and Timing Subsystem (FTS), these technologies provide precise and stable phase, frequency, and time references for NASA's deep space communication, tracking, navigation, and radio science activities...

  11. SATISFACTION OF MARKETING COMMUNICATIONS IN THE ACTIVITIES OF THE DENTAL LABORATORY

    Directory of Open Access Journals (Sweden)

    Minko M. Milev

    2017-06-01

    Full Text Available Purpose: Analysis of the attitude of dental physicians, dental technicians, patients and students of dental technology, about the marketing communication in the work of dental technical laboratories. Material and Methods: The main study was conducted on the territory of Northeastern Bulgaria, using direct anonymous paper questionnaires in the period between April and July 2015. A total of 700 respondents were interviewed, distributed into four groups (dental physicians, dental technicians, students of dental technology and patients of dental laboratories. Results and Discussion: The study was designed to investigate the satisfaction with marketing communications among all participants in dental laboratory activities. Satisfaction of dental physicians with aspects of marketing communication of dental laboratories was 47,39% (n=127, and a negative answer was given from 22,76% (n = 61 of respondents. The majority of dental technicians (75,91%, n=104 were satisfied with aspects of marketing communication with dental clinics/dental physicians, while 29,85% (n = 80 weren’t satisfied. The study of the satisfaction with the communication among the students showed that 60,42% (n=116 of them were satisfied and lack of satisfaction with communication was reported by 1,56% (n=3 of the respondents. Among the studied patients, 81,55% (n=84 felt satisfied with the communication carried out at the dental clinics, and 8,74% (n = 9 among patients were not satisfied. Conclusion: The integrated communications may successfully achieve the goals of a given communication campaign by a well-coordinated utilisation of the different kinds of IMC instruments: advertising, public relations (PR, personal sales, sales promotions and others. The desired synergy is attained when all the IMC instruments are synchronised and mutually enhanced.

  12. Alternative method for intramuscular fat analysis using common laboratory equipment.

    Science.gov (United States)

    Segura, J; Calvo, L; Óvilo, C; González-Bulnes, A; Olivares, A; Cambero, M I; López-Bote, C J

    2015-05-01

    A procedure to quantify intramuscular fat was developed using common inexpensive laboratory equipment. Three homogenization methods of lyophilized muscle samples (Ball-mill, Grinder and Mortar) and two extraction methods (Ball-mill or Vortex) were used in turkey meat and pork. Two-hundred mg of lyophilized and homogenized samples were accurately weighed and mixed with 1.5 mL of dichloromethane-methanol (8:2) and shaken either in a Mixer Mill (MM400, Retsch Technology) or in a Vortex. The final mixture was separated by centrifugation. Solvent was evaporated under a nitrogen stream and lipid content was gravimetrically determined. Besides, it was checked that the fatty acid profile was not altered by the protocol used. Moreover, the analysis of 4 replicas from the same sample showed different variation coefficients (16-29%) for the new procedures proposed over a wide range of IMF content. The combination of Grinder and Vortex methodologies can be proposed as a simple and inexpensive alternative to previous ones. Copyright © 2015. Published by Elsevier Ltd.

  13. Quality of HIV laboratory testing in Tanzania: a situation analysis ...

    African Journals Online (AJOL)

    December 2004 to February 2005 in 12 laboratories which were conveniently selected to represent all the zones of Tanzania. The questionnaires comprised of questions on laboratory particulars, internal and external quality control for HIV testing and quality control of reagents. Source and level of customer satisfaction of ...

  14. University Physics Students' Ideas of Thermal Radiation Expressed in Open Laboratory Activities Using Infrared Cameras

    Science.gov (United States)

    Haglund, Jesper; Melander, Emil; Weiszflog, Matthias; Andersson, Staffan

    2017-01-01

    Background: University physics students were engaged in open-ended thermodynamics laboratory activities with a focus on understanding a chosen phenomenon or the principle of laboratory apparatus, such as thermal radiation and a heat pump. Students had access to handheld infrared (IR) cameras for their investigations. Purpose: The purpose of the…

  15. Inquiry-Based Laboratory Activities in Electrochemistry: High School Students' Achievements and Attitudes

    Science.gov (United States)

    Sesen, Burcin Acar; Tarhan, Leman

    2013-01-01

    This study aimed to investigate the effects of inquiry-based laboratory activities on high school students' understanding of electrochemistry and attitudes towards chemistry and laboratory work. The participants were 62 high school students (average age 17 years) in an urban public high school in Turkey. Students were assigned to experimental (N =…

  16. Optical Signature Analysis of Tumbling Rocket Bodies via Laboratory Measurements

    Science.gov (United States)

    Cowardin, H.; Lederer, S.; Liou, J.-C.; Ojakangas, G.; Mulrooney, M.

    2012-09-01

    The NASA Orbital Debris Program Office has acquired telescopic lightcurve data on massive intact objects, specifically spent rocket bodies (R/Bs), to ascertain tumble rates in support of the Active Debris Removal (ADR) studies to help remediate the LEO environment. Tumble rates are needed to plan and develop proximity and docking operations for potential future ADR operations. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC emulates illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC employs a 75-W Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The OMC does not attempt to replicate the rotation rates, but focuses on ascertaining how an object is rotating as seen from multiple phase angles. The two targets studied are scaled (1:48) SL-8 Cosmos 3M second stages. The first target is painted in the standard Russian government "gray" scheme and the second target is white/orange as used for commercial missions. This paper summarizes results of the two scaled rocket bodies, each observed in three independent rotation states: (a) spin-stabilized rotation (about the long axis), (b) end-over-end rotation, and (c) a 10 degree wobble about the center of mass. The first two cases represent simple spin about either primary axis. The third - what we call "wobble" - represents maximum principal axis rotation, with an inertia tensor that is offset from the symmetry axes. By comparing the resultant phase and orientation-dependent laboratory signatures with actual lightcurves derived from telescopic observations of orbiting R/Bs, we intend to assess the intrinsic R/B rotation states. In the simplest case, simulated R/B behavior coincides with principal axis spin states, while more complex R

  17. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  18. LNLS - Brazilian Synchrotron Light Laboratory Activity Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This activity report highlight the activities as follows: atomic local order of hafnium and silicon in dielectric films; development of bio absorbent for arsenite; insights into enzyme-substrate interaction; investigation of metastable phases in zirconia-ceria nano-ceramics by synchrotron X-ray powder diffraction; lattice distortion effects on magneto-structural phase transition of Mn As; mechanism of orbital ordering in transition-metal oxides; organic molecules in star-forming regions; spatially ordered In P dots grown on compositionally modulated In Ga P layers; structural insights into {beta}-Xylosidase from Trichoderma reesei, and surface random alloys studied by synchrotron based photoelectron diffraction.

  19. Teratogenic impact of dioxin-activated AHR in laboratory animals

    Science.gov (United States)

    AHR and ARNT are expressed in mouse and human palatal shelves and in the urinary tract of the mouse fetus. AHR expression, translocation to the nucleus, binding to DRE, and activation are required for mediation of TCDD-induction of CP and HN. Although the human palate requires a ...

  20. PPPL Laboratory Program Development Activities for fiscal year 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This report discusses the following topics: Advanced Tokamak Studies; Princeton Spherical Tokamak Experiment; Medium-Scale Long-Pulse Device Study; Collaborations Planning and Exploration; Divertor Simulator Studies; Gyrofluid Simulation; Feedback Kink Study; Stellarator Studies; High-Field Magnet Studies; Analysis of Helically Wound Solenoids; X-Ray Lithography with Tokamak Radiation; Magnetospheric Plasma Circulation; and Projection Lithography with X-Ray Laser

  1. Clermont-Ferrand Corpuscular Physics Laboratory - LPCCF. Activity report January 2006-December 2007

    International Nuclear Information System (INIS)

    2008-01-01

    The Clermont-Ferrand Corpuscular Physics Laboratory is a joint research unit of the Blaise Pascal University and the National Centre for Scientific Research (CNRS) which belongs to the French National Institute of Nuclear and particle physics (IN2P3). The main research topic, 'Particle physics' and 'Hadronic matter', represents about 3/4 of the laboratory activities and are carried out in the framework of big international cooperations. Other activities of LPCCF are pluri-disciplinary and are related to nuclear physics applications, like isotope dating, low radioactivities, low-dose biological radiation effects, biomaterials, medical imaging etc.. This report presents the activities of the laboratory from January 2006 to December 2007: 1 - Forewords; 2 - Theoretical physics; 3 - Particle physics; 4 - Hadronic matter; 5 - Interdisciplinary research; 6 - Technical and administrative services; 7 - Laboratory organisation and means; 8 - Teaching activity; 9 - Communication; 10 - Regional policy and valorisation; 11 - Scientific production 12 - Staff

  2. Clermont-Ferrand Corpuscular Physics Laboratory - LPCCF. Activity report June 2003-December 2005

    International Nuclear Information System (INIS)

    2006-01-01

    The Clermont-Ferrand Corpuscular Physics Laboratory is a joint research unit of the Blaise Pascal University and the National Centre for Scientific Research (CNRS) which belongs to the French National Institute of Nuclear and particle physics (IN2P3). The main research topic, 'Particle physics' and 'Hadronic matter', represents about 3/4 of the laboratory activities and are carried out in the framework of big international cooperations. Other activities of LPCCF are pluri-disciplinary and are related to nuclear physics applications, like isotope dating, low radioactivities, low-dose biological radiation effects, biomaterials, medical imaging etc.. This report presents the activities of the laboratory from June 2003 to December 2005: 1 - Forewords; 2 - Theoretical physics; 3 - Particle physics; 4 - Hadronic matter; 5 - Interdisciplinary research; 6 - Technical and administrative services; 7 - Laboratory organisation and means; 8 - Teaching activity; 9 - Communication; 10 - Regional policy and valorisation; 11 - Scientific production

  3. Time and Frequency Activities at the Lithuanian National Time Standard Laboratory

    National Research Council Canada - National Science Library

    Miskinis, Rimantas

    2007-01-01

    ...), the Datum 2001 and SyncServer S250 NTP servers are used. Laboratory activities on coordination of the BALTICTIME project Reinforcing e-Government services in Baltic States through legal and accountable Digital Time Stamps...

  4. Application of neutron activation analysis

    International Nuclear Information System (INIS)

    Dybczynski, R.

    2001-01-01

    The physical basis and analytical possibilities of neutron activation analysis have been performed. The number of applications in material engineering, geology, cosmology, oncology, criminology, biology, agriculture, environment protection, archaeology, history of art and especially in chemical analysis have been presented. The place of the method among other methods of inorganic quantitative chemical analysis for trace elements determination has been discussed

  5. Analysis of Precision of Activation Analysis Method

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Nørgaard, K.

    1973-01-01

    The precision of an activation-analysis method prescribes the estimation of the precision of a single analytical result. The adequacy of these estimates to account for the observed variation between duplicate results from the analysis of different samples and materials, is tested by the statistic T...

  6. Activation analysis in national economy

    International Nuclear Information System (INIS)

    1974-01-01

    The collected papers are based on the materials of the III All-Union Activation Analysis Meeting. The papers selected deal with the theoretical questions of the activation analysis, its hardware, latest developments in the field of automatic analysis and computer methods employment in the treatment of analytical information. Described are the new techniques for determination of a large number of elements in samples of biological and geological origin. Some results of the use of the activation analysis in various fields of science and technology are provided. The volume reflects the present status of activation analysis techniques in the USSR and might be of interest both for specialists, and for those involved in obtaining and using information on the composition of substances. (auth.)

  7. Wet chemical analysis with a laboratory robotic system

    International Nuclear Information System (INIS)

    Burkett, S.D.; Dyches, G.M.; Spencer, W.A.

    1984-01-01

    Emphasis on laboratory automation has increased in recent years. The desire to improve analytical reliability, increase productivity, and reduce exposure of personnel to hazardous materials has been fundamental to this increase. The Savannah River Laboratory (SRL) performs research and development on nuclear materials. Development of methods to increase efficiency and safety and to reduce exposure of personnel to radioactive materials is an ongoing process at our site. Robotic systems offer a potentially attractive way to achieve these goals

  8. LUSI LAB: a multidisciplinary project in a natural active laboratory

    Science.gov (United States)

    Mazzini, Adriano; Lusi Lab Team

    2016-04-01

    The 29th of May 2006 several gas and mud eruption sites suddenly appeared along a strike-slip fault (Watukosek fault system) in the NE of Java, Indonesia. The eruption occurred almost two days after a 6.3 M earthquake striking the island of Java. Within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. To date Lusi is still active. This disaster has forced 50.000 people to be evacuated and an area of ~7 km2 is covered by mud. The social impact of the eruption and its spectacular dimensions still attract the attention of international media reporting on the "largest mud eruption site on Earth". LUSI LAB (ERC grant n° 308126) focuses on five main aspects in order to complete a comprehensive regional investigation of this impressive event: 1) sampling and monitoring the active Lusi eruption site; 2) monitoring and sampling the neighbouring volcanic arc; 3) monitoring the local micro-seismicity and its relationship with regional seismicity; 4) monitoring the fault system originating from the volcanic arc, crossing Lusi and extending to the NE of Java island; 5) numerical modelling of Lusi activity and the strike-slip/magmatic complex system. We completed several field expeditions. Our studies investigated the mechanisms of reactivation of the Watukosek fault system that crosses Lusi locality and continues to the NE of Java. Results show that after the 27-05-2009 earthquake it was activated the lateral movement of this strike-slip system resulting in these several aligned eruptions sites including Lusi. Further, our geochemical studies of the erupted fluids reveal a mantle signature and point to a connection with the neighboring Arjuno-Welirang volcanic complex indicating that Lusi is a sedimentary hosted geothermal system. We have designed, developed and constructed the Lusi drone. This is a remote controlled hexacopter developed and assembled in order to complete multidisciplinary studies in extreme and

  9. Identification of laboratory markers of disease activity in rheumatoid arthritis abstract objective

    International Nuclear Information System (INIS)

    Naqi, N.; Ahmed, T.A.; Malik, J.M.

    2012-01-01

    To identify the laboratory markers of disease activity, by finding relationship of biochemical markers with clinical disease activity measurement in patients suffering from rheumatoid arthritis (RA). Study Design: Cross sectional analytical study. Place and duration of study: Department of Immunology, Armed Forces Institute of Pathology (AFIP), Rawalpindi from January 2009 to January 2010 in collaboration with Fauji Foundation Hospital and Military Hospital Rawalpindi. Patients and Methods: One hundred patients diagnosed as having rheumatoid arthritis (RA) as per American college of Rheumatology (ACR) revised criteria 1987 and fulfilling the study's inclusion criteria were studied. These patients were assessed clinically according to Simplified Disease Activity Index (SDAI) and divided into three groups which were mild, moderate and severe based on disease activity. These three groups were then assessed for disease activity by Rheumatoid factor (RA factor), Anti Cyclic Citrullinated Peptide antibodies (anti CCP antibodies), Erythrocyte Sedimentation Rate (ESR) and C- Reactive Proteins (CRP). The association of these laboratory markers with three groups of disease activity was analyzed to detect most sensitive disease activity markers for RA. Results: All the assessed laboratory markers that are RA factor, anti CCP antibodies, ESR and CRP are directly related with RA disease activity and any of them can be used to assess disease activity in RA. However a combination of the tests, analyzed in this study markers maybe used for better prediction of disease activity Conclusion: The identification of the laboratory markers of disease activity may help physician to diagnose aggressive disease early and evaluate prognosis in RA patients. (author)

  10. Analysis of results from intercomparison among Spanish laboratories involved of photon energy ''137 Cs for environmental dosimetry laboratories

    International Nuclear Information System (INIS)

    Gonzalez, A.M.; Brosed, A.; Salas, R.

    2003-01-01

    Any environmental thermoluminescent dosemeter (TLD) system must be periodically calibrated at a calibration laboratory. In this frame, the Consejo de Seguridad Nuclear (CSN) has performed an intercomparison among Spanish laboratories involved in environmental monitoring, by means of TLD, in order to verify the traceability of the whole dosimeter and reader to the national standard for the protection quantities of interest for a given photon energy (''137Cs). To achieve this goal the CSN asked the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) to carry out the reference irradiations in the energy above mentioned at the lonising Radiations Metrology Unit headquarters. Nine laboratories have participated. All the dosemeters were irradiated with the same air kerma rate. The radiological quantity used was the ambient dose equivalent, H (10), and the values of this quantity assigned to each laboratory were between 210 and 360 μSv. All the dosemeters of the participating laboratories met the two analysis criteria used. All of them demonstrated a satisfactory fulfilment of the requirements established by so called trumpet curves and of the requirements established by the ANSI 1311. (Author) 7 refs

  11. Automatic procedure go keep updated the activity levels for each radionuclide existing in a radioactivity laboratory

    International Nuclear Information System (INIS)

    Los Arcos, J.M.

    1988-01-01

    An automatic procedure to keep updated the activity levels each radionuclide existing in a radioactivity laboratory, and its classification according to the Spanish Regulations on Nuclear and Radioactive Establishments is described. This procedure takes into account the mixed composition of each source and whether it is sealed or the activity and mass variation due to extraction or evaporation in non-sealed sources. For a given date and time, the procedure prints out a complete listing of the activity of each radioactive source, the accumulated activity for each radionuclide, for each kind of radionuclide and the actual classification of the laboratory according to the legal regulations above mentioned. (Author)

  12. On exposure to air-borne particulate activity in a radiological laboratory

    International Nuclear Information System (INIS)

    Das, Tanmoy; Bara, Vivek; Jat, Deepika; Srinivasan, P.

    2016-01-01

    This paper attempts to evaluate different exposure scenarios in a laboratory having once through ventilation. It has been considered a laboratory of volume V (m 3 ) which has once through ventilation rate of λ(hr -1 ). It is assumed that a certain amount, q Bq, of long lived activity has got released into the laboratory and the air-bone activity instantaneously got distributed throughout the volume of the laboratory. In the study a simple mathematical expression is applied for the source term for generic cases of containment breach leading to air-borne activity. It is analysed, considering different time duration of release as less than total time of exposure, for duration of 7 hour exposure

  13. Imaging and Modeling Laboratory in Neurobiology and Oncology - IMNC. Activity report 2008-2012

    International Nuclear Information System (INIS)

    Charon, Yves; Arlaud, Nathalie; Mastrippolito, Roland

    2014-09-01

    The Imaging and Modeling Laboratory in Neurobiology and Oncology (IMNC) is an interdisciplinary unit shared between the Paris-Sud and Paris-Diderot universities and the National Institute of Nuclear and particle physics (IN2P3). Created in January 2006, the laboratory activities are structured around three main topics: the clinical and pre-clinical multi-modal imaging (optical and isotopic), the modeling of tumoral processes, and radiotherapy. This report presents the activities of the laboratory during the years 2008-2012: 1 - Forewords; 2 - Highlights; 3 - Research teams: Small animal imaging; Metabolism, imaging and olfaction; Surgery imaging in oncology; Quantification in molecular imaging; Modeling of biological systems; 4 - Technical innovations: Instrumentation, Scientific calculation, Biology department, valorisation and open-source softwares; 5 - Publications; 6 - Scientific life, communication and teaching activities; 7 - Laboratory operation; 8 - Perspectives

  14. Application of failure mode and effect analysis in an assisted reproduction technology laboratory.

    Science.gov (United States)

    Intra, Giulia; Alteri, Alessandra; Corti, Laura; Rabellotti, Elisa; Papaleo, Enrico; Restelli, Liliana; Biondo, Stefania; Garancini, Maria Paola; Candiani, Massimo; Viganò, Paola

    2016-08-01

    Assisted reproduction technology laboratories have a very high degree of complexity. Mismatches of gametes or embryos can occur, with catastrophic consequences for patients. To minimize the risk of error, a multi-institutional working group applied failure mode and effects analysis (FMEA) to each critical activity/step as a method of risk assessment. This analysis led to the identification of the potential failure modes, together with their causes and effects, using the risk priority number (RPN) scoring system. In total, 11 individual steps and 68 different potential failure modes were identified. The highest ranked failure modes, with an RPN score of 25, encompassed 17 failures and pertained to "patient mismatch" and "biological sample mismatch". The maximum reduction in risk, with RPN reduced from 25 to 5, was mostly related to the introduction of witnessing. The critical failure modes in sample processing were improved by 50% in the RPN by focusing on staff training. Three indicators of FMEA success, based on technical skill, competence and traceability, have been evaluated after FMEA implementation. Witnessing by a second human operator should be introduced in the laboratory to avoid sample mix-ups. These findings confirm that FMEA can effectively reduce errors in assisted reproduction technology laboratories. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  15. Analysis of students’ generated questions in laboratory learning environments

    Directory of Open Access Journals (Sweden)

    Juan Antonio Llorens-Molina

    2012-03-01

    Full Text Available In order to attain a reliable laboratory work assessment, we argue taking the Learning Environment as a core concept and a research paradigm that considers the factors affecting the laboratory as a particularly complex educational context. With regard to Laboratory Learning Environments (LLEs, a well known approach is the SLEI (Science Laboratory Environment Inventory. The aim of this research is to design and apply an alternative and qualitative assessment tool to characterize Laboratory Learning Environments in an introductory course of organic chemistry. An alternative and qualitative assessment tool would be useful for providing feed-back for experimental learning improvement; serving as a complementary triangulation tool in educational research on LLEs; and generating meaningful categories in order to design quantitative research instruments. Toward this end, spontaneous questions by students have been chosen as a reliable source of information. To process these questions, a methodology based on the Grounded Theory has been developed to provide a framework for characterizing LLEs. This methodology has been applied in two case studies. The conclusions lead us to argue for using more holistic assessment tools in both everyday practice and research. Likewise, a greater attention should be paid to metacognition to achieve suitable self-perception concerning students’ previous knowledge and manipulative skills.

  16. Hot Chemistry Laboratory decommissioning activities at IPEN/CNEN-SP, Brazil

    International Nuclear Information System (INIS)

    Camilo, Ruth L.; Lainetti, Paulo E.O.

    2009-01-01

    IPEN's fuel cycle activities were accomplished in laboratory and pilot plant scale and most facilities were built in the 70-80 years. Nevertheless, radical changes of the Brazilian nuclear policy in the beginning of 90's determined the interruption of several fuel cycle activities and facilities shutdown. Since then, IPEN has faced the problem of the pilot plants decommissioning considering that there was no experience/expertise in this field at all. In spite of this, some laboratory and pilot plant decommissioning activities have been performed in IPEN in the last years, even without previous experience and training support. One of the first decommissioning activities accomplished in IPEN involved the Hot Chemistry Laboratory. This facility was built in the beginning of the 80's with the proposal of supporting research and development in the nuclear chemistry area. It was decided to settle a new laboratory in the place where the Hot Chemistry Laboratory was installed, being necessary its total releasing from the radioactive contamination point of view. The previous work in the laboratory involved the manipulation of samples of irradiated nuclear fuel, besides plutonium-239 and uranium-233 standard solutions. There were 5 glove-boxes in the facility but only 3 were used with radioactive material. The glove-boxes contained several devices and materials, besides the radioactive compounds, such as: electric and electronic equipment, metallic and plastic pieces, chemical reagents, liquid and solid radioactive wastes, etc. The laboratory's decommissioning process was divided in 12 steps. This paper describes the procedures, problems faced and results related to the Hot Chemistry Laboratory decommissioning operations and its reintegration as a new laboratory of the Chemical and Environmental Technology Center (CQMA) - IPEN-CNEN/SP. (author)

  17. Stanford Synchrotron Radiation Laboratory. Activity report for 1988

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K. [ed.

    1996-01-01

    For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL`s users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL`s experimental facilities and highlights of the experiments of the past year.

  18. Stanford Synchrotron Radiation Laboratory. Activity report for 1988

    International Nuclear Information System (INIS)

    Cantwell, K.

    1996-01-01

    For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL's users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL's experimental facilities and highlights of the experiments of the past year

  19. Safety analysis report for packaging Lawrence Livermore Laboratories shipping containers

    International Nuclear Information System (INIS)

    Evans, J.H.

    1975-12-01

    The Lawrence Livermore Laboratories shipping containers were designed at Oak Ridge National Laboratory for use in transporting weapons and nuclear components. The design for the containers was evaluated to show compliance with applicable regulations governing packages in which radioactive and fissile materials are transported. Computational procedures were used to determine the structural integrity and thermal behavior of the containers relative to the standards for the normal conditions of transport. A full-scale container test model was destructively tested to verify compliance with the standards for the accident conditions. The results of the analytical evaluations and the tests demonstrate that the design for the Lawrence Livermore Laboratories shipping containers is in compliance with the applicable regulations

  20. Activation analysis in food analysis. Pt. 9

    International Nuclear Information System (INIS)

    Szabo, S.A.

    1992-01-01

    An overview is presented on the application of activation analysis (AA) techniques for food analysis, as reflected at a recent international conference titled Activation Analysis and its Applications. The most popular analytical techniques include instrumental neutron AA, (INAA or NAA), radiochemical NAA (RNAA), X-ray fluorescence analysis and mass spectrometry. Data are presented for the multielemental NAA of instant soups, for elemental composition of drinking water in Iraq, for Na, K, Mn contents of various Indian rices, for As, Hg, Sb and Se determination in various seafoods, for daily microelement takeup in China, for the elemental composition of Chinese teas. Expected development trends in AA are outlined. (R.P.) 24 refs.; 8 tabs

  1. Standardizing Activation Analysis: New Software for Photon Activation Analysis

    Science.gov (United States)

    Sun, Z. J.; Wells, D.; Segebade, C.; Green, J.

    2011-06-01

    Photon Activation Analysis (PAA) of environmental, archaeological and industrial samples requires extensive data analysis that is susceptible to error. For the purpose of saving time, manpower and minimizing error, a computer program was designed, built and implemented using SQL, Access 2007 and asp.net technology to automate this process. Based on the peak information of the spectrum and assisted by its PAA library, the program automatically identifies elements in the samples and calculates their concentrations and respective uncertainties. The software also could be operated in browser/server mode, which gives the possibility to use it anywhere the internet is accessible. By switching the nuclide library and the related formula behind, the new software can be easily expanded to neutron activation analysis (NAA), charged particle activation analysis (CPAA) or proton-induced X-ray emission (PIXE). Implementation of this would standardize the analysis of nuclear activation data. Results from this software were compared to standard PAA analysis with excellent agreement. With minimum input from the user, the software has proven to be fast, user-friendly and reliable.

  2. Standardizing Activation Analysis: New Software for Photon Activation Analysis

    International Nuclear Information System (INIS)

    Sun, Z. J.; Wells, D.; Green, J.; Segebade, C.

    2011-01-01

    Photon Activation Analysis (PAA) of environmental, archaeological and industrial samples requires extensive data analysis that is susceptible to error. For the purpose of saving time, manpower and minimizing error, a computer program was designed, built and implemented using SQL, Access 2007 and asp.net technology to automate this process. Based on the peak information of the spectrum and assisted by its PAA library, the program automatically identifies elements in the samples and calculates their concentrations and respective uncertainties. The software also could be operated in browser/server mode, which gives the possibility to use it anywhere the internet is accessible. By switching the nuclide library and the related formula behind, the new software can be easily expanded to neutron activation analysis (NAA), charged particle activation analysis (CPAA) or proton-induced X-ray emission (PIXE). Implementation of this would standardize the analysis of nuclear activation data. Results from this software were compared to standard PAA analysis with excellent agreement. With minimum input from the user, the software has proven to be fast, user-friendly and reliable.

  3. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    Science.gov (United States)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  4. The WEBSIM FISHBANKS Simulation Laboratory: Analysis of Its Ripple Effects

    Science.gov (United States)

    Arantes do Amaral, João Alberto; Hess, Aurélio

    2018-01-01

    In this article, we discuss the ripple effects of the WEBSIM FISHBANKS Simulation Laboratory held at Federal University of Sao Paulo (UNIFESP) in 2014, held as a result of a partnership between the Sloan School of Management of the Massachusetts Institute of Technology, the UNIFESP, and the Brazilian Chapter of the System Dynamics Society of…

  5. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    International Nuclear Information System (INIS)

    1995-09-01

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: sm-bullet Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) sm-bullet Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as open-quotes lowclose quotes hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with open-quotes moderateclose quotes or open-quotes highclose quotes hazard classifications

  6. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: {sm_bullet} Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) {sm_bullet} Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as {open_quotes}low{close_quotes} hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with {open_quotes}moderate{close_quotes} or {open_quotes}high{close_quotes} hazard classifications.

  7. The performance test of NAA laboratory at radionuclide measure with low activity

    International Nuclear Information System (INIS)

    Sri Murniasih; Sukirno

    2016-01-01

    The performance test to measure the I-131 radionuclide activity has been carried out at CAST-NAA laboratory. The purpose of this activity is to know the performance of a laboratory in the testing of low radioactivity sample. The tested sample consists of the form I-131 radionuclide sources shaped thin plastic disk with a certain weight. Evaluation of laboratory performance test results carried out by the organizer of the program test appeal (PTKMR-BATAN). Evaluation results showed that testing of point source of the I-131 radionuclide with comparative method gives a good enough results with errors below 10%. The results of the performance test evaluation are useful as the external quality control to a testing method that is expected in NAA laboratory. (author)

  8. Inquiry-Based Laboratory Activity to Investigate Physical Growth Requirements of Microorganisms

    Directory of Open Access Journals (Sweden)

    Michelle Furlong

    2014-08-01

    Full Text Available Standard "cookbook" laboratory activities that are used to teach students the optimal physical growth conditions of microorganisms should be modified so that they more effectively foster student's higher order cognitive skills and attract student interest.  This paper describes a laboratory activity that engages students in an inquiry-based approach to studying the physical growth requirements of microorganisms.  In this activity, students design and implement an experiment to obtain pure cultures of specific microorganisms, with distinct growth properties, that are provided to them in a mixed culture.

  9. Some examples of application of activation analysis to geology

    International Nuclear Information System (INIS)

    Schiltz, Jean-Claude

    1969-10-01

    For some fifteen years, activation analysis knows a considerable development. New facilities have become to be done to research workers and industrials by the fitting up of special laboratories near high flux reactors, in the Centre d'Etudes Nucleaires de Saclay and Grenoble. Other laboratories apparatus and particles sources are also used (fast neutrons generators, accelerators, etc. ). For some years, our laboratory contributed to study activation analysis applications to the field of Earth Sciences, particularly to geochemistry. Collecting here our experience and that of other laboratories, we have wished to give a glimpse of the diversity of applications and their as well economical as purely technical interest. This job, initial web of a conference done to the ADERP week in February 1969, doesn't obviously pretend to the exhaustion of the subject. We have simply chosen examples among the 'ost typical of our works and among those which have shown a bibliographical interest for us. (author) [fr

  10. QUALITY ASSURANCE GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    Science.gov (United States)

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following quality assurance guidelines to provide laboratories engaged in forensic analysis of chemical evidence associated with terrorism a framework to implement a quality assura...

  11. Network Layer Protocol Activation for Packet Data Access in UMTS WCDMA Laboratory Network

    OpenAIRE

    Lakkisto, Erkka

    2011-01-01

    The purpose of this Bachelor’s Thesis was to set up the UMTS WCDMA network in the laboratory environment of Helsinki Metropolia University of Applied Sciences and to study the network layer protocol activation for packet data access. The development of 3G technology has been very rapid and it can be considered as one of the main technologies in telecommunication. Implementing the laboratory network in Metropolia enables teaching and researching of the modern network technology. Labora...

  12. How Work Positions Affect the Research Activity and Information Behaviour of Laboratory Scientists in the Research Lifecycle: Applying Activity Theory

    Science.gov (United States)

    Kwon, Nahyun

    2017-01-01

    Introduction: This study was conducted to investigate the characteristics of research and information activities of laboratory scientists in different work positions throughout a research lifecycle. Activity theory was applied as the conceptual and analytical framework. Method: Taking a qualitative research approach, in-depth interviews and field…

  13. Materials and Methods for Streamlined Laboratory Analysis of Environmental Samples, FY 2016 Report

    Energy Technology Data Exchange (ETDEWEB)

    Addleman, Raymond S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Naes, Benjamin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McNamara, Bruce K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olsen, Khris B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chouyyok, Wilaiwan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Willingham, David G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spigner, Angel C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-11-30

    The International Atomic Energy Agency (IAEA) relies upon laboratory analysis of environmental samples (typically referred to as “swipes”) collected during on-site inspections of safeguarded facilities to support the detection and deterrence of undeclared activities. Unfortunately, chemical processing and assay of the samples is slow and expensive. A rapid, effective, and simple extraction process and analysis method is needed to provide certified results with improved timeliness at reduced costs (principally in the form of reduced labor), while maintaining or improving sensitivity and efficacy. To address these safeguard needs the Pacific Northwest National Laboratory (PNNL) explored and demonstrated improved methods for environmental sample (ES) analysis. Improvements for both bulk and particle analysis were explored. To facilitate continuity and adoption, the new sampling materials and processing methods will be compatible with existing IAEA protocols for ES analysis. PNNL collaborated with Oak Ridge National Laboratory (ORNL), which performed independent validation of the new bulk analysis methods and compared performance to traditional IAEA’s Network of Analytical Laboratories (NWAL) protocol. ORNL efforts are reported separately. This report describes PNNL’s FY 2016 progress, which was focused on analytical application supporting environmental monitoring of uranium enrichment plants and nuclear fuel processing. In the future the technology could be applied to other safeguard applications and analytes related to fuel manufacturing, reprocessing, etc. PNNL’s FY 2016 efforts were broken into two tasks and a summary of progress, accomplishments and highlights are provided below. Principal progress and accomplishments on Task 1, Optimize Materials and Methods for ICP-MS Environmental Sample Analysis, are listed below. • Completed initial procedure for rapid uranium extraction from ES swipes based upon carbonate-peroxide chemistry (delivered to ORNL for

  14. Activities of the Ameth laboratories network; Activites du reseau de laboratoires Ameth

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Thermal exchanges are of prime importance in industrial processes, space heating and air conditioning, cooling processes or heat exchangers design. University research laboratories and engineering schools created the Ameth network in order to share their means and competences in heat transfer research, to draw bridges between different subjects and to organize coordinated projects. In 1997 the Ameth laboratories have carried out 10 projects grouped into three themes: the thermal hydrodynamic instability and the limit boundary control, the transfers with liquid/vapor phase change and the transfers with solid/liquid phase changes. These projects and their first results are reported in this book of proceedings. This conference day was jointly organized by the thermal engineering university group (GUT) and the French society of thermal engineers. The ten communications presented in this book deal successively with: `the active control of a Poiseuille flow in the presence of volume heating`; `the control of instabilities, transition and thermo-convective flow transfers in cavities: application to the ventilation of rooms`; `the control of heat transfers during space-time flow disturbances in cylindrical channels`; `the characterization of surface heat transfers using transient methods improved for boiling in pool applications`; `the intensification of heat exchanges during boiling in confined medium`; `the evaporation and boiling in porous media`; `the characterization of heat transfers in micro-heat pipes`; `the AmETh 3-1 operation: experimental and numerical analysis of thermal resistances at the polymer-mould contact and developing during solidification`; `the analysis of solidification phenomena at the interface between a substrate and a melted medium`; and `the heat transfers with solid-liquid phase change`. (J.S.)

  15. Comparability of river suspended-sediment sampling and laboratory analysis methods

    Science.gov (United States)

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  16. Neutron activation analysis in Romania

    International Nuclear Information System (INIS)

    Apostolescu, St.

    1985-01-01

    The following basic nuclear facilities are used for neutron activation analysis: a 2000 KW VVR-S Nuclear Reactor, a U-200 Cyclotron, a 30 MeV Betatron, several 14 MeV neutron generators and a king size High Voltage tandem Van de'Graaff accelerator. The main domains of application of the thermal neutron activation analysis are: geology and mining, processing of materials, environment and biology, achaeology. Epithermal neutron activation analysis has been used for determination of uranium and thorium in ores with high Th/U ratios or high rare earth contents. One low energy accelerator, used as 14.1 Mev neutron source, is provided with special equipmen for oxigen and low mass elements determination. An useful alternating way to support fast neutron activation analysis is an accurate theoretical description of the fast neutron induced reactions based on the statistical model (Hauser-Feubach STAPRE code) and the preequilibrium decay geometry dependent model. A gravitational sample changer has been installed at the end of a beam line of the Cyclotron, which enables to perform charged particles activation analysis for protein determination in grains

  17. Internal laboratory control in residue analysis of chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The thesis contains a chapter on gaschromatographic system in which gas current, temperatures, separation system, detector system, recorder, dosing system and integrator are described. The chapter on reagents deals with standards and solvents, absorbents and other reagents. The chapter on laboratory equipment deals with general recommendations for apparatus, purification and total numerical result of blank test. The chapter ''Methods'' contains general references, aptitude for a special problem, common investigations and control by standard reference materials. The chapter on the work up of samples treats extraction, purification, concentrating the solution, internal standard, multiple determination and control samples. The chapter on measurement presents calibration, internal standard, multiple determination, securing the result and control samples. The chapter on evaluation consists of qualitative and quantitave evaluation, decision criteria and communication of the result. The chapter of documentation described routine investigations, tests and controls of internal laboratory control, preliminary works, maintenance and service works.

  18. Neutron activation analysis of Etruscan pottery

    International Nuclear Information System (INIS)

    Whitehead, J.; Silverman, A.; Ouellet, C.G.; Clark, D.D.; Hossain, T.Z.

    1992-01-01

    Neutron activation analysis (NAA) has been widely used in archaeology for compositional analysis of pottery samples taken from sites of archaeological importance. Elemental profiles can determine the place of manufacture. At Cornell, samples from an Etruscan site near Siena, Italy, are being studied. The goal of this study is to compile a trace element concentration profile for a large number of samples. These profiles will be matched with an existing data bank in an attempt to understand the place of origin for these samples. The 500 kW TRIGA reactor at the Ward Laboratory is used to collect NAA data for these samples. Experiments were done to set a procedure for the neutron activation analysis with respect to sample preparation, selection of irradiation container, definition of activation and counting parameters and data reduction. Currently, we are able to analyze some 27 elements in samples of mass 500 mg with a single irradiation of 4 hours and two sequences of counting. Our sensitivity for many of the trace elements is better than 1 ppm by weight under the conditions chosen. In this talk, details of our procedure, including quality assurance as measured by NIST standard reference materials, will be discussed. In addition, preliminary results from data treatment using cluster analysis will be presented. (author)

  19. Cleaning and dismantling of a high activity laboratory (abstract and presentation slides)

    Energy Technology Data Exchange (ETDEWEB)

    Bredel; Thierry; Buzare, Alain

    2005-01-01

    The high activity laboratories have been built at the end of the 50ies. The particularity of this facility was that about 14 different laboratories worked in 14 different fields (biology, production of Cs and Cf sources, metallurgy, mechanical testing ...). Because of the optimization of the nuclear research, the CEA decided to close progressively this facility and to transfer the different experiments in other places. This action began in 1997 and is planed to end in 2010. 6 laboratories have been closed from 1997 to 2001 and the dismantling of the shielded cells has begun since 2002. Therefore, several laboratories have been cleaned of the materials and experiments. Nevertheless, the main particularity of this subject is that some experimental activities have been pursued during the cleaning and dismantling of other laboratories. For example, we describe the dismantling of the laboratory that performed metallurgical and mechanical characterization of irradiated materials. This laboratory occupied 20 lead cells and 2 glove boxes. The exploitation of those cells has been stopped progressively (12 at the end of 2001 and 5 at the end of 2003). The end of the last 3 cell exploitation is planed to end 2005. Since the end of 2001, 9 lead cells have been cleaned. Their dismantling is planed for next the two years. In parallel, we will clean all the other cells. During this phase we will have also to transfer all the irradiated samples (about 5000) that are still in the laboratory to the waste treatment facility of the CEA centre or to the new laboratory which has been presented during the previous hotlab meeting in Saclay. The paper gives details for background about ended operations: Organization, waste production, specific designs which improve radioprotection, waste destinations and costs, Difficulties and feedback experience of dismantling. (Author)

  20. Comparison of the analysis result between two laboratories using different methods

    International Nuclear Information System (INIS)

    Sri Murniasih; Agus Taftazani

    2017-01-01

    Comparison of the analysis result of volcano ash sample between two laboratories using different analysis methods. The research aims to improve the testing laboratory quality and cooperate with the testing laboratory from other country. Samples were tested at the Center for Accelerator of Science and Technology (CAST)-NAA laboratory using NAA, while at the University of Texas (UT) USA using ICP-MS and ENAA method. From 12 elements of target, CAST-NAA able to present 11 elements of data analysis. The comparison results shows that the analysis of the K, Mn, Ti and Fe elements from both laboratories have a very good comparison and close one to other. It is known from RSD values and correlation coefficients of the both laboratories analysis results. While observed of the results difference known that the analysis results of Al, Na, K, Fe, V, Mn, Ti, Cr and As elements from both laboratories is not significantly different. From 11 elements were reported, only Zn which have significantly different values for both laboratories. (author)

  1. Secondary School Chemistry Teacher's Current Use of Laboratory Activities and the Impact of Expense on Their Laboratory Choices

    Science.gov (United States)

    Boesdorfer, Sarah B.; Livermore, Robin A.

    2018-01-01

    In the United States with the Next Generation Science Standards (NGSS)'s emphasis on learning science while doing science, laboratory activities in the secondary school chemistry continues to be an important component of a strong curriculum. Laboratory equipment and consumable materials create a unique expense which chemistry teachers and schools…

  2. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W. [and others

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report.

  3. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

    1998-03-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  4. Gamma activation analysis with microtron

    International Nuclear Information System (INIS)

    Fiderkiewicz, A.; Kierzek, J.; Parus, J.; Swiderska-Kowalczyk, M.; Wolski, W.; Zoltowski, T.

    1989-01-01

    The physical principles of gamma activation analysis, its capabilities as well as its application to analyse polymetallic ores with use of mean power microtron are presented. Limits of detection and determination for above twenty elements occurring in those ores with use of short- and longlived radioisotopes are specified. The work contains conception of construction of race-track microtron with electrons energy adjusted in 10-30 MeV range and with current not less than 20 μA. Besides the development of microtrons, the reason for choosing the race-track construction for gamma activation analysis is given. 69 refs., 35 figs., 5 tabs. (author)

  5. Prompt gamma neutron activation analysis

    International Nuclear Information System (INIS)

    Goswami, A.

    2003-01-01

    Prompt gamma neutron activation analysis (PGNAA) is a technique for the analysis of elements present in solid, liquid and gaseous samples by measuring the capture gamma rays emitted from the sample during neutron irradiation. The technique is complementary to conventional neutron activation analysis (NAA) as it can be used in number of cases where NAA fails. Though the technique was first used in sixties, the advantage of the technique was first highlighted by Lindstrom and Anderson. PGNAA is increasingly being used as a rapid, instrumental, nondestructive and multielement analysis technique. A monograph and several excellent reviews on this topic have appeared recently. In this review, an attempt has been made to bring out the essential aspects of the technique, experimental arrangement and instrumentation involved, and areas of application. Some of the results will also be presented

  6. Opportunities for innovation in neutron activation analysis

    International Nuclear Information System (INIS)

    Peter Bode

    2012-01-01

    Neutron activation laboratories worldwide are at a turning point at which new staff has to be found for the retiring pioneers from the 1960s-1970s. A scientific career in a well-understood technique, often characterized as 'mature' may only be attractive to young scientists if still challenges for further improvement and inspiring new applications can be offered. The strengths and weaknesses of neutron activation analysis (NAA) are revisited to identify opportunities for innovation. Position-sensitive detection of elements in large samples, Monte Carlo calculations replacing the use of standards, use of scintillator detectors and new deconvolution techniques for increasing the sensitivity are examples of challenging new roads in NAA. Material science provides challenges for the application of NAA in both bulk samples, ultrathin layers and ultrapure materials. (author)

  7. Neutron activation analysis of artefacts

    International Nuclear Information System (INIS)

    Mohd Suhaimi Hamzah; Shamsiah Abd Rahman

    2004-01-01

    The paper discussed the utilization of neutron activation analysis in this field. NAA, an analytical technique which analyzing the elements in the sample without any chemical treatment. It is sensitive and accurate. Archaeological objects i.e. ceramics, historical building materials, metals, etc can be analyze with this technique. The analysis results were presented in form of characterization of the artefacts in chemical profiles, which can present the information of the origin of the artefacts as well as it originality. (Author)

  8. Analysis of some laboratory tracer runs in natural fissures

    International Nuclear Information System (INIS)

    Moreno, L.; Neretnieks, I.

    1984-01-01

    Tracer tests in natural fissures performed in the laboratory are analysed by means of fitting two different models. In the experiments, sorbing and non-sorbing tracers were injected into a natural fissure running parallel to the axis of a drill core. The models take into account advection, diffusion into the rock matrix, sorption onto the rock surface and dispersion. For the last mechanism, one of the models considers hydrodynamic dispersion while the other model assumes channeling dispersion. The models take into account time delays in the inlet and outlet channels. The dispersion characteristics and water residence time were determined from the experiments with non-sorbing tracers. Surface and volume sorption coefficients and data on diffusion into the rock matrix were determined for the sorbing tracers. The results are compared with values independently determined in the laboratory. Good agreement was obtained using either model. When these models are used for prediction of tracer transport over larger distances, the results will depend on the model. The model with channeling dispersion will show a greater dispersion than the model with hydrodynamic dispersion. (author)

  9. Charged-particle activation analysis

    International Nuclear Information System (INIS)

    Schweikert, E.A.

    1978-01-01

    The paper discusses the methodology and application of nuclear activation with ion beams (1 9 via 16 O( 3 He,p) 18 F, 12 C( 3 He,α) 11 C and 14 N(p,α) 11 C respectively. Recently, triton activation has been shown to be inherently still superior to 3 He activation for the determination of oxygen [ 16 O( 3 H,n) 18 F]. Lithium, boron, carbon and sulphur can be detected rapidly, nondestructively and with high sensitivity (approximately 0.25ppm for Li and B) via ''quasi-prompt'' activation based on the detection of short-lived, high-energy beta emitters (10ms 1 H( 7 Li,n) 7 Be for example. Nondestructive multielement analysis: Proton activation has the inherent potential for meeting requirements of broad elemental coverage, sensitivity (ppm and sub-ppm range) and selectivity. Up to 30 elements have been determined in Al, Co, Ag, Nb, Rh, Ta and biological samples, using 12-MeV proton activation followed by gamma-ray spectrometry. These capabilities are further enhanced with the counting of X-ray emitters, 28 elements (26 9 ) and accuracy using proton activation. 204 Pb/ 206 Pb ratios can also be determined with a relative precision of a few per cent. Although charged-particle activation analysis is a well-established trace analysis technique, broad potential capabilities remain to be explored, e.g. those arising from ultrashort-lived nuclides, heavy ion interactions and the combination of delayed and prompt methods. (author)

  10. Molecular activation analysis for chemical speciation studies

    International Nuclear Information System (INIS)

    Chai-Chifang

    1998-01-01

    The term of Molecular Activation Analysis (MAA) refers to an activation analysis method that is able to provide information about the chemical species of elements in system of interests, though its definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the total concentrations are often without any meaning when assessing health or environmental risks of trace elements.In practice, the MAA is a combination of conventional instrumental or radiochemical activation analysis and physical, chemical or biochemical separation techniques. The MAA is able to play a particular role in speciation studies. However, the critical point in the MAA is that it is not permitted to change the primitive chemical species of elements in systems, or the change has to be under control; in the meantime it is not allowed to form the 'new artifact' originally not present in systems. Some practical examples of MAA for chemical species research performed recently in our laboratory will be presented as follows: Chemical species of platinum group elements in sediment; Chemical species of iodine in marine algae; Chemical species of mercury in human tissues; Chemical species of selenium in corn; Chemical species of rare earth elements in natural plant, etc. The merits and limitations of MAA will be described as well. (author)

  11. Instrumental activation analysis of molybdenites

    International Nuclear Information System (INIS)

    Geisler, M.; Schelhorn, H.

    1981-01-01

    Na, K, Sc, Cr, Fe, Co, Se, Rb, Ag, Cs, Ba, La, Ce, Eu, Yb, Hf, W, Re, and Th have been determined in 6 molybdenite samples by instrumental activation analysis. The samples were of different origin and showed K, Sc, W, and Re values with differences of more than two orders of magnitude, whereas Sc values were within one order of magnitude

  12. Patient safety in the clinical laboratory: a longitudinal analysis of specimen identification errors.

    Science.gov (United States)

    Wagar, Elizabeth A; Tamashiro, Lorraine; Yasin, Bushra; Hilborne, Lee; Bruckner, David A

    2006-11-01

    Patient safety is an increasingly visible and important mission for clinical laboratories. Attention to improving processes related to patient identification and specimen labeling is being paid by accreditation and regulatory organizations because errors in these areas that jeopardize patient safety are common and avoidable through improvement in the total testing process. To assess patient identification and specimen labeling improvement after multiple implementation projects using longitudinal statistical tools. Specimen errors were categorized by a multidisciplinary health care team. Patient identification errors were grouped into 3 categories: (1) specimen/requisition mismatch, (2) unlabeled specimens, and (3) mislabeled specimens. Specimens with these types of identification errors were compared preimplementation and postimplementation for 3 patient safety projects: (1) reorganization of phlebotomy (4 months); (2) introduction of an electronic event reporting system (10 months); and (3) activation of an automated processing system (14 months) for a 24-month period, using trend analysis and Student t test statistics. Of 16,632 total specimen errors, mislabeled specimens, requisition mismatches, and unlabeled specimens represented 1.0%, 6.3%, and 4.6% of errors, respectively. Student t test showed a significant decrease in the most serious error, mislabeled specimens (P patient safety projects. Trend analysis demonstrated decreases in all 3 error types for 26 months. Applying performance-improvement strategies that focus longitudinally on specimen labeling errors can significantly reduce errors, therefore improving patient safety. This is an important area in which laboratory professionals, working in interdisciplinary teams, can improve safety and outcomes of care.

  13. Subatomic Physics and Cosmology Laboratory - LPSC Grenoble. Activity report 2006-2007

    International Nuclear Information System (INIS)

    Berat, Corinne; Baylac, Maud; Cholat, Christine; Collot, Johann; Derome, Laurent; Kox, Serge; Lamy, Thierry; Pelletier, Jacques; Renault, Cecile; Real, Jean-Sebastien; Regairaz, William; Richard, Jean-Marc; Vernay, Emmanuelle; Favro, Christian

    2008-01-01

    seek answers to the existence of dark matter and dark energy in the universe. The locations of the experiments are very diverse: ground-based, underground-based or even satellite-based. LPSC also studies artificially created short-lived particles (created by accelerators which our laboratory helps to design) or cosmic particles that were produced at different epochs of the history of the universe. These activities require the development of sophisticated, state-of-the-art instrumentation. A close collaboration between physicists, engineers and technicians is required to achieve the required performance. In addition, a strong theoretical research activity supports the experiments during the preparatory stages and during the data analysis. This report presents the activities of the laboratory during the years 2006-2007: 1 - Forewords; 2 - Quarks, leptons and FUNDAMENTAL INTERACTIONS (ATLAS, DΦ, International Linear Collider (ILC) project, Ultra-cold Neutrons (UCN): nEDM and GRANIT projects; 3 - Astro-particles and Observational Cosmology (Cosmic radiation detection and phenomenology, dark matter detection, ultra-high energy cosmic rays); 4 - Hadrons and nuclei, reactor physics (nucleons and light nuclei structure, baryonic spectroscopy at GRAAL, Nuclear structure, Reactor physics); 5 - Theoretical physics (few-body quantum systems, high-energy physics); 6 - Interdisciplinary research (physics-medicine interface, hadron-therapy and CNAO, Research centre on plasmas-materials-nano-structures - CRPMN); 7 - Accelerators and ion sources; 8 - Technology valorisation and transfer; 9 - Teaching and training; 10 - Communication department; 11 - Technological developments and support to research activities: detectors and Instrumentation, Mechanics, Electronics, Data acquisition and Computers departments, General services, safety and radiation protection, Administration and financial department, human resources; 12 - Publications, PhDs, accreditations to supervise research; 13

  14. Use of the Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP) for site cleanup activities

    International Nuclear Information System (INIS)

    Griggs, J.

    1999-01-01

    MARLAP is being developed as a multi-agency guidance manual for project managers and radioanalytical laboratories. The document uses a performance based approach and will provide guidance and a framework to assure that laboratory radioanalytical data meets the specific project or program needs and requirements. MARLAP supports a wide range of data collection activities including site characterization and compliance demonstration activities. Current participants include: US Environmental Protection Agency (EPA), US Department of Energy (DOE), US Nuclear Regulatory Commission (NRC), US Department of Defense (DoD), US National Institutes of Standards and Technology (NIST), US Geologic Survey (USGS), US Food and Drug Administration (FDA), Commonwealth of Kentucky, and the State of California. MARLAP is the radioanalytical laboratory counterpart to the Multi-Agency Radiological Survey and Site Investigation Manual (MARSSIM). MARLAP is currently in a preliminary draft stage. (author)

  15. Active-learning laboratory session to teach the four M's of diabetes care.

    Science.gov (United States)

    Darbishire, Patricia L; Plake, Kimberly S; Nash, Christiane L; Shepler, Brian M

    2009-04-07

    To implement an active-learning methodology for teaching diabetes care to pharmacy students and evaluate its effectiveness. Laboratory instruction was divided into 4 primary areas of diabetes care, referred to by the mnemonic, the 4 M's: meal planning, motion, medication, and monitoring. Students participated in skill-based learning laboratory stations and in simulated patient experiences. A pretest, retrospective pretest, and posttest were administered to measure improvements in students' knowledge about diabetes and confidence in providing care to diabetes patients. Students knowledge of and confidence in each area assessed improved. Students enjoyed the laboratory session and felt it contributed to their learning. An active-learning approach to teaching diabetes care allowed students to experience aspects of the disease from the patient's perspective. This approach will be incorporated in other content areas.

  16. Experimental analysis of nonlinear oscillations in the undergraduate physics laboratory

    International Nuclear Information System (INIS)

    Moreno, R; Page, A; Riera, J; Hueso, J L

    2014-01-01

    In this paper, we present a simple experiment to introduce the nonlinear behaviour of oscillating systems in the undergraduate physics laboratory. The transverse oscillations of a spring allow reproduction of three totally different scenarios: linear oscillations, nonlinear oscillations reducible to linear for small displacements, and intrinsically nonlinear oscillations. The chosen approach consists of measuring the displacements using video photogrammetry and computing the velocities and the accelerations by means of a numerical differentiation algorithm. In this way, one can directly check the differential equation of the motion without having to integrate it, or perform an experimental study of the potential energy in each of the analysed scenarios. This experiment allows first year students to reflect on the consequences and the limits of the linearity assumption for small displacements that is so often made in technical studies. (paper)

  17. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    International Nuclear Information System (INIS)

    Johnson, L.J.

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed

  18. 3-Dimensional and Interactive Istanbul University Virtual Laboratory Based on Active Learning Methods

    Science.gov (United States)

    Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu

    2014-01-01

    The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although there…

  19. Clermont-Ferrand Corpuscular Physics Laboratory - LPCCF. Activity report 2008-2009

    International Nuclear Information System (INIS)

    2010-01-01

    The Clermont-Ferrand Corpuscular Physics Laboratory is a joint research unit of the Blaise Pascal University and the National Centre for Scientific Research (CNRS) which belongs to the French National Institute of Nuclear and particle physics (IN2P3). The main research topic, 'Particle physics' and 'Hadronic matter', represents about 3/4 of the laboratory activities and are carried out in the framework of big international cooperations. Other activities of LPCCF are pluri-disciplinary and are related to nuclear physics applications, like isotope dating, low radioactivities, low-dose biological radiation effects, biomaterials, medical imaging etc.. This report presents the activities of the laboratory during the years 2008-2009: 1 - Forewords; 2 - Theoretical physics; 3 - Particle and astro-particle physics; 4 - Hadronic matter; 5 - Interdisciplinary research; 6 - General services; 7 - Laboratory organisation and means; 8 - Teaching activity; 9 - PhDs, accreditations to supervise research and Technology Research Diplomas 10 - Communication; 11 - Regional policy and valorisation; 12 - Scientific production 13 - Public information; 14 - Staff

  20. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.J. (comp.)

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed.

  1. Open-Ended versus Guided Laboratory Activities: Impact on Students' Beliefs about Experimental Physics

    Science.gov (United States)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2016-01-01

    Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the…

  2. Activities report of the National Space Research Institute Plasma Laboratory for the period 1988/1989

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto.

    1990-11-01

    This report describes the activities performed in the period 1988/1989 by the National Space Research Institute (INPE/SCT) Plasma Laboratory (LAP). The report presents the main results in the following research lines: plasma physics, plasma technology, and controlled thermonuclear fusion. (author). 49 figs., 3 tabs

  3. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2000-2001

    International Nuclear Information System (INIS)

    Astier, Pierre; Bassler, Ursula; Levy, Jean-Michel; Cossin, Isabelle; Mathy, Jean-Yves

    2002-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2000-2001: 1 - Forewords; 2 - Scientific and technical activities of the laboratory: Physics with accelerators (CP Violation, hadronic physics, proton-antiproton physics, Neutrino beams, LEP, LHC, future linear electron collider); Physics without accelerators (extreme energy cosmic radiation, Cosmology and supernovae, high-energy gamma astronomy); theoretical physics (QCD, phenomenological approaches); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration and general services); 4 - Laboratory life (Teaching, training, Internal activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - staff

  4. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2002-2003

    International Nuclear Information System (INIS)

    Dagoret-Campagne, Sylvie; Roos, Lydia; Schwemling, Philippe; Cossin, Isabelle; Mathy, Jean-Yves

    2004-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2002-2003: 1 - Forewords; 2 - Scientific and technical activities of the laboratory: Physics with accelerators (CP Violation, proton-antiproton physics, LHC, Neutrino beams, LEP, future linear electron collider); Physics without accelerators (extreme energy cosmic radiation, Cosmology and supernovae, high-energy gamma astronomy); theoretical physics (QCD, phenomenological approaches); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration and general services); 4 - Laboratory life (Teaching, training, Internal activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - Appendix: staff

  5. Manganese contents of soils as determined by activation analysis

    International Nuclear Information System (INIS)

    El-Kholi, A.F.; Hamdy, A.A.; Al Metwally, A.I.; El-Damaty, A.H.

    1976-01-01

    The object of this investigation is to determine total manganese by means of neutron activation analysis and evaluate this technique in comparison with the corresponding data obtained by conventional chemical analysis. Data obtained revealed that the values of total manganese in calcareous soils obtained by both chemical analysis and that by neutron activation analysis were similar. Therefore, activation analysis could be recommended as a quick laboratory, less tedious, and time consuming method for the determination of Mn content in both soils and plants than the conventional chemical techniques due to its great specificity, sensitivity and simplicity. Statistical analysis showed that there is a significant correlation at 5% probability level between manganese content in Soybean plant and total manganese determined by activation and chemical analysis giving the evidence that in the case of those highly calcareous soils of low total manganese content this fraction has to be considered as far as available soil manganese is concerned

  6. Influence of a prolonged fasting and mild activity on routine laboratory tests.

    Science.gov (United States)

    Šupak-Smolčić, Vesna; Antončić, Dragana; Ožanić, Doris; Vladilo, Ivana; Bilić-Zulle, Lidija

    2015-01-01

    Despite the standardization of the phlebotomy procedure, blood analysis is occasionally requested after recommended hours with the excuse that the patient is still fasting. We aimed to examine the influence of prolonged fasting and mild physical activity on routine laboratory tests. The study was conducted on 30 volunteers (27 female) median age 40y (20-59). Blood samples were taken in the morning (7:00-8:00a.m.) and early afternoon (1:00-2:00p.m.) after prolonged fasting and usual daily activities. Serum glucose (GLU), urea, creatinine, triglyceride, uric acid (UA), iron and electrolytes were analyzed on Roche cobas 6000 c501 and complete blood count on Siemens ADVIA 2120i. Statistical significance between the two measurements was tested using paired t-test or Wilcoxon test according to data distribution. Clinical significance was judged against calculated reference change values (RCV). A statistically significant decrease was found for red blood cell count, hemoglobin, hematocrit, mean corpuscular volume (MCV), GLU, urea, creatinine, triglycerides and electrolytes, whereas white blood cell count and iron were significantly increased. Judging against desirable bias derived from biological variation, a significant change was found for all the analytes except MCV, platelet count, UA and triglycerides. A clinically significant change was not found for any of the tested analytes when compared to RCV. Prolonged fasting and mild activity will not influence the medical decision for healthy subjects with normal results. Despite the present statistically significant change, the clinically significant change was not shown. However, the study did not include pathological results which have to be interpreted more carefully. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. Situation analysis of occupational and environmental health laboratory accreditation in Thailand.

    Science.gov (United States)

    Sithisarankul, Pornchai; Santiyanont, Rachana; Wongpinairat, Chongdee; Silva, Panadda; Rojanajirapa, Pinnapa; Wangwongwatana, Supat; Srinetr, Vithet; Sriratanaban, Jiruth; Chuntutanon, Swanya

    2002-06-01

    accreditation systems, and did not accept other bodies' standards and systems. This put a burden to private laboratories because they had to apply and get accredited from several governmental bodies, but still had to apply and get accredited from international ABs especially for those dealing with exports. There were only few calibration laboratories, not enough for supporting the calibration required for the equipment in testing laboratories' LA. Purchasing proficiency testing specimens from abroad was very expensive, and often got into troubles with the customs duty procedures. The authors recommend some strategies and activities to improve laboratory accreditation in Thailand. Improvement in occupational and environmental health laboratories would essentially be beneficial to laboratory accreditation of other areas such as clinical laboratory.

  8. Subatomic Physics and Cosmology Laboratory - LPSC Grenoble. Activity report 2004-2005

    International Nuclear Information System (INIS)

    Chretien-Duhamel, G.; Baylac, M.; Billebaud, A.; Cholat, C.; Collot, J.; Comparat, V.; Derome, L.; Lamy, T.; Lucotte, A.; Ollivier, N.; Real, J.S.; Regairaz, W.; Richard, J.M.; Silvestre-Brac, B.; Stutz, A.; Tur, C.; Favro, C.

    2006-01-01

    seek answers to the existence of dark matter and dark energy in the universe. The locations of the experiments are very diverse: ground-based, underground-based or even satellite-based. LPSC also studies artificially created short-lived particles (created by accelerators which our laboratory helps to design) or cosmic particles that were produced at different epochs of the history of the universe. These activities require the development of sophisticated, state-of-the-art instrumentation. A close collaboration between physicists, engineers and technicians is required to achieve the required performance. In addition, a strong theoretical research activity supports the experiments during the preparatory stages and during the data analysis. This report presents the activities of the laboratory during the years 2004-2005: 1 - Forewords; 2 - Quarks, leptons and FUNDAMENTAL INTERACTIONS (DΦ, ATLAS, Ultra-cold Neutrons - UCN); 3 - Cosmology and cosmic radiations (AMS-CREAM, Archeops-Planck, MIMAC-He3, EUSO-ULTRA); 4 - Hadrons and nuclei (nucleons and light nuclei structure, GRAAL, Reactor physics); 5 - pluri-disciplinary programs (physics-medicine interface, ETOILE, Research centre on plasmas-materials-nano-structures - CRPMN); 6 - Theory; 7 - Accelerators and ion sources; 8 - Technical and administrative Services: detectors and Instrumentation, Mechanics, Electronics, Data acquisition and Computers departments, General services, Communication, Technology Valorisation and transfer, Administration; 9 - Communication; 10 - Human resources, Health and safety; 11 - Staff and organigram; 12 - Training and teaching; 13 - Publications; 14 - Redaction committee

  9. Subatomic Physics and Cosmology Laboratory - LPSC Grenoble. Activity report 2014-2015

    International Nuclear Information System (INIS)

    Bouly, Frederic; Combet, Celine; Gomez Martinez, Yolanda; Smith, Christopher; Dauvergne, Denis; Delorieux, Colette; Derome, Laurent; Furget, Christophe; Lacoste, Ana; Lamy, Thierry; Lamberterie, Pierre de; Ledroit, Fabienne; Lucotte, Arnaud; Macias Perez, Juan Francisco; Montanet, Francois; Rebreyend, Dominique; Sage, Christophe; Santos, Daniel; Simpson, Gary; Vernay, Emmanuelle; Favro, Christian

    2016-06-01

    seek answers to the existence of dark matter and dark energy in the universe. The locations of the experiments are very diverse: ground-based, underground-based or even satellite-based. LPSC also studies artificially created short-lived particles (created by accelerators which our laboratory helps to design) or cosmic particles that were produced at different epochs of the history of the universe. These activities require the development of sophisticated, state-of-the-art instrumentation. A close collaboration between physicists, engineers and technicians is required to achieve the required performance. In addition, a strong theoretical research activity supports the experiments during the preparatory stages and during the data analysis. This report presents the activities of the laboratory during the years 2014-2015: 1 - Forewords, Presentation of the laboratory; 2 - Research activities: From particles to nuclei (ATLAS experiment at LHC, Future colliders, ALICE experiment at LHC, Physics of theoretical particles, 6+ isomeric states of "1"3"6","1"3"8Sn, Exploration of collective excitations with Bohr's collective algebraic model, Ultra-cold Neutrons (UCN)); 3 - Astro-particles, Cosmology and neutrinos (Pierre Auger Observatory, High energy cosmic radiation, LSST Large Synoptic Survey Telescope and theoretical cosmology, Directional detection of dark matter with MIMAC (MIcro-tpc MAtrix of Chambers), STEREO neutrino experiment, fossil radiation study with PLANCK, NIKA and NIKA2 dual band millimeter wave polarised cameras); 4 - Physics for energy and health (nuclear data, Physics of experimental reactors (FREYA (FP7) project), Molten salt reactors (MSRs) concept study, Simulation, analysis and prospective, Development of the Transparent Detector for Radiotherapy (TraDeRa), Accelerator Based - Neutron Capture Therapies (AB-NCT), MoniDiam project for the online beam-monitoring with polycrystalline diamond detectors in hadron-therapy); 5 - Accelerators and ion sources

  10. Laboratory testing and economic analysis of high RAP warm mixed asphalt.

    Science.gov (United States)

    2009-03-24

    This report contains laboratory testing, economic analysis, literature review, and information obtained from multiple producers throughout the state of Mississippi regarding the use of high RAP (50 % to 100%) mixtures containing warm mix additives. T...

  11. Industrial applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Hossain, T.Z.

    2001-01-01

    Neutron activation analysis has been widely used in the industry and over the years played a key role in the development of manufacturing process as well as monitoring of the process flow. In this context NAA has been utilized both in R and D, and in the factory as a flexible analytical tool. It has been used successfully in numerous industries including broad categories such as Chemical, Pharmaceutical, Mining, Photographic, Oil and Gas, Automobile, Defense, Semiconductor and Electronic industries. Dow Chemical owns and operates a research reactor for analytical measurements of samples generated in both R and D, and manufacturing area in its plant in Midland, Michigan. Although most industries do not have reactors on their campus but use an off site reactor regularly, and often have in-house neutron sources such as a 252 Cf used primarily for NAA. In most industrial materials analysis laboratory NAA is part of a number of analytical techniques such as ICP-MS, AA, SIMS, FTIR, XRF, TXRF etc. Analysis of complex industrial samples may require data from each of these methods to provide a clear picture of the materials issues involved. With the improvement of classical analytical techniques, and the introduction of new techniques, e.g. TXRF, the role of NAA continues to be a key bench mark technique that provides accurate and reliable data. The strength of the NAA in bulk analysis is balanced by its weakness in providing surface sensitive or spatially resolved analysis as is required by many applications. (author)

  12. Study on neutron activation analysis

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Cho, Seung Yeon

    1993-01-01

    Environmental samples were analyzed quantitatively by neutron activation analysis using high resolution γ-ray spectrometry. The accuracy and precision of the method were checked by the analysis of reference materials, Urban Particulate Matter (NBS SRM 1648) and Coalfly ash (NBS SRM 1633a). Airborne particulates collected for 6 months with low volume air sampler at the outer area of Seoul were analyzed as the start of full scale airborne particulates research. We analyzed 19 trace elements from the samples and the NAA method was confirmed to be utilized for environmental pollution research. (Author)

  13. Princeton Plasma Physics Laboratory (PPPL) seismic hazard analysis

    International Nuclear Information System (INIS)

    Savy, J.

    1989-01-01

    New design and evaluation guidelines for department of energy facilities subjected to natural phenomena hazard, are being finalized. Although still in draft form at this time, the document describing those guidelines should be considered to be an update of previously available guidelines. The recommendations in the guidelines document mentioned above, and simply referred to as the ''guidelines'' thereafter, are based on the best information at the time of its development. In particular, the seismic hazard model for the Princeton site was based on a study performed in 1981 for Lawrence Livermore National Laboratory (LLNL), which relied heavily on the results of the NRC's Systematic Evaluation Program and was based on a methodology and data sets developed in 1977 and 1978. Considerable advances have been made in the last ten years in the domain of seismic hazard modeling. Thus, it is recommended to update the estimate of the seismic hazard at the DOE sites whenever possible. The major differences between previous estimates and the ones proposed in this study for the PPPL are in the modeling of the strong ground motion at the site, and the treatment of the total uncertainty in the estimates to include knowledge uncertainty, random uncertainty, and expert opinion diversity as well. 28 refs

  14. Princeton Plasma Physics Laboratory (PPPL) seismic hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Savy, J.

    1989-10-01

    New design and evaluation guidelines for department of energy facilities subjected to natural phenomena hazard, are being finalized. Although still in draft form at this time, the document describing those guidelines should be considered to be an update of previously available guidelines. The recommendations in the guidelines document mentioned above, and simply referred to as the guidelines'' thereafter, are based on the best information at the time of its development. In particular, the seismic hazard model for the Princeton site was based on a study performed in 1981 for Lawrence Livermore National Laboratory (LLNL), which relied heavily on the results of the NRC's Systematic Evaluation Program and was based on a methodology and data sets developed in 1977 and 1978. Considerable advances have been made in the last ten years in the domain of seismic hazard modeling. Thus, it is recommended to update the estimate of the seismic hazard at the DOE sites whenever possible. The major differences between previous estimates and the ones proposed in this study for the PPPL are in the modeling of the strong ground motion at the site, and the treatment of the total uncertainty in the estimates to include knowledge uncertainty, random uncertainty, and expert opinion diversity as well. 28 refs.

  15. Importance/performance analysis: a tool for service quality control by clinical laboratories.

    Science.gov (United States)

    Scammon, D L; Weiss, R

    1991-01-01

    A study of customer satisfaction with clinical laboratory service is used as the basis for identifying potential improvements in service and more effectively targeting marketing activities to enhance customer satisfaction. Data on customer satisfaction are used to determine the aspects of service most critical to customers, how well the organization is doing in delivery of service, and how consistent service delivery is. Importance-performance analysis is used to highlight areas for future resource reallocation and strategic emphasis. Suggestions include the establishment of performance guidelines for customer contact personnel, the enhancement of timely delivery of reports via electronic transmission (computer and fax), and the development of standardized graphics for request and report forms to facilitate identification of appropriate request forms and guide clients to key items of information on reports.

  16. Microbial analysis of the buffer/container experiment at AECL's underground research laboratory

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.

    1996-07-01

    The Buffer/Container Experiment (BCE) was carried out at AECL's Underground Research Laboratory (URL) for 2.5 years to examine the in situ performance of compacted buffer material in a single emplacement borehole under vault-relevant conditions. During decommissioning of this experiment, numerous samples were taken for microbial analysis to determine if the naturally present microbial population in buffer material survived the conditions (i.e., compaction, heat and desiccation) in the BCE and to determine which group(s) of microorganisms would be dominant in such a simulated vault environment. Such knowledge will be very useful in assessing the potential effects of microbial activity on the concept for deep disposal of Canada's nuclear fuel waste, proposed by AECL. 46 refs., 31 tabs., 35 figs

  17. LDRD 2012 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, William [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2012-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY2012, as required. In FY2012, the BNL LDRD Program funded 52 projects, 14 of which were new starts, at a total cost of $10,061,292.

  18. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, Diane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  19. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  20. Neutron activation analysis using TRIGA

    International Nuclear Information System (INIS)

    Byrne, A.R.

    1972-01-01

    Activation analysis with TRIGA MARK II is the main part of the work of the nuclear Chemistry Section at the Institute. A major part of the effort in this field is concerned with the determination of trace elements at the micro and nanogram level in a wide variety of materials, and with the development of new methods, (or the adaptation of known methods,) applicable to these determinations. In particular, specific and group radiochemical separations are studied

  1. Nuclear and high-energy physics laboratory - LPNHE. Activity report 1998-1999

    International Nuclear Information System (INIS)

    Vaissiere, Christian de la; Banner, Marcel; Faivre, Maria; Moine, Marguerite; Dumas, Jean-Marc; Jos, Jeanne

    2000-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 1998-1999: 1 - Forewords; 2 - Physics experiments: LHC Physics with ATLAS, search for new physics at LEP, DIRAC experiment, Neutrinos oscillation with NOMAD, TONIC and HERA-H1 experiments, CP Violation (BaBar), DΦ experiment at Tevatron, high-energy gamma astronomy, Supernovae, Pierre Auger Laboratory); 3 - Technical activities and means (electronics, computers, mechanics departments); 4 - Laboratory life (Teaching, Administration and general services, Internal and external activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - staff

  2. Nuclear and high-energy physics laboratory - LPNHE. Activity report 1996-1997

    International Nuclear Information System (INIS)

    Vaissiere, Christian de la; Boniface, Nicole; Dumas, Jean-Marc; Jos, Jeanne

    1998-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 1996-1997: 1 - Forewords; 2 - Physics experiments: LHC Physics with ATLAS, search for new physics at LEP (DELPHI), Neutrinos oscillation DIRAC experiment, Neutrinos oscillation (NOMAD, TONIC), HERA-H1 experiment, CP Violation (BaBar), DΦ experiment at Tevatron, study of gamma radiation sources (CAT), Supernovae, Auger Laboratory project; 3 - Technical activities and means (electronics, computers, mechanics departments); 4 - Laboratory life (Teaching, Administration and general services, Internal and external activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - staff

  3. Subatomic Physics and Cosmology Laboratory - LPSC Grenoble. Activity report 2012-2013

    International Nuclear Information System (INIS)

    Rebreyend, Dominique; Bondoux, Dominique; Chabod, Sebastien; Clement, Benoit; De Conto, Jean-Marie; Delorieux, Colette; Derome, Laurent; Furget, Christophe; Kox, Serge; Lacoste, Ana; Montanet, Francois; Rossetto, Olivier; Smith, Christopher; Vernay, Emmanuelle; Favro, Christian

    2014-03-01

    seek answers to the existence of dark matter and dark energy in the universe. The locations of the experiments are very diverse: ground-based, underground-based or even satellite-based. LPSC also studies artificially created short-lived particles (created by accelerators which our laboratory helps to design) or cosmic particles that were produced at different epochs of the history of the universe. These activities require the development of sophisticated, state-of-the-art instrumentation. A close collaboration between physicists, engineers and technicians is required to achieve the required performance. In addition, a strong theoretical research activity supports the experiments during the preparatory stages and during the data analysis. This report presents the activities of the laboratory during the years 2012-2013: 1 - Forewords, Presentation of the laboratory; 2 - Highlights and awards; 3 - Quarks, leptons and FUNDAMENTAL INTERACTIONS (STEREO experiment, Ultra-cold Neutrons (UCN), DΦ experiment at Tevatron, ATLAS experiment at LHC, International Linear Collider (ILC) project; 4 - Astro-particles and Cosmology (ultra-high energy cosmic radiation, ultra-high energy cosmic rays, LSST Large Synoptic Survey Telescope and theoretical cosmology, Directional detection of dark matter with MIMAC (MIcro-tpc Matrix of Chambers), NIKA project, fossil radiation study with PLANCK); 5 - Hadrons and nuclei (ALICE experiment at LHC, Hadrons structure, Nuclear structure); 6 - Reactor physics: nuclear data, ADS subcritical reactors (GUINEVERE/FREYA project), Molten Salt Fast Reactor (MSFR) concept development, Thorium cycle with water reactors: full Monte-Carlo analysis; 7 - Theoretical physics: QCD, Beyond-the-Standard-Model; 8 - Interdisciplinary research (Medical profiler, Research centre on plasmas-materials-nano-structures - CRPMN); 9 - Accelerators and ion sources (SPIRAL2 Project, GENEPI-2 accelerator, GENEPI-3C accelerator for the ADS GUINEVERE program, 60 GHz ECR ion source

  4. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2006-2007

    International Nuclear Information System (INIS)

    Debu, Pascal; Ben-Haim, Eli; Hardin, Delphine; Laporte, Didier; Maurin, David; Cossin, Isabelle; Mathy, Jean-Yves

    2008-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2006-2007: 1 - Forewords; 2 - Scientific activities: Physics with accelerators (LHC, Tevatron, CP Violation, ILC, Neutrino Physics); Physics without accelerators (Cosmology, high-energy gamma astronomy, extreme energy cosmic radiation, theoretical physics, physics-biology interface); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration and general services); 4 - Laboratory life (Teaching, training, internships and PhDs); 5 - Internal activities (seminars, meetings..); 6 - External activities (Public information, relations with the industry, valorisation..)

  5. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2004-2005

    International Nuclear Information System (INIS)

    Debu, Pascal; Bassler, Ursula; Boratav, Murat; Lacour, Didier; Lebbolo, Herve; Cossin, Isabelle; Mathy, Jean-Yves

    2006-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2004-2005: 1 - Forewords; 2 - Scientific activities: Physics with accelerators (LHC, Tevatron, CP Violation, future linear electron collider, Neutrino beams); Physics without accelerators (Cosmology and supernovae, high-energy gamma astronomy, extreme energy cosmic radiation, theoretical physics, physics-biology interface); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration, health and safety, radiation protection); 4 - Laboratory life (Teaching, training, internships and PhDs); 5 - Internal activities (seminars, meetings..); 6 - External activities (Public information, relations with the industry, valorisation..); 7 - List of publications; 8 - Appendixes: organigram, staff

  6. Activities of the IAEA Laboratories in Seibersdorf and Vienna. Biennial Report 1983-1984

    International Nuclear Information System (INIS)

    1985-06-01

    The report presents the activities of the IAEA Laboratories in Seibersdorf and Vienna during the period 1983-1984, with emphasis on the research and development of mass rearing systems for insect control programmes applying the sterile insect technique and the tissue culture techniques for plant breeding. In chemistry and hydrology a new line was started together with the World Meteorological Organization in servicing the latter's network of stations for monitoring of background levels of air pollution all around the world. In radiation dosimetry a new automated thermoluminescent dosemeter reader was installed. The Electronics and Measurement Section has installed a new training laboratory. Six training courses and one seminar were held. An increased number of samples were analysed by the Safeguards Analytical Laboratory

  7. LDRD 2016 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2C dated October 22, 2015. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2016, as required. In FY 2016, the BNL LDRD Program funded 48 projects, 21 of which were new starts, at a total cost of $11.5M. The investments that BNL makes in its LDRD program support the Laboratory’s strategic goals. BNL has identified four Critical Outcomes that define the Laboratory’s scientific future and that will enable it to realize its overall vision. Two operational Critical Outcomes address essential operational support for that future: renewal of the BNL campus; and safe, efficient laboratory operations.

  8. LAPP - Annecy le Vieux Particle Physics Laboratory. Activity report 2002-2003

    International Nuclear Information System (INIS)

    Colas, Jacques; Minard, Marie-Noelle; Decamp, Daniel; Marion, Frederique; Drancourt, Cyril; Riva, Vanessa; Berger, Nicole; Bombar, Claudine; Dromby, Gerard

    2004-01-01

    LAPP is a high energy physics laboratory founded in 1976 and is one of the 19 laboratories of IN2P3 (National Institute of Nuclear and particle physics), institute of CNRS (National Centre for Scientific Research). LAPP is joint research facility of the University Savoie Mont Blanc (USMB) and the CNRS. Research carried out at LAPP aims at understanding the elementary particles and the fundamental interactions between them as well as exploring the connections between the infinitesimally small and the unbelievably big. Among other subjects LAPP teams try to understand the origin of the mass of the particles, the mystery of dark matter and what happened to the anti-matter that was present in the early universe. LAPP researchers work in close contact with phenomenologist teams from LAPTh, a theory laboratory hosted in the same building. LAPP teams also work since several decades at understanding the neutrinos, those elementary almost massless particles with amazing transformation properties. They took part in the design and realization of several experiments. Other LAPP teams collaborate in experiments studying signals from the cosmos. This document presents the activities of the laboratory during the years 2002-2003: 1 - Presentation of LAPP; 2 - Experimental programs: Standard model and its extensions (accurate measurements and search for new particles, The end of ALEPH and L3 LEP experiments, ATLAS experiment at LHC, CMS experiment at LHC); CP violation (BaBar experiment on PEPII collider at SLAC, LHCb experiment); Neutrino physics (OPERA experiment on CERN's CNGS neutrino beam); Astro-particles (AMS experiment, EUSO project on the Columbus module of the International Space Station); Search for gravitational waves - Virgo experiment; 3 - Laboratory's know-how: Skills, Technical departments (Electronics, Computers, Mechanics); R and D - CLIC and Positrons; Valorisation and industrial relations; 4 - Laboratory operation: Administration and general services; Laboratory

  9. Subatomic Physics and Cosmology Laboratory - LPSC Grenoble. Activity report 2008-2009

    International Nuclear Information System (INIS)

    Berat, Corinne; Baylac, Maud; Cholat, Christine; Collot, Johann; Derome, Laurent; Kox, Serge; Lamy, Thierry; Pelletier, Jacques; Renault, Cecile; Real, Jean-Sebastien; Regairaz, William; Richard, Jean-Marc; Vernay, Emmanuelle; Favro, Christian

    2010-01-01

    seek answers to the existence of dark matter and dark energy in the universe. The locations of the experiments are very diverse: ground-based, underground-based or even satellite-based. LPSC also studies artificially created short-lived particles (created by accelerators which our laboratory helps to design) or cosmic particles that were produced at different epochs of the history of the universe. These activities require the development of sophisticated, state-of-the-art instrumentation. A close collaboration between physicists, engineers and technicians is required to achieve the required performance. In addition, a strong theoretical research activity supports the experiments during the preparatory stages and during the data analysis. This report presents the activities of the laboratory during the years 2008-2009: 1 - Forewords, Presentation of the laboratory; 2 - Quarks, leptons and FUNDAMENTAL INTERACTIONS (DΦ experiment at Tevatron, ATLAS experiment at LHC, International Linear Collider (ILC) project, Ultra-cold Neutrons (UCN); 3 - Astro-particles and Observational Cosmology (ultra-high energy cosmic radiation, ultra-high energy cosmic rays: Auger and CODALEMA projects, fossil radiation study with PLANCK, Large Synoptic Survey Telescope (LSST) experiment and theoretical activity, MIMAC (MIcro-tpc MAtrix of Chambers) project; 4 - Hadrons and nuclei (neutron-rich nuclei structure, nucleon structure, ALICE experiment at LHC); 5 - Reactor physics: Molten Salt Fast Reactor (MSFR), Molten Salt physico-chemistry and technologies, nuclear data, High Conversion Water Reactors (HCWR) simulation, ADS on-line reactivity monitoring validation (GUINEVERE project); 6 - Theoretical physics (nuclei, hadrons and few-body systems, lattice QCD, perturbative QCD and supersymmetry); 7 - Interdisciplinary research (hadron-therapy, Tomography, Research centre on plasmas-materials-nano-structures - CRPMN); 8 - Accelerators (SPIRAL2 Project, GENEPI-3C accelerator, 60 GHz ECR ion source

  10. Subatomic Physics and Cosmology Laboratory - LPSC Grenoble. Activity report 2010-2011

    International Nuclear Information System (INIS)

    Brissot, Roger; Bechu, Stephane; Boutherin, Bernard; Derome, Laurent; Deslorieux, Colette; Gallin-Martel, Marie-Laure; Kox, Serge; Kraml, Sabine; Lamy, Thierry; Lleres, Annick; Meplan, Olivier; Real, Jean-Sebastien; Sortais, Pascal; Vernay, Emmanuelle; Favro, Christian

    2012-03-01

    seek answers to the existence of dark matter and dark energy in the universe. The locations of the experiments are very diverse: ground-based, underground-based or even satellite-based. LPSC also studies artificially created short-lived particles (created by accelerators which our laboratory helps to design) or cosmic particles that were produced at different epochs of the history of the universe. These activities require the development of sophisticated, state-of-the-art instrumentation. A close collaboration between physicists, engineers and technicians is required to achieve the required performance. In addition, a strong theoretical research activity supports the experiments during the preparatory stages and during the data analysis. This report presents the activities of the laboratory during the years 2010-2011: 1 - Forewords, Presentation of the laboratory; 2 - Quarks, leptons and FUNDAMENTAL INTERACTIONS (DΦ experiment at Tevatron, ATLAS experiment at LHC, International Linear Collider (ILC) project, Ultra-cold Neutrons (UCN); 3 - Astro-particles and Cosmology (ultra-high energy cosmic radiation, ultra-high energy cosmic rays, fossil radiation study with PLANCK, Large Synoptic Survey Telescope (LSST) experiment and theoretical activity, Directional detection of dark matter with MIMAC (MIcro-tpc Matrix of Chambers); 4 - Hadrons and nuclei (ALICE experiment at LHC, Study of the isomeric states of neutron-rich rubidium nuclei, Hadrons structure); 5 - Reactor physics: nuclear data, ADS subcritical reactors (GUINEVERE/FREYA project), Molten Salt Fast Reactor (MSFR) concept development, Thorium cycle with water reactors; 6 - Theory and phenomenology: perturbative QCD and accurate calculations, Beyond-the-Standard-Model, Lattice calculations, nuclei, hadrons and few-body systems; 7 - Interdisciplinary research (Research centre on plasmas-materials-nano-structures - CRPMN, Medical profiler); 8 - Accelerators and ion sources (SPIRAL2 Project, GENEPI-3C accelerator for

  11. Cost evaluation of clinical laboratory in Taiwan's National Health System by using activity-based costing.

    Science.gov (United States)

    Su, Bin-Guang; Chen, Shao-Fen; Yeh, Shu-Hsing; Shih, Po-Wen; Lin, Ching-Chiang

    2016-11-01

    To cope with the government's policies to reduce medical costs, Taiwan's healthcare service providers are striving to survive by pursuing profit maximization through cost control. This article aimed to present the results of cost evaluation using activity-based costing performed in the laboratory in order to throw light on the differences between costs and the payment system of National Health Insurance (NHI). This study analyzed the data of costs and income of the clinical laboratory. Direct costs belong to their respective sections of the department. The department's shared costs, including public expenses and administrative assigned costs, were allocated to the department's respective sections. A simple regression equation was created to predict profit and loss, and evaluate the department's break-even point, fixed cost, and contribution margin ratio. In clinical chemistry and seroimmunology sections, the cost per test was lower than the NHI payment and their major laboratory tests had revenues with the profitability ratio of 8.7%, while the other sections had a higher cost per test than the NHI payment and their major tests were in deficit. The study found a simple linear regression model as follows: "Balance=-84,995+0.543×income (R2=0.544)". In order to avoid deficit, laboratories are suggested to increase test volumes, enhance laboratory test specialization, and become marginal scale. A hospital could integrate with regional medical institutions through alliances or OEM methods to increase volumes to reach marginal scale and reduce laboratory costs, enhancing the level and quality of laboratory medicine.

  12. Activation analysis of biological materials at the Activation Analysis Centre

    International Nuclear Information System (INIS)

    Kukula, F.; Obrusnik, I.; Simkova, M.; Kucera, J.; Krivanek, M.

    1976-01-01

    A review is presented of the work of the Activation Analysis Centre of the Nuclear Research Institute for different fields of the Czechoslovak economy, aimed primarily at analyzing biological materials with the purpose of determining the contents of the so-called vital trace elements and of elements which already have a toxic effect on the organism in trace concentrations. Another important field of research is the path of trace elements from the environment to the human organism. A destructive method for the simultaneous determination of 12 trace elements in 11 kinds of human tissue has been studied. (Z.M.)

  13. Oak Ridge National Laboratory site data for safety-analysis report

    International Nuclear Information System (INIS)

    Fitzpatrick, F.C.

    1982-12-01

    The Oak Ridge National Laboratory site data contained herein were compiled in support of the United States Department of Energy (USDOE) Oak Ridge Operations Office Order OR 5481.1. That order sets forth assignment of responsibilities for safety analysis and review responsibilities and provides guidance relative to the content and format of safety analysis reports. The information presented in this document is intended for use by reference in individual safety analysis reports where applicable to support accident analyses or the establishment of design bases of significance to safety, and it is applicable only to Oak Ridge National Laboratory facilities in Bethel and Melton Valleys. This information includes broad descriptions of the site characteristics, radioactive waste handling and monitoring practices, and the organization and operating policies at Oak Ridge National Laboratory. The historical background of the Laboratory is discussed briefly and the overall physical situation of the facilities is described in the following paragraphs

  14. Oak Ridge National Laboratory site data for safety-analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, F.C.

    1982-12-01

    The Oak Ridge National Laboratory site data contained herein were compiled in support of the United States Department of Energy (USDOE) Oak Ridge Operations Office Order OR 5481.1. That order sets forth assignment of responsibilities for safety analysis and review responsibilities and provides guidance relative to the content and format of safety analysis reports. The information presented in this document is intended for use by reference in individual safety analysis reports where applicable to support accident analyses or the establishment of design bases of significance to safety, and it is applicable only to Oak Ridge National Laboratory facilities in Bethel and Melton Valleys. This information includes broad descriptions of the site characteristics, radioactive waste handling and monitoring practices, and the organization and operating policies at Oak Ridge National Laboratory. The historical background of the Laboratory is discussed briefly and the overall physical situation of the facilities is described in the following paragraphs.

  15. Country report from Japan: Activities of NIRS as a central reference laboratory

    International Nuclear Information System (INIS)

    Kawamura, H.; Shiraishi, K.; Ozawa, K.; Arae, H.; Yukawa, M.

    2000-01-01

    As agreed upon at the Project Formulation Meeting and the First Research Co-ordination Meeting, functions of the central reference laboratory (CRL) in assistance to the Agency were assigned to National Institute of Radiological Sciences (NIRS). Therefore, we have been making utmost efforts, aside from our own research activities concerning the current CRP, to cope with the following assignments, in which we are supported through the Science and Technology Agency of Japan. There was some delay in the progress for the planned distribution of three Reference Materials for internal quality control (QC) and preparation in Japan of the reference diet material of an Asian composition. However, training of fellow research workers of the CRP and associated co-operation that were requested by some of the participants, were satisfactorily carried out. During the next 18 months, we foresee (a) analysis of '10% samples' sent by the participants for external QC, (b) backup analysis of some number of samples for the first priority elements for some participants, and (c) distribution of the Japanese reference diet material when it is prepared, to accelerate progress of the CRP as originally planned. We are putting an emphasis on the strong will to completing the Project to provide researchers worldwide with essential data for metabolism of the elements of importance in internal dosimetry and Reference Man. It should be noted, however, the CRL is moving from its present location to the Chiba campus, about 130 km to the south by car, sometime during 1999. Due to the relocation process, our analytical work will probably be interrupted for a month or two

  16. US Department of Energy reservior research activities Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Railsback, S.F.

    1991-01-01

    The US Department of Energy (DOE) does not directly manage large reservoirs, but DOE laboratories conduct research on reservoir monitoring, assessment, and enhancement under several activities. These activities include (1) studies and remedial actions for reservoirs affected by releases from DOE facilities, (2) industry- sponsored research on reservoir and stream fish, (3) climate change research, (4) hydropower impact assessment studies conducted for the Federal Energy Regulatory Commission (FERC), and (5) the DOE hydropower program. These activities fall under DOE's missions of providing support for environmentally sound energy technologies and managing the legacies of past waste disposal practices at DOE facilities. 9 refs

  17. Safety analysis report upgrade program at the Plutonium Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.

    1993-01-01

    Plutonium research and development activities have resided at the Los Alamos National Laboratory (LANL) since 1943. The function of the Plutonium Facility (PF-4) has been to perform basic special nuclear materials research and development and to support national defense and energy programs. The original Final Safety Analysis Report (FSAR) for PF-4 was approved by DOE in 1978. This FSAR analyzed design-basis and bounding accidents. In 1986, DOE/AL published DOE/AL Order 5481.1B, ''Safety Analysis and Review System'', as a requirement for preparation and review of safety analyses. To meet the new DOE requirements, the Facilities Management Group of the Nuclear Material Technology Division submitted a draft FSAR to DOE for approval in April 1991. This draft FSAR analyzed the new configurations and used a limited-scope probabilistic risk analysis for accident analysis. During the DOE review of the draft FSAR, DOE Order 5480.23 ''Nuclear Safety Analysis Reports'', was promulgated and was later officially released in April 1992. The new order significantly expands the scope, preparation, and maintenance efforts beyond those required in DOE/AL Order 5481.1B by requiring: description of institutional and human-factor safety programs; clear definitions of all facility-specific safety commitments; more comprehensive and detailed hazard assessment; use of new safety analysis methods; and annual updates of FSARs. This paper describes the safety analysis report (SAR) upgrade program at the Plutonium Facility in LANL. The SAR upgrade program is established to meet the requirements in DOE Order 5480.23. Described in this paper are the SAR background, authorization basis for operations, hazard classification, and technical program elements

  18. PCI fuel failure analysis: a report on a cooperative program undertaken by Pacific Northwest Laboratory and Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Mohr, C.L.; Pankaskie, P.J.; Heasler, P.G.; Wood, J.C.

    1979-12-01

    Reactor fuel failure data sets in the form of initial power (P/sub i/), final power (P/sub f/), transient increase in power (ΔP), and burnup (Bu) were obtained for pressurized heavy water reactors (PHWRs), boiling water reactors (BWRs), and pressurized water reactors (PWRs). These data sets were evaluated and used as the basis for developing two predictive fuel failure models, a graphical concept called the PCI-OGRAM, and a nonlinear regression based model called PROFIT. The PCI-OGRAM is an extension of the FUELOGRAM developed by AECL. It is based on a critical threshold concept for stress dependent stress corrosion cracking. The PROFIT model, developed at Pacific Northwest Laboratory, is the result of applying standard statistical regression methods to the available PCI fuel failure data and an analysis of the environmental and strain rate dependent stress-strain properties of the Zircaloy cladding

  19. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    Science.gov (United States)

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated with an enterprise schedule management system. The laboratory side of the system is driven by a protocol modeling and execution system. The close integration between these two aspects of the clinical laboratory facilitates smooth operations, and allows management to accurately measure costs and performance. The entire application has been designed and documented to provide utility to a wide range of clinical laboratory environments.

  20. Radionuclide contaminated soil: Laboratory study and economic analysis of soil washing. Final report

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Zhou, H.; Patel, B.; Bowerman, B.; Brower, J.

    1996-01-01

    The objective of the work discussed in this report is to determine if soil washing is a feasible method to remediate contaminated soils from the Hazardous Waste Management Facility (HWMF) at Brookhaven National Laboratory (BNL). The contaminants are predominantly Cs-137 and Sr-90. The authors have assumed that the target activity for Cs-137 is 50 pCi/g and that remediation is required for soils having greater activities. Cs-137 is the limiting contaminant because it is present in much greater quantities than Sr-90. This work was done in three parts, in which they: estimated the volume of contaminated soil as a function of Cs-137 content, determined if simple removal of the fine grained fraction of the soil (the material that is less than 0.063 mm) would effectively reduce the activity of the remaining soil to levels below the 50 pCi/g target, assessed the effectiveness of chemical and mechanical (as well as combinations of the two) methods of soil decontamination. From this analysis the authors were then able to develop a cost estimate for soil washing and for a baseline against which soil washing was compared

  1. The cleanroom case study in the Software Engineering Laboratory: Project description and early analysis

    Science.gov (United States)

    Green, Scott; Kouchakdjian, Ara; Basili, Victor; Weidow, David

    1990-01-01

    This case study analyzes the application of the cleanroom software development methodology to the development of production software at the NASA/Goddard Space Flight Center. The cleanroom methodology emphasizes human discipline in program verification to produce reliable software products that are right the first time. Preliminary analysis of the cleanroom case study shows that the method can be applied successfully in the FDD environment and may increase staff productivity and product quality. Compared to typical Software Engineering Laboratory (SEL) activities, there is evidence of lower failure rates, a more complete and consistent set of inline code documentation, a different distribution of phase effort activity, and a different growth profile in terms of lines of code developed. The major goals of the study were to: (1) assess the process used in the SEL cleanroom model with respect to team structure, team activities, and effort distribution; (2) analyze the products of the SEL cleanroom model and determine the impact on measures of interest, including reliability, productivity, overall life-cycle cost, and software quality; and (3) analyze the residual products in the application of the SEL cleanroom model, such as fault distribution, error characteristics, system growth, and computer usage.

  2. 14 MeV proton activation analysis

    International Nuclear Information System (INIS)

    Constantinescu, B.; Ivanov, E.; Plostinaru, D.; Popa-Nemoiu, A.; Pascovichi, G.

    1985-01-01

    A fast nuclear nondestructive method for protein analysis using the 14 MeV proton activation has been developed. The total nitrogen content was measured through the reaction: 14 N (p,n) 14 O, (Tsub(1/2)=71 s). The 14 O activity was detected by means of its characteristic 2.312 MeV gamma-ray line with a NaI(Tl) detector. For a fast determination of a large number of samples a mechanized sistem reacting a rate of one sample per minute has been developed. The laboratory electronics comprises a multichannel analyser, a PDP computer and an electronic module comtroller. Comparison of the results obtained by the method described and the classical Kjeldal technique for samples of various cereal grains (soya bean seads, wheat, barley and corn) showed good correlation. A problem of the analysis of the whole protein region on corn and soya-bean seads, where this region is thicker (0,2 - 2 mm), is mentioned. In this case flour was proposed to be used to obtain a protein homogeneous sample and the irradiaton dose for a sample was about 33,000 Gy, mainly (99%) from protons (27 s x 100 nA x 14 MeV)

  3. An inter-laboratory comparison of arsenic analysis in Bangladesh. Draft report

    International Nuclear Information System (INIS)

    Aggarwal, P.K.; Dargie, M.; Groening, M.; Kulkarni, K.M.; Gibson, J.J.

    2001-03-01

    The International Atomic Energy Agency (IAEA) conducted an evaluation of the quality of arsenic analysis in Bangladesh through an inter-laboratory comparison of the analysis of synthetic standards and field samples. A set of 8 synthetic standards with arsenic concentrations ranging from 0 to about 500 μg/kg, traceable to an internationally recognized standard solution of arsenic, were prepared by the IAEA and provided to the participating laboratories. In addition, two samples of drinking water were collected from near Dhaka by the local office of the World Health Organization (WHO) and provided to all participating laboratories and the IAEA for analysis. Out of the 25 laboratories who received the synthetic standards and field samples, 17 laboratories submitted results to the IAEA for comparison. The reported arsenic concentrations have a wide range with values much higher or much lower than the expected value. Analysis of field samples shows a range of values from 0 to 396 μg/kg. Less than one third of the participating laboratories obtained results that were within about 20% of the expected values (about 60 μg/kg) obtained by a laboratory cooperating with the IAEA (University of Rochester). Results of this inter-laboratory comparison point to a lack of consistency in the analytical results that have been and are being obtained in Bangladesh. More importantly, drinking water wells where elevated arsenic concentrations have been found may in fact have low concentrations. Similarly, wells that have been found to be free of arsenic may in fact have substantially higher arsenic concentrations. The quality and reliability of arsenic analysis needs to be established and continually evaluated in order to identify all affected areas and to provide appropriate mitigation

  4. US--ITER activation analysis

    International Nuclear Information System (INIS)

    Attaya, H.; Gohar, Y.; Smith, D.

    1990-09-01

    Activation analysis has been made for the US ITER design. The radioactivity and the decay heat have been calculated, during operation and after shutdown for the two ITER phases, the Physics Phase and the Technology Phase. The Physics Phase operates about 24 full power days (FPDs) at fusion power level of 1100 MW and the Technology Phase has 860 MW fusion power and operates for about 1360 FPDs. The point-wise gamma sources have been calculated everywhere in the reactor at several times after shutdown of the two phases and are then used to calculate the biological dose everywhere in the reactor. Activation calculations have been made also for ITER divertor. The results are presented for different continuous operation times and for only one pulse. The effect of the pulsed operation on the radioactivity is analyzed. 6 refs., 12 figs., 1 tab

  5. Utility of repeat testing of critical values: a Q-probes analysis of 86 clinical laboratories.

    Science.gov (United States)

    Lehman, Christopher M; Howanitz, Peter J; Souers, Rhona; Karcher, Donald S

    2014-06-01

    A common laboratory practice is to repeat critical values before reporting the test results to the clinical care provider. This may be an unnecessary step that delays the reporting of critical test results without adding value to the accuracy of the test result. To determine the proportions of repeated chemistry and hematology critical values that differ significantly from the original value as defined by the participating laboratory, to determine the threshold differences defined by the laboratory as clinically significant, and to determine the additional time required to analyze the repeat test. Participants prospectively reviewed critical test results for 4 laboratory tests: glucose, potassium, white blood cell count, and platelet count. Participants reported the following information: initial and repeated test result; time initial and repeat results were first known to laboratory staff; critical result notification time; if the repeat result was still a critical result; if the repeat result was significantly different from the initial result, as judged by the laboratory professional or policy; significant difference threshold, as defined by the laboratory; the make and model of the instrument used for primary and repeat testing. Routine, repeat analysis of critical values is a common practice. Most laboratories did not formally define a significant difference between repeat results. Repeated results were rarely considered significantly different. Median repeated times were at least 17 to 21 minutes for 10% of laboratories. Twenty percent of laboratories reported at least 1 incident in the last calendar year of delayed result reporting that clinicians indicated had adversely affected patient care. Routine repeat analysis of automated chemistry and hematology critical values is unlikely to be clinically useful and may adversely affect patient care.

  6. The Lanzarote Geodynamic Laboratory: new capabilities for monitoring of volcanic activity at Canary Islands

    Science.gov (United States)

    Arnoso, J.; Vélez, E. J.; Soler, V.; Montesinos, F. G.; Benavent, M.

    2012-04-01

    The volcanic island of Lanzarote is located at the northeastern end of the Canary Islands. Together with Fuerteventura Island, Lanzarote constitutes the emergent part of the East Canary Ridge, which presents a NNE-SSW volcanic alignment. Last eruptive events took place in 1824 and during the period 1730-1736, which is the largest to occur in the archipelago and throw out about 1.3 km3 of volcanic materials. The Lanzarote Geodynamic Laboratory (LGL) was created in 1986 with the idea of making Lanzarote as a natural laboratory to carry out studies in order to acquire more knowledge about its origin, present status and evolution (Vieira et al., 1991; 2006). The LGL has a multidisciplinary scientific purpose and, among others, various objectives are devoted to investigate mass distribution in the Earth system and surface displacements associated to volcanic and/or seismic activity in the island. The influence of LGL is extended throughout the whole geographical area of Lanzarote, including small islands located at the north. The laboratory has 3 observing modules distributed along the island according to its infrastructure and scientific objectives, where more than 70 sensors are recording continuously gravity variations, ground deformations, sea level, seismic activity, meteorological parameters, etc. All these observations are supplemented by periodic measurement of geodetic and geophysical networks that allow us to make studies at local, insular and regional scales. The application of geodetic and geophysical techniques to identify geodynamic signals related to volcanic processes is then a permanent research activity of the laboratory. Nowadays, this fact becomes more interesting due to the ongoing volcanic eruption that is taking place in other island of the Canary Archipelago, El Hierro, since past July 2011. That is, the multidisciplinary research carry on up to now at the LGL allow us to apply multiparameter observations of different kinds of volcanic

  7. Supplement analysis for paleontological excavation at the National Ignition Facility at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1997-01-01

    On December 15, 1997, contractor workers supporting the National Ignition Facility (NIF) construction uncovered bones suspected to be of paleontological importance. The NIF workers were excavating a utility trench near the southwest corner of the NIF footprint area, located at the northeast corner of the Lawrence Livermore National Laboratory (LLNL) Livermore Site, and were excavating at a depth of approximately 30 feet. Upon the discovery of bone fragments, the excavation in the immediate vicinity was halted and the LLNL archaeologist was notified. The archaeologist determined that there was no indication of cultural resources. Mark Goodwin, Senior Curator for the University of California Museum of Paleontology at the University of California, Berkeley, was then contacted. Mr. Goodwin visited the site on December 16th and confirmed that the bones consisted of a section of the skull, a portion of the mandible, several teeth, upper palate, and possibly the vertebrae of a mammoth, genus Mammuthus columbi. This supplement analysis evaluates the potential for adverse impacts of excavating skeletal remains, an activity that was only generally assessed by the NIF Project-Specific Analysis in the Final Programmatic Environmental impact Statement for Stockpile Stewardship and Management (SS and M PEIS) published in September 1996 (DOE/EIS-0236) and its Record of Decision published on December 19, 1996. This supplement analysis has been prepared pursuant to the DOE regulations implementing the National Environmental Policy Act (10 CFR 1021.314)

  8. Analysis of DOE international environmental management activities

    Energy Technology Data Exchange (ETDEWEB)

    Ragaini, R.C.

    1995-09-01

    The Department of Energy`s (DOE) Strategic Plan (April 1994) states that DOE`s long-term vision includes world leadership in environmental restoration and waste management activities. The activities of the DOE Office of Environmental Management (EM) can play a key role in DOE`s goals of maintaining U.S. global competitiveness and ensuring the continuation of a world class science and technology community. DOE`s interest in attaining these goals stems partly from its participation in organizations like the Trade Policy Coordinating Committee (TPCC), with its National Environmental Export Promotion Strategy, which seeks to strengthen U.S. competitiveness and the building of public-private partnerships as part of U.S. industrial policy. The International Interactions Field Office task will build a communication network which will facilitate the efficient and effective communication between DOE Headquarters, Field Offices, and contractors. Under this network, Headquarters will provide the Field Offices with information on the Administration`s policies and activities (such as the DOE Strategic Plan), interagency activities, as well as relevant information from other field offices. Lawrence Livermore National Laboratory (LLNL) will, in turn, provide Headquarters with information on various international activities which, when appropriate, will be included in reports to groups like the TPCC and the EM Focus Areas. This task provides for the collection, review, and analysis of information on the more significant international environmental restoration and waste management initiatives and activities which have been used or are being considered at LLNL. Information gathering will focus on efforts and accomplishments in meeting the challenges of providing timely and cost effective cleanup of its environmentally damaged sites and facilities, especially through international technical exchanges and/or the implementation of foreign-development technologies.

  9. Advanced materials analysis facility at CSIRO HIAF laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M J; Wielunski, L S; Baxter, G R [CSIRO, Lindfield, NSW (Australia). Applied Physics Div.; Sie, S H; Suter, G F [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.

    1994-12-31

    The HIAF facility at North Ryde, based on a 3 MV Tandetron accelerator has been operating for several years. Initially three ion sources were in operation:- conventional duoplasmatrons for proton and helium beams and a sputter ion source for heavy ions. An electrostatic focusing system was designed and built in-house for providing microbeams. The research emphasis has been largely on microbeam PIXE with particular reference to the mining industry. An AMS system was added in 1990 which prevented the inclusion of the charge exchange canal required for helium beams. The facility has been operated by CSIRO Division of Exploration and Mining. At the beginning of 1992, the lon Beam Technology Group of CSIRO Division of Applied Physics was relocated at Lindfield and became a major user of the HIAF facility. Because the research activities of this group involved Rutherford Backscattering and Channeling, it was necessary to add a helium ion source and a new high vacuum beam line incorporating a precision goniometer. These facilities became operational in the second quarter of 1992. Currently a PIXE system is being added to the chamber containing the goniometer, making the accelerator an extremely versatile one for a wide range of IBA techniques. 3 refs.

  10. Advanced materials analysis facility at CSIRO HIAF laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M.J.; Wielunski, L.S.; Baxter, G.R. [CSIRO, Lindfield, NSW (Australia). Applied Physics Div.; Sie, S.H.; Suter, G.F. [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.

    1993-12-31

    The HIAF facility at North Ryde, based on a 3 MV Tandetron accelerator has been operating for several years. Initially three ion sources were in operation:- conventional duoplasmatrons for proton and helium beams and a sputter ion source for heavy ions. An electrostatic focusing system was designed and built in-house for providing microbeams. The research emphasis has been largely on microbeam PIXE with particular reference to the mining industry. An AMS system was added in 1990 which prevented the inclusion of the charge exchange canal required for helium beams. The facility has been operated by CSIRO Division of Exploration and Mining. At the beginning of 1992, the lon Beam Technology Group of CSIRO Division of Applied Physics was relocated at Lindfield and became a major user of the HIAF facility. Because the research activities of this group involved Rutherford Backscattering and Channeling, it was necessary to add a helium ion source and a new high vacuum beam line incorporating a precision goniometer. These facilities became operational in the second quarter of 1992. Currently a PIXE system is being added to the chamber containing the goniometer, making the accelerator an extremely versatile one for a wide range of IBA techniques. 3 refs.

  11. [Activities and responsibilities of workers in embryologic and andrologic laboratories in assisted reproduction centers].

    Science.gov (United States)

    Záková, J; Trávník, P; Malenovská, A; Hűttelová, R

    2013-11-01

    This paper presents the current status and rules for the laboratory staff activities and their competences in the centers of assisted reproduction. The rules were processed by the members of the Association of Reproductive Embryology (ARE) committee under the current legislation. Committee members of the Czech Sterility and Assisted Reproduction Society and Czech Gynecology and Obstetric Society approved these rules as obligatory for assisted reproduction centres in Czech Republic.

  12. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    Energy Technology Data Exchange (ETDEWEB)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  13. Detailed leak detection test plan and schedule for the Oak Ridge National Laboratory LLLW active tanks

    International Nuclear Information System (INIS)

    Douglas, D.G.; Maresca, J.W. Jr.

    1993-03-01

    This document provides a detailed leak detection test plan and schedule for leak testing many of the tanks that comprise the active portion of the liquid low-level waste (LLLW) system at the Oak Ridge National Laboratory (ORNL). This plan was prepared in response to the requirements of the Federal Facility Agreement (FFA) between the US Department of Energy (DOE) and two other agencies, the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC)

  14. Analytical activity of the laboratory for detection of irradiated food in 2005

    International Nuclear Information System (INIS)

    Stachowicz, W.; Malec-Czechowska, K.; Lehner, K.; Guzik, G.P.; Laubsztejn, M.

    2006-01-01

    In the paper activity of the Laboratory for Detection of Irradiated Foods, Institute of Nuclear Chemistry and Technology in 2005 is presented. In the presented period two new detection methods have been implemented: one is based on EPR (electron paramagnetic resonance) spectrometry, while the other employs photostimulated luminescence released from a sample proving its radiation treatment. Statistics of the analyzed sample types and and the analytical methods applied is presented

  15. Human factors activities in teleoperator development at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Draper, J.V.; Herndon, J.N.

    1986-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory is developing advanced teleoperator systems for maintenance of future nuclear reprocessing facilities. Remote maintenance systems developed by the CFRP emphasize man-in-the-loop teleoperation. Consequently, human factors issues which affect teleoperator performance must be addressed. This papers surveys research and development activities carried out by the human factors group within the Remote Control Engineering Task of the CFRP

  16. Optical Signature Analysis of Tumbling Rocket Bodies via Laboratory Measurements

    Science.gov (United States)

    Cowardin, H.; Lederer, S.; Liou, J.-C.

    2012-01-01

    The NASA Orbital Debris Program Office has acquired telescopic lightcurve data on massive intact objects, specifically spent rocket bodies, in order to ascertain tumble rates in support of the Active Debris Removal (ADR) task to help remediate the LEO environment. Rotation rates are needed to plan and develop proximity operations for potential future ADR operations. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC emulates illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC employs a 75-watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The light source is mounted on a rotary arm, allowing access any phase angle between 0 -- 360 degrees. The OMC does not attempt to replicate the rotation rates, but focuses on how an object is rotating as seen from multiple phase angles. The two targets studied are scaled (1:48), SL-8 Cosmos 3M second stages. The first target is painted in the standard government "gray" scheme and the second target is primary white, as used for commercial missions. This paper summarizes results of the two scaled rocket bodies, each rotated about two primary axes: (a) a spin-stabilized rotation and (b) an end-over-end rotation. The two rotation states are being investigated as a basis for possible spin states of rocket bodies, beginning with simple spin states about the two primary axes. The data will be used to create a database of potential spin states for future works to convolve with more complex spin states. The optical signatures will be presented for specific phase angles for each rocket body and shown in conjunction with acquired optical data from multiple telescope sources.

  17. Impact of Educational Activities in Reducing Pre-Analytical Laboratory Errors: A quality initiative.

    Science.gov (United States)

    Al-Ghaithi, Hamed; Pathare, Anil; Al-Mamari, Sahimah; Villacrucis, Rodrigo; Fawaz, Naglaa; Alkindi, Salam

    2017-08-01

    Pre-analytic errors during diagnostic laboratory investigations can lead to increased patient morbidity and mortality. This study aimed to ascertain the effect of educational nursing activities on the incidence of pre-analytical errors resulting in non-conforming blood samples. This study was conducted between January 2008 and December 2015. All specimens received at the Haematology Laboratory of the Sultan Qaboos University Hospital, Muscat, Oman, during this period were prospectively collected and analysed. Similar data from 2007 were collected retrospectively and used as a baseline for comparison. Non-conforming samples were defined as either clotted samples, haemolysed samples, use of the wrong anticoagulant, insufficient quantities of blood collected, incorrect/lack of labelling on a sample or lack of delivery of a sample in spite of a sample request. From 2008 onwards, multiple educational training activities directed at the hospital nursing staff and nursing students primarily responsible for blood collection were implemented on a regular basis. After initiating corrective measures in 2008, a progressive reduction in the percentage of non-conforming samples was observed from 2009 onwards. Despite a 127.84% increase in the total number of specimens received, there was a significant reduction in non-conforming samples from 0.29% in 2007 to 0.07% in 2015, resulting in an improvement of 75.86% ( P educational activities directed primarily towards hospital nursing staff had a positive impact on the quality of laboratory specimens by significantly reducing pre-analytical errors.

  18. An analysis of microsystems development at Sandia National Laboratories

    Science.gov (United States)

    Herrera, Gilbert V.; Myers, David R.

    2011-06-01

    While Sandia initially was motivated to investigate emergent microsystem technology to miniaturize existing macroscale structures, present designs embody innovative approaches that directly exploit the fundamentally different material properties of a new technology at the micro- and nano-scale. Direct, hands-on experience with the emerging technology gave Sandia engineers insights that not only guided the evolution of the technology but also enabled them to address new applications that enlarged the customer base for the new technology. Sandia's early commitment to develop complex microsystems demonstrated the advantages that early adopters gain by developing an extensive design and process tool kit and a shared awareness of multiple approaches to achieve the multiple goals. As with any emergent technology, Sandia's program benefited from interactions with the larger technical community. However, custom development followed a spiral path of direct trial-and-error experience, analysis, quantification of materials properties at the micro- and nano-scale, evolution of design tools and process recipes, and an understanding of reliability factors and failure mechanisms even in extreme environments. The microsystems capability at Sandia relied on three key elements. The first was people: a mix of mechanical and semiconductor engineers, chemists, physical scientists, designers, and numerical analysts. The second was a unique facility that enabled the development of custom technologies without contaminating mainline product deliveries. The third was the arrival of specialized equipment as part of a Cooperative Research And Development Agreement (CRADA) enabled by the National Competitiveness Technology Transfer Act of 1989. Underpinning all these, the program was guided and sustained through the research and development phases by accomplishing intermediate milestones addressing direct mission needs.

  19. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    OpenAIRE

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated ...

  20. Translational Behavior Analysis: From Laboratory Science in Stimulus Control to Intervention with Persons with Neurodevelopmental Disabilities

    Science.gov (United States)

    McIlvane, William J.

    2009-01-01

    Throughout its history, laboratory research in the experimental analysis of behavior has been successful in elucidating and clarifying basic learning principles and processes in both humans and nonhumans. In parallel, applied behavior analysis has shown how fundamental behavior-analytic principles and procedures can be employed to promote…

  1. Performance of laboratories in speciation analysis in seafood – Case of methylmercury and inorganic arsenic

    DEFF Research Database (Denmark)

    Baer, Ines; Baxter, Malcolm; Devesa, Vicenta

    2011-01-01

    arsenic analysis. Results for inorganic arsenic were spread, but not method dependant. The measurand seems to be difficult to analyse in this matrix and possible method issues were identified. Methylmercury results were satisfactory, but not many laboratories perform this type of analysis because...

  2. The effects of total laboratory automation on the management of a clinical chemistry laboratory. Retrospective analysis of 36 years.

    Science.gov (United States)

    Sarkozi, Laszlo; Simson, Elkin; Ramanathan, Lakshmi

    2003-03-01

    Thirty-six years of data and history of laboratory practice at our institution has enabled us to follow the effects of analytical automation, then recently pre-analytical and post-analytical automation on productivity, cost reduction and enhanced quality of service. In 1998, we began the operation of a pre- and post-analytical automation system (robotics), together with an advanced laboratory information system to process specimens prior to analysis, deliver them to various automated analytical instruments, specimen outlet racks and finally to refrigerated stockyards. By the end of 3 years of continuous operation, we compared the chemistry part of the system with the prior 33 years and quantitated the financial impact of the various stages of automation. Between 1965 and 2000, the Consumer Price Index increased by a factor of 5.5 in the United States. During the same 36 years, at our institution's Chemistry Department the productivity (indicated as the number of reported test results/employee/year) increased from 10,600 to 104,558 (9.3-fold). When expressed in constant 1965 dollars, the total cost per test decreased from 0.79 dollars to 0.15 dollars. Turnaround time for availability of results on patient units decreased to the extent that Stat specimens requiring a turnaround time of productivity together with decreased operational cost. It enabled us to significantly increase our workload together with a reduction of personnel. In addition, stats are handled easily and there are benefits such as safer working conditions and improved sample identification, which are difficult to quantify at this stage.

  3. Nuclear activation analysis work at Analytical Chemistry Division: an overview

    International Nuclear Information System (INIS)

    Verma, R.; Swain, K.K.; Remya Devi, P.S.; Dalvi, Aditi A.; Ajith, Nicy; Ghosh, M.; Chowdhury, D.P.; Datta, J.; Dasgupta, S.

    2016-04-01

    Nuclear activation analysis using neutron and charged particles is used routinely for analysis and research at Analytical Chemistry Division (ACD), Bhabha Atomic Research Centre (BARC). Neutron activation analysis at ACD, BARC, Mumbai, India has been pursued since late fifties using Apsara, CIRUS, Dhruva and Critical facility Research reactors, 239 Pu-Be neutron source and neutron generator. Instrumental, Radiochemical, Chemical and Derivative neutron activation analysis approaches are adopted depending on the analyte and the matrix. Large sample neutron activation analysis as well as k 0 -based internal monostandard neutron activation analysis is also used. Charged particle activation analysis at ACD, Variable Energy Cyclotron Centre (VECC), Kolkata started in late eighties and is being used for industrial applications and research. Proton, alpha, deuteron and heavy ion beams from 224 cm room temperature Variable Energy Cyclotron are used for determination of trace elements, measurement of excitation function, thin layer activation and preparation of endohedral fullerenes encapsulated with radioactive isotopes. Analytical Chemistry Division regularly participates in Inter and Intra laboratory comparison exercises conducted by various organizations including International Atomic Energy Agency (IAEA) and the results invariably include values obtained by neutron activation analysis. (author)

  4. Application of nuclear activation analysis

    International Nuclear Information System (INIS)

    Mamonov, E.I.; Khlystova, A.F.

    1979-01-01

    Consideration is given to the applications of nuclear-activation analysis (NAA) as discussed at the International Conference of 1977. One of the new results in the present-day NAA practices is the growing number of elements detected in samples without using a destructive radiochemical separation. An essential feature in this context is the development of the system automation of control and information NAA operations through the use computers. In biological medicine a multicomponent NAA is employed to determine the concentration of elements in various human organs and objects, in metabolic studies and for diagnostic purposes. In agriculture NAA finds applications in the evaluation of grain protein, analysis of element feed composition, soil and fertilizers. The application of this method to the environmental monitoring is considered with particular reference to the element analysis of water (especially drinking water), air, plant residues. Data are presented for the use of NAA in metallurgy, geology, archaeology and criminal law. Tables are provided to illustrate the uses of NAA in various fields

  5. Open-ended versus guided laboratory activities:Impact on students' beliefs about experimental physics

    Science.gov (United States)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2016-12-01

    Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the process of experimental physics. Alternatively, open-ended laboratory activities can provide a more authentic learning environment by, for example, allowing students to exercise greater autonomy in what and how physical phenomena are investigated. Engaging in authentic practices may be a critical part of improving students' beliefs around the nature of experimental physics. Here, we investigate the impact of open-ended activities in undergraduate lab courses on students' epistemologies and expectations about the nature of experimental physics, as well as their confidence and affect, as measured by the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a national data set of student responses to the E-CLASS, we find that the inclusion of some open-ended lab activities in a lab course correlates with more expertlike postinstruction responses relative to courses that include only traditional guided lab activities. This finding holds when examining postinstruction E-CLASS scores while controlling for the variance associated with preinstruction scores, course level, student major, and student gender.

  6. Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  7. Prehistory analysis using photon activation analysis

    International Nuclear Information System (INIS)

    Krausova, I.; Chvatil, D.; Tajer, J.

    2017-01-01

    Instrumental photon activation analysis (IPAA) is a suitable radio-analytical method for non-destructive determination of total nitrogen in various matrices. IPAA determination of nitrogen is based on 14 N (γ, n) 13 N nuclear reaction after high-energy photon irradiation. The analytically usable product of this photo-nuclear reaction is a positron emitter emitting only non-specific annihilation of 511 keV, which can be emitted by other radionuclides present in the sample. Some of them, besides the non-specific 511 keV line, also emit specific lines that allow their contribution to analytical radionuclide 13 N to be subtracted. An efficient source of high-energy photon radiation is the secondary bremsstrahlung generated by the conversion of the electron beam accelerated by a high-frequency circular accelerator - a microtron. The non-destructive IPAA contributed to the clarification of the origins of a precious bracelet originating from a fortified settlement in the area of Karlovy Vary - Drahovice from the late Bronze Age. (authors)

  8. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2008-2009

    International Nuclear Information System (INIS)

    Pain, Reynald; Guy, Julien; Toussenel, Francois; Laforge, Bertrand; Levy, Jean-Michel; Cossin, Isabelle; Cardot, Violaine

    2011-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2008-2009: 1 - Forewords; 2 - Highlights; 3 - Research: Masses and FUNDAMENTAL INTERACTIONS; Matter-antimatter asymmetry; Dark matter and dark energy; Cosmic radiation nature and origin; Interdisciplinary activities; Publications, communications; Partnerships; 2 - Teaching, training, internships and PhDs; 3 - Competences and technical realisations (electronics and instrumentation, computers, mechanics departments, test facilities); 4 - Laboratory operation (organisation, financial and human resources, permanent training, communication and library, health and safety, general services, staff); 5 - Scientific life and communication (seminars, meetings..)

  9. Preanalytical errors in medical laboratories: a review of the available methodologies of data collection and analysis.

    Science.gov (United States)

    West, Jamie; Atherton, Jennifer; Costelloe, Seán J; Pourmahram, Ghazaleh; Stretton, Adam; Cornes, Michael

    2017-01-01

    Preanalytical errors have previously been shown to contribute a significant proportion of errors in laboratory processes and contribute to a number of patient safety risks. Accreditation against ISO 15189:2012 requires that laboratory Quality Management Systems consider the impact of preanalytical processes in areas such as the identification and control of non-conformances, continual improvement, internal audit and quality indicators. Previous studies have shown that there is a wide variation in the definition, repertoire and collection methods for preanalytical quality indicators. The International Federation of Clinical Chemistry Working Group on Laboratory Errors and Patient Safety has defined a number of quality indicators for the preanalytical stage, and the adoption of harmonized definitions will support interlaboratory comparisons and continual improvement. There are a variety of data collection methods, including audit, manual recording processes, incident reporting mechanisms and laboratory information systems. Quality management processes such as benchmarking, statistical process control, Pareto analysis and failure mode and effect analysis can be used to review data and should be incorporated into clinical governance mechanisms. In this paper, The Association for Clinical Biochemistry and Laboratory Medicine PreAnalytical Specialist Interest Group review the various data collection methods available. Our recommendation is the use of the laboratory information management systems as a recording mechanism for preanalytical errors as this provides the easiest and most standardized mechanism of data capture.

  10. An overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    Science.gov (United States)

    Smith, T.H.; Chew, E.W.; Hedahl, T.G.; Mann, L.J.; Pointer, T.F.; Wiersma, G.B.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the U.S. Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological Environmental Sciences Laboratory (RESL), and the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG&G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities radiation is integrated with the overall INEL Site surveillance program. Air, warer, soil, biota, and environmental radiation are monitored or sampled routinely at INEL. Results to date indicate very small or no impacts from INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL.

  11. Overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Smith, T.H.; Hedahl, T.G.; Wiersma, G.B.; Chew, E.W.; Mann, L.J.; Pointer, T.F.

    1986-02-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the US Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological and Environmental Sciences Laboratory (RESL), the US Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG and G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities is integrated with the overall INEL Site surveillance program. Air, water, soil, biota, and environmental radiation are monitored or sampled routinely at the INEL. Results to date indicate very small or no impacts from the INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL. 7 refs., 6 figs., 2 tabs

  12. Promoting ergonomics in Algeria: activities of "the research and training laboratory" in the University of Oran.

    Science.gov (United States)

    Mebarki, Bouhafs; El-Bachir, Tebboune Cheikh

    2012-01-01

    The growing need in Algeria to develop ergonomics knowledge and practice in industry was behind the initiative to develop a training and research project within the ergonomics laboratory at Oran University. Since 2005 the laboratory team is running an academic option master in work design and ergonomics. The evaluation of the academic master in 2010 revealed the acute need of the local industry for professional competences in ergonomic and work psychology. A professional training master program in "ergonomics & work psychology" was then developed in partnership with local industry, five European Universities and six Universities from three Maghreb countries. Research projects were initiated around the two training programs, in conjunction with a number of ergonomics dissemination and promotion activities. Preliminary results of the project are presented and discussed in relation to the local context, and in the light of similar cases in Industrially Developing Countries.

  13. Neutron activation analysis of arsenic in Greece

    International Nuclear Information System (INIS)

    Grimanis, A.P.

    1989-01-01

    Arsenic is considered a toxic trace element for plant, animal, and human organisms. Arsenic and certain arsenic compounds have been listed as carcinogens by the U.S. Environmental Protection Agency. Arsenic is emitted in appreciable quantities into the atmosphere by coal combustion and the production of cement. Arsenic enters the aquatic environment through industrial activities such as smelting of metallic ores, metallurgical glassware, and ceramics as well as insecticide production and use. Neutron activation analysis (NAA) is a very sensitive, precise, and accurate method for determining arsenic. This paper is a review of research studies of arsenic in the Greek environment by NAA performed at our radioanalytical laboratory. The objectives of these studies were (a) to determine levels of arsenic concentrations in environmental materials, (b) to pinpoint arsenic pollution sources and estimate the extent of arsenic pollution, and (c) to find out whether edible marine organisms from the gulfs of Greece receiving domestic, industrial, and agricultural wastes have elevated concentrations of arsenic in their tissues that could render them dangerous for human consumption

  14. Performance on a Clinical Quadriceps Activation Battery Is Related to a Laboratory Measure of Activation and Recovery After Total Knee Arthroplasty.

    Science.gov (United States)

    Bade, Michael; Struessel, Tamara; Paxton, Roger; Winters, Joshua; Baym, Carol; Stevens-Lapsley, Jennifer

    2018-01-01

    To determine the relation between performance on a clinical quadriceps activation battery with (1) activation measured by doublet interpolation and (2) recovery of quadriceps strength and functional performance after total knee arthroplasty (TKA). Planned secondary analysis of a randomized controlled trial. University research laboratory. Patients (N=162; mean age, 63±7y; 89 women) undergoing TKA. Patients were classified as high (quadriceps activation battery ≥4/6) or low (quadriceps activation battery ≤3/6) based on performance on the quadriceps activation battery measured 4 days after TKA. Differences between groups in activation and recovery at 1, 2, 3, 6, and 12 months after TKA were compared using a repeated-measures maximum likelihood model. The low quadriceps activation battery group demonstrated poorer quadriceps activation via doublet interpolation (P=.01), greater quadriceps strength loss (P=.01), and greater functional performance decline (all Pbattery group. Differences between low and high quadriceps activation battery groups on all measures did not persist at 3 and 12 months (all P>.05). Poor performance on the quadriceps activation battery early after TKA is related to poor quadriceps activation and poor recovery in the early postoperative period. Patients in the low quadriceps activation battery group took 3 months to recover to the same level as the high quadriceps activation battery group. The quadriceps activation battery may be useful in identifying individuals who need specific interventions to target activation deficits or different care pathways in the early postoperative period to speed recovery after TKA. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Computational Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains a number of commercial off-the-shelf and in-house software packages allowing for both statistical analysis as well as mathematical modeling...

  16. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  17. LAPP - Annecy le Vieux Particle Physics Laboratory. Activity report 1996-1997

    International Nuclear Information System (INIS)

    Colas, Jacques; Minard, Marie-Noelle; Decamp, Daniel; Marion, Frederique; Drancourt, Cyril; Riva, Vanessa; Berger, Nicole; Bombar, Claudine; Dromby, Gerard

    2004-01-01

    LAPP is a high energy physics laboratory founded in 1976 and is one of the 19 laboratories of IN2P3 (National Institute of Nuclear and particle physics), institute of CNRS (National Centre for Scientific Research). LAPP is joint research facility of the University Savoie Mont Blanc (USMB) and the CNRS. Research carried out at LAPP aims at understanding the elementary particles and the fundamental interactions between them as well as exploring the connections between the infinitesimally small and the unbelievably big. Among other subjects LAPP teams try to understand the origin of the mass of the particles, the mystery of dark matter and what happened to the anti-matter that was present in the early universe. LAPP researchers work in close contact with phenomenologist teams from LAPTh, a theory laboratory hosted in the same building. LAPP teams also work since several decades at understanding the neutrinos, those elementary almost massless particles with amazing transformation properties. They took part in the design and realization of several experiments. Other LAPP teams collaborate in experiments studying signals from the cosmos. This document presents the activities of the laboratory during the years 1996-1997: 1 - Presentation of LAPP; 2 - Data acquisition experiments: e"+e"- annihilations at LEP (standard model and beyond the standard model - ALEPH, Study of hadronic final state events and Search for supersymmetric particles at L3 detector); Neutrino experiments (neutrino oscillation search at 1 km of the Chooz reactors, search for neutrino oscillations at the CERN Wide Band neutrino beam - NOMAD); Quarks-Gluons plasma; Hadronic spectroscopy; 3 - Experiments under preparation (CP violation study - BABAR, Anti Matter Spectrometer in Space - AMS, Search for gravitational waves - VIRGO, Search for the Higgs boson - ATLAS and CMS); 4 - Technical departments; 5 - Theoretical physics; 6 - Other activities

  18. An investigation of the impact of selected prereading activities on student content learning through laboratory activities

    Science.gov (United States)

    Kass, Jesse (Shaya)

    This study investigated whether two prereading activities impacted student learning from hands-on science activities. The study was based on constructivist learning theory. Based on the work of Piaget, it was hypothesized that students who activated prior knowledge would learn more from the activities. Based on the work of Vygotsky it was hypothesized that students who talk more and write more would learn more from the activity. The K-W-L chart and anticipation guide strategies were used with eighth grade students at Graves Middle School in Whittier, California before learning about levers and convection currents. D. M. Ogle (1986) created the three-column K-W-L chart to have students activate prior knowledge. In the first column, the students write what they already know about a subject, in the second column, the students write what they want to know about the subject, and the students complete the third column after learning about a subject by writing answers to the questions that they asked in the second column. Duffelmeyer (1994) created the anticipation guide based on Herber's (1978) reasoning guide. In the anticipation guide, the teacher creates three or four sentences that convey the major ideas of the topic and the students either agree or disagree with the statements. After learning about the topic, students revisit their answers and decide if they were correct or incorrect and they must defend their choices. This research used the Solomon (1947) four-square design and compared both the experimental groups to a control group that simply discussed the concepts before completing the activity. The research showed no significant difference between the control group and either of the treatment groups. The reasons for the lack of significant differences are considered. It was hypothesized that since the students were unfamiliar with the prereading activities and did not have much experience with using either writing-to-learn or talking-to-learn strategies, the

  19. A report on FY06 IPv6 deployment activities and issues at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Tolendino, Lawrence F.; Eldridge, John M.; Hu, Tan Chang

    2006-06-01

    Internet Protocol version 4 (IPv4) has been a mainstay of the both the Internet and corporate networks for delivering network packets to the desired destination. However, rapid proliferation of network appliances, evolution of corporate networks, and the expanding Internet has begun to stress the limitations of the protocol. Internet Protocol version 6 (IPv6) is the replacement protocol that overcomes the constraints of IPv4. IPv6 deployment in government network backbones has been mandated to occur by 2008. This paper explores the readiness of the Sandia National Laboratories' network backbone to support IPv6, the issues that must be addressed before a deployment begins, and recommends the next steps to take to comply with government mandates. The paper describes a joint, work effort of the Sandia National Laboratories ASC WAN project team and members of the System Analysis & Trouble Resolution and Network System Design & Implementation Departments.

  20. Determination of silver using cyclic epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Pun, T.H.; Landsberger, S.

    2012-01-01

    A fast pneumatic transfer facility was installed in Nuclear Engineering Teaching Laboratory (NETL) of the University of Texas at Austin for the purpose of cyclic thermal and epithermal neutron activation analysis. In this study efforts were focused on the evaluation of cyclic epithermal neutron activation analysis (CENAA). Various NIST and CANMET certified materials were analyzed by the system. Experiment results showed 110 Ag with its 25 s half-life as one of the isotopes favored by the system. Thus, the system was put into practical application in identifying silver in metallic ores. Comparison of sliver concentrations as determined by CENAA in CANMET certified reference materials gave very good results. (author)

  1. Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains.

    Directory of Open Access Journals (Sweden)

    William J Pestle

    Full Text Available Over the past forty years, stable isotope analysis of bone (and tooth collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method's frequent use across anthropological subdisciplines (and beyond, the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a sample preparation, and b analysis (instrumentation, working standards, and data calibration. Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration. These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite

  2. Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains.

    Science.gov (United States)

    Pestle, William J; Crowley, Brooke E; Weirauch, Matthew T

    2014-01-01

    Over the past forty years, stable isotope analysis of bone (and tooth) collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method's frequent use across anthropological subdisciplines (and beyond), the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a) sample preparation, and b) analysis (instrumentation, working standards, and data calibration). Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration). These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite isotope values

  3. Waste minimization activities in the Materials Fabrication Division at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Dini, J.W.

    1991-08-01

    The mission of the Materials Fabrication Division (MFD) is to provide fabrication services and technology in support of all programs at Lawrence Livermore National Laboratory (LLNL). MFD involvement is called for when fabrication activity requires levels of expertise, technology, equipment, process development, hazardous processes, security, or scheduling that is typically not commercially available. Customers are encouraged to utilize private industry for fabrication activity requiring routine processing or for production applications. Our waste minimization (WM) program has been directed at source reduction and recycling in concert with the working definition of waste minimization used by EPA. The principal focus of WM activities has been on hazardous wastes as defined by RCRA, however, all pollutant emissions into air, water and land are being considered as part of the program. The incentives include: (1) economics, (2) regulatory conformance, (3) public image and (4) environmental concern. This report discusses the waste minimization program at LLNL

  4. Activation Analysis in Forensic Science. Survey Paper

    Energy Technology Data Exchange (ETDEWEB)

    Jervis, R. E. [University of Toronto, Toronto (Canada)

    1967-10-15

    Recently the unique features of the activation analysis method have been utilized to advantage to meet some specialized needs in the scientific investigation of crime. A review of the principal forensic activation analysis applications to biological materials to date indicates that they may be roughly classified as: (i) the detection and determination of residues of toxic materials in foodstuffs, human tissues, sera and excreta; (ii) the 'individualization' of hair, fibres, narcotics and drugs; and (iii) investigation of the transference of ballistic material to bone, cloth or paper. Analyses of these materials in some actual forensic investigations have been perfected to the point of acceptance in the law courts of several countries. Additional and broader areas of application are under development in a number of nuclear and forensic laboratories. (i) The determination of sub microgram quantities of phosphorus compounds, arsenic, mercury, selenium and thallium in specimens from post-mortem examinations and from living persons showing symptoms of toxicity has revealed certain ingestion of abnormal amount of toxic substances by comparison with similar specimens from healthy persons. In some cases, with tissues such as hair and nails, the time scale of the ingestion of arsenic or mercury has been revealed through the distribution of the deposited element with distance from the growing end or edge. (ii) A series of feasibility studies on the possibility of distinguishing similar materials through their characteristic trace-element patterns have resulted from observations of the wide range or variation in trace impurity content in specimens which come from different individuals or different natural sources. For example, extensive activation analyses for more than twenty elements in human head hair from many people have been carried out and a statistical analysis of the results indicate that activation hair comparisons in forensic investigations may be quite definitive

  5. Photovoltaic Calibrations at the National Renewable Energy Laboratory and Uncertainty Analysis Following the ISO 17025 Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    The measurement of photovoltaic (PV) performance with respect to reference conditions requires measuring current versus voltage for a given tabular reference spectrum, junction temperature, and total irradiance. This report presents the procedures implemented by the PV Cell and Module Performance Characterization Group at the National Renewable Energy Laboratory (NREL) to achieve the lowest practical uncertainty. A rigorous uncertainty analysis of these procedures is presented, which follows the International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement. This uncertainty analysis is required for the team’s laboratory accreditation under ISO standard 17025, “General Requirements for the Competence of Testing and Calibration Laboratories.” The report also discusses additional areas where the uncertainty can be reduced.

  6. Records in ultra low radioactivity measurements with neutron activation analysis

    International Nuclear Information System (INIS)

    Hentig, R. von; Goldbrunner, T.; Angloher, G.; Feilitzsch, F. von

    1999-01-01

    Neutron Activation Analysis has emerged to be an analytical method sensitive enough to detect fg/g traces of unstable primordial nuclides in complex matrices. Especially low count rate experiments in the field of solar neutrino physics and dark matter search can profit from the detection capabilities of this method which had been unattained so far. This gain in sensitivity has been achieved by combining neutron activation, radiochemical separation methods, and efficient low level counting systems at the new underground laboratory of the accelerator laboratory in Garching. Recent improvements which have been made in the purification and analysis of the liquid scintillator, as foreseen for the solar neutrino experiment BOREXINO, are being presented as an example in this paper

  7. Laboratory of Corpuscular Physics - LPC Caen. July 2005 - June 2007 activity report

    International Nuclear Information System (INIS)

    2008-01-01

    The ENSICAEN (National Graduate School of Engineering) is an internationally renowned, pluri-disciplinary scientific research centre. Six of its seven laboratories are associated with the French National Centre of Scientific Research (CNRS), one of them also benefiting from the French Atomic and Renewable Energies (CEA) supervision. The Corpuscular Physics Laboratory (LPC) covers the following Research themes: Medical and industrial applications; upstream of the nuclear waste processing cycle; nuclear systems dynamics and thermodynamics; fundamental interactions; research on neutrinos; nuclei at the limits of stability; theoretical and phenomenological physics. This document is the July 2005 - June 2007 Activity report of the LPC-Caen. It presents the following activities: 1 - Physics Research (Medical and industrial applications, Back-end of Nuclear waste management, Nuclear dynamics and thermodynamics, FUNDAMENTAL INTERACTIONS and Neutrino Nature, Theoretical physics and phenomenology, Nuclear structure); 2 - Technical and administrative activities (Administration, technical design and mechanics, electronics and detectors, computers and information technology, library, health and safety); 3 - knowledge dissemination (teaching, training, seminars, valorisation, publications, books, conferences and scientific meetings); 4 - General information (glossary, organigram, permanent staff, research fellows)

  8. Laboratory of Corpuscular Physics - LPC Caen. July 2007 - December 2009 activity report

    International Nuclear Information System (INIS)

    2010-01-01

    The ENSICAEN (National Graduate School of Engineering) is an internationally renowned, pluri-disciplinary scientific research centre. Six of its seven laboratories are associated with the French National Centre of Scientific Research (CNRS), one of them also benefiting from the French Atomic and Renewable Energies (CEA) supervision. The Corpuscular Physics Laboratory (LPC) covers the following Research themes: Medical and industrial applications; upstream of the nuclear waste processing cycle; nuclear systems dynamics and thermodynamics; fundamental interactions; research on neutrinos; nuclei at the limits of stability; theoretical and phenomenological physics. This document is the July 2007 - December 2009 Activity report of the LPC-Caen. It presents the following activities: 1 - Physics Research: Nuclear physics (Nuclear structure, Nuclear dynamics and thermodynamics, Theoretical physics and phenomenology); interdisciplinary research (Back-end of the fuel cycle, Medical and industrial applications); FUNDAMENTAL INTERACTIONS and Neutrino Nature (NEMO3 and SuperNEMO experiments, β-ν correlations, n-EDM experiment); 2 - Technical and administrative activities (Administration, technical design and mechanics, electronics and microelectronics, computers and information technology, instrumentation, library, projects support and quality, health and safety); 3 - knowledge dissemination (teaching, training, seminars, valorisation, publications, conferences and scientific meetings); 4 - General information (permanent staff, organigram, research fellows, glossary)

  9. Laboratory of Corpuscular Physics - LPC Caen. July 2003 - June 2005 activity report

    International Nuclear Information System (INIS)

    2006-01-01

    The ENSICAEN (National Graduate School of Engineering) is an internationally renowned, pluri-disciplinary scientific research centre. Six of its seven laboratories are associated with the French National Centre of Scientific Research (CNRS), one of them also benefiting from the French Atomic and Renewable Energies (CEA) supervision. The Corpuscular Physics Laboratory (LPC) covers the following Research themes: Medical and industrial applications; upstream of the nuclear waste processing cycle; nuclear systems dynamics and thermodynamics; fundamental interactions; research on neutrinos; nuclei at the limits of stability; theoretical and phenomenological physics. This document is the July 2003 - June 2005 Activity report of the LPC-Caen. It presents the following activities: 1 - Physics Research (Medical and industrial applications, Back-end of the fuel cycle, Nuclear dynamics and thermodynamics, FUNDAMENTAL INTERACTIONS and Neutrino Nature, Theoretical physics and phenomenology, Nuclear structure); 2 - Technical and administrative activities (Administration, technical design and mechanics, electronics and detectors, computers and information technology, library, health and safety); 3 - knowledge dissemination (teaching, training, seminars, valorisation, publications, books, conferences and scientific meetings); 4 - General information (glossary, organigram, permanent staff, research fellows)

  10. Laboratory of Corpuscular Physics - LPC Caen. 2012-2013 activity report

    International Nuclear Information System (INIS)

    2014-01-01

    The ENSICAEN (National Graduate School of Engineering) is an internationally renowned, pluri-disciplinary scientific research centre. Six of its seven laboratories are associated with the French National Centre of Scientific Research (CNRS), one of them also benefiting from the French Atomic and Renewable Energies (CEA) supervision. The Corpuscular Physics Laboratory (LPC) covers the following Research themes: Medical and industrial applications; upstream of the nuclear waste processing cycle; nuclear systems dynamics and thermodynamics; fundamental interactions; research on neutrinos; nuclei at the limits of stability; theoretical and phenomenological physics. This document is the 2012-2013 Activity report of the LPC-Caen. It presents the following activities: 1 - Nuclear Physics Research (Nuclear structure, Nuclear dynamics and thermodynamics, Theoretical physics and phenomenology); 2 - Interdisciplinary Research (Nuclear waste management, Medical and industrial applications); 3 - Group 'FUNDAMENTAL INTERACTIONS and Neutrino Nature - GRIFON (Precise correlation measurements in nuclear beta decay, High resolution study of low energy charge exchange collisions with a MOT (magneto-optical trapped) target, Towards a new measurement of the neutron Electric Dipole Moment (EDM), Search for neutrinoless double beta decay); 4 - Technical and administrative activities (technical design, mechanics, electronics and microelectronics, computers and information technology, instrumentation); library, program management and quality, health and safety); 5 - knowledge dissemination (teaching, training, valorisation, communication, conferences and scientific meetings); 6 - General information (permanent staff, organigram, research fellows, glossary)

  11. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2010-2012

    International Nuclear Information System (INIS)

    Pain, Reynald; Ghia, Piera L.; Lacour, Didier; Lavergne, Laurence; Billoir, Pierre; Cossin, Isabelle; Cardot, Violaine

    2012-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2010-2012: 1 - Forewords; 2 - Highlights; 3 - Research: Masses and FUNDAMENTAL INTERACTIONS; Matter-antimatter asymmetry; Dark matter and dark energy; Cosmic radiation nature and origin; Publications, communications; 2 - Teaching, training, internships and PhDs; 3 - Competences and technical realisations (electronics and instrumentation, computers, mechanics departments, expertise and valorisation, conference participation, responsibilities); 4 - Laboratory operation (organisation, partnerships, financial and human resources, permanent training, communication and library, health and safety, radiation protection, general services, staff); 5 - Scientific life and communication (seminars, meetings..)

  12. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2012-2014

    International Nuclear Information System (INIS)

    Balland, Christophe; Cossin, Isabelle; Giganti, Claudio; Hardin, Delphine; Lavergne, Laurence; Le Dortz, Olivier; Lenain, Jean-Philippe; Marchiori, Giovanni; Regnault, Nicolas; Varanda De-Sa, Vera; Daigremont, Jean-Jacques

    2015-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2012-2014: 1 - Forewords; 2 - Highlights; 3 - Research: Masses and FUNDAMENTAL INTERACTIONS; Matter-antimatter asymmetry; Dark matter and dark energy; Cosmic radiation nature and origin; Publications, communications; 2 - Teaching, training, internships and PhDs; 3 - Competences and technical realisations (electronics and instrumentation, computers, mechanics, expertise, calculation and technical departments); 4 - Laboratory operation (organisation, partnerships, financial and human resources, permanent training, communication and library, health and safety, radiation protection, general services, staff); 5 - Scientific life and communication (seminars, meetings..)

  13. Technique and equipment for measuring volume activity of radon in the air of radon laboratories and clinics

    International Nuclear Information System (INIS)

    Vorob'ev, I.B.; Krivokhatskij, A.S.; Nekrasov, E.V.; Nikolaev, V.A.; Potapov, V.G.; Terent'ev, M.V.

    1990-01-01

    Usability of a new equipment-technique combination for measuring radon activity in the air of radon laboratories and balneological clinics is studied. The complex includes nitrate-cellulose detector, radon chamber, Aist, Istra type spark counters and technique of spark counting. The method sensitivity is 50 Bqxm 3 , the error is 30%. Usability and advisability of track method in radon laboratories and balneological clinics for simultaneous measurement in several points of integral volumetric radon activities are confirmred. The method permits to carry out rapid and accurate bulk investigations. The results of determining mean volumetric radon activity in the air in different points of radon laboratory and radon clinics are presented

  14. The Coordinating Laboratories for monitoring of environmental radioactivity. History, activities, perspectives

    International Nuclear Information System (INIS)

    Wiechen, A.; Bayer, A.

    2000-10-01

    The article reviews the development of the monitoring of environmental radioactivity in the former Federal Republic of Germany and from 1990 onwards in re-unified Germany. This monitoring originated in the need to investigate the radioactive fallout from the testing of atomic bombs in the atmosphere in the 1950's and 1960's. Monitoring was intensified and became increasingly regulated by law as a response to the large scale use of atomic power and in accordance with the Euratom Treaty of 1957. The necessity of evaluating the radiological effects in old mining regions in some of the new Laender was recognised in 1990. Since then legislation and official monitoring have been extended to include this source of radiation exposure. Also described is the way in which those institutions now termed Coordinating Laboratories were involved in all of the developments mentioned above. They tested and developed sampling, analysis and measurement techniques, carried out research projects on the various contamination pathways, reported regularly on environmental radioactivity and radiation exposure, organised and evaluated interlaboratory comparisons, assisted in the setting up of the Federal Integrated Measurement and Information System (IMIS), and advised the appropriate Federal and Laender Ministries. Some of the Coordinating Laboratories also manage Federal Monitoring Networks. The Precautionary Radiation Protection Act stipulates these tasks and names the institutions appointed as Coordinating Laboratories. (orig.) [de

  15. Activities of the cross-section compilation and evaluation centers at the Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Chernick, J.

    1967-01-01

    The growth of the compilation and evaluation efforts at the Brookhaven National Laboratory are reviewed. The current work of the Sigma Center is discussed, including the status of the publication of supplements to BNL-325 and the current state of the SCISRS-I tape. Future needs for BNL-325 type publications and SCISRS-II cross-section tapes are outlined. The history of the Cross-Section Evaluation Center at the Brookhaven National Laboratory is similarly reviewed. The status of current work is discussed, including the growth of the ENDF/A tape. The status of US efforts to produce a cross-section tape (ENDF7B) at an early date to satisfy the needs of US reactor designers is discussed. The continued importance of integral experiments and their accurate analysis to provide checks of the cross-section tapes is pointed out. The role of the Brookhaven National Laboratory in collaboration on an international basis is reviewed, including its current relationship to the ENEA Neutron Data Compilation Centre, the International Atomic Energy Agency and other nuclear centres. (author)

  16. Neutron activation analysis of trace elements in IAEA reference materials

    International Nuclear Information System (INIS)

    Cheema, M.N.; Hasany, S.M.; Hanif, I.; Chaudhry, M.S.; Qureshi, I.H.

    1978-09-01

    Analytical Chemistry Group of Nuclear Chemistry Division at PINSTECH has been participating in IAEA Intercomparison programme of analytical quality control since 1972. So far fifteen samples of a variety of materials received from the Agency have been analyzed for different minor and trace elements. Mostly destructive and non-destructive neutron activation analysis techniques have been used for elemental analysis. In this report the description of the samples and the experimental procedures employed have been mentioned. The results of elemental analysis have been reported and compared with IAEA values which are based on the average computed from the results of different participating laboratories. (authors)

  17. IAEA laboratory activities. The IAEA laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries. 2nd report

    International Nuclear Information System (INIS)

    1965-01-01

    This Second Report 'IAEA Laboratory Activities' describes developments and scientific work during the year 1964. It reports on the activities of the Agency's Laboratory Vienna - Seibersdorf, the Marine Biological Project at Monaco, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries. In addition, it contains a first, short review on the International Centre for Theoretical Physics at Trieste. This Centre was established in October 1963 and started its operations in 1964. The Report is similar to the first one published at the beginning of 1964, and is intended as a source of current information

  18. 9 CFR 381.207 - Small importations for consignee's personal use, display, or laboratory analysis.

    Science.gov (United States)

    2010-01-01

    ... MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Small importations for consignee's personal use, display, or laboratory analysis. 381.207 Section 381.207 Animals and Animal Products FOOD...

  19. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M. L.

    2016-01-13

    This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

  20. A Laboratory Exercise Illustrating the Sensitivity and Specificity of Western Blot Analysis

    Science.gov (United States)

    Chang, Ming-Mei; Lovett, Janice

    2011-01-01

    Western blot analysis, commonly known as "Western blotting," is a standard tool in every laboratory where proteins are analyzed. It involves the separation of polypeptides in polyacrylamide gels followed by the electrophoretic transfer of the separated polypeptides onto a nitrocellulose or polyvinylidene fluoride membrane. A replica of the…

  1. Data Analysis and Graphing in an Introductory Physics Laboratory: Spreadsheet versus Statistics Suite

    Science.gov (United States)

    Peterlin, Primoz

    2010-01-01

    Two methods of data analysis are compared: spreadsheet software and a statistics software suite. Their use is compared analysing data collected in three selected experiments taken from an introductory physics laboratory, which include a linear dependence, a nonlinear dependence and a histogram. The merits of each method are compared. (Contains 7…

  2. Coulometric Titration of Ethylenediaminetetraacetate (EDTA) with Spectrophotometric Endpoint Detection: An Experiment for the Instrumental Analysis Laboratory

    Science.gov (United States)

    Williams, Kathryn R.; Young, Vaneica Y.; Killian, Benjamin J.

    2011-01-01

    Ethylenediaminetetraacetate (EDTA) is commonly used as an anticoagulant in blood-collection procedures. In this experiment for the instrumental analysis laboratory, students determine the quantity of EDTA in commercial collection tubes by coulometric titration with electrolytically generated Cu[superscript 2+]. The endpoint is detected…

  3. Microfluidic Gel Electrophoresis in the Undergraduate Laboratory Applied to Food Analysis

    Science.gov (United States)

    Chao, Tzu-Chiao; Bhattacharya, Sanchari; Ros, Alexandra

    2012-01-01

    A microfluidics-based laboratory experiment for the analysis of DNA fragments in an analytical undergraduate course is presented. The experiment is set within the context of food species identification via amplified DNA fragments. The students are provided with berry samples from which they extract DNA and perform polymerase chain reaction (PCR)…

  4. Data analysis and graphing in an introductory physics laboratory: spreadsheet versus statistics suite

    International Nuclear Information System (INIS)

    Peterlin, Primoz

    2010-01-01

    Two methods of data analysis are compared: spreadsheet software and a statistics software suite. Their use is compared analysing data collected in three selected experiments taken from an introductory physics laboratory, which include a linear dependence, a nonlinear dependence and a histogram. The merits of each method are compared.

  5. Laboratory and exterior decay of wood plastic composite boards: voids analysis and computed tomography

    Science.gov (United States)

    Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight

    2016-01-01

    After exposure in the field and laboratory soil block culture testing, the void content of wood–plastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...

  6. [SWOT analysis of laboratory certification and accreditation on detection of parasitic diseases].

    Science.gov (United States)

    Xiong, Yan-hong; Zheng, Bin

    2014-04-01

    This study analyzes the strength, weakness, opportunity and threat (SWOT) of laboratory certification and accreditation on detection of parasitic diseases by SWOT analysis comprehensively, and it puts forward some development strategies specifically, in order to provide some indicative references for the further development.

  7. Analysis of a p53 Mutation Associated with Cancer Susceptibility for Biochemistry and Genetic Laboratory Courses

    Science.gov (United States)

    Soto-Cruz, Isabel; Legorreta-Herrera, Martha

    2009-01-01

    We have devised and implemented a module for an upper division undergraduate laboratory based on the amplification and analysis of a p53 polymorphism associated with cancer susceptibility. First, students collected a drop of peripheral blood cells using a sterile sting and then used FTA cards to extract the genomic DNA. The p53 region is then PCR…

  8. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.

    Science.gov (United States)

    Chowdhury, Enhad A; Western, Max J; Nightingale, Thomas E; Peacock, Oliver J; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices

  9. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.

    Directory of Open Access Journals (Sweden)

    Enhad A Chowdhury

    Full Text Available Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise and over a 24 hour period in free-living conditions. Thirty men (n = 15 and women (n = 15 wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR, an accelerometry-only device as a comparison (Jawbone UP24 and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™. During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01. The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01. None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors

  10. Activation analysis in gold industry

    International Nuclear Information System (INIS)

    Kist, A. A.

    2003-01-01

    Nuclear techniques and methods were, are, and will be very important for many fields of science, agriculture, industry, etc. Among other examples one can remember role of the nuclear medicine (radiotherapy and radiodiagnostic methods) or semiconductors (communication, computing, information, etc.) which industrial production has been on initial stage based on activation analysis. One of very illustrative examples is application of nuclear methods in gold industry. This is given by favorable nuclear properties of gold. Uzbekistan is one of the main producers of gold. Open-cast mining and hydro metallurgic extraction (using leaching by cyanide and sorption by ion-exchange resin) is the mostly used technology. The typical gold ores are sulfide and contain elevated concentration of As and Sb. That needs special technology of gold extraction. Importance of gold for Uzbekistan economy is a reason why for many years there are carried out studies concerning to gold production. These studies include also nuclear methods and their results are successfully used in gold industry. The present paper gives a brief overview for period of 25 years. For many reasons most of these studies were not published before completely. Despite some results are obtained decades ago we decided to present the overview as an example how nuclear methods can cover requirements of the whole process. We are trying to sort these studies according to methods and applications

  11. Neutron activation analysis in Bulgaria

    International Nuclear Information System (INIS)

    Apostolov, D.

    1985-01-01

    The development of instrumental neutron activation analysis (INAA) as a routine method started in 1960 with bringing into use of the experimental nuclear reactor 2 MW -IRT-2000. For the purposes of INAA the vertical channels were used. The neutron flux vary from 1 to 6x10 12 n/cm 2 s, with Cd ratio for gold of about 4,4. In one of the channels the neutron flux is additionally thermalised with grafite, in others - a pneumatic double-tube rabbit system is installed. One of the irradiation positions is equiped with 1 mm Cd shield constantly. With the pressure of the working gas (air) of 2 bar the transport time in one direction is 2,5 sec. Because of lack of special system for uniform irradiation an accuracy of 3% can be reached by use of iron monitors for long irradiations and copper monitors for use in the rabbit system. Two neutron generators are also working but the application of 14 MeV neutrons for INAA is still quite limited. The most developed are the applications of INAA in the fields of geology and paedology, medicine and biology, environment and pollution, archaeology, metallurgy, metrology and hydrology, criminology

  12. RILARA: Ibero-American laboratories network of radioactivity analysis in food

    International Nuclear Information System (INIS)

    Romero, M. Lourdes; Fernandez, Isis M.; Aguirre, Jaime; Melo, Ana C. de; Flores, Yasmine; Igliki, Amanda; Osores, Jose M.; Vasquez, L. Ramiro

    2008-01-01

    The Ibero-American Laboratories Network of Radioactivity Analysis in Food (RILARA), is a thematic network that was established in the year 2007 with the financial support of the Ibero-American Program of Science and Technology for Development (CYTED). The network brings together laboratories from Argentina, Brazil, Cuba, Ecuador, Spain, Mexico, Peru and Venezuela. The main objective of thematic networks is the transfer of knowledge among the research groups and to foster the cooperation as a working method. Their mission is to create a collaboration framework that allows in the future developing new common actions. The main objective of RILARA is to guarantee the radioactive innocuousness in foodstuffs, to protect consumer's health. Besides, the network aims to facilitate the international trade among Ibero-American countries, by strengthening technical cooperation of radioactivity analysis laboratories in food and by maintaining a continuous exchange of information related to the topic. This paper presents how this network was conceived, its objectives and specific goals. Also actions taken to achieve a stable and continuous interaction among the Ibero-American laboratories controlling radioactivity in food are specified. The completion of these actions is expected to provide technological transfer among countries/Institutions and staff methodology training at developing laboratories. (author)

  13. Semiautomatic exchanger of samples for carry out neutron activation analysis

    International Nuclear Information System (INIS)

    Aguilar H, F.; Quintana C, G.; Torres R, C. E.; Mejia J, J. O.

    2015-09-01

    In this paper the design methodology and implementation of a semiautomatic exchanger of samples for the Analysis Laboratory by Neutron Activation of the Reactor department is presented. Taking into account the antecedents, the necessities of improvement are described, as well as the equipment that previously contained the Laboratory. The project of the semiautomatic exchanger of samples was developed at Instituto Nacional de Investigaciones Nucleares, with its own technology to increase independence from commercial equipment. Each element of the semiautomatic exchanger of samples is described both in the design phase as construction. The achieved results are positive and encouraging for the fulfillment of the proposed objective that is to increase the capacity of the Laboratory. (Author)

  14. Sustained Performance of a "Physicianless" System of Automated Prehospital STEMI Diagnosis and Catheterization Laboratory Activation.

    Science.gov (United States)

    Potter, Brian J; Matteau, Alexis; Mansour, Samer; Naim, Charbel; Riahi, Mounir; Essiambre, Richard; Montigny, Martine; Sareault, Isabelle; Gobeil, François

    2017-01-01

    Treatment times for primary percutaneous coronary intervention frequently exceed the recommended maximum delay. Automated "physicianless" systems of prehospital cardiac catheterization laboratory (CCL) activation show promise, but have been met with resistance over concerns regarding the potential for false positive and inappropriate activations (IAs). From 2010 to 2015, first responders performed electrocardiograms (ECGs) in the field for all patients with a complaint of chest pain or dyspnea. An automated machine diagnosis of "acute myocardial infarction" resulted in immediate CCL activation and direct transfer without transmission or human reinterpretation of the ECG prior to patient arrival. Any activation resulting from a nondiagnostic ECG (no ST-elevation) was deemed an IA, whereas activations resulting from ECG's compatible with ST-elevation myocardial infarction but without angiographic evidence of a coronary event were deemed false positive. In 2012, the referral algorithm was modified to exclude supraventricular tachycardia and left bundle branch block. There were 155 activations in the early cohort (2010-2012; prior to algorithm modification) and 313 in the late cohort (2012-2015). Algorithm modification resulted in a 42% relative decrease in the rate of IAs (12% vs 7%; P IA and false positive is at least on par with systems that ensure real-time human oversight. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  15. Idaho National Laboratory Quarterly Performance Analysis - 3rd Quarter FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Lisbeth A. Mitchell

    2014-09-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other non-reportable issues identified at INL from July 2013 through June 2014.

  16. Idaho National Laboratory Quarterly Performance Analysis for the 2nd Quarter FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of events for the 2nd Qtr FY-15.

  17. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  18. Microscopic Analysis of Activated Sludge. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on the use of a compound microscope to analyze microscope communities, present in wastewater treatment processes, for operational control. Course topics include: sampling techniques, sample handling, laboratory analysis, identification of organisms, data interpretation, and use of the compound microscope.…

  19. A tracking system for laboratory mice to support medical researchers in behavioral analysis.

    Science.gov (United States)

    Macrì, S; Mainetti, L; Patrono, L; Pieretti, S; Secco, A; Sergi, I

    2015-08-01

    The behavioral analysis of laboratory mice plays a key role in several medical and scientific research areas, such as biology, toxicology, pharmacology, and so on. Important information on mice behavior and their reaction to a particular stimulus is deduced from a careful analysis of their movements. Moreover, behavioral analysis of genetically modified mice allows obtaining important information about particular genes, phenotypes or drug effects. The techniques commonly adopted to support such analysis have many limitations, which make the related systems particularly ineffective. Currently, the engineering community is working to explore innovative identification and sensing technologies to develop new tracking systems able to guarantee benefits to animals' behavior analysis. This work presents a tracking solution based on passive Radio Frequency Identification Technology (RFID) in Ultra High Frequency (UHF) band. Much emphasis is given to the software component of the system, based on a Web-oriented solution, able to process the raw tracking data coming from a hardware system, and offer 2D and 3D tracking information as well as reports and dashboards about mice behavior. The system has been widely tested using laboratory mice and compared with an automated video-tracking software (i.e., EthoVision). The obtained results have demonstrated the effectiveness and reliability of the proposed solution, which is able to correctly detect the events occurring in the animals' cage, and to offer a complete and user-friendly tool to support researchers in behavioral analysis of laboratory mice.

  20. Report of Laboratory Activity, 1996 - 1997; Rapport d`activite du Laboratoire, 1996 - 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report presents the activity of the Laboratory of Particle Physics and Cosmology of College de France on the years 1996-1997 in the fields of Cosmic Physics, Observational Cosmology, Neutrino Experiments, HELLAZ Project, Instrumentation, DELPHI Experiment, Research of Quark-Gluon Plasma, Research on Dark Matter, Theory, Parallel Processing. Also, are mentioned the activities in computer software, electronics, mechanics, general service, publications, external relations, seminars and collaborations. In the field of Cosmic Physics there are described the current experiments on cosmic gamma rays, the work with AUGER observatory and simulations. In the field of observational cosmology there are mentioned the search for baryonic dark matter and studies on type Ia supernovae. In the field of neutrino studies there are described the searches on neutrino oscillations on a 1 km base, while in the framework of HELLAZ project there is reported the work on solar neutrinos. In the field of instrumentation there are mentioned the work on Hybrid Photon Detector and the contribution of the laboratory to the LHC-B Experiment at CERN and on long-base RICH experiment. In the framework of DELPHI experiment at LEP there are reported investigations on beauty particles, new particles and detector performances. There are given results obtained in the field of Quark-Gluon Plasma studies. There are described the research and development works with the dark matter detectors. In the field of theory there are reported studies on the proton structure, photon-photon collisions, the physics of the excited leptons and studies on neutron stars. Also, in this field there is reported the studies in Quantum Chromodynamics and physics of top quark. In the section devoted to parallel processing there are mentioned the research activities related to actinide burning by accelerators and simulations in nuclear medicine issues, electron channelling in crystals and beam-beam effect in colliders. The

  1. University-level Non-proliferation and Safeguards Education and Human Capital Development Activities at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bachner K. M.; Pepper, S.; Gomera, J.; Einwechter, M.; Toler, L. T.

    2016-07-24

    two weeks to streamline the material, standardize NGSI course length, and draw in a larger applicant pool. ?The international and interdisciplinary mix of students attending the course encourages discussions of the topics presented during the course. Information about the course is available at https://www.bnl.gov/nnsscourse/. While a complete analysis of course students has not been undertaken, BNL is aware of three individuals who worked at national laboratories after attending the NNSS course, one who worked at a national laboratory prior to attending NNSS, two who worked as federal employees after attending NNSS, three who were Nonproliferation Graduate Fellows before or after attending NNSS, and three who have participated in other NGSI activities.?Design Information Verification is an IAEA inspection activity that is implemented for the purpose of ensuring that the facility design is consistent with the declared use of a facility.

  2. Analytical Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Analytical Labspecializes in Oil and Hydraulic Fluid Analysis, Identification of Unknown Materials, Engineering Investigations, Qualification Testing (to support...

  3. Clean laboratories and clean rooms for analysis of radionuclides and trace elements

    International Nuclear Information System (INIS)

    2003-01-01

    requirements are summarized of clean laboratory environments, for construction materials as well as for materials used during routine analysis, maintenance, and pitfalls in the analysis of radionuclides and elements at trace- and ultra trace levels. Current methodologies and practices are described for planning the installation of a clean environment as well as protocols for maximizing the benefit-to-cost ratio and for achieving QA/QC. Special emphasis is given to the analysis of radionuclides, and measurement of trace, minor and major elements using nuclear and related analytical techniques such as NAA and XRF. Also included are papers contributed by experts from India, the Netherlands, the United States of America and the IAEA Laboratories, Seibersdorf

  4. Analytical performances of food microbiology laboratories - critical analysis of 7 years of proficiency testing results.

    Science.gov (United States)

    Abdel Massih, M; Planchon, V; Polet, M; Dierick, K; Mahillon, J

    2016-02-01

    Based on the results of 19 food microbiology proficiency testing (PT) schemes, this study aimed to assess the laboratory performances, to highlight the main sources of unsatisfactory analytical results and to suggest areas of improvement. The 2009-2015 results of REQUASUD and IPH PT, involving a total of 48 laboratories, were analysed. On average, the laboratories failed to detect or enumerate foodborne pathogens in 3·0% of the tests. Thanks to a close collaboration with the PT participants, the causes of outliers could be identified in 74% of the cases. The main causes of erroneous PT results were either pre-analytical (handling of the samples, timing of analysis), analytical (unsuitable methods, confusion of samples, errors in colony counting or confirmation) or postanalytical mistakes (calculation and encoding of results). PT schemes are a privileged observation post to highlight analytical problems, which would otherwise remain unnoticed. In this perspective, this comprehensive study of PT results provides insight into the sources of systematic errors encountered during the analyses. This study draws the attention of the laboratories to the main causes of analytical errors and suggests practical solutions to avoid them, in an educational purpose. The observations support the hypothesis that regular participation to PT, when followed by feed-back and appropriate corrective actions, can play a key role in quality improvement and provide more confidence in the laboratory testing results. © 2015 The Society for Applied Microbiology.

  5. Activation analysis in the Americas: recent and future perspectives

    International Nuclear Information System (INIS)

    Guinn, V.P.

    1984-01-01

    A total of 243 publications in the field of nuclear activation analysis and its applications during the period of 1977 through mid-1983, from laboratories in North, Central, and South America were reviewed. Various aspects of these populations are treated statistically, for indication of trends, and 146 of these are cited as publications that illustrate the extent of usage of various special forms of the nuclear activation analysis method (e.g., cyclic INAA, prompt-gamma INAA, epithermal NAA, the delayed-neutron method, the use of pre-irradiation chemical separations, etc.) - or that illustrate applications in such fields as archaeology, geochemistry, environmental chemistry, medicine, industry, and forensic chemistry. The overall conclusion is that the method of nuclear activation analysis continues to flourish in this region

  6. THE PHYSICAL LABORATORY ACTIVITIES WITH PROBLEM SOLVING APPROACH TO INCREASE CRITICAL THINKING SKILL AND UNDERSTANDING STUDENT CONCEPT

    Directory of Open Access Journals (Sweden)

    Eli Trisnowati

    2017-10-01

    Full Text Available This study aims to investigate the description of the improvement of students’ critical thinking skills and the concept understanding by implementing the problem-solving approach. This study was in laboratory activities. This study was done in four times meeting. The try out subjects was 31 students of grades X of MAN Yogyakarta III. This research is using the quasi experimental method with the pretest-posttest design. The data were collected by using multiple choices tests with assessment rubric and observation sheets. The data are analyzed by using multivariate analysis. Based on the result, the gain standard value of students’ conceptual understanding and students’ critical thinking skills for grade X who learned through student’s worksheet with a problem-solving approach, called treatment class, are higher than students who learned without student’s worksheet with a problem-solving approach, called control class.

  7. Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987

    International Nuclear Information System (INIS)

    Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A.; Craig, P.M.

    1987-01-01

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY's 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants

  8. Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. (Oak Ridge National Lab., TN (United States)); Craig, P.M. (Environmental Consulting Engineers, Inc., Knoxville, TN (United States))

    1987-09-30

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY's 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

  9. Clinical pharmacology quality assurance program: models for longitudinal analysis of antiretroviral proficiency testing for international laboratories.

    Science.gov (United States)

    DiFrancesco, Robin; Rosenkranz, Susan L; Taylor, Charlene R; Pande, Poonam G; Siminski, Suzanne M; Jenny, Richard W; Morse, Gene D

    2013-10-01

    Among National Institutes of Health HIV Research Networks conducting multicenter trials, samples from protocols that span several years are analyzed at multiple clinical pharmacology laboratories (CPLs) for multiple antiretrovirals. Drug assay data are, in turn, entered into study-specific data sets that are used for pharmacokinetic analyses, merged to conduct cross-protocol pharmacokinetic analysis, and integrated with pharmacogenomics research to investigate pharmacokinetic-pharmacogenetic associations. The CPLs participate in a semiannual proficiency testing (PT) program implemented by the Clinical Pharmacology Quality Assurance program. Using results from multiple PT rounds, longitudinal analyses of recovery are reflective of accuracy and precision within/across laboratories. The objectives of this longitudinal analysis of PT across multiple CPLs were to develop and test statistical models that longitudinally: (1) assess the precision and accuracy of concentrations reported by individual CPLs and (2) determine factors associated with round-specific and long-term assay accuracy, precision, and bias using a new regression model. A measure of absolute recovery is explored as a simultaneous measure of accuracy and precision. Overall, the analysis outcomes assured 97% accuracy (±20% of the final target concentration of all (21) drug concentration results reported for clinical trial samples by multiple CPLs). Using the Clinical Laboratory Improvement Act acceptance of meeting criteria for ≥2/3 consecutive rounds, all 10 laboratories that participated in 3 or more rounds per analyte maintained Clinical Laboratory Improvement Act proficiency. Significant associations were present between magnitude of error and CPL (Kruskal-Wallis P Kruskal-Wallis P < 0.001).

  10. Characterization of the Activity and Stability of Amylase from Saliva and Detergent: Laboratory Practicals for Studying the Activity and Stability of Amylase from Saliva and Various Commercial Detergents

    Science.gov (United States)

    Valls, Cristina; Rojas, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2012-01-01

    This article presents two integrated laboratory exercises intended to show students the role of [alpha]-amylases (AAMYs) in saliva and detergents. These laboratory practicals are based on the determination of the enzymatic activity of amylase from saliva and different detergents using the Phadebas test (quantitative) and the Lugol test…

  11. Establishment of a clean laboratory for ultra trace analysis of nuclear materials in safeguards environmental samples

    International Nuclear Information System (INIS)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo

    2003-01-01

    The Japan Atomic Energy Research Institute has established a cleanroom facility with cleanliness of ISO Class 5: the Clean Laboratory for Environmental Analysis and Research (CLEAR). It was designed to be used for the analysis of nuclear materials in environmental samples mainly for the safeguards, in addition to the Comprehensive Nuclear-Test-Ban Treaty verification and research on environmental sciences. The CLEAR facility was designed to meet conflicting requirements of a cleanroom and for handling of nuclear materials according to Japanese regulations, i.e., to avoid contamination from outside and to contain nuclear materials inside the facility. This facility has been intended to be used for wet chemical treatment, instrumental analysis and particle handling. A fume-hood to provide a clean work surface for handling of nuclear materials was specially designed. Much attention was paid to the selection of construction materials for use to corrosive acids. The performance of the cleanroom and analytical background in the laboratory are discussed. This facility has satisfactory specification required for joining the International Atomic Energy Agency Network of Analytical Laboratories. It can be concluded that the CLEAR facility enables analysis of ultra trace amounts of nuclear materials at sub-pictogram level in environmental samples. (author)

  12. An automated image analysis system to measure and count organisms in laboratory microcosms.

    Directory of Open Access Journals (Sweden)

    François Mallard

    Full Text Available 1. Because of recent technological improvements in the way computer and digital camera perform, the potential use of imaging for contributing to the study of communities, populations or individuals in laboratory microcosms has risen enormously. However its limited use is due to difficulties in the automation of image analysis. 2. We present an accurate and flexible method of image analysis for detecting, counting and measuring moving particles on a fixed but heterogeneous substrate. This method has been specifically designed to follow individuals, or entire populations, in experimental laboratory microcosms. It can be used in other applications. 3. The method consists in comparing multiple pictures of the same experimental microcosm in order to generate an image of the fixed background. This background is then used to extract, measure and count the moving organisms, leaving out the fixed background and the motionless or dead individuals. 4. We provide different examples (springtails, ants, nematodes, daphnia to show that this non intrusive method is efficient at detecting organisms under a wide variety of conditions even on faintly contrasted and heterogeneous substrates. 5. The repeatability and reliability of this method has been assessed using experimental populations of the Collembola Folsomia candida. 6. We present an ImageJ plugin to automate the analysis of digital pictures of laboratory microcosms. The plugin automates the successive steps of the analysis and recursively analyses multiple sets of images, rapidly producing measurements from a large number of replicated microcosms.

  13. Interferometric analysis of laboratory photoionized plasmas utilizing supersonic gas jet targets.

    Science.gov (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

    2018-06-01

    Photoionized plasmas are an important component of active galactic nuclei, x-ray binary systems and other astrophysical objects. Laboratory produced photoionized plasmas have mainly been studied at large scale facilities, due to the need for high intensity broadband x-ray flux. Using supersonic gas jets as targets has allowed university scale pulsed power generators to begin similar research. The two main advantages of this approach with supersonic gas jets include: possibility of a closer location to the x-ray source and no attenuation related to material used for containment and or tamping. Due to these factors, this experimental platform creates a laboratory environment that more closely resembles astrophysical environments. This system was developed at the Nevada Terawatt Facility using the 1 MA pulsed power generator Zebra. Neon, argon, and nitrogen supersonic gas jets are produced approximately 7-8mm from the z-pinch axis. The high intensity broadband x-ray flux produced by the collapse of the z-pinch wire array implosion irradiates the gas jet. Cylindrical wire arrays are made with 4 and 8 gold 10µm thick wire. The z-pinch radiates approximately 12-16kj of x-ray energy, with x-ray photons under 1Kev in energy. The photoionized plasma is measured via x-ray absorption spectroscopy and interferometry. A Mach-Zehnder interferometer is used to the measure neutral density of the jet prior to the zebra shot at a wavelength of 266 nm. A dual channel air-wedge shearing interferometer is used to measure electron density of the ionized gas jet during the shot, at wavelengths of 532nm and 266nm. Using a newly developed interferometric analysis tool, average ionization state maps of the plasma can be calculated. Interferometry for nitrogen and argon show an average ionization state in the range of 3-8. Preliminary x-ray absorption spectroscopy collected show neon absorption lines. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.

  14. Proceedings of national seminar neutron activation analysis

    International Nuclear Information System (INIS)

    Agus Taftazani; Muhayatun Santoso; Budi Haryanto; Khatarina Oginawati

    2010-11-01

    Proceedings of national seminar neutron activation analysis in 2010 with the theme of the Role of Nuclear Analytical Techniques in the Field of Environment, Health and Industry. The seminar was organized by Indonesians Neutron Activation Analysis and BATAN Forum. These proceedings contain the result of environmental research in BATAN, universities and institutions associated with the application on neutron activation analysis technique. The purpose of these proceedings was as a useful source of information to spur research and development of activation analysis applications in various fields for the Indonesian welfare. There are 40 articles. (PPIKSN).

  15. Instrumental neutron activation analysis - a routine method

    International Nuclear Information System (INIS)

    Bruin, M. de.

    1983-01-01

    This thesis describes the way in which at IRI instrumental neutron activation analysis (INAA) has been developed into an automated system for routine analysis. The basis of this work are 20 publications describing the development of INAA since 1968. (Auth.)

  16. Automatic sample changer for neutron activation analysis at CDTN, Brazil

    International Nuclear Information System (INIS)

    Aimore Dutra Neto; Oliveira Pelaes, Ana Clara; Jacimovic, Radojko

    2018-01-01

    An automatic sample changer was recently developed and installed in the Neutron Activation Analysis (NAA) Laboratory. The certified reference material BCR-320R, Channel Sediment, was analysed in order to verify the reliability of the results obtained by NAA, k 0 -standardisation method, using this automatic system during the gamma-ray measurement step. The results were compared to those manually obtained. The values pointed out that the automatic sample changer is working properly. This changer will increase the productiveness of the neutron activation technique applied at Nuclear Technology Development Centre, CDTN/CNEN expanding its competitiveness as an analytical technique in relation to other techniques. (author)

  17. Laboratory-induced learned helplessness attenuates approach motivation as indexed by posterior versus frontal theta activity.

    Science.gov (United States)

    Reznik, Samantha J; Nusslock, Robin; Pornpattananangkul, Narun; Abramson, Lyn Y; Coan, James A; Harmon-Jones, Eddie

    2017-08-01

    Research suggests that midline posterior versus frontal electroencephalographic (EEG) theta activity (PFTA) may reflect a novel neurophysiological index of approach motivation. Elevated PFTA has been associated with approach-related tendencies both at rest and during laboratory tasks designed to enhance approach motivation. PFTA is sensitive to changes in dopamine signaling within the fronto-striatal neural circuit, which is centrally involved in approach motivation, reward processing, and goal-directed behavior. To date, however, no studies have examined PFTA during a laboratory task designed to reduce approach motivation or goal-directed behavior. Considerable animal and human research supports the hypothesis put forth by the learned helplessness theory that exposure to uncontrollable aversive stimuli decreases approach motivation by inducing a state of perceived uncontrollability. Accordingly, the present study examined the effect of perceived uncontrollability (i.e., learned helplessness) on PFTA. EEG data were collected from 74 participants (mean age = 19.21 years; 40 females) exposed to either Controllable (n = 26) or Uncontrollable (n = 25) aversive noise bursts, or a No-Noise Condition (n = 23). In line with prediction, individuals exposed to uncontrollable aversive noise bursts displayed a significant decrease in PFTA, reflecting reduced approach motivation, relative to both individuals exposed to controllable noise bursts or the No-Noise Condition. There was no relationship between perceived uncontrollability and frontal EEG alpha asymmetry, another commonly used neurophysiological index of approach motivation. Results have implications for understanding the neurophysiology of approach motivation and establishing PFTA as a neurophysiological index of approach-related tendencies.

  18. Fourier Analysis: Creating A “Virtual Laboratory” Using Computer Simulation

    Directory of Open Access Journals (Sweden)

    Jeff Butterfield

    1998-01-01

    Full Text Available At times the desire for specialized laboratory apparatus to support class activities outstrips the available resources.  When this is the case the instructor must look for creative alternatives to help meet the desired objectives.  This report examines how a virtual laboratory was created to model and analyze high-speed networking signals in a LAN class using a spreadsheet simulation.  The students were able to printout various waveforms (e.g., signals of different frequencies/network media that are similar to output from test equipment that would have otherwise been cost prohibitive.  The activity proved to be valuable in helping students to understand an otherwise difficult concept that is central to modern networking applications.  Such simulation is not limited to network signals, but may be applicable in many situations where the artifact under study may be described mathematically.

  19. Point of care testing of fecal calprotectin as a substitute for routine laboratory analysis

    DEFF Research Database (Denmark)

    Hejl, Julie; Theede, Klaus; Møllgren, Brian

    2018-01-01

    Objectives Fecal calprotectin (FC) is widely used to monitor the activity of inflammatory bowel disease (IBD) and to tailor medical treatment to disease activity. Laboratory testing of fecal samples may have a turnaround time of 1–2 weeks, whereas FC home testing allows results within hours...... and thus enables a rapid response to clinical deterioration. Design and methods Fifty-five stool samples were analyzed by the IBDoc® Calprotectin Home Testing kit and the BÜHLMANN fCAL® turbo assay on a Roche Cobas 6000 c501. The correlation between the assays was assessed using Spearman's Rho correlation...... coefficient and the intermediate imprecision of both assays was calculated. Results We found a strong correlation coefficient of 0.887 between FC measured on IBDoc® and the laboratory assay BÜHLMANN fCAL® turbo. The coefficients of variation (CVs) at three different FC levels were in the range 2...

  20. Inventory of activation analysis facilities available in the European Community to Industrial users

    International Nuclear Information System (INIS)

    Pauwels, J.

    1975-01-01

    This inventory includes lists of activation equipment produced in the European Community, facilities available for industrial users and activation laboratories existing in the European companies. The aim of this inventory is to provide all information that may be useful, to companies interested in activation analysis, as well as to give an idea on existing routine applications and on the European market in facilities