WorldWideScience

Sample records for activates 14-3-3 protein

  1. 14-3-3 proteins in apoptosis

    Directory of Open Access Journals (Sweden)

    M. Rosenquist

    2003-04-01

    Full Text Available The once obscure members of the 14-3-3 protein family play significant roles in the determination of cell fate. By inhibiting the pro-apoptotic BAD (Bcl-2-antagonist of cell death and the transcription factor FKHRL-1, 14-3-3 displays important anti-apoptotic characteristics. To date, five points of interaction of 14-3-3 with the apoptotic machinery have been identified. How these interactions are regulated still remains a mystery.

  2. Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions.

    Science.gov (United States)

    Jaumot, M; Hancock, J F

    2001-07-01

    Raf-1 activation is a complex process which involves plasma membrane recruitment, phosphorylation, protein-protein and lipid-protein interactions. We now show that PP1 and PP2A serine-threonine phosphatases also have a positive role in Ras dependent Raf-1 activation. General serine-threonine phosphatase inhibitors such sodium fluoride, or ss-glycerophosphate and sodium pyrophosphate, or specific PP1 and PP2A inhibitors including microcystin-LR, protein phosphatase 2A inhibitor I(1) or protein phosphatase inhibitor 2 all abrogate H-Ras and K-Ras dependent Raf-1 activation in vitro. A critical Raf-1 target residue for PP1 and PP2A is S259. Serine phosphatase inhibitors block the dephosphorylation of S259, which accompanies Raf-1 activation, and Ras dependent activation of mutant Raf259A is relatively resistant to serine phosphatase inhibitors. Sucrose gradient analysis demonstrates that serine phosphatase inhibition increases the total amount of 14-3-3 and Raf-1 associated with the plasma membrane and significantly alters the distribution of 14-3-3 and Raf-1 across different plasma membrane microdomains. These observations suggest that dephosphorylation of S259 is a critical early step in Ras dependent Raf-1 activation which facilitates 14-3-3 displacement. Inhibition of PP1 and PP2A therefore causes plasma membrane accumulation of Raf-1/14-3-3 complexes which cannot be activated.

  3. 14-3-3 gamma and zeta protein expression in active microglia Immune response mechanisms of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Jing He; Shenggang Sun; Xiaowu Chen

    2008-01-01

    BACKGROUND: The progressive degeneration of dopaminergic neurons in Parkinson's disease is associated with an activated glial reaction, combined with an inflammatory process. These responses lead to the production of cytokines, such as interferon-γ, tumor necrosis factor-α(TNF-α), and interleukin-1β. In addition, 14-3-3 protein is a component of Lewy bodies in Parkinson's disease.OBJECTIVE: To observe the expression of 14-3-3 γ and ζ protein, as well as TNF-α, in mouse microglia, as well as changes after lipopolysaccharide (LPS) activation. To investigate possible mechanisms of dopaminergic neuronal injury due to activated microglia. To and clarify the immune response mechanisms of Parkinson's disease.DESIGN: Randomized controlled observation, cell study.SETTING: Laboratory of Department of Neurology, the Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology.MATERIALS: The BV-2 immortalized murine microglia cell line was purchased from China Unit cell center. LPS was provided by Sigma Company. Cell cultures were purchased from Gibco. Phospho-(Ser) 14-3-3 binding motif antibody was purchased from Santa Cruz Biotechnologies. FITC was provided by Linfei Biotechnology, Wuhan, China. TNF-α ELISA was provided by Jingmei Biotech Co, Wuhan, China. The flow cytometer was provided by Becton Dickinson, Canada.METHODS: The present experiment was performed at the Laboratory of Department of Neurology, the Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology from April to December 2006. The microglial cell line, BV-2, was cultured in vitro and stimulated with LPS for 2, 6, 12, and 24 hours. BV-2 cultures without LPS were used as controls.MAIN OUTCOME MEASURES: Expression of 14-3-3 γ protein was detected by flow cytometry. 14-3-3 ζ percentage expression and the mean fluorescence intensity was detected by immunofluorescence. TNF-αexpression was detected by ELISA.RESULTS: 14-3-3

  4. 14-3-3 proteins interact with specific MEK kinases.

    Science.gov (United States)

    Fanger, G R; Widmann, C; Porter, A C; Sather, S; Johnson, G L; Vaillancourt, R R

    1998-02-06

    MEK (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase) kinases (MEKKs) regulate c-Jun N-terminal kinase and extracellular response kinase pathways. The 14-3-3zeta and 14-3-3epsilon isoforms were isolated in a two-hybrid screen for proteins interacting with the N-terminal regulatory domain of MEKK3. 14-3-3 proteins bound both the N-terminal regulatory and C-terminal kinase domains of MEKK3. The binding affinity of 14-3-3 for the MEKK3 N terminus was 90 nM, demonstrating a high affinity interaction. 14-3-3 proteins also interacted with MEKK1 and MEKK2, but not MEKK4. Endogenous 14-3-3 protein and MEKK1 and MEKK2 were similarly distributed in the cell, consistent with their in vitro interactions. MEKK1 and 14-3-3 proteins colocalized using two-color digital confocal immunofluorescence. Binding of 14-3-3 proteins mapped to the N-terminal 393 residues of 196-kDa MEKK1. Unlike MEKK2 and MEKK3, the C-terminal kinase domain of MEKK1 demonstrated little or no ability to interact with 14-3-3 proteins. MEKK1, but not MEKK2, -3 or -4, is a caspase-3 substrate that when cleaved releases the kinase domain from the N-terminal regulatory domain. Functionally, caspase-3 cleavage of MEKK1 releases the kinase domain from the N-terminal 14-3-3-binding region, demonstrating that caspases can selectively alter protein kinase interactions with regulatory proteins. With regard to MEKK1, -2 and -3, 14-3-3 proteins do not appear to directly influence activity, but rather function as "scaffolds" for protein-protein interactions.

  5. 14-3-3 proteins in plant-pathogen interactions.

    Science.gov (United States)

    Lozano-Durán, Rosa; Robatzek, Silke

    2015-05-01

    14-3-3 proteins define a eukaryotic-specific protein family with a general role in signal transduction. Primarily, 14-3-3 proteins act as phosphosensors, binding phosphorylated client proteins and modulating their functions. Since phosphorylation regulates a plethora of different physiological responses in plants, 14-3-3 proteins play roles in multiple signaling pathways, including those controlling metabolism, hormone signaling, cell division, and responses to abiotic and biotic stimuli. Increasing evidence supports a prominent role of 14-3-3 proteins in regulating plant immunity against pathogens at various levels. In this review, potential links between 14-3-3 function and the regulation of plant-pathogen interactions are discussed, with a special focus on the regulation of 14-3-3 proteins in response to pathogen perception, interactions between 14-3-3 proteins and defense-related proteins, and 14-3-3 proteins as targets of pathogen effectors.

  6. Eimeria tenella: 14-3-3 protein interacts with telomerase.

    Science.gov (United States)

    Zhao, Na; Gong, Pengtao; Cheng, Baiqi; Li, Jianhua; Yang, Zhengtao; Li, He; Yang, Ju; Zhang, Guocai; Zhang, Xichen

    2014-10-01

    Telomerase, consisting of telomerase RNA and telomerase reverse transcriptase (TERT), is responsible for the maintenance of the end of linear chromosomes. TERT, as the catalytic subunit of telomerase, plays a critical role in telomerase activity. Researches indicate TERT-associated proteins participate in the regulation of telomerase assembly, posttranslational modification, localization, and enzymatic function. Here, the telomerase RNA-binding domain of Eimeria tenella TERT (EtTRBD) was cloned into pGBKT7 and performed as the bait. α-Galactosidase assay showed that the bait plasmid did not activate Gal4 reporter gene. Further, we isolated an EtTRBD-associated protein, 14-3-3, by yeast two-hybrid screening using the constructed bait plasmid. To confirm the interaction, EtTRBD and 14-3-3 were expressed by prokaryotic and eukaryotic expression systems. Pull-down assays by purified proteins demonstrated a direct bind between EtTRBD and 14-3-3. Co-immunoprecipitation techniques successfully validated that 14-3-3 interacted with EtTRBD in 293T cells. The protein-protein interaction provides a starting point for more in-depth studies on telomerase and telomere regulation in E. tenella.

  7. 14-3-3 proteins-an update

    Institute of Scientific and Technical Information of China (English)

    Paulette MHAWECH

    2005-01-01

    14-3-3 is a highly conserved acidic protein family, composed of seven isoforms in mammals. 14-3-3 protein can interact with over 200 target proteins by phosphoserine-dependent and phosphoserine-independent manners. Little is known about the consequences of these interactions, and thus are the subjects of ongoing studies. 14-3-3 controls cell cycle, cell growth, differentiation, survival, apoptosis, migration and spreading. Recent studies have revealed new mechanisms and new functions of 14-3-3, giving us more insights on this fascinating and complex family of proteins.Of all the seven isoforms, 14-3-3σ seems to be directly involved in human cancer. 14-3-3σ itself is subject to regulation by p53 upon DNA damage and by epigenetic deregulation. Gene silencing of 14-3-3σ by CpG methylation has been found in many human cancer types. This suggests that therapy-targeting 14-3-3σ may be beneficial for future cancer treatment.

  8. Accumulation of Carbohydrate and Regulation of 14-3-3 Protein on Sucrose Phosphate Synthase (SPS) Activity in Two Tomato Species

    Institute of Scientific and Technical Information of China (English)

    WANG Li; CUI Na; ZHAO Xiao-cui; FAN Hai-yan; LI Tian-lai

    2014-01-01

    To explore the differences of carbohydrate metabolism in two tomato species and discuss the possible regulation of 14-3-3 proteins on the sucrose phosphate synthase (SPS) activity, we determined the contents of soluble sugar and starch through high performance liquid chromatography (HPLC). The activities of sugar-metabolizing enzymes were assayed in desalted extract, and the relative expression levels of related genes in sugar metabolism were determined though real-time RT-PCR. The results indicated that glucose and fructose were mainly accumulated during the maturation of the fruit because of the high acid invertase (AI) and neutral invertase (NI) in Micro-Tom (Solanum lycopersicum) fruit, while inSolanum chmielewskii fruit, SPS which went along with the change of sucrose content led to the rapid sucrose increase during the fruit ripening. TFT1 and TFT10, belonging to 14-3-3 protein in tomato, were likely to down-regulated SPS activity during young and intumescence period.

  9. Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic processes

    Directory of Open Access Journals (Sweden)

    Diaz Celine

    2011-11-01

    Full Text Available Abstract Background 14-3-3 proteins are considered master regulators of many signal transduction cascades in eukaryotes. In plants, 14-3-3 proteins have major roles as regulators of nitrogen and carbon metabolism, conclusions based on the studies of a few specific 14-3-3 targets. Results In this study, extensive novel roles of 14-3-3 proteins in plant metabolism were determined through combining the parallel analyses of metabolites and enzyme activities in 14-3-3 overexpression and knockout plants with studies of protein-protein interactions. Decreases in the levels of sugars and nitrogen-containing-compounds and in the activities of known 14-3-3-interacting-enzymes were observed in 14-3-3 overexpression plants. Plants overexpressing 14-3-3 proteins also contained decreased levels of malate and citrate, which are intermediate compounds of the tricarboxylic acid (TCA cycle. These modifications were related to the reduced activities of isocitrate dehydrogenase and malate dehydrogenase, which are key enzymes of TCA cycle. In addition, we demonstrated that 14-3-3 proteins interacted with one isocitrate dehydrogenase and two malate dehydrogenases. There were also changes in the levels of aromatic compounds and the activities of shikimate dehydrogenase, which participates in the biosynthesis of aromatic compounds. Conclusion Taken together, our findings indicate that 14-3-3 proteins play roles as crucial tuners of multiple primary metabolic processes including TCA cycle and the shikimate pathway.

  10. Efficient nuclear export of p65-IkappaBalpha complexes requires 14-3-3 proteins.

    Science.gov (United States)

    Aguilera, Cristina; Fernández-Majada, Vanessa; Inglés-Esteve, Julia; Rodilla, Verónica; Bigas, Anna; Espinosa, Lluís

    2006-09-01

    IkappaB are responsible for maintaining p65 in the cytoplasm under non-stimulating conditions and promoting the active export of p65 from the nucleus following NFkappaB activation to terminate the signal. We now show that 14-3-3 proteins regulate the NFkappaB signaling pathway by physically interacting with p65 and IkappaBalpha proteins. We identify two functional 14-3-3 binding domains in the p65 protein involving residues 38-44 and 278-283, and map the interaction region of IkappaBalpha in residues 60-65. Mutation of these 14-3-3 binding domains in p65 or IkappaBalpha results in a predominantly nuclear distribution of both proteins. TNFalpha treatment promotes recruitment of 14-3-3 and IkappaBalpha to NFkappaB-dependent promoters and enhances the binding of 14-3-3 to p65. Disrupting 14-3-3 activity by transfection with a dominant-negative 14-3-3 leads to the accumulation of nuclear p65-IkappaBalpha complexes and the constitutive association of p65 with the chromatin. In this situation, NFkappaB-dependent genes become unresponsive to TNFalpha stimulation. Together our results indicate that 14-3-3 proteins facilitate the nuclear export of IkappaBalpha-p65 complexes and are required for the appropriate regulation of NFkappaB signaling.

  11. 蛋白14-3-3蛋白亚型与癌症%Protein 14-3-3 isoforms and cancers

    Institute of Scientific and Technical Information of China (English)

    吕德官

    2011-01-01

    14-3-3蛋白家族在真核细胞中广泛表达且高度保守,据报道其与心血管疾病、神经元损伤、帕金森病以及支气管哮喘等疾病有关联,近年来研究发现14-3-3蛋白与癌症的发生和发展也密切相关,而涉及的癌症包括胆管癌、肝癌、肺癌、鼻咽癌、口腔癌、食管癌、胃癌、乳腺癌、卡波济肉瘤、脑膜癌、直肠癌、星形细胞瘤等几乎所有常见癌症.14-3-3蛋白对癌症增殖、转移、凋亡以及耐药等影响作用已经得到证实,其调控机制也得到部分揭示,并且已合成了影响14-3-3蛋白与其他蛋白相互作用的特异小分子阻断药物.人体内的14-3-3蛋白家族包含β,ε,γ,η,θ(τ),ζ和σ7种亚型,不同亚型有不同的组织定位和功能.阐明各亚型在不同肿瘤中的分布、作用及其调控机制,对我们进一步认识和治疗癌症均有一定的指导意义.%The 14-3-3 protein family in eukaryotic cells is widely expressed and highly conservative. It was reported that 14-3-3 proteins were associated with the cardiovascular and cerebrovascular diseases, neuron protection, Parkinson's disease, bronchial asthma, and so on. In recent years, more and more studies focus on the relationship between 14-3-3 proteins and cancers. 14-3-3 Proteins were involved in multiple common cancers such as liver cancer, lung cancer, nasopharyngeal carcinoma, esopha-geal cancer, gastric cancer, breast cancer, colorectal cancer, etc. The effects of 14-3-3 proteins on proliferation , metastasis, apoptosis, and resistance of cancer cells had been confirmed and a part of mechanisms had been elucidated. The family of mammalian 14-3-3 protein has 7 isoforms :β,ε,γ,η,θ,T and ξ ( σ ) . Different 14-3-3 isoforms display different tissue localization and function. In this article, the activities of 14-3-3 isoforms in different tumor cells were summarized. The possible regulatory mechanisms of 14-3-3 in cancer were discussed. Clarification of the

  12. Echinococcus multilocularis laminated-layer components and the E14t 14-3-3 recombinant protein decrease NO production by activated rat macrophages in vitro.

    Science.gov (United States)

    Andrade, M Amparo; Siles-Lucas, Mar; Espinoza, Elsa; Pérez Arellano, José Luis; Gottstein, Bruno; Muro, Antonio

    2004-05-01

    Echinococcus multilocularis and Echinococcus granulosus cause alveolar and cystic (unilocular) echinococcosis, respectively, in humans and animals. It is known that these parasites can affect, among other molecules, nitric oxide (NO) production by periparasitic host cells. Nevertheless, detailed dissection of parasite components specifically affecting cell NO production has not been done to date. We compare the effect of E. granulosus and E. multilocularis defined metacestode structural (laminated-layer associated) and metabolic (14-3-3 protein, potentially related with E. multilocularis metacestode tumor-like growth) components on the NO production by rat alveolar macrophages in vitro. Our results showed that none of these antigens could stimulate macrophage NO production in vitro. However, a reversed effect of some Echinococcus antigens on NO in vitro production was found when cells were previously exposed to LPS stimulation. This inhibitory effect was found when E. multilocularis laminated-layer (LL) or cyst wall (CW) soluble components from both species were used. Pre-stimulation of cells with LPS also resulted in a strong, dose-dependent reduction of NO and iNOS mRNA production after incubation of cells with the E14t protein. Thus, the E. multilocularis 14-3-3 protein appears to be one of the components accounting for the suppressive effect of the CW and LL metacestode extracts.

  13. The 14-3-3 protein forms a molecular complex with heat shock protein Hsp60 and cellular prion protein.

    Science.gov (United States)

    Satoh, Jun-ichi; Onoue, Hiroyuki; Arima, Kunimasa; Yamamura, Takashi

    2005-10-01

    The 14-3-3 protein family consists of acidic 30-kDa proteins composed of 7 isoforms expressed abundantly in neurons and glial cells of the central nervous system (CNS). The 14-3-3 protein identified in the cerebrospinal fluid provides a surrogate marker for premortem diagnosis of Creutzfeldt-Jakob disease, although an active involvement of 14-3-3 in the pathogenesis of prion diseases remains unknown. By protein overlay and mass spectrometric analysis of protein extract of NTera2-derived differentiated neurons, we identified heat shock protein Hsp60 as a 14-3-3-interacting protein. The 14-3-3zeta and gamma isoforms interacted with Hsp60, suggesting that the interaction is not isoform-specific. Furthermore, the interaction was identified in SK-N-SH neuroblastoma, U-373MG astrocytoma, and HeLa cervical carcinoma cells. The cellular prion protein (PrPC) along with Hsp60 was coimmunoprecipitated with 14-3-3 in the human brain protein extract. By protein overlay, 14-3-3 interacted with both recombinant human Hsp60 and PrPC produced by Escherichia coli, indicating that the molecular interaction is phosphorylation-independent. The 14-3-3-binding domain was located in the N-terminal half (NTF) of Hsp60 spanning amino acid residues 27-287 and the NTF of PrPC spanning amino acid residues 23-137. By immunostaining, the 14-3-3 protein Hsp60 and PrPC were colocalized chiefly in the mitochondria of human neuronal progenitor cells in culture, and were coexpressed most prominently in neurons and reactive astrocytes in the human brain. These observations indicate that the 14-3-3 protein forms a molecular complex with Hsp60 and PrPC in the human CNS under physiological conditions and suggest that this complex might become disintegrated in the pathologic process of prion diseases.

  14. Two 14-3-3 binding motifs are required for stable association of Forkhead transcription factor FOXO4 with 14-3-3 proteins and inhibition of DNA binding.

    Science.gov (United States)

    Obsil, Tomas; Ghirlando, Rodolfo; Anderson, D Eric; Hickman, Alison Burgess; Dyda, Fred

    2003-12-30

    The 14-3-3 proteins, a family of dimeric regulatory proteins, are involved in many biologically important processes. The common feature of 14-3-3 proteins is their ability to bind to other proteins in a phosphorylation-dependent manner. Through these binding interactions, 14-3-3 proteins work as molecular scaffolds, modulating the biological functions of their partners. 14-3-3 proteins recognize short motifs containing a phosphorylated serine or threonine residue. In this study, we have quantitatively characterized the in vitro interactions among 14-3-3, the Forkhead transcription factor FOXO4, and its target DNA, the insulin response element. Phosphorylation of FOXO4 (residues 11-213) by protein kinase B at Thr-28 and Ser-193 creates two 14-3-3 binding motifs. Analytical gel filtration and sedimentation equilibrium experiments indicate that doubly phosphorylated FOXO4 and 14-3-3zeta form a complex with 1:2 molar stoichiometry and a K(D) of less than 30 nM. In contrast, singly phosphorylated FOXO4 mutants bind 14-3-3zeta with significantly lower affinity while retaining the ability to bind DNA. An active role for 14-3-3 in the disassembly of the FOXO4/DNA complex is demonstrated by the fact that, in the presence of 14-3-3, two phosphorylated 14-3-3 binding motifs are needed for the complete inhibition of FOXO4 binding to its target DNA.

  15. 14-3-3 proteins and the p53 family : a study in keratinocytes

    NARCIS (Netherlands)

    Niemantsverdriet, Maarten

    2008-01-01

    Several associations between 14-3-3 proteins and members of the p53 family have been revealed. However, numerous questions regarding 14-3-3 proteins, p53 family members and the relationships between thetwo families remain. This thesis contributes to answer these questions. Downregulation of 14-3-3ζ

  16. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Du, Yuhong; Horton, John R.; Upadhyay, Anup K.; Lou, Bin; Bai, Yan; Zhang, Xing; Du, Lupei; Li, Minyong; Wang, Binghe; Zhang, Lixin; Barbieri, Joseph T.; Khuri, Fadlo R.; Cheng, Xiaodong; Fu, Haian (Emory-MED); (GSU); (MCW); (Chinese Aca. Sci.)

    2013-02-14

    The 14-3-3 family of phosphoserine/threonine-recognition proteins engage multiple nodes in signaling networks that control diverse physiological and pathophysiological functions and have emerged as promising therapeutic targets for such diseases as cancer and neurodegenerative disorders. Thus, small molecule modulators of 14-3-3 are much needed agents for chemical biology investigations and therapeutic development. To analyze 14-3-3 function and modulate its activity, we conducted a chemical screen and identified 4-[(2Z)-2-[4-formyl-6-methyl-5-oxo-3-(phosphonatooxymethyl)pyridin-2-ylidene]hydrazinyl]benzoate as a 14-3-3 inhibitor, which we termed FOBISIN (FOurteen-three-three BInding Small molecule INhibitor) 101. FOBISIN101 effectively blocked the binding of 14-3-3 with Raf-1 and proline-rich AKT substrate, 40 kD{sub a} and neutralized the ability of 14-3-3 to activate exoenzyme S ADP-ribosyltransferase. To provide a mechanistic basis for 14-3-3 inhibition, the crystal structure of 14-3-3{zeta} in complex with FOBISIN101 was solved. Unexpectedly, the double bond linking the pyridoxal-phosphate and benzoate moieties was reduced by X-rays to create a covalent linkage of the pyridoxal-phosphate moiety to lysine 120 in the binding groove of 14-3-3, leading to persistent 14-3-3 inactivation. We suggest that FOBISIN101-like molecules could be developed as an entirely unique class of 14-3-3 inhibitors, which may serve as radiation-triggered therapeutic agents for the treatment of 14-3-3-mediated diseases, such as cancer.

  17. 14-3-3 Proteins Participate in Light Signaling through Association with PHYTOCHROME INTERACTING FACTORs

    Directory of Open Access Journals (Sweden)

    Eri Adams

    2014-12-01

    Full Text Available 14-3-3 proteins are regulatory proteins found in all eukaryotes and are known to selectively interact with phosphorylated proteins to regulate physiological processes. Through an affinity purification screening, many light-related proteins were recovered as 14-3-3 candidate binding partners. Yeast two-hybrid analysis revealed that the 14-3-3 kappa isoform (14-3-3κ could bind to PHYTOCHROME INTERACTING FACTOR3 (PIF3 and CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1. Further analysis by in vitro pull-down assay confirmed the interaction between 14-3-3κ and PIF3. Interruption of putative phosphorylation sites on the 14-3-3 binding motifs of PIF3 was not sufficient to inhibit 14-3-3κ from binding or to disturb nuclear localization of PIF3. It was also indicated that 14-3-3κ could bind to other members of the PIF family, such as PIF1 and PIF6, but not to LONG HYPOCOTYL IN FAR-RED1 (HFR1. 14-3-3 mutants, as well as the PIF3 overexpressor, displayed longer hypocotyls, and a pif3 mutant displayed shorter hypocotyls than the wild-type in red light, suggesting that 14-3-3 proteins are positive regulators of photomorphogenesis and function antagonistically with PIF3. Consequently, our results indicate that 14-3-3 proteins bind to PIFs and initiate photomorphogenesis in response to a light signal.

  18. 14-3-3 proteins: a family of versatile molecular regulators.

    Science.gov (United States)

    Obsilová, V; Silhan, J; Boura, E; Teisinger, J; Obsil, T

    2008-01-01

    The 14-3-3 proteins are a family of acidic regulatory molecules found in all eukaryotes. 14-3-3 proteins function as molecular scaffolds by modulating the conformation of their binding partners. Through the functional modulation of a wide range of binding partners, 14-3-3 proteins are involved in many processes, including cell cycle regulation, metabolism control, apoptosis, and control of gene transcription. This minireview includes a short overview of 14-3-3 proteins and then focuses on their role in the regulation of two important binding partners: FOXO forkhead transcription factors and an enzyme tyrosine hydroxylase.

  19. Cannabinoid receptor activation inhibits cell cycle progression by modulating 14-3-3β.

    Science.gov (United States)

    Jung, Hye-Won; Park, Inae; Ghil, Sungho

    2014-09-01

    Cannabinoids display various pharmacological activities, including tumor regression, anti-inflammatory and neuroprotective effects. To investigate the molecular mechanisms underlying the pharmacological effects of cannabinoids, we used a yeast two-hybrid system to screen a mouse brain cDNA library for proteins interacting with type 1 cannabinoid receptor (CB1R). Using the intracellular loop 3 of CB1R as bait, we identified 14-3-3β as an interacting partner of CB1R and confirmed their interaction using affinity-binding assays. 14-3-3β has been reported to induce a cell cycle delay at the G2/M phase. We tested the effects of cannabinoids on cell cycle progression in HeLa cells synchronized using a double-thymidine block-and-release protocol and found an increase in the population of G2/M phase cells. We further found that CB1R activation augmented the interaction of 14-3-3β with Wee1 and Cdc25B, and promoted phosphorylation of Cdc2 at Tyr-15. These results suggest that cannabinoids induce cell cycle delay at the G2/M phase by activating 14-3-3β.

  20. Regulation of starch accumulation by granule-associated plant 14-3-3 proteins.

    Science.gov (United States)

    Sehnke, P C; Chung, H J; Wu, K; Ferl, R J

    2001-01-16

    In higher plants the production of starch is orchestrated by chloroplast-localized biosynthetic enzymes, namely starch synthases, ADP-glucose pyrophosphorylase, and starch branching and debranching enzymes. Diurnal regulation of these enzymes, as well as starch-degrading enzymes, influences both the levels and composition of starch, and is dependent in some instances upon phosphorylation-linked regulation. The phosphoserine/threonine-binding 14-3-3 proteins participate in environmentally responsive phosphorylation-related regulatory functions in plants, and as such are potentially involved in starch regulation. We report here that reduction of the epsilon subgroup of Arabidopsis 14-3-3 proteins by antisense technology resulted in a 2- to 4-fold increase in leaf starch accumulation. Dark-governed starch breakdown was unaffected in these "antisense plants," indicating an unaltered starch-degradation pathway and suggesting a role for 14-3-3 proteins in regulation of starch synthesis. Absorption spectra and gelatinization properties indicate that the starch from the antisense plants has an altered branched glucan composition. Biochemical characterization of protease-treated starch granules from both Arabidopsis leaves and maize endosperm showed that 14-3-3 proteins are internal intrinsic granule proteins. These data suggest a direct role for 14-3-3 proteins in starch accumulation. The starch synthase III family is a possible target for 14-3-3 protein regulation because, uniquely among plastid-localized starch metabolic enzymes, all members of the family contain the conserved 14-3-3 protein phosphoserine/threonine-binding consensus motif. This possibility is strengthened by immunocapture using antibodies to DU1, a maize starch synthase III family member, and direct interaction with biotinylated 14-3-3 protein, both of which demonstrated an association between 14-3-3 proteins and DU1 or DU1-like proteins.

  1. Expression of 14-3-3 protein isoforms in mouse oocytes, eggs and ovarian follicular development

    Directory of Open Access Journals (Sweden)

    De Santanu

    2012-01-01

    Full Text Available Abstract Background The 14-3-3 (YWHA proteins are a highly conserved, ubiquitously expressed family of proteins. Seven mammalian isoforms of 14-3-3 are known (β, γ, ε, ζ, η, τ and, σ. These proteins associate with many intracellular proteins involved in a variety of cellular processes including regulation of the cell cycle, metabolism and protein trafficking. We are particularly interested in the role of 14-3-3 in meiosis in mammalian eggs and the role 14-3-3 proteins may play in ovarian function. Therefore, we examined the expression of 14-3-3 proteins in mouse oocyte and egg extracts by Western blotting after polyacrylamide gel electrophoresis, viewed fixed cells by indirect immunofluorescence, and examined mouse ovarian cells by immunohistochemical staining to study the expression of the different 14-3-3 isoforms. Results We have determined that all of the mammalian 14-3-3 isoforms are expressed in mouse eggs and ovarian follicular cells including oocytes. Immunofluorescence confocal microscopy of isolated oocytes and eggs confirmed the presence of all of the isoforms with characteristic differences in some of their intracellular localizations. For example, some isoforms (β, ε, γ, and ζ are expressed more prominently in peripheral cytoplasm compared to the germinal vesicles in oocytes, but are uniformly dispersed within eggs. On the other hand, 14-3-3η is diffusely dispersed in the oocyte, but attains a uniform punctate distribution in the egg with marked accumulation in the region of the meiotic spindle apparatus. Immunohistochemical staining detected all isoforms within ovarian follicles, with some similarities as well as notable differences in relative amounts, localizations and patterns of expression in multiple cell types at various stages of follicular development. Conclusions We found that mouse oocytes, eggs and follicular cells within the ovary express all seven isoforms of the 14-3-3 protein. Examination of the

  2. Identification and characterization of protein 14-3-3 in carcinogenic liver fluke Opisthorchis viverrini.

    Science.gov (United States)

    Kafle, Alok; Puchadapirom, Pranom; Plumworasawat, Sirikanya; Dontumprai, Rieofarng; Chan-On, Waraporn; Buates, Sureemas; Laha, Thewarach; Sripa, Banchob; Suttiprapa, Sutas

    2016-10-27

    Protein 14-3-3s are abundant phospho-serine/threonine binding proteins, which are highly conserved among eukaryotes. Members of this protein family mediate metabolism and signal transduction networks through binding to hundreds of other protein partners. Protein 14-3-3s have been studied in other species of parasitic helminthes, but little is known about this protein in the carcinogenic liver fluke Opisthorchis viverrini. In this study, we identified and characterized protein 14-3-3s of O. viverrini. Seven protein 14-3-3 encoded sequences were retrieved from the O. viverrini genome database. Multiple alignment and phylogenetic analysis were performed. Two isoforms (protein 14-3-3 zeta and protein 14-3-3 epsilon) that have been previously found in the excretory-secretory (ES) products of O. viverrini were produced as recombinant protein in E. coli and the proteins were then used to immunize mice to obtain specific antibodies. Western blot analysis showed that both proteins were detected in all obtainable developmental stages of O. viverrini and the ES products. Immunolocalization revealed that both isoforms were expressed throughout tissues and organs except the gut epithelium. The highest expression was observed in testes especially in developing spermatocytes, suggesting their role in spermatogenesis. Prominent expression was also detected on tegumental surface of the parasite and on epical surface of bile duct epithelium indicates their additional role in host-parasite interaction. These findings indicate that protein 14-3-3s play important role in the life cycle of the parasite and might be involved in the pathogenesis of O. viverrini infection.

  3. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis.

    Science.gov (United States)

    Liang, Xiubin; Da Paula, Ana Carina; Bozóky, Zoltán; Zhang, Hui; Bertrand, Carol A; Peters, Kathryn W; Forman-Kay, Julie D; Frizzell, Raymond A

    2012-03-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP/protein kinase A (PKA)-regulated chloride channel whose phosphorylation controls anion secretion across epithelial cell apical membranes. We examined the hypothesis that cAMP/PKA stimulation regulates CFTR biogenesis posttranslationally, based on predicted 14-3-3 binding motifs within CFTR and forskolin-induced CFTR expression. The 14-3-3β, γ, and ε isoforms were expressed in airway cells and interacted with CFTR in coimmunoprecipitation assays. Forskolin stimulation (15 min) increased 14-3-3β and ε binding to immature and mature CFTR (bands B and C), and 14-3-3 overexpression increased CFTR bands B and C and cell surface band C. In pulse-chase experiments, 14-3-3β increased the synthesis of immature CFTR, reduced its degradation rate, and increased conversion of immature to mature CFTR. Conversely, 14-3-3β knockdown decreased CFTR B and C bands (70 and 55%) and elicited parallel reductions in cell surface CFTR and forskolin-stimulated anion efflux. In vitro, 14-3-3β interacted with the CFTR regulatory region, and by nuclear magnetic resonance analysis, this interaction occurred at known PKA phosphorylated sites. In coimmunoprecipitation assays, forskolin stimulated the CFTR/14-3-3β interaction while reducing CFTR's interaction with coat protein complex 1 (COP1). Thus 14-3-3 binding to phosphorylated CFTR augments its biogenesis by reducing retrograde retrieval of CFTR to the endoplasmic reticulum. This mechanism permits cAMP/PKA stimulation to make more CFTR available for anion secretion.

  4. Altered expression of 14-3-3ζ protein in spinal cords of rat fetuses with spina bifida aperta.

    Directory of Open Access Journals (Sweden)

    Li-na Wu

    Full Text Available BACKGROUND: A large number of studies have confirmed that excessive apoptosis is one of the reasons for deficient neuronal function in neural tube defects (NTDs. A previous study from our laboratory used 2-D gel electrophoresis to demonstrate that 14-3-3ζ expression was low in the spinal cords of rat fetuses with spina bifida aperta at embryonic day (E 17. As a member of the 14-3-3 protein family, 14-3-3ζ plays a crucial role in the determination of cell fate and anti-apoptotic activity. However, neither the expression of 14-3-3ζ in defective spinal cords, nor the correlation between 14-3-3ζ and excessive apoptosis in NTDs has been fully confirmed. METHODOLOGY/PRINCIPAL FINDINGS: We used immunoblotting and quantitative real-time PCR (qRT-PCR to quantify the expression of 14-3-3ζ and double immunofluorescence to visualize 14-3-3ζ and apoptosis. We found that, compared with controls, 14-3-3ζ was down-regulated in spina bifida between E12 and E15. Excessive apoptotic cells and low expression of 14-3-3ζ were observed in the dorsal region of spinal cords with spina bifida during the same time period. To initially explore the molecular mechanisms of apoptosis in NTDs, we investigated the expression of microRNA-7 (miR-7, microRNA-375 (miR-375 and microRNA-451 (miR-451, which are known to down-regulate 14-3-3ζ in several different cell types. We also investigated the expression of p53, a molecule that is downstream of 14-3-3ζ and can be down-regulated by it. We discovered that, in contrast to the reduction of 14-3-3ζ expression, the expression of miR-451, miR-375 and p53 increased in spina bifida rat fetuses. CONCLUSIONS/SIGNIFICANCE: These data suggest that the reduced expression of 14-3-3ζ plays a role in the excessive apoptosis that occurs in spina bifida and may be partly regulated by the over-expression of miR-451 and miR-375, and the consequent up-regulation of p53 might further promote apoptosis in spina bifida.

  5. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen.

    Science.gov (United States)

    Taoka, Ken-ichiro; Ohki, Izuru; Tsuji, Hiroyuki; Furuita, Kyoko; Hayashi, Kokoro; Yanase, Tomoko; Yamaguchi, Midori; Nakashima, Chika; Purwestri, Yekti Asih; Tamaki, Shojiro; Ogaki, Yuka; Shimada, Chihiro; Nakagawa, Atsushi; Kojima, Chojiro; Shimamoto, Ko

    2011-07-31

    'Florigen' was proposed 75 years ago to be synthesized in the leaf and transported to the shoot apex, where it induces flowering. Only recently have genetic and biochemical studies established that florigen is encoded by FLOWERING LOCUS T (FT), a gene that is universally conserved in higher plants. Nonetheless, the exact function of florigen during floral induction remains poorly understood and receptors for florigen have not been identified. Here we show that the rice FT homologue Hd3a interacts with 14-3-3 proteins in the apical cells of shoots, yielding a complex that translocates to the nucleus and binds to the Oryza sativa (Os)FD1 transcription factor, a rice homologue of Arabidopsis thaliana FD. The resultant ternary 'florigen activation complex' (FAC) induces transcription of OsMADS15, a homologue of A. thaliana APETALA1 (AP1), which leads to flowering. We have determined the 2.4 Å crystal structure of rice FAC, which provides a mechanistic basis for florigen function in flowering. Our results indicate that 14-3-3 proteins act as intracellular receptors for florigen in shoot apical cells, and offer new approaches to manipulate flowering in various crops and trees.

  6. Cloning and Sequence Analysis of Ma-14-3-3d Encoding a Homologue 14-3-3 Protein from Banana%香蕉14-3-3蛋白基因Ma-14-3-3d的克隆及序列分析

    Institute of Scientific and Technical Information of China (English)

    李美英; 徐碧玉; 杨小亮; 刘菊华; 张建斌; 金志强

    2008-01-01

    [Objective] The aim of the study is to clone and analyze the gene encoding 14-3-3 protein from banana. [Method] Combined with PCR amplification, RACE (rapid amplification of cDNA ends) technique was employed to clone 14-3-3 gene from banana; then the amplified sequence was sequenced and homologically analyzed. [Result] A new cDNA homologous with 14-3-3 protein genes were obtained by RT-PCR and RACE ( rapid amplification of cDNA ends ) approaches. The full length of this cDNA was 866 bp encoding 197 amino acids. Alignment of deduced amino acid sequence with those from other plants revealed that the cDNA shared high homology with 14-3-3 protein genes from other plants, and was designated as Musa acuminata 14-3-3 gene (Ma-14-3-3d). Phylogenetic analysis reveals that Ma-14-3-3d has closer genetic relationship with those from monocotyledon species than those from other species. [Conclusion] Ma-14-3-3d belongs to the same lineage of 14-3-3 from monocotyledon.

  7. Protein intrinsic disorder and network connectivity. The case of 14-3-3 proteins.

    Directory of Open Access Journals (Sweden)

    Marina eUhart

    2014-02-01

    Full Text Available The understanding of networks is a common goal of an unprecedented array oftraditional disciplines. One of the network properties most influenced by thestructural contents of its nodes is the inter-connectivity. Recent studies in whichstructural information was included into the topological analysis of proteinnetworks revealed that the content of intrinsic disorder in the nodes couldmodulate the network topology, rewire networks and change their inter-connectivity, which is defined by its clustering coefficient. Here, we review therole of intrinsic disorder present in the partners of the highly conserved 14-3-3protein family on its interaction networks. The 14-3-3s are phospho-serine/threonine binding proteins that have strong influence in the regulation ofmetabolism and signal transduction networks. Intrinsic disorder increases theclustering coefficients, namely the inter-connectivity of the nodes within each14-3-3 paralog networks. We also review two new ideas to measure intrinsicdisorder independently of the primary sequence of proteins, a thermodynamicmodel and a method that uses protein structures and their solventenvironment. This new methods could be useful to explain unsolved questionsabout versatility and fixation of intrinsic disorder through evolution. Therelation between the intrinsic disorder and network topologies could be aninteresting model to investigate new implicitness of the graph theory intobiology.

  8. Protein modifications regulate the role of 14-3-3γ adaptor protein in cAMP-induced steroidogenesis in MA-10 Leydig cells.

    Science.gov (United States)

    Aghazadeh, Yasaman; Ye, Xiaoying; Blonder, Josip; Papadopoulos, Vassilios

    2014-09-19

    The 14-3-3 protein family comprises adaptors and scaffolds that regulate intracellular signaling pathways. The 14-3-3γ isoform is a negative regulator of steroidogenesis that is hormonally induced and transiently functions at the initiation of steroidogenesis by delaying maximal steroidogenesis in MA-10 mouse tumor Leydig cells. Treatment of MA-10 cells with the cAMP analog 8-bromo-cAMP (8-Br-cAMP), which stimulates steroidogenesis, triggers the interaction of 14-3-3γ with the steroidogenic acute regulatory protein (STAR) in the cytosol, limiting STAR activity to basal levels. Over time, this interaction ceases, allowing for a 2-fold induction in STAR activity and maximal increase in the rate of steroid formation. The 14-3-3γ/STAR pattern of interaction was found to be opposite that of the 14-3-3γ homodimerization pattern. Phosphorylation and acetylation of 14-3-3γ showed similar patterns to homodimerization and STAR binding, respectively. 14-3-3γ Ser(58) phosphorylation and 14-3-3γ Lys(49) acetylation were blocked using trans-activator of HIV transcription factor 1 peptides coupled to 14-3-3γ sequences containing Ser(58) or Lys(49). Blocking either one of these modifications further induced 8-Br-cAMP-induced steroidogenesis while reducing lipid storage, suggesting that the stored cholesterol is used for steroid formation. Taken together, these results indicate that Ser(58) phosphorylation and Lys(49) acetylation of 14-3-3γ occur in a coordinated time-dependent manner to regulate 14-3-3γ homodimerization. 14-3-3γ Ser(58) phosphorylation is required for STAR interactions under control conditions, and 14-3-3γ Lys(49) acetylation is important for the cAMP-dependent induction of these interactions.

  9. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja Regulates ABA Sensitivity in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiaoli Sun

    Full Text Available It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis.

  10. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis.

    Science.gov (United States)

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis.

  11. Phosphorylation of Arabidopsis ubiquitin ligase ATL31 is critical for plant carbon/nitrogen nutrient balance response and controls the stability of 14-3-3 proteins.

    Science.gov (United States)

    Yasuda, Shigetaka; Sato, Takeo; Maekawa, Shugo; Aoyama, Shoki; Fukao, Yoichiro; Yamaguchi, Junji

    2014-05-30

    Ubiquitin ligase plays a fundamental role in regulating multiple cellular events in eukaryotes by fine-tuning the stability and activity of specific target proteins. We have previously shown that ubiquitin ligase ATL31 regulates plant growth in response to nutrient balance between carbon and nitrogen (C/N) in Arabidopsis. Subsequent study demonstrated that ATL31 targets 14-3-3 proteins for ubiquitination and modulates the protein abundance in response to C/N-nutrient status. However, the underlying mechanism for the targeting of ATL31 to 14-3-3 proteins remains unclear. Here, we show that ATL31 interacts with 14-3-3 proteins in a phosphorylation-dependent manner. We identified Thr(209), Ser(247), Ser(270), and Ser(303) as putative 14-3-3 binding sites on ATL31 by motif analysis. Mutation of these Ser/Thr residues to Ala in ATL31 inhibited the interaction with 14-3-3 proteins, as demonstrated by yeast two-hybrid and co-immunoprecipitation analyses. Additionally, we identified in vivo phosphorylation of Thr(209) and Ser(247) on ATL31 by MS analysis. A peptide competition assay showed that the application of synthetic phospho-Thr(209) peptide, but not the corresponding unphosphorylated peptide, suppresses the interaction between ATL31 and 14-3-3 proteins. Moreover, Arabidopsis plants overexpressing mutated ATL31, which could not bind to 14-3-3 proteins, showed accumulation of 14-3-3 proteins and growth arrest in disrupted C/N-nutrient conditions similar to wild-type plants, although overexpression of intact ATL31 resulted in repression of 14-3-3 accumulation and tolerance to the conditions. Together, these results demonstrate that the physiological role of phosphorylation at 14-3-3 binding sites on ATL31 is to modulate the binding ability and stability of 14-3-3 proteins to control plant C/N-nutrient response.

  12. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability

    Directory of Open Access Journals (Sweden)

    Gi Won Seo

    2016-08-01

    Full Text Available The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is 771 nucleotides in length and encodes a polypeptide of 256 amino acid residues. The protein has the typical 14-3-3 domain, the nuclear export signal (NES sequence, and the peptide binding residues. The Tm14-3-3ɛ transcript shows a significant three-fold expression in the hemocyte of T. molitor larvae when infected with Escherichia coli Tm14-3-3ɛ silenced larvae show significantly lower survival rates when infected with E. coli. Under Tm14-3-3ɛ silenced condition, a strong antimicrobial activity is elicited in the hemocyte of the host inoculated with E. coli. This suggests impaired secretion of antimicrobial peptides (AMP into the hemolymph. Furthermore, a reduction in AMP secretion under Tm14-3-3ɛ silenced condition would be responsible for loss in the capacity to kill bacteria and might explain the reduced survivability of the larvae upon E. coli challenge. This shows that Tm14-3-3ɛ is required to maintain innate immunity in T. molitor by enabling antimicrobial secretion into the hemolymph and explains the functional specialization of the isoform.

  13. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability.

    Science.gov (United States)

    Seo, Gi Won; Jo, Yong Hun; Seong, Jeong Hwan; Park, Ki Beom; Patnaik, Bharat Bhusan; Tindwa, Hamisi; Kim, Sun-Am; Lee, Yong Seok; Kim, Yu Jung; Han, Yeon Soo

    2016-08-20

    The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ) in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is 771 nucleotides in length and encodes a polypeptide of 256 amino acid residues. The protein has the typical 14-3-3 domain, the nuclear export signal (NES) sequence, and the peptide binding residues. The Tm14-3-3ɛ transcript shows a significant three-fold expression in the hemocyte of T. molitor larvae when infected with Escherichia coli Tm14-3-3ɛ silenced larvae show significantly lower survival rates when infected with E. coli. Under Tm14-3-3ɛ silenced condition, a strong antimicrobial activity is elicited in the hemocyte of the host inoculated with E. coli. This suggests impaired secretion of antimicrobial peptides (AMP) into the hemolymph. Furthermore, a reduction in AMP secretion under Tm14-3-3ɛ silenced condition would be responsible for loss in the capacity to kill bacteria and might explain the reduced survivability of the larvae upon E. coli challenge. This shows that Tm14-3-3ɛ is required to maintain innate immunity in T. molitor by enabling antimicrobial secretion into the hemolymph and explains the functional specialization of the isoform.

  14. 14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif

    DEFF Research Database (Denmark)

    Andersen, Sofie Dabros; Keijzers, Guido; Rampakakis, Emmanouil

    2012-01-01

    Human exonuclease 1 (hEXO1) acts directly in diverse DNA processing events, including replication, mismatch repair (MMR), and double strand break repair (DSBR), and it was also recently described to function as damage sensor and apoptosis inducer following DNA damage. In contrast, 14-3-3 proteins...... experiments reveal weak affinity of the more selective isoform 14-3-3s but both 14-3-3 isoforms ¿ and s significantly stimulate hEXO1 activity, indicating that these regulatory proteins exert a common regulation mode on hEXO1. Results demonstrate that binding involves the phosphorable amino acid S746 in hEXO1...... are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding...

  15. The role of 14-3-3{beta} in transcriptional activation of estrogen receptor {alpha} and its involvement in proliferation of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoonseo; Kim, Hyungjin; Jang, Sung-Wuk [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Ko, Jesang, E-mail: jesangko@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2011-10-14

    Highlights: {yields} 14-3-3{beta} interacts with ER{alpha} and the interaction is Akt-dependent. {yields} 14-3-3{beta} regulates the transcriptional activity of ER{alpha} in a ligand-dependent manner. {yields} 14-3-3{beta} increases expressions of ER{alpha} target genes. {yields} 14-3-3{beta} increases breast cancer cell proliferation. -- Abstract: The estrogen receptor (ER) functions as a transcription factor that mediates the effects of estrogen. ER{alpha}, which plays a crucial role in the development and progression of breast cancer, is activated by estrogen binding, leading to receptor phosphorylation, dimerization, and recruitment of co-activators and chaperons to the estrogen-bound receptor complex. The 14-3-3 proteins bind to target proteins via phosphorylation and influence many cellular events by altering their subcellular localization or acting as a chaperone. However, regulation of ER{alpha} expression and transactivation by the 14-3-3 proteins has not been reported. We demonstrate that 14-3-3{beta} functions as a positive regulator of ER{alpha} through a direct protein-protein interaction in an estrogen-dependent manner. Ectopic expression of 14-3-3{beta} stimulated ER{alpha}-mediated transcriptional activity in MCF-7 breast cancer cells. Enhanced ER{alpha} transcriptional activity due to 14-3-3{beta} increased the expressions of the endogenous ER{alpha} target genes, leading to proliferation of breast cancer cells. We suggest that 14-3-3{beta} has oncogenic potential in breast cancer via binding to ER{alpha} and activation of the transcriptional activity of ER{alpha}.

  16. Protein Phosphatase 2A Reactivates FOXO3a through a Dynamic Interplay with 14-3-3 and AKT

    Science.gov (United States)

    Singh, Amrik; Ye, Min; Bucur, Octavian; Zhu, Shudong; Tanya Santos, Maria; Rabinovitz, Isaac; Wei, Wenyi; Gao, Daming; Hahn, William C.

    2010-01-01

    Forkhead box transcription factor FOXO3a, a key regulator of cell survival, is regulated by reversible phosphorylation and subcellular localization. Although the kinases regulating FOXO3a activity have been characterized, the role of protein phosphatases (PP) in the control of FOXO3a subcellular localization and function is unknown. In this study, we detected a robust interaction between FOXO3a and PP2A. We further demonstrate that 14-3-3, while not impeding the interaction between PP2A and FOXO3a, restrains its activity toward AKT phosphorylation sites T32/S253. Disruption of PP2A function revealed that after AKT inhibition, PP2A-mediated dephosphorylation of T32/S253 is required for dissociation of 14-3-3, nuclear translocation, and transcriptional activation of FOXO3a. Our findings reveal that distinct phosphatases dephosphorylate conserved AKT motifs within the FOXO family and that PP2A is entwined in a dynamic interplay with AKT and 14-3-3 to directly regulate FOXO3a subcellular localization and transcriptional activation. PMID:20110348

  17. IDENTIFICATION AND EXPRESSION ANALYSIS OF TWO 14-3-3 PROTEINS IN THE MOSQUITO Aedes aegypti, AN IMPORTANT ARBOVIRUSES VECTOR.

    Science.gov (United States)

    Trujillo-Ocampo, Abel; Cázares-Raga, Febe Elena; Celestino-Montes, Antonio; Cortés-Martínez, Leticia; Rodríguez, Mario H; Hernández-Hernández, Fidel de la Cruz

    2016-11-01

    The 14-3-3 proteins are evolutionarily conserved acidic proteins that form a family with several isoforms in many cell types of plants and animals. In invertebrates, including dipteran and lepidopteran insects, only two isoforms have been reported. 14-3-3 proteins are scaffold molecules that form homo- or heterodimeric complexes, acting as molecular adaptors mediating phosphorylation-dependent interactions with signaling molecules involved in immunity, cell differentiation, cell cycle, proliferation, apoptosis, and cancer. Here, we describe the presence of two isoforms of 14-3-3 in the mosquito Aedes aegypti, the main vector of dengue, yellow fever, chikungunya, and zika viruses. Both isoforms have the conserved characteristics of the family: two protein signatures (PS1 and PS2), an annexin domain, three serine residues, targets for phosphorylation (positions 58, 184, and 233), necessary for their function, and nine alpha helix-forming segments. By sequence alignment and phylogenetic analysis, we found that the molecules correspond to Ɛ and ζ isoforms (Aeae14-3-3ε and Aeae14-3-3ζ). The messengers and protein products were present in all stages of the mosquito life cycle and all the tissues analyzed, with a small predominance of Aeae14-3-3ζ except in the midgut and ovaries of adult females. The 14-3-3 proteins in female midgut epithelial cells were located in the cytoplasm. Our results may provide insights to further investigate the functions of these proteins in mosquitoes.

  18. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)-ATPase

    DEFF Research Database (Denmark)

    Jahn, T.; Fuglsang, A.T.; Olsson, A.;

    1997-01-01

    Accumulating evidence suggests that 14-3-3 proteins are involved in the regulation of plant plasma membrane H(+)-ATPase activity. However, it is not known whether the 14-3-3 protein interacts directly or indirectly with the H(+)-ATPase. In this study, detergent-solubilized plasma membrane H......(+)-ATPase isolated from fusicoccin-treated maize shoots was copurified with the 14-3-3 protein (as determined by protein gel blotting), and the H(+)-ATPase was recovered in an activated state. In the absence of fusicoccin treatment, H(+)-ATPase and the 14-3-3 protein were well separated, and the H......(+)-ATPase was recovered in a nonactivated form. Trypsin treatment removed the 10-kD C-terminal region from the H(+)-ATPase as well as the 14-3-3 protein. Using the yeast two-hybrid system, we could show a direct interaction between Arabidopsis 14-3-3 GF14-phi and the last 98 C-terminal amino acids of the Arabidopsis AHA2...

  19. Structural characterization of a unique interface between carbohydrate response element-binding protein (ChREBP) and 14-3-3β protein.

    Science.gov (United States)

    Ge, Qiang; Huang, Nian; Wynn, R Max; Li, Yang; Du, Xinlin; Miller, Bonnie; Zhang, Hong; Uyeda, Kosaku

    2012-12-07

    Carbohydrate response element-binding protein (ChREBP) is an insulin-independent, glucose-responsive transcription factor that is expressed at high levels in liver hepatocytes where it plays a critical role in converting excess carbohydrates to fat for storage. In response to fluctuating glucose levels, hepatic ChREBP activity is regulated in large part by nucleocytoplasmic shuttling of ChREBP protein via interactions with 14-3-3 proteins. The N-terminal ChREBP regulatory region is necessary and sufficient for glucose-responsive ChREBP nuclear import and export. Here, we report the crystal structure of a complex of 14-3-3β bound to the N-terminal regulatory region of ChREBP at 2.4 Å resolution. The crystal structure revealed that the α2 helix of ChREBP (residues 117-137) adopts a well defined α-helical conformation and binds 14-3-3 in a phosphorylation-independent manner that is different from all previously characterized 14-3-3 and target protein-binding modes. ChREBP α2 interacts with 14-3-3 through both electrostatic and van der Waals interactions, and the binding is partially mediated by a free sulfate or phosphate. Structure-based mutagenesis and binding assays indicated that disrupting the observed 14-3-3 and ChREBP α2 interface resulted in a loss of complex formation, thus validating the novel protein interaction mode in the 14-3-3β·ChREBP α2 complex.

  20. Proteomic analysis of media from lung cancer cells reveals role of 14-3-3 proteins in cachexia

    Directory of Open Access Journals (Sweden)

    Julie eMcLean

    2015-04-01

    Full Text Available AIMS: At the time of diagnosis, 60% of lung cancer patients present with cachexia, a severe wasting syndrome that increases morbidity and mortality. Tumors secrete multiple factors that contribute to cachectic muscle wasting, and not all of these factors have been identified. We used Orbitrap electrospray ionization mass spectrometry to identify novel cachexia-inducing candidates in media conditioned with Lewis lung carcinoma cells (LCM. Results: One-hundred and fifty-eight proteins were confirmed in three biological replicates. Thirty-three were identified as secreted proteins, including 14-3-3 proteins, which are highly conserved adaptor proteins known to have over 200 binding partners. We confirmed the presence of extracellular 14-3-3 proteins in LCM via western blot and discovered that LCM contained less 14-3-3 content than media conditioned with C2C12 myotubes. Using a neutralizing antibody, we depleted extracellular 14-3-3 proteins in myotube culture medium, which resulted in diminished myosin content. We identified the proposed receptor for 14-3-3 proteins, CD13, in differentiated C2C12 myotubes and found that inhibiting CD13 via Bestatin also resulted in diminished myosin content. Conclusions: Our novel findings show that extracellular 14-3-3 proteins may act as previously unidentified myokines and may signal via CD13 to help maintain muscle mass.

  1. Monomeric 14-3-3ζ Has a Chaperone-Like Activity and Is Stabilized by Phosphorylated HspB6

    OpenAIRE

    Sluchanko, Nikolai N.; Artemova, Natalya V.; Sudnitsyna, Maria V.; Safenkova, Irina V.; Antson, Alfred A.; Levitsky, Dmitrii I.; Gusev, Nikolai B.

    2012-01-01

    Members of the 14-3-3 eukaryotic protein family predominantly function as dimers. The dimeric form can be converted into monomers upon phosphorylation of Ser58 located at the subunit interface. Monomers are less stable than dimers and have been considered to be either less active or even inactive during binding and regulation of phosphorylated client proteins. However, like dimers, monomers contain the phosphoserine-binding site and therefore can retain some functions of the dimeric 14-3-3. F...

  2. Association of GABA(B) receptors and members of the 14-3-3 family of signaling proteins.

    Science.gov (United States)

    Couve, A; Kittler, J T; Uren, J M; Calver, A R; Pangalos, M N; Walsh, F S; Moss, S J

    2001-02-01

    Two GABA(B) receptors, GABA(B)R1 and GABA(B)R2, have been cloned recently. Unlike other G protein-coupled receptors, the formation of a heterodimer between GABA(B)R1 and GABA(B)R2 is required for functional expression. We have used the yeast two hybrid system to identify proteins that interact with the C-terminus of GABA(B)R1. We report a direct association between GABA(B) receptors and two members of the 14-3-3 protein family, 14-3-3eta and 14-3-3zeta. We demonstrate that the C-terminus of GABA(B)R1 associates with 14-3-3zeta in rat brain preparations and tissue cultured cells, that they codistribute after rat brain fractionation, colocalize in neurons, and that the binding site overlaps partially with the coiled-coil domain of GABA(B)R1. Furthermore we show a reduced interaction between the C-terminal domains of GABA(B)R1 and GABA(B)R2 in the presence of 14-3-3. The results strongly suggest that GABA(B)R1 and 14-3-3 associate in the nervous system and begin to reveal the signaling complexities of the GABA(B)R1/GABA(B)R2 receptor heterodimer.

  3. Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator

    Science.gov (United States)

    Sluchanko, Nikolai N.; Beelen, Steven; Kulikova, Alexandra A.; Weeks, Stephen D.; Antson, Alfred A.; Gusev, Nikolai B.; Strelkov, Sergei V.

    2017-01-01

    Summary By interacting with hundreds of protein partners, 14-3-3 proteins coordinate vital cellular processes. Phosphorylation of the small heat shock protein HSPB6 within its intrinsically disordered N-terminal domain activates its interaction with 14-3-3, ultimately triggering smooth muscle relaxation. After analyzing the binding of an HSPB6-derived phosphopeptide to 14-3-3 using isothermal calorimetry and X-ray crystallography, we have determined the crystal structure of the complete assembly consisting of the 14-3-3 dimer and full-length HSPB6 dimer and further characterized this complex in solution using fluorescence spectroscopy, small-angle X-ray scattering and limited proteolysis. We show that selected intrinsically disordered regions of HSPB6 are transformed into well-defined conformations upon the interaction, whereby an unexpectedly asymmetric structure is formed. This structure provides the first-ever atomic resolution snapshot of a human small HSP in functional state, explains how 14-3-3 proteins sequester their regulatory partners, and can inform the design of small-molecule interaction modifiers to be used as myorelaxants. PMID:28089448

  4. 14-3-3 Proteins, FHA Domains and BRCT Domains in the DNA Damage Response

    OpenAIRE

    Mohammad, Duaa H.; Yaffe, Michael B.

    2009-01-01

    The DNA damage response depends on the concerted activity of protein serine/threonine kinases and modular phosphoserine/threonine binding domains to relay the damage signal and recruit repair proteins. The PIKK family of protein kinases, which includes ATM/ATR/DNA-PK, preferentially phosphorylate Ser-Gln sites, while their basophilic downstream effecter kinases, Chk1/Chk2/MK2 preferentially phosphorylate hydrophobic-X-Arg-X-X-Ser/Thr-hydrophobic sites. A subset of tandem BRCT domains act as p...

  5. The crystal structure of the non-liganded 14-3-3σ protein: insights into determinants of isoform specific ligand binding and dimerization

    Institute of Scientific and Technical Information of China (English)

    Anne BENZINGER; Grzegorz M. POPOWICZ; Joma K. JOY; Sudipta MAJUMDAR; Tad A. HOLAK; Heiko HERMEKING

    2005-01-01

    Seven different, but highly conserved 14-3-3 proteins are involved in diverse signaling pathways in human cells. It is unclear how the 14-3-3σ isoform, a transcriptional target of p53, exerts its inhibitory effect on the cell cycle in the presence of other 14-3-3 isoforms, which are constitutively expressed at high levels. In order to identify structural differences between the 14-3-3 isoforms, we solved the crystal structure of the human 14-3-3σ protein at a resolution of 2.8 A and compared it to the known structures of 14-3-3ζ and 14-3-3τ. The global architecture of the 14-3-3σ fold is similar to the previously determined structures of 14-3-3ζ and 14-3-3τ: two 14-3-3σ molecules form a cup-shaped dimer. Significant differences between these 14-3-3 isoforms were detected adjacent to the amphipathic groove, which mediates the binding to phosphorylated consensus motifs in 14-3-3-1igands. Another specificity determining region is localized between amino-acids 203 to 215. These differences presumably select for the interaction with specific ligands,which may explain the different biological functions of the respective 14-3-3 isoforms. Furthermore, the two 14-3-3σ molecules forming a dimer differ by the spatial position of the ninth helix, which is shifted to the inside of the ligand interaction surface, thus indicating adaptability of this part of the molecule. In addition, 5 non-conserved residues are located at the interface between two 14-3-3σ proteins forming a dimer and represent candidate determinants of homoand hetero-dimerization specificity. The structural differences among the 14-3-3 isoforms described here presumably contribute to isoform-specific interactions and functions.

  6. SGK and 14-3-3 protein areinvolved in the serine/threonine phosphorylationmechanism for TPO/MPLsignal transduction

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Thrombopioetin (TPO), the critical regulator of platelet production, acts by binding to its cell surface receptor, c-Mpl. Yeast two-hybrid screening was performed to isolate the proteins interacting with the cytoplasmic domain of c-Mpl. 48 positive clones were isolated from 5 × 106 independent transformants. The results of sequence analysis demonstrate that they represent 13 different protein encoding sequences. Among them there are a partial coding sequence of serine/threonine protein kinase SGK (serum and glucocorticoid-inducible kinase ) and 14-3-3 theta protein partial coding sequence. GST-pull-down assay and co-immunoprecipitation in mammal cells have confirmed the interaction between these two proteins and c-Mpl. By constructing a series of deleted c-Mpl cytoplasmic domain, the interaction region in c-Mpl cytoplasmic tail was localized in amino acids 523-554. At the same time, the directed interaction between SGK and 14-3-3 proteins also has been verified by yeast two-hybrid assay. The present note is the first time to report that two proteins act with c-Mpl at the same time and put forward that SGK and 14-3-3 protein may be involved in the serine/threonine phosphorylation mechanism for signal transduction.``

  7. Proteomic screen in the simple metazoan Hydra identifies 14-3-3 binding proteins implicated in cellular metabolism, cytoskeletal organisation and Ca2+ signalling

    Directory of Open Access Journals (Sweden)

    Imhof Axel

    2007-07-01

    Full Text Available Abstract Background 14-3-3 proteins have been implicated in many signalling mechanisms due to their interaction with Ser/Thr phosphorylated target proteins. They are evolutionarily well conserved in eukaryotic organisms from single celled protozoans and unicellular algae to plants and humans. A diverse array of target proteins has been found in higher plants and in human cell lines including proteins involved in cellular metabolism, apoptosis, cytoskeletal organisation, secretion and Ca2+ signalling. Results We found that the simple metazoan Hydra has four 14-3-3 isoforms. In order to investigate whether the diversity of 14-3-3 target proteins is also conserved over the whole animal kingdom we isolated 14-3-3 binding proteins from Hydra vulgaris using a 14-3-3-affinity column. We identified 23 proteins that covered most of the above-mentioned groups. We also isolated several novel 14-3-3 binding proteins and the Hydra specific secreted fascin-domain-containing protein PPOD. In addition, we demonstrated that one of the 14-3-3 isoforms, 14-3-3 HyA, interacts with one Hydra-Bcl-2 like protein in vitro. Conclusion Our results indicate that 14-3-3 proteins have been ubiquitous signalling components since the start of metazoan evolution. We also discuss the possibility that they are involved in the regulation of cell numbers in response to food supply in Hydra.

  8. Crystal structures of a yeast 14-3-3 protein from Lachancea thermotolerans in the unliganded form and bound to a human lipid kinase PI4KB-derived peptide reveal high evolutionary conservation.

    Science.gov (United States)

    Eisenreichova, Andrea; Klima, Martin; Boura, Evzen

    2016-11-01

    14-3-3 proteins bind phosphorylated binding partners to regulate several of their properties, including enzymatic activity, stability and subcellular localization. Here, two crystal structures are presented: the crystal structures of the 14-3-3 protein (also known as Bmh1) from the yeast Lachancea thermotolerans in the unliganded form and bound to a phosphopeptide derived from human PI4KB (phosphatidylinositol 4-kinase B). The structures demonstrate the high evolutionary conservation of ligand recognition by 14-3-3 proteins. The structural analysis suggests that ligand recognition by 14-3-3 proteins evolved very early in the evolution of eukaryotes and remained conserved, underlying the importance of 14-3-3 proteins in physiology.

  9. Rapid antidepressants stimulate the decoupling of GABA(B) receptors from GIRK/Kir3 channels through increased protein stability of 14-3-3η.

    Science.gov (United States)

    Workman, E R; Haddick, P C G; Bush, K; Dilly, G A; Niere, F; Zemelman, B V; Raab-Graham, K F

    2015-03-01

    A single injection of N-methyl-D-aspartate receptor (NMDAR) antagonists produces a rapid antidepressant response. Lasting changes in the synapse structure and composition underlie the effectiveness of these drugs. We recently discovered that rapid antidepressants cause a shift in the γ-aminobutyric acid receptor (GABABR) signaling pathway, such that GABABR activation shifts from opening inwardly rectifiying potassium channels (Kir/GIRK) to increasing resting dendritic calcium signal and mammalian Target of Rapamycin activity. However, little is known about the molecular and biochemical mechanisms that initiate this shift. Herein, we show that GABABR signaling to Kir3 (GIRK) channels decreases with NMDAR blockade. Blocking NMDAR signaling stabilizes the adaptor protein 14-3-3η, which decouples GABABR signaling from Kir3 and is required for the rapid antidepressant efficacy. Consistent with these results, we find that key proteins involved in GABABR signaling bidirectionally change in a depression model and with rapid antidepressants. In socially defeated rodents, a model for depression, GABABR and 14-3-3η levels decrease in the hippocampus. The NMDAR antagonists AP5 and Ro-25-6981, acting as rapid antidepressants, increase GABABR and 14-3-3η expression and decrease Kir3.2. Taken together, these data suggest that the shift in GABABR function requires a loss of GABABR-Kir3 channel activity mediated by 14-3-3η. Our findings support a central role for 14-3-3η in the efficacy of rapid antidepressants and define a critical molecular mechanism for activity-dependent alterations in GABABR signaling.

  10. Rapid antidepressants stimulate the decoupling of GABAB receptors from GIRK/Kir3 channels through increased protein stability of 14-3-3η

    Science.gov (United States)

    Workman, E R; Haddick, P C G; Bush, K; Dilly, G A; Niere, F; Zemelman, B V; Raab-Graham, K F

    2015-01-01

    A single injection of N-methyl-D-aspartate receptor (NMDAR) antagonists produces a rapid antidepressant response. Lasting changes in the synapse structure and composition underlie the effectiveness of these drugs. We recently discovered that rapid antidepressants cause a shift in the γ-aminobutyric acid receptor (GABABR) signaling pathway, such that GABABR activation shifts from opening inwardly rectifiying potassium channels (Kir/GIRK) to increasing resting dendritic calcium signal and mammalian Target of Rapamycin activity. However, little is known about the molecular and biochemical mechanisms that initiate this shift. Herein, we show that GABABR signaling to Kir3 (GIRK) channels decreases with NMDAR blockade. Blocking NMDAR signaling stabilizes the adaptor protein 14-3-3η, which decouples GABABR signaling from Kir3 and is required for the rapid antidepressant efficacy. Consistent with these results, we find that key proteins involved in GABABR signaling bidirectionally change in a depression model and with rapid antidepressants. In socially defeated rodents, a model for depression, GABABR and 14-3-3η levels decrease in the hippocampus. The NMDAR antagonists AP5 and Ro-25-6981, acting as rapid antidepressants, increase GABABR and 14-3-3η expression and decrease Kir3.2. Taken together, these data suggest that the shift in GABABR function requires a loss of GABABR-Kir3 channel activity mediated by 14-3-3η. Our findings support a central role for 14-3-3η in the efficacy of rapid antidepressants and define a critical molecular mechanism for activity-dependent alterations in GABABR signaling. PMID:25560757

  11. Dexamethasone downregulated the expression of CSF 14-3-3β protein in mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection.

    Science.gov (United States)

    Tsai, Hung-Chin; Lee, Bi-Yao; Yen, Chuan-Min; Wann, Shue-Ren; Lee, Susan Shin-Jung; Chen, Yao-Shen; Tai, Ming-Hong

    2014-03-01

    Angiostrongylus cantonensis is the main causative agent of human eosinophilic meningitis in Southeast Asia and the Pacific Islands. A previous study demonstrated that the 14-3-3β protein is a neuropathological marker in monitoring neuronal damage in meningitis. Steroids are commonly used in patients with eosinophilic meningitis caused by A. cantonensis infection. However, the mechanism by which steroids act in eosinophilic meningitis is unknown. We hypothesized that the beneficial effect of steroids on eosinophilic meningitis is partially mediated by the down-regulation of 14-3-3β protein expression in the cerebrospinal fluid (CSF). In this animal study, we determined the dynamic changes of 14-3-3β protein in mice with eosinophilic meningitis. The 14-3-3β protein in serum and CSF was increased in week 2 and 3 after infections. Dexamethasone administration significantly decreased the amounts of CSF 14-3-3β protein. By developing an in-house ELISA to measure 14-3-3β protein, it was found that the amounts of 14-3-3β protein in the CSF and serum increased over a three-week period after infection. There was a remarkable reduction of 14-3-3β protein in the CSF after 2 weeks of dexamethasone treatment. In conclusion, the administration of corticosteroids in mice with eosinophilic meningitis decreased the expression of 14-3-3β protein in the CSF.

  12. Identification of a 14-3-3 protein from Lentinus edodes that interacts with CAP (adenylyl cyclase-associated protein), and conservation of this interaction in fission yeast.

    Science.gov (United States)

    Zhou, G L; Yamamoto, T; Ozoe, F; Yano, D; Tanaka, K; Matsuda, H; Kawamukai, M

    2000-01-01

    We previously identified a gene encoding a CAP (adenylyl cyclase-associated protein) homologue from the edible Basidiomycete Lentinus edodes. To further discover the cellular functions of the CAP protein, we searched for CAP-interacting proteins using a yeast two-hybrid system. Among the candidates thus obtained, many clones encoded the C-terminal half of an L. edodes 14-3-3 homologue (designated cip3). Southern blot analysis indicated that L. edodes contains only one 14-3-3 gene. Overexpression of the L. edodes 14-3-3 protein in the fission yeast Schizosaccharomyces pombe rad24 null cells complemented the loss of endogenous 14-3-3 protein functions in cell morphology and UV sensitivity, suggesting functional conservation of 14-3-3 proteins between L. edodes and S. pombe. The interaction between L. edodes CAP and 14-3-3 protein was restricted to the N-terminal domain of CAP and was confirmed by in vitro co-precipitation. Results from both the two-hybrid system and in vivo co-precipitation experiments showed the conservation of this interaction in S. pombe. The observation that a 14-3-3 protein interacts with the N-terminal portion of CAP but not with full-length CAP in L. edodes and S. pombe suggests that the C-terminal region of CAP may have a negative effect on the interaction between CAP and 14-3-3 proteins, and 14-3-3 proteins may play a role in regulation of CAP function.

  13. 细粒棘球绦虫14-3-3zeta蛋白的生物信息学分析%Application of bioinformatic analysis in 14-3-3zeta protein of Echinococcus granulosus

    Institute of Scientific and Technical Information of China (English)

    符瑞佳; 吕刚; 尹飞飞; 梁培

    2015-01-01

    目的:应用生物信息学技术对细粒棘球绦虫(Echinococcus granulosus)14-3-3zeta蛋白的结构和功能进行预测和分析,为进一步的实验研究提供依据。方法利用美国国家生物技术信息中心(NCBI,http://www.ncbi.nlm.nih.gov/)和瑞士生物信息学研究所的蛋白分析专家系统(ExPASY,http://expasy.org/)提供的各种有关基因和蛋白序列、结构信息分析的工具,并结合其它生物信息学分析软件,对该蛋白质的结构和功能进行预测和分析。结果该基因全长为771 bp ,编码256个氨基酸,其编码的蛋白相对分子量理论预测值和等电点分别是29.4 kDa和5.04。预测该蛋白无信号肽和跨膜区,二级结构含8个α-螺旋和12个β-折叠股,氨基酸序列中有9个潜在抗原表位。结论初步认识了细粒棘球绦虫14-3-3zeta蛋白的基本特征,为深入研究该蛋白的生物学功能奠定了基础。%Objective To predict and analyze the structure and function of 14-3-3zeta protein from Echinococcus granulosus by bioinformatics technology. Methods The structure and function of Eg14-3-3zeta protein was identified from two biological information sites, USA National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/), and Expert System for analysis of protein of the Swiss Institute of bioinformatics (ExPASY,http://expasy.org/), which offer the analysis of various related gene and protein sequence, structure information tools, and other bioinformatics analysis software. Results The full-length cDNA sequence encoding Eg14-3-3zeta included a complete open reading frame (ORF) of 771 bp coding to a putative protein with 256 amino acids. Molecular weight of Eg14-3-3zeta was predicted to be 29.4 kDa and its isoelectric point was 5.04. The protein had no signal peptide site and transmembrane do-main. Secondary structure of Eg14-3-3zeta contained 8 alpha-helices and 12 beta-strands.There were

  14. Molecular network including eIF1AX, RPS7, and 14-3-3γ regulates protein translation and cell proliferation in bovine mammary epithelial cells.

    Science.gov (United States)

    Yu, Cuiping; Luo, Chaochao; Qu, Bo; Khudhair, Nagam; Gu, Xinyu; Zang, Yanli; Wang, Chunmei; Zhang, Na; Li, Qingzhang; Gao, Xuejun

    2014-12-15

    14-3-3γ, an isoform of the 14-3-3 protein family, was proved to be a positive regulator of mTOR pathway. Here, we analyzed the function of 14-3-3γ in protein synthesis using bovine mammary epithelial cells (BMECs). We found that 14-3-3γ interacted with eIF1AX and RPS7 by 14-3-3γ coimmunoprecipitation (CoIP) and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight (MALDI-TOF/TOF) peptide mass fingerprinting analysis. These interactions of 14-3-3γ with eIF1AX and RPS7 were further confirmed by colocalization and fluorescence resonance energy transfer (FRET) analysis. We also found that methionine could promote protein synthesis and trigger the protein expression levels of 14-3-3γ, eIF1AX and RPS7. Analysis of overexpression and inhibition of 14-3-3γ confirmed that it positively affected the protein expression levels of eIF1AX, RPS7, Stat5 and mTOR pathway to promote protein synthesis and cell proliferation in BMECs. We further showed that overexpression of eIF1AX and RPS7 also triggered protein translation and cell proliferation. From these results, we conclude that molecular network including eIF1AX, RPS7, and 14-3-3γ regulates protein translation and cell proliferation in BMECs.

  15. The epsilon isoform of 14-3-3 protein is a component of the prion protein amyloid deposits of Gerstmann-Sträussler-Scheinker disease.

    Science.gov (United States)

    Di Fede, Giuseppe; Giaccone, Giorgio; Limido, Lucia; Mangieri, Michela; Suardi, Silvia; Puoti, Gianfranco; Morbin, Michela; Mazzoleni, Giulia; Ghetti, Bernardino; Tagliavini, Fabrizio

    2007-02-01

    The 14-3-3 proteins are highly conserved, ubiquitous molecules involved in a variety of biologic events, such as transduction pathway modulation, cell cycle control, and apoptosis. Seven isoforms have been identified that are abundant in the brain, preferentially localized in neurons. Remarkable increases in 14-3-3 are seen in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease (CJD), and it has been found in pathologic inclusions of several neurodegenerative diseases. Moreover, the zeta isoform has been detected in prion protein (PrP) amyloid deposits of CJD patients. To further investigate the cerebral distribution of 14-3-3 in prion-related encephalopathies, we carried out an immunohistochemical and biochemical analysis of brain tissue from patients with Gerstmann-Sträussler-Scheinker disease (GSS) and sporadic, familial and acquired forms of CJD, using specific antibodies against the seven 14-3-3 isoforms. The study showed a strong immunoreactivity of PrP amyloid plaques of GSS patients for the 14-3-3 epsilon isoform, but not for the other isoforms. The epsilon isoform of 14-3-3 was not found in PrP deposits of CJD. These results indicate that the epsilon isoform of 14-3-3 is a component of PrP amyloid deposits of GSS and suggest that this is the sole 14-3-3 isoform specifically involved in the neuropathologic changes associated with this disorder.

  16. Exercise-induced TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle

    DEFF Research Database (Denmark)

    Frøsig, Christian; Pehmøller, Christian; Birk, Jesper Bratz

    2010-01-01

    TBC1D1 is a Rab-GTPase activating protein involved in regulation of GLUT4 translocation in skeletal muscle. We here evaluated exercise-induced regulation of TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle. In separate experiments healthy men performed all......-out cycle exercise lasting either 30 sec, 2 min or 20 min. After all exercise protocols, TBC1D1 Ser237 phosphorylation increased (~70 - 230%, Pprotein showed a similar pattern of regulation...... increasing 60 - 250% (Pprotein kinase (AMPK) induced both Ser237 phosphorylation and 14-3-3 binding properties on human TBC1D1 when evaluated in vitro. To further characterize the role of AMPK as an upstream kinase regulating TBC1D1, extensor digitorum longus...

  17. The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference.

    Directory of Open Access Journals (Sweden)

    Annarita Fiorillo

    Full Text Available The 14-3-3s are a family of dimeric evolutionary conserved pSer/pThr binding proteins that play a key role in multiple biological processes by interacting with a plethora of client proteins. Giardia duodenalis is a flagellated protozoan that affects millions of people worldwide causing an acute and chronic diarrheal disease. The single giardial 14-3-3 isoform (g14-3-3, unique in the 14-3-3 family, needs the constitutive phosphorylation of Thr214 and the polyglycylation of its C-terminus to be fully functional in vivo. Alteration of the phosphorylation and polyglycylation status affects the parasite differentiation into the cyst stage. To further investigate the role of these post-translational modifications, the crystal structure of the g14-3-3 was solved in the unmodified apo form. Oligomers of g14-3-3 were observed due to domain swapping events at the protein C-terminus. The formation of filaments was supported by TEM. Mutational analysis, in combination with native PAGE and chemical cross-linking, proved that polyglycylation prevents oligomerization. In silico phosphorylation and molecular dynamics simulations supported a structural role for the phosphorylation of Thr214 in promoting target binding. Our findings highlight unique structural features of g14-3-3 opening novel perspectives on the evolutionary history of this protein family and envisaging the possibility to develop anti-giardial drugs targeting g14-3-3.

  18. The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference.

    KAUST Repository

    Fiorillo, Annarita

    2014-03-21

    The 14-3-3s are a family of dimeric evolutionary conserved pSer/pThr binding proteins that play a key role in multiple biological processes by interacting with a plethora of client proteins. Giardia duodenalis is a flagellated protozoan that affects millions of people worldwide causing an acute and chronic diarrheal disease. The single giardial 14-3-3 isoform (g14-3-3), unique in the 14-3-3 family, needs the constitutive phosphorylation of Thr214 and the polyglycylation of its C-terminus to be fully functional in vivo. Alteration of the phosphorylation and polyglycylation status affects the parasite differentiation into the cyst stage. To further investigate the role of these post-translational modifications, the crystal structure of the g14-3-3 was solved in the unmodified apo form. Oligomers of g14-3-3 were observed due to domain swapping events at the protein C-terminus. The formation of filaments was supported by TEM. Mutational analysis, in combination with native PAGE and chemical cross-linking, proved that polyglycylation prevents oligomerization. In silico phosphorylation and molecular dynamics simulations supported a structural role for the phosphorylation of Thr214 in promoting target binding. Our findings highlight unique structural features of g14-3-3 opening novel perspectives on the evolutionary history of this protein family and envisaging the possibility to develop anti-giardial drugs targeting g14-3-3.

  19. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Sun, Xiaoli; Luo, Xiao; Sun, Mingzhe; Chen, Chao; Ding, Xiaodong; Wang, Xuedong; Yang, Shanshan; Yu, Qingyue; Jia, Bowei; Ji, Wei; Cai, Hua; Zhu, Yanming

    2014-01-01

    It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and β-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development.

  20. Ablation of the 14-3-3gamma Protein Results in Neuronal Migration Delay and Morphological Defects in the Developing Cerebral Cortex.

    Science.gov (United States)

    Wachi, Tomoka; Cornell, Brett; Marshall, Courtney; Zhukarev, Vladimir; Baas, Peter W; Toyo-oka, Kazuhito

    2016-06-01

    14-3-3 proteins are ubiquitously-expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14-3-3epsilon and 14-3-3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14-3-3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14-3-3gamma-deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14-3-3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time-lapse live imaging of brain slices revealed that the ablation of the 14-3-3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14-3-3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14-3-3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14-3-3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects.

  1. 14-3-3 proteins act as scaffolds for GmMYB62 and GmMYB176 and regulate their intracellular localization in soybean

    OpenAIRE

    2012-01-01

    Isoflavonoids are plant natural compounds predominantly found in leguminous plant. They play important functions in both nitrogen fixation and stress resistance. Many clinical studies have linked dietary intake of isoflavonoids to human health benefits. Binding of 14-3-3 proteins to GmMYB176, an isoflavonoid regulator, modulates expression of key isoflavonoids gene expression and its biosynthesis. We have recently demonstrated that the interaction of 14-3-3 proteins with GmMYB176 regulates nu...

  2. Heterologous expression of Schistosoma japanicum signal protein 14-3-3 in Pichia pastoris and the subsequent immune response in mice

    Institute of Scientific and Technical Information of China (English)

    Meijuan ZHENG; Jilong SHEN; Yuanhong XU; Qingli LUO

    2008-01-01

    Schistosomiasis japonica, a zoonosis caused by Schistosomajaponicum, is endemic to the Philippines and China. Several vaccine candidates have been identified and tested in different animal models, but it is still unclear which will be optimal for testing in the field. Therefore, new antigens and strategies are necessary for vaccine development against schistosomiasis japonica. The Sj14-3-3 gene was amplified and subcloned into the expression vector pPICZα-B and transformed into P. pastoris X-33 by electroporation. Three transformants were induced with methanol. The cultural supernatant was collected and tested by SDS-PAGE and Western blotting. The pro-tein of rSj14-3-3 was prepared and purified and BALB/c mice were immunized which was followed by a challen-ging infection. The immuno-protection was then evalu-ated. The Sj14-3-3 gene was expressed and secreted into the medium and its molecular weight was about 35000 as determined by SDS-PAGE. Western blotting showed that the protein had a high specificity against mouse-anti-Sj14-3-3 monoclonal antibody and rSj14-3-3 had a promising immune reactivity. The results of the immuno-protective experiments revealed that the worm reduction was 26.0%, 32.2%, and 36.8%, respectively. The number of eggs in liver tissue was reduced by 36.8%, 43.2%, and 46.1%, respectively. The recombinant Sj14-3-3 of eukaryotic expression in Pichia pastoris was successfully harvested. The molecular vaccine of Sj14-3-3 could partially induce resistance to the infection with S. japonicum in BALB/c mice. The recombinant protein Sj14-3-3 has promising immunological potentials for further approach to the dia-gnosis and development of molecular vaccine.

  3. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family.

    Science.gov (United States)

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M

    2016-05-19

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems.

  4. Up-regulation and interaction of the plasma membrane H(+)-ATPase and the 14-3-3 protein are involved in the regulation of citrate exudation from the broad bean (Vicia faba L.) under Al stress.

    Science.gov (United States)

    Chen, Qi; Guo, Chuan-Long; Wang, Ping; Chen, Xuan-Qin; Wu, Kong-Huan; Li, Kui-Zhi; Yu, Yong-Xiong; Chen, Li-Mei

    2013-09-01

    Our previous study showed that citrate excretion coupled with a concomitant release of protons was involved in aluminum (Al) resistance in the broad bean. Furthermore, genes encoding plasma membrane (PM) H(+)-ATPase (vha2) and the 14-3-3 protein (vf14-3-3b) were up-regulated by Al in Al-resistant (YD) broad bean roots. In this study, the roles of PM H(+)-ATPase (E.C. 3.6.3.6) and the 14-3-3 protein in the regulation of citrate secretion were further investigated in Al-resistant (YD) and Al-sensitive (AD) broad bean cultivars under Al stress. The results showed that greater citrate exudation was positively correlated with higher activities of PM H(+)-ATPase in roots of YD than AD. Real-time RT-PCR analysis revealed that vha2 was clearly up-regulated by Al in YD but not in AD roots, whereas the transcription levels of vf14-3-3b were elevated in a time-dependent manner in both YD and AD roots. Immunoprecipitation and Western analysis suggested that phosphorylation and interaction with the vf14-3-3b protein of the VHA2 were enhanced in YD roots but not in AD roots with increasing Al treatment time. Fusicoccin or adenosine 5'-monophosphate increased or decreased the interaction between the phosphorylated VHA2 and the vf14-3-3b protein, followed by an enhancement or reduction of the PM H(+)-ATPase activity and citrate exudation in both cultivars under Al stress conditions, respectively. Taken together, these results suggested that Al enhanced the expression and interaction of the PM H(+)-ATPase and the 14-3-3 protein, which thereby led to higher activity of the PM H(+)-ATPase and more citrate exudation from YD plants.

  5. Proteomic identification of 14-3-3ϵ as a linker protein between pERK1/2 inhibition and BIM upregulation in human osteosarcoma cells.

    Science.gov (United States)

    Kim, Kyung Ok; Hsu, Anny C; Lee, Heon Goo; Patel, Neel; Chandhanayingyong, Chandhanarat; Hickernell, Thomas; Lee, Francis Young-In

    2014-06-01

    Despite advancements in multimodality chemotherapy, conventional cytotoxic treatments still remain ineffective for a subset of patients with aggressive metastatic or multifocal osteosarcoma. It has been shown that pERK1/2 inhibition enhances chemosensitivity to doxorubicin and promotes osteosarcoma cell death in vivo and in vitro. One of the pro-apoptotic mechanisms is upregulation of Bim by pERK1/2 inhibitors. To this end, we examined proteomic changes of 143B human osteosarcoma cells with and without treatment of PD98059, pERK1/2 inhibitor. Specifically, we identified 14-3-3ϵ protein as a potential mediator of Bim expression in response to inhibition of pERK1/2. We hypothesized that 14-3-3ϵ mediates upregulation of Bim expression after pERK1/2 inhibition. We examined the expression of Bim after silencing 14-3-3ϵ using siRNA. The 14-3-3ϵ gene silencing resulted in downregulation of Bim expression after PD98059 treatment. These data indicate that 14-3-3ϵ is required for Bim expression and that it has an anti-cancer effect under pERK1/2 inhibition in 143B cells. By playing an essential role upstream of Bim, 14-3-3ϵ may potentially be a coadjuvant factor synergizing the effect of pERK1/2 inhibitors in addition to conventional cytotoxic agents for more effective osteosarcoma treatments.

  6. Do 14-3-3 proteins and plasma membrane H+-AtPases interact in the barley epidermis in response to the barley powdery mildew fungus?

    DEFF Research Database (Denmark)

    Finni, Christine; Andersen, Claus H; Borch, Jonas;

    2002-01-01

    , or treatment with fusicoccin, results in an increase in fusicoccin binding ability of barley leaf membranes. Overlay assays show a fungus-induced increase in binding of digoxygenin-labelled 14-3-3 protein to several proteins including a 100 kDa membrane protein, probably the plasma membrane H...

  7. Do 14-3-3 proteins and plasma membrane H+-ATPases interact in the barley epidermis in response to the barley powdery mildew fungus?

    DEFF Research Database (Denmark)

    Finnie, C.; Andersen, C.H.; Borch, J.;

    2002-01-01

    , or treatment with fusicoccin, results in an increase in fusicoccin binding ability of barley leaf membranes. Overlay assays show a fungus-induced increase in binding of digoxygenin-labelled 14-3-3 protein to several proteins including a 100 kDa membrane protein, probably the plasma membrane H...

  8. 14-3-3 isoforms bind directly exon B of the 5'-UTR of human surfactant protein A2 mRNA.

    Science.gov (United States)

    Noutsios, Georgios T; Ghattas, Paul; Bennett, Stephanie; Floros, Joanna

    2015-07-15

    Human surfactant protein (SP) A (SP-A), an innate immunity molecule, is encoded by two genes, SFTPA1 and SFTPA2. The 5'-untranslated splice variant of SP-A2 (ABD), but not SP-A1 (AD), contains exon B (eB). eB is an enhancer for transcription and translation and contains cis-regulatory elements. Specific trans-acting factors, including 14-3-3, bind eB. The 14-3-3 protein family contains seven isoforms that have been found by mass spectrometry in eB electromobility shift assays (Noutsios et al. Am J Physiol Lung Cell Mol Physiol 304: L722-L735, 2013). We used four different approaches to investigate whether 14-3-3 isoforms bind directly to eB. 1) eB RNA pulldown assays showed that 14-3-3 isoforms specifically bind eB. 2) RNA electromobility shift assay complexes were formed using purified 14-3-3 isoforms β, γ, ε, η, σ, and τ, but not isoform ζ, with wild-type eB RNA. 3 and 4) RNA affinity chromatography assays and surface plasmon resonance analysis showed that 14-3-3 isoforms β, γ, ε, η, σ, and τ, but not isoform ζ, specifically and directly bind eB. Inhibition of 14-3-3 isoforms γ, ε, η, and τ/θ with shRNAs in NCI-H441 cells resulted in downregulation of SP-A2 levels but did not affect SP-A1 levels. However, inhibition of 14-3-3 isoform σ was correlated with lower levels of SP-A1 and SP-A2. Inhibition of 14-3-3 isoform ζ/δ, which does not bind eB, had no effect on expression levels of SP-A1 and SP-A2. In conclusion, the 14-3-3 protein family affects differential regulation of SP-A1 and SP-A2 by binding directly to SP-A2 5'-UTR mRNA.

  9. Advances in Schistosoma japonicum recombinant protein glutathione-S-transferase(SjGST)and Schistosoma japonicum signaling protein 14-3-3(Sj14-3-3)%日本血吸虫GST蛋白和14-3-3蛋白的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘文; 徐振山; 宋礼华

    2011-01-01

    Schistosomiasis is one of the serious health-threatening parasitic zoonoses to human beings. It has been presented in 76 countries and regions. More than 200 million people have been suffered from the infectious diseases all over the world. At present,some comprehensive precautionary and therapeutic measures were introduced to prevent schistosomiasis of human beings and animals simultaneously. The measures have brought some obvious positive effects. but the high cost combined with the high re-infection rate and such problems are still barriers to the application of the measures. Thus, to seek novel therapeutic medicines, candidates for the vaccines and also manage to develop standard immunologic diagnosis reagents with high specificity and sensitivity is the essential topic of the basic schistosomiasis research currently. The recent study of progress of the SjGST protein was reviewed, most potential candidates for the vaccines presented by WHO were summarized. Besides. this paper briefly reviewed the Sj14-3-3 protein which was involved in many functions of Schistosoma.%血吸虫病是严重危害人类健康的人兽共患病之一,在全球范围内,血吸虫病曾在76个国家和地区流行,有超过2亿人感染了血吸虫病.目前,世界上采取了一些人畜同步治疗等综合防治措施,虽取得了一定的成效,但仍面临着成本高、再感染率高等一系列问题.因此,寻找新的治疗药物、疫苗候选分子以及开发高度特异且敏感的标准化免疫诊断试剂是当前日本血吸虫病基础研究的重要内容.主要对WHO提出的最具潜力的疫苗候选分子血吸虫GST蛋白以及参与血吸虫许多生物学功能的14-3-3蛋白的最新研究进展进行一些阐述.

  10. A20 zinc finger protein inhibits TNF-induced apoptosis and stress response early in the signaling cascades and independently of binding to TRAF2 or 14-3-3 proteins.

    Science.gov (United States)

    Lademann, U; Kallunki, T; Jäättelä, M

    2001-03-01

    A20 zinc finger protein is a negative regulator of tumor necrosis factor (TNF)-induced signaling pathways leading to apoptosis, stress response and inflammation. A20 has been shown to bind to TNF-receptor-associated factor 2 (TRAF2) and 14-3-3 chaperone proteins. Our data indicate that the zinc finger domain of A20 is sufficient and that neither TRAF2 nor 14-3-3 binding is necessary for the inhibitory effects of A20. Mutations in the 14-3-3 binding site of A20 did, however, result in a partial cleavage of A20 protein suggesting that 14-3-3 chaperone proteins may stabilize A20. Furthermore, we show that A20 acts early in TNF-induced signaling cascades blocking both TNF-induced rapid activation of c-Jun N-terminal kinase and processing of the receptor-associated caspase-8. Taken together our data indicate that the zinc finger domain of A20 contains all necessary functional domains required for the inhibition of TNF signaling and that A20 may function at the level of the receptor signaling complex.

  11. Studies on Clinical Aspects, Pathological Changes, Immunohistochemistry, 14-3-3 protein, PrP Gene, and Animal Transmission of Creutzldt-Jakob Disease in China

    Institute of Scientific and Technical Information of China (English)

    Lin Shilie; Zhao Jiexu; Jiang Xinmei; Song Xiaonan; Wang Weimin; Fan Yengyeng; Tao Yuiqin; Chen Xiuyun

    2000-01-01

    Objectives To investigate the clinical manifestations, pathological changes, expression of PrP gene, 14-3-3 protein in cerebrospinal fluid (CSF) and experimental animal transmission of Creuizfeldt-Jakob disease (CJD) in China. Methods Clinical aspects of 24 patients with CJD which was confirmed neuropathological were evaluated. Brain sections of 10 cases of them were given immunostaining with antiserum to a synthetic polypeptide of prioni protein (PrP). PrP gene was analyzed in 10 cases, and 14-3-3 protein in CSF was detected in 5 cases. Experimental mouse transmission was carried out using brain suspension from 7 patients with CJD. Results 1) Nineteen cases with sporadic CJD, 3 cases with iatrogenic CJD, 1 case with inherited CJD and 1 case with coexistence of Alzheimer disease(AD) and CJD were found. 2) The percentage of acute and subacute onset was high up to 96%. The illness duration was shorter in a subacute onset and the brain atrophy was not obvious.3) The synaptic type of PrP deposition was shown in paraffin sections in all -cases by immunostaining.4) 14-3-3 protein was detected in 5 eases in cerebrospinal fluid with CJD 5) Spongiform degeneration and PrP deposition could be shown in the brain sections of experimental mouse transmission. Conclusion There are special characteristics in clinical aspects of CJD in China. The detection of 14-3-3 protein can provide objective evidence for early diagnosis of CJD in order to prevent its transmission

  12. Dual phosphorylation of Btk by Akt/protein kinase b provides docking for 14-3-3ζ, regulates shuttling, and attenuates both tonic and induced signaling in B cells.

    Science.gov (United States)

    Mohammad, Dara K; Nore, Beston F; Hussain, Alamdar; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2013-08-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation.

  13. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose

    DEFF Research Database (Denmark)

    Harthill, Jean E; Meek, Sarah E M; Morrice, Nick

    2006-01-01

    -like domains, although whether these have enzymatic activity is unknown. In this paper, we show that TPS5, 6 and 7 are phosphoproteins that bind to 14-3-3 proteins, by using 14-3-3 affinity chromatography, 14-3-3 overlay assays, and by co-immunoprecipitating TPS5 and 14-3-3 isoforms from cell extracts. GST...

  14. Meiotic failure in cyclin A1-deficient mouse spermatocytes triggers apoptosis through intrinsic and extrinsic signaling pathways and 14-3-3 proteins

    Science.gov (United States)

    Panigrahi, Sunil K.; Manterola, Marcia; Wolgemuth, Debra J.

    2017-01-01

    Cyclin A1 (Ccna1), a member of the mammalian A type cyclins, is most abundantly expressed in spermatocytes and is essential for spermatogenesis in the mouse. Ccna1- deficient spermatocytes arrest at late meiotic prophase and undergo apoptosis. To further delineate the mechanisms and key factors involved in this process, we have examined changes in expression of genes involved in both intrinsic and extrinsic signaling pathways that trigger apoptosis in the mutant spermatocytes. Our results show that both pathways are involved, and that the factors involved in the intrinsic pathway were expressed earlier than those involved in the extrinsic pathway. We have also begun to identify in vivo Ccna1-interacting proteins, using an unbiased biochemical approach, and identified 14-3-3, a key regulator of apoptosis, as a Ccna1-interacting protein. Expression levels of 14-3-3 proteins remain unchanged between wild type and mutant testes but there were differences in the subcellular distribution. In wild type control, 14-3-3 is detected in both cytosolic and nuclear fractions whereas it is restricted to the cytoplasm in mutant testes. This differential distribution of 14-3-3 may contribute to the induction of apoptosis in Ccna1-deficient spermatocytes. These results provide insight into the apoptotic mechanisms and pathways that are triggered when progression through the meiotic cell cycle is defective in male gametogenesis. PMID:28301569

  15. Induction of Androgen Formation in the Male by a TAT-VDAC1 Fusion Peptide Blocking 14-3-3ɛ Protein Adaptor and Mitochondrial VDAC1 Interactions

    Science.gov (United States)

    Aghazadeh, Yasaman; Martinez-Arguelles, Daniel B; Fan, Jinjiang; Culty, Martine; Papadopoulos, Vassilios

    2014-01-01

    Low testosterone (T), a major cause of male hypogonadism and infertility, is linked to mood changes, fatigue, osteoporosis, reduced bone-mass index, and aging. The treatment of choice, T replacement therapy, has been linked with increased risk for prostate cancer and luteinizing hormone (LH) suppression, and shown to lead to infertility, cardiovascular diseases, and obesity. Alternate methods to induce T with lower side effects are desirable. In search of the mechanisms regulating T synthesis in the testes, we identified the 14-3-3ɛ protein adaptor as a negative regulator of steroidogenesis. Steroidogenesis begins in mitochondria. 14-3-3ɛ interacts with the outer mitochondrial membrane voltage-dependent anion channel (VDAC1) protein, forming a scaffold that limits the availability of cholesterol for steroidogenesis. We report the development of a tool able to induce endogenous T formation. Peptides able to penetrate testes conjugated to 14-3-3ɛ site of interaction with VDAC1 blocked 14-3-3ɛ-VDAC1 interactions while at the same time increased VDAC1-translocator protein (18 kDa) interactions that induced steroid formation in rat testes, leading to increased serum T levels. These peptides rescued intratesticular and serum T formation in adult male rats treated with gonadotropin-releasing hormone antagonist, which dampened LH and T production. PMID:24947306

  16. Protein kinase CK2 interacts at the neuromuscular synapse with Rapsyn, Rac1, 14-3-3γ, and Dok-7 proteins and phosphorylates the latter two.

    Science.gov (United States)

    Herrmann, Dustin; Straubinger, Marion; Hashemolhosseini, Said

    2015-09-11

    Previously, we demonstrated that the protein kinase CK2 associates with and phosphorylates the receptor tyrosine kinase MuSK (muscle specific receptor tyrosine kinase) at the neuromuscular junction (NMJ), thereby preventing fragmentation of the NMJs (Cheusova, T., Khan, M. A., Schubert, S. W., Gavin, A. C., Buchou, T., Jacob, G., Sticht, H., Allende, J., Boldyreff, B., Brenner, H. R., and Hashemolhosseini, S. (2006) Genes Dev. 20, 1800-1816). Here, we asked whether CK2 interacts with other proteins involved in processes at the NMJ, which would be consistent with the previous observation that CK2 appears enriched at the NMJ. We identified the following proteins to interact with protein kinase CK2: (a) the α and β subunits of the nicotinic acetylcholine receptors with weak interaction, (b) dishevelled (Dsh), and (c) another four proteins, Rapsyn, Rac1, 14-3-3γ, and Dok-7, with strong interaction. CK2 phosphorylated 14-3-3γ at serine residue 235 and Dok-7 at several serine residues but does not phosphorylate Rapsyn or Rac1. Furthermore, phosphomimetic Dok-7 mutants aggregated nicotinic acetylcholine receptors in C2C12 myotubes with significantly higher frequency than wild type Dok-7. Additionally, we mapped the interacting epitopes of all four binding partners to CK2 and thereby gained insights into the potential role of the CK2/Rapsyn interaction.

  17. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    Science.gov (United States)

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.

  18. Two cytosolic puromycin-sensitive aminopeptidase isozymes in chicken brain: molecular homology to brain-specific 14-3-3 protein.

    Science.gov (United States)

    Hui, K S; Saito, M; Hui, M; Saito, M; Lajtha, A; Yamamoto, K; Osawa, T

    1993-05-01

    Two puromycin-sensitive aminopeptidase isozymes (PSA-I and PSA-II) were isolated from chicken brain cytosol by ammonium sulfate fractionation followed by column chromatography on Cellex D and AH-Sepharose 4B and separated on Bio-Gel HTP. Each was purified to homogeneity on Sephadex G-200, Arg-Tyr-AH-Sepharose, Bio-Gel HTP, and preparative gel electrophoresis. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, PSA-I appeared to be a monomer with a molecular mass of 105 kDa, and PSA-II to be composed of two subunits of 25 kDa and 100 kDa. The tryptic maps of 100 kDa and 105 kDa protein in HPLC are different in peak frequency, height, and composition. The internal peptide sequence of PSA-I has a considerable homology to PSA-II. Both isozymes have repeated copies of common peptide segments and have no significant sequence homology to other peptidases and proteinases. These thio and Co(2+)-activated isozymes have a neutral pH optimum and are inhibited by puromycin and bestatin. PSA-II is more sensitive to trypsin and heat treatment, has a lower Km to Met-enkephalin, and is more active on Arg BNA and Pro BNA. Our results suggest that PSA-I and PSA-II derive from translation of two RNAs of a new gene family related to the brain-specific 14-3-3 protein.

  19. Evidence against a role for the JIL-1 kinase in H3S28 phosphorylation and 14-3-3 recruitment to active genes in Drosophila.

    Directory of Open Access Journals (Sweden)

    Chao Wang

    Full Text Available JIL-1 is the major kinase controlling phosphorylation of histone H3S10 and has been demonstrated to function to counteract heterochromatization and gene silencing. However, an alternative model has been proposed in which JIL-1 is required for transcription to occur, additionally phosphorylates H3S28, and recruits 14-3-3 to active genes. Since these findings are incompatible with our previous demonstration that there are robust levels of transcription in the complete absence of JIL-1 and that JIL-1 is not present at developmental or heat shock-induced polytene chromosome puffs, we have reexamined JIL-1's possible role in H3S28 phosphorylation and 14-3-3 recruitment. Using two different H3S28ph antibodies we show by immunocytochemistry and immunoblotting that in Drosophila the H3S28ph mark is not present at detectable levels above background on polytene chromosomes at interphase but only on chromosomes at pro-, meta-, and anaphase during cell division in S2 cells and third instar larval neuroblasts. Moreover, this mitotic H3S28ph signal is also present in a JIL-1 null mutant background at undiminished levels suggesting that JIL-1 is not the mitotic H3S28ph kinase. We also demonstrate that H3S28ph is not enriched at heat shock puffs. Using two different pan-specific 14-3-3 antibodies as well as an enhancer trap 14-3-3ε-GFP line we show that 14-3-3, while present in salivary gland nuclei, does not localize to chromosomes but only to the nuclear matrix surrounding the chromosomes. In our hands 14-3-3 is not recruited to developmental or heat shock puffs. Furthermore, using a lacO repeat tethering system to target LacI-JIL-1 to ectopic sites on polytene chromosomes we show that only H3S10ph is present and upregulated at such sites, not H3S28ph or 14-3-3. Thus, our results argue strongly against a model where JIL-1 is required for H3S28 phosphorylation and 14-3-3 recruitment at active genes.

  20. The 14-3-3 protein Bmh1 functions in the spindle position checkpoint by breaking Bfa1 asymmetry at yeast centrosomes.

    Science.gov (United States)

    Caydasi, Ayse Koca; Micoogullari, Yagmur; Kurtulmus, Bahtiyar; Palani, Saravanan; Pereira, Gislene

    2014-07-15

    In addition to their well-known role in microtubule organization, centrosomes function as signaling platforms and regulate cell cycle events. An important example of such a function is the spindle position checkpoint (SPOC) of budding yeast. SPOC is a surveillance mechanism that ensures alignment of the mitotic spindle along the cell polarity axis. Upon spindle misalignment, phosphorylation of the SPOC component Bfa1 by Kin4 kinase engages the SPOC by changing the centrosome localization of Bfa1 from asymmetric (one centrosome) to symmetric (both centrosomes). Here we show that, unexpectedly, Kin4 alone is unable to break Bfa1 asymmetry at yeast centrosomes. Instead, phosphorylation of Bfa1 by Kin4 creates a docking site on Bfa1 for the 14-3-3 family protein Bmh1, which in turn weakens Bfa1-centrosome association and promotes symmetric Bfa1 localization. Consistently, BMH1-null cells are SPOC deficient. Our work thus identifies Bmh1 as a new SPOC component and refines the molecular mechanism that breaks Bfa1 centrosome asymmetry upon SPOC activation.

  1. Structure-Function Analysis of PPP1R3D, a Protein Phosphatase 1 Targeting Subunit, Reveals a Binding Motif for 14-3-3 Proteins which Regulates its Glycogenic Properties.

    Science.gov (United States)

    Rubio-Villena, Carla; Sanz, Pascual; Garcia-Gimeno, Maria Adelaida

    2015-01-01

    Protein phosphatase 1 (PP1) is one of the major protein phosphatases in eukaryotic cells. It plays a key role in regulating glycogen synthesis, by dephosphorylating crucial enzymes involved in glycogen homeostasis such as glycogen synthase (GS) and glycogen phosphorylase (GP). To play this role, PP1 binds to specific glycogen targeting subunits that, on one hand recognize the substrates to be dephosphorylated and on the other hand recruit PP1 to glycogen particles. In this work we have analyzed the functionality of the different protein binding domains of one of these glycogen targeting subunits, namely PPP1R3D (R6) and studied how binding properties of different domains affect its glycogenic properties. We have found that the PP1 binding domain of R6 comprises a conserved RVXF motif (R102VRF) located at the N-terminus of the protein. We have also identified a region located at the C-terminus of R6 (W267DNND) that is involved in binding to the PP1 glycogenic substrates. Our results indicate that although binding to PP1 and glycogenic substrates are independent processes, impairment of any of them results in lack of glycogenic activity of R6. In addition, we have characterized a novel site of regulation in R6 that is involved in binding to 14-3-3 proteins (RARS74LP). We present evidence indicating that when binding of R6 to 14-3-3 proteins is prevented, R6 displays hyper-glycogenic activity although is rapidly degraded by the lysosomal pathway. These results define binding to 14-3-3 proteins as an additional pathway in the control of the glycogenic properties of R6.

  2. Inhibition of blue-light-dependent binding of 14-3-3 proteins to phototropins by hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao; SHIMAZAKI Kenichiro

    2005-01-01

    @@ Phototropins, following the discovery of phytochromes[1,2] and cryptochromes[3,4], are the most recently characterized blue-light (BL) receptors in plants. The N- terminal regions of the proteins contain two light oxygen and voltage (LOV)――LOV1 and LOV2, which belong to PAS domain involved in protein-protein interaction and ligand binding, possessing non-covalent binding sites for the chromophore FMN[5]. The C-terminal regions contain Ser/Thr kinase domains[6].

  3. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress.

    Science.gov (United States)

    He, Yuchi; Wu, Jingjing; Lv, Bing; Li, Jia; Gao, Zhiping; Xu, Weifeng; Baluška, František; Shi, Weiming; Shaw, Pang Chui; Zhang, Jianhua

    2015-04-01

    Plant 14-3-3 proteins are phosphoserine-binding proteins that regulate a wide array of targets via direct protein-protein interactions. In this study, the role of a 14-3-3 protein, GRF9, in plant response to water stress was investigated. Arabidopsis wild-type, GRF9-deficient mutant (grf9), and GRF9-overexpressing (OE) plants were treated with polyethylene glycol (PEG) to induce mild water stress. OE plant showed better whole-plant growth and root growth than the wild type under normal or water stress conditions while the grf9 mutant showed worse growth. In OE plants, GRF9 favours the allocation of shoot carbon to roots. In addition, GRF9 enhanced proton extrusion, mainly in the root elongation zone and root hair zone, and maintained root growth under mild water stress. Grafting among the wild type, OE, and grf9 plants showed that when OE plants were used as the scion and GRF9 was overexpressed in the shoot, it enhanced sucrose transport into the root, and when OE plants were used as rootstock and GRF9 was overexpressed in the root, it caused more release of protons into the root surface under water stress. Taken together, the results suggest that under PEG-induced water stress, GRF9 is involved in allocating more carbon from the shoot to the root and enhancing proton secretion in the root growing zone, and this process is important for root response to mild water stress.

  4. The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a.

    Science.gov (United States)

    Purwestri, Yekti Asih; Ogaki, Yuka; Tamaki, Shojiro; Tsuji, Hiroyuki; Shimamoto, Ko

    2009-03-01

    Hd3a and FT proteins have recently been proposed to act as florigens in rice and Arabidopsis, respectively; however, the molecular mechanisms of their function remain to be determined. In this study, we identified GF14c (a 14-3-3 protein) as an Hd3a-interacting protein in a yeast two-hybrid screen. In vitro and in vivo experiments, using a combination of pull-down assays and bimolecular fluorescence complementation, confirmed the interaction between Hd3a and GF14c. Functional analysis using either GF14c overexpression or knockout transgenic rice plants indicated that this interaction plays a role in the regulation of flowering. GF14c-overexpressing plants exhibited a delay in flowering and the knockout mutants displayed early flowering relative to the wild-type plants under short-day conditions. These results suggest that GF14c acts as a negative regulator of flowering by interacting with Hd3a. Since the 14-3-3 protein has been shown to interact with FT protein in tomato and Arabidopsis, our results in rice provide important findings about FT signaling in plants.

  5. Antioxidant effects of carnitine supplementation on 14-3-3 protein isoforms in the aged rat hippocampus detected using fully automated two-dimensional chip gel electrophoresis.

    Science.gov (United States)

    Iwamoto, M; Miura, Y; Tsumoto, H; Tanaka, Y; Morisawa, H; Endo, T; Toda, T

    2014-12-01

    We here described the antioxidant effects of carnitine supplementation on 14-3-3 protein isoforms in the aged rat hippocampus detected using the fully automated two-dimensional chip gel electrophoresis system (Auto2D). This system was easy and convenient to use, and the resolution obtained was more sensitive and higher than that of conventional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). We separated and identified five isoforms of the 14-3-3 protein (beta/alpha, gamma, epsilon, zeta/delta, and eta) using the Auto2D system. We then examined the antioxidant effects of carnitine supplementation on the protein profiles of the cytosolic fraction in the aged rat hippocampus, demonstrating that carnitine supplementation suppressed the oxidation of methionine residues in these isoforms. Since methionine residues are easily oxidized to methionine sulfoxide, the convenient and high-resolution 2-D PAGE system can be available to analyze methionine oxidation avoiding artifactual oxidation. We showed here that the Auto2D system was a very useful tool for studying antioxidant effects through proteomic analysis of protein oxidation.

  6. Unveiling equal importance of two 14-3-3 proteins for morphogenesis, conidiation, stress tolerance and virulence of an insect pathogen.

    Science.gov (United States)

    Liu, Qian; Li, Jin-Gen; Ying, Sheng-Hua; Wang, Juan-Juan; Sun, Wen-Liang; Tian, Chao-Guang; Feng, Ming-Guang

    2015-04-01

    Two conserved 14-3-3 proteins orthologous to Saccharomyces cerevisiae Bmh1/2 are poorly understood in filamentous fungi. Here we show that Bmh1 and Bmh2 contribute equally to the fundamental biology and physiology of Beauveria bassiana by targeting many sets of proteins/enzymes. Single Bmh deletion caused similar upregulation of another. Excellent knockdown (∼91%) expressions of Bmh1 in ΔBmh2 and Bmh2 in ΔBmh1 resulted in equally more severe multiphenotypic defects than the single deletions, including G2 /M transition, blastospore size, carbon/nitrogen utilization, conidiation, germination and conidial tolerances to high osmolarity, oxidation, cell wall stress, high temperature and UV-B irradiation. All the deletion and deletion/knockdown mutants showed similar defects in blastospore yield and density, hyphal septation and cell size, hyphal responses to most chemical stresses and virulence. All the defects were evident with altered transcripts of phenotype-related genes and well restored by each Bmh complementation. Our Bmh1- and Bmh2-specific transcriptomes generated under osmotic and oxidative stresses revealed up to 6% genes differentially expressed by at least twofold in the fungal genome. Many of those were greatly depressed or co-depressed in ΔBmh1 and ΔBmh2. Our findings provide a thorough insight into the functions and complementary effects of the two 14-3-3 proteins in the filamentous entomopathogen.

  7. Significance of change of 14-3-3 protein in cerebrospinal fluid in different types of meningo encephalitis in children and value of judging brain injury%不同类型脑膜炎患儿脑脊液14-3-3蛋白变化的意义

    Institute of Scientific and Technical Information of China (English)

    张交生; 李冰; 董意妹; 周桂芬; 廖建湘

    2013-01-01

    目的 检测脑脊液14-3-3蛋白在不同类型脑膜炎中的变化及在判断脑损伤程度中的价值.方法 收集2009年7月至2010年6月深圳市儿童医院诊断的22例病毒性脑膜炎、20例细菌性脑膜炎及15例单纯热性惊厥对照组脑脊液标本,采用Western blot法分析脑脊液14-3-3蛋白条带,并用ELISA定量检测14-3-3蛋白水平,同时与临床表现、预后、EEG、头颅CT或MRI进行相关性分析.结果 细菌性脑膜炎中14-3-3蛋白阳性率为65.0%(13/22例),病毒性脑膜炎组阳性率为27.3%(6/22例),2组比较差异有统计学意义.ELISA定量检测中,与对照组[(0.9±0.1)μg/L]比较,细菌性脑膜炎组[(5.6±0.2) μg/L]及病毒性脑膜炎组[(3.2±0.3) μg/L]脑脊液14-3-3蛋白水平均升高,治疗后14-3-3蛋白均明显下降,差异有统计学意义;在临床表现、影像学、EEG表现脑损伤严重的病例,脑脊液中14-3-3蛋白也明显升高;在预后方面,14-3-3蛋白明显升高的病例,预后差,表现为癫(痫)、死亡等.结论 脑脊液14-3-3蛋白可用于鉴别病毒性脑膜炎及细菌性脑膜炎,同时14-3-3蛋白升高程度与疾病严重程度有一定相关性.%Objective To investigate the change of 14-3-3 protein in cerebrospinal fluid (CSF) in different types of meningoencephalitis in children and its value in judging brain injury.Methods CSF 14-3-3 protein bands were detected by means of Western blot in 22 patients with viral meningoencephalitis and 20 cases of purulent meningoencephalitis and with 15 cases of febrile seizures as the control group from Jul.2009 to Jun.2010,and in addition,the quantitative detection of 14-3-3 protein was done by way of ELISA.Correlation was analyzed between the clinical manifestations,prognosis,EEG,head CT or MRI and the changes of 14-3-3 protein.Results The positive rate of 14-3-3 protein in cases of purulent meningitis was 65.0(13/22 cases),higher than viral meningoencephalitis group(27.3%,6/22 cases),and the

  8. P53 suppresses expression of the 14-3-3gamma oncogene

    Directory of Open Access Journals (Sweden)

    Qi Wenqing

    2011-08-01

    Full Text Available Abstract Background 14-3-3 proteins are a family of highly conserved proteins that are involved in a wide range of cellular processes. Recent evidence indicates that some of these proteins have oncogenic activity and that they may promote tumorigenesis. We previously showed that one of the 14-3-3 family members, 14-3-3gamma, is over expressed in human lung cancers and that it can induce transformation of rodent cells in vitro. Methods qRTPCR and Western blot analysis were performed to examine 14-3-3gamma expression in non-small cell lung cancers (NSCLC. Gene copy number was analyzed by qPCR. P53 mutations were detected by direct sequencing and also by western blot. CHIP and yeast one hybrid assays were used to detect p53 binding to 14-3-3gamma promoter. Results Quantitative rtPCR results showed that the expression level of 14-3-3gamma was elevated in the majority of NSCLC that we examined which was also consistent with protein expression. Further analysis of the expression pattern of 14-3-3gamma in lung tumors showed a correlation with p53 mutations suggesting that p53 might suppress 14-3-3 gamma expression. Analysis of the gamma promoter sequence revealed the presence of a p53 consensus binding motif and in vitro assays demonstrated that wild-type p53 bound to this motif when activated by ionizing radiation. Deletion of the p53 binding motif eliminated p53's ability to suppress 14-3-3gamma expression. Conclusion Increased expression of 14-3-3gamma in lung cancer coincides with loss of functional p53. Hence, we propose that 14-3-3gamma's oncogenic activities cooperate with loss of p53 to promote lung tumorigenesis.

  9. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    Science.gov (United States)

    Lam, Tonika; Thomas, Lisa M; White, Clayton A; Li, Guideng; Pone, Egest J; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  10. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    Directory of Open Access Journals (Sweden)

    Tonika Lam

    Full Text Available Class switch DNA recombination (CSR of the immunoglobulin heavy chain (IgH locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID expression and AID targeting to switch (S regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit and PKA-RIα (regulatory inhibitory subunit and uracil DNA glycosylase (Ung. 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198 or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR. 14-3-3 adaptors colocalized with AID and replication protein A (RPA in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr, an accessory protein of human immunodeficiency virus type-1 (HIV-1, which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  11. Differential 14-3-3 sigma DNA methylation and expression in c-myc- and activated H-ras-transformed cells under r- and K-selection.

    Science.gov (United States)

    Sato, Hiroyuki; Nakamura, Yukari; Motokura, Toru

    2006-05-08

    We cloned rat 14-3-3 sigma, a mediator of p53 tumor suppressor, as a target of K-selection. 14-3-3 sigma expression is suppressed with DNA methylation in breast cancers while its overexpression with hypomethylation is frequent in pancreatic cancers. These opposite findings were recapitulated through r- and K-selection of transformed rat embryo fibroblasts. 14-3-3 sigma expression was suppressed with DNA methylation after r-selection and the gene was overexpressed and demethylated in K-selected cells. 5-aza-2'-deoxycytidine recovered 14-3-3 sigma expression in r-selected cells. The presence of heterogeneous methylation patterns and expression levels before selection suggests that different 14-3-3 sigma expression levels play a role as a prerequisite for selection and clonal evolution.

  12. Cloning of a 14-3-3 Gene from Developing Wheat Endosperm and Expression of its Recombinant Protein in Escherichia coli%小麦胚乳14-3-3基因的克隆及其重组蛋白的原核表达

    Institute of Scientific and Technical Information of China (English)

    戴双; 李豪圣; 程敦公; 刘爱峰; 曹新有; 刘建军; 宋健民

    2012-01-01

    [Objective] This research was conducted to clone 14-3-3 genes from developing wheat endosperm and express their recombinant proteins in Escherichia coli aiming to investigate their functions in wheat development [ Method 1 Specific primers with restriction enzymes cut site were designed according to conserved sequence of homologous genes registered in NCBI. The target genes were cloned by RT-PCR from filling wheat grain. Then the cloned genes were inserted into expressing vectors after confirmation by sequencing and multiple alignments. The recombinant protein was expressed in E. coli and purified for further research. [Result] A 14-3-3 gene was amplified from developing endosperm of 13-15 d after anthesis of bread wheat cultivar Jimai22 and inserted into Top plasmid vector then transformed into E. coli strain DH5α by heat shock. The cloned gene was sequenced after the recombinant plasmid was extracted. The results of sequencing analysis showed that the gene belongs to nonε group and contained an open reading frame of 777 bp in length encoding a protein with 259 aa with predicted molecular weight about 29 kD. According to multiple alignments using DNAMAN program, the gene was highly homologous to other 14-3-3 genes from main crops such as wheat rice, maize, barley, soybean and model plant Arabidopsis with the maximum homology of 98%, as well as their encoding proteins. Furthermore, the heterologous protein with molecular weight about 30 kD expressed in E. coli was coincident with predicted size based on deduced amino acid sequence. All results suggested that the cloned gene is a 14-3-3 gene and it was correctly inserted into the vector and expressed heterologously. The cloned gene was inserted into expressing vector pET29c possessing a S-tag specific bounding to S-protein agarose. The recombinant vector was transformed into E. coli strain BL21-CodonPlus (DE3)-RP supplied with additional rare codes to improve heterologous expression. The recombinant protein was

  13. Molecular characterization and expression analysis of three homoeologous Ta14S genes encoding 14-3-3 proteins in wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Xinguo Wang

    2016-06-01

    Full Text Available The purpose of this study was to characterize Ta14S homoeologs and assess their functions in wheat seed development. The genomic and cDNA sequences of three Ta14S homoeologous genes encoding 14-3-3 proteins were isolated. Sequence analysis revealed that the three homoeologs consisted of five exons and four introns and were very highly conserved in the coding regions and in exon/intron structure, whereas the cDNA sequences were variable in the 5′ and 3′-UTR. The three genes, designated as Ta14S-2A, Ta14S-2B and Ta14S-2D, were located in homoeologous group 2 chromosomes. The polypeptide chains of the three Ta14S genes were highly similar. These genes were most homologous to Hv14A from barley. Real-time quantitative PCR indicated that the three Ta14S genes were differentially expressed in different organs at different developmental stages and all exhibited greater expression in primary roots of 1-day-old germlings than in other tissues. Comparison of the expression patterns of the three homoeologous genes at different times after pollination also revealed that their expression was developmentally regulated. The transcription of Ta14S-2B was clearly higher during seed germination, whereas expressions of Ta14S-2A and Ta14S-2D were up-regulated at the beginning of seed imbibition (0–12 h, but declined thereafter. The results suggested that the three Ta14S homoeologous genes have regulatory roles in seed development and germination.

  14. Molecular characterization and expression analysis of three homoeologous Ta14S genes encoding 14-3-3 proteins in wheat(Triticum aestivum L.)

    Institute of Scientific and Technical Information of China (English)

    Xinguo Wang; Yanli Wang; Ruixia Xiao; Xin Chen; Jiangping Ren

    2016-01-01

    The purpose of this study was to characterize Ta14 S homoeologs and assess their functions in wheat seed development.The genomic and c DNA sequences of three Ta14 S homoeologous genes encoding 14-3-3 proteins were isolated.Sequence analysis revealed that the three homoeologs consisted of five exons and four introns and were very highly conserved in the coding regions and in exon/intron structure,whereas the c DNA sequences were variable in the 5′ and 3′-UTR.The three genes,designated as Ta14S-2A,Ta14S-2B and Ta14S-2D,were located in homoeologous group 2 chromosomes.The polypeptide chains of the three Ta14 S genes were highly similar.These genes were most homologous to Hv14 A from barley.Real-time quantitative PCR indicated that the three Ta14 S genes were differentially expressed in different organs at different developmental stages and all exhibited greater expression in primary roots of 1-day-old germlings than in other tissues.Comparison of the expression patterns of the three homoeologous genes at different times after pollination also revealed that their expression was developmentally regulated.The transcription of Ta14S-2B was clearly higher during seed germination,whereas expressions of Ta14S-2A and Ta14S-2D were up-regulated at the beginning of seed imbibition(0–12 h),but declined thereafter.The results suggested that the three Ta14 S homoeologous genes have regulatory roles in seed development and germination.

  15. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo.

    Directory of Open Access Journals (Sweden)

    Gary P Brennan

    Full Text Available 14-3-3 proteins are ubiquitous molecular chaperones that are abundantly expressed in the brain where they regulate cell functions including metabolism, the cell cycle and apoptosis. Brain levels of several 14-3-3 isoforms are altered in diseases of the nervous system, including epilepsy. The 14-3-3 zeta (ζ isoform has been linked to endoplasmic reticulum (ER function in neurons, with reduced levels provoking ER stress and increasing vulnerability to excitotoxic injury. Here we report that transgenic overexpression of 14-3-3ζ in mice results in selective changes to the unfolded protein response pathway in the hippocampus, including down-regulation of glucose-regulated proteins 78 and 94, activating transcription factors 4 and 6, and Xbp1 splicing. No differences were found between wild-type mice and transgenic mice for levels of other 14-3-3 isoforms or various other 14-3-3 binding proteins. 14-3-3ζ overexpressing mice were potently protected against cell death caused by intracerebroventricular injection of the ER stressor tunicamycin. 14-3-3ζ overexpressing mice were also potently protected against neuronal death caused by prolonged seizures. These studies demonstrate that increased 14-3-3ζ levels protect against ER stress and seizure-damage despite down-regulation of the unfolded protein response. Delivery of 14-3-3ζ may protect against pathologic changes resulting from prolonged or repeated seizures or where injuries provoke ER stress.

  16. Phosphorylation and Interaction with the 14-3-3 Protein of the Plasma Membrane H+-ATPase are Involved in the Regulation of Magnesium-Mediated Increases in Aluminum-Induced Citrate Exudation in Broad Bean (Vicia faba. L).

    Science.gov (United States)

    Chen, Qi; Kan, Qi; Wang, Ping; Yu, Wenqian; Yu, Yuzhen; Zhao, Yan; Yu, Yongxiong; Li, Kunzhi; Chen, Limei

    2015-06-01

    Several studies have shown that external application of micromolar magnesium (Mg) can increase the resistance of legumes to aluminum (Al) stress by enhancing Al-induced citrate exudation. However, the exact mechanism underlying this regulation remains unknown. In this study, the physiological and molecular mechanisms by which Mg enhances Al-induced citrate exudation to alleviate Al toxicity were investigated in broad bean. Micromolar concentrations of Mg that alleviated Al toxicity paralleled the stimulation of Al-induced citrate exudation and increased the activity of the plasma membrane (PM) H(+)-ATPase. Northern blot analysis shows that a putative MATE-like gene (multidrug and toxic compound extrusion) was induced after treatment with Al for 4, 8 and 12 h, whereas the mRNA abundance of the MATE-like gene showed no significant difference between Al plus Mg and Al-only treatments during the entire treatment period. Real-time reverse transcription-PCR (RT-PCR) and Western blot analyses suggest that the transcription and translation of the PM H(+)-ATPase were induced by Al but not by Mg. In contrast, immunoprecipitation suggests that Mg enhanced the phosphorylation levels of VHA2 and its interaction with the vf14-3-3b protein under Al stress. Taken together, our results suggest that micromolar concentrations of Mg can alleviate the Al rhizotoxicity by increasing PM H(+)-ATPase activity and Al-induced citrate exudation in YD roots. This enhancement is likely to be attributable to Al-induced increases in the expression of the MATE-like gene and vha2 and Mg-induced changes in the phosphorylation levels of VHA2, thus changing its interaction with the vf14-3-3b protein.

  17. The pro-inflammatory cytokine 14-3-3ε is a ligand of CD13 in cartilage

    Science.gov (United States)

    Nefla, Meriam; Sudre, Laure; Denat, Guillaume; Priam, Sabrina; Andre-Leroux, Gwenaëlle; Berenbaum, Francis; Jacques, Claire

    2015-01-01

    ABSTRACT Osteoarthritis is a whole-joint disease characterized by the progressive destruction of articular cartilage involving abnormal communication between subchondral bone and cartilage. Our team previously identified 14-3-3ε protein as a subchondral bone soluble mediator altering cartilage homeostasis. The aim of this study was to investigate the involvement of CD13 (also known as aminopeptidase N, APN) in the chondrocyte response to 14-3-3ε. After identifying CD13 in chondrocytes, we knocked down CD13 with small interfering RNA (siRNA) and blocking antibodies in articular chondrocytes. 14-3-3ε-induced MMP-3 and MMP-13 was significantly reduced with CD13 knockdown, which suggests that it has a crucial role in 14-3-3ε signal transduction. Aminopeptidase N activity was identified in chondrocytes, but the activity was unchanged after stimulation with 14-3-3ε. Direct interaction between CD13 and 14-3-3ε was then demonstrated by surface plasmon resonance. Using labeled 14-3-3ε, we also found that 14-3-3ε binds to the surface of chondrocytes in a manner that is dependent on CD13. Taken together, these results suggest that 14-3-3ε might directly bind to CD13, which transmits its signal in chondrocytes to induce a catabolic phenotype similar to that observed in osteoarthritis. The 14-3-3ε–CD13 interaction could be a new therapeutic target in osteoarthritis. PMID:26208633

  18. 14-3-3β蛋白的原核表达、抗血清制备及真核表达载体的构建%Prokaryotic expression, antiserum preparation and construction of eukaryotic expression vector of human 14-3-3β protein

    Institute of Scientific and Technical Information of China (English)

    杨学习; 孙敏英; 马瑞娟; 徐伟文; 李明

    2009-01-01

    目的 纯化原核表达的14-3-3β(YWHAB)重组蛋白并制备多抗血清,构建适用于哺乳动物细胞的真核表达载体.方法 将重组蛋白表达载体pET30a(+)/YWHAB转化大肠杆菌表达菌株BL21(DE3)感受态细胞,异丙基-β-D-硫代半乳糖苷(IPTG)诱导重组蛋白表达,镍-四齿螯合剂(Ni-NTA)亲和层析柱纯化重组蛋白;以纯化的重组蛋白为抗原免疫BALB/c小鼠,应用ELISA和Western blot方法分别检测抗血清的效价和特异性;应用PCR扩增添加BamH Ⅰ和EcoR Ⅰ酶切位点把YWHAB的ORF亚克隆至真核表达载体pEGFP-N1,添加BamH Ⅰ和Hind Ⅲ酶切位点把YWHAB的开放阅读框(ORF)亚克隆至真核表达载体pCDNA3.1(+),对重组载体进行酶切和PCR鉴定.结果 YwHAB重组蛋白以可溶性形式表达,分子量为32 000,与预期分子量一致;纯化后的重组蛋白纯度达90%以上,ELISA结果显示其抗血清的效价为1:50 000,Western blot结果表明抗血清的特异性较好;酶切和PCR鉴定结果表明真核表达载体pEGFP-N1/YWHAB和pCDNA3.1(+)YWHAB构建成功.结论 通过亲和层析纯化获得人14-3-3β重组蛋白,进而免疫BALB/c小鼠制备多抗血清,为进一步研究人14-3-3β的功能成功构建了其真核表达载体.%Objective To purify human 14-3-3β (YWHAB) recombinant protein expressed in the E.coli, prepare its antiserum and construct the eukaryotic expression vector for transfecting mammalian cells. Methods The human 14-3-313 recombinant protein expression vector pET30a (+) /YWHAB constructed by the ORF of YWHAB gene and prokaryotic expression vector pET30a (+) was transformed into E.coli BL21 (DE3). The expression of the recombinant protein was induced by IPTG and the protein was purified by affinity chromatography on a Ni-NTA resin. BALB/c mice were immunized by the purified protein, and ELISA and Western blotting were employed to detect the titer and specificity of the antiserum. The open reading flame of YWHAB gene was obtained by PCR

  19. 14-3-3和CLIC4蛋白在U251细胞自噬中的相互作用%The interaction of 14-3-3 and CLIC4 proteins in the autophagy of U251 cells

    Institute of Scientific and Technical Information of China (English)

    袁兆新; 金笛; 张宏宇

    2015-01-01

    目的 通过饥饿诱导神经胶质瘤U251细胞发生自噬,探讨细胞CLIC4和14-3-3蛋白在饥饿条件下诱导自噬过程中的相互作用.方法 通过Hoechst、14-3-3 epsilon、CLIC4染色于共聚焦显微镜下观察抑制CLIC4表达对于饥饿条件下,14-3-3 epsilon蛋白与CLIC4共定位的影响.通过Western Blot技术检测Beclin 1及14-3-3蛋白表达.免疫共沉淀技术检测14-3-3 epsilon蛋白与CLIC4蛋白的结合水平.结果 共聚焦显微镜观察14-3-3 epsilon和CLIC4荧光染色结果显示,饥饿条件下,14-3-3 epsilon蛋白与CLIC4共定位显著增加,并广泛分布于胞浆及细胞核中.同时Westem Blot结果表明抑制CLIC4表达能够引起14-3-3蛋白以及自噬相关蛋白Beclin1表达增加.饥饿条件下,14-3-3 epsilon蛋白与CLIC4共沉淀增强,而抑制CLIC4表达能够降低两者结合水平.结论 14-3-3epsilon蛋白与CLIC4的相互作用由于RNA干扰而减弱,促进了14-3-3蛋白水平上调,进而增强了14-3-3蛋白对Beclin1信号通路的调节,引起Beclin1表达增加,进一步激活饥饿条件下U251细胞自噬过程.

  20. 日本血吸虫大陆株14-3-3信号转导蛋白epsilon 亚型基因的表达及鉴定%EXPRESSION AND IDENTIFICATION OF 14-3-3 SIGNAL TRANSDUCTION PROTEIN EPSILON ISOFORMS GENE FROM SCHISTOSOMA JAPONICUM(CHINESE STRAIN)

    Institute of Scientific and Technical Information of China (English)

    唐小牛; 汪学龙; 沈继龙

    2003-01-01

    目的构建日本血吸虫大陆株14-3-3信号转导蛋白epsilon亚型基因真核表达重组质粒pBK-Sj14-3-3,并进一步在大肠杆菌中表达和鉴定,为其进一步保护性免疫的研究提供条件. 方法根据日本血吸虫14-3-3蛋白的核苷酸序列,设计合成1对引物,以日本血吸虫大陆株成虫总RNA为模板,用RT-PCR法合成日本血吸虫大陆株14-3-3蛋白epsilon亚型基因cDNA片段.将其克隆入pGEM-T载体,经双酶切及PCR鉴定后,再亚克隆入pBK-CMV真核表达质粒,构建重组质粒pBK-Sj14-3-3,转染到大肠杆菌BL21,双酶切鉴定后,通过IPTG的诱导在大肠杆菌BL21中进行表达及Western-blot鉴定. 结果 RT-PCR产物、 pGEM-T-Sj14-3-3及pBK-Sj14-3-3分别经双酶切均获得一特异性基因片段,其表达产物经SDS-PAGE及Western-blot鉴定后其分子质量为32 ku,并能被抗14-3-3多克隆抗体识别. 结论真核表达重组质粒pBK-Sj14-3-3在大肠杆菌中的表达产物是一分子质量为32 ku融合蛋白,并能被抗14-3-3多克隆抗体识别.

  1. Exon B of human surfactant protein A2 mRNA, alone or within its surrounding sequences, interacts with 14-3-3; role of cis-elements and secondary structure.

    Science.gov (United States)

    Noutsios, Georgios T; Silveyra, Patricia; Bhatti, Faizah; Floros, Joanna

    2013-06-01

    Human surfactant protein A, an innate immunity molecule, is encoded by two genes: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The 5' untranslated (5'UTR) splice variant of SP-A2 (ABD), but not of SP-A1 (AD), contains exon B (eB), which is an enhancer for transcription and translation. We investigated whether eB contains cis-regulatory elements that bind trans-acting factors in a sequence-specific manner as well as the role of the eB mRNA secondary structure. Binding of cytoplasmic NCI-H441 proteins to wild-type eB, eB mutant, AD, and ABD 5'UTR mRNAs were studied by RNA electromobility shift assays (REMSAs). The bound proteins were identified by mass spectroscopy and specific antibodies (Abs). We found that 1) proteins bind eB mRNA in a sequence-specific manner, with two cis-elements identified within eB to be important; 2) eB secondary structure is necessary for binding; 3) mass spectroscopy and specific Abs in REMSAs identified 14-3-3 proteins to bind (directly or indirectly) eB and the natural SP-A2 (ABD) splice variant but not the SP-A1 (AD) splice variant; 4) other ribosomal and cytoskeletal proteins, and translation factors, are also present in the eB mRNA-protein complex; 5) knockdown of 14-3-3 β/α isoform resulted in a downregulation of SP-A2 expression. In conclusion, proteins including the 14-3-3 family bind two cis-elements within eB of hSP-A2 mRNA in a sequence- and secondary structure-specific manner. Differential regulation of SP-A1 and SP-A2 is mediated by the 14-3-3 protein family as well as by a number of other proteins that bind UTRs with or without eB mRNA.

  2. 14-3-3 Protects against stress-induced apoptosis

    Science.gov (United States)

    Clapp, C; Portt, L; Khoury, C; Sheibani, S; Norman, G; Ebner, P; Eid, R; Vali, H; Mandato, C A; Madeo, F; Greenwood, M T

    2012-01-01

    Expression of human Bax, a cardinal regulator of mitochondrial membrane permeabilization, causes death in yeast. We screened a human cDNA library for suppressors of Bax-mediated yeast death and identified human 14-3-3β/α, a protein whose paralogs have numerous chaperone-like functions. Here, we show that, yeast cells expressing human 14-3-3β/α are able to complement deletion of the endogenous yeast 14-3-3 and confer resistance to a variety of different stresses including cadmium and cycloheximide. The expression of 14-3-3β/α also conferred resistance to death induced by the target of rapamycin inhibitor rapamycin and by starvation for the amino acid leucine, conditions that induce autophagy. Cell death in response to these autophagic stimuli was also observed in the macroautophagic-deficient atg1Δ and atg7Δ mutants. Furthermore, 14-3-3β/α retained its ability to protect against the autophagic stimuli in these autophagic-deficient mutants arguing against so called ‘autophagic death'. In line, analysis of cell death markers including the accumulation of reactive oxygen species, membrane integrity and cell surface exposure of phosphatidylserine indicated that 14-3-3β/α serves as a specific inhibitor of apoptosis. Finally, we demonstrate functional conservation of these phenotypes using the yeast homolog of 14-3-3: Bmh1. In sum, cell death in response to multiple stresses can be counteracted by 14-3-3 proteins. PMID:22785534

  3. 5株内阿米巴14-3-3蛋白序列比较及生物信息学分析%Comparison of 14-3-3 proteins in 5 Entamoeba strains and their relative bioinformatics analysis

    Institute of Scientific and Technical Information of China (English)

    林育涛; 付永峰; 程训佳; Hiroshi Tachibana

    2008-01-01

    目的 比较具有不同致病性以及毒力的5株内阿米巴的14-3-3蛋白序列,并选取溶组织内阿米巴HM1∶IMSS株进行相关生物信息学预测,用以指导进一步实验研究.方法 收集各虫株滋养体的基因组DNA,根据GenBank收录的溶组织内阿米巴编码基因序列设计特异引物,以基因组DNA为模板扩增目的 基因片段,测序后利用生物信息学网站的各种在线分析工具和Genetyx软件ver 13.0,对所得序列进行比较,构建分子进化树,并对溶组织内阿米巴HM1∶IMSS株的14-3-3蛋白进行相关的生物信息学分析. 结果 5株内阿米巴属虫株均含有3个14-3-3基因,编码的氨基酸序列同源性较高,个别位点存在差异.取溶组织内阿米巴HM1∶IMSS株14-3-3-1序列与其他物种的同源蛋白比较并构建分子进化树,与种系进化过程非常吻合.根据生物信息学分析结果预测,溶组织内阿米巴HM1∶IMSS株14-3-3-1含720个碱基,编码239个氨基酸;14-3-3-2含717个碱基,编码238个氨基酸;14-3-3-3含723个碱基,编码240个氨基酸.3种异构体都带有2个14-3-3蛋白家族标记,含有多个潜在的磷酸化位点,但不含线粒体、过氧化物酶体等细胞器定位序列以及信号肽.该蛋白在大肠埃希菌中表达的半衰期>10 h. 结论 内阿米巴属14-3-3基因高度保守.生物信息学分析结果提示14-3-3蛋白是研究物种进化的理想分子.

  4. 日本血吸虫14-3-3蛋白epsilon亚型基因扩增及表达载体的构建%Amplification and Subcloning of 14-3-3 Protein(Epsilon Isoform) Gene of Schistosoma Japonicum

    Institute of Scientific and Technical Information of China (English)

    唐小牛; 汪学龙; 沈继龙; 蒋作君

    2002-01-01

    目的扩增日本血吸虫14-3-3蛋白epsilon亚型编码基因并构建其表达载体,以研究其在血吸虫信号转导以及免疫预防和诊断方面的作用.方法以日本血吸虫成虫总RNA为模板逆转录合成cDNA链,设计合成引物,用PCR法扩增14-3-3蛋白epsilon亚型基因编码序列,将其克隆入pGEM-T载体,双酶切和以质粒为模板的PCR鉴定后,将基因片段亚克隆入表达载体pBK-CMV,转染大肠杆菌BL21,经双酶切后鉴定.结果 RT-PCR扩增出一条约753bp的特异性条带,TA克隆重组质粒的双酶切和以质粒为模板的PCR均获得了一条与RT-PCR扩增出大小相同条带,pBK-Sj14-3-3表达载体经双酶切后也同样获得了一条约753bp的特异性条带.结论在体外成功的扩增了日本血吸虫14-3-3蛋白epsilon亚型编码基因并构建了pBK-Sj14-3-3表达载体,为进一步的免疫预防和免疫诊断研究提供了条件.

  5. The interaction between ADAM22 and 14-3-3β

    Institute of Scientific and Technical Information of China (English)

    ZHU; Pengcheng(朱鹏程); SANG; Yingying(桑瑛颖); XU; Rener(徐人尔); ZHAO; Jing(赵璟); LI; Changben(李昌本); ZHAO; Shouyuan(赵寿元)

    2002-01-01

    ADAM family consists of a number of transmembrane proteins that contain a disintegrin and metalloprotease domain. ADAMs are involved in a highly diverse set of biological processes, including fertilization, neurogenesis, myogenesis and inflammatory response. The ADAM proteins have both cell adhesion and protease activities. Adam22 is highly expressed in human brain. The adam22-/- mice presented severe ataxia and died before weaning, but the function of ADAM22 is still unknown. 14-3-3β interacting with ADAM22 was detected by using yeast two-hybrid assay. The specificity of interaction between ADAM22 and 14-3-3β was proved by in vitro binding assay and immunoprecipitation. The major 14-3-3β binding site was located in the last 28 amino acid residues of ADAM22 cytoplasmic tail. Protein 14-3-3β is abundant and plays an important role in mediating cell diffusion, migration and cell cycle control. The interaction of ADAM22 and 14-3-3β suggests that the ADAM22 may play a crucial role in neural function and development.

  6. 大鼠脂肪细胞中14-3-3蛋白与葡萄糖转运子4的相互作用%14-3-3 proteins are associated with GLUT4 in rat adipocytes

    Institute of Scientific and Technical Information of China (English)

    张旭; 王姮

    2006-01-01

    目的 研究在大鼠脂肪细胞中,14-3-3蛋白与葡萄糖转运子4(GLUT4)之间是否存在相互作用.方法 用胶原酶Ⅰ消化雄性SD大鼠附睾上的脂肪垫,获得分离的脂肪细胞.在纯化的细胞中,采用低渗裂解和甘油梯度速率沉降技术获得3个含有GLUT4的组分:T、H和L.用交联了1F8(GLUT4特异性单抗)的琼脂糖微珠对脂肪细胞总提取物以及上述3个组分分别进行免疫吸附实验,经吸附后在上清液和微珠的洗脱液中分别进行14-3-3蛋白和GLUT4的免疫印迹分析.结果 在脂肪细胞的总提取物以及上述GLUT4的3个组分T、H和L中,14-3-3蛋白都能够与GLUT4发生免疫共沉淀.共沉淀下来的14-3-3蛋白在免疫印迹分析时显示为2个条带,其相对分子质量分别约为29 ku和60ku,提示14-3-3蛋白可能以二聚体的形式与GLUT4发生相互作用.结论 在生理条件下,14-3-3蛋白与GLUT4在大鼠脂肪细胞中存在相互作用.

  7. Characterization of 14-3-3 isoforms expressed in the Echinococcus granulosus pathogenic larval stage.

    Science.gov (United States)

    Teichmann, Aline; Vargas, Daiani M; Monteiro, Karina M; Meneghetti, Bruna V; Dutra, Cristine S; Paredes, Rodolfo; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique B

    2015-04-01

    The 14-3-3 protein family of eukaryotic regulators was studied in Echinococcus granulosus, the causative agent of cystic hydatid disease. These proteins mediate important cellular processes in eukaryotes and are expected to play important roles in parasite biology. Six isoforms of E. granulosus 14-3-3 genes and proteins (Eg14-3-3.1-6) were analyzed, and their phylogenetic relationships were established with bona fide 14-3-3 orthologous proteins from eukaryotic species. Eg14-3-3 isoforms with previous evidence of expression (Eg14-3-3.1-4) in E. granulosus pathogenic larval stage (metacestode) were cloned, and recombinant proteins were used for functional studies. These protein isoforms were detected in different components of E. granulosus metacestode, including interface components with the host. The roles that are played by Eg14-3-3 proteins in parasite biology were inferred from the repertoires of interacting proteins with each isoform, as assessed by gel overlay, cross-linking, and affinity chromatography assays. A total of 95 Eg14-3-3 protein ligands were identified by mass spectrometry. Eg14-3-3 isoforms have shared partners (44 proteins), indicating some overlapping functions; however, they also bind exclusive partners (51 proteins), suggesting Eg14-3-3 functional specialization. These ligand repertoires indicate the involvement of Eg14-3-3 proteins in multiple biochemical pathways in the E. granulosus metacestode and note some degree of isoform specialization.

  8. Rapid antidepressants stimulate the decoupling of GABAB receptors from GIRK/Kir3 channels through increased protein stability of 14-3-3η

    OpenAIRE

    Workman, E R; Haddick, P C G; Bush, K.; Dilly, G A; Niere, F; Zemelman, B V; Raab-Graham, K F

    2015-01-01

    A single injection of N-methyl-D-aspartate receptor (NMDAR) antagonists produces a rapid antidepressant response. Lasting changes in the synapse structure and composition underlie the effectiveness of these drugs. We recently discovered that rapid antidepressants cause a shift in the γ-aminobutyric acid receptor (GABABR) signaling pathway, such that GABABR activation shifts from opening inwardly rectifiying potassium channels (Kir/GIRK) to increasing resting dendritic calcium signal and mamma...

  9. 日本血吸虫信号转导分子14-3-3蛋白epsilon亚型基因的克隆与序列分析%Cloning and sequence of 14-3-3 protein epsilong isoform gene of Schistosoma japonicum

    Institute of Scientific and Technical Information of China (English)

    汪学龙; 沈继龙; 蒋作君

    2002-01-01

    目的克隆日本血吸虫14-3-3蛋白epsilon亚型的编码基因,以研究其在血吸虫信号传导及其在免疫预防的作用.方法以日本血吸虫成虫总RNA为模板逆转录合成cDNA链,设计合成引物,用PCR法扩增14-3-3蛋白epsilon亚型基因编码序列,将其克隆入pGEM-T载体,并用双酶切和以质粒为模板的PCR进行鉴定.结果 RT-PCR扩增出一条约753 bp大小的特异性条带,重组质粒的双酶切和以质粒为模板的PCR均获得了一条与RT-PCR扩增出大小相同条带,序列测定结果表明其具有753 bp的开放阅读框,并具蛋白激酶、酪氨酸激酶磷酸化位点.结论成功构建了日本血吸虫14-3-3蛋白epsilon亚型重组pGEM-T克隆载体,为进一步的研究提供了条件.

  10. Molecular and biochemical mining of heat-shock and 14-3-3 proteins in drug-induced protoscolices of Echinococcus granulosus and the detection of a candidate gene for anthelmintic resistance.

    Science.gov (United States)

    Pan, D; Das, S; Bera, A K; Bandyopadhyay, S; Bandyopadhyay, S; De, S; Rana, T; Das, S K; Suryanaryana, V V; Deb, J; Bhattacharya, D

    2011-06-01

    Cystic echinococcosis (CE) caused by the larval stage of Echinococcus granulosus is a disease that affects both humans and animals. In humans the disease is treated by surgery with a supplementary option of chemotherapy with a benzimidazole compound. During the present study heat-shock protein 60 (HSP 60) was identified as one of the most frequently expressed biomolecules by E. granulosus after albendazole treatment. Data were correlated with 14-3-3 protein signature, and overexpression of this molecule after albendazole induction was an indicator of cell survival and signal transduction during in vitro maintenance of E. granulosus for up to 72 h. This observation was further correlated with a uniform expression pattern of a housekeeping gene (actin II). Out of three β-tubulin gene isoforms of E. granulosus, β-tubulin gene isoform 2 showed a conserved point mutation indicative of benzimidazole resistance.

  11. 日本血吸虫(大陆株)14-3-3 epsilon同型信号转导蛋白诱导小鼠保护性免疫的研究%STUDIES ON PROTECTIVE IMMUNITY IN MICE AFTER IMMUNIZATION OF 14-3-3 EPSILON ISOFORMS SIGNAL TRANSDUTION PROTEIN OF SCHISTOSMA JAPONICUM (CHINESE STRAIN)

    Institute of Scientific and Technical Information of China (English)

    唐小牛; 汪学龙; 沈继龙

    2002-01-01

    目的探索日本血吸虫新的疫苗候选分子对小鼠的保护性免疫效果.方法利用已构建的真核表达质粒pBK-Sj14-3-3在大肠杆菌BL21内表达的日本血吸虫(大陆株)14-3-3 epsilon同型融合蛋白质,免疫6周龄BALB/c雌性小鼠,免疫3次,每次间隔2周,第3次免疫后2周感染尾蚴.42 d后剖杀小鼠,计算其减虫率和肝减卵率.结果各免疫组与对照组相比,均获得了部分抗血吸虫保护性免疫力,第1、2、3各免疫组的减虫率分别为32.7%(P<0.05)、30.7%(P<0.05)、27.5%(P<0.05);其肝减卵率分别是48.5%(P<0.05)、43.1%(P<0.05)、28.2%(P<0.05).结论首次证明日本血吸虫14-3-3 epsilon同型重组融合蛋白可诱导小鼠抗血吸虫感染的部分保护性免疫力.

  12. 14-3-3{sigma} controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Ying [Stem Cell Institute, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Lu, Qingxian [Tumor Immunobiology Group, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Li, Qiutang, E-mail: q.li@louisville.edu [Stem Cell Institute, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States)

    2010-02-19

    14-3-3{sigma} (also called stratifin) is specifically expressed in the stratified squamous epithelium and its function was recently shown to be linked to epidermal stratification and differentiation in the skin. In this study, we investigated its role in corneal epithelium cell proliferation and differentiation. We showed that the 14-3-3{sigma} mutation in repeated epilation (Er) mutant mice results in a dominant negative truncated protein. Primary corneal epithelial cells expressing the dominant negative protein failed to undergo high calcium-induced cell cycle arrest and differentiation. We further demonstrated that blocking endogenous 14-3-3{sigma} activity in corneal epithelial cells by overexpressing dominative negative 14-3-3{sigma} led to reduced Notch activity and Notch1/2 transcription. Significantly, expression of the active Notch intracellular domain overcame the block in epithelial cell differentiation in 14-3-3{sigma} mutant-expressing corneal epithelial cells. We conclude that 14-3-3{sigma} is critical for regulating corneal epithelial proliferation and differentiation by regulating Notch signaling activity.

  13. Interaction between 14-3-3β and PrP influences the dimerization of 14-3-3 and fibrillization of PrP106-126.

    Science.gov (United States)

    Han, Jun; Song, Qin-Qin; Sun, Peng; Zhang, Jin; Wang, Xu; Song, Juan; Li, Gong-Qi; Liu, Ying-Hui; Mei, Guo-Yong; Shi, Qi; Tian, Chan; Chen, Cao; Gao, Chen; Zhao, Bo; Dong, Xiao-Ping

    2014-02-01

    Proteins of the 14-3-3 family are universal participate in multiple cellular processes. However, their exact role in the pathogenesis of prion diseases remains unclear. In this study, we proposed that human PrP was able to form molecular complex with 14-3-3β. The domains responsible for the interactions between PrP and 14-3-3β were mapped at the segments of amino acid (aa) residues 106-126 within PrP and aa 1-38 within 14-3-3β. Homology modeling revealed that the key aa residues for molecular interaction were D22 and D23 in 14-3-3β as well as K110 in PrP. Mutations in these aa residues inhibited the interaction between the two proteins in vitro. Our results also showed that recombinant PrP encouraged 14-3-3β dimer formation, whereas PrP106-126 peptide inhibited it. Recombinant 14-3-3β disaggregated the mature PrP106-126 fibrils in vitro. Moreover, the PrP-14-3-3 protein complexes were observed in the brain tissues of normal and scrapie agent 263K infected hamsters. Colocalization of PrP and 14-3-3 was seen in the cytoplasm of human neuroblastoma cell line SH-SY5Y, as well as human cervical cancer cell line HeLa transiently expressing full-length human PrP. Our current data suggest the neuroprotection of PrPC and neuron damage caused by PrPSc may be associated with their functions of 14-3-3 dimerization regulation.

  14. The role of epigenetic inactivation of 14-3-3σin human cancer

    Institute of Scientific and Technical Information of China (English)

    Dmitri LODYGIN; Heiko HERMEKING

    2005-01-01

    Cancer cells show characteristic alterations in DNA methylation patterns. Aberrant CpG methylation of specific promoters results in inactivation of tumor suppressor genes and therefore plays an important role in carcinogenesis. The p53-regulated gene 14-3-3σ undergoes frequent epigenetic silencing in several types of cancer, including carcinoma of the breast, prostate, and skin, suggesting that the loss of 14-3-3σ expression may be causally involved in tumor progression.Functional studies demonstrated that 14-3-3σ is involved in cell-cycle control and prevents the accumulation of chromosomal damage. The recent identification of novel 14-3-3σ-associated proteins by a targeted proteomics approach implies that 14-3-3σ regulates diverse cellular processes, which may become deregulated after silencing of 14-3-3σ expression in cancer cells.

  15. The binding site for regulatory 14-3-3 protein in plant plasma membrane H+-ATPase: Involvement of a region promoting phosphorylation-independent interaction in addition to the phosphorylation-dependent C-terminal end

    DEFF Research Database (Denmark)

    Fuglsang, Anja T; Borch, Jonas; Bych, Katrine;

    2003-01-01

    of the Arabidopsis plasma membrane H+-ATPase isoform 2 (AHA2). Following site-directed mutagenesis within the 45 C-terminal residues of AHA2, we conclude that, in addition to the 946YpTV motif, a number of residues located further upstream are required for phosphorylation-independent binding of 14-3-3. Among these...

  16. Intracellular Generation of a Diterpene-Peptide Conjugate that Inhibits 14-3-3-Mediated Interactions.

    Science.gov (United States)

    Parvatkar, Prakash; Kato, Nobuo; Uesugi, Motonari; Sato, Shin-Ichi; Ohkanda, Junko

    2015-12-23

    Synthetic agents that disrupt intracellular protein-protein interactions (PPIs) are highly desirable for elucidating signaling networks and developing new therapeutics. However, designing cell-penetrating large molecules equipped with the many functional groups necessary for binding to large interfaces remains challenging. Here, we describe a rational strategy for the intracellular oxime ligation-mediated generation of an amphipathic bivalent inhibitor composed of a peptide and diterpene natural product, fusicoccin, which binds 14-3-3 protein with submicromolar affinity. Our results demonstrate that co-treatment of cells with small module molecules, the aldehyde-containing fusicoccin 1 and the aminooxy-containing peptide 2, generates the corresponding conjugate 3 in cells, resulting in significant cytotoxicity. In contrast, chemically synthesized 3 is not cytotoxic, likely due to its inability to penetrate cells. Compound 3, but not 1 or 2, disrupts endogenous 14-3-3/cRaf interactions, suggesting that cell death is caused by inhibition of 14-3-3 activity. These results suggest that intracellular generation of large-sized molecules may serve as a new approach for modulating PPIs.

  17. 14-3-3 Sigma And p53 Expression in Gastric Cancer and Its Clinical Applications

    Directory of Open Access Journals (Sweden)

    Gilbert Mühlmann

    2010-01-01

    Full Text Available 14-3-3 sigma (σ induces G2 arrest enabling the repair of damaged DNA. The function of 14-3-3 σ is frequently lost in tumor cells, indicating a potential tumor suppressor function. The purpose of this study was to evaluate the prognostic value of 14-3-3 σ expression in human gastric cancer. 14-3-3 σ expression was analyzed by immunohistochemistry in 157 tumor samples of patients, who underwent resection for gastric cancer. Since 14-3-3 σ is involved in the p53 network, p53 expression was detected in parallel and correlated with 14-3-3 σ. 14-3-3 σ was found to be overexpressed in 75 (47.8% of 157 cases, the overexpression rate of p53 protein was 27.4%. 14-3-3 σ overexpression was statistically significantly associated with pT-stage (p=0.041 pN-stage (p=0.015 and UICC-stage (p=0.019 and showed a borderline significance with Lauren classification (p=0.057. Univariate survival calculations revealed a coexistent 14-3-3 σ and p53 overexpression as a significant predictor of disease-free survival. Multivariate analysis did not unfold 14-3-3 as an independent prognostic factor for disease-free survival and overall survival. Concomitant 14-3-3 σ and p53 overexpression in tumor cells of patients with gastric cancer identifies a population of patients with relatively unfavorable prognosis.

  18. Construction of eukaryotic expression recombinant plasmid and sequence analysis of 14-3-3 protein epsilon isoforms gene from Schistosoma japonicum(Chinese strain)%日本血吸虫(中国大陆株)14-3-3信号转导蛋白epsilon亚型基因[Parasitol1]真核表达重组质粒的构建及序列分析

    Institute of Scientific and Technical Information of China (English)

    唐小牛; 汪学龙; 沈继龙; 陈文魁

    2004-01-01

    目的构建日本血吸虫中国大陆株14-3-3信号转导蛋白epsilon亚型基因真核表达重组质粒pBK-Sj14-3-3,为进一步对重组蛋白的融合表达及保护性免疫的研究提供条件.方法根据日本血吸虫14-3-3蛋白的核苷酸序列,设计合成一对引物,以日本血吸虫中国大陆株成虫总RNA为模板,用RT-PCR法合成日本血吸虫中国大陆株14-3-3蛋白epsilon亚型基因cDNA片段.将其克隆入pGEM-T载体,经双酶切及PCR鉴定后,再亚克隆入pBK-CMV真核表达质粒,构建重组质粒pBK-Sj14-3-3,转化到大肠杆菌BL21感受态细胞,提取重组质粒双酶切鉴定并进行序列分析.结果 RT-PCR产物、 pGEM-T-Sj14-3-3及pBK-Sj14-3-3分别经双酶切均获得一特异性基因片段.经测序分析后该片段具有一个753bp完整开放阅读框(open reading frame,ORF),由此推导的氨基酸序列具有多种蛋白激酶的磷酸化位点.结论成功地构建了日本血吸虫中国大陆株14-3-3信号蛋白epsilon亚型基因真核表达重组质粒,并对其核苷酸序列及推导的氨基酸序列蛋白激酶磷酸化位点进行分析.

  19. Clinical implication of 14-3-3 epsilon expression in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Mariana Ferreira Leal; Danielle Queiroz Calcagno; S(a)mia Demachki; Paulo Pimentel Assump(c)(a)o; Roger Chammas; Rommel Rodríguez Burbano; Marília de Arruda Cardoso Smith

    2012-01-01

    AIM:To evaluate for the first time the protein and mRNA expression of 14-3-3ε in gastric carcinogenesis.METHODS:14-3-3ε protein expression was determined by western blotting,and mRNA expression was examined by real-time quantitative RT-PCR in gastric tumors and their matched non-neoplastic gastric tissue samples.RESULTS:Authors observed a significant reduction of 14-3-3ε protein expression in gastric cancer (GC) samples compared to their matched non-neoplastic tissue.Reduced levels of 14-3-3ε were also associated with diffuse-type GC and early-onset of this pathology.Our data suggest that reduced 14-3-3ε may have a role in gastric carcinogenesis process.CONCLUSION:Our results reveal that the reduced 14-3-3ε expression in GC and investigation of 14-3-3ε interaction partners may help to elucidate the carcinogenesis process.

  20. Identification and characterization of the interaction between tuberin and 14-3-3zeta.

    Science.gov (United States)

    Nellist, Mark; Goedbloed, Miriam A; de Winter, Christa; Verhaaf, Brenda; Jankie, Anita; Reuser, Arnold J J; van den Ouweland, Ans M W; van der Sluijs, Peter; Halley, Dicky J J

    2002-10-18

    Tuberous sclerosis is caused by mutations to either the TSC1 or TSC2 tumor suppressor gene. The disease is characterized by a broad phenotypic spectrum that includes seizures, mental retardation, renal dysfunction, and dermatological abnormalities. TSC1 encodes a 130-kDa protein called hamartin, and TSC2 encodes a 200-kDa protein called tuberin. Although it has been shown that hamartin and tuberin form a complex and mediate phosphoinositide 3-kinase/Akt-dependent phosphorylation of the ribosomal protein S6, it is not yet clear how inactivation of either protein leads to tuberous sclerosis. Therefore, to obtain additional insight into tuberin and hamartin function, yeast two-hybrid screening experiments were performed to identify proteins that interact with tuberin. One of the proteins identified was 14-3-3zeta, a member of the 14-3-3 protein family. The interaction between tuberin and 14-3-3zeta was confirmed in vitro and by co-immunoprecipitation; multiple sites within tuberin for 14-3-3zeta binding were identified; and it was determined that 14-3-3zeta associated with the tuberin-hamartin complex. Finally, it was shown that the tuberin/14-3-3zeta interaction is regulated by Akt-mediated phosphorylation of tuberin, providing insight into how tuberin may regulate phosphorylation of S6.

  1. 14-3-3ε Is required for germ cell migration in Drosophila.

    Directory of Open Access Journals (Sweden)

    K Kirki Tsigkari

    Full Text Available Although 14-3-3 proteins participate in multiple biological processes, isoform-specific specialized functions, as well as functional redundancy are emerging with tissue and developmental stage-specificity. Accordingly, the two 14-3-3ε proteins in Drosophila exhibit functional specificity and redundancy. Homozygotes for loss of function alleles of D14-3-3ε contain significantly fewer germ line cells (pole cells in their gonads, a phenotype not shared by mutants in the other 14-3-3 gene leo. We show that although D14-3-3ε is enriched within pole cells it is required in mesodermal somatic gonad precursor cells which guide pole cells in their migration through the mesoderm and coalesce with them to form the embryonic gonad. Loss of D14-3-3ε results in defective pole cell migration, reduced pole cell number. We present evidence that D14-3-3ε loss results in reduction or loss of the transcription factor Zfh-1, one of the main regulatory molecules of the pole cell migration, from the somatic gonad precursor cells.

  2. Regulation of 14-3-3 in the First Mitotic Cell Cycle in One-cell Stage Mouse Fertilized Eggs%14-3-3蛋白调节1-细胞期小鼠受精卵有丝分裂

    Institute of Scientific and Technical Information of China (English)

    崔城; 秦鑫; 任秀丽; 于秉治

    2013-01-01

    目的 研究14-3-3蛋白在1-细胞期小鼠受精卵有丝分裂中的作用.方法 RT-PCR技术鉴定小鼠受精卵14-3-3蛋白亚型.采用显微注射方法将14-3-3 siRNA注射入小鼠受精卵G1期,观察受精卵的卵裂率、形态学变化及MPF活性.结果 小鼠受精卵中的14-3-3蛋白亚型是14-3-3ε.小鼠受精卵注射pSUPER-14-3-3ε siRNA后,与对照组相比,卵裂率下降,有丝分裂延迟,有更多的受精卵发生形态异常,MPF活性最高值显著下降.结论 14-3-3蛋白在调节小鼠受精卵有丝分裂中发挥重要作用.%Objective To study the effects of 14-3-3 proteins in regulation of the first mitotic cell cycle in one-cell stage mouse fertilized eggs. Methods 14-3-3 isoform in the mouse fertilized eggs was identified by RT-PCR. 14-3-3 siRNA was introduced to G1 phase fertilized eggs by microinjection to study the cleavage rate, morphology and MPF activity. Results 14-3-3 ε was identified in one-cell stage of mouse fertilized eggs. Compared with the control group,the cleavage rate in pSUPER-14-3-3ε siRNA injection group was significantly decreased, mitosis was delayed and more abnormal morphology eggs were observed. Moreover, the maximal value of MPF activity was significantly decreased. Conclusion 14-3-3 proteins play critical roles in the first mitotic cell cycle in mouse fertilized eggs.

  3. Structure-Function Analysis of PPP1R3D, a Protein Phosphatase 1 Targeting Subunit, Reveals a Binding Motif for 14-3-3 Proteins which Regulates its Glycogenic Properties

    OpenAIRE

    Rubio-Villena, Carla; Sanz, Pascual; Garcia-Gimeno, Maria Adelaida

    2015-01-01

    Protein phosphatase 1 (PP1) is one of the major protein phosphatases in eukaryotic cells. It plays a key role in regulating glycogen synthesis, by dephosphorylating crucial enzymes involved in glycogen homeostasis such as glycogen synthase (GS) and glycogen phosphorylase (GP). To play this role, PP1 binds to specific glycogen targeting subunits that, on one hand recognize the substrates to be dephosphorylated and on the other hand recruit PP1 to glycogen particles. In this work we have analyz...

  4. Genome-Wide Identification and Expression Analysis of the 14-3-3 Family Genes in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Cheng eQin

    2016-03-01

    Full Text Available The 14-3-3 gene family, which is conserved in eukaryotes, is involved in protein-protein interactions and mediates signal transduction. However, detailed investigations of the 14-3-3 gene family in Medicago truncatula are largely unknown. In this study, the identification and study of M. truncatula 14-3-3-family genes were performed based on the latest M. truncatula genome. In the M. truncatula genome, 10 14-3-3 family genes were identified, and they can be grouped into ε and non-ε groups. An exon-intron analysis showed that the gene structures are conserved in the same group. The protein structure analysis showed that 14-3-3 proteins in M. truncatula are composed of nine typical antiparallel α-helices. The expression patterns of Mt14-3-3 genes indicated that they are expressed in all tissues. Furthermore, the gene expression levels of Mt14-3-3 under hormone treatment and Sinorhizobium meliloti infection showed that the Mt14-3-3 genes were involve in nodule formation. Our findings lay a solid foundation for further functional studies of 14-3-3 in M. truncatula.

  5. Aberrant overexpression of an epithelial marker, 14-3-3σ, in a subset of hematological malignancies

    Directory of Open Access Journals (Sweden)

    Nakamura Yukari

    2007-11-01

    Full Text Available Abstract Background 14-3-3σ is a p53-mediated cell-cycle inhibitor in epithelial cells. The expression of 14-3-3σ is frequently altered in cancers of epithelial origin associated with altered DNA methylation. Since its involvement in a non-epithelial tumor is unknown, we examined 14-3-3σ expression in patients with haematological malignancies. Methods We analyzed 41 hematopoietic cell lines and 129 patients with a variety of hematological malignancies for 14-3-3σ expression with real-time RT-PCR. We also examined protein levels by Western blot analysis and DNA methylation status of the 14-3-3σ gene by methylation-specific PCR analysis of bisulfite-treated DNA. In addition, mutations of p53 gene were identified by RT-PCR-SSCP analysis and the expression levels of 14-3-3σ were compared with those of other cell-cycle inhibitor genes, CDKN2A and ARF. Results The expression levels of 14-3-3σ mRNA in almost all cell lines were low and comparable to those in normal hematopoietic cells except for 2 B-cell lines. On the contrary, 14-3-3σ mRNA was aberrantly overexpressed frequently in mature lymphoid malignancies (30 of 93, 32.3% and rarely in acute leukemia (3 of 35, 8.6%. 14-3-3σ protein was readily detectable and roughly reflected the mRNA level. In contrast to epithelial tumors, methylation status of the 14-3-3σ gene was not associated with expression in hematological malignancies. Mutations of p53 were identified in 12 patients and associated with lower expression of 14-3-3σ. The expression levels of 14-3-3σ, CDKN2A and ARF were not correlated with but rather reciprocal to one another, suggesting that simultaneous overexpression of any two of them is incompatible with tumor growth. Conclusion 14-3-3σ, an epithelial cell marker, was overexpressed significantly in a subset of mature lymphoid malignancies. This is the first report of aberrant 14-3-3σ expression in non-epithelial tumors in vivo. Since the significance of 14-3-3

  6. Aberrant overexpression of an epithelial marker, 14-3-3σ, in a subset of hematological malignancies

    Science.gov (United States)

    Motokura, Toru; Nakamura, Yukari; Sato, Hiroyuki

    2007-01-01

    Background 14-3-3σ is a p53-mediated cell-cycle inhibitor in epithelial cells. The expression of 14-3-3σ is frequently altered in cancers of epithelial origin associated with altered DNA methylation. Since its involvement in a non-epithelial tumor is unknown, we examined 14-3-3σ expression in patients with haematological malignancies. Methods We analyzed 41 hematopoietic cell lines and 129 patients with a variety of hematological malignancies for 14-3-3σ expression with real-time RT-PCR. We also examined protein levels by Western blot analysis and DNA methylation status of the 14-3-3σ gene by methylation-specific PCR analysis of bisulfite-treated DNA. In addition, mutations of p53 gene were identified by RT-PCR-SSCP analysis and the expression levels of 14-3-3σ were compared with those of other cell-cycle inhibitor genes, CDKN2A and ARF. Results The expression levels of 14-3-3σ mRNA in almost all cell lines were low and comparable to those in normal hematopoietic cells except for 2 B-cell lines. On the contrary, 14-3-3σ mRNA was aberrantly overexpressed frequently in mature lymphoid malignancies (30 of 93, 32.3%) and rarely in acute leukemia (3 of 35, 8.6%). 14-3-3σ protein was readily detectable and roughly reflected the mRNA level. In contrast to epithelial tumors, methylation status of the 14-3-3σ gene was not associated with expression in hematological malignancies. Mutations of p53 were identified in 12 patients and associated with lower expression of 14-3-3σ. The expression levels of 14-3-3σ, CDKN2A and ARF were not correlated with but rather reciprocal to one another, suggesting that simultaneous overexpression of any two of them is incompatible with tumor growth. Conclusion 14-3-3σ, an epithelial cell marker, was overexpressed significantly in a subset of mature lymphoid malignancies. This is the first report of aberrant 14-3-3σ expression in non-epithelial tumors in vivo. Since the significance of 14-3-3σ overexpression is unknown even in

  7. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin [Department of Neurological Disease, Xi' an Central Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710000 (China); Bie, Xiao-Hua, E-mail: biexiaohua_xjtu@126.com [Department of Functional Neurosurgery, Xi' an Red Cross Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710054 (China)

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  8. 14-3-3θ is a binding partner of rat Eag1 potassium channels.

    Directory of Open Access Journals (Sweden)

    Po-Hao Hsu

    Full Text Available The ether-à-go-go (Eag potassium (K(+ channel belongs to the superfamily of voltage-gated K(+ channel. In mammals, the expression of Eag channels is neuron-specific but their neurophysiological role remains obscure. We have applied the yeast two-hybrid screening system to identify rat Eag1 (rEag1-interacting proteins from a rat brain cDNA library. One of the clones we identified was 14-3-3θ, which belongs to a family of small acidic protein abundantly expressed in the brain. Data from in vitro yeast two-hybrid and GST pull-down assays suggested that the direct association with 14-3-3θ was mediated by both the N- and the C-termini of rEag1. Co-precipitation of the two proteins was confirmed in both heterologous HEK293T cells and native hippocampal neurons. Electrophysiological studies showed that over-expression of 14-3-3θ led to a sizable suppression of rEag1 K(+ currents with no apparent alteration of the steady-state voltage dependence and gating kinetics. Furthermore, co-expression with 14-3-3θ failed to affect the total protein level, membrane trafficking, and single channel conductance of rEag1, implying that 14-3-3θ binding may render a fraction of the channel locked in a non-conducting state. Together these data suggest that 14-3-3θ is a binding partner of rEag1 and may modulate the functional expression of the K(+ channel in neurons.

  9. Comparative analysis of the 14-3-3 gene and its expression in Echinococcus granulosus and Echinococcus multilocularis metacestodes.

    Science.gov (United States)

    Siles-Lucas, M; Nunes, C P; Zaha, A

    2001-03-01

    It was suggested that the unlimited proliferative capacity of the Echinococcus multilocularis metacestode may be related to overproduction of the 14-3-3 protein. As is known, the proliferative capacities of E. granulosus and E. multilocularis metacestodes are very different. By comparing the expression levels of the 14-3-3 gene between in vitro-obtained E. granulosus and E. multilocularis metacestodes, we were able to provide experimental evidence of the potential relation between 14-3-3 over-expression and tumour-like growth in E. multilocularis metacestodes. RT-PCR and Northern blot experiments indicated that 14-3-3 expression level is about 4-fold higher in the E. multilocularis metacestode. This differential expression was confirmed both by immunoblotting and immunocytochemistry experiments, which allowed detection of the protein in the cyst wall from E. multilocularis but not in the cyst wall from E. granulosus. The alignment of the Echinococcus 14-3-3 cDNA sequence with known 14-3-3 isoforms from other organisms, grouped the parasite sequence into the tumour growth-related isoforms. The known relation between over-expression of some 14-3-3 isoforms and tumour-related processes, together with the present results, suggest that the Echinococcus 14-3-3 protein could be one of the molecules responsible for the differences between E. granulosus and E. multilocularis metacestode growth behaviour.

  10. Pear 14-3-3a gene (Pp14-3-3a) is regulated during fruit ripening and senescense, and involved in response to salicylic acid and ethylene signalling

    Indian Academy of Sciences (India)

    Haiyan Shi; Yuxing Zhang

    2014-12-01

    14-3-3 proteins play important roles in regulating plant development and phytohormone (abscisic acid, gibberellin and brassinosteroids) signalling. However, their regulation in fruit ripening and senescense, and response to salicylic acid and ethylene signalling are yet to be illustrated. One cDNA encoding putative 14-3-3 protein was isolated from pear (Pyrus pyrifolia) and designated Pp14-3-3a. Phylogenetic analysis clearly demonstrated that Pp14-3-3a belonged to -like group of 14-3-3 super-families. Real-time quantitative PCR analysis indicated that the expression of Pp14-3-3a gene was developmentally regulated in the fruit. Further study demonstrated that Pp14-3-3a expression was inhibited by salicylic acid and induced by ethylene precursor 1-aminocyclopropane-1-carboxylic acid in pear fruit. These data suggested that Pp14-3-3a might be involved in response to salicylic acid and ethylene signalling during fruit ripening and senescence of pear.

  11. Identification of 14-3-3 Family in Common Bean and Their Response to Abiotic Stress.

    Directory of Open Access Journals (Sweden)

    Ruihua Li

    Full Text Available 14-3-3s are a class of conserved regulatory proteins ubiquitously found in eukaryotes, which play important roles in a variety of cellular processes including response to diverse stresses. Although much has been learned about 14-3-3s in several plant species, it remains unknown in common bean. In this study, 9 common bean 14-3-3s (PvGF14s were identified by exhaustive data mining against the publicly available common bean genomic database. A phylogenetic analysis revealed that each predicted PvGF14 was clustered with two GmSGF14 paralogs from soybean. Both epsilon-like and non-epsilon classes of PvGF14s were found in common bean, and the PvGF14s belonging to each class exhibited similar gene structure. Among 9 PvGF14s, only 8 are transcribed in common bean. Expression patterns of PvGF14s varied depending on tissue type, developmental stage and exposure of plants to stress. A protein-protein interaction study revealed that PvGF14a forms dimer with itself and with other PvGF14 isoforms. This study provides a first comprehensive look at common bean 14-3-3 proteins, a family of proteins with diverse functions in many cellular processes, especially in response to stresses.

  12. Klotho Regulates 14-3-3ζ Monomerization and Binding to the ASK1 Signaling Complex in Response to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Reynolds K Brobey

    Full Text Available The reactive oxygen species (ROS-sensitive apoptosis signal-regulating kinase 1 (ASK1 signaling complex is a key regulator of p38 MAPK activity, a major modulator of stress-associated with aging disorders. We recently reported that the ratio of free ASK1 to the complex-bound ASK1 is significantly decreased in Klotho-responsive manner and that Klotho-deficient tissues have elevated levels of free ASK1 which coincides with increased oxidative stress. Here, we tested the hypothesis that: 1 covalent interactions exist among three identified proteins constituting the ASK1 signaling complex; 2 in normal unstressed cells the ASK1, 14-3-3ζ and thioredoxin (Trx proteins simultaneously engage in a tripartite complex formation; 3 Klotho's stabilizing effect on the complex relied solely on 14-3-3ζ expression and its apparent phosphorylation and dimerization changes. To verify the hypothesis, we performed 14-3-3ζ siRNA knock-down experiments in conjunction with cell-based assays to measure ASK1-client protein interactions in the presence and absence of Klotho, and with or without an oxidant such as rotenone. Our results show that Klotho activity induces posttranslational modifications in the complex targeting 14-3-3ζ monomer/dimer changes to effectively protect against ASK1 oxidation and dissociation. This is the first observation implicating all three proteins constituting the ASK1 signaling complex in close proximity.

  13. 14-3-3/HIP-55 complex increases the stability of HIP-55%14-3-3/HIP-55复合体增强HIP-55蛋白稳定性

    Institute of Scientific and Technical Information of China (English)

    田爱炬; 李子健

    2015-01-01

    目的:用双分子荧光互补及免疫共沉淀技术验证HIP-55与14-3-3在HEK293细胞中存在相互作用,并进一步研究其生物学意义. 方法:利用GATEWAY系统构建PDEST-N-Venus-HIP-55WT(野生型),PDEST-N-Venus-HIP-55AA(突变体S269A/T291A),PDEST-GST-HIP-55WT及PDEST-C-Venus-14-3-3τ重组质粒,利用双分子荧光互补及免疫共沉淀技术检测两者的相互作用,同时应用14-3-3蛋白相互作用抑制肽R18和HIP-55蛋白突变体( HIP-55AA突变体S269A/T291A不能与14-3-3相互作用)作为工具研究两者结合后对嘌呤霉素诱导的HIP-55蛋白表达的影响. 结果:外源转入的Venus-HIP-55WT、Venus-HIP-55AA及Venus-14-3-3蛋白能够在HEK293细胞中表达;双分子荧光互补实验结果表明HIP-55与14-3-3存在相互作用,HIP-55蛋白的S269/T291位点介导HIP-55与14-3-3的相互作用;免疫共沉淀技术表明内源性HIP-55与14-3-3存在相互作用;进一步研究发现HIP-55与14-3-3复合体增强HIP-55蛋白的稳定性,保护HIP-55不被降解. 结论:14-3-3与HIP-55存在相互作用,14-3-3/HIP-55复合体可以促进HIP-55蛋白的稳定性.%Objective:To further demonstrate the interaction of a new 14-3-3 interaction protein hema-topoietic progenitor kinase 1 [ HPK1 ]-interacting protein ( HIP-55 ) and 14-3-3 proteins and its potential biological function in HEK293 cells. Methods:PDEST-N-Venus-HIP-55WT (wild type),PDEST-N-Ve-nus-HIP-55AA (mutants, S269A/T291A, abolishing the binding of HIP-55 to 14-3-3),PDEST-GST-HIP-55WT and PDEST-C-Venus-14-3-3τplasmids were constructed by gateway system. Their expressions were demonstrated by Western blotting method. Then we used Bimolecular Fluorescence Complementation ( BiFC) and co-immunoprecipitation ( co-IP) methods to demonstrate the interaction of HIP-55 and 14-3-3 in HEK293 cells. Moreover, the 14-3-3 antagonist peptide, R18 and HIP-55 protein mutant plasmid HIP-55 AA were used to detect the protein synthesis of HIP-55 at different time points

  14. 14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Lixin Liu

    2015-07-01

    Full Text Available As a protective factor for lipopolysaccharide (LPS-induced injury, 14-3-3γ has been the subject of recent research. Nevertheless, whether 14-3-3γ can regulate lactation in dairy cow mammary epithelial cells (DCMECs induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3γ in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3γ overexpression significantly inhibited the mRNA expression of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, interleukin-1β (IL-1β and inducible nitric oxide synthase (iNOS. Enzyme-linked immunosorbent assay (ELISA analysis revealed that 14-3-3γ overexpression also suppressed the production of TNF-α and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3γ overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3γ overexpression promoted the secretion of triglycerides and lactose and the synthesis of β-casein. Furthermore, the expression of genes relevant to nuclear factor-κB (NF-κB and mitogen-activated protein kinase (MAPKs and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3γ overexpression inactivated the NF-κB and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK, p38 mitogen-activated protein kinase (p38MAPK and inhibitor of NF-κB (IκB phosphorylation levels, as well as by inhibiting NF-κB translocation. Meanwhile, 14-3-3γ overexpression enhanced the expression levels of β-casein, mammalian target of rapamycin (mTOR, ribosomal protein S6 kinase 1 (S6K1, serine/threonine protein kinase Akt 1 (AKT1, sterol regulatory element binding protein 1 (SREBP1 and peroxisome proliferator-activated receptor gamma

  15. [Inhibitory effect of 14-3-3ζ on the proliferation of HL-60 cells and HL-60/VCR cells].

    Science.gov (United States)

    Liang, Rong; Chen, Xie-Qun; Wang, Zhe; Xiong, Hua; Bai, Qing-Xian; Gao, Guang-Xun; Dong, Bao-Xia; Zhu, Hua-Feng

    2013-08-01

    This study was aimed to investigate the expression and role of 14-3-3ζ in the AML cell lines: sensitive HL-60 and drug-resistant HL-60/VCR cells. Semi-quantitative RT-PCR and Western blot were respectively used to examine the expression of mdr1 mRNA and Pgp in AML cell lines to validate the results of microarray. Western blot was performed to investigate the expression of Pgp, 14-3-3ζ, and anti-apoptosis protein BCL-2, MCL-1 proteins. Immunofluorescence assay was used to detect the subcellular location of 14-3-3ζ protein in HL-60 and HL-60/VCR cells by laser scanning confocal microscopy. Transduction with siRNA was used to silence 14-3-3ζ in AML cell lines. Cell count method and flow cytometry of cell cycle were used to analyze the changes of growth of AML cells. The results found that mdr1 mRNA and Pgp did not expressed in HL-60 cells, but significantly overexpressed in HL-60/VCR cells. Except 14-3-3σ, the expression of other subtypes of 14-3-3 was higher in HL-60/VCR cells than that in HL-60 cells, especially 14-3-3ζ. The higher expression of 14-3-3ζ, BCL-2, MCL-1 protein was observed in HL-60/VCR cells than that in HL-60 cells. These results were same results from gene chip. It was also noticed that 14-3-3ζ was located in the cytoplasma and nuclei of AML cell lines, especially over-expressed in HL-60/VCR cells. Furthermore, suppression of 14-3-3ζ by RNA interference resulted in inhibition of the proliferation of AML cells with decreased protein expression of BCL-2 and MCL-1, especially in HL-60/VCR cells. It is concluded that 14-3-3ζ plays an important role in proliferation of AML cells and associates with BCL-2 and MCL-1 expression. These results suggested that development of therapy targeting 14-3-3ζ may provide novel, effective strategies for refractory and relapsed AML.

  16. Research progress on Sj14-3-3 vaccine of Schistosoma japonicum%日本血吸虫Sj14-3-3疫苗研究进展

    Institute of Scientific and Technical Information of China (English)

    谭建蓉; 李文桂

    2014-01-01

    日本血吸虫病是由日本血吸虫引起的一类严重危害人类健康的人兽共患寄生虫病,研制疫苗防治该病是目前的研究热点.Sj14-3-3蛋白是一种有效的疫苗分子,该文就Sj14-3-3蛋白疫苗和核酸疫苗的研究进展进行综述.%Schistosomiasis japonica is a serious health-threatening parasitic zoonosis to human beings,which is caused by Schistosomajaponicum.Developing vaccines for schistosomiasis is a hot spot in the present studies.Sj14-3-3 protein is an effective vaccine.This article reviewed the progress on Sj14-3-3 protein vaccines and DNA vaccines.

  17. Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana

    Science.gov (United States)

    Li, Meiying; Ren, Licheng; Xu, Biyu; Yang, Xiaoliang; Xia, Qiyu; He, Pingping; Xiao, Susheng; Guo, Anping; Hu, Wei; Jin, Zhiqiang

    2016-01-01

    Plant 14-3-3 proteins act as critical components of various cellular signaling processes and play an important role in regulating multiple physiological processes. However, less information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3 genes were identified from the banana genome. Based on the evolutionary analysis, banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif. The gene structure of banana 14-3-3 genes showed distinct class-specific divergence between the ε group and the non-ε group. Most banana 14-3-3 genes showed strong transcript accumulation changes during fruit development and postharvest ripening in two banana varieties, indicating that they might be involved in regulating fruit development and ripening. Moreover, some 14-3-3 genes also showed great changes after osmotic, cold, and salt treatments in two banana varieties, suggested their potential role in regulating banana response to abiotic stress. Taken together, this systemic analysis reveals the involvement of banana 14-3-3 genes in fruit development, postharvest ripening, and response to abiotic stress and provides useful information for understanding the functions of 14-3-3 genes in banana. PMID:27713761

  18. Genome-wide identification, phylogeny, and expression analyses of the 14-3-3 family reveal their involvement in the development, ripening and abiotic stress response in banana

    Directory of Open Access Journals (Sweden)

    meiying li

    2016-09-01

    Full Text Available Plant 14-3-3 proteins act as critical components of various cellular signaling processes and play an important role in regulating multiple physiological processes. However, less information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3 genes were identified from the banana genome. Based on the evolutionary analysis, banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif. The gene structure of banana 14-3-3 genes showed distinct class-specific divergence between the ε group and the non-ε group. Most banana 14-3-3 genes showed strong transcript accumulation changes during fruit development and postharvest ripening in two banana varieties, indicating that they might be involved in regulating fruit development and ripening. Moreover, some 14-3-3 genes also showed great changes after osmotic, cold, and salt treatments in two banana varieties, suggested their potential role in regulating banana response to abiotic stress. Taken together, this systemic analysis reveals the involvement of banana 14-3-3 genes in fruit development, postharvest ripening, and response to abiotic stress and provides useful information for understanding the functions of 14-3-3 genes in banana.

  19. Regulation of the Water Channel Aquaporin-2 via 14-3-3 Theta (θ) and Zeta (ζ)

    DEFF Research Database (Denmark)

    Moeller, Hanne B; Slengerik-Hansen, Joachim; Aroankins, Takwa

    2015-01-01

    The 14-3-3 family of proteins are multifunctional proteins that interact with many of their cellular targets in a phosphorylation-dependent manner. Here, we determined that 14-3-3 proteins interact with phosphorylated forms of the water channel aquaporin-2 (AQP2) and modulate its function....... With the exception of sigma (σ), all 14-3-3 isoforms were abundantly expressed in mouse kidney and mouse kidney collecting duct cells (mpkCCD14). Long-term treatment of mpkCCD14 cells with the type 2 vasopressin receptor agonist dDAVP increased mRNA and protein levels of AQP2 alongside 14-3-3 beta (β) and zeta (ζ......256 phosphorylation critical for the interactions. shRNA-mediated knockdown of 14-3-3 ζ in mpkCCD14 cells resulted in increased AQP2 ubiquitylation, decreased AQP2 protein half-life and reduced AQP2 levels. In contrast, knockdown of 14-3-3 θ resulted in increased AQP2 half-life and increased AQP2...

  20. The prognostic value of 14-3-3 isoforms in vulvar squamous cell carcinoma cases: 14-3-3β and ε are independent prognostic factors for these tumors.

    Directory of Open Access Journals (Sweden)

    Zhihui Wang

    Full Text Available BACKGROUND: The 14-3-3 family is comprised of highly conserved proteins that are functionally important in the maintenance of homeostasis. Their involvement with the cell cycle, their association with proto-oncogenes and oncogenes, and their abnormal expression in various tumors has linked this family of proteins to the etiology of human cancer. Mounting evidence now indicates that 14-3-3σ is a cancer suppressor gene but the roles of the other 14-3-3 isoforms and their interactions in tumorigenesis have not yet been elucidated. In our current study, we examined the expression of 14-3-3β, γ, ε, ζ, η and τ in a large series of vulvar squamous cell carcinomas to evaluate any clinical significance. METHODS: Tumor biopsies from 298 vulvar carcinomas were examined by immunohistochemistry for the expression of 14-3-3β, γ, ε, ζ, η and τ. Statistical analyses were employed to validate any associations between the expression of any 14-3-3 isoform and clinicopathologic variables for this disease. RESULTS: High cytoplasmic levels of 14-3-3β, γ, ζ, ε and η were observed in 79%, 58%, 50%, 86% and 54% of the vulvar carcinomas analyzed, respectively, whereas a low nuclear expression of 14-3-3τ was present in 80% of these cases. The elevated cytoplasmic expression of 14-3-3β, γ, ε, ζ and η was further found to be associated with advanced disease and aggressive features of these cancers. The overexpression of cytoplasmic 14-3-3β and ε significantly correlated with a poor disease-specific survival by univariate analysis (P = 0.007 and P = 0.04, respectively. The independent prognostic significance of these factors was confirmed by multivariate analysis (P = 0.007 and P = 0.009, respectively. CONCLUSIONS: We reveal for the first time that the 14-3-3β, γ, ε, ζ, η and τ isoforms may be involved in the progression of vulvar carcinomas. Furthermore, our analyses show that high cytoplasmic levels of 14-3-3β and ε

  1. A characterization of the expression of 14-3-3 isoforms in psoriasis, basal cell carcinoma, atopic dermatitis and contact dermatitis

    Directory of Open Access Journals (Sweden)

    Line Raaby

    2010-10-01

    Full Text Available 14-3-3 is a highly conserved protein involved in a number of cellular processes including cell signalling, cell cycle regulation and gene transcription. Seven isoforms of the protein have been identified; β, γ, ε, ζ, η, σ and τ. The expression profile of the various isoforms in skin diseases is unknown. To investigate the expression of the seven 14-3-3 isoforms in involved and uninvolved skin from psoriasis, basal cell carcinoma (BCC, atopic dermatitis and nickel induced allergic contact dermatitis. Punch biopsies from involved and uninvolved skin were analyzed with quantitative reverse transcription-polymerase chain reaction to determine the mRNA expression of the 14-3-3 isoforms. The protein level of 14-3-3 isoforms was measured by Western blot technique in keratome biopsies from patients with psoriasis. Evaluation of dermal and epidermal protein expression was performed by immunofluorescence staining. Increased 14-3-3τ mRNA levels were detected in involved skin from patients with psoriasis, contact dermatitis and BCC. 14-3-3σ mRNA expression was increased in psoriasis and contact dermatitis, but not in BCC. In atopic dermatitis no significant difference between involved and uninvolved skin was found. The expression of the 14-3-3 isoforms was also studied at the protein level in psoriasis. Only 14-3-3τ expression was significantly increased in involved psoriatic skin compared with uninvolved skin. Immuno­fluorescence staining with 14-3-3τ- and 14-3-3σ-specific antibodies showed localization of both isoforms to the cytoplasm of the keratinocytes in the various skin sections. These results demonstrate a disease specific expression profile of the 14-3-3τ and 14-3-3σ isoforms.

  2. Expression and biological significance of 14-3-3 in gliomas%14-3-3蛋白在人脑胶质瘤中的表达及生物学意义

    Institute of Scientific and Technical Information of China (English)

    曹卫东; 宋蕾; 谢莉; 章翔; 张剑宁; 杨志军; 甄海宁; 程光; 李兵; 高大宽; 王西玲

    2006-01-01

    Objective To investigate the expression and its biological significance of 14-3-3 proteins in human gliomas. Methods The expression of 14-3-3 proteins was detected in five glioma cell lines (U251MG, U87MG,BT325, SHG44, and C6), 121 cases of formalin-fixed, paraffin embedded archival tumor tissue from patients with glioma, and 10 normal human brain tissues by immunohistochemical avidin-biotin-peroxidase complex (ABC) method. And the biological significance of 14-3-3 proteins expression was analyzed in the etiopathogenesis of glioma.Results In the normal control brains, 14-3-3 immunoreactivity was localized mainly in the neuronal somata and processes, and some glial cells showed only weak immunoreactivity. However, 14-3-3 immunoreactivity was seen in all of the five glioma cell lines and the majority of astrocytomas [78.6% in grade Ⅰ (11/14), 75% in grade Ⅱ (18/24), 76.2% in grade Ⅲ (16/21), and 80% in grade Ⅳ (20/25)]. No differences were found among the positive expression rates of 14-3-3 in different grades of astrocytomas. But the intensity and the degree of 14-3-3 expression showed trends with tumor grade. The 14-3-3 immunoreactivity was also seen in the majority of other gliomas [66.7% in oligodendroglioma (4/6), 100% in anaplastic oligodendroglioma (4/4), 50% in ependymoma (2/4), 66.7% in anaplastic ependymoma (2/3), 100% in choroid plexus papilloma (5/5), 100% in pineocytoma (3/3), and 66.7% in medulloblastoma (8/12) ]. Conclusion Most human gliomas are positive for 14-3-3 proteins in this research. For most human gliomas, one common mechanism for escaping apoptosis may be the up-regulated expression of 14-3-3,and targeting 14-3-3 may be a novel promising strategy for the treatment of gliomas.%目的 检测14-3-3蛋白在人脑胶质瘤中的表达情况,探讨其在胶质瘤发生发展中的生物学意义.方法 采用免疫组化亲和素-生物素过氧化物酶复合物(ABC)法检测5个胶质瘤细胞系(U251MG,U87MG,BT325,SHG44和C6)、121

  3. The peripheral binding of 14-3-3γ to membranes involves isoform-specific histidine residues.

    Directory of Open Access Journals (Sweden)

    Helene J Bustad

    Full Text Available Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states.

  4. A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response

    DEFF Research Database (Denmark)

    Blasius, Melanie; Wagner, Sebastian A; Choudhary, Chuna Ram

    2014-01-01

    RNA metabolism is altered following DNA damage, but the underlying mechanisms are not well understood. Through a 14-3-3 interaction screen for DNA damage-induced protein interactions in human cells, we identified protein complexes connected to RNA biology. These include the nuclear exosome...

  5. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR.

    Science.gov (United States)

    Stevers, Loes M; Lam, Chan V; Leysen, Seppe F R; Meijer, Femke A; van Scheppingen, Daphne S; de Vries, Rens M J M; Carlile, Graeme W; Milroy, Lech G; Thomas, David Y; Brunsveld, Luc; Ottmann, Christian

    2016-03-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.

  6. A Member of the 14-3-3 Gene Family in Brachypodium distachyon, BdGF14d, Confers Salt Tolerance in Transgenic Tobacco Plants

    Science.gov (United States)

    He, Yuan; Zhang, Yang; Chen, Lihong; Wu, Chunlai; Luo, Qingchen; Zhang, Fan; Wei, Qiuhui; Li, Kexiu; Chang, Junli; Yang, Guangxiao; He, Guangyuan

    2017-01-01

    Plant 14-3-3 proteins are involved in diverse biological processes, but for the model monocotyledonous species, Brachypodium distachyon, their roles in abiotic stress tolerance are not well understood. In this study, a total of eight Bd14-3-3 genes were identified from B. distachyon and these were designated respectively as BdGF14a–BdGF14g. The qRT-PCR analyses of 3-month-old plants of B. distachyon showed that these genes were all expressed in the stems, leaves, and spikelets. By contrast, most of the plants had relatively lower transcriptional levels in their roots, except for the BdGF14g gene. The different expression profiles of the Bd14-3-3s under various stress treatments, and the diverse interaction patterns between Bd14-3-3s and BdAREB/ABFs, suggested that these gene products probably had a range of functions in the stress responses. The NaCl-induced Bd14-3-3 gene, BdGF14d, was selected for overexpression in tobacco. BdGF14d was found to be localized throughout the cell and it conferred enhanced tolerance to salt in the transgenic plants. Lowered contents of malondialdehyde, H2O2, and Na+, and lower relative electronic conductance (Rec%), yet greater activities of catalase and peroxidase, were observed in the overexpressing plants. Higher photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency were measured in the transgenic lines. Following abscisic acid (ABA) or NaCl treatment, stomatal aperture in leaves of the BdGF14d-overexpression plants was significantly lower than in leaves of the wild type (WT) controls. The stress-related marker genes involved in the ABA signaling pathway, the reactive oxygen species (ROS)-scavenging system, and the ion transporters were all up-regulated in the BdGF14d-overexpressing plants as compared with WT. Taken together, these results demonstrate that the Bd14-3-3 genes play important roles in abiotic stress tolerance. The ABA signaling pathway, the ROS-scavenging system, and ion

  7. Drosophila 14-3-3ε has a crucial role in anti-microbial peptide secretion and innate immunity.

    Science.gov (United States)

    Shandala, Tetyana; Woodcock, Joanna M; Ng, Yeap; Biggs, Lisa; Skoulakis, Efthimios M C; Brooks, Doug A; Lopez, Angel F

    2011-07-01

    The secretion of anti-microbial peptides is recognised as an essential step in innate immunity, but there is limited knowledge of the molecular mechanism controlling the release of these effectors from immune response cells. Here, we report that Drosophila 14-3-3ε mutants exhibit reduced survival when infected with either Gram-positive or Gram-negative bacteria, indicating a functional role for 14-3-3ε in innate immunity. In 14-3-3ε mutants, there was a reduced release of the anti-microbial peptide Drosomycin into the haemolymph, which correlated with an accumulation of Drosomycin-containing vesicles near the plasma membrane of cells isolated from immune response tissues. Drosomycin appeared to be delivered towards the plasma membrane in Rab4- and Rab11-positive vesicles and smaller Rab11-positive vesicles. RNAi silencing of Rab11 and Rab4 significantly blocked the anterograde delivery of Drosomycin from the perinuclear region to the plasma membrane. However, in 14-3-3ε mutants there was an accumulation of small Rab11-positive vesicles near the plasma membrane. This vesicular phenotype was similar to that observed in response to the depletion of the vesicular Syntaxin protein Syx1a. In wild-type Drosophila immune tissue, 14-3-3ε was detected adjacent to Rab11, and partially overlapping with Syx1a, on vesicles near the plasma membrane. We conclude that 14-3-3ε is required for Rab11-positive vesicle function, which in turn enables antimicrobial peptide secretion during an innate immune response.

  8. Silencing neuroglobin enhances neuronal vulnerability to oxidative injury by down-regulating 14-3-3Y

    Institute of Scientific and Technical Information of China (English)

    Shi-qiao YE; Xin-yu ZHOU; Xiao-jing LAI; Li ZHENG; Xiao-qian CHEN

    2009-01-01

    Aim:To explore the protective role and mechanism of endogenous neuroglobin (Ngb) in neuronal cells under oxidative stress.Methods:A stable N2a neuroblastoma cell line expressing the Ngb-siRNA plasmid (N2a/Ngb-siRNA) was established by neomycin screening.Reverse transcription (RT)-PCR and Western blot analysis were used to detect Ngb gene and protein levels.Hydrogen peroxide was used to induce oxidative stress in N2a cells.Cytotoxicity and cell viability were measured by lactate dehydrogenase (LDH) and WST-8 assays.Apoptotic cells were detected by Hoechst staining.Results:Cotransfection of Ngb-siRNA with Ngb-GFP plasmids suppressed the expression of Ngb-GFP in N2a cells.RT-PCR and Western blot analysis showed that the expression of endogenous Ngb was successfully knocked down to about 20% in N2a/Ngb-siRNA cells compared with control cells.A WST-8 assay demonstrated that viability was significantly decreased in N2a/Ngb-siRNA cells and N2a cells transiently transfected with Ngb-siRNA plasmids compared with controls following hydrogen peroxide treatment.An LDH assay demonstrated a time-dependent increase in the death of Ngb-siRNA-transfected N2a cells following hydrogen peroxide treatment.Hoechst staining demonstrated that the quantity of apoptotic cells among N2a/Ngb-siRNA cells following hydrogen peroxide treatment significantly increased compared with controls.In N2a/Ngb-siRNA cells,the expression level of activated caspase-3 significantly increased,whereas the expression of 14-3-3Y decreased compared with that of N2a/vec cells.Transfection of 14-3-3Y plasmids significantly enhanced the viability of N2a/Ngb-siRNA cells following hydrogen peroxide treatment compared with vector controls.Conclusion:Ngb contributes to neuronal defensive machinery against oxidative injuries by regulating 14-3-3Y expression.

  9. Construction of human 14-3-3 γadenovirus vector and its expression in PC12 cells%人14-3-3γ基因的腺病毒载体的构建及其在PC12细胞中的表达

    Institute of Scientific and Technical Information of China (English)

    陈小武; 陈志斌; 王埮; 袁昆雄; 王淑荣; 孙圣刚

    2011-01-01

    Objective: To construct the recombinant adenovirus vector carrying human 14-3-3 γ gene, and infect the PC12 cells.Methods: The full 14-3-3 γ DNA sequence was obtained from plasmids Top1O/pHis-14-3-3 γusing PCR.The 14-3-3 γ gene was cloned into pAdTrack-CMV vector which was subsequently homologously recombined with pAdEasy-1 vector in the HEK293 cells to package the recombinant adenovirus vector (pAd-14-3-3 γ) carrying human 14-3-3 γ.After verified by PCR, we amplified pAd/14-3-3 γin HEK293 cells and purified it by CsCI gradient purification,titrated it using 50% tissue culture infective dose (TCID50) assay.Results: PC12 cells were infected with adenoviruses.Protein expressions of EGFP (enhanced green fluorescent protein) and 14-3-3 γwere detected by the intensity of green fluorescence under fluorescence microscope and Western Blot respectively.The 14-3-3 γgene was cloned and verified by sequencing and high tittered virus was produced by a construct carrying 14-3-3 γgene, and 14-3-3 γ was expressed efficiently in the PCI2 cells after infection.Conclusion: The newly constructed adenovirus vector containing human 14-3-3 γ gene provides the basis for genetherapy of Parkinson's disease.%目的:构建携带人14-3-3 γ基因的重组腺病毒表达载体并确定其对PC12细胞的感染效率.方法:采用PCR方法,从Top10/pHis-14-3-3 γ质粒中扩增14-3-3 γ DNA序列,将14-3-3 γ基因定向克隆到穿梭质粒载体pAdTrack-CMV,经与腺病毒骨架质粒pAdEasy-1载体同源重组后得到携带人14-3-3γ基因的重组腺病毒(pAd/14-3-3 γ),采用PCR的方法对重组腺病毒进行鉴定,转染HEK293细胞进行包装和扩增,氯化铯密度梯度离心法纯化,半数组织培养感染剂量(50%tissue culture infective dose,TCID50)方法测定重组腺病毒的滴度.体外感染PC12细胞,荧光显微镜观察绿色荧光蛋白(GFP)和Western Blot检测14-3-3γ蛋白的表达.结果:克隆得到人14-3-3γ基因,经PCR鉴定和测序证实

  10. A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis.

    Science.gov (United States)

    Kular, Jasreen; Scheer, Kaitlin G; Pyne, Natasha T; Allam, Amr H; Pollard, Anthony N; Magenau, Astrid; Wright, Rebecca L; Kolesnikoff, Natasha; Moretti, Paul A; Wullkopf, Lena; Stomski, Frank C; Cowin, Allison J; Woodcock, Joanna M; Grimbaldeston, Michele A; Pitson, Stuart M; Timpson, Paul; Ramshaw, Hayley S; Lopez, Angel F; Samuel, Michael S

    2015-12-21

    ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel pharmacological agent accelerated wound healing 2-fold. Patient samples of chronic non-healing wounds overexpressed 14-3-3ζ, while cutaneous SCCs had reduced 14-3-3ζ. These results reveal a novel 14-3-3ζ-dependent mechanism that negatively regulates mechano-reciprocity, suggesting new therapeutic opportunities.

  11. Functional relationship between CABIT, SAM and 14-3-3 binding domains of GAREM1 that play a role in its subcellular localization

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Tasuku; Matsunaga, Ryota; Konishi, Hiroaki, E-mail: hkonishi@pu-hiroshima.ac.jp

    2015-08-21

    GAREM1 (Grb2-associated regulator of Erk/MAPK1) is an adaptor protein that is involved in the epidermal growth factor (EGF) pathway. The nuclear localization of GAREM1 depends on the nuclear localization sequence (NLS), which is located at the N-terminal CABIT (cysteine-containing, all in Themis) domain. Here, we identified 14-3-3ε as a GAREM-binding protein, and its binding site is closely located to the NLS. This 14-3-3 binding site was of the atypical type and independent of GAREM phosphorylation. Moreover, the binding of 14-3-3 had an effect on the nuclear localization of GAREM1. Unexpectedly, we observed that the CABIT domain had intramolecular association with the C-terminal SAM (sterile alpha motif) domain. This association might be inhibited by binding of 14-3-3 at the CABIT domain. Our results demonstrate that the mechanism underlying the nuclear localization of GAREM1 depends on its NLS in the CABIT domain, which is controlled by the binding of 14-3-3 and the C-terminal SAM domain. We suggest that the interplay between 14-3-3, SAM domain and CABIT domain might be responsible for the distribution of GAREM1 in mammalian cells. - Highlights: • 14-3-3ε regulated the nuclear localization of GAREM1 as its binding partner. • The atypical 14-3-3 binding site of GAREM1 is located near the NLS in CABIT domain. • The CABIT domain had intramolecular association with the SAM domain in GAREM1. • Subcellular localization of GAREM1 is affected with its CABIT-SAM interaction.

  12. Overexpression of 14-3-3z promotes tau phosphorylation at Ser262 and accelerates proteosomal degradation of synaptophysin in rat primary hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Hamid Y Qureshi

    Full Text Available b-Amyloid peptide accumulation, tau hyperphosphorylation, and synapse loss are characteristic neuropathological symptoms of Alzheimer's disease (AD. Tau hyperphosphorylation is suggested to inhibit the association of tau with microtubules, making microtubules unstable and causing neurodegeneration. The mechanism of tau phosphorylation in AD brain, therefore, is of considerable significance. Although PHF-tau is phosphorylated at over 40 Ser/Thr sites, Ser(262 phosphorylation was shown to mediate b-amyloid neurotoxicity and formation of toxic tau lesions in the brain. In vitro, PKA is one of the kinases that phosphorylates tau at Ser(262, but the mechanism by which it phosphorylates tau in AD brain is not very clear. 14-3-3z is associated with neurofibrillary tangles and is upregulated in AD brain. In this study, we show that 14-3-3z promotes tau phosphorylation at Ser(262 by PKA in differentiating neurons. When overexpressed in rat hippocampal primary neurons, 14-3-3z causes an increase in Ser(262 phosphorylation, a decrease in the amount of microtubule-bound tau, a reduction in the amount of polymerized microtubules, as well as microtubule instability. More importantly, the level of pre-synaptic protein synaptophysin was significantly reduced. Downregulation of synaptophysin in 14-3-3z overexpressing neurons was mitigated by inhibiting the proteosome, indicating that 14-3-3z promotes proteosomal degradation of synaptophysin. When 14-3-3z overexpressing neurons were treated with the microtubule stabilizing drug taxol, tau Ser(262 phosphorylation decreased and synaptophysin level was restored. Our data demonstrate that overexpression of 14-3-3z accelerates proteosomal turnover of synaptophysin by promoting the destabilization of microtubules. Synaptophysin is involved in synapse formation and neurotransmitter release. Our results suggest that 14-3-3z may cause synaptic pathology by reducing synaptophysin levels in the brains of patients suffering

  13. Identification of 14-3-3σ mutation causing cutaneous abnormality in repeated-epilation mutant mouse

    Science.gov (United States)

    Li, Qiutang; Lu, Qingxian; Estepa, Gabriela; Verma, Inder M.

    2005-01-01

    Repeated-epilation (Er) mutation in the mouse is inherited as an autosomal and semidominant mutation. Major defects in heterozygous adults and homozygous fetuses were associated with skin and were caused by abnormal ectodermal differentiation. Heterozygous mice are characterized by repeated hair loss and regrowth, and homozygous fetuses die at birth with severe abnormality in skin, limb, tail, and face. To identify the gene causing Er mutation, we have performed gene-expression profiles of skins and mouse embryonic fibroblasts from WT and mutant Er mice by using Affymetrix (Santa Clara, CA) chip analysis. By analyzing the candidate genes generated from gene-expression profiling, we identified a Sfn mutation in Er mice. A single nucleotide insertion in the Sfn (Stratifin, also called 14-3-3σ) coding region results in a truncated protein lacking 40 amino acid residues at the C terminus. The mutation is linked with phenotypes of Er-heterozygous and -homozygous mice. Ectopic overexpression of WT 14-3-3σ in Er/Er keratinocytes rescues defects in keratinocyte differentiation. Our study demonstrates that 14-3-3σ is a crucial regulator for skin proliferation and differentiation. PMID:16239341

  14. Induction of expression of a 14-3-3 gene in response to copper exposure in the marine alga, Fucus vesiculosus.

    Science.gov (United States)

    Owen, Jennifer R; Morris, Ceri A; Nicolaus, Beate; Harwood, John L; Kille, Peter

    2012-01-01

    The macro-alga Fucus vesiculosus has a broad global and estuarine distribution and exhibits exceptional resistance to toxic metals, the molecular basis of which is poorly understood. To address this issue a cDNA library was constructed from an environmental isolate of F. vesiculosus growing in an area with chronic copper pollution. Characterisation of this library led to the identification of a cDNA encoding a protein known to be synthesised in response to toxicity, a full length 14-3-3 exhibiting a 71% identity to human/mouse epsilon isoform, 70-71% identity to yeast BMH1/2 and 95 and 71% identity to the Ectocarpus siliculosus 14-3-3 isoforms 1 and 2 respectively. Preliminary characterisation of the expression profile of the 14-3-3 indicated concentration- and time-dependent inductions on acute exposure of F. vesiculosus of copper (3-30 μg/l). Higher concentrations of copper (≥150 μg/l) did not elicit significant induction of the 14-3-3 gene compared with the control even though levels of both intracellular copper and the expression of a cytosolic metal chaperone, metallothionein, continued to rise. Analysis of gene expression within environmental isolates demonstrated up-regulation of the 14-3-3 gene associated with the known copper pollution gradient. Here we report for the first time, identification of a gene encoding a putative 14-3-3 protein in a multicellular alga and provide preliminary evidence to link the induction of this 14-3-3 gene to copper exposure in this alga. Interestingly, the threshold exposure profile may be associated with a decrease in the organism's ability to control copper influx so that it perceives copper as a toxic response.

  15. Upregulation of lactate dehydrogenase a by 14-3-3ζ leads to increased glycolysis critical for breast cancer initiation and progression

    Science.gov (United States)

    Chang, Chia-Chi; Zhang, Chenyu; Zhang, Qingling; Sahin, Ozgur; Wang, Hai; Xu, Jia; Xiao, Yi; Zhang, Jian; Rehman, Sumaiyah K.; Li, Ping; Hung, Mien-Chie; Behbod, Fariba; Yu, Dihua

    2016-01-01

    Metabolic reprogramming is a hallmark of cancer. Elevated glycolysis in cancer cells switches the cellular metabolic flux to produce more biological building blocks, thereby sustaining rapid proliferation. Recently, new evidence has emerged that metabolic dysregulation may occur at early-stages of neoplasia and critically contribute to cancer initiation. Here, our bioinformatics analysis of microarray data from early-stages breast neoplastic lesions revealed that 14-3-3ζ expression is strongly correlated with the expression of canonical glycolytic genes, particularly lactate dehydrogenase A (LDHA). Experimentally, increasing 14-3-3ζ expression in human mammary epithelial cells (hMECs) up-regulated LDHA expression, elevated glycolytic activity, and promoted early transformation. Knockdown of LDHA in the 14-3-3ζ-overexpressing hMECs significantly reduced glycolytic activity and inhibited transformation. Mechanistically, 14-3-3ζ overexpression activates the MEK-ERK-CREB axis, which subsequently up-regulates LDHA. In vivo, inhibiting the activated the MEK/ERK pathway in 14-3-3ζ-overexpressing hMEC-derived MCF10DCIS.COM lesions led to effective inhibition of tumor growth. Therefore, targeting the MEK/ERK pathway could be an effective strategy for intervention of 14-3-3ζ-overexpressing early breast lesions. Together, our data demonstrate that overexpression of 14-3-3ζ in early stage pre-cancerous breast epithelial cells may trigger an elevated glycolysis and transcriptionally up-regulating LDHA, thereby contributes to human breast cancer initiation. PMID:27150057

  16. Ustilago maydis Rho1 and 14-3-3 homologues participate in pathways controlling cell separation and cell polarity.

    Science.gov (United States)

    Pham, Cau D; Yu, Zhanyang; Sandrock, Björn; Bölker, Michael; Gold, Scott E; Perlin, Michael H

    2009-07-01

    Proteins of the 14-3-3 and Rho-GTPase families are functionally conserved eukaryotic proteins that participate in many important cellular processes such as signal transduction, cell cycle regulation, malignant transformation, stress response, and apoptosis. However, the exact role(s) of these proteins in these processes is not entirely understood. Using the fungal maize pathogen, Ustilago maydis, we were able to demonstrate a functional connection between Pdc1 and Rho1, the U. maydis homologues of 14-3-3epsilon and Rho1, respectively. Our experiments suggest that Pdc1 regulates viability, cytokinesis, chromosome condensation, and vacuole formation. Similarly, U. maydis Rho1 is also involved in these three essential processes and exerts an additional function during mating and filamentation. Intriguingly, yeast two-hybrid and epistasis experiments suggest that both Pdc1 and Rho1 could be constituents of the same regulatory cascade(s) controlling cell growth and filamentation in U. maydis. Overexpression of rho1 ameliorated the defects of cells depleted for Pdc1. Furthermore, we found that another small G protein, Rac1, was a suppressor of lethality for both Pdc1 and Rho1. In addition, deletion of cla4, encoding a Rac1 effector kinase, could also rescue cells with Pdc1 depleted. Inferring from these data, we propose a model for Rho1 and Pdc1 functions in U. maydis.

  17. Detection of PinX1 and 14-3-3 in the shrimp (Litopenaeus vannamei and study on gene expressions during viral infection and environmental stresses

    Directory of Open Access Journals (Sweden)

    Potchanapond Graidist

    2010-12-01

    Full Text Available Two genes, PinX1 and 14-3-3, have been isolated and investigated for their expression in shrimp, Litopenaeusvannamei when infected with white spot syndrome virus (WSSV and subjected to environmental stresses. A putative PinX1protein of 180 amino acids showed a 65% similarity to the zebra fish PinX1 protein (Danio rerio and had a G-patch domainsimilar to human PinX1. The sequence of a full length cDNA of 14-3-3 has a very high similarity (96% to other shrimp 14-3-3-like protein (Feneropenaeus merguiensis and Penaeus monodon. Transcripts of PinX1 and 14-3-3 were up regulated in thehemolymph of viral infected shrimp with the highest expression level at 24 hrs p.i. Shrimp showing mortality characteristicshad very low expression of these two genes. In animals subjected to a combined low temperature (19-20°C and low oxygen(DO 1-1.5 mg/L for 24 hrs, an interesting result was that the transcript of PinX1 was drastically increased. In contrast, 14-3-3did not show any significant differences between the six treatments. The results of this work indicated that the PinX1 proteinmight play an important role in the shrimp response to viral infection and repose to certain stresses. In contrast the 14-3-3protein might play a particularly important role in the immune defended mechanisms of viral infections of shrimps.

  18. Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL

    Directory of Open Access Journals (Sweden)

    Hastie C James

    2006-01-01

    Full Text Available Abstract Background Pim-1, 2 and 3 are a group of enzymes related to the calcium calmodulin family of protein kinases. Over-expression of Pim-1 and Pim-2 in mice promotes the development of lymphomas, and up-regulation of Pim expression has been observed in several human cancers. Results Here we show that the pim kinases are constitutively active when expressed in HEK-293 cells and are able to phosphorylate the Bcl-2 family member Bad on three residues, Ser112, Ser136 and Ser155 in vitro and in cells. In vitro mapping showed that Pim-2 predominantly phosphorylated Ser112, while Pim-1 phosphorylated Ser112, but also Ser136 and Ser155 at a reduced rate compared to Ser112. Pim-3 was found to be the least specific for Ser112, and the most effective at phosphorylating Ser136 and Ser155. Pim-3 was also able to phosphorylate other sites in Bad in vitro, including Ser170, another potential in vivo site. Mutation of Ser136 to alanine prevented the phosphorylation of Ser112 and Ser155 by Pim kinases in HEK-293 cells, suggesting that this site must be phosphorylated first in order to make the other sites accessible. Pim phosphorylation of Bad was also found to promote the 14-3-3 binding of Bad and block its association with Bcl-XL. Conclusion All three Pim kinase family members predominantly phosphorylate Bad on Ser112 and in addition are capable of phosphorylating Bad on multiple sites associated with the inhibition of the pro-apoptotic function of Bad in HEK-293 cells. This would be consistent with the proposed function of Pim kinases in promoting cell proliferation and preventing cell death.

  19. 14-3-3ξ对HL-60和HL-60/VCR细胞增殖的抑制作用%Inhibitory Effect of 14-3-3ξ on the Proliferation of HL-60 Cells and HL-60/VCR Cells

    Institute of Scientific and Technical Information of China (English)

    梁蓉; 陈协群; 王哲; 熊华; 白庆咸; 高广勋; 董宝侠; 朱华锋

    2013-01-01

    This study was aimed to investigate the expression and role of 14-3-3ξ in the AML cell lines:sensitive HL-60 and drug-resistant HL-60/VCR cells.Semi-quantitative RT-PCR and Western blot were respectively used to examine the expression of mdr1 mRNA and Pgp in AML cell lines to validate the results of microarray.Western blot was performed to investigate the expression of Pgp,14-3-3ξ,and anti-apoptosic protein BCL-2,MCL-1 proteins.Immunofluorescence assay was used to detect the subcellular location of 14-3-3ξ protein in HL-60 and HL-60/VCR cells by laser scanning confocal microscopy.Transduction with siRNA was used to silence 14-3-3ξ in AML cell lines.Cell count method and flow cytometry of cell cycle were used to analyze the changes of growth of AML cells.The results found that mdr1 mRNA and Pgp did not expressed in HL-60 cells,but significantly overexpressed in HL-60/VCR cells.Except 14-3-3(o),the expression of other subtypes of 14-3-3 was higher in HL-60/VCR cells than that in HL-60 cells,especially 14-3-3ξ.The higher expression of 14-3-3ξ,BCL-2,MCL-1 protein was observed in HL-60/VCR cells than that in HL-60 cells.These results were same results from gene chip.It was also noticed that 14-3-3ξ was located in the cytoplasma and nuclei of AML cell lines,especially over-expressed in HL-60/VCR cells.Furthermore,suppression of 14-3-3ξ by RNA interference resulted in inhibition of the proliferation of AML cells with decreased protein expression of BCL-2 and MCL-1,especially in HL-60/VCR cells.It is concluded that 14-3-3ξ plays an important role in proliferation of AML cells and associates with BCL-2 and MCL-1 expression.These results suggested that development of therapy targeting 14-3-3ξ may provide novel,effective strategies for refractory and relapsed AML.%本研究旨在进一步探讨14-3-3ξ在急性髓系白血病(acute myeloid leukemia,AML)敏感细胞HL-60和耐药细胞HL-60/VCR中的表达和作用.用半定量RT-PCR和Western blot分

  20. Molecular Modeling of Differentially Phosphorylated Serine 10 and Acetylated lysine 9/14 of Histone H3 Regulates their Interactions with 14-3-3ζ, MSK1, and MKP1

    Science.gov (United States)

    Sharma, Ajit K.; Mansukh, Abhilasha; Varma, Ashok; Gadewal, Nikhil; Gupta, Sanjay

    2013-01-01

    Histone modifications occur in precise patterns, with several modifications known to affect the binding of proteins. These interactions affect the chromatin structure, gene regulation, and cell cycle events. The dual modifications on the H3 tail, serine10 phosphorylation, and lysine14 acetylation (H3Ser10PLys14Ac) are reported to be crucial for interaction with 14-3-3ζ. However, the mechanism by which H3Ser10P along with neighboring site-specific acetylation(s) is targeted by its regulatory proteins, including kinase and phosphatase, is not fully understood. We carried out molecular modeling studies to understand the interaction of 14-3-3ζ, and its regulatory proteins, mitogen-activated protein kinase phosphatase-1 (MKP1), and mitogen- and stress-activated protein kinase-1 (MSK1) with phosphorylated H3Ser10 alone or in combination with acetylated H3Lys9 and Lys14. In silico molecular association studies suggested that acetylated Lys14 and phosphorylated Ser10 of H3 shows the highest binding affinity towards 14-3-3ζ. In addition, acetylation of H3Lys9 along with Ser10PLys14Ac favors the interaction of the phosphatase, MKP1, for dephosphorylation of H3Ser10P. Further, MAP kinase, MSK1 phosphorylates the unmodified H3Ser10 containing N-terminal tail with maximum affinity compared to the N-terminal tail with H3Lys9AcLys14Ac. The data clearly suggest that opposing enzymatic activity of MSK1 and MKP1 corroborates with non-acetylated and acetylated, H3Lys9Lys14, respectively. Our in silico data highlights that site-specific phosphorylation (H3Ser10P) and acetylation (H3Lys9 and H3Lys14) of H3 are essential for the interaction with their regulatory proteins (MKP1, MSK1, and 14-3-3ζ) and plays a major role in the regulation of chromatin structure. PMID:24027420

  1. Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley.

    Science.gov (United States)

    Li, Chengxia; Lin, Huiqiong; Dubcovsky, Jorge

    2015-10-01

    The FLOWERING LOCUS T (FT) protein is a central component of a mobile flowering signal (florigen) that is transported from leaves to the shoot apical meristem (SAM). Two FT monomers and two DNA-binding bZIP transcription factors interact with a dimeric 14-3-3 protein bridge to form a hexameric protein complex. This complex, designated as the 'florigen activation complex' (FAC), plays a critical role in flowering. The wheat homologue of FT, designated FT1 (= VRN3), activates expression of VRN1 in the leaves and the SAM, promoting flowering under inductive long days. In this study, we show that FT1, other FT-like proteins, and different FD-like proteins, can interact with multiple wheat and barley 14-3-3 proteins. We also identify the critical amino acid residues in FT1 and FD-like proteins required for their interactions, and demonstrate that 14-3-3 proteins are necessary bridges to mediate the FT1-TaFDL2 interaction. Using in vivo bimolecular fluorescent complementation (BiFC) assays, we demonstrate that the interaction between FT1 and 14-3-3 occurs in the cytoplasm, and that this complex is then translocated to the nucleus, where it interacts with TaFDL2 to form a FAC. We also demonstrate that a FAC including FT1, TaFDL2 and Ta14-3-3C can bind to the VRN1 promoter in vitro. Finally, we show that relative transcript levels of FD-like and 14-3-3 genes vary among tissues and developmental stages. Since FD-like proteins determine the DNA specificity of the FACs, variation in FD-like gene expression can result in spatial and temporal modulation of the effects of mobile FT-like signals.

  2. Aberrant overexpression of an epithelial marker, 14-3-3σ, in a subset of hematological malignancies

    OpenAIRE

    Nakamura Yukari; Motokura Toru; Sato Hiroyuki

    2007-01-01

    Abstract Background 14-3-3σ is a p53-mediated cell-cycle inhibitor in epithelial cells. The expression of 14-3-3σ is frequently altered in cancers of epithelial origin associated with altered DNA methylation. Since its involvement in a non-epithelial tumor is unknown, we examined 14-3-3σ expression in patients with haematological malignancies. Methods We analyzed 41 hematopoietic cell lines and 129 patients with a variety of hematological malignancies for 14-3-3σ expression with real-time RT-...

  3. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase

    OpenAIRE

    Bunney, Tom D.; van Walraven, Hendrika S.; de Boer, Albertus H.

    2001-01-01

    Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functioning of the synthase has made enormous progress in recent years, our und...

  4. CDPK1, a calcium-dependent protein kinase, regulates transcriptional activator RSG in response to gibberellins.

    Science.gov (United States)

    Nakata, Masaru; Yuasa, Takashi; Takahashi, Yohsuke; Ishida, Sarahmi

    2009-05-01

    The homeostasis of gibberellins (GAs) is maintained by negative-feedback regulation in plant cells. REPRESSION OF SHOOT GROWTH (RSG) is a transcriptional activator with a basic Leu zipper domain suggested to contribute GA feedback regulation by the transcriptional regulation of genes encoding GA biosynthetic enzymes. The 14-3-3 signaling proteins negatively regulate RSG by sequestering it in the cytoplasm in response to GAs. The phosphorylation on Ser-114 of RSG is essential for 14-3-3 binding of RSG; however, the kinase that catalyzes the reaction is unknown. Recently a Ca(2+)-dependent protein kinase (CDPK) was identified as an RSG kinase that promotes 14-3-3 binding of RSG by phosphorylation of the Ser-114 of RSG. Our results suggest that CDPK decodes the Ca(2+) signal produced by GAs and regulates the intracellular localization of RSG in plant cells.

  5. Accumulation and tolerance to cadmium heavy metal ions and induction of 14-3-3 gene expression in response to cadmium exposure in Coprinus atramentarius.

    Science.gov (United States)

    Xie, Chengjian; Hu, Liujie; Yang, Yongzhu; Liao, Dunxiu; Yang, Xingyong

    2017-03-01

    Cadmium (Cd), one of the most toxic heavy-metal pollutants, has a strong and irreversible tendency to accumulate. Bioremediation is a promising technology to remedy and control heavy metal pollutants because of its low cost and ability to recycle heavy metals. Coprinus atramentarius is recognized as being able to accumulate heavy metal ions. In this work, C. atramentarius is cultivated on a solid medium containing Cd(2+) ions to analyze its ability to tolerate different concentrations of the heavy metal ion. It is found that the growth of C. atramentarius is not significantly inhibited when the concentration of Cd(2+) is less than 0.6mgL(-1). The accumulation capacity of C. atramentarius at different Cd(2+) concentrations also was determined. The results show that 76% of the Cd(2+) present can be accumulated even when the concentration of the Cd(2+) is 1mgL(-1). The different proteins of C. atramentarius exposed to Cd(2+) were further analyzed using gel electrophoresis. A 14-3-3 protein was identified and shown to be significantly up-regulated. In a further study, a full-length 14-3-3 gene was cloned containing a 759bp open reading frame encoding a polypeptide consisting of 252 amino acids and 3 introns. The gene expression work also showed that the 14-3-3 was significantly induced, and showed coordinated patterns of expression, with Cd(2+) exposure.

  6. In-vivo administration of clozapine affects behaviour but does not reverse dendritic spine deficits in the 14-3-3ζ KO mouse model of schizophrenia-like disorders.

    Science.gov (United States)

    Jaehne, Emily J; Ramshaw, Hayley; Xu, Xiangjun; Saleh, Eiman; Clark, Scott R; Schubert, Klaus Oliver; Lopez, Angel; Schwarz, Quenten; Baune, Bernhard T

    2015-11-01

    Clozapine is an atypical antipsychotic drug used in the treatment of schizophrenia, which has been shown to reverse behavioural and dendritic spine deficits in mice. It has recently been shown that deficiency of 14-3-3ζ has an association with schizophrenia, and that a mouse model lacking this protein displays several schizophrenia-like behavioural deficits. To test the effect of clozapine in this mouse model, 14-3-3ζ KO mice were administered clozapine (5mg/kg) for two weeks prior to being analysed in a test battery of cognition, anxiety, and despair (depression-like) behaviours. Following behavioural testing brain samples were collected for analysis of specific anatomical defects and dendritic spine formation. We found that clozapine reduced despair behaviour of 14-3-3ζ KO mice in the forced swim test (FST) and altered the behaviour of wild types and 14-3-3ζ KO mice in the Y-maze task. In contrast, clozapine had no effects on hippocampal laminar defects or decreased dendritic spine density observed in 14-3-3ζ KO mice. Our results suggest that clozapine may have beneficial effects on clinical behaviours associated with deficiencies in the 14-3-3ζ molecular pathway, despite having no effects on morphological defects. These findings may provide mechanistic insight to the action of this drug.

  7. Expression of OsSPY and 14-3-3 genes involved in plant height variations of ion-beam-induced KDML 105 rice mutants

    Energy Technology Data Exchange (ETDEWEB)

    Phanchaisri, Boonrak [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Samsang, Nuananong [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, Liang Deng; Singkarat, Somsorn [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, Somboon, E-mail: soanu.1@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2012-06-01

    The culm length of two semidwarf rice mutants (PKOS1, HyKOS1) obtained from low-energy N-ion beam bombardments of dehusked Thai jasmine rice (Oryza sativa L. cv. KDML 105) seeds showed 25.7% and 21.5% height reductions and one spindly rice mutant (TKOS4) showed 21.4% increase in comparison with that of the KDML 105 control. A cDNA-RAPD analysis identified differential gene expression in internode tissues of the rice mutants. Two genes identified from the cDNA-RAPD were OsSPY and 14-3-3, possibly associated with stem height variations of the semidwarf and spindly mutants, respectively. The OsSPY gene encoded the SPY protein which is considered to be a negative regulator of gibberellin (GA). On the other hand, the 14-3-3 encoded a signaling protein which can bind and prevent the RSG (repression of shoot growth) protein function as a transcriptional repressor of the kaurene oxidase (KO) gene in the GA biosynthetic pathway. Expression analysis of OsSPY, 14-3-3, RSG, KO, and SLR1 was confirmed in rice internode tissues during the reproductive stage of the plants by semi-quantitative RT-PCR technique. The expression analysis showed a clear increase of the levels of OsSPY transcripts in PKOS1 and HyKOS1 tissue samples compared to that of the KDML 105 and TKOS4 samples at the age of 50-60 days which were at the ages of internode elongation. The 14-3-3 expression had the highest increase in the TKOS4 samples compared to those in KDML 105, PKOS1 and HyKOS1 samples. The expression analysis of RSG and KO showed an increase in TKOS4 samples compared to that of the KDML 105 and that of the two semidwarf mutants. These results indicate that changes of OsSPY and 14-3-3 expression could affect internode elongation and cause the phenotypic changes of semidwarf and spindly rice mutants, respectively.

  8. Identification of the amino acids 300-600 of IRS-2 as 14-3-3 binding region with the importance of IGF-1/insulin-regulated phosphorylation of Ser-573.

    Directory of Open Access Journals (Sweden)

    Sabine S Neukamm

    Full Text Available Phosphorylation of insulin receptor substrate (IRS-2 on tyrosine residues is a key event in IGF-1/insulin signaling and leads to activation of the PI 3-kinase and the Ras/MAPK pathway. Furthermore, phosphorylated serine/threonine residues on IRS-2 can induce 14-3-3 binding. In this study we searched IRS-2 for novel phosphorylation sites and investigated the interaction between IRS-2 and 14-3-3. Mass spectrometry identified a total of 24 serine/threonine residues on IRS-2 with 12 sites unique for IRS-2 while the other residues are conserved in IRS-1 and IRS-2. IGF-1 stimulation led to increased binding of 14-3-3 to IRS-2 in transfected HEK293 cells and this binding was prevented by inhibition of the PI 3-kinase pathway and an Akt/PKB inhibitor. Insulin-stimulated interaction between endogenous IRS-2 and 14-3-3 was observed in rat hepatoma cells and in mice liver after an acute insulin stimulus and refeeding. Using different IRS-2 fragments enabled localization of the IGF-1-dependent 14-3-3 binding region spanning amino acids 300-600. The 24 identified residues on IRS-2 included several 14-3-3 binding candidates in the region 300-600. Single alanine mutants of these candidates led to the identification of serine 573 as 14-3-3 binding site. A phospho-site specific antibody was generated to further characterize serine 573. IGF-1-dependent phosphorylation of serine 573 was reduced by inhibition of PI 3-kinase and Akt/PKB. A negative role of this phosphorylation site was implicated by the alanine mutant of serine 573 which led to enhanced phosphorylation of Akt/PKB in an IGF-1 time course experiment. To conclude, our data suggest a physiologically relevant role for IGF-1/insulin-dependent 14-3-3 binding to IRS-2 involving serine 573.

  9. Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly

    Directory of Open Access Journals (Sweden)

    Williams David E

    2011-05-01

    Full Text Available Abstract Background Histone deacetylase (HDAC inhibitors are currently undergoing clinical evaluation as anti-cancer agents. Dietary constituents share certain properties of HDAC inhibitor drugs, including the ability to induce global histone acetylation, turn-on epigenetically-silenced genes, and trigger cell cycle arrest, apoptosis, or differentiation in cancer cells. One such example is sulforaphane (SFN, an isothiocyanate derived from the glucosinolate precursor glucoraphanin, which is abundant in broccoli. Here, we examined the time-course and reversibility of SFN-induced HDAC changes in human colon cancer cells. Results Cells underwent progressive G2/M arrest over the period 6-72 h after SFN treatment, during which time HDAC activity increased in the vehicle-treated controls but not in SFN-treated cells. There was a time-dependent loss of class I and selected class II HDAC proteins, with HDAC3 depletion detected ahead of other HDACs. Mechanism studies revealed no apparent effect of calpain, proteasome, protease or caspase inhibitors, but HDAC3 was rescued by cycloheximide or actinomycin D treatment. Among the protein partners implicated in the HDAC3 turnover mechanism, silencing mediator for retinoid and thyroid hormone receptors (SMRT was phosphorylated in the nucleus within 6 h of SFN treatment, as was HDAC3 itself. Co-immunoprecipitation assays revealed SFN-induced dissociation of HDAC3/SMRT complexes coinciding with increased binding of HDAC3 to 14-3-3 and peptidyl-prolyl cis/trans isomerase 1 (Pin1. Pin1 knockdown blocked the SFN-induced loss of HDAC3. Finally, SFN treatment for 6 or 24 h followed by SFN removal from the culture media led to complete recovery of HDAC activity and HDAC protein expression, during which time cells were released from G2/M arrest. Conclusion The current investigation supports a model in which protein kinase CK2 phosphorylates SMRT and HDAC3 in the nucleus, resulting in dissociation of the corepressor

  10. 14-3-3σ confers cisplatin resistance in esophageal squamous cell carcinoma cells via regulating DNA repair molecules.

    Science.gov (United States)

    Lai, Kenneth K Y; Chan, Kin Tak; Choi, Mei Yuk; Wang, Hector K; Fung, Eva Y M; Lam, Ho Yu; Tan, Winnie; Tung, Lai Nar; Tong, Daniel K H; Sun, Raymond W Y; Lee, Nikki P; Law, Simon

    2016-02-01

    Esophageal squamous cell carcinoma (ESCC) is the predominant type of esophageal cancer in Asia. Cisplatin is commonly used in chemoradiation for unresectable ESCC patients. However, the treatment efficacy is diminished in patients with established cisplatin resistance. To understand the mechanism leading to the development of cisplatin resistance in ESCC, we compared the proteomes from a cisplatin-resistant HKESC-2R cell line with its parental-sensitive counterpart HKESC-2 to identify key molecule involved in this process. Mass spectrometry analysis detected 14-3-3σ as the most abundant molecule expressed exclusively in HKESC-2R cells, while western blot result further validated it to be highly expressed in HKESC-2R cells when compared to HKESC-2 cells. Ectopic expression of 14-3-3σ increased cisplatin resistance in HKESC-2 cells, while its suppression sensitized SLMT-1 cells to cisplatin. Among the molecules involved in drug detoxification, drug transportation, and DNA repair, the examined DNA repair molecules HMGB1 and XPA were found to be highly expressed in HKESC-2R cells with high 14-3-3σ expression. Subsequent manipulation of 14-3-3σ by both overexpression and knockdown approaches concurrently altered the expression of HMGB1 and XPA. 14-3-3σ, HMGB1, and XPA were preferentially expressed in cisplatin-resistant SLMT-1 cells when compared to those more sensitive to cisplatin. In ESCC patients with poor response to cisplatin-based chemoradiation, their pre-treatment tumors expressed higher expression of HMGB1 than those with response to such treatment. In summary, our results demonstrate that 14-3-3σ induces cisplatin resistance in ESCC cells and that 14-3-3σ-mediated cisplatin resistance involves DNA repair molecules HMGB1 and XPA. Results from this study provide evidences for further work in researching the potential use of 14-3-3σ and DNA repair molecules HMGB1 and XPA as biomarkers and therapeutic targets for ESCC.

  11. Temporal and Tissue-Specific Expression of Tomato 14-3-3 Gene Family in Response to Phosphorus Deficiency

    Institute of Scientific and Technical Information of China (English)

    XU Wei-Feng; SHI Wei-Ming; YAN Feng

    2012-01-01

    Plants adapt to phosphorus (P) deficiency through a complex of biological processes and many genes are involved.Tomato (Solanum lycopersicum L.'Hezuo906’) plants were selected to grown hydroponically to study the temporal and spatial gene expression patterns of the 14-3-3 gene family and their roles in response to P deficiency in tomato plants.Using real-time reverse-transcriptase polymerase chain reaction (RT-PCR),we investigated the expression profiles in different tissues (root,stem and leaf) at short-term and long-term P-deficient stress phases.Results revealed that i) four members of 14-3-3 gene family (TFT1,TFT4,TFT6 and TFT7)were involved in the adaptation of tomato plants to P deficiency,ii) TFT7 responded quickly to P deficiency in the root,while TFT6 responded slowly to P deficiency in the leaf,iii) expression response of TFT4 to P-deficient stress was widely distributed in different tissues (root,stem and leaf) while TFT8 only displayed stem-specific expression,and iv) temporal and tissues-specific expression patterns to P deficiency suggested that isoform specificity existed in tomato 14-3-3 gene family.We propose that TFT7 (one member of ε-like group in tomato 14-3-3 family) is the early responsive gene and may play a role in the adaptation of tomato plants to short-term P deficiency,while TFT6 (one member of non-ε group in tomato 14-3-3 family) is the later responsive gene and may play a role in the adaptation of tomato plants to long-term P deficiency.

  12. Roles of vimentin and 14-3-3 zeta/delta in the inhibitory effects of heparin on PC-3M cell proliferation and B16-F10-luc-G5 cells metastasis

    Institute of Scientific and Technical Information of China (English)

    Yah PAN; Xue-jun LI; Li-jun ZHONG; Hong ZHOU; Xin WANG; Kui CHEN; Hao-peng YANG; Yilixiati XIAOKAITI; Aikebaier MAIMAITI; Ling JIANG

    2012-01-01

    Aim:To investigate the inhibitory effects of heparin on PC-3M cells proliferation in vitro and B16-F10-luc-G5 cells metastasis in Balb/c nude mice and identify the protein expression patterns to elucidate the action mechanism of heparin.Methods:Human prostate cancer PC-3M cells were incubated with heparin 0.5 to 125 μg/mL for 24 h.The proliferation of PC-3M ceils was assessed by MTS assay.BrdU incoporation and Ki67 expression were detected using a high content screening (HCS) assay.The cell cycle and apoptosis of PC-3M cells were tested by flow cytometry.B16-F10-luc-G5 cardinoma cells were injected into the lateral tail vein of 6-week old male Balb/c nude mice and heparin 30 mg/kg was administered iv 30 min before and 24 h after injection.The metasis of B16-F10-luc-G5 cells was detected by bioluminescence assay.Activated partial thromboplastin time (APTT) and hemorheological parameters were measured on d 14 after injection of B16-F10-luc-G5 carcinoma cells in Balb/c mice.The global protein changes in PC-3M cells and frozen lung tissues from mice burdened with B16-F10-luc-G5 cells were determined by 2-dimensional gel electrophoresis and image analysis.The protein expression of vimentin and 14-3-3 zeta/delta was measured by Western blot.The mRNA transcription of vimentin,transforming growth factor (TGF)-β,E-cadherin,and αv-integrin was measured by RT-PCR.Results:Heparin 25 and 125 μg/mL significantly inhibited the proliferation,arrested the cells in G1 phase,and suppressed BrdU incorporation and Ki67 expression in PC-3M cells compared with the model group.But it had no significant effect on apoptosis of PC-3M cells.Heparin 30 mg/kg markedly inhibits the metastasis of B16-F10-luc-G5 cells on day 8.Additionally,heparin administration maintained relatively normal red blood hematocrit but had no influence on APTT in nude mice burdened with B16-F10-luc-G5 cells.Thirty of down-regulated protein spots were identified after heparin treatment,many of which are related to

  13. Orders induced by segments in floorplan partitions and (2-14-3,3-41-2)-avoiding permutations

    CERN Document Server

    Asinowski, Andrei; Bousquet-Mélou, Mireille; Mansour, Toufik; Pinter, Ron

    2010-01-01

    Floorplan partitions are certain tilings of a rectangle by other rectangles. There are natural ways to order their elements (rectangles and segments). In particular, Ackerman, Barequet, and Pinter studied a pair of orders induced by neighborhood relations between rectangles of a floorplan partition, and obtained a natural bijection between these pairs and (2-41-3, 3-14-2)-avoiding permutations (also known as Baxter permutations). In the present paper, we study a pair of orders induced by neighborhood relations between segments of a floorplan partition. We obtain a natural bijection between these pairs and another family of permutations, namely (2-14-3,3-41-2)-avoiding permutations. We also enumerate these permutations, investigate relations between the two kinds of pairs of orders --- and correspondingly, between (2-14-3,3-41-2)-avoiding permutations and Baxter permutations --- and study the special case of "guillotine" partitions.

  14. 日本血吸虫重组质粒pGEX-Sj14-3-3-Sj32的构建及其在大肠埃希菌BL21(DE3)中的表达%Construction and expression of a recombinant plasmid pGEX-Sj14-3-3-Sj32 of Schistosoma japonicum in Escherichia coli BL21(DE3)

    Institute of Scientific and Technical Information of China (English)

    覃婷; 李文桂; 谭建蓉

    2015-01-01

    isopropyl-β-d-thiogalactoside (IPTG),and the expressed products were analyzed and identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting.Results The 1 750 bp Sj14-3-3-Sj32 fusion gene was successfully amplified by gene SOEing and cloned into the vector pGEX-1 λT verified by restriction analysis,the recombinant plasmid pGEX-Sj 14-3-3-Sj32 was successfully constructed.The molecular mass of the expressed recombinant protein was proximately 73 × 103 as detected by SDS-PAGE.Western blotting confirmed that the expressed protein could be recognized by the immune sera from rabbit infected with Schistosomajaponicum.Conclusion The recombinant plasmid pGEX-Sj14-3-3-Sj32 is successfully constructed and could be highly expressed in E.coli and the expressed recombinant protein has specific antigenicity.

  15. 14-3-3 σ expression effects G2/M response to oxygen and correlates with ovarian cancer metastasis.

    Directory of Open Access Journals (Sweden)

    Dashnamoorthy Ravi

    Full Text Available BACKGROUND: In vitro cell culture experiments with primary cells have reported that cell proliferation is retarded in the presence of ambient compared to physiological O₂ levels. Cancer is primarily a disease of aberrant cell proliferation, therefore, studying cancer cells grown under ambient O₂ may be undesirable. To understand better the impact of O₂ on the propagation of cancer cells in vitro, we compared the growth potential of a panel of ovarian cancer cell lines under ambient (21% or physiological (3% O₂. PRINCIPAL FINDINGS: Our observations demonstrate that similar to primary cells, many cancer cells maintain an inherent sensitivity to O₂, but some display insensitivity to changes in O₂ concentration. Further analysis revealed an association between defective G2/M cell cycle transition regulation and O₂ insensitivity resultant from overexpression of 14-3-3 σ. Targeting 14-3-3 σ overexpression with RNAi restored O₂ sensitivity in these cell lines. Additionally, we found that metastatic ovarian tumors frequently overexpress 14-3-3 σ, which in conjunction with phosphorylated RB, results in poor prognosis. CONCLUSIONS: Cancer cells show differential proliferative sensitivity to changes in O₂ concentration. Although a direct link between O₂ insensitivity and metastasis was not determined, this investigation showed that an O₂ insensitive phenotype in cancer cells to correlate with metastatic tumor progression.

  16. Aqueous Extract from Hibiscus sabdariffa Linnaeus Ameliorate Diabetic Nephropathy via Regulating Oxidative Status and Akt/Bad/14-3-3γ in an Experimental Animal Model

    Directory of Open Access Journals (Sweden)

    Shou-Chieh Wang

    2011-01-01

    Full Text Available Several studies point out that oxidative stress maybe a major culprit in diabetic nephropathy. Aqueous extract of Hibiscus sabdariffa L. (HSE has been demonstrated as having beneficial effects on anti-oxidation and lipid-lowering in experimental studies. This study aimed at investigating the effects of Hibiscus sabdariffa L. on diabetic nephropathy in streptozotocin induced type 1 diabetic rats. Our results show that HSE is capable of reducing lipid peroxidation, increasing catalase and glutathione activities significantly in diabetic kidney, and decreasing the plasma levels of triglyceride, low-density lipoprotein (LDL and increasing high-density lipoprotein (HDL value. In histological examination, HSE improves hyperglycemia-caused osmotic diuresis in renal proximal convoluted tubules (defined as hydropic change in diabetic rats. The study also reveals that up-regulation of Akt/Bad/14-3-3γ and NF-κB-mediated transcription might be involved. In conclusion, our results show that HSE possesses the potential effects to ameliorate diabetic nephropathy via improving oxidative status and regulating Akt/Bad/14-3-3γ signaling.

  17. High frequency of hypermethylation at the 14-3-3 σ locus leads to gene silencing in breast cancer

    Science.gov (United States)

    Ferguson, Anne T.; Evron, Ella; Umbricht, Christopher B.; Pandita, Tej K.; Chan, Timothy A.; Hermeking, Heiko; Marks, Jeffrey R.; Lambers, Anouk R.; Futreal, P. Andrew; Stampfer, Martha R.; Sukumar, Saraswati

    2000-01-01

    Expression of 14-3-3 σ (σ) is induced in response to DNA damage, and causes cells to arrest in G2. By SAGE (serial analysis of gene expression) analysis, we identified σ as a gene whose expression is 7-fold lower in breast carcinoma cells than in normal breast epithelium. We verified this finding by Northern blot analysis. Remarkably, σ mRNA was undetectable in 45 of 48 primary breast carcinomas. Genetic alterations at σ such as loss of heterozygosity were rare (1/20 informative cases), and no mutations were detected (0/34). On the other hand, hypermethylation of CpG islands in the σ gene was detected in 91% (75/82) of breast tumors and was associated with lack of gene expression. Hypermethylation of σ is functionally important, because treatment of σ-non-expressing breast cancer cell lines with the drug 5-aza-2′-deoxycytidine resulted in demethylation of the gene and synthesis of σ mRNA. Breast cancer cells lacking σ expression showed increased number of chromosomal breaks and gaps when exposed to γ-irradiation. Therefore, it is possible that loss of σ expression contributes to malignant transformation by impairing the G2 cell cycle checkpoint function, thus allowing an accumulation of genetic defects. Hypermethylation and loss of σ expression are the most consistent molecular alterations in breast cancer identified so far. PMID:10811911

  18. Computerized video time lapse study of cell cycle delay and arrest, mitotic catastrophe, apoptosis and clonogenic survival in irradiated 14-3-3sigma and CDKN1A (p21) knockout cell lines.

    Science.gov (United States)

    Chu, Kenneth; Teele, Noella; Dewey, Michael W; Albright, Norman; Dewey, William C

    2004-09-01

    .e. metabolic activity. Thus mitotic catastrophe itself is not a direct mode of death. Instead, apoptosis during interphase of both uninucleated and polyploid cells was the primary mode of death observed in the four cell types. Knocking out either CDKN1A or 14-3-3sigma increased the amount of cell death at 96 h, from 52% to approximately 70%, with an even greater increase to 90% when both genes were knocked out. Thus, in addition to effects of CDKN1A and 14-3-3sigma expression on transient cell cycle delay, CDKN1A has both an anti-proliferative and anti-apoptosis function, while 14-3-3sigma has only an anti-apoptosis function. Finally, the large alterations in the amounts of cell death did not correlate overall with the small alterations in clonogenic survival (dose-modifying ratios of 1.05-1.13); however, knocking out CDKN1A resulted in a decrease in arrested cells and an increase in survival, while knocking out 14-3-3sigma resulted in an increase in apoptosis and a decrease in survival.

  19. Prediction and cloning linear Tcell epitopes of P14-3-3 antigen into pEGFP–N1 as a DNA vaccine model to induse immuno response against hydatidosis and it\\'s expression in CHO cell line

    Directory of Open Access Journals (Sweden)

    R mesri

    2015-11-01

    Full Text Available ABSTRACT Background & purpose: Hydatidosis is a zoonotic disease that caused by infection with the larvae of Echinococcus granulosus. Different antigens produced in larval stage of this parasite that recombinant vaccine base these antigens created significant immunity in infected animals. One of the important antigens is p14-3-3 that it's recombinant antigen created considerable immunity in mouse models. In this study according to the high immunity of antigen epitopes region the coding sequence of T-cell epitopes of P14-3-3 was cloned into pEGFP-N1vector in order to produce an effective DNA vaccine model to stimulate high level of Th1 immune response.   Material and method: In this study bioinformatics tools were used to prediction of linear T-Cell epitopes of Echinococcus granulosus P14-3-3 &zeta antigen. The nucleotide coding sequence of these epitopes was synthesized by PCR. the ampliqon was digested with XhoI restriction enzyme and cloned into pEGFP–N1 vector That has been purificated by modified sambrook method with CaCl2 and PEG6000..Positive colony was selected by direct colony PCR and confirmed by the sequencing.and evaluation of it's expression in Eukaryotic cells was done by transformed to CHO cell line with electroporation. Results: Linear T-cell epitopes of Echinococcus granulosus P14-3-3 after prediction,synthesis and amplification wae successfully cloned into pEGFP-N1 vector that purificated by new method with maximum vector and minimum RNA concentration.The expression of new constract in CHO cell line as a eukaryotic cells achivment by fluorescent microscope and will be used as a DNA vaccine model to evaluation immuno response in mouse models.   Discussion: Successfully cloning of The linear T-cell epitppes coding sequence of Echinococcus granulosus P14-3-3&zeta antigen into pEGFP-N1 verificated by sequencing and fluorscent microscope images demonstrated expression of recombinant protein in CHO cell line

  20. Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners

    OpenAIRE

    Uversky Vladimir N; Yang Mary Qu; Yang Jack Y; Meng Jingwei; Oldfield Christopher J; Dunker A Keith

    2008-01-01

    Abstract Background Proteins are involved in many interactions with other proteins leading to networks that regulate and control a wide variety of physiological processes. Some of these proteins, called hub proteins or hubs, bind to many different protein partners. Protein intrinsic disorder, via diversity arising from structural plasticity or flexibility, provide a means for hubs to associate with many partners (Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN: Flexible Nets: The r...

  1. Protective immunity of Eg14-3-3 against Echinococcus granulosus in mice%细粒棘球绦虫(中国大陆株)14-3-3重组蛋白的免疫保护力

    Institute of Scientific and Technical Information of China (English)

    李宗吉; 雄英; 孙俊峰; 赵巍

    2012-01-01

    Objective To investigate the protective immunity against Echinococcus granulosus in mice immunized with rEgl4-3-3. Methods ICR mice were subcutaneously immunized three times with rEgl4-3-3, followed by the challenge with Echinococcus granulosus protoscoleces intraperitoneally, and then sacrificed in the sixth month post-challenge to detect the proliferation of splenocytes with MTT assay and to measure the secretion of IL-2, IL-4, IL-10 and IFN-γ with ELISA. The rate of reduced hydatid cyst and the levels of IgE, IgG and IgG subclasses in sera were examined. Results Compared with the control group, mice vaccinated with rEgl4-3-3 and challenged intraperitoneally with E. granulosus protoscoleces revealed significant protective immunity of 84. 47% (P<0. 05). Enzyme-linked immunosorbent assay and Western blot analysis indicated that immunized mice generated specific high level of IgG against rEgl4-3-3. The prevailing isotypes of IgG induced by rEgl4-3-3 in mice were IgGl and IgG2a. Spleen lymphocytes from mice immunized with rEgl4-3-3 showed a significant proliferation response to rEgl4-3-3. The culture of spleen cells showed that secretion of IFN-y and IL-2 increased significantly in the vaccinated mice whereas IL-4 and IL-10 levels did not differ significantly between vaccinated and control mice. Conclusion The results indicate that rEgl4-3-3 vaccination elicit significant levels of protective immunity against Echinococcus granulosus infection. Thus, rEgl4-3-3 protein is a promising candidate as an effective vaccine to prevent cystic echinococcosis.%目的 探讨细粒棘球蚴Eg14-3-3重组蛋白的免疫保护性及其伴随的免疫反应.方法 ICR小鼠随机分为rEg14-3-3蛋白免疫组和PBS佐剂对照组,每隔2周背部皮下免疫1次,连续免疫3次.在第3次免疫后6周,用细粒棘球蚴活的原头蚴进行攻击感染,感染后24周杀鼠取脾,分离培养脾细胞,MTT检测淋巴细胞增殖率,用试剂盒检测脾细胞培养上清液的IL-2

  2. A 14-3-3γ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIβ to regulate post-Golgi carrier formation.

    Science.gov (United States)

    Valente, Carmen; Turacchio, Gabriele; Mariggiò, Stefania; Pagliuso, Alessandro; Gaibisso, Renato; Di Tullio, Giuseppe; Santoro, Michele; Formiggini, Fabio; Spanò, Stefania; Piccini, Daniele; Polishchuk, Roman S; Colanzi, Antonino; Luini, Alberto; Corda, Daniela

    2012-02-26

    Large pleiomorphic carriers leave the Golgi complex for the plasma membrane by en bloc extrusion of specialized tubular domains, which then undergo fission. Several components of the underlying molecular machinery have been identified, including those involved in the budding/initiation of tubular carrier precursors (for example, the phosphoinositide kinase PI(4)KIIIβ, the GTPase ARF, and FAPP2), and in the fission of these precursors (for example, PKD, CtBP1-S/BARS). However, how these proteins interact to bring about carrier formation is poorly understood. Here, we describe a protein complex that mediates carrier formation and contains budding and fission molecules, as well as other molecules, such as the adaptor protein 14-3-3γ. Specifically, we show that 14-3-3γ dimers bridge CtBP1-S/BARS with PI(4)KIIIβ, and that the resulting complex is stabilized by phosphorylation by PKD and PAK. Disrupting the association of these proteins inhibits the fission of elongating carrier precursors, indicating that this complex couples the carrier budding and fission processes.

  3. Dynamic observation of splenocyte apoptosis in mice immunized with recombinant vaccine Bifidobacterium bifidum pGEX-Sj14-3-3 of Schistosoma japonicum

    Institute of Scientific and Technical Information of China (English)

    张宁

    2013-01-01

    Objective To investigate the effects of recombinant vaccine Bifidobacterium bifidum(Bb) pGEX-Sj14-3-3 on splenocyte apoptosis in BALB/c mice. Methods Ninety-six BALB/c mice were randomly divided into two groups according to their body mass: per os group(PO) and

  4. 14-3-3σ干扰逆转录病毒载体的构建及其稳定转染HaCat细胞系的建立%Construction of RNAi Recombinant Retroviral Vector of 14-3-3P and Its Stably Transfected HaCat Cell Lines

    Institute of Scientific and Technical Information of China (English)

    周美娟; 丁振华

    2011-01-01

    目的:构建14-3-3σ干扰逆转录病毒载体,建立稳定转染的HaCat细胞系.方法:人工合成14-3-3σ基因干扰序列并定向插入到pSuper-retro-neo-EGFP质粒,并在STBL3菌内进行质粒扩增,刷选阳性克隆,酶切测序鉴定,转染293FT细胞进行病毒包装、扩增、纯化、获取逆转录病毒载体,将逆转录病毒栽体感染HaCat细胞后Western免疫印迹法、Real-time PCR法检测14-3-3σ的表达情况.结果:连接重组后经酶切和测序筛选出pSuper-retro-neo-EGFP-si14-3-3σ;干扰质粒稳定转染的HaCat细胞系在倒置荧光显微镜下呈绿色荧光,Western免疫印迹法和Real-time PCR法表明14-3-3σ表达明显抑制.结论:成功构建了14-3-3σ干扰的逆转录病毒载体,并构建了其稳定转染的HaCat细胞系.%Objective: To construct the RNAi retroviral vector of 14-3-3σ and establish the stable transfected HaCat cell lines.Methods: Hairpin siRNA of 14-3-3σ was synthesized and inserted into pSuper-retro-neo-EGFP plasmid.PSuper-retro-neo-EGFP-si14-3-3σ was transformed into competent STBL3 cells.Then the positive clones were confirmed by sequencing and transfected into the packaging 293FT cells to amplificate and depurate virus.HaCat cells were infected by the recombinant retroviral vector and the expression of 14-3-3σ was detected by Western blot and real time PCR.Results: The recombinant retroviral plasmid PSuper-retro-neo-EGFP-si 14-3-3σ was successfully constructed and green fluorescence of the stable transfected HaCat cell lines were observed under inverted fluorescence microscope.The expression of 14-3-3 was down-regulated by the RNAi-14-3-3σ.Conclusion: The RNAi retroviral vector targeting 14-3-3σ was successfully constructed and stably transfected HaCat cell lines were established.

  5. 14-3-3σ逆转录病毒载体的构建及稳定转染HaCat细胞系的建立%Construction of recombinant 14-3-3σ retroviral vector and establishment of its stably transfected HaCat cell lines

    Institute of Scientific and Technical Information of China (English)

    周美娟; 丁振华

    2010-01-01

    目的:构建14-3-3σ逆转录病毒载体,并建立高表达14-3-3σ的HaCat细胞系.方法:以人基因组为模板,通过PCR扩增出14-3-3σ基因的编码序列,定向插入到pLEGFP-N1质粒中,并在STBL3内进行扩增,刷选阳性克隆,酶切和测序验证后,转染293vr细胞进行病毒包装、扩增、纯化、获取逆转录病毒栽体.将逆转录病毒载体感染HaCat细胞后Western、实时荧光定量PCR法检测14-3-3σ的表达情况.结果:连接重组后经酶切和测序筛选出pLEGFP-N1-14-3-3σ;稳定转染的HaCat细胞系在倒置荧光显微镜下呈绿色荧光.Western和实时荧光定量PCR法表明14-3-3σ表达明显增强.结论:成功构建了14-3-3σ逆转录病毒载体,并构建了英稳定转染的HaCat细胞系.

  6. Relationship between 14-3-3β expression of classic type of Kaposi's sarcoma in Xinjiang and its proliferation and apoptosis%新疆经典型Kaposi肉瘤14-3-3β表达与细胞增殖、凋亡的关系

    Institute of Scientific and Technical Information of China (English)

    曾妍; 赵鹃; 赵瑾; 周晓斐; 杨磊; 李锋; 谭晓华; 狄春红

    2007-01-01

    目的:探讨新疆经典型Kaposi肉瘤(Kaposi's sarcoma,KS)组织中14-3-3β蛋白表达与细胞增殖及细胞凋亡的关系.方法:应用免疫组织化学Envision二步法和原位细胞凋亡标记技术(TUNEL)对新疆10例经典型Kaposi肉瘤及对照组12例健康人正常皮肤组织进行14-3-3β表达、细胞增殖指数(proliferating index,PI)及细胞凋亡指数(apoptotic index,AI)的检测.结果:14-3-3β蛋白在KS组织中的阳性表达率显著高于在正常皮肤组织中的表达(P<0.001),其阳性反应程度在2组比较差异有统计学意义(t=14.661,P<0.01);KS组织中PI和AI均明显高于正常皮肤组织(t=5.427、2.712,P<0.05);KS组织中14-3-3β蛋白与PI、AI均呈正相关(r=0.770、0.879,P<0.01).结论:14-3-3β的过表达与新疆经典型Kaposi肉瘤细胞的失控性增殖有关,KS细胞的凋亡与多种途径有关,并可能受到多种负向调节因子的作用.

  7. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14-3-3 protein

    DEFF Research Database (Denmark)

    Fuglsang, Anja Thoe; Guo, Yan; Cuin, Tracey A.;

    2007-01-01

    Regulation of the trans-plasma membrane pH gradient is an important part of plant responses to several hormonal and environmental cues, including auxin, blue light, and fungal elicitors. However, little is known about the signaling components that mediate this regulation. Here, we report that an ...

  8. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  9. Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Pehmøller, Christian; Treebak, Jonas Thue; Birk, Jesper Bratz

    2009-01-01

    TBC1D1 is a Rab-GTPase-activating protein (GAP) known to be phosphorylated in response to insulin, growth factors, pharmacological agonists that activate 5'-AMP-activated protein kinase (AMPK), and muscle contraction. Silencing TBC1D1 in L6 muscle cells by siRNA increases insulin-stimulated GLUT4...... translocation, and overexpression of TBC1D1 in 3T3-L1 adipocytes with low endogenous TBC1D1 expression inhibits insulin-stimulated GLUT4 translocation, suggesting a role of TBC1D1 in regulating GLUT4 translocation. Aiming to unravel the regulation of TBC1D1 during contraction and the potential role of AMPK...

  10. 多房棘球绦虫重组质粒pGEX-EmⅡ/3-Em14-3-3在大肠埃希菌BL21(DE3)表达效率的研究%Study of expression efficiency of the recombinant plasmid pGEX-Em Ⅱ/3-Em14-3-3 of Echinococcus multilocularis in Escherichia coli BL21(DE3)

    Institute of Scientific and Technical Information of China (English)

    杨梅; 李文桂; 朱佑明

    2007-01-01

    目的 研究多房棘球绦虫(Em)重组质粒pGEX-EmⅡ/3-Em14-3-3在大肠埃希菌BL21(DE3)中的表达效率.方法 通过PCR扩增EmⅡ/3和Em14-3-3抗原编码基因,然后采用基因拼接法(gene SOEing)剪接EmⅡ/3和Em14-3-3,得到EmⅡ/3-Em14-3-3融合基因;将该融合基因定向克隆于含有谷胱甘肽-S-转移酶(GST)基因的高效原核表达载体pGEX-1λT,经酶切鉴定后以IPTG诱导表达EmⅡ/3-Em14-3-3/GST融合蛋白;SDS-PAGE及Western blot对表达产物进行鉴定.结果 PCR成功扩增出2 554 bp的EmⅡ/3-Em14-3-3融合基因;双酶切证实EmⅡ/3-Em14-3-3融合基因插入pGEX-1λT中,成功构建了pGEX-EmⅡ/3-Em14-3-3重组质粒;SDS-PAGE及Western blot分析显示重组质粒转化宿主菌在IPTG诱导下高效表达了能被活动性泡球蚴病鼠血清识别的EmⅡ/3-Em14-3-3/GST融合蛋白,分子质量单位119 ku.结论 多房棘球绦虫EmⅡ/3-Em14-3-3融合基因在大肠埃希菌中获得了高效融合表达,表达出的EmⅡ/3-Em14-3-3重组蛋白具有特异的抗原性.

  11. Cyclic nucleotide dependent dephosphorylation of regulator of G-protein signaling 18 in human platelets.

    LENUS (Irish Health Repository)

    Gegenbauer, Kristina

    2013-11-01

    Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein that turns off Gq signaling in platelets. RGS18 is regulated by binding to the adaptor protein 14-3-3 via phosphorylated serine residues S49 and S218 on RGS18. In this study we confirm that thrombin, thromboxane A2, or ADP stimulate the interaction of RGS18 and 14-3-3 by increasing the phosphorylation of S49. Cyclic AMP- and cyclic GMP-dependent kinases (PKA, PKG) inhibit the interaction of RGS18 and 14-3-3 by phosphorylating S216. To understand the effect of S216 phosphorylation we studied the phosphorylation kinetics of S49, S216, and S218 using Phos-tag gels and phosphorylation site-specific antibodies in transfected cells and in platelets. Cyclic nucleotide-induced detachment of 14-3-3 from RGS18 coincides initially with double phosphorylation of S216 and S218. This is followed by dephosphorylation of S49 and S218. Dephosphorylation of S49 and S218 might be mediated by protein phosphatase 1 (PP1) which is linked to RGS18 by the regulatory subunit PPP1R9B (spinophilin). We conclude that PKA and PKG induced S216 phosphorylation triggers the dephosphorylation of the 14-3-3 binding sites of RGS18 in platelets.

  12. The polymorphism of YWHAE, a gene encoding 14-3-3epsilon, and brain morphology in schizophrenia: a voxel-based morphometric study.

    Directory of Open Access Journals (Sweden)

    Mikio Kido

    Full Text Available BACKGROUND: YWHAE is a possible susceptibility gene for schizophrenia that encodes 14-3-3epsilon, a Disrupted-in-Schizophrenia 1 (DISC1-interacting molecule, but the effect of variation in its genotype on brain morphology remains largely unknown. METHODS: In this voxel-based morphometric magnetic resonance imaging study, we conducted whole-brain analyses regarding the effects of YWHAE single-nucleotide polymorphisms (SNPs (rs28365859, rs11655548, and rs9393 and DISC1 SNP (rs821616 on gray matter volume in a Japanese sample of 72 schizophrenia patients and 86 healthy controls. On the basis of a previous animal study, we also examined the effect of rs28365859 genotype specifically on hippocampal volume. RESULTS: Whole-brain analyses showed no significant genotype effect of these SNPs on gray matter volume in all subjects, but we found significant genotype-by-diagnosis interaction for rs28365859 in the left insula and right putamen. The protective C allele carriers of rs28365859 had a significantly larger left insula than the G homozygotes only for schizophrenia patients, while the controls with G allele homozygosity had a significantly larger right putamen than the C allele carriers. The C allele carriers had a larger right hippocampus than the G allele homozygotes in schizophrenia patients, but not in healthy controls. No significant interaction was found between rs28365859 and DISC1 SNP on gray matter volume. CONCLUSIONS: These different effects of the YWHAE (rs28365859 genotype on brain morphology in schizophrenia and healthy controls suggest that variation in its genotype might be, at least partly, related to the abnormal neurodevelopment, including in the limbic regions, reported in schizophrenia. Our results also suggest its specific role among YWHAE SNPs in the pathophysiology of schizophrenia.

  13. Changes of T lymphocyte subsets in mice immunized with recombinant Bb-Em Ⅱ/3-Em14-3-3 vaccine of Echinococcus multilocularis%多房棘球绦虫重组Bb-EmⅡ/3-Em14-3-3疫苗诱导BALB/c小鼠T淋巴细胞亚群变化的研究

    Institute of Scientific and Technical Information of China (English)

    杨梅; 李文桂; 刘兴超

    2016-01-01

    目的 探讨多房棘球绦虫(Em)重组Bb-EmⅡ/3-Em14-3-3疫苗免疫和Em原头节攻击后小鼠脾CD4+和CD8+T淋巴细胞亚群的变化.方法 用重组Bb-EmⅡ/3-Em14-3-3疫苗分别通过皮下注射、肌肉注射、鼻腔黏膜接种以及口服接种免疫BALB/c小鼠,双歧杆菌(Bb)液和磷酸盐缓冲液(PBS)为对照,12周后,用50个Em原头蚴腹腔注射进行攻击,攻击感染18周剖杀小鼠,检获泡球蚴组织,称取重量,计算减蚴率;分离脾细胞,流式细胞仪检测脾CD4+和CD8+T淋巴细胞亚群的百分比.结果 疫苗免疫组(皮下注射、肌肉注射、鼻腔黏膜接种、口服接种)小鼠检获泡球蚴重量[(0.77±0.52)、(0.87±0.60)、(2.17±0.50)、(3.06±0.15)g]均明显低于PBS对照组[(3.54±0.32)g,P<0.05或<0.01].疫苗免疫组(皮下注射、肌肉注射、鼻腔黏膜接种、口服接种)小鼠脾CD4+T细胞亚群[(28.2±2.5)%、(25.0±2.7)%、(24.0±1.3)%、(23.0±1.8)%]显著高于PBS对照组[(16.1±2.2)%,P均<0.01];各疫苗免疫组小鼠CD8+T细胞亚群水平均轻微升高,但组间比较差异无统计学意义(F=1.36,P>0.05).皮下注射组小鼠CD4+T细胞亚群高于肌肉注射组、鼻腔黏膜接种组和口服接种组(P均< 0.05).结论 CD4+T细胞亚群在Em重组Bb-EmⅡ/3-Em14-3-3疫苗诱导的小鼠抗Em原头节攻击感染的保护性免疫机制中起关键作用,疫苗皮下注射是一种较好的免疫途径.%Objective In order to investigate the changes of T lymphocytes subsets in mice immunized with recombinant Bb-Em Ⅱ/3-Em14-3-3.vaccine of Echinococcus multilocularis (Em) and challenged with Em protoscoleces.Methods BALB/c mice were immunized with recombinant Bb-Em Ⅱ/3-Em14-3-3 vaccine by subcutaneous injection,intramuscular injection,nasal mucosa inoculation and oral administration,Bifidobacterium (Bb) and PBS were used as controls.After 12 weeks of immunization,all the mice were challenged with 50 protoscoleces of Em by intraperitoneal

  14. QUICK identification and SPR validation of signal transducers and activators of transcription 3 (Stat3) interacting proteins.

    Science.gov (United States)

    Zheng, Peng; Zhong, Qiu; Xiong, Qian; Yang, Mingkun; Zhang, Jia; Li, Chongyang; Bi, Li-Jun; Ge, Feng

    2012-01-04

    Signal transducers and activators of transcription 3 (Stat3) has been reported to be involved in the pathogenesis of various human diseases and is constitutively active in human multiple myeloma (MM) U266 cells. The Stat3-regulated mechanisms involved in these processes, however, are not fully defined. To further understand the regulation of Stat3 activity, we performed a systematic proteomic analysis of Stat3 interacting proteins in U266 cells. This analysis, termed quantitative immunoprecipitation combined with knockdown (QUICK), combines RNAi, stable isotope labeling with amino acids in cell culture (SILAC), immunoprecipitation, and quantitative MS. As a result, quantitative mass spectrometry analysis allowed us to distinguish specific Stat3 interacting proteins from background proteins and led to the identification of a total of 38 proteins. Three Stat3 interacting proteins - 14-3-3ζ, PRKCB and Hsp90 - were further confirmed by reciprocal co-immunoprecipitations and surface plasmon resonance (SPR) analysis. Our results therefore not only uncover a number of Stat3 interacting proteins that possess a variety of cellular functions, but also provide new insight into the mechanisms that regulate Stat3 activity and function in MM cells.

  15. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    Sergiy; Kostenko; Gianina; Dumitriu; Kari; Jenssen; Lgreid; Ugo; Moens

    2011-01-01

    Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.

  16. [Protein nutrition and physical activity].

    Science.gov (United States)

    Navarro, M P

    1992-09-01

    The relationship between physical exercise and diet in order to optimize performance is getting growing interest. This review examines protein needs and protein intakes as well as the role of protein in the body and the metabolic changes occurring at the synthesis and catabolic levels during exercise. Protein synthesis in muscle or liver, amino acids oxidation, glucose production via gluconeogenesis from amino acids, etc., are modified, and consequently plasma and urinary nitrogen metabolites are affected. A brief comment on the advantages, disadvantages and forms of different protein supplements for sportsmen is given.

  17. Protein-water dynamics in antifreeze protein III activity

    Science.gov (United States)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  18. A NudE/14-3-3 pathway coordinates Dynein and the Kinesin Khc73 to position the mitotic spindle

    OpenAIRE

    2013-01-01

    Mitotic spindle position is controlled by interactions of cortical molecular motors with astral microtubules. In animal cells, Partner of Inscuteable (Pins) acts at the cortex to coordinate the activity of Dynein and Kinesin-73 (Khc73; Kif13B in mammals) to orient the spindle. Though the two motors move in opposite directions, their synergistic activity is required for robust Pins-mediated spindle orientation. Here we identify a physical connection between Dynein and Khc73 that mediates coope...

  19. Activity assay of membrane transport proteins

    Institute of Scientific and Technical Information of China (English)

    Hao Xie

    2008-01-01

    Membrane transport proteins are integral membrane proteins and considered as potential drug targets. Activity assay of transport proteins is essential for developing drugs to target these proteins. Major issues related to activity assessment of transport proteins include availability of transporters,transport activity of transporters, and interactions between ligands and transporters. Researchers need to consider the physiological status of proteins (bound in lipid membranes or purified), availability and specificity of substrates, and the purpose of the activity assay (screening, identifying, or comparing substrates and inhibitors) before choosing appropriate assay strategies and techniques. Transport proteins bound in vesicular membranes can be assayed for transporting substrate across membranes by means of uptake assay or entrance counterflow assay. Alternatively, transport proteins can be assayed for interactions with ligands by using techniques such as isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, or surface plasmon resonance. Other methods and techniques such as fluorometry, scintillation proximity assay, electrophysiological assay, or stopped-flow assay could also be used for activity assay of transport proteins. In this paper the major strategies and techniques for activity assessment of membrane transport proteins are reviewed.

  20. Activity-Based Protein Profiling of Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, Natalie C.; Wright, Aaron T.

    2015-02-01

    Activity-Based Protein Profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems include: enhancing protein annotation, characterizing protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems.

  1. Synaptic vesicle proteins and active zone plasticity

    Directory of Open Access Journals (Sweden)

    Robert J Kittel

    2016-04-01

    Full Text Available Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone. The complex molecular architecture of active zones mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of active zones vary significantly, even for a given connection. Thus, there appear to be distinct active zone states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the active zone.The protein-rich cytomatrix at the active zone (CAZ provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1 and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and active zone states, which has heretofore received little attention.

  2. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW;

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray......, approximately 100 cellular proteins were identified as HCV core-interacting partners. Of these candidates, mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) was selected for further characterization. MAPKAPK3 is a serine/threonine protein kinase that is activated by stress and growth...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...

  3. Effects of the activated mitogen-activated protein kinase pathway via the c-ros receptor tyrosine kinase on the T47D breast cancer cell line following alcohol exposure.

    Science.gov (United States)

    Lee, Hyung Tae; Kim, Se Kye; Choi, Mi Ran; Park, Ji Hyun; Jung, Kyoung Hwa; Chai, Young Gyu

    2013-03-01

    Compared to other cancers affecting women, breast cancer is significantly associated with alcohol consumption. However, the principles underlying the carcinogenesis of alcohol-induced breast cancer and the related metastatic mechanisms have yet to be established. To observe the effect of alcohol on the growth regulation in breast cancer cells, we identified differentially expressed proteins in alcohol-exposed human breast cancer T47D cells using gel-based proteomics analysis. The expression of c-ros receptor tyrosine kinase (ROS1) was increased and activated by autophosphorylation, thereby activating mitogen- and stress-activated protein kinase 1 (MSK1) through the mitogen‑activated protein kinase (MAPK) pathway; activated MSK1, in turn, phosphorylated histone 3 serine 10 (H3S10p) residues in the nucleus. The increase in H3S10 phosphorylation consequently increased the level of expression of immediate-early gene such as c-fos. This study demonstrated that when breast cancer cells are exposed to alcohol, phosphorylated ROS1 activates MSK1 via Erk1/2 in the MAPK pathway, which then induces modifications to histone residues that regulate gene expression by 14-3-3 protein recruitment, leading to a lack of control of breast cancer cell proliferation.

  4. Activated protein C modulates the proinflammatory activity of dendritic cells

    Directory of Open Access Journals (Sweden)

    Matsumoto T

    2015-05-01

    Full Text Available Takahiro Matsumoto,1,2* Yuki Matsushima,1* Masaaki Toda,1 Ziaurahman Roeen,1 Corina N D'Alessandro-Gabazza,1,5 Josephine A Hinneh,1 Etsuko Harada,1,3 Taro Yasuma,4 Yutaka Yano,4 Masahito Urawa,1,5 Tetsu Kobayashi,5 Osamu Taguchi,5 Esteban C Gabazza1 1Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, 2BONAC Corporation, BIO Factory 4F, Fukuoka, 3Iwade Research Institute of Mycology, 4Department of Endocrinology, Diabetes and Metabolism, 5Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, Japan *These authors contributed equally to this work Background: Previous studies have demonstrated the beneficial activity of activated protein C in allergic diseases including bronchial asthma and rhinitis. However, the exact mechanism of action of activated protein C in allergies is unclear. In this study, we hypothesized that pharmacological doses of activated protein C can modulate allergic inflammation by inhibiting dendritic cells. Materials and methods: Dendritic cells were prepared using murine bone marrow progenitor cells and human peripheral monocytes. Bronchial asthma was induced in mice that received intratracheal instillation of ovalbumin-pulsed dendritic cells. Results: Activated protein C significantly increased the differentiation of tolerogenic plasmacytoid dendritic cells and the secretion of type I interferons, but it significantly reduced lipopolysaccharide-mediated maturation and the secretion of inflammatory cytokines in myeloid dendritic cells. Activated protein C also inhibited maturation and the secretion of inflammatory cytokines in monocyte-derived dendritic cells. Activated protein C-treated dendritic cells were less effective when differentiating naïve CD4 T-cells from Th1 or Th2 cells, and the cellular effect of activated protein C was mediated by its receptors. Mice that received adoptive transfer of activated protein C

  5. The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14lambda and the PP2C phosphatase KAPP

    NARCIS (Netherlands)

    Rienties, I.M.; Vink, J.; Borst, J.W.; Russinova, E.T.; Vries, de S.C.

    2005-01-01

    Leucine-rich repeat (LRR)-containing transmembrane receptor-like kinases (RLKs) are important components of plant signal transduction. The Arabidopsis thaliana somatic embryogenesis receptor-like kinase 1 (AtSERK1) is an LRR-RLK proposed to participate in a signal transduction cascade involved in em

  6. Liver myofibroblasts activate protein C and respond to activated protein C

    Institute of Scientific and Technical Information of China (English)

    Jennifer; Gillibert-Duplantier; Anne; Rullier; Véronique; Neaud; Walter; Kisiel; Jean; Rosenbaum

    2010-01-01

    AIM:To study the protein C activation system in human liver myofibroblasts,and the effects of activated protein C(APC)on these cells.METHODS:Human liver myofibroblasts were obtained by outgrowth.Expression of protease activated receptor 1(PAR-1),endothelial protein C receptor(EPCR) and thrombomodulin(TM)was analyzed by flow cytometry.Extracellular signal-regulated kinase(ERK)1/2 activation was assessed by Western blotting using anti-phospho-ERK antibodies.Collagen synthesis was studied with real-time revers...

  7. Functional diversification of FD transcription factors in rice, components of florigen activation complexes.

    Science.gov (United States)

    Tsuji, Hiroyuki; Nakamura, Hiroyuki; Taoka, Ken-ichiro; Shimamoto, Ko

    2013-03-01

    Florigen, a protein encoded by the FLOWERING LOCUS T (FT) in Arabidopsis and Heading date 3a (Hd3a) in rice, is the universal flowering hormone in plants. Florigen is transported from leaves to the shoot apical meristem and initiates floral evocation. In shoot apical cells, conserved cytoplasmic 14-3-3 proteins act as florigen receptors. A hexameric florigen activation complex (FAC) composed of Hd3a, 14-3-3 proteins, and OsFD1, a transcription factor, activates OsMADS15, a rice homolog of Arabidopsis APETALA1, leading to flowering. Because FD is a key component of the FAC, we characterized the FD gene family and their functions. Phylogenetic analysis of FD genes indicated that this family is divided into two groups: (i) canonical FD genes that are conserved among eudicots and non-Poaceae monocots; and (ii) Poaceae-specific FD genes that are organized into three subgroups: Poaceae FD1, FD2 and FD3. The Poaceae FD1 group shares a small sequence motif, T(A/V)LSLNS, with FDs of eudicots and non-Poaceae monocots. Overexpression of OsFD2, a member of the Poaceae FD2 group, produced smaller leaves with shorter plastochrons, suggesting that OsFD2 controls leaf development. In vivo subcellular localization of Hd3a, 14-3-3 and OsFD2 suggested that in contrast to OsFD1, OsFD2 is restricted to the cytoplasm through its interaction with the cytoplasmic 14-3-3 proteins, and interaction of Hd3a with 14-3-3 facilitates nuclear translocation of the FAC containing OsFD2. These results suggest that FD function has diverged between OsFD1 and OsFD2, but formation of a FAC is essential for their function.

  8. Synaptic Vesicle Proteins and Active Zone Plasticity.

    Science.gov (United States)

    Kittel, Robert J; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention.

  9. Lipid activators of protein kinase C

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, V.P.S.; Chauhan, A.; Deshmukh, D.S.; Brockerhoff, H. (New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY (USA))

    1990-01-01

    Among the many reported lipid activators of protein kinase C only those of high affinity can be considered true physiological effectors, at present the tumor promoters, e.g., phorbol esters; 1,2-diacyl-sn-glycerols; and phosphatidylinositol 4,5-bisphosphate. Many other compounds (including arachidonic acid) are activators at high, unphysiological concentrations only, and they seem to be sterically unsuited for bonding to the enzyme. Such pseudoactivators possibly act by scrambling the structure of the regulatory moiety of the kinase.

  10. [Antioxidant activity of cationic whey protein isolate].

    Science.gov (United States)

    titova, M E; Komolov, S A; Tikhomirova, N A

    2012-01-01

    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (pwhey protein isolate has an

  11. Mitogen- and stress-activated protein kinases 1 and 2 are required for maximal trefoil factor 1 induction.

    Directory of Open Access Journals (Sweden)

    Protiti Khan

    Full Text Available Mitogen- and stress-activated protein kinases 1 and 2 (MSK1 and MSK2, activated downstream of the ERK- and p38-mitogen-activated protein kinase pathways are involved in cell survival, proliferation and differentiation. Following mitogenic or stress stimuli, they mediate the nucleosomal response, which includes phosphorylation of histone H3 at serine 10 (H3S10ph coupled with transcriptional activation of immediate-early genes. While MSK1 and MSK2 are closely related, their relative roles may vary with cellular context and/or stimuli. However, our knowledge of MSK2 recruitment to immediate-early genes is limited, as research has primarily focused on MSK1. Here, we demonstrate that both MSK1 and MSK2, regulate the phorbol ester 12-O-tetradecanoylphorbol-13-acetate induced expression of the breast cancer marker gene, trefoil factor 1 (TFF1, by phosphorylating H3S10 at its 5' regulatory regions. The MSK-mediated phosphorylation of H3S10 promotes the recruitment of 14-3-3 isoforms and BRG1, the ATPase subunit of the BAF/PBAF remodeling complex, to the enhancer and upstream promoter elements of TFF1. The recruited chromatin remodeling activity leads to the RNA polymerase II carboxy-terminal domain phosphorylation at the TFF1 promoter, initiating TFF1 expression in MCF-7 breast cancer cells. Moreover, we show that MSK1 or MSK2 is recruited to TFF1 regulatory regions, but as components of different multiprotein complexes.

  12. [Protein kinase C activation induces platelet apoptosis].

    Science.gov (United States)

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  13. Tau protein

    DEFF Research Database (Denmark)

    Frederiksen, Jette Lautrup Battistini; Kristensen, Kim; Bahl, Jmc

    2011-01-01

    Background: Tau protein has been proposed as biomarker of axonal damage leading to irreversible neurological impairment in MS. CSF concentrations may be useful when determining risk of progression from ON to MS. Objective: To investigate the association between tau protein concentration and 14......-3-3 protein in the cerebrospinal fluid (CSF) of patients with monosymptomatic optic neuritis (ON) versus patients with monosymptomatic onset who progressed to multiple sclerosis (MS). To evaluate results against data found in a complete literature review. Methods: A total of 66 patients with MS and/or ON from...... the Department of Neurology of Glostrup Hospital, University of Copenhagen, Denmark, were included. CSF samples were analysed for tau protein and 14-3-3 protein, and clinical and paraclinical information was obtained from medical records. Results: The study shows a significantly increased concentration of tau...

  14. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2).

    Science.gov (United States)

    Anderson, David R; Meyers, Marvin J; Vernier, William F; Mahoney, Matthew W; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Schindler, John F; Reitz, David B; Mourey, Robert J

    2007-05-31

    A new class of potent kinase inhibitors selective for mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK-2) for the treatment of rheumatoid arthritis has been prepared and evaluated. These inhibitors have IC50 values as low as 10 nM against the target and have good selectivity profiles against a number of kinases including CDK2, ERK, JNK, and p38. These MK-2 inhibitors have been shown to suppress TNFalpha production in U397 cells and to be efficacious in an acute inflammation model. The structure-activity relationships of this series, the selectivity for MK-2 and their activity in both in vitro and in vivo models are discussed. The observed selectivity is discussed with the aid of an MK-2/inhibitor crystal structure.

  15. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  16. Pyrin Inflammasome Activation and RhoA Signaling in the Autoinflammatory Diseases FMF and HIDS

    OpenAIRE

    Park, Yong Hwan; Wood, Geryl; Kastner, Daniel L.; Chae, Jae Jin

    2016-01-01

    Mutations of pyrin and mevalonate kinase (MVK) cause distinct interleukin-1β (IL-1β)-mediated autoinflammatory diseases, familial Mediterranean fever (FMF) and hyperimmunoglobulinemia D syndrome (HIDS). Pyrin forms an inflammasome when mutated or in response to bacterial modification of the GTPase RhoA. Here we show that RhoA activates the serine-threonine kinases PKN1 and PKN2 that bind and phosphorylate pyrin. Phosphorylated pyrin binds 14-3-3 proteins, which block the pyrin inflammasome. T...

  17. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis.

    Science.gov (United States)

    Takiar, Vinita; Nishio, Saori; Seo-Mayer, Patricia; King, J Darwin; Li, Hui; Zhang, Li; Karihaloo, Anil; Hallows, Kenneth R; Somlo, Stefan; Caplan, Michael J

    2011-02-08

    Renal cyst development and expansion in autosomal dominant polycystic kidney disease (ADPKD) involves both fluid secretion and abnormal proliferation of cyst-lining epithelial cells. The chloride channel of the cystic fibrosis transmembrane conductance regulator (CFTR) participates in secretion of cyst fluid, and the mammalian target of rapamycin (mTOR) pathway may drive proliferation of cyst epithelial cells. CFTR and mTOR are both negatively regulated by AMP-activated protein kinase (AMPK). Metformin, a drug in wide clinical use, is a pharmacological activator of AMPK. We find that metformin stimulates AMPK, resulting in inhibition of both CFTR and the mTOR pathways. Metformin induces significant arrest of cystic growth in both in vitro and ex vivo models of renal cystogenesis. In addition, metformin administration produces a significant decrease in the cystic index in two mouse models of ADPKD. Our results suggest a possible role for AMPK activation in slowing renal cystogenesis as well as the potential for therapeutic application of metformin in the context of ADPKD.

  18. Designing mimics of membrane active proteins.

    Science.gov (United States)

    Sgolastra, Federica; Deronde, Brittany M; Sarapas, Joel M; Som, Abhigyan; Tew, Gregory N

    2013-12-17

    As a semipermeable barrier that controls the flux of biomolecules in and out the cell, the plasma membrane is critical in cell function and survival. Many proteins interact with the plasma membrane and modulate its physiology. Within this large landscape of membrane-active molecules, researchers have focused significant attention on two specific classes of peptides, antimicrobial peptides (AMPs) and cell penetrating peptides (CPPs), because of their unique properties. In this Account, we describe our efforts over the last decade to build and understand synthetic mimics of antimicrobial peptides (SMAMPs). These endeavors represent one specific example of a much larger effort to understand how synthetic molecules interact with and manipulate the plasma membrane. Using both defined molecular weight oligomers and easier to produce, but heterogeneous, polymers, we have generated scaffolds with biological potency exceeding that of the natural analogues. One of these compounds has progressed through a phase II clinical trial for pan-staph infections. Modern biophysical assays have highlighted the interplay between the synthetic scaffold and lipid composition: a negative Gaussian curvature is required both for pore formation and for the initiation of endosome creation. Although work remains to better resolve the complexity of this interplay between lipids, other bilayer components, and the scaffolds, significant new insights have been discovered. These results point to the importance of considering the various aspects of permeation and how these are related to "pore formation". More recently, our efforts have expanded toward protein transduction domains, or mimics of cell penetrating peptides. Using a combination of unique molecular scaffolds and guanidinium-rich side chains, we have produced an array of polymers with robust membrane (and delivery) activity. In this new area, researchers are just beginning to understand the fundamental interactions between these new

  19. Human carotid atherosclerotic plaque protein(s) change HDL protein(s) composition and impair HDL anti-oxidant activity.

    Science.gov (United States)

    Cohen, Elad; Aviram, Michael; Khatib, Soliman; Volkova, Nina; Vaya, Jacob

    2016-01-01

    High density lipoprotein (HDL) anti-atherogenic functions are closely associated with cardiovascular disease risk factor, and are dictated by its composition, which is often affected by environmental factors. The present study investigates the effects of the human carotid plaque constituents on HDL composition and biological functions. To this end, human carotid plaques were homogenized and incubated with HDL. Results showed that after incubation, most of the apolipoprotein A1 (Apo A1) protein was released from the HDL, and HDL diameter increased by an average of approximately 2 nm. In parallel, HDL antioxidant activity was impaired. In response to homogenate treatment HDL could not prevent the accelerated oxidation of LDL caused by the homogenate. Boiling of the homogenate prior to its incubation with HDL abolished its effects on HDL composition changes. Moreover, tryptophan fluorescence quenching assay revealed an interaction between plaque component(s) and HDL, an interaction that was reduced by 50% upon using pre-boiled homogenate. These results led to hypothesize that plaque protein(s) interacted with HDL-associated Apo A1 and altered the HDL composition. Immuno-precipitation of Apo A1 that was released from the HDL after its incubation with the homogenate revealed a co-precipitation of three isomers of actin. However, beta-actin alone did not significantly affect the HDL composition, and yet the active protein within the plaque was elusive. In conclusion then, protein(s) in the homogenate interact with HDL protein(s), leading to release of Apo A1 from the HDL particle, a process that was associated with an increase in HDL diameter and with impaired HDL anti-oxidant activity.

  20. Protein C activity in dogs envenomed by Vipera palaestinae.

    Science.gov (United States)

    Hadar, Gil; Kelmer, Efrat; Segev, Gilad; Bruchim, Yaron; Aroch, Itamar

    2014-09-01

    Vipera palaestinae is responsible for most envenomations in humans and domestic animal in Israel. Its venom has pro- and anticoagulant properties. Protein C is a major natural anticoagulant, preventing excess clotting and thrombosis. This study investigated protein C activity and its prognostic value, as well as several other hemostatic analytes in dogs (Canis familiaris) accidently envenomed by V. palaestinae. Protein C activity was compared between envenomed dogs and 33 healthy control dogs. Mean protein C was lower in dogs envenomed by V. palaestinae compared to controls (12.9% vs. 22.9%, respectively; P Dogs diagnosed with consumptive coagulopathy (14%) tended to have lower protein C activity compared to others; however, their mortality did differ from that of other dogs. This is the first study assessing protein C activity in V. palaestinae victims. Decreased protein C activity in such dogs may play a role in formation of thrombosis and hemostatic derangement as well as inflammation in V. palaestinae envenomations.

  1. Human cytomegalovirus IE2 protein interacts with transcription activating factors

    Institute of Scientific and Technical Information of China (English)

    XU; Jinping(徐进平); YE; Linbai(叶林柏)

    2002-01-01

    The human cytomegalovirus (HCMV) IE86 Cdna was cloned into Pgex-2T and fusion protein GST-IE86 was expressed in E. Coli. SDS-PAGE and Western blot assay indicated that fusion protein GST-IE86 with molecular weight of 92 ku is soluble in the supernatant of cell lysate. Protein GST and fusion protein GST-IE86 were purified by affinity chromatography. The technology of co-separation and specific affinity chromatography was used to study the interactions of HCMV IE86 protein with some transcriptional regulatory proteins and transcriptional factors. The results indicated that IE86 interacts separately with transcriptional factor TFIIB and promoter DNA binding transcription trans-activating factors SP1, AP1 and AP2 to form a heterogenous protein complex. These transcriptional trans-activating factors, transcriptional factor and IE86 protein were adsorbed and retained in the affinity chromatography simultaneously. But IE86 protein could not interact with NF-Кb, suggesting that the function of IE86 protein that can interact with transcriptional factor and transcriptional trans-activating factors has no relevance to protein glycosylation. IE86 protein probably has two domains responsible for binding transcriptional trans-activating regulatory proteins and transcriptional factors respectively, thus activating the transcription of many genes. The interactions accelerated the assembly of the transcriptional initiation complexes.

  2. 4-hydroxy-2, 3-nonenal activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Kazuhiro Kikuta; Atsushi Masamune; Masahiro Satoh; Noriaki Suzuki; Tooru Shimosegawa

    2004-01-01

    AIM: Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis,where oxidative stress is thought to play a key role. 4-hydroxy2,3-nonenal (HNE) is generated endogenously during the process of lipid peroxidation, and has been accepted as a mediator of oxidative stress. The aim of this study was to clarify the effects of HNE on the activation of signal transduction pathways and cellular functions in PSCs.METHODS: PSCs were isolated from the pancreas of male Wistar rats after perfusion with collagenase P, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. PSCs were treated with physiologically relevant and non-cytotoxic concentrations (up to 5 μmol/L)of HNE. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay.Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. Cell proliferation was assessed by measuring the incorporation of 5-bromo-2'-deoxyuridine. Production of type Ⅰ collagen and monocyte chemoattractant protein-1was determined by enzyme-linked immunosorbent assay.The effect of HNE on the transformation of freshly isolated PSCs in culture was also assessed.RESULTS: HNE activated activator protein-1, but not nuclear factor κB. In addition, HNE activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. HNE increased type Ⅰ collagen production through the activation of p38 MAP kinase and c-Jun N-terminal kinase. HNE did not alter the proliferation,or monocyte chemoattractant protein-1 production. HNE did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype.CONCLUSION: Specific activation of these signal transduction pathways and altered cell functions such as collagen production by HNE may play a role in the pathogenesis of pancreatic

  3. Activated protein C to heal pressure ulcers.

    Science.gov (United States)

    Wijewardena, Aruna; Lajevardi, Sepehr S; Vandervord, Elle; Vandervord, John; Lang, Thomas C; Fulcher, Gregory; Jackson, Christopher J

    2016-10-01

    Pressure ulcers present a major clinical challenge, are physically debilitating and place the patient at risk of serious comorbidities such as septic shock. Recombinant human activated protein C (APC) is an anticoagulant with anti-inflammatory, cytoprotective and angiogenic effects that promote rapid wound healing. Topical negative pressure wound therapy (TNP) has become widely used as a treatment modality in wounds although its efficacy has not been proven through randomised controlled trials. The aim of this study was to determine the preliminary efficacy and safety of treatment with APC for severe chronic pressure sores with and without TNP. This case presentation describes the history, management and outcome of two patients each with a severe chronic non-healing pressure ulcer that had failed to respond to conventional therapy. TNP was added to conservative management of both ulcers with no improvement seen. Then local application of small doses of APC was added to TNP and with conservative management, resulted in significant clinical improvement and rapid healing of both ulcers, displaying rapid growth of vascular granulation tissue with subsequent epithelialisation. Patients tolerated the treatment well and improvements suggested by long-term follow-up were provided. Randomised placebo-controlled double blind trials are needed to quantify the efficacy, safety, cost-effectiveness, optimal dose and quality of life changes seen from treatment with APC.

  4. Trithorax group proteins: switching genes on and keeping them active.

    Science.gov (United States)

    Schuettengruber, Bernd; Martinez, Anne-Marie; Iovino, Nicola; Cavalli, Giacomo

    2011-11-23

    Cellular memory is provided by two counteracting groups of chromatin proteins termed Trithorax group (TrxG) and Polycomb group (PcG) proteins. TrxG proteins activate transcription and are perhaps best known because of the involvement of the TrxG protein MLL in leukaemia. However, in terms of molecular analysis, they have lived in the shadow of their more famous counterparts, the PcG proteins. Recent advances have improved our understanding of TrxG protein function and demonstrated that the heterogeneous group of TrxG proteins is of critical importance in the epigenetic regulation of the cell cycle, senescence, DNA damage and stem cell biology.

  5. G protein activation by G protein coupled receptors: ternary complex formation or catalyzed reaction?

    Science.gov (United States)

    Roberts, David J; Waelbroeck, Magali

    2004-09-01

    G protein coupled receptors catalyze the GDP/GTP exchange on G proteins, thereby activating them. The ternary complex model, designed to describe agonist binding in the absence of GTP, is often extended to G protein activation. This is logically unsatisfactory as the ternary complex does not accumulate when G proteins are activated by GTP. Extended models taking into account nucleotide binding exist, but fail to explain catalytic G protein activation. This review puts forward an enzymatic model of G protein activation and compares its predictions with the ternary complex model and with observed receptor phenomenon. This alternative model does not merely provide a new set of formulae but leads to a new philosophical outlook and more readily accommodates experimental observations. The ternary complex model implies that, HRG being responsible for efficient G protein activation, it should be as stable as possible. In contrast, the enzyme model suggests that although a limited stabilization of HRG facilitates GDP release, HRG should not be "too stable" as this might trap the G protein in an inactive state and actually hinder G protein activation. The two models also differ completely in the definition of the receptor "active state": the ternary complex model implies that the active state corresponds to a single active receptor conformation (HRG); in contrast, the catalytic model predicts that the active receptor state is mobile, switching smoothly through various conformations with high and low affinities for agonists (HR, HRG, HRGGDP, HRGGTP, etc.).

  6. Serum paraoxonase activity and protein thiols in patients with hyperlipidemia

    Institute of Scientific and Technical Information of China (English)

    Mungli Prakash; Jeevan K Shetty; Sudeshna Tripathy; Pannuri Vikram; Manish Verma

    2009-01-01

    Objective: In the present study we evaluated the paraoxonase activity and protein thiols level in south Indian population with newly diagnosed hyperlipidemia. Methods: The study was conducted on 55 newly diagnosed hyperlipidemic pa-tients and 57 healthy controls. Serum paraoxonase activity and protein thiols were estimated by spectrophotometeric method and lipid profile by enzymatic kinetic assay method. Results: Serum paraoxonase activity, protein thiols and high density lipoprotein levels were low and total cholesterol, triglycerides and low density lipoprutein levels were high in patients with hyperlipidemia compared to healthy controls ( P < 0.01 ). Serum paranxonase activity correlated positively with protein thiols and high density lipoprotein (P<0.01). Conclusion: Decreased paraoxonase activity and protein thiols were found in patients with hyperlipi-demia. This may indicate the susceptibility of this population to accelerated atherogenesis and protein oxidation.

  7. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for C4b-bindin

  8. Sulfur activation-related extracellular proteins of Acidithiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng-gui; ZHANG Rui-yong; XIA Jin-lan; ZHANG Qian; NIE Zhen-yuan

    2008-01-01

    The fractions of the extracellular proteins of Acidithiobacillus ferrooxidans grown on two different energy substrates,elemental sulfur and ferrous sulfate,were selectively prepared with hot water treatment and distinctly shown by two-dimensional gel electrophoresis.Some protein spots with apparently higher abundance in sulfur energy substrate than in ferrous sulfate energy substrate were identified by using MALDI-TOF/TOF.Based on peptide mass fingerprints and bioinformatical analysis,the extracellular proteins were classified according to their functions as conjugal transfer protein,pilin,vacJ lipoprotein,polysaccharide deacetylase family protein,Ser/Thr protein phosphatase family protein and hypothetical proteins.Several extracellular proteins were found abundant in thiol groups and with CXXC functional motif,these proteins may be directly involved in the sulfur activation by use of their thiol group (Pr-SH) to bond the elemental sulfur.

  9. Identification of highly active flocculant proteins in bovine blood.

    Science.gov (United States)

    Piazza, George J; Nuñez, Alberto; Garcia, Rafael A

    2012-03-01

    Synthetic polymeric flocculants are used extensively for wastewater remediation, soil stabilization, and reduction in water leakage from unlined canals. Sources of highly active, inexpensive, renewable flocculants are needed to replace synthetic flocculants. High kaolin flocculant activity was documented for bovine blood (BB) and blood plasma with several anticoagulant treatments. BB serum also had high flocculant activity. To address the hypothesis that some blood proteins have strong flocculating activity, the BB proteins were separated by SEC. Then, the major proteins of the flocculant-active fractions were separated by SDS-PAGE. Identity of the major protein components was determined by tryptic digestion and peptide analysis by MALDI TOF MS. The sequence of selected peptides was confirmed using TOF/TOF-MS/MS fragmentation. Hemoglobin dimer (subunits α and β) was identified as the major protein component of the active fraction in BB; its high flocculation activity was confirmed by testing a commercial sample of hemoglobin. In the same manner, three proteins from blood plasma (fibrinogen, γ-globulin, α-2-macroglobulin) were found to be highly active flocculants, but bovine serum albumin, α-globulin, and β-globulin were not flocculants. On a mass basis, hemoglobin, γ-globulin, α-2-macroglobulin were as effective as anionic polyacrylamide (PAM), a widely used synthetic flocculant. The blood proteins acted faster than PAM, and unlike PAM, the blood proteins flocculants did not require calcium salts for their activity.

  10. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity.

    Science.gov (United States)

    Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi

    2005-01-01

    The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research.

  11. Regulation of the activity of protein kinases by endogenous heat stable protein inhibitors.

    Science.gov (United States)

    Szmigielski, A

    1985-01-01

    Protein kinase activities are regulated by endogenous thermostable protein inhibitors. Type I inhibitor is a protein of MW 22,000-24,000 which inhibits specifically cyclic AMP-(cAMP) dependent protein kinase (APK) as a competitive inhibitor of catalytic subunits of the enzyme. Type I inhibitor activity changes inversely according to the activation of adenylate cyclase and the changes in cAMP content in tissues. It seems that type I inhibitor serves as a factor preventing spontaneous cAMP-dependent phosphorylation in unstimulated cell. The other thermostable protein which inhibits APK activity has been found in Sertoli cell-enriched testis (testis inhibitor). Physiological role of the testis inhibitor is unknown. Type II inhibitor is a protein of MW 15,000 which blocks phosphorylation mediated by cAMP and cyclic GMP (cGMP) dependent (APK and GPK) and cyclic nucleotide independent protein kinases as a competitive inhibitor of substrate proteins. Activity of this inhibitor specifically changes in reciprocal manner to the changes in cGMP content. It seems that type II inhibitor serves as a factor preventing the phosphorylation catalyzed by GPK when cGMP content is low. Stimulation of guanylate cyclase and activation of GPK is followed by a decrease of type II inhibitor activity. This change in relationship between activities of GPK and type II inhibitor allows for effective phosphorylation catalyzed by this enzyme when cGMP content is increased.

  12. The specific activation of TRPC4 by Gi protein subtype.

    Science.gov (United States)

    Jeon, Jae-Pyo; Lee, Kyu Pil; Park, Eun Jung; Sung, Tae Sik; Kim, Byung Joo; Jeon, Ju-Hong; So, Insuk

    2008-12-12

    The classical type of transient receptor potential channel (TRPC) is a molecular candidate for Ca(2+)-permeable cation channels in mammalian cells. Especially, TRPC4 has the similar properties to Ca(2+)-permeable nonselective cation channels (NSCCs) activated by muscarinic stimulation in visceral smooth muscles. In visceral smooth muscles, NSCCs activated by muscarinic stimulation were blocked by anti-Galphai/o antibodies. However, there is still no report which Galpha proteins are involved in the activation process of TRPC4. Among Galpha proteins, only Galphai protein can activate TRPC4 channel. The activation effect of Galphai was specific for TRPC4 because Galphai has no activation effect on TRPC5, TRPC6 and TRPV6. Coexpression with muscarinic receptor M2 induced TRPC4 current activation by muscarinic stimulation with carbachol, which was inhibited by pertussis toxin. These results suggest that Galphai is involved specifically in the activation of TRPC4.

  13. Activation of the mitogen-activated protein kinase pathways by heat shock

    OpenAIRE

    Dorion, Sonia; Landry, Jacques

    2002-01-01

    In addition to inducing new transcriptional activities that lead within a few hours to the accumulation of heat shock proteins (Hsps), heat shock activates within minutes the major signaling transduction pathways involving mitogen-activated protein kinases, extracellular signal–regulated kinase, stress-activated protein kinase 1 (SAPK1)–c-Jun N-terminal kinase, and SAPK2-p38. These kinases are involved in both survival and death pathways in response to other stresses and may, therefore, contr...

  14. New constitutive latex osmotin-like proteins lacking antifungal activity.

    Science.gov (United States)

    Freitas, Cleverson D T; Silva, Maria Z R; Bruno-Moreno, Frederico; Monteiro-Moreira, Ana C O; Moreira, Renato A; Ramos, Márcio V

    2015-11-01

    Proteins that share similar primary sequences to the protein originally described in salt-stressed tobacco cells have been named osmotins. So far, only two osmotin-like proteins were purified and characterized of latex fluids. Osmotin from Carica papaya latex is an inducible protein lacking antifungal activity, whereas the Calotropis procera latex osmotin is a constitutive antifungal protein. To get additional insights into this subject, we investigated osmotins in latex fluids of five species. Two potential osmotin-like proteins in Cryptostegia grandiflora and Plumeria rubra latex were detected by immunological cross-reactivity with polyclonal antibodies produced against the C. procera latex osmotin (CpOsm) by ELISA, Dot Blot and Western Blot assays. Osmotin-like proteins were not detected in the latex of Thevetia peruviana, Himatanthus drasticus and healthy Carica papaya fruits. Later, the two new osmotin-like proteins were purified through immunoaffinity chromatography with anti-CpOsm immobilized antibodies. Worth noting the chromatographic efficiency allowed for the purification of the osmotin-like protein belonging to H. drasticus latex, which was not detectable by immunoassays. The identification of the purified proteins was confirmed after MS/MS analyses of their tryptic digests. It is concluded that the constitutive osmotin-like proteins reported here share structural similarities to CpOsm. However, unlike CpOsm, they did not exhibit antifungal activity against Fusarium solani and Colletotrichum gloeosporioides. These results suggest that osmotins of different latex sources may be involved in distinct physiological or defensive events.

  15. Hydrodynamic collective effects of active proteins in biological membranes

    CERN Document Server

    Koyano, Yuki; Mikhailov, Alexander S

    2016-01-01

    Lipid bilayers forming biological membranes are known to behave as viscous 2D fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it has been shown [Proc. Nat. Acad. Sci. USA 112, E3639 (2015)] that such active proteins should in- duce non-thermal fluctuating lipid flows leading to diffusion enhancement and chemotaxis-like drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  16. Protein stability and enzyme activity at extreme biological temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Feller, Georges, E-mail: gfeller@ulg.ac.b [Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry B6a, University of Liege, B-4000 Liege (Belgium)

    2010-08-18

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 {sup 0}C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  17. Antioxidant activities of buttermilk proteins, whey proteins, and their enzymatic hydrolysates.

    Science.gov (United States)

    Conway, Valérie; Gauthier, Sylvie F; Pouliot, Yves

    2013-01-16

    The oxygen radical absorbance capacities (ORAC) and metal chelating capacities (MCC) of protein concentrates prepared from buttermilk and cheese whey by ultrafiltration were compared with those of skim milk protein. Samples were also heat-denatured and hydrolyzed by pepsin for 2 h followed by trypsin for 3 h. The highest MCC was obtained for hydrolyzed skim milk protein. ORAC values ranged from 554.4 to 1319.6 μmol Trolox equivalents/g protein, with the highest value obtained for hydrolyzed buttermilk protein. Liquid-phase isoelectric focusing (IEF) of this hydrolysate yielded peptide fractions with lower ORAC values. LC-MS analysis of the hydrolyzed skim milk and buttermilk proteins and IEF fractions of the latter showed that peptides derived from milk fat globule membrane proteins, primarily butyrophilin, could be responsible for the superior antioxidant activity of buttermilk. These results suggest overall that hydrolyzed buttermilk protein could be used as a source of natural antioxidants.

  18. Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering

    Energy Technology Data Exchange (ETDEWEB)

    Beech, Brenda M.; Xiong, Yijia; Boschek, Curt B.; Baird, Cheryl L.; Bigelow, Diana J.; Mcateer, Kathleen; Squier, Thomas C.

    2014-09-05

    Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications to take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a polyethylene glycol (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with [13C] and [15N], permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. Upon initial formation of hydrogels protein dynamics are suppressed, with concomitant increases in protein stability. Relaxation of the hydrogel matrix following transient heating results in the activation of protein dynamics and restoration of substrate-induced large-amplitude domain motions necessary for substrate binding.

  19. Utilizing avidity to improve antifreeze protein activity: a type III antifreeze protein trimer exhibits increased thermal hysteresis activity.

    Science.gov (United States)

    Can, Özge; Holland, Nolan B

    2013-12-03

    Antifreeze proteins (AFPs) are ice growth inhibitors that allow the survival of several species living at temperatures colder than the freezing point of their bodily fluids. AFP activity is commonly defined in terms of thermal hysteresis, which is the difference observed for the solution freezing and melting temperatures. Increasing the thermal hysteresis activity of these proteins, particularly at low concentrations, is of great interest because of their wide range of potential applications. In this study, we have designed and expressed one-, two-, and three-domain antifreeze proteins to improve thermal hysteresis activity through increased binding avidity. The three-domain type III AFP yielded significantly greater activity than the one- and two-domain proteins, reaching a thermal hysteresis of >1.6 °C at a concentration of hysteresis activity.

  20. Coactivator p100 protein enhances histone acetyltransferase activity of CBP

    Institute of Scientific and Technical Information of China (English)

    JIE YANG; HONG BAI; Li JIE DONG; JIE SHAO; OLLI SILVENNOINEN; ZHI YAO

    2006-01-01

    Human p100 protein consists of four repeated domains of staphylococcal nuclease (SN)-like domain, as well as a tudor (TD) domain thereafter. We have previously shown that the SN-like domain of p100 interacted with STAT6 and the large subunit of RNA pol Ⅱ, resulting in the enhancement of STAT6-mediated gene transcriptional activation. Here, we show that SN-like domain also interacted with CREB binding protein (CBP) and directly enhanced the acetyl transferase activity of CBP on histone. On the other hand, overexpression of CBP alone had no ability to significantly increase STAT6-dependent transcriptional activation, however, together with p100 protein, sufficiently enhanced the activation of transcription which was in line with the previous result that p100 protein bridged STAT6 with CBP.

  1. Protein composition of catalytically active human telomerase from immortal cells

    DEFF Research Database (Denmark)

    Cohen, Scott B; Graham, Mark E; Lovrecz, George O;

    2007-01-01

    on the enzyme's ability to catalyze nucleotide addition onto a DNA oligonucleotide of telomeric sequence, thereby providing specificity for catalytically active telomerase. Mass spectrometric sequencing of the protein components and molecular size determination indicated an enzyme composition of two molecules...

  2. A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor REPRESSION OF SHOOT GROWTH in response to gibberellins.

    Science.gov (United States)

    Ishida, Sarahmi; Yuasa, Takashi; Nakata, Masaru; Takahashi, Yohsuke

    2008-12-01

    The homeostasis of gibberellins (GAs) is maintained by negative feedback in plants. REPRESSION OF SHOOT GROWTH (RSG) is a tobacco (Nicotiana tabacum) transcriptional activator that has been suggested to play a role in GA feedback by the regulation of GA biosynthetic enzymes. The 14-3-3 signaling proteins negatively regulate RSG by sequestering it in the cytoplasm in response to GAs. The phosphorylation on Ser-114 of RSG is essential for 14-3-3 binding of RSG. Here, we identified tobacco Ca(2+)-dependent protein kinase (CDPK1) as an RSG kinase that promotes 14-3-3 binding to RSG by phosphorylation of Ser-114 of RSG. CDPK1 interacts with RSG in a Ca(2+)-dependent manner in vivo and in vitro and specifically phosphorylates Ser-114 of RSG. Inhibition of CDPK repressed the GA-induced phosphorylation of Ser-114 of RSG and the GA-induced nuclear export of RSG. Overexpression of CDPK1 inhibited the feedback regulation of a GA 20-oxidase gene and resulted in sensitization to the GA biosynthetic inhibitor. Our results suggest that CDPK1 decodes the Ca(2+) signal produced by GAs and regulates the intracellular localization of RSG.

  3. Metaproteomics: Evaluation of protein extraction from activated sludge.

    Science.gov (United States)

    Hansen, Susan Hove; Stensballe, Allan; Nielsen, Per Halkjaer; Herbst, Florian-Alexander

    2014-11-01

    Metaproteomic studies of full-scale activated sludge systems require reproducible protein extraction methods. A systematic evaluation of three different extractions protocols, each in combination with three different methods of cell lysis, and a commercial kit were evaluated. Criteria used for comparison of each method included the extracted protein concentration and the number of identified proteins and peptides as well as their phylogenetic, cell localization and functional distribution and quantitative reproducibility. Furthermore, the advantage of using specific metagenomes and a 2-step database approach was illustrated. The results recommend a protocol for protein extraction from activated sludge based on the protein extraction reagent B-Per and bead beating. The data have been deposited to the ProteomeXchange with identifier PXD000862 (http://proteomecentral.proteomexchange.org/dataset/PXD000862).

  4. [Activated protein C (the impact of PROWESS trial)].

    Science.gov (United States)

    Iba, Toshiaki; Kidokoro, Akio

    2004-12-01

    The inflammatory response in severe sepsis is integrally linked to procoagulant activity and endothelial activation. The abnormalities in the microcirculation results in the development of septic organ dysfunction. The natural anticoagulant activated protein C is expected not only to improve the unbalanced coagulation/fibrinolysis system, but also to modulate the endothelial function, and to express the anti-inflammatory properties. To certify these effects, a large scale, multiple center, randomized, placebo controlled phase 3 trial (PROWESS trial) has been conducted. The results showed the statistically significant improved survival in patients with sepsis induced organ dysfunction (absolute risk reduction in 6.1%). As a result, activated protein C is recommended in patients at high risk of death such as Acute Physiology and Chronic Health Evaluation II > or = 25. However, since bleeding risk is reported as an adverse effect, activated protein C is contraindicated in patients with bleeding tendency.

  5. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Science.gov (United States)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  6. Cellular reprogramming through mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  7. Dissociation of activated protein C functions by elimination of protein S cofactor enhancement.

    LENUS (Irish Health Repository)

    Harmon, Shona

    2008-11-07

    Activated protein C (APC) plays a critical anticoagulant role in vivo by inactivating procoagulant factor Va and factor VIIIa and thus down-regulating thrombin generation. In addition, APC bound to the endothelial cell protein C receptor can initiate protease-activated receptor-1 (PAR-1)-mediated cytoprotective signaling. Protein S constitutes a critical cofactor for the anticoagulant function of APC but is not known to be involved in regulating APC-mediated protective PAR-1 signaling. In this study we utilized a site-directed mutagenesis strategy to characterize a putative protein S binding region within the APC Gla domain. Three single amino acid substitutions within the APC Gla domain (D35T, D36A, and A39V) were found to mildly impair protein S-dependent anticoagulant activity (<2-fold) but retained entirely normal cytoprotective activity. However, a single amino acid substitution (L38D) ablated the ability of protein S to function as a cofactor for this APC variant. Consequently, in assays of protein S-dependent factor Va proteolysis using purified proteins or in the plasma milieu, APC-L38D variant exhibited minimal residual anticoagulant activity compared with wild type APC. Despite the location of Leu-38 in the Gla domain, APC-L38D interacted normally with endothelial cell protein C receptor and retained its ability to trigger PAR-1 mediated cytoprotective signaling in a manner indistinguishable from that of wild type APC. Consequently, elimination of protein S cofactor enhancement of APC anticoagulant function represents a novel and effective strategy by which to separate the anticoagulant and cytoprotective functions of APC for potential therapeutic gain.

  8. Constitutive Photomorphogensis Protein1 (COP1 mediated p53 pathway and its oncogenic role

    Directory of Open Access Journals (Sweden)

    Md. Golam Rabbani

    2014-05-01

    Full Text Available We have reviewed the COP1 mediated tumor suppressor protein p53 pathway and its oncogenic role. COP1 is a negative regulator of p53 and acts as a pivotal controller of p53-Akt death-live switch (Protein kinase B. In presence of p53, COP1 is overexpressed in breast, ovarian, gastric cancers, even without MDM2 (Mouse double minute-2 amplification. Following DNA damage, COP1 is phosphorylated instantly by ATM (Ataxia telangiectasia mutated and degraded by 14-3-3 and #963; following nuclear export and enhancing ubiquitination. In ATM lacking cell, other kinases, i.e. ATR (ataxia telangiectasia and Rad3-related protein, Jun kinases and DNA-PK (DNA-dependent protein kinase cause COP1 and CSN3 (COP9 signalosome complex subunit-3 phosphorylation and initiate COP1's down regulation. Although, it has been previously found that co-knockout of MDM2 and COP1 enhance p53's half life by eight fold, the reason is still unknown. Additionally, while interacting with p53, COP1 upregulate MDM2's E3 ubiquitin ligase, Akt, CSN6 (COP9 signalosome 6 activity and inhibit 14-3-3 and #963;'s negative regulation on MDM2 and COP1 itself. Conclusively, there persists an amplification loop among COP1, MDM2, Akt and 14-3-3 and #963; to regulate p53's stability and activity. However, the role of another tumor suppressor PTEN (phosphatase and tensin homologue is yet to be discovered. This study provides insight on the molecular genetic pathways related to cancer and might be helpful for therapeutic inventions. [Biomed Res Ther 2014; 1(5.000: 142-151

  9. Auto-phosphorylation Represses Protein Kinase R Activity

    Science.gov (United States)

    Wang, Die; de Weerd, Nicole A.; Willard, Belinda; Polekhina, Galina; Williams, Bryan R. G.; Sadler, Anthony J.

    2017-01-01

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity. PMID:28281686

  10. Zinc ions bind to and inhibit activated protein C

    DEFF Research Database (Denmark)

    Zhu, Tianqing; Ubhayasekera, Wimal; Nickolaus, Noëlle

    2010-01-01

    Zn2+ ions were found to efficiently inhibit activated protein C (APC), suggesting a potential regulatory function for such inhibition. APC activity assays employing a chromogenic peptide substrate demonstrated that the inhibition was reversible and the apparent K I was 13 +/- 2 microM. k cat was ...

  11. Anthelmintic activity of Leucaena leucocephala protein extracts on Haemonchus contortus

    Directory of Open Access Journals (Sweden)

    Alexandra Martins dos Santos Soares

    Full Text Available Abstract The objective of this study was to evaluate the effects of protein extracts obtained from the plant Leucaena leucocephala on the nematode parasite Haemonchus contortus. The seeds, shell and cotyledon of L. leucocephala were separated and their proteins extracted using a sodium phosphate buffer, and named as TE (total seed extract, SE (shell extract and CE (cotyledon extract. Soluble protein content, protease, protease inhibitory and chitinase activity assays were performed. Exsheathment inhibition of H. contortus larvae were performed at concentrations of 0.6 mg mL–1, and egg hatch assays were conducted at protein concentrations of 0.8, 0.4, 0.2, 0.1 and 0.05 mg mL–1. The effective concentration for 50% hatching inhibition (EC50 was estimated by probit. Different proportions of soluble proteins, protease and chitinase were found in TE and CE. Protease inhibitory activity was detected in all extracts. The EC50 of the CE and TE extracts were 0.48 and 0.33 mg mL–1, respectively. No ovicidal effects on H. contortus were detected in SE extracts, and none of the protein extracts demonstrated larvicidal effects on H. contortus. We therefore conclude that protein extracts of L. leucocephala had a detrimental effect on nematode eggs, which can be correlated with the high protease and chitinase activity of these extracts.

  12. Anthelmintic activity of Leucaena leucocephala protein extracts on Haemonchus contortus.

    Science.gov (United States)

    Soares, Alexandra Martins dos Santos; de Araújo, Sandra Alves; Lopes, Suzana Gomes; Costa Junior, Livio Martins

    2015-01-01

    The objective of this study was to evaluate the effects of protein extracts obtained from the plant Leucaena leucocephala on the nematode parasite Haemonchus contortus. The seeds, shell and cotyledon of L. leucocephala were separated and their proteins extracted using a sodium phosphate buffer, and named as TE (total seed extract), SE (shell extract) and CE (cotyledon extract). Soluble protein content, protease, protease inhibitory and chitinase activity assays were performed. Exsheathment inhibition of H. contortus larvae were performed at concentrations of 0.6 mg mL-1, and egg hatch assays were conducted at protein concentrations of 0.8, 0.4, 0.2, 0.1 and 0.05 mg mL-1. The effective concentration for 50% hatching inhibition (EC50) was estimated by probit. Different proportions of soluble proteins, protease and chitinase were found in TE and CE. Protease inhibitory activity was detected in all extracts. The EC50 of the CE and TE extracts were 0.48 and 0.33 mg mL-1, respectively. No ovicidal effects on H. contortus were detected in SE extracts, and none of the protein extracts demonstrated larvicidal effects on H. contortus. We therefore conclude that protein extracts of L. leucocephala had a detrimental effect on nematode eggs, which can be correlated with the high protease and chitinase activity of these extracts.

  13. Factor H-related proteins determine complement-activating surfaces.

    Science.gov (United States)

    Józsi, Mihály; Tortajada, Agustin; Uzonyi, Barbara; Goicoechea de Jorge, Elena; Rodríguez de Córdoba, Santiago

    2015-06-01

    Complement factor H-related proteins (FHRs) are strongly associated with different diseases involving complement dysregulation, which suggests a major role for these proteins regulating complement activation. Because FHRs are evolutionarily and structurally related to complement inhibitor factor H (FH), the initial assumption was that the FHRs are also negative complement regulators. Whereas weak complement inhibiting activities were originally reported for these molecules, recent developments indicate that FHRs may enhance complement activation, with important implications for the role of these proteins in health and disease. We review these findings here, and propose that FHRs represent a complex set of surface recognition molecules that, by competing with FH, provide improved discrimination of self and non-self surfaces and play a central role in determining appropriate activation of the complement pathway.

  14. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    Science.gov (United States)

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins.

  15. Enzymatic activities and protein profile of latex from Calotropis procera.

    Science.gov (United States)

    Freitas, Cleverson Diniz T; Oliveira, Jefferson Soares; Miranda, Maria Raquel A; Macedo, Nívea Maria R; Sales, Maurício Pereira; Villas-Boas, Laurival A; Ramos, Márcio Viana

    2007-01-01

    The laticifer fluid of Calotropis procera is rich in proteins and there is evidence that they are involved in the pharmacological properties of the latex. However, not much is known about how the latex-containing proteins are produced or their functions. In this study, laticifer proteins of C. procera were pooled and examined by 1D and 2D electrophoresis, masses spectrometry (MALDI-TOF) and characterized in respect of proteolytic activity and oxidative enzymes. Soluble laticifer proteins were predominantly composed of basic proteins (PI>6.0) with molecular masses varying between 5 and 95 kDa. Proteins with a molecular mass of approximately 26,000 Da were more evident. Strong anti-oxidative activity of superoxide dismutase (EC 1.15.1.1) (1007.74+/-91.89 Ug(-1)DM) and, to a lesser extent ascorbate peroxidase (EC 1.11.1.1) (0.117(d)+/-0.013 microMol H(2)O(2)g(-1)min(-1)), were detected. However, catalase (EC 1.11.1.6) was absent. The strong proteolytic activities of laticifer proteins from C. procera were shown to be shared by at least four distinct cysteine proteinases (EC 3.4.22.16) that were isolated by gel filtration chromatography. Serine and metaloproteinases were not detected and aspartic proteinase activities were barely visible. Chitinases (EC 3.2.1.14) were also isolated in a chitin column and their activities quantified. The presence of these enzymatic activities in latex from C. procera may confirm their involvement in resistance to phytopathogens and insects, mainly in its leaves where the latex circulates abundantly.

  16. The role of adapter proteins in T cell activation.

    Science.gov (United States)

    Koretzky, G A; Boerth, N J

    1999-12-01

    Engagement of antigen receptors on lymphocytes leads to a myriad of complex signal transduction cascades. Recently, work from several laboratories has led to the identification and characterization of novel adapter molecules, proteins with no intrinsic enzymatic activity but which integrate signal transduction pathways by mediating protein-protein interactions. Interestingly, it appears that many of these adapter proteins play as critical a role as the effector enzymes themselves in both lymphocyte development and activation. This review describes some of the biochemical and molecular features of several of these newly identified hematopoietic cell-specific adapter molecules highlighting their importance in regulating (both positively and negatively) signal transduction mediated by the T cell antigen receptor.

  17. Protein folding activity and the central dogma of molecular biology

    OpenAIRE

    Pallavi, Ghosh; Dipankar, Chatterji

    2003-01-01

    Biological systems, in general, can function effectively when the products of the system are in proper configuration and harmful effects due to misaggregation are avoided. Folding of proteins and their functional consequences have been a subject of active research since several years now. However it is not clear whether during protein synthesis from genetic message, the same set of rules are employed or participation of new efforts take place. In this review we show that at least in the case ...

  18. Protein L. A bacterial Ig-binding protein that activates human basophils and mast cells.

    Science.gov (United States)

    Patella, V; Casolaro, V; Björck, L; Marone, G

    1990-11-01

    Peptostreptococcus magnus strain 312 (10(6) to 10(8)/ml), which synthesizes a protein capable of binding to kappa L chains of human Ig (protein L), stimulated the release of histamine from human basophils in vitro. P. magnus strain 644, which does not synthesize protein L, did not induce histamine secretion. Soluble protein L (3 x 10(-2) to 3 micrograms/ml) induced histamine release from human basophils. The characteristics of the release reaction were similar to those of rabbit IgG anti-Fc fragment of human IgE (anti-IgE): it was Ca2(+)- and temperature-dependent, optimal release occurring at 37 degrees C in the presence of 1.0 mM extracellular Ca2+. There was an excellent correlation (r = 0.82; p less than 0.001) between the maximal percent histamine release induced by protein L and that induced by anti-IgE, as well as between protein L and protein A from Staphylococcus aureus (r = 0.52; p less than 0.01). Preincubation of basophils with either protein L or anti-IgE resulted in complete cross-desensitization to a subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda-chains) blocked anti-IgE-induced histamine release but failed to block the histamine releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa-chains) blocked both anti-IgE- and protein L-induced releases, whereas human polyclonal IgG selectively blocked protein L-induced secretion. Protein L acted as a complete secretagogue, i.e., it activated basophils to release sulfidopeptide leukotriene C4 as well as histamine. Protein L (10(-1) to 3 micrograms/ml) also induced the release of preformed (histamine) and de novo synthesized mediators (leukotriene C4 and/or PGD2) from mast cells isolated from lung parenchyma and skin tissues. Intradermal injections of protein L (0.01 to 10 micrograms/ml) in nonallergic subjects caused a dose-dependent wheal-and-flare reaction. Protein L activates human basophils and mast cells in

  19. [Regulation of G protein-coupled receptor kinase activity].

    Science.gov (United States)

    Haga, T; Haga, K; Kameyama, K; Nakata, H

    1994-09-01

    Recent progress on the activation of G protein-coupled receptor kinases is reviewed. beta-Adrenergic receptor kinase (beta ARK) is activated by G protein beta gamma -subunits, which interact with the carboxyl terminal portion of beta ARK. Muscarinic receptor m2-subtypes are phosphorylated by beta ARK1 in the central part of the third intracellular loop (I3). Phosphorylation of I3-GST fusion protein by beta ARK1 is synergistically stimulated by the beta gamma -subunits and mastoparan or a peptide corresponding to portions adjacent to the transmembrane segments of m2-receptors or by beta gamma -subunits and the agonist-bound I3-deleted m2 variant. These results indicate that agonist-bound receptors serve as both substrates and activators of beta ARK.

  20. Hydrodynamic collective effects of active proteins in biological membranes

    Science.gov (United States)

    Koyano, Yuki; Kitahata, Hiroyuki; Mikhailov, Alexander S.

    2016-08-01

    Lipid bilayers forming biological membranes are known to behave as viscous two-dimensional fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it was shown [A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015), 10.1073/pnas.1506825112] that such active proteins should induce nonthermal fluctuating lipid flows leading to diffusion enhancement and chemotaxislike drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  1. RNA-processing protein TDP-43 regulates FOXO-dependent protein quality control in stress response.

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2014-10-01

    Full Text Available Protein homeostasis is critical for cell survival and functions during stress and is regulated at both RNA and protein levels. However, how the cell integrates RNA-processing programs with post-translational protein quality control systems is unknown. Transactive response DNA-binding protein (TARDBP/TDP-43 is an RNA-processing protein that is involved in the pathogenesis of major neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. Here, we report a conserved role for TDP-43, from C. elegans to mammals, in the regulation of protein clearance via activation of FOXO transcription factors. In response to proteotoxic insults, TDP-43 redistributes from the nucleus to the cytoplasm, promoting nuclear translocation of FOXOs and relieving an inhibition of FOXO activity in the nucleus. The interaction between TDP-43 and the FOXO pathway in mammalian cells is mediated by their competitive binding to 14-3-3 proteins. Consistent with FOXO-dependent protein quality control, TDP-43 regulates the levels of misfolded proteins. Therefore, TDP-43 mediates stress responses and couples the regulation of RNA metabolism and protein quality control in a FOXO-dependent manner. The results suggest that compromising the function of TDP-43 in regulating protein homeostasis may contribute to the pathogenesis of related neurodegenerative diseases.

  2. Functional modulation of AMP-activated protein kinase by cereblon.

    Science.gov (United States)

    Lee, Kwang Min; Jo, Sooyeon; Kim, Hyunyoung; Lee, Jongwon; Park, Chul-Seung

    2011-03-01

    Mutations in cereblon (CRBN), a substrate binding component of the E3 ubiquitin ligase complex, cause a form of mental retardation in humans. However, the cellular proteins that interact with CRBN remain largely unknown. Here, we report that CRBN directly interacts with the α1 subunit of AMP-activated protein kinase (AMPK α1) and inhibits the activation of AMPK activation. The ectopic expression of CRBN reduces phosphorylation of AMPK α1 and, thus, inhibits the enzyme in a nutrient-independent manner. Moreover, AMPK α1 can be potently activated by suppressing endogenous CRBN using CRBN-specific small hairpin RNAs. Thus, CRBN may act as a negative modulator of the AMPK signaling pathway in vivo.

  3. Multiple switches in G protein-coupled receptor activation.

    Science.gov (United States)

    Ahuja, Shivani; Smith, Steven O

    2009-09-01

    The activation mechanism of G protein-coupled receptors has presented a puzzle that finally may be close to solution. These receptors have a relatively simple architecture consisting of seven transmembrane helices that contain just a handful of highly conserved amino acids, yet they respond to light and a range of chemically diverse ligands. Recent NMR structural studies on the active metarhodopsin II intermediate of the visual receptor rhodopsin, along with the recent crystal structure of the apoprotein opsin, have revealed multiple structural elements or 'switches' that must be simultaneously triggered to achieve full activation. The confluence of several required structural changes is an example of "coincidence counting", which is often used by nature to regulate biological processes. In ligand-activated G protein-coupled receptors, the presence of multiple switches may provide an explanation for the differences between full, partial and inverse agonists.

  4. L-Alanylglutamine inhibits signaling proteins that activate protein degradation, but does not affect proteins that activate protein synthesis after an acute resistance exercise.

    Science.gov (United States)

    Wang, Wanyi; Choi, Ran Hee; Solares, Geoffrey J; Tseng, Hung-Min; Ding, Zhenping; Kim, Kyoungrae; Ivy, John L

    2015-07-01

    Sustamine™ (SUS) is a dipeptide composed of alanine and glutamine (AlaGln). Glutamine has been suggested to increase muscle protein accretion; however, the underlying molecular mechanisms of glutamine on muscle protein metabolism following resistance exercise have not been fully addressed. In the present study, 2-month-old rats climbed a ladder 10 times with a weight equal to 75 % of their body mass attached at the tail. Rats were then orally administered one of four solutions: placebo (PLA-glycine = 0.52 g/kg), whey protein (WP = 0.4 g/kg), low dose of SUS (LSUS = 0.1 g/kg), or high dose of SUS (HSUS = 0.5 g/kg). An additional group of sedentary (SED) rats was intubated with glycine (0.52 g/kg) at the same time as the ladder-climbing rats. Blood samples were collected immediately after exercise and at either 20 or 40 min after recovery. The flexor hallucis longus (FHL), a muscle used for climbing, was excised at 20 or 40 min post exercise and analyzed for proteins regulating protein synthesis and degradation. All supplements elevated the phosphorylation of FOXO3A above SED at 20 min post exercise, but only the SUS supplements significantly reduced the phosphorylation of AMPK and NF-kB p65. SUS supplements had no effect on mTOR signaling, but WP supplementation yielded a greater phosphorylation of mTOR, p70S6k, and rpS6 compared with PLA at 20 min post exercise. However, by 40 min post exercise, phosphorylation of mTOR and rpS6 in PLA had risen to levels not different than WP. These results suggest that SUS blocks the activation of intracellular signals for MPB, whereas WP accelerates mRNA translation.

  5. Detergent activation of the binding protein in the folate radioassay

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1982-01-01

    A minor cow's whey protein associated with ..beta..-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to ..beta..-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants (lipids/detergents).

  6. Activity of lactoperoxidase when adsorbed on protein layers

    OpenAIRE

    Haberska, Karolina; Svensson, Olof; Shleev, Sergey; Lindh, Liselott; Arnebrant, Thomas; Ruzgas, Tautgirdas

    2008-01-01

    Lactoperoxidase (LPO) is an enzyme, which is used as an antimicrobial agent in a number of applications, e.g., food technology. In the majority of applications LPO is added to a homogeneous product phase or immobilised on product surface. In the latter case, however, the measurements of LPO activity are seldom reported. In this paperwe have assessed LPO enzymatic activity on bare and protein modified gold surfaces by means of electrochemistry. It was found that LPO rapidly adsorbs to bare gol...

  7. Installing hydrolytic activity into a completely de novo protein framework

    Science.gov (United States)

    Burton, Antony J.; Thomson, Andrew R.; Dawson, William M.; Brady, R. Leo; Woolfson, Derek N.

    2016-09-01

    The design of enzyme-like catalysts tests our understanding of sequence-to-structure/function relationships in proteins. Here we install hydrolytic activity predictably into a completely de novo and thermostable α-helical barrel, which comprises seven helices arranged around an accessible channel. We show that the lumen of the barrel accepts 21 mutations to functional polar residues. The resulting variant, which has cysteine-histidine-glutamic acid triads on each helix, hydrolyses p-nitrophenyl acetate with catalytic efficiencies that match the most-efficient redesigned hydrolases based on natural protein scaffolds. This is the first report of a functional catalytic triad engineered into a de novo protein framework. The flexibility of our system also allows the facile incorporation of unnatural side chains to improve activity and probe the catalytic mechanism. Such a predictable and robust construction of truly de novo biocatalysts holds promise for applications in chemical and biochemical synthesis.

  8. New functional assays to selectively quantify the activated protein C- and tissue factor pathway inhibitor-cofactor activities of protein S in plasma.

    Science.gov (United States)

    Alshaikh, N A; Rosing, J; Thomassen, M C L G D; Castoldi, E; Simioni, P; Hackeng, T M

    2017-02-17

    Essentials Protein S is a cofactor of activated protein C (APC) and tissue factor pathway inhibitor (TFPI). There are no assays to quantify separate APC and TFPI cofactor activities of protein S in plasma. We developed assays to measure the APC- and TFPI-cofactor activities of protein S in plasma. The assays were sensitive to protein S deficiency, and not affected by the Factor V Leiden mutation.

  9. 2-Bromopalmitate reduces protein deacylation by inhibition of acyl-protein thioesterase enzymatic activities.

    Directory of Open Access Journals (Sweden)

    Maria P Pedro

    Full Text Available S-acylation, the covalent attachment of palmitate and other fatty acids on cysteine residues, is a reversible post-translational modification that exerts diverse effects on protein functions. S-acylation is catalyzed by protein acyltransferases (PAT, while deacylation requires acyl-protein thioesterases (APT, with numerous inhibitors for these enzymes having already been developed and characterized. Among these inhibitors, the palmitate analog 2-brompalmitate (2-BP is the most commonly used to inhibit palmitoylation in cells. Nevertheless, previous results from our laboratory have suggested that 2-BP could affect protein deacylation. Here, we further investigated in vivo and in vitro the effect of 2-BP on the acylation/deacylation protein machinery, with it being observed that 2-BP, in addition to inhibiting PAT activity in vivo, also perturbed the acylation cycle of GAP-43 at the level of depalmitoylation and consequently affected its kinetics of membrane association. Furthermore, 2-BP was able to inhibit in vitro the enzymatic activities of human APT1 and APT2, the only two thioesterases shown to mediate protein deacylation, through an uncompetitive mechanism of action. In fact, APT1 and APT2 hydrolyzed both the monomeric form as well as the micellar state of the substrate palmitoyl-CoA. On the basis of the obtained results, as APTs can mediate deacylation on membrane bound and unbound substrates, this suggests that the access of APTs to the membrane interface is not a necessary requisite for deacylation. Moreover, as the enzymatic activity of APTs was inhibited by 2-BP treatment, then the kinetics analysis of protein acylation using 2-BP should be carefully interpreted, as this drug also inhibits protein deacylation.

  10. Relative quantification of proteasome activity by activity-based protein profiling and LC-MS/MS

    NARCIS (Netherlands)

    Li, N.; Kuo, C.L.; Paniagua, G.; Elst, H. van den; Verdoes, M.; Willems, L.I.; Linden, W.A. van der; Ruben, M.; Genderen, E. van; Gubbens, J.; Wezel, G.P. van; Overkleeft, H.S.; Florea, B.I.

    2013-01-01

    Activity-based protein profiling (ABPP) is a functional proteomics technique for directly monitoring the expression of active enzymes in cell extracts and living cells. The technique relies on irreversible inhibitors equipped with reactive groups (warheads) that covalently attach to the active site

  11. Reassessing the Potential Activities of Plant CGI-58 Protein.

    Science.gov (United States)

    Khatib, Abdallah; Arhab, Yani; Bentebibel, Assia; Abousalham, Abdelkarim; Noiriel, Alexandre

    2016-01-01

    Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed.

  12. Reassessing the Potential Activities of Plant CGI-58 Protein.

    Directory of Open Access Journals (Sweden)

    Abdallah Khatib

    Full Text Available Comparative Gene Identification-58 (CGI-58 is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL, the initial enzyme responsible for the triacylglycerol (TAG catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed.

  13. Mitogen Activated Protein kinase signal transduction pathways in the prostate

    Directory of Open Access Journals (Sweden)

    Koul Sweaty

    2004-06-01

    Full Text Available Abstract The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy.

  14. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  15. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID.

    Science.gov (United States)

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inês C R; Willige, Björn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the--in many cells--asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  16. Proteins as the source of physiologically and functionally active peptides

    Directory of Open Access Journals (Sweden)

    Anna Iwaniak

    2007-09-01

    Full Text Available The market of functional foods and beverages develops dynamically. Biological activities of many food components which occur naturally become an issue of many scientific and industrial interests. The structural and chemical changes occurring during the proteins processing lead to the release of bioactive peptides. Their multifunctional activity is based on their structure and other factors including e.g. hydrophobicity, charge, or microelements binding properties. This article focuses on peptides with other physiological and functional activities such as antithromobotic, antioxidative, antibacterial and antifungal, sensory, and improving those nutritional value of food.

  17. The pleiotropic activity of heat-shock proteins

    Directory of Open Access Journals (Sweden)

    Arleta Kaźmierczuk

    2009-10-01

    Full Text Available Stress or heat-shock proteins (HSPs are highly conserved proteins present in cells of both prokaryotes and eukaryotes, providing them with protection from cellular and environmental stress factors. Based on molecular-weight, HSPs can be divided into the large (HSP100: 100–110 kDa and HSP90: 75–96 kDa, intermediate (HSP70: 66–78 kDa, HSP60, and HSP40, and small (sHSP: 8.5–40 kDa subfamilies. These proteins play an essential role as molecular chaperones/co-chaperones by assisting the correct folding of nascent and stress-accumulated protein-substrate assembly, preventing the aggregation of these proteins, as well as transport across membranes and the degradation of other proteins. Members of HSP family display dual activity depending on their intra- or extracellular distribution. Intracellular HSPs mainly play a protective role. Extracellular or membrane-bound HSPs mediate immunological functions. Among the functions of HSPs is their participation in cell signaling. This review deals with the structure and properties of the main members of the HSPs and their role in a large number of cellular/extracellular processes.

  18. Heat Shock Protein 90 Indirectly Regulates ERK Activity by Affecting Raf Protein Metabolism

    Institute of Scientific and Technical Information of China (English)

    Fei DOU; Liu-Di YUAN; Jing-Jing ZHU

    2005-01-01

    Extracellular signal-regulated protein kinase (ERK) has been implicated in the pathogenesis of several nerve system diseases. As more and more kinases have been discovered to be the client proteins of the molecular chaperone Hsp90, the use of Hsp90 inhibitors to reduce abnormal kinase activity is a new treatment strategy for nerve system diseases. This study investigated the regulation of the ERK pathway by Hsp90. We showed that Hsp90 inhibitors reduce ERK phosphorylation without affecting the total ERK protein level. Further investigation showed that Raf, the upstream kinase in the Ras-Raf-MEK-ERK pathway,forms a complex with Hsp90 and Hsp70. Treating cells with Hsp90 inhibitors facilitates Raf degradation,thereby down-regulating the activity of ERK.

  19. Novel condensation products having high activity to insolubilize proteins and protein-insolubilized products

    Energy Technology Data Exchange (ETDEWEB)

    Krasnobajew, V.; Boeniger, R.

    1980-01-01

    According to the invention a substantially more active product with respect to the fixing or insolubilization pf proteins, including enzymes, is obtained when 1,3 phenylenediamine is condensed with glutardialdehyde. One application of the process is the enzymatic hydrolysis of lactose in milk products by lactase.

  20. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2003-01-01

    Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline...... and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction...... of the inhibitors reduced adrenaline-induced HSL activation in soleus muscle. Both phorbol-12-myristate-13-acetate (PMA), which activates PKC and, in turn, ERK, and caffeine, which increases intracellular Ca2+ without eliciting contraction, increased HSL activity. Activated ERK increased HSL activity in supernatant...

  1. Mitogen-Activated Protein Kinase–Activated Protein Kinase 2 in Angiotensin II–Induced Inflammation and Hypertension

    Science.gov (United States)

    Ebrahimian, Talin; Li, Melissa Wei; Lemarié, Catherine A.; Simeone, Stefania M.C.; Pagano, Patrick J.; Gaestel, Matthias; Paradis, Pierre; Wassmann, Sven; Schiffrin, Ernesto L.

    2015-01-01

    Vascular oxidative stress and inflammation play an important role in angiotensin II–induced hypertension, and mitogen-activated protein kinases participate in these processes. We questioned whether mitogen-activated protein kinase–activated protein kinase 2 (MK2), a downstream target of p38 mitogen–activated protein kinase, is involved in angiotensin II–induced vascular responses. In vivo experiments were performed in wild-type and Mk2 knockout mice infused intravenously with angiotensin II. Angiotensin II induced a 30 mm Hg increase in mean blood pressure in wild-type that was delayed in Mk2 knockout mice. Angiotensin II increased superoxide production and vascular cell adhesion molecule-1 in blood vessels of wild-type but not in Mk2 knockout mice. Mk2 knockdown by small interfering RNA in mouse mesenteric vascular smooth muscle cells caused a 42% reduction in MK2 protein and blunted the angiotensin II–induced 40% increase of MK2 expression. Mk2 knockdown blunted angiotensin II–induced doubling of intracellular adhesion molecule-1 expression, 2.4-fold increase of nuclear p65, and 1.4-fold increase in Ets-1. Mk2 knockdown abrogated the angiotensin II–induced 4.7-fold and 1.3-fold increase of monocyte chemoattractant protein-1 mRNA and protein. Angiotensin II enhanced reactive oxygen species levels (by 29%) and nicotinamide adenine dinucleotide phosphate oxidase activity (by 48%), both abolished by Mk2 knockdown. Reduction of MK2 blocked angiotensin II–induced p47phox translocation to the membrane, associated with a 53% enhanced catalase expression. Angiotensin II–induced increase of MK2 was prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor Nox2ds-tat. Mk2 small interfering RNA prevented the angiotensin II–induced 30% increase of proliferation. In conclusion, MK2 plays a critical role in angiotensin II signaling, leading to hypertension, oxidative stress via activation of p47phox and inhibition of antioxidants, and

  2. Efficient expression and purification of biologically active human cystatin proteins.

    Science.gov (United States)

    Chauhan, Sakshi; Tomar, Raghuvir S

    2016-02-01

    Cystatins are reversible cysteine protease inhibitor proteins. They are known to play important roles in controlling cathepsins, neurodegenerative disease, and in immune system regulation. Production of recombinant cystatin proteins is important for biochemical and function characterization. In this study, we cloned and expressed human stefin A, stefin B and cystatin C in Escherichia coli. Human stefin A, stefin B and cystatin C were purified from soluble fraction. For cystatin C, we used various chaperone plasmids to make cystatin C soluble, as it is reported to localize in inclusion bodies. Trigger factor, GroES-GroEL, DnaK-DnaJ-GrpE chaperones lead to the presence of cystatin C in the soluble fraction. Immobilized metal affinity chromatography, glutathione sepharose and anion exchange chromatography techniques were employed for efficient purification of these proteins. Their biological activities were tested by inhibition assays against cathepsin L and H3 protease.

  3. Amiloride, protein synthesis, and activation of quiescent cells.

    Science.gov (United States)

    Lubin, M; Cahn, F; Coutermarsh, B A

    1982-11-01

    Amiloride is known to inhibit both influx of sodium ions and activation of quiescent cells by growth factors. The coincidence of these effects has been cited to support the proposal that influx of sodium ions acts as a mitogenic signal. Although it was noted that amiloride inhibited protein synthesis, this was attributed to an action on transport of amino acids, particularly those coupled to sodium fluxes. We find, however, that amiloride directly inhibits polypeptide synthesis in a reticulocyte lysate. In Swiss 3T3 cells, concentrations of amiloride and of cycloheximide that are nearly matched in their degree of inhibition of protein synthesis, produce about the same degree of inhibition of transit of cells from G0 to S. Inhibition of protein synthesis is sufficient to explain the effect of amiloride on mitogenesis; the drug, therefore, is not suitable for testing the hypothesis that sodium influx is a mitogenic signal.

  4. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity[S

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-01-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  5. Antioxidant, Antibacterial, and Cytoprotective Activity of Agathi Leaf Protein

    Directory of Open Access Journals (Sweden)

    A. S. Zarena

    2014-01-01

    Full Text Available In the present study a protein termed agathi leaf protein (ALP from Sesbania grandiflora Linn. (agathi leaves was isolated after successive precipitation with 65% ammonium sulphate followed by purification on Sephadex G 75. The column chromatography of the crude protein resulted in four peaks of which Peak I (P I showed maximum inhibition activity against hydroxyl radical. SDS-PAGE analysis of P I indicated that the molecular weight of the protein is ≈29 kDa. The purity of the protein was 98.4% as determined by RP-HPLC and showed a single peak with a retention time of 19.9 min. ALP was able to reduce oxidative damage by scavenging lipid peroxidation against erythrocyte ghost (85.50 ± 6.25%, linolenic acid (87.67 ± 3.14% at 4.33 μM, ABTS anion (88 ± 3.22%, and DNA damage (83 ± 4.20% at 3.44 μM in a dose-dependent manner. The purified protein offered significant protection to lymphocyte (72% at 30 min induced damage by t-BOOH. In addition, ALP showed strong antibacterial activity against Pseudomonas aeruginosa (20 ± 3.64 mm and Staphylococcus aureus (19 ± 1.53 mm at 200 μg/mL. The safety assessment showed that ALP does not induce cytotoxicity towards human lymphocyte at the tested concentration of 0.8 mg/mL.

  6. Neurotoxic Activity of the HIV-1 Envelope Glycoprotein: Activation of Protein Kinase C in Rat Astrocytes

    Directory of Open Access Journals (Sweden)

    Isaac Adebayo

    2002-11-01

    Full Text Available Abstract: Envelope glycoprotein (gp120 of the human immunodeficiency virus type one (HIV-1, has adverse effects on glial cells and neurons. This study reports on the direct effect of recombinant gp120 (r-gp120 produced from different expression systems on protein kinase C, as a measure of relative neurotoxicity. Brain cells were grown in vitro from explants of the cerebral cortex of newborn rats, and recombinant gp120 preparations expressed in mammalian cell/vaccinia virus and insect cell/baculovirus systems were applied to astrocyte-enriched cultures. The gp120 preparations activated protein kinase C (PKC to similar levels in these cells. Mutant recombinant gp120 lacking the amino-terminal 29 amino acids produced from the mammalian and insect cells also activated PKC to similar levels as did the full-length protein. The recombinant proteins specifically activated PKC β and ζ, suggesting that they are able to induce both Ca2+-dependent and Ca2+-independent isoforms of this enzyme. Alteration of PKC activity in astrocytes by gp120 indicates its ability to modulate gene expression, which is associated with the neurotoxicity of this protein. Furthermore, the results suggest that the deletion of the first 29 residues of NH2-terminal end of the gp120 does not affect the functional activity of this protein with regard to modulation of signal transduction in astrocytes.

  7. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins

    Directory of Open Access Journals (Sweden)

    Rinas Ursula

    2004-09-01

    Full Text Available Abstract Recent advances in generating active proteins through refolding of bacterial inclusion body proteins are summarized in conjunction with a short overview on inclusion body isolation and solubilization procedures. In particular, the pros and cons of well-established robust refolding techniques such as direct dilution as well as less common ones such as diafiltration or chromatographic processes including size exclusion chromatography, matrix- or affinity-based techniques and hydrophobic interaction chromatography are discussed. Moreover, the effect of physical variables (temperature and pressure as well as the presence of buffer additives on the refolding process is elucidated. In particular, the impact of protein stabilizing or destabilizing low- and high-molecular weight additives as well as micellar and liposomal systems on protein refolding is illustrated. Also, techniques mimicking the principles encountered during in vivo folding such as processes based on natural and artificial chaperones and propeptide-assisted protein refolding are presented. Moreover, the special requirements for the generation of disulfide bonded proteins and the specific problems and solutions, which arise during process integration are discussed. Finally, the different strategies are examined regarding their applicability for large-scale production processes or high-throughput screening procedures.

  8. Ubiquitin chain conformation regulates recognition and activity of interacting proteins.

    Science.gov (United States)

    Ye, Yu; Blaser, Georg; Horrocks, Mathew H; Ruedas-Rama, Maria J; Ibrahim, Shehu; Zhukov, Alexander A; Orte, Angel; Klenerman, David; Jackson, Sophie E; Komander, David

    2012-12-13

    Mechanisms of protein recognition have been extensively studied for single-domain proteins, but are less well characterized for dynamic multidomain systems. Ubiquitin chains represent a biologically important multidomain system that requires recognition by structurally diverse ubiquitin-interacting proteins. Ubiquitin chain conformations in isolation are often different from conformations observed in ubiquitin-interacting protein complexes, indicating either great dynamic flexibility or extensive chain remodelling upon binding. Using single-molecule fluorescence resonance energy transfer, we show that Lys 63-, Lys 48- and Met 1-linked diubiquitin exist in several distinct conformational states in solution. Lys 63- and Met 1-linked diubiquitin adopt extended 'open' and more compact 'closed' conformations, and ubiquitin-binding domains and deubiquitinases (DUBs) select pre-existing conformations. By contrast, Lys 48-linked diubiquitin adopts predominantly compact conformations. DUBs directly recognize existing conformations, but may also remodel ubiquitin chains to hydrolyse the isopeptide bond. Disruption of the Lys 48-diubiquitin interface changes conformational dynamics and affects DUB activity. Hence, conformational equilibria in ubiquitin chains provide an additional layer of regulation in the ubiquitin system, and distinct conformations observed in differently linked polyubiquitin may contribute to the specificity of ubiquitin-interacting proteins.

  9. Protein ultrastructure and the nanoscience of complement activation.

    Science.gov (United States)

    Vorup-Jensen, Thomas; Boesen, Thomas

    2011-09-16

    The complement system constitutes an important barrier to infection of the human body. Over more than four decades structural properties of the proteins of the complement system have been investigated with X-ray crystallography, electron microscopy, small-angle scattering, and atomic force microscopy. Here, we review the accumulated evidence that the nm-scaled dimensions and conformational changes of these proteins support functions of the complement system with regard to tissue distribution, molecular crowding effects, avidity binding, and conformational regulation of complement activation. In the targeting of complement activation to the surfaces of nanoparticulate material, such as engineered nanoparticles or fragments of the microbial cell wall, these processes play intimately together. This way the complement system is an excellent example where nanoscience may serve to unravel the molecular biology of the immune response.

  10. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2012-02-01

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  11. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2009-02-27

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  12. Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties.

    Science.gov (United States)

    Tydell, C Chace; Yuan, Jun; Tran, Patti; Selsted, Michael E

    2006-01-15

    Peptidoglycan (PGN) recognition proteins (PGRPs) are pattern recognition molecules of innate immunity that are conserved from insects to humans. Various PGRPs are reported to have diverse functions: they bind bacterial molecules, digest PGN, and are essential to the Toll pathway in Drosophila. One family member, bovine PGN recognition protein-S (bPGRP-S), has been found to bind and kill microorganisms in a PGN-independent manner, raising questions about the identity of the bPGRP-S ligand. Addressing this, we have determined the binding and microbicidal properties of bPGRP-S in a range of solutions approximating physiologic conditions. In this study we show that bPGRP-S interacts with other bacterial components, including LPS and lipoteichoic acid, with higher affinities than for PCP, as determined by their abilities to inhibit bPGRP-S-mediated killing of bacteria. Where and how PGRPs act in vivo is not yet clear. Using Immunogold electron microscopy, PGRP-S was localized to the dense/large granules of naive neutrophils, which contain the oxygen-independent bactericidal proteins of these cells, and to the neutrophil phagolysosome. In addition, Immunogold staining and secretion studies demonstrate that neutrophils secrete PGRP-S when exposed to bacteria. Bovine PGRP-S can mediate direct lysis of heat-killed bacteria; however, PGRP-S-mediated killing of bacteria is independent of this activity. Evidence that bPGRP-S has multiple activities and affinity to several bacterial molecules challenges the assumption that the PGRP family of proteins recapitulates the evolution of TLRs. Mammalian PGRPs do not have a single antimicrobial activity against a narrow range of target organisms; rather, they are generalists in their affinity and activity.

  13. Protein kinase-independent activation of CFTR by phosphatidylinositol phosphates

    OpenAIRE

    Himmel, Bettina; Nagel, Georg

    2003-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is expressed in many epithelia and in the heart. Phosphorylation of CFTR by protein kinases is thought to be an absolute prerequisite for the opening of CFTR channels. In addition, nucleoside triphosphates were shown to regulate the opening of phosphorylated CFTR. Here, we report that phosphatidylinositol 4,5-bisphosphate (PIP2) activates human CFTR, resulting in ATP responsiveness of PIP2-treated CFTR. ...

  14. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation of subs...... the Arabidopsis thaliana MAPKs MPK3, 4, and 6 and MAP2Ks MKK1, 2, 4, and 5. Future work needs to focus on identifying substrates of MAPKs, and on understanding how specificity is achieved among MAPK signaling pathways....

  15. Overinhibition of Mitogen-Activated Protein Kinase Inducing Tau Hyperphosphorylation

    Institute of Scientific and Technical Information of China (English)

    LI Hong-lian; CHEN Juan; LIU Shi-jie; ZHANG Jia-yu; WANG Qun; WANG Jian-zhi

    2005-01-01

    To reveal the relationship between mitogen-activated protein kinase (MAPK) and tau phosphorylation, we used different concentration of PD98059, an inhibitor of MEK (MAPK kinase), to treat mice neuroblastma (N2a) cell line for 6 h. It showed that the activity of MAPK decreased in a dose-dependent manner. But Western blot and immunofluorescence revealed that just when the cells were treated with 16 μmol/L PD98059, tau was hyperphosphorylated at Ser396/404 and Ser199/202 sites. We obtained the conclusion that overinhibited MAPK induced tau hyperphosphorylation at Ser396/404 and Ser199/202 sites.

  16. Comparative Activities of Cattle and Swine Platelet Microbicidal Proteins.

    Science.gov (United States)

    Ivanov, Iuri B; Gritsenko, Viktor A

    2009-12-01

    The bactericidal activities of cattle and swine platelet microbicidal proteins (PMPs) with their comparison with human PMP were studied. Activities of PMP were tested against Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus lysodeikticus and Escherichia coli. B. subtilis and B. cereus were high susceptible to PMP at very low concentrations. Of the gram-positive cocci studied, M. lysodeikticus and S. aureus were the most, and S. epidermidis the least, susceptible. E. coli was found to be relatively resistant to the lethal action of all PMP. The findings of this study confirm that the existence of antimicrobial peptides is conserved among mammalian platelets.

  17. Negative regulation of lymphocyte activation by the adaptor protein LAX.

    Science.gov (United States)

    Zhu, Minghua; Granillo, Olivia; Wen, Renren; Yang, Kaiyong; Dai, Xuezhi; Wang, Demin; Zhang, Weiguo

    2005-05-01

    The membrane-associated adaptor protein LAX is a linker for activation of T cells (LAT)-like molecule that is expressed in lymphoid tissues. Upon stimulation of T or B cells, it is phosphorylated and interacts with Grb2 and the p85 subunit of PI3K. LAX, however, is not capable of replacing LAT in the TCR signaling pathway. In this study we report that upon T or B cell activation, the LAX protein was up-regulated dramatically. Although disruption of the LAX gene by homologous recombination had no major impact on lymphocyte development, it caused a significant reduction in CD23 expression on mature B cells. Interestingly, naive LAX(-/-) mice had spontaneous germinal center formation. Compared with normal T and B cells, LAX(-/-) T and B cells were hyperresponsive and had enhanced calcium flux, protein tyrosine phosphorylation, MAPK and Akt activation, and cell survival upon engagement of the T or B AgRs. Our data demonstrate that LAX functions as a negative regulator in lymphocyte signaling.

  18. Study on antibacterial activity of hydrogel from irradiated silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Bunnak, J.; Chaisupakitsin, M. [King Mongkut' s Institute of Technology Lardkrabang, Bangkok (Thailand)

    2001-03-01

    Hydrogels for biomedical application were prepared from solution blends of 3% silk protein and 3%, 10% poly (vinyl alcohol) (PVA) and followed with irradiation. Mixture of hydrogels were gamma irradiated at 10, 20, 30, 40 and 50 kGy under N{sub 2} atmosphere. To clarify anti-bacterial activity of hydrogels, modified of the Agar disk diffusion method and American Association of Textile Chemists and Colorists, AATCC Test Method 90-1977, were carried out. The four kinds of bacteria such as Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis, were used. It was found that a 1:3 volume ratio of 3% silk protein and 3% PVA respectively, at 50 kGy irradiation, is suitable conditions for preparation hydrogels and trend to indicate the highest of an antibacterial activity against E. coli, B. subtilis and S. aureus. However the antibacterial activity of hydrogels against S. epidermidis was not clearly. These results are very useful to expand the application of hydrogel from irradiated silk protein to the medical products. (author)

  19. The conserved Est1 protein stimulates telomerase DNA extension activity

    Science.gov (United States)

    DeZwaan, Diane C.; Freeman, Brian C.

    2009-01-01

    The first telomerase cofactor identified was the budding yeast protein Est1, which is conserved through humans. While it is evident that Est1 is required for telomere DNA maintenance, understanding its mechanistic contributions to telomerase regulation has been limited. In vitro, the primary effect of Est1 is to activate telomerase-mediated DNA extension. Although Est1 displayed specific DNA and RNA binding, neither activity contributed significantly to telomerase stimulation. Rather Est1 mediated telomerase upregulation through direct contacts with the reverse transcriptase subunit. In addition to intrinsic Est1 functions, we found that Est1 cooperatively activated telomerase in conjunction with Cdc13 and that the combinatorial effect was dependent upon a known salt-bridge interaction between Est1 (K444) and Cdc13 (E252). Our studies provide insights into the molecular events used to control the enzymatic activity of the telomerase holoenzyme. PMID:19805136

  20. Effects of protein kinase C activators and staurosporine on protein kinase activity, cell survival, and proliferation in Tetrahymena thermophila

    DEFF Research Database (Denmark)

    Straarup, EM; Schousboe, P; Hansen, HQ;

    1997-01-01

    with either PMA or OAG, or at 2,500 cells ml-1. At 500 cells ml-1 PMA induced the in vivo phosphorylation of at least six proteins. The myelin basic protein fragment 4-14 was phosphorylated in vitro in crude extracts of a culture of 250,000 cells ml-1. Both the in vivo and the in vitro phosphorylation were......Autocrine factors prevent cell death in the ciliate Tetrahymena thermophila, a unicellular eukaryote, in a chemically defined medium. At certain growth conditions these factors are released at a sufficient concentration by > 500 cells ml-1 to support cell survival and proliferation. The protein...... kinase C activators phorbol 12-myristate 13-acetate (PMA) or 1-oleyl 2-acetate glycerol (OAG) when added to 250 cells ml-1 supported cell survival and proliferation. In the presence of the serine and threonine kinase inhibitor staurosporine the cells died both at 250 cells ml-1 in cultures supplemented...

  1. Prostaglandin E2 negatively regulates AMP-activated protein kinase via protein kinase A signaling pathway.

    Science.gov (United States)

    Funahashi, Koji; Cao, Xia; Yamauchi, Masako; Kozaki, Yasuko; Ishiguro, Naoki; Kambe, Fukushi

    2009-01-01

    We investigated possible involvement of prostaglandin (PG) E2 in regulation of AMP-activated protein kinase (AMPK). When osteoblastic MG63 cells were cultured in serum-deprived media, Thr-172 phosphorylation of AMPK alpha-subunit was markedly increased. Treatment of the cells with PGE2 significantly reduced the phosphorylation. Ser-79 phosphorylation of acetyl-CoA carboxylase, a direct target for AMPK, was also reduced by PGE2. On the other hand, PGE2 reciprocally increased Ser-485 phosphorylation of the alpha-subunit that could be associated with inhibition of AMPK activity. These effects of PGE2 were mimicked by PGE2 receptor EP2 and EP4 agonists and forskolin, but not by EP1 and EP3 agonists, and the effects were suppressed by an adenylate cyclase inhibitor SQ22536 and a protein kinase A inhibitor H89. Additionally, the PGE2 effects were duplicated in primary calvarial osteoblasts. Together, the present study demonstrates that PGE2 negatively regulates AMPK activity via activation of protein kinase A signaling pathway.

  2. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (Gα-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling.

    Science.gov (United States)

    Parag-Sharma, Kshitij; Leyme, Anthony; DiGiacomo, Vincent; Marivin, Arthur; Broselid, Stefan; Garcia-Marcos, Mikel

    2016-12-30

    GIV (aka Girdin) is a guanine nucleotide exchange factor that activates heterotrimeric G protein signaling downstream of RTKs and integrins, thereby serving as a platform for signaling cascade cross-talk. GIV is recruited to the cytoplasmic tail of receptors upon stimulation, but the mechanism of activation of its G protein regulatory function is not well understood. Here we used assays in humanized yeast models and G protein activity biosensors in mammalian cells to investigate the role of GIV subcellular compartmentalization in regulating its ability to promote G protein signaling. We found that in unstimulated cells GIV does not co-fractionate with its substrate G protein Gαi3 on cell membranes and that constitutive membrane anchoring of GIV in yeast cells or rapid membrane translocation in mammalian cells via chemically induced dimerization leads to robust G protein activation. We show that membrane recruitment of the GIV "Gα binding and activating" motif alone is sufficient for G protein activation and that it does not require phosphomodification. Furthermore, we engineered a synthetic protein to show that recruitment of the GIV "Gα binding and activating" motif to membranes via association with active RTKs, instead of via chemically induced dimerization, is also sufficient for G protein activation. These results reveal that recruitment of GIV to membranes in close proximity to its substrate G protein is a major mechanism responsible for the activation of its G protein regulatory function.

  3. Computational Modeling for the Activation Cycle of G-proteins by G-protein-coupled Receptors

    Directory of Open Access Journals (Sweden)

    Yifei Bao

    2010-10-01

    Full Text Available In this paper, we survey five different computational modeling methods. For comparison, we use the activation cycle of G-proteins that regulate cellular signaling events downstream of G-protein-coupled receptors (GPCRs as a driving example. Starting from an existing Ordinary Differential Equations (ODEs model, we implement the G-protein cycle in the stochastic Pi-calculus using SPiM, as Petri-nets using Cell Illustrator, in the Kappa Language using Cellucidate, and in Bio-PEPA using the Bio-PEPA eclipse plug in. We also provide a high-level notation to abstract away from communication primitives that may be unfamiliar to the average biologist, and we show how to translate high-level programs into stochastic Pi-calculus processes and chemical reactions.

  4. Rapamycin induces mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) expression through activation of protein kinase B and mitogen-activated protein kinase kinase pathways.

    Science.gov (United States)

    Rastogi, Ruchi; Jiang, Zhongliang; Ahmad, Nisar; Rosati, Rita; Liu, Yusen; Beuret, Laurent; Monks, Robert; Charron, Jean; Birnbaum, Morris J; Samavati, Lobelia

    2013-11-22

    Mitogen-activated protein kinase phosphatase-1 (MKP-1), also known as dual specificity phosphatase-1 (DUSP-1), plays a crucial role in the deactivation of MAPKs. Several drugs with immune-suppressive properties modulate MKP-1 expression as part of their mechanism of action. We investigated the effect of mTOR inhibition through rapamycin and a dual mTOR inhibitor (AZD2014) on MKP-1 expression. Low dose rapamycin led to a rapid activation of both AKT and ERK pathways with a subsequent increase in MKP-1 expression. Rapamycin treatment led to phosphorylation of CREB, transcription factor 1 (ATF1), and ATF2, three transcription factors that bind to the cyclic AMP-responsive elements on the Mkp-1 promoter. Inhibition of either the MEK/ERK or the AKT pathway attenuated rapamycin-mediated MKP-1 induction. AZD2014 did not activate AKT but activated the ERK pathway, leading to a moderate MKP-1 induction. Using bone marrow-derived macrophages (BMDMs) derived from wild-type (WT) mice or mice deficient in AKT1 and AKT2 isoforms or BMDM from targeted deficiency in MEK1 and MEK2, we show that rapamycin treatment led to an increased MKP1 expression in BMDM from WT but failed to do so in BMDMs lacking the AKT1 isoform or MEK1 and MEK2. Importantly, rapamycin pretreatment inhibited LPS-mediated p38 activation and decreased nitric oxide and IL-6 production. Our work provides a conceptual framework for the observed immune modulatory effect of mTOR inhibition.

  5. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells

    DEFF Research Database (Denmark)

    Frödin, M; Peraldi, P; Van Obberghen, E

    1994-01-01

    Mitogen-activated protein (MAP) kinases are activated in response to a large variety of extracellular signals, including growth factors, hormones, and neurotransmitters, which activate distinct intracellular signaling pathways. Their activation by the cAMP-dependent pathway, however, has not been...... reported. In rat pheochromocytoma PC12 cells, we demonstrate here a stimulation of the MAP kinase isozyme extracellular signal-regulated kinase 1 (ERK1) following elevation of intracellular cAMP after exposure of the cells to isobutylmethylxanthine, cholera toxin, forskolin, or cAMP-analogues. cAMP acted...... synergistically with phorbol ester, an activator of protein kinase C, in the stimulation of ERK1. In accordance with this observation, the peptide neurotransmitter pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), which stimulates cAMP production as well as phosphatidylinositol breakdown in PC12...

  6. The total protein content, protein fractions and proteases activities of drone prepupae of Apis mellifera due to varrosis.

    Science.gov (United States)

    Zółtowska, Krystyna; Lipiński, Zbigniew; Dmitryjuk, Małgorzata

    2005-01-01

    The proteins level and activities of acid and alkaline proteases in whole body extracts of drone prepupae of Apis mellifera naturally infested with Varroa destructor were studied. The infested and a non-infested group did not differ significantly in their total protein content. However, some differences in protein profiles were found. A lack of three protein fractions of moderate and lower molecular weight in infested prepupae was noted. Moreover, some differences in the quantity of protein in most of the fractions were observed. The activity of acid proteases from infested prepupae was lower (p drone had higher activity of alkaline proteases than non-infested but this difference was not statisticaly significant.

  7. H pylori stimulates proliferation of gastric cancer cells through activating mitogen-activated protein kinase cascade

    Institute of Scientific and Technical Information of China (English)

    Yong-Chang Chen; Ying Wang; Jing-Yan Li; Wen-Rong Xu; You-Li Zhang

    2006-01-01

    AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells.METHODS: A VacA (+) and CagA (+) standard Hpyloriline NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins.RESULTS: Incubation with Hpylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after incubation with Hpylori extract and appeared to be a sustained event. MAPK/ERK kinase (MEK) inhibitor PD98059abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pyloriextract increased c-Fos expression and SRE-dependentgene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract.CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal transduction cascade.

  8. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis.

    Science.gov (United States)

    Watson, Steve P

    2009-01-01

    The prevention of excessive blood loss to avoid fatal haemorrhage is a pivotal process for all organisms possessing a circulatory system. Increased circulating blood volume and pressure, as required in larger animals, make this process all the more important and challenging. It is essential to have a powerful and rapid system to detect damage and generate an effective seal, and which is also exquisitely regulated to prevent unwanted, excessive or systemic activation so as to avoid blockage of vessels. Thus, a highly specialised and efficient haemostatic system has evolved that consists of cellular (platelets) and protein (coagulation factors) components. Importantly, this is able to support haemostasis in both the low shear environment of the venous system and the high shear environment of the arterial system. Endothelial cells, lining the entire circulation system, play a crucial role in the delicate balance between activation and inhibition of the haemostatic system. An intact and healthy endothelium supports blood flow by preventing attachment of cells and proteins which is required for initiation of coagulation and platelet activation. Endothelial cells produce and release the two powerful soluble inhibitors of platelet activation, nitric oxide and prostacyclin, and express high levels of CD39 which rapidly metabolises the major platelet feedback agonist, ADP. This antithrombotic environment however can rapidly change following activation or removal of endothelial cells through injury or rupture of atherosclerotic plaques. Loss of endothelial cells exposes the subendothelial extracellular matrix which creates strong signals for activation of the haemostatic system including powerful platelet adhesion and activation. Quantitative and qualitative changes in the composition of the subendothelial extracellular matrix influence these prothrombotic characteristics with life threatening thrombotic and bleeding complications, as illustrated by formation of

  9. Activity of lactoperoxidase when adsorbed on protein layers.

    Science.gov (United States)

    Haberska, Karolina; Svensson, Olof; Shleev, Sergey; Lindh, Liselott; Arnebrant, Thomas; Ruzgas, Tautgirdas

    2008-09-15

    Lactoperoxidase (LPO) is an enzyme, which is used as an antimicrobial agent in a number of applications, e.g., food technology. In the majority of applications LPO is added to a homogeneous product phase or immobilised on product surface. In the latter case, however, the measurements of LPO activity are seldom reported. In this paper we have assessed LPO enzymatic activity on bare and protein modified gold surfaces by means of electrochemistry. It was found that LPO rapidly adsorbs to bare gold surfaces resulting in an amount of LPO adsorbed of 2.9mg/m(2). A lower amount of adsorbed LPO is obtained if the gold surface is exposed to bovine serum albumin, bovine or human mucin prior to LPO adsorption. The enzymatic activity of the adsorbed enzyme is in general preserved at the experimental conditions and varies only moderately when comparing bare gold and gold surface pretreated with the selected proteins. The measurement of LPO specific activity, however, indicate that it is about 1.5 times higher if LPO is adsorbed on gold surfaces containing a small amount of preadsorbed mucin in comparison to the LPO directly adsorbed on bare gold.

  10. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu; Brittin,Sachi; Mohandas, Narla; Lecomte, Marie-Christine; Gascard, Philippe

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1 proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.

  11. Conservation, variability and the modeling of active protein kinases.

    Directory of Open Access Journals (Sweden)

    James D R Knight

    Full Text Available The human proteome is rich with protein kinases, and this richness has made the kinase of crucial importance in initiating and maintaining cell behavior. Elucidating cell signaling networks and manipulating their components to understand and alter behavior require well designed inhibitors. These inhibitors are needed in culture to cause and study network perturbations, and the same compounds can be used as drugs to treat disease. Understanding the structural biology of protein kinases in detail, including their commonalities, differences and modes of substrate interaction, is necessary for designing high quality inhibitors that will be of true use for cell biology and disease therapy. To this end, we here report on a structural analysis of all available active-conformation protein kinases, discussing residue conservation, the novel features of such conservation, unique properties of atypical kinases and variability in the context of substrate binding. We also demonstrate how this information can be used for structure prediction. Our findings will be of use not only in understanding protein kinase function and evolution, but they highlight the flaws inherent in kinase drug design as commonly practiced and dictate an appropriate strategy for the sophisticated design of specific inhibitors for use in the laboratory and disease therapy.

  12. Nanocarriers from GRAS Zein Proteins to Encapsulate Hydrophobic Actives.

    Science.gov (United States)

    Weissmueller, Nikolas T; Lu, Hoang D; Hurley, Amanda; Prud'homme, Robert K

    2016-11-14

    One factor limiting the expansion of nanomedicines has been the high cost of the materials and processes required for their production. We present a continuous, scalable, low cost nanoencapsulation process, Flash Nanoprecipitation (FNP) that enables the production of nanocarriers (NCs) with a narrow size distribution using zein corn proteins. Zein is a low cost, GRAS protein (having the FDA status of "Generally Regarded as Safe") currently used in food applications, which acts as an effective encapsulant for hydrophobic compounds using FNP. The four-stream FNP configuration allows the encapsulation of very hydrophobic compounds in a way that is not possible with previous precipitation processes. We present the encapsulation of several model active compounds with as high as 45 wt % drug loading with respect to zein concentration into ∼100 nm nanocarriers. Three examples are presented: (1) the pro-drug antioxidant, vitamin E-acetate, (2) an anticholera quorum-sensing modulator CAI-1 ((S)-3-hydroxytridecan-4-one; CAI-1 that reduces Vibrio cholerae virulence by modulating cellular communication), and (3) hydrophobic fluorescent dyes with a range of hydrophobicities. The specific interaction between zein and the milk protein, sodium caseinate, provides stabilization of the NCs in PBS, LB medium, and in pH 2 solutions. The stability and size changes in the three media provide information on the mechanism of assembly of the zein/active/casein NC.

  13. TALE factors poise promoters for activation by Hox proteins.

    Science.gov (United States)

    Choe, Seong-Kyu; Ladam, Franck; Sagerström, Charles G

    2014-01-27

    Hox proteins form complexes with TALE cofactors from the Pbx and Prep/Meis families to control transcription, but it remains unclear how Hox:TALE complexes function. Examining a Hoxb1b:TALE complex that regulates zebrafish hoxb1a transcription, we find maternally deposited TALE proteins at the hoxb1a promoter already during blastula stages. These TALE factors recruit histone-modifying enzymes to promote an active chromatin profile at the hoxb1a promoter and also recruit RNA polymerase II (RNAPII) and P-TEFb. However, in the presence of TALE factors, RNAPII remains phosphorylated on serine 5 and hoxb1a transcription is inefficient. By gastrula stages, Hoxb1b binds together with TALE factors to the hoxb1a promoter. This triggers P-TEFb-mediated transitioning of RNAPII to the serine 2-phosphorylated form and efficient hoxb1a transcription. We conclude that TALE factors access promoters during early embryogenesis to poise them for activation but that Hox proteins are required to trigger efficient transcription.

  14. Hepatitis B virus x protein induces autophagy via activating death-associated protein kinase.

    Science.gov (United States)

    Zhang, H-T; Chen, G G; Hu, B-G; Zhang, Z-Y; Yun, J-P; He, M-L; Lai, P B S

    2014-01-01

    Hepatitis B virus x protein (HBX), a product of hepatitis B virus (HBV), is a multifunctional protein that regulates viral replication and various cellular functions. Recently, HBX has been shown to induce autophagy; however, the responsible mechanism is not fully known. In this study, we established stable HBX-expressing epithelial Chang cells as the platform to study how HBX induced autophagy. The results showed that the overexpression of HBX resulted in starvation-induced autophagy. HBX-induced autophagy was related to its ability to dephosphorylate/activate death-associated protein kinase (DAPK). The block of DAPK by its siRNA significantly counteracted HBX-mediated autophagy, confirming the positive role of DAPK in this process. HBX also induced Beclin 1, which functions at the downstream of the DAPK-mediated autophagy pathway. Although HBX could activate JNK, a kinase known to participate in autophagy in certain conditions, the change in JNK failed to influence HBX-induced autophagy. In conclusion, HBX induces autophagy via activating DAPK in a pathway related to Beclin 1, but not JNK. This new finding should help us to understand the role of autophagy in HBX-mediated pathogenesis and thus may provide targets for intervening HBX-related disorders.

  15. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2014-02-20

    Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  16. Amygdala kindling alters protein kinase C activity in dentate gyrus.

    Science.gov (United States)

    Chen, S J; Desai, M A; Klann, E; Winder, D G; Sweatt, J D; Conn, P J

    1992-11-01

    Kindling is a use-dependent form of synaptic plasticity and a widely used model of epilepsy. Although kindling has been widely studied, the molecular mechanisms underlying induction of this phenomenon are not well understood. We determined the effect of amygdala kindling on protein kinase C (PKC) activity in various regions of rat brain. Kindling stimulation markedly elevated basal (Ca(2+)-independent) and Ca(2+)-stimulated phosphorylation of an endogenous PKC substrate (which we have termed P17) in homogenates of dentate gyrus, assayed 2 h after kindling stimulation. The increase in P17 phosphorylation appeared to be due at least in part to persistent PKC activation, as basal PKC activity assayed in vitro using an exogenous peptide substrate was increased in kindled dentate gyrus 2 h after the last kindling stimulation. A similar increase in basal PKC activity was observed in dentate gyrus 2 h after the first kindling stimulation. These results document a kindling-associated persistent PKC activation and suggest that the increased activity of PKC could play a role in the induction of the kindling effect.

  17. Egg Activation at Fertilization by a Soluble Sperm Protein.

    Science.gov (United States)

    Swann, Karl; Lai, F Anthony

    2016-01-01

    The most fundamental unresolved issue of fertilization is to define how the sperm activates the egg to begin embryo development. Egg activation at fertilization in all species thus far examined is caused by some form of transient increase in the cytoplasmic free Ca(2+) concentration. What has not been clear, however, is precisely how the sperm triggers the large changes in Ca(2+) observed within the egg cytoplasm. Here, we review the studies indicating that the fertilizing sperm stimulates a cytosolic Ca(2+) increase in the egg specifically by delivering a soluble factor that diffuses into the cytosolic space of the egg upon gamete membrane fusion. Evidence is primarily considered in species of eggs where the sperm has been shown to elicit a cytosolic Ca(2+) increase by initiating Ca(2+) release from intracellular Ca(2+) stores. We suggest that our best understanding of these signaling events is in mammals, where the sperm triggers a prolonged series of intracellular Ca(2+) oscillations. The strongest empirical studies to date suggest that mammalian sperm-triggered Ca(2+) oscillations are caused by the introduction of a sperm-specific protein, called phospholipase C-zeta (PLCζ) that generates inositol trisphosphate within the egg. We will discuss the role and mechanism of action of PLCζ in detail at a molecular and cellular level. We will also consider some of the evidence that a soluble sperm protein might be involved in egg activation in nonmammalian species.

  18. The Increasing Impact of Activity-Based Protein Profiling in Plant Science.

    Science.gov (United States)

    Morimoto, Kyoko; van der Hoorn, Renier A L

    2016-03-01

    The active proteome dictates plant physiology. Yet, active proteins are difficult to predict based on transcript or protein levels, because protein activities are regulated post-translationally in their microenvironments. Over the past 10 years, activity-based protein profiling (ABPP) is increasingly used in plant science. ABPP monitors the activities of hundreds of plant proteins using tagged chemical probes that react with the active site of proteins in a mechanism-dependent manner. Since labeling is covalent and irreversible, labeled proteins can be detected and identified on protein gels and by mass spectrometry using tagged fluorophores and/or biotin. Here, we discuss general concepts, approaches and practical considerations of ABPP, before we summarize the discoveries made using 40 validated probes representing 14 chemotypes that can monitor the active state of >4,500 plant proteins. These discoveries and new opportunities indicate that this emerging functional proteomic technology is a powerful discovery tool that will have an increasing impact on plant science.

  19. Redox regulation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Yingying Han

    Full Text Available Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death.The aim of this study is to determine if AMP-activated protein kinase (AMPK, a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC.Bovine aortic endothelial cells (BAEC were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation.In BAEC, Berberine caused a dose- and time-dependent increase in the phosphorylation of AMPK at Thr172 and acetyl CoA carboxylase (ACC at Ser79, a well characterized downstream target of AMPK. Concomitantly, Berberine increased peroxynitrite, a potent oxidant formed by simultaneous generation of superoxide and nitric oxide. Pre-incubation of BAEC with anti-oxidants markedly attenuated Berberine-enhanced phosphorylation of both AMPK and ACC. Consistently, adenoviral expression of superoxide dismutase and pretreatment of L-N(G-Nitroarginine methyl ester (L-NAME; a non-selective NOS inhibitor blunted Berberine-induced phosphorylation of AMPK. Furthermore, mitochondria-targeted tempol (mito-tempol pretreatment or expression of uncoupling protein attenuated AMPK activation caused by Berberine. Depletion of mitochondria abolished the effects of Berberine on AMPK in EC. Finally, Berberine significantly increased the phosphorylation of LKB1 at Ser307 and gene silencing of LKB1 attenuated Berberine-enhanced AMPK Thr172 phosphorylation in BAEC.Our results suggest that mitochondria-derived superoxide anions and peroxynitrite are required for Berberine-induced AMPK activation in endothelial cells.

  20. Immersion freezing of ice nucleation active protein complexes

    Science.gov (United States)

    Hartmann, S.; Augustin, S.; Clauss, T.; Wex, H.; Šantl-Temkiv, T.; Voigtländer, J.; Niedermeier, D.; Stratmann, F.

    2013-06-01

    Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS), the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between -5 °C to -38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA) bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about -6 °C to about -10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei) which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a) the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b) the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice nucleation are attached

  1. Immersion freezing of ice nucleation active protein complexes

    Directory of Open Access Journals (Sweden)

    S. Hartmann

    2013-06-01

    Full Text Available Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS, the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between −5 °C to −38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about −6 °C to about −10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice

  2. The Interaction of the Gammaherpesvirus 68 orf73 Protein with Cellular BET Proteins Affects the Activation of Cell Cycle Promoters▿

    Science.gov (United States)

    Ottinger, Matthias; Pliquet, Daniel; Christalla, Thomas; Frank, Ronald; Stewart, James P.; Schulz, Thomas F.

    2009-01-01

    Infection of mice with murine gammaherpesvirus 68 (MHV-68) provides a valuable animal model for gamma-2 herpesvirus (rhadinovirus) infection and pathogenesis. The MHV-68 orf73 protein has been shown to be required for the establishment of viral latency in vivo. This study describes a novel transcriptional activation function of the MHV-68 orf73 protein and identifies the cellular bromodomain containing BET proteins Brd2/RING3, Brd3/ORFX, and BRD4 as interaction partners for the MHV-68 orf73 protein. BET protein members are known to interact with acetylated histones, and Brd2 and Brd4 have been implicated in fundamental cellular processes, including cell cycle regulation and transcriptional regulation. Using MHV-68 orf73 peptide array assays, we identified Brd2 and Brd4 interaction sites in the orf73 protein. Mutation of one binding site led to a loss of the interaction with Brd2/4 but not the retinoblastoma protein Rb, to impaired chromatin association, and to a decreased ability to activate the BET-responsive cyclin D1, D2, and E promoters. The results therefore pinpoint the binding site for Brd2/4 in a rhadinoviral orf73 protein and suggest that the recruitment of a member of the BET protein family allows the MHV-68 orf73 protein to activate the promoters of G1/S cyclins. These findings point to parallels between the transcriptional activator functions of rhadinoviral orf73 proteins and papillomavirus E2 proteins. PMID:19244327

  3. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS.

    Science.gov (United States)

    Park, Yong Hwan; Wood, Geryl; Kastner, Daniel L; Chae, Jae Jin

    2016-08-01

    Mutations in the genes encoding pyrin and mevalonate kinase (MVK) cause distinct interleukin-1β (IL-1β)-mediated autoinflammatory diseases: familial Mediterranean fever (FMF) and hyperimmunoglobulinemia D syndrome (HIDS). Pyrin forms an inflammasome when mutant or in response to bacterial modification of the GTPase RhoA. We found that RhoA activated the serine-threonine kinases PKN1 and PKN2 that bind and phosphorylate pyrin. Phosphorylated pyrin bound to 14-3-3 proteins, regulatory proteins that in turn blocked the pyrin inflammasome. The binding of 14-3-3 and PKN proteins to FMF-associated mutant pyrin was substantially decreased, and the constitutive IL-1β release from peripheral blood mononuclear cells of patients with FMF or HIDS was attenuated by activation of PKN1 and PKN2. Defects in prenylation, seen in HIDS, led to RhoA inactivation and consequent pyrin inflammasome activation. These data suggest a previously unsuspected fundamental molecular connection between two seemingly distinct autoinflammatory disorders.

  4. The Metastasis-associated Proteins 1 and 2 Form Distinct Protein Complexes with Histone Deacetylase Activity

    Institute of Scientific and Technical Information of China (English)

    Ya-LiYao; Wcn-MingYang

    2005-01-01

    The metastasis-associated protein MTA1 has been shown to express differentially to high levels in metastatic cells. MTA2, which is homologous to MTA1, is a component of the NURD ATP-dependcnt chromatin remodeling and histone deacetylase complex. Here we report evidence that although both human MTA1 and MTA2 repress transcription specifically, are located in the nucleus, and contain associated histone deacetylase activity, they exist in two biochemically distinct protein complexes and may perform different functions pertaining to tumor metastasis. Specifically, both MTA1 and MTA2 complexes exert histone deacetylase activity. However, the MTA1 complex contained HDAC1/2, RbAp46/48, and MBD3, but not Sin3 or Mi2, two important components of the MTA2 complex. Moreover, the MTA2 complex is similar to the HDAC1 complex, suggesting a housekeeping role of the MTA2 complex. The MTA1 complex could be further separated, resulting in acore MTA1-HDAC complex, showing that the histone deacetylase activity and transcriptional repression activity were integral properties of the MTA1 complex. Finally, MTA1, unlike MTA2, did not interact with the pleotropic transcription factor YY1 or the immunophilin FKBP25. We suggest that MTA1 associates with adifferent set of transcription factors from MTA2 and that this property may contribute to the metastatic potential of cells overexpressing MTA1. We also report the finding of human MTA3, which is highly homologous toboth MTA1 and MTA2. However, MTA3 does not repress transcription to a significant level and appears to have a diffused pattern of subcellular localization, suggesting a biological role distinct from that of the other two MTA proteins.

  5. Thermally activated charge transport in microbial protein nanowires.

    Science.gov (United States)

    Lampa-Pastirk, Sanela; Veazey, Joshua P; Walsh, Kathleen A; Feliciano, Gustavo T; Steidl, Rebecca J; Tessmer, Stuart H; Reguera, Gemma

    2016-03-24

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.

  6. TALE proteins bind to both active and inactive chromatin.

    Science.gov (United States)

    Scott, James N F; Kupinski, Adam P; Kirkham, Christopher M; Tuma, Roman; Boyes, Joan

    2014-02-15

    TALE (transcription activator-like effector) proteins can be tailored to bind to any DNA sequence of choice and thus are of immense utility for genome editing and the specific delivery of transcription activators. However, to perform these functions, they need to occupy their sites in chromatin. In the present study, we have systematically assessed TALE binding to chromatin substrates and find that in vitro TALEs bind to their target site on nucleosomes at the more accessible entry/exit sites, but not at the nucleosome dyad. We show further that in vivo TALEs bind to transcriptionally repressed chromatin and that transcription increases binding by only 2-fold. These data therefore imply that TALEs are likely to bind to their target in vivo even at inactive loci.

  7. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle

    DEFF Research Database (Denmark)

    Hunter, Roger W; Treebak, Jonas Thue; Wojtaszewski, Jørgen

    2011-01-01

    OBJECTIVE During energy stress, AMP-activated protein kinase (AMPK) promotes glucose transport and glycolysis for ATP production, while it is thought to inhibit anabolic glycogen synthesis by suppressing the activity of glycogen synthase (GS) to maintain the energy balance in muscle. Paradoxically......, chronic activation of AMPK causes an increase in glycogen accumulation in skeletal and cardiac muscles, which in some cases is associated with cardiac dysfunction. The aim of this study was to elucidate the molecular mechanism by which AMPK activation promotes muscle glycogen accumulation. RESEARCH DESIGN...... AND METHODS We recently generated knock-in mice in which wild-type muscle GS was replaced by a mutant (Arg582Ala) that could not be activated by glucose-6-phosphate (G6P), but possessed full catalytic activity and could still be activated normally by dephosphorylation. Muscles from GS knock-in or transgenic...

  8. Differential protective effects of exenatide, an agonist of GLP-1 receptor and Piragliatin, a glucokinase activator in beta cell response to streptozotocin-induced and endoplasmic reticulum stresses.

    Directory of Open Access Journals (Sweden)

    Mi-Kyung Kim

    Full Text Available BACKGROUND: Agonists of glucagon-like peptide-1 receptor (GLP-1R and glucokinase activators (GKA act as antidiabetic agents by their ability protect beta cells, and stimulate insulin secretion. Oxidative and endoplasmic reticulum (ER stresses aggravate type 2 diabetes by causing beta cell loss. It was shown that GLP-1R agonists protect beta cells from oxidative and ER stresses. On the other hand, little is known regarding how GKAs protect beta cells. We hypothesized that GKAs protect beta cells by mechanisms distinct from those underlying GLP-1R agonist and tested our hypothesis by comparing the molecular effects of exenatide, a GLP-1R agonist, and piragliatin, a GKA, on INS-1 cells under oxidative and ER-induced stresses. METHODS: BETA CELLS WERE TREATED WITH STREPTOZOTOCIN (STZ TO INDUCE OXIDATIVE STRESS AND WITH PALMITATE OR THAPSIGARGIN (TG TO INDUCE ER STRESS RESPECTIVELY, AND THE EFFECTS OF EXENATIDE AND PIRAGLIATIN ON THESE CELLS WERE INVESTIGATED BY: a characterizing the kinases involved employing specific kinase inhibitors, and b by identifying the differentially regulated proteins in response to stresses with proteomic analysis. RESULTS: Exenatide protected INS-1 cells from both ER and STZ-induced death. In contrast, piragliatin rescued the cells only from STZ-induced stress. Akt activation by exenatide appeared to contribute to its protective effects of beta cells while enhanced glucose utilization was the contributing factor in the case of piragliatin. Also, exenatide, not piragliatin, blocked changes in proteins 14-3-3β, ε and θ, and preserved the 14-3-3θ levels under the ER stress. Isoform-specific modifications of 14-3-3, and the reduction of 14-3-3θ, commonly associated with beta cell death were assessed. CONCLUSIONS: Exenatide and piragliatin exert distinct effects on beta cell survival and thus on type 2 diabetes. This study which confirmed our hypothesis is also the first to observe specific modulation of 14-3-3 isoform

  9. Inhibition of the intrinsic factor X activating complex by protein S: evidence for a specific binding of protein S to factor VIII

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    Protein S is a vitamin K-dependent nonenzymatic anticoagulant protein that acts as a cofactor to activated protein C. Recently it was shown that protein S inhibits the prothrombinase reaction independent of activated protein C. In this study, we show that protein S can also inhibit the intrinsic fac

  10. Antistaphylococcal activity of bacteriophage derived chimeric protein P128

    Directory of Open Access Journals (Sweden)

    Vipra Aradhana A

    2012-03-01

    Full Text Available Abstract Background Bacterial drug resistance is one of the most significant challenges to human health today. In particular, effective antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA are urgently needed. A causal relationship between nasal commensal S. aureus and infection has been reported. Accordingly, elimination of nasal S. aureus reduces the risk of infection. Enzymes that degrade bacterial cell walls show promise as antibacterial agents. Bacteriophage-encoded bacterial cell wall-degrading enzymes exhibit intrinsic bactericidal activity. P128 is a chimeric protein that combines the lethal activity of the phage tail-associated muralytic enzyme of Phage K and the staphylococcal cell wall targeting-domain (SH3b of lysostaphin. Here we report results of in vitro studies evaluating the susceptibility of staphylococcal strains to this novel protein. Results Using the broth microdilution method adapted for lysostaphin, we found that P128 is effective against S. aureus clinical strains including MRSA, methicillin-sensitive S. aureus (MSSA, and a mupirocin-resistant S. aureus. Minimum bactericidal concentrations and minimum inhibitory concentrations of P128 (1-64 μg/mL were similar across the 32 S. aureus strains tested, demonstrating its bactericidal nature. In time-kill assays, P128 reduced colony-forming units by 99.99% within 1 h and inhibited growth up to 24 h. In an assay simulating topical application of P128 to skin or other biological surfaces, P128 hydrogel was efficacious when layered on cells seeded on solid media. P128 hydrogel was lethal to Staphylococci recovered from nares of healthy people and treated without any processing or culturing steps, indicating its in situ efficacy. This methodology used for in vitro assessment of P128 as an agent for eradicating nasal carriage is unique. Conclusions The novel chimeric protein P128 is a staphylococcal cell wall-degrading enzyme under development for

  11. Activator protein 1 promotes the transcriptional activation of IRAK-M.

    Science.gov (United States)

    Jin, Peipei; Bo, Lulong; Liu, Yongjian; Lu, Wenbin; Lin, Shengwei; Bian, Jinjun; Deng, Xiaoming

    2016-10-01

    Interleukin-1 receptor-associated kinase M (IRAK-M) is a well-known negative regulator for Toll-like receptor signaling, which can regulate immune homeostasis and tolerance in a number of pathological settings. However, the mechanism for IRAK-M regulation at transcriptional level remains largely unknown. In this study, a 1.4kb upstream sequence starting from the major IRAK-M transcriptional start site was cloned into luciferase reporter vector pGL3-basic to construct the full-length IRAK-M promoter. Luciferase reporter plasmids harboring the full-length and the deletion mutants of IRAK-M were transfected into 293T and A549 cells, and their relative luciferase activity was measured. The results demonstrated that activator protein 1(AP-1) cis-element plays a crucial role in IRAK-M constitutive gene transcription. Silencing of c-Fos and/or c-Jun expression suppressed the IRAK-M promoter activity as well as its mRNA and protein expressions. As a specific inhibitor for AP-1 activation, SP600125 also significantly suppressed the basal transcriptional activity of IRAK-M, the binding activity of c-Fos/c-Jun with IRAK-M promoter, and IRAK-M protein expression. Taken together, the result of this study highlights the importance of AP-1 in IRAK-M transcription, which offers more information on the role of IRAK-M in infectious and non-infectious diseases.

  12. Thioredoxin interacting protein inhibits hypoxia-inducible factor transcriptional activity

    Science.gov (United States)

    Farrell, Michael R; Rogers, Lynette K; Liu, Yusen; Welty, Stephen E; Tipple, Trent E

    2010-01-01

    Vascular endothelial growth factor (VEGF) is required for proper lung development and is transcriptionally regulated in alveolar epithelial cells by hypoxia inducible factor (HIF). Previous findings in a newborn mouse model of bronchopulmonary dysplasia (BPD) suggest that thioredoxin interacting protein (Txnip) is a novel regulator of VEGF expression. The present studies were designed to test the hypothesis that Txnip negatively regulates VEGF through effects on HIF-mediated gene expression. To test this hypothesis, we first examined the levels of VEGF and Txnip protein in the lungs of 1 day-old newborn and E19 embryos and detected a significant inverse correlation. To elucidate the mechanisms underlying this relationship, we studied the effects of Txnip overexpression on HIF-mediated transcription using murine lung epithelial (MLE-12) cells. Overexpression of Txnip inhibited HIF-mediated reporter activity in both hypoxia and room air. Suppression of HIF activity by Txnip appeared to be independent of the ability of Txnip to bind to thioredoxin. Thus, our studies support a model in which Txnip is a potentially critical regulator of HIF-mediated gene transcription in the murine lung. Alterations in Txnip expression could alter lung VEGF expression in prematurely born human infants and contribute to the development of BPD. PMID:20692333

  13. Protein kinase C-dependent activation of P44/42 mitogen-activated protein kinase and heat shock protein 70 in signal transduction during hepatocyte ischemic preconditioning

    Institute of Scientific and Technical Information of China (English)

    Yi Gao; Yu-Qiang Shan; Ming-Xin Pan; Yu Wang; Li-Jun Tang; Hao Li; Zhi Zhang

    2004-01-01

    AIM: To investigate the significance of protein kinase C (PKC), P44/42 mitogen-activated protein kinase (MAPKs) and heat shock protein (HSP)70 signal transduction during hepatocyte ischemic preconditioning.METHODS: In this study we used an in vitro ischemic preconditioning (IP) model for hepatocytes and an in vivo model for rat liver to investigate the significance of protein kinase C (PKC), P44/42 mitogen-activated protein kinase (P44/42 MAPKs) and heat shock protein 70 (HSP70) signal transduction in IP. Through a normal liver cell hypoxic preconditioning (HP) model in which cultured normal liver cells were subjected to 3 cycles of 5 min of incubation under hypoxic conditions followed by 5 min of reoxygenation and subsequently exposed to hypoxia and reoxygenation for 6 h and 9 h respectively. PKC inhibitor, activator and MEK inhibitor were utilized to analyze the phosphorylation of PKC, the expression of P44/42 MAPKs and HSP70.Viability and cellular ultrastructure were also observed. By using rat liver as an in vivo model of liver preconditioning (3 cycles of 10-min occlusion and 10-min reperfusion),in vivo phosphorylation of PKC and P44/42MAPKs, HSP70 expression were further analyzed. AST/ALT concentration,cellular structure and ultrastruture were also observed.All the data were statistically analyzed.RESULTS: Similar results were obtained in both in vivo and in vitro IP models. Compared with the control without IP (or HP), the phosphorylation of PKC and P44/42 MAPKs and the expression of HSP70 were obviously increased in IP (or HP) treated model in which cytoprotection could be found. The effects of preconditioning were mimicked by stimulating PKC with 4β phorobol-12-myristate13-acetate (PMA). Conversely, inhibiting PKC with chelerythrine abolished the protection given by preconditioning. PD98059,inhibitor of MEK (the upstream kinase of P44/42MAPKs),also reverted the cytoprotection exerted by preconditioning.CONCLUSION: The results demonstrate that

  14. Advanced oxidation protein products induce monocyte chemoattractant protein-1 expression via p38 mitogen-activated protein kinase activation in rat vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    PENG Kan-fu; WU Xiong-fei; ZHAO Hong-wen; SUN Yan

    2006-01-01

    Background Advanced oxidation protein products (AOPPs) are new uremic toxins reported by Witko-Sarsat in 1996, which are associated with the pathogenesis of atherosclerosis. However, the mechanisms by which AOPPs enhance atherosclerosis have not been fully understood. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine which stimulates migration of monocytes and plays a critical role in the development of atherosclerosis. In this study, we investigated the effect of AOPPs on MCP-1 expression in cultured vascular smooth muscle cells (VSMCs).Methods VSMCs were cultured and then co-incubated with AOPP (200 μ mol/L, 400 μ mol/L) for different times with or without pretreatment with specific p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. RT-PCR and Western blott were used to detect MCP-1 mRNA and protein expression at different time points after AOPP stimulation in rat smooth muscle cells. Western blot was used to detect the expression of phosphorylated p38 MAPK.Results Treatment of VSMC with AOPPs resulted in a significant increase of the expression of MCP- 1 mRNA and protein in time- and dose-dependent manner, and could activated p38 MAPK. Pretreatment of VSMCs with SB203580 resulted in a dose-dependent inhibition of AOPPs-induced MCP-1 mRNA and protein expression.Conclusions AOPPs can stimulate MCP-1 expression via p38 MAPK in VSMCs. This suggests that AOPPs might contribute to the formation of atherosclerosis through this proinflammatory effect.

  15. [Recent development for purification of active proteins from bovine pancreas with liquid chromatography].

    Science.gov (United States)

    Yang, Xiaoming; Geng, Xindu

    2011-03-01

    Many active proteins exist in bovine pancreas and some of them have become protein drugs for human heath. These protein drugs sourcing from bovine pancreas are also high-tech product having high economic benefit. In the modern biological technology, the preparation of most active protein products relies on various liquid chromatographic techniques. The recent development of extraction of the active proteins from bovine pancreas and their separations and purifications, mainly with chromatographic methods are reviewed in this paper. It would be expected to be helpful for the preparation and application of the active proteins from natural products.

  16. Danthron activates AMP-activated protein kinase and regulates lipid and glucose metabolism in vitro

    Institute of Scientific and Technical Information of China (English)

    Rong ZHOU; Ling WANG; Xing XU; Jing CHEN; Li-hong HU; Li-li CHEN; Xu SHEN

    2013-01-01

    Aim:To discover the active compound on AMP-activated protein kinase (AMPK) activation and investigate the effects of the active compound 1,8-dihydroxyanthraquinone (danthron) from the traditional Chinese medicine rhubarb on AMPK-mediated lipid and glucose metabolism in vitro.Methods:HepG2 and C2C12 cells were used.Cell viability was determined using MTT assay.Real-time PCR was performed to measure the gene expression.Western blotting assay was applied to investigate the protein phosphorylation level.Enzymatic assay kits were used to detect the total cholesterol (TC),triglyceride (TG) and glucose contents.Results:Danthron (0.1,1,and 10 μmol/L) dose-dependently promoted the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC)in both HepG2 and C2C12 cells.Meanwhile,danthron treatment significantly reduced the lipid synthesis related sterol regulatory element-binding protein 1c (SREBP1c) and fatty acid synthetase (FAS) gene expressions,and the TC and TG levels.In addition,danthron treatment efficiently increased glucose consumption.The actions of danthron on lipid and glucose metabolism were abolished or reversed by co-treatment with the AMPK inhibitor compound C.Conclusion:Danthron effectively reduces intracellular lipid contents and enhanced glucose consumption in vitro via activation of AMPK signaling pathway.

  17. A Variable Light Domain Fluorogen Activating Protein Homodimerizes To Activate Dimethylindole Red

    Energy Technology Data Exchange (ETDEWEB)

    Senutovitch, Nina; Stanfield, Robyn L.; Bhattacharyya, Shantanu; Rule, Gordon S.; Wilson, Ian A.; Armitage, Bruce A.; Waggoner, Alan S.; Berget, Peter B. (Scripps); (CM)

    2012-07-11

    Novel fluorescent tools such as green fluorescent protein analogues and fluorogen activating proteins (FAPs) are useful in biological imaging for tracking protein dynamics in real time with a low fluorescence background. FAPs are single-chain variable fragments (scFvs) selected from a yeast surface display library that produce fluorescence upon binding a specific dye or fluorogen that is normally not fluorescent when present in solution. FAPs generally consist of human immunoglobulin variable heavy (V{sub H}) and variable light (V{sub L}) domains covalently attached via a glycine- and serine-rich linker. Previously, we determined that the yeast surface clone, V{sub H}-V{sub L} M8, could bind and activate the fluorogen dimethylindole red (DIR) but that the fluorogen activation properties were localized to the M8V{sub L} domain. We report here that both nuclear magnetic resonance and X-ray diffraction methods indicate the M8V{sub L} forms noncovalent, antiparallel homodimers that are the fluorogen activating species. The M8V{sub L} homodimers activate DIR by restriction of internal rotation of the bound dye. These structural results, together with directed evolution experiments with both V{sub H}-V{sub L} M8 and M8V{sub L}, led us to rationally design tandem, covalent homodimers of M8V{sub L} domains joined by a flexible linker that have a high affinity for DIR and good quantum yields.

  18. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ines eLassowskat

    2014-10-01

    Full Text Available Mitogen-activated protein kinases (MAPKs target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3 and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phosphoproteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g. WRKY transcription factors and proteins encoded by the genes from the PEN pathway required for penetration resistance to filamentous pathogens. Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org.

  19. Protein structure. Structure and activity of tryptophan-rich TSPO proteins.

    Science.gov (United States)

    Guo, Youzhong; Kalathur, Ravi C; Liu, Qun; Kloss, Brian; Bruni, Renato; Ginter, Christopher; Kloppmann, Edda; Rost, Burkhard; Hendrickson, Wayne A

    2015-01-30

    Translocator proteins (TSPOs) bind steroids and porphyrins, and they are implicated in many human diseases, for which they serve as biomarkers and therapeutic targets. TSPOs have tryptophan-rich sequences that are highly conserved from bacteria to mammals. Here we report crystal structures for Bacillus cereus TSPO (BcTSPO) down to 1.7 Å resolution, including a complex with the benzodiazepine-like inhibitor PK11195. We also describe BcTSPO-mediated protoporphyrin IX (PpIX) reactions, including catalytic degradation to a previously undescribed heme derivative. We used structure-inspired mutations to investigate reaction mechanisms, and we showed that TSPOs from Xenopus and man have similar PpIX-directed activities. Although TSPOs have been regarded as transporters, the catalytic activity in PpIX degradation suggests physiological importance for TSPOs in protection against oxidative stress.

  20. Synaptic activation of ribosomal protein S6 phosphorylation occurs locally in activated dendritic domains.

    Science.gov (United States)

    Pirbhoy, Patricia Salgado; Farris, Shannon; Steward, Oswald

    2016-06-01

    Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6) locally near active synapses. Using antibodies specific for phosphorylation at different sites (ser235/236 versus ser240/244), we show that strong synaptic activation led to dramatic increases in immunostaining throughout postsynaptic neurons with selectively higher staining for p-ser235/236 in the activated dendritic lamina. Following LTP induction, phosphorylation at ser235/236 was detectable by 5 min, peaked at 30 min, and was maintained for hours. Phosphorylation at both sites was completely blocked by local infusion of the NMDA receptor antagonist, APV. Despite robust induction of p-rpS6 following high frequency stimulation, assessment of protein synthesis by autoradiography revealed no detectable increases. Exploration of a novel environment led to increases in the number of p-rpS6-positive neurons throughout the forebrain in a pattern reminiscent of immediate early gene induction and many individual neurons that were p-rpS6-positive coexpressed Arc protein. Our results constrain hypotheses about the possible role of rpS6 phosphorylation in regulating postsynaptic protein synthesis during induction of synaptic plasticity.

  1. Double-Stranded-RNA-Activated Protein Kinase PKR Enhances Transcriptional Activation by Tumor Suppressor p53

    OpenAIRE

    1999-01-01

    The tumor suppressor p53 plays a key role in inducing G1 arrest and apoptosis following DNA damage. The double-stranded-RNA-activated protein PKR is a serine/threonine interferon (IFN)-inducible kinase which plays an important role in regulation of gene expression at both transcriptional and translational levels. Since a cross talk between IFN-inducible proteins and p53 had already been established, we investigated whether and how p53 function was modulated by PKR. We analyzed p53 function in...

  2. Targeted Mutagenesis and Combinatorial Library Screening Enables Control of Protein Orientation on Surfaces and Increased Activity of Adsorbed Proteins.

    Science.gov (United States)

    Cruz-Teran, Carlos A; Carlin, Kevin B; Efimenko, Kirill; Genzer, Jan; Rao, Balaji M

    2016-08-30

    While nonspecific adsorption is widely used for immobilizing proteins on solid surfaces, the random nature of protein adsorption may reduce the activity of immobilized proteins due to occlusion of the active site. We hypothesized that the orientation a protein assumes on a given surface can be controlled by systematically introducing mutations into a region distant from its active site, thereby retaining activity of the immobilized protein. To test this hypothesis, we generated a combinatorial protein library by randomizing six targeted residues in a binding protein derived from highly stable, nonimmunoglobulin Sso7d scaffold; mutations were targeted in a region that is distant from the binding site. This library was screened to isolate binders that retain binding to its cognate target (chicken immunoglobulin Y, cIgY) as well as exhibit adsorption on unmodified silica at pH 7.4 and high ionic strength conditions. A single mutant, Sso7d-2B5, was selected for further characterization. Sso7d-2B5 retained binding to cIgY with an apparent dissociation constant similar to that of the parent protein; both mutant and parent proteins saturated the surface of silica with similar densities. Strikingly, however, silica beads coated with Sso7d-2B5 could achieve up to 7-fold higher capture of cIgY than beads coated with the parent protein. These results strongly suggest that mutations introduced in Sso7d-2B5 alter its orientation relative to the parent protein, when adsorbed on silica surfaces. Our approach also provides a generalizable strategy for introducing mutations in proteins so as to improve their activity upon immobilization, and has direct relevance to development of protein-based biosensors and biocatalysts.

  3. Activation of mitogen-activated protein kinase pathway by extremely low-dose ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami [Nagasaki Univ., Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2003-07-01

    We demonstrated here that X-ray irradiation at very low doses of between 2 and 5 cGy stimulated activity of a member of mitogen-activated protein (MAP) kinase, the extracellular signal-regulated kinase (ERK) 1/2, in normal human diploid cells. Higher doses of irradiation at more than 1 Gy induced phosphorylation of ERK1/2 and accumulated p53 protein. Phosphorylation of ERK1/2 decreased with dose down to 50 cGy, however, doses of between 5 cGy and 2 cGy phosphorylated ERK1/2 as efficiently as higher doses of X-rays, while the p53 protein level was no longer changed by doses below 50 cGy. ATM-dependent phosphorylation of p53 protein at Ser15 and histone H2AX at Ser139 was only observed at higher doses at more than 10 cGy of X-rays. We found that MEK1 was phosphorylated with both 2 cGy and 6 Gy of X-rays, and that the MEK1 inhibitor, PD98059 decreased phosphorylation of the ERK1/2 proteins induced by 2 cGy or 6 Gy of X-rays. Similar suppressive effect was observed with the specific epidermal growth factor (EGF) receptor tyrosine kinase inhibitor, AG1478. These results indicate that a limited range of low dose ionizing radiation differentially activate ERK1/2 kinases via activation of EGF receptor and MEK, which mediates various effects of cells receiving very low doses of ionizing radiation. (author)

  4. Exploring the active site structure of photoreceptor proteins by Raman optical activity

    Science.gov (United States)

    Unno, Masashi

    2015-03-01

    Understanding protein function at the atomic level is a major challenge in a field of biophysics and requires the combined efforts of structural and functional methods. We use photoreceptor proteins as a model system to understand in atomic detail how a chromophore and a protein interact to sense light and send a biological signal. A potential technique for investigating molecular structures is Raman optical activity (ROA), which is a spectroscopic method with a high sensitivity to the structural details of chiral molecules. However, its application to photoreceptor proteins has not been reported. Thus we have constructed ROA spectrometer using near-infrared (NIR) laser excitation at 785 nm. The NIR excitation enables us to measure ROA spectra for a variety of biological samples, including photoreceptor proteins, without fluorescence from the samples. In the present study, we have applied the NIR-ROA to bacteriorhodopsin (BR) and photoactive yellow protein (PYP). BR is a light-driven proton pump and contains a protonated Schiff base of retinal as a chromophore. PYP is a blue light receptor, and this protein has the 4-hydroxycinnamyl chromophore, which is covalently linked to Cys69 through a thiolester bond. We have successfully obtained the ROA spectra of the chromophore within a protein environment. Furthermore, calculations of the ROA spectra utilizing density functional theory provide detailed structural information, such as data on out-of-plane distortions of the chromophore. The structural information obtained from the ROA spectra includes the positions of hydrogen atoms, which are usually not detected in the crystal structures of biological samples.

  5. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Galvão, C.W. [Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR (Brazil); Souza, E.M. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil); Etto, R.M. [Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR (Brazil); Pedrosa, F.O.; Chubatsu, L.S.; Yates, M.G. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil); Schumacher, J.; Buck, M. [Department of Life Sciences, Imperial College London, London (United Kingdom); Steffens, M.B.R. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil)

    2012-10-15

    DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX{sub Hs}) can interact with the H. seropedicae RecA protein (RecA{sub Hs}) and that RecA{sub Hs} possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX{sub Hs} inhibited 90% of the RecA{sub Hs} DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA{sub Hs}. RecA{sub Hs} ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX{sub Hs} was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX{sub Hs} protein negatively modulates the RecA{sub Hs} activities by protein-protein interactions and also by DNA-protein interactions.

  6. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    Directory of Open Access Journals (Sweden)

    Hou Ssu-Yu

    2010-06-01

    Full Text Available Abstract Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA reductase inhibitors (statins have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin. Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2 formation, and phospholipase C (PLCγ2, protein kinase C (PKC, and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP phosphorylation, and endothelial nitric oxide synthase (eNOS expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP

  7. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems.

    Science.gov (United States)

    Niyonsaba, François; Nagaoka, Isao; Ogawa, Hideoki; Okumura, Ko

    2009-01-01

    In addition to the physical barrier of the stratum corneum, cutaneous innate immunity also includes the release of various humoral mediators, such as cytokines and chemokines, recruitment and activation of phagocytes, and the production of antimicrobial proteins/peptides (AMPs). AMPs form an innate epithelial chemical shield, which provides a front-line component in innate immunity to inhibit microbial invasion; however, this might be an oversimplification of the diverse functions of these molecules. In fact, apart from exhibiting a broad spectrum of microbicidal properties, it is increasingly evident that AMPs display additional activities that are related to the stimulation and modulation of the cutaneous immune system. These diverse functions include chemoattraction and activation of immune and/or inflammatory cells, the production and release of cytokines and chemokines, acceleration of angiogenesis, promotion of wound healing, neutralization of harmful microbial products, and bridging of both innate and adaptive immunity. Thus, better understanding of the functions of AMPs in skin and identification of their signaling mechanisms may offer new strategies for the development of potential therapeutics for the treatment of infection- and/or inflammation-related skin diseases. Here, we briefly outline the structure, regulation of expression, and multifunctional roles of principal skin-derived AMPs.

  8. Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Deficiency Reduces Insulin Sensitivity in High-Fat Diet-Fed Mice

    NARCIS (Netherlands)

    de Boer, Jan Freark; Dikkers, Arne; Jurdzinski, Angelika; von Felden, Johann; Gaestel, Matthias; Bavendiek, Udo; Tietge, Uwe J. F.

    2014-01-01

    Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a major downstream target of p38 MAPK and enhances inflammatory processes. In line with the role of MK2 as contributor to inflammation, MK2(-

  9. Tribomechanical micronization and activation of whey protein concentrate and zeolite

    Indian Academy of Sciences (India)

    Z Herceg; V Lelas; M Brnčić; B Tripalo; D Ježek

    2004-02-01

    Tribomechanics is a part of physics that is concerned with the study of phenomena that appear during milling under dynamic conditions. Tribomechanical micronization and activation (TMA) of whey protein concentrates (WPC) and zeolites (type clinoptilolite) were carried out. Samples of powdered WPC and zeolite were treated with the laboratory TMA equipment. The treatment was carried out at two various rotor speeds: 16,000 and 22,000 r.p.m. at ambient temperature. Analyses of the particle size and distribution as well as the specific area and scanning electron microscopy were carried out on the powdered WPC and zeolite, before and after the TMA treatment. Suspensions of the WPC and zeolite were treated with ultrasound, just before determining the particle size distribution, at 50 kHz. The results showed that tribomechanical treatment causes significant decrease in particle size, change in particle size distribution and increase in specific area of WPC and zeolite. These changes of the treated materials depend on the type of the material, the level of inserting particles, the planned angle of the impact, internal rubbing and the planned number of impacts. The effects found became stronger as the rotor speed of the TMA equipment increased (16,000 to 22,000 rpm). Ultrasonic treatment of suspension of tribomechanically treated WPC resulted infurther breakdown of partly damaged protein globules as proved with the statistic analyses. No further changes in their granulometric composition were caused by ultrasonic treatment of a suspension of tribomechanically treated zeolite.

  10. The Immunosuppressive Activity of Heat Shock Protein 70

    Directory of Open Access Journals (Sweden)

    Pawel Stocki

    2012-01-01

    Full Text Available Heat shock protein 70 (HSP70 has previously been described as a potent antitumour vaccine. The mechanism relied on the ability of tumour derived HSP70 to associate with antigenic peptides, which, when cross presented, elicited a T cell mediated antitumour response. Subsequently, HSP70 was incorrectly described as a potent adjuvant of innate immunity, and although mistakes in the experimental approaches were exposed and associated with endotoxin contamination in the recombinant HSP70 specimen, questions still remain regarding this matter. Here we review only publications that have cautiously addressed the endotoxin contamination problem in HSP70 in order to reveal the real immunological function of the protein. Accordingly, “endotoxin free” HSP70 stimulates macrophages and delivers antigenic peptides to APCs, which effectively prime T cells mediating an antitumour reaction. Conversely, HSP70 has potent anti-inflammatory functions as follows: regulating T cell responses, reducing stimulatory capacity of DCs, and inducing development of immunosuppressive regulatory T cells. These activities were further associated with the immune evasive mechanism of tumours and implicated in the modulation of immune reactivity in autoimmune diseases and transplant-related clinical conditions. Consequently, the role of HSP70 in immune regulation is newly emerging and contrary to what was previously anticipated.

  11. New Activity of a Protein from Canavalia ensiformis

    Directory of Open Access Journals (Sweden)

    Vanya Petkova BOGOEVA

    2014-06-01

    Full Text Available Concanavalin A is a legume lectin which preferentially agglutinates transformed cells and shows antitumor effects on human breast carcinoma cells in vitro and in vivo. It is considered as a new potential antineoplastic agent targeting apoptosis, autophagy, and anti-angiogenesis in preclinical or clinical trials for cancer therapeutics, which has recently become the object of intensive study. In the present investigation, we show the capacity of the lectin to bind manganese, gold, iron, and zinc porphyrins: all potential anticancer agents. The interaction of the legume lectin with the studied compounds has been investigated by tryptophan fluorescence, showing conformational changes within the quaternary and tertiary structures of the protein. The binding of Con A with manganese, gold, and iron porphyrins, as well as adenine, was studied by fluorescence quenching. In contrast, the interaction of Con A with zinc porphyrin caused an increase in Trp fluorescence and a red shift of 10 nm of the emission maximum position. However, the binding of Con A to iron porphyrin was accompanied by a 5 nm blue shift of the emission maximum, and a kD of 0.95 ± 0.13 μM was calculated, respectively. The sigmoidal shape of the curve showed cooperative interactions, which indicated the presence of more than one class of binding site within the Con A molecule for iron porphyrin, confirmed by the Hill slope (h = 1.89±0.46. We have found that the legume lectin interacts with porphyrins and adenine with an affinity (0.14–1.89 μM similar to that of the non-legume lectin, wheat germ agglutinin. In conclusion, the protein Con A shows new binding activity towards porphyrins with anticancer activities and could find prospective application as a drug delivery molecule that specifically targets cancer cells.

  12. V-1 regulates capping protein activity in vivo.

    Science.gov (United States)

    Jung, Goeh; Alexander, Christopher J; Wu, Xufeng S; Piszczek, Grzegorz; Chen, Bi-Chang; Betzig, Eric; Hammer, John A

    2016-10-25

    Capping Protein (CP) plays a central role in the creation of the Arp2/3-generated branched actin networks comprising lamellipodia and pseudopodia by virtue of its ability to cap the actin filament barbed end, which promotes Arp2/3-dependent filament nucleation and optimal branching. The highly conserved protein V-1/Myotrophin binds CP tightly in vitro to render it incapable of binding the barbed end. Here we addressed the physiological significance of this CP antagonist in Dictyostelium, which expresses a V-1 homolog that we show is very similar biochemically to mouse V-1. Consistent with previous studies of CP knockdown, overexpression of V-1 in Dictyostelium reduced the size of pseudopodia and the cortical content of Arp2/3 and induced the formation of filopodia. Importantly, these effects scaled positively with the degree of V-1 overexpression and were not seen with a V-1 mutant that cannot bind CP. V-1 is present in molar excess over CP, suggesting that it suppresses CP activity in the cytoplasm at steady state. Consistently, cells devoid of V-1, like cells overexpressing CP described previously, exhibited a significant decrease in cellular F-actin content. Moreover, V-1-null cells exhibited pronounced defects in macropinocytosis and chemotactic aggregation that were rescued by V-1, but not by the V-1 mutant. Together, these observations demonstrate that V-1 exerts significant influence in vivo on major actin-based processes via its ability to sequester CP. Finally, we present evidence that V-1's ability to sequester CP is regulated by phosphorylation, suggesting that cells may manipulate the level of active CP to tune their "actin phenotype."

  13. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides.

    Science.gov (United States)

    Mitchell, Daniel E; Gibson, Matthew I

    2015-10-12

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs.

  14. Stimulation of Leishmania tropica protein kinase CK2 activities by platelet-activating factor (PAF).

    Science.gov (United States)

    Dutra, Patricia M L; Vieira, Danielle P; Meyer-Fernandes, Jose R; Silva-Neto, Mario A C; Lopes, Angela H

    2009-09-01

    Leishmania tropica is one of the causative agents of cutaneous leishmaniasis. Platelet-activating factor (PAF) is a phospholipid mediator in diverse biological and pathophysiological processes. Here we show that PAF promoted a three-fold increase on ecto-protein kinase and a three-fold increase on the secreted kinase activity of L. tropica live promastigotes. When casein was added to the reaction medium, along with PAF, there was a four-fold increase on the ecto-kinase activity. When live L. tropica promastigotes were pre-incubated for 30 min in the presence of PAF-plus casein, a six-fold increase on the secreted kinase activity was observed. Also, a protein released from L. tropica promastigotes reacted with polyclonal antibodies for the mammalian CK2 alpha catalytic subunit. Furthermore, in vitro mouse macrophage infection by L. tropica was doubled when promastigotes were pre-treated for 2 h with PAF. Similar results were obtained when the interaction was performed in the presence of purified CK2 or casein. TBB and DRB, CK2 inhibitors, reversed PAF enhancement of macrophage infection by L. tropica. WEB 2086, a competitive PAF antagonist, reversed all PAF effects here described. This study shows for the first time that PAF promotes the activation of two isoforms of CK2, secreted and membrane-bound, correlating these activities to infection of mouse macrophages.

  15. Mitogen-Activated Protein Kinases and Hypoxic/Ischemic Nephropathy

    Directory of Open Access Journals (Sweden)

    Fengbao Luo

    2016-08-01

    Full Text Available Tissue hypoxia/ischemia is a pathological feature of many human disorders including stroke, myocardial infarction, hypoxic/ischemic nephropathy, as well as cancer. In the kidney, the combination of limited oxygen supply to the tissues and high oxygen demand is considered the main reason for the susceptibility of the kidney to hypoxic/ischemic injury. In recent years, increasing evidence has indicated that a reduction in renal oxygen tension/blood supply plays an important role in acute kidney injury, chronic kidney disease, and renal tumorigenesis. However, the underlying signaling mechanisms, whereby hypoxia alters cellular behaviors, remain poorly understood. Mitogen-activated protein kinases (MAPKs are key signal-transducing enzymes activated by a wide range of extracellular stimuli, including hypoxia/ischemia. There are four major family members of MAPKs: the extracellular signal-regulated kinases-1 and -2 (ERK1/2, the c-Jun N-terminal kinases (JNK, p38 MAPKs, and extracellular signal-regulated kinase-5 (ERK5/BMK1. Recent studies, including ours, suggest that these MAPKs are differentially involved in renal responses to hypoxic/ischemic stress. This review will discuss their changes in hypoxic/ischemic pathophysiology with acute kidney injury, chronic kidney diseases and renal carcinoma.

  16. Mitogen-activated protein kinase pathways in osteoblasts.

    Science.gov (United States)

    Greenblatt, Matthew B; Shim, Jae-Hyuck; Glimcher, Laurie H

    2013-01-01

    Mitogen-activated protein kinases (MAPKs) are ancient signal transducers well characterized as mediators of inflammation and neoplastic transformation. Recent work has expanded our understanding of their developmental functions, particularly in the regulation of bone mass via control of osteoblast differentiation. Here, we review the functions of MAPK pathways in osteoblasts, including a consideration of MAPK substrates. In particular, MAPKs function to regulate the key transcriptional mediators of osteoblast differentiation, with ERK and p38 MAPKs phosphorylating RUNX2, the master regulator of osteoblast differentiation. ERK also activates RSK2, which in turn phosphorylates ATF4, a transcriptional regulator of late-stage osteoblast synthetic functions. The MAP3Ks and MAP2Ks upstream of MAPKs have also been investigated, and significant differences have been found in the wiring of MAPK pathways in osteoblasts relative to other tissues. Thus, the investigation of MAPKs in osteoblasts has both revealed critical mechanisms for the maintenance of bone mass and added to our understanding of how the individual components of MAPK pathways function in concert in a complex in vivo system.

  17. Nitric oxide stress and activation of AMP-activated protein kinase impair β-cell sarcoendoplasmic reticulum calcium ATPase 2b activity and protein stability.

    Science.gov (United States)

    Tong, X; Kono, T; Evans-Molina, C

    2015-06-18

    The sarcoendoplasmic reticulum Ca(2+) ATPase 2b (SERCA2b) pump maintains a steep Ca(2+) concentration gradient between the cytosol and ER lumen in the pancreatic β-cell, and the integrity of this gradient has a central role in regulated insulin production and secretion, maintenance of ER function and β-cell survival. We have previously demonstrated loss of β-cell SERCA2b expression under diabetic conditions. To define the mechanisms underlying this, INS-1 cells and rat islets were treated with the proinflammatory cytokine interleukin-1β (IL-1β) combined with or without cycloheximide or actinomycin D. IL-1β treatment led to increased inducible nitric oxide synthase (iNOS) gene and protein expression, which occurred concurrently with the activation of AMP-activated protein kinase (AMPK). IL-1β led to decreased SERCA2b mRNA and protein expression, whereas time-course experiments revealed a reduction in protein half-life with no change in mRNA stability. Moreover, SERCA2b protein but not mRNA levels were rescued by treatment with the NOS inhibitor l-NMMA (NG-monomethyl L-arginine), whereas the NO donor SNAP (S-nitroso-N-acetyl-D,L-penicillamine) and the AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) recapitulated the effects of IL-1β on SERCA2b protein stability. Similarly, IL-1β-induced reductions in SERCA2b expression were rescued by pharmacological inhibition of AMPK with compound C or by transduction of a dominant-negative form of AMPK, whereas β-cell death was prevented in parallel. Finally, to determine a functional relationship between NO and AMPK signaling and SERCA2b activity, fura-2/AM (fura-2-acetoxymethylester) Ca(2+) imaging experiments were performed in INS-1 cells. Consistent with observed changes in SERCA2b expression, IL-1β, SNAP and AICAR increased cytosolic Ca(2+) and decreased ER Ca(2+) levels, suggesting congruent modulation of SERCA activity under these conditions. In aggregate, these results show that SERCA2b

  18. Protein engineering,expression,and activity of a novel fusion protein possessing keratinocyte growth factor 2 and fibronectin

    Institute of Scientific and Technical Information of China (English)

    Wonmo Kang; Junhyeog Jang

    2009-01-01

    Growth factor-induced proliferation and differentiation often require adhesion of cells to the extracellular matrix proteins such as fibronectin(FN).In this study,we aimed to investigate the effect of protein engineering of the keratinocyte growth factor 2(KGF2)fused to the FN on the mitogenic activity of KGF2.The fusion protein(KGF2-FN10),which was expressed in Escherichia coli,showed significantly enhanced mitogenic activity of KGF2 on human keratinocytes.Moreover,KGF2-FN10 fusion protein showed significantly increased activity to differentiate keratinocytes from native KGF2.In conclusion,these results suggest that KGF2-FN10 fusion protein has certain advantages over native KGF2 and may offer a novel strategy to potentiate the therapeutic effect of KGF2.

  19. Site-specific incorporation of redox active amino acids into proteins

    Science.gov (United States)

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  20. Site-specific incorporation of redox active amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  1. Site-specific incorporation of redox active amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Alfonta; Lital (San Diego, CA), Schultz; Peter G. (La Jolla, CA), Zhang; Zhiwen (San Diego, CA)

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  2. Site-specific incorporation of redox active amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Alfonta, Lital (San Diego, CA); Schultz, Peter G. (La Jolla, CA); Zhang, Zhiwen (Austin, TX)

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  3. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity

    KAUST Repository

    Al-Tawashi, Azza

    2012-02-28

    Mutation of the coiled-coil and C2 domain-containing 1A (CC2D1A) gene, which encodes a C2 domain and DM14 domain-containing protein, has been linked to severe autosomal recessive nonsyndromic mental retardation. Using a mouse model that produces a truncated form of CC2D1A that lacks the C2 domain and three of the four DM14 domains, we show that CC2D1A is important for neuronal differentiation and brain development. CC2D1A mutant neurons are hypersensitive to stress and have a reduced capacitytoformdendritesandsynapsesinculture. Atthebiochemical level,CC2D1Atransduces signals to the cyclic adenosine 3?,5?-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit to the nucleus is also defective in CC2D1A mutant cells. Consistently, phosphorylation of the PKA target cAMP-responsive element-binding protein, at serine 133, is nearly abolished in CC2D1A mutant cells. The defects in cAMP/PKA signaling were observed in fibroblast, macrophage, and neuronal primary cells derived from the CC2D1A KO mice. CC2D1A associates with the cAMP-PKA complex following forskolin treatment and accumulates in vesicles or on the plasma membrane in wild-type cells, suggesting that CC2D1A may recruit the PKA complex to the membrane to facilitate signal transduction. Together, our data show that CC2D1A is an important regulator of the cAMP/PKA signaling pathway, which may be the underlying cause for impaired mental function in nonsyndromic mental retardation patients with CC2D1A mutation. 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. The Identification of Novel Protein-Protein Interactions in Liver that Affect Glucagon Receptor Activity.

    Directory of Open Access Journals (Sweden)

    Junfeng Han

    Full Text Available Glucagon regulates glucose homeostasis by controlling glycogenolysis and gluconeogenesis in the liver. Exaggerated and dysregulated glucagon secretion can exacerbate hyperglycemia contributing to type 2 diabetes (T2D. Thus, it is important to understand how glucagon receptor (GCGR activity and signaling is controlled in hepatocytes. To better understand this, we sought to identify proteins that interact with the GCGR to affect ligand-dependent receptor activation. A Flag-tagged human GCGR was recombinantly expressed in Chinese hamster ovary (CHO cells, and GCGR complexes were isolated by affinity purification (AP. Complexes were then analyzed by mass spectrometry (MS, and protein-GCGR interactions were validated by co-immunoprecipitation (Co-IP and Western blot. This was followed by studies in primary hepatocytes to assess the effects of each interactor on glucagon-dependent glucose production and intracellular cAMP accumulation, and then in immortalized CHO and liver cell lines to further examine cell signaling. Thirty-three unique interactors were identified from the AP-MS screening of GCGR expressing CHO cells in both glucagon liganded and unliganded states. These studies revealed a particularly robust interaction between GCGR and 5 proteins, further validated by Co-IP, Western blot and qPCR. Overexpression of selected interactors in mouse hepatocytes indicated that two interactors, LDLR and TMED2, significantly enhanced glucagon-stimulated glucose production, while YWHAB inhibited glucose production. This was mirrored with glucagon-stimulated cAMP production, with LDLR and TMED2 enhancing and YWHAB inhibiting cAMP accumulation. To further link these interactors to glucose production, key gluconeogenic genes were assessed. Both LDLR and TMED2 stimulated while YWHAB inhibited PEPCK and G6Pase gene expression. In the present study, we have probed the GCGR interactome and found three novel GCGR interactors that control glucagon

  5. Antioxidant activity of black bean (Phaseolus vulgaris L.) protein hydrolysates

    Science.gov (United States)

    The objective of this work was to study the effect of enzymatic hydrolysis of black bean protein concentrate using different enzymes. Bean proteins were extracted and hydrolyzed over a period of 120 min using the enzymes pepsin or alcalase. The protein hydrolysates’ molecular weight was assayed by e...

  6. Curcumin attenuates diet-induced hepatic steatosis by activating AMP-activated protein kinase.

    Science.gov (United States)

    Um, Min Young; Hwang, Kwang Hyun; Ahn, Jiyun; Ha, Tae Youl

    2013-09-01

    Curcumin is a well-known component of traditional turmeric (Curcuma longa), which has been reported to prevent obesity and diabetes. However, the effect of curcumin on hepatic lipid metabolism remains unclear. The aim of this study was to examine the effects of curcumin on hepatic steatosis in high-fat/cholesterol diet (HFD)-induced obese mice. Male C57BL/6J mice were fed a normal diet (ND), HFD or HFD with 0.15% curcumin (HFD+C) for 11 weeks. We found that curcumin significantly lowered the body-weight and adipose tissue weight of mice in the HFD+C group compared with the findings for the HFD group (p cholesterol, fasting glucose and insulin in serum were decreased, and HFD-induced impairment of insulin sensitivity was improved by curcumin supplementation (p Curcumin protected against the development of hepatic steatosis by reducing hepatic fat accumulation. Moreover, curcumin activated AMP-activated protein kinase (AMPK) and elevated the gene expression of peroxisome proliferator-activated receptor alpha. By contrast, curcumin suppressed the HFD-mediated increases in sterol regulatory element-binding protein-1, acetyl-CoA carboxylase 1, fatty acid synthase and cluster of differentiation 36 expression. Taken together, these findings indicate that curcumin attenuates HFD-induced hepatic steatosis by regulating hepatic lipid metabolism via AMPK activation, suggesting its use as a therapeutic for hepatic steatosis.

  7. Albumin activates astrocytes and microglia through mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Ralay Ranaivo, Hantamalala; Wainwright, Mark S

    2010-02-08

    Following acute brain injury, albumin may gain access to the brain parenchyma. Clinical studies indicate a protective role for albumin in stroke but an increase in mortality associated with albumin administration following traumatic brain injury. We investigated the effects of albumin on astrocyte and microglial activation, and the role of mitogen-activated protein kinases (MAPK) in these responses. Albumin activated ERK1/2, p38 MAPK and JNK signaling pathways in astrocytes, and induced the production of interleukin (IL)-1beta, inducible nitric oxide (NO) synthase, the NO metabolite nitrite, and the chemokine CX3CL1 while reducing the level of S100B. The release of inflammatory markers by astrocytes was partially dependent on p38 MAPK and ERK1/2 pathways, but not JNK. In microglia, albumin exposure activated all three MAPK pathways and produced an increase in IL-1beta and nitrite. Inhibition of p38 MAPK in microglia leads to an increased level of IL1beta, while inhibition of all three MAPKs suppressed the release of nitrite. These results suggest that albumin activates astrocytes and microglia, inducing inflammatory responses involved both in the mechanisms of cellular injury and repair via activation of MAPK pathways, and thereby implicate glial activation in the clinical responses to administration of albumin.

  8. Antagonists of Calcium Fluxes and Calmodulin Block Activation of the p21-Activated Protein Kinases in Neutrophils

    NARCIS (Netherlands)

    Lian, J.P. (Jian); Crossley, L. (Lisa); Zhan, Q. (Qian); Huang, R. (Riyun); Coffer, P.J.; Toker, A. (Alex); Robinson, D. (Dwight); Badwey, J.A. (John)

    2002-01-01

    Neutrophils stimulated with fMLP or a variety of other chemoattractants that bind to serpentine receptors coupled to heterotrimeric G proteins exhibit rapid activation of two p21-activated protein kinases (Paks) with molecular masses of ~63 and 69 kDa (y- and a-Pak). Previous studies have shown that

  9. Xylazine Activates Adenosine Monophosphate-Activated Protein Kinase Pathway in the Central Nervous System of Rats

    Science.gov (United States)

    Shi, Xing-Xing; Yin, Bai-Shuang; Yang, Peng; Chen, Hao; Li, Xin; Su, Li-Xue; Fan, Hong-Gang; Wang, Hong-Bin

    2016-01-01

    Xylazine is a potent analgesic extensively used in veterinary and animal experimentation. Evidence exists that the analgesic effect can be inhibited using adenosine 5’-monophosphate activated protein kinase (AMPK) inhibitors. Considering this idea, the aim of this study was to investigate whether the AMPK signaling pathway is involved in the central analgesic mechanism of xylazine in the rat. Xylazine was administrated via the intraperitoneal route. Sprague-Dawley rats were sacrificed and the cerebral cortex, cerebellum, hippocampus, thalamus and brainstem were collected for determination of liver kinase B1 (LKB1) and AMPKα mRNA expression using quantitative real-time polymerase chain reaction (qPCR), and phosphorylated LKB1 and AMPKα levels using western blot. The results of our study showed that compared with the control group, xylazine induced significant increases in AMPK activity in the cerebral cortex, hippocampus, thalamus and cerebellum after rats received xylazine (P < 0.01). Increased AMPK activities were accompanied with increased phosphorylation levels of LKB1 in corresponding regions of rats. The protein levels of phosphorylated LKB1 and AMPKα in these regions returned or tended to return to control group levels. However, in the brainstem, phosphorylated LKB1 and AMPKα protein levels were decreased by xylazine compared with the control (P < 0.05). In conclusion, our data indicates that xylazine alters the activities of LKB1 and AMPK in the central nervous system of rats, which suggests that xylazine affects the regulatory signaling pathway of the analgesic mechanism in the rat brain. PMID:27049320

  10. Differential activities of glucocorticoid-induced leucine zipper protein isoforms.

    Science.gov (United States)

    Soundararajan, Rama; Wang, Jian; Melters, Daniël; Pearce, David

    2007-12-14

    Glucocorticoid-induced leucine zipper protein (GILZ) is expressed in both epithelial and immune tissues and modulates a variety of cellular functions, including proliferation and epithelial sodium channel (ENaC) activity. A number of reports have described various GILZ activities, focusing on a single isoform with molecular mass of approximately 17 kDa, now termed GILZ1. In GILZ immunoblots using a newly developed antiserum, we detected multiple species in extracts from cultured kidney cells. Mass spectrometric analysis revealed that one of these represented a previously uncharacterized distinct isoform of GILZ, GILZ2. Rapid amplification of cDNA ends was used to clone cDNAs corresponding to four isoforms, which, in addition to GILZ1 and GILZ2, included new isoforms GILZ3 and GILZ4. Heterologous expression of these four GILZ isoforms in cultured cells revealed striking functional differences. Notably, GILZ1 was the only isoform that significantly stimulated ENaC-mediated Na+ current in a kidney collecting duct cell line, although GILZ2 and GILZ3 also stimulated ENaC surface expression in HEK 293 cells. GILZ1 and GILZ3, and to a lesser extent GILZ2, inhibited ERK phosphorylation. Interestingly, GILZ4, which had no effect on either ENaC or ERK, potently suppressed cellular proliferation, as did GILZ1, but not GILZ2 or GILZ3. Finally, rat and mouse tissues all expressed multiple GILZ species but varied in the relative abundance of each. These data suggest that multiple GILZ isoforms are expressed in most cells and tissues and that these play distinct roles in regulating key cellular functions, including proliferation and ion transport. Furthermore, GILZ inhibition of ERK appears to play an essential role in stimulation of cell surface ENaC but not in inhibition of proliferation.

  11. HAMLET - A protein-lipid complex with broad tumoricidal activity.

    Science.gov (United States)

    Ho, James C S; Nadeem, Aftab; Svanborg, Catharina

    2017-01-15

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a tumoricidal protein-lipid complex with broad effects against cancer cells of different origin. The therapeutic potential is emphasized by a high degree of specificity for tumor tissue. Here we review early studies of HAMLET, in collaboration with the Orrenius laboratory, and some key features of the subsequent development of the HAMLET project. The early studies focused on the apoptotic response that accompanies death in HAMLET treated tumor cells and the role of mitochondria in this process. In subsequent studies, we have identified a sequence of interactions that starts with the membrane integration of HAMLET and the activation of ion fluxes followed by HAMLET internalization, progressive inhibition of MAPK kinases and GTPases and sorting of HAMLET to different cellular compartments, including the nuclei. Therapeutic efficacy of HAMLET has been demonstrated in animal models of glioblastoma, bladder cancer and intestinal cancer. In clinical studies, HAMLET has been shown to target skin papillomas and bladder cancers. The findings identify HAMLET as a new drug candidate with promising selectivity for cancer cells and a strong therapeutic potential.

  12. Conserved BK channel-protein interactions reveal signals relevant to cell death and survival.

    Directory of Open Access Journals (Sweden)

    Bernd Sokolowski

    Full Text Available The large-conductance Ca(2+-activated K(+ (BK channel and its β-subunit underlie tuning in non-mammalian sensory or hair cells, whereas in mammals its function is less clear. To gain insights into species differences and to reveal putative BK functions, we undertook a systems analysis of BK and BK-Associated Proteins (BKAPS in the chicken cochlea and compared these results to other species. We identified 110 putative partners from cytoplasmic and membrane/cytoskeletal fractions, using a combination of coimmunoprecipitation, 2-D gel, and LC-MS/MS. Partners included 14-3-3γ, valosin-containing protein (VCP, stathmin (STMN, cortactin (CTTN, and prohibitin (PHB, of which 16 partners were verified by reciprocal coimmunoprecipitation. Bioinformatics revealed binary partners, the resultant interactome, subcellular localization, and cellular processes. The interactome contained 193 proteins involved in 190 binary interactions in subcellular compartments such as the ER, mitochondria, and nucleus. Comparisons with mice showed shared hub proteins that included N-methyl-D-aspartate receptor (NMDAR and ATP-synthase. Ortholog analyses across six species revealed conserved interactions involving apoptosis, Ca(2+ binding, and trafficking, in chicks, mice, and humans. Functional studies using recombinant BK and RNAi in a heterologous expression system revealed that proteins important to cell death/survival, such as annexinA5, γ-actin, lamin, superoxide dismutase, and VCP, caused a decrease in BK expression. This revelation led to an examination of specific kinases and their effectors relevant to cell viability. Sequence analyses of the BK C-terminus across 10 species showed putative binding sites for 14-3-3, RAC-α serine/threonine-protein kinase 1 (Akt, glycogen synthase kinase-3β (GSK3β and phosphoinositide-dependent kinase-1 (PDK1. Knockdown of 14-3-3 and Akt caused an increase in BK expression, whereas silencing of GSK3β and PDK1 had the opposite

  13. Porins from Salmonella enterica Serovar Typhimurium Activate the Transcription Factors Activating Protein 1 and NF-κB through the Raf-1-Mitogen-Activated Protein Kinase Cascade

    Science.gov (United States)

    Galdiero, Massimiliano; Vitiello, Mariateresa; Sanzari, Emma; D’Isanto, Marina; Tortora, Annalisa; Longanella, Anna; Galdiero, Stefania

    2002-01-01

    In this study we examined the ability of Salmonella enterica serovar Typhimurium porins to activate activating protein 1 (AP-1) and nuclear factor κB (NF-κB) through the mitogen-activated protein kinase (MAPK) cascade, and we identified the AP-1-induced protein subunits. Our results demonstrate that these enzymes may participate in cell signaling pathways leading to AP-1 and NF-κB activation following porin stimulation of cells. Raf-1 was phosphorylated in response to the treatment of U937 cells with porins; moreover, the porin-mediated increase in Raf-1 phosphorylation is accompanied by the phosphorylation of MAPK kinase 1/2 (MEK1/2), p38, extracellular-signal-regulated kinase 1/2, and c-Jun N-terminal kinase. We used three different inhibitors of phosphorylation pathways: 2′-amino-3′-methoxyflavone (PD-098059), a selective inhibitor of MEK1 activator and the MAPK cascade; 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), a specific inhibitor of the p38 pathway; and 7β-acetoxy-1α,6β,9α-trihydroxy-8,13-epoxy-labd-14-en-11-one (forskolin), an inhibitor at the level of Raf-1 kinase. PD-098059 pretreatment of cells decreases AP-1 and NF-κB activation by lipopolysaccharide (LPS) but not by porins, and SB203580 pretreatment of cells decreases mainly AP-1 and NF-κB activation by porins; in contrast, forskolin pretreatment of cells does not affect AP-1 and NF-κB activation following either porin or LPS stimulation. Our data suggest that the p38 signaling pathway mainly regulates AP-1 and NF-κB activation in cells treated with S. enterica serovar Typhimurium porins. Antibody electrophoretic mobility shift assays showed that JunD and c-Fos binding is found in cells treated with porins, in cells treated with LPS, and in unstimulated cells. However, by 30 to 60 min of stimulation, a different complex including c-Jun appears in cells treated with porins or LPS, while the Fra-2 subunit is present only after porin stimulation

  14. Rheb Inhibits Protein Synthesis by Activating the PERK-eIF2α Signaling Cascade

    Directory of Open Access Journals (Sweden)

    Richa Tyagi

    2015-02-01

    Full Text Available Rheb, a ubiquitous small GTPase, is well known to bind and activate mTOR, which augments protein synthesis. Inhibition of protein synthesis is also physiologically regulated. Thus, with cell stress, the unfolded protein response system leads to phosphorylation of the initiation factor eIF2α and arrest of protein synthesis. We now demonstrate a major role for Rheb in inhibiting protein synthesis by enhancing the phosphorylation of eIF2α by protein kinase-like ER kinase (PERK. Interplay between the stimulatory and inhibitory roles of Rheb may enable cells to modulate protein synthesis in response to varying environmental stresses.

  15. Mitogen-Activated Protein Kinases Regulate Susceptibility to Ventilator-Induced Lung Injury

    OpenAIRE

    2008-01-01

    BACKGROUND: Mechanical ventilation causes ventilator-induced lung injury in animals and humans. Mitogen-activated protein kinases have been implicated in ventilator-induced lung injury though their functional significance remains incomplete. We characterize the role of p38 mitogen-activated protein kinase/mitogen activated protein kinase kinase-3 and c-Jun-NH(2)-terminal kinase-1 in ventilator-induced lung injury and investigate novel independent mechanisms contributing to lung injury during ...

  16. 2-octynoic acid inhibits hepatitis C virus infection through activation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Darong Yang

    Full Text Available Many chronic hepatitis C virus (HCV-infected patients with current therapy do not clear the virus. It is necessary to find novel treatments. The effect of 2-octynoic acid (2-OA on HCV infection in human hepatocytes was examined. The mechanism of 2-OA antiviral activity was explored. Our data showed that 2-OA abrogated lipid accumulation in HCV replicon cells and virus-infected hepatocytes. It suppressed HCV RNA replication and infectious virus production with no cytotoxicity to the host cells. 2-OA did not affect hepatitis B virus replication in HepG2.2.15 cells derived from HepG2 cells transfected with full genome of HBV. Further study demonstrated that 2-OA activated AMP-activated protein kinase (AMPK and inhibited acetyl-CoA carboxylase in viral-infected cells. Compound C, a specific inhibitor of AMPK, inhibited AMPK activity and reversed the reduction of intracellular lipid accumulation and the antiviral effect of 2-OA. Knockdown of AMPK expression by RNA interference abolished the activation of AMPK by 2-OA and blocked 2-OA antiviral activity. Interestingly, 2-OA induced interferon-stimulated genes (ISGs and inhibited microRNA-122 (miR-122 expression in virus-infected hepatocytes. MiR-122 overexpression reversed the antiviral effect of 2-OA. Furthermore, knockdown of AMPK expression reversed both the induction of ISGs and suppression of miR-122 by 2-OA, implying that activated AMPK induces the intracellular innate response through the induction of ISGs and inhibiting miR-122 expression. 2-OA inhibits HCV infection through regulation of innate immune response by activated AMPK. These findings reveal a novel mechanism by which active AMPK inhibits HCV infection. 2-OA and its derivatives hold promise for novel drug development for chronic hepatitis C.

  17. Folding of Aggregated Proteins to Functionally Active Form

    Science.gov (United States)

    2006-06-01

    proteins. In general, these expression systems can be divided into three groups on the basis of the host used: bacterial, insect or yeast, and...translational modifications, and the high cost of production [1]. Yeast or insect cells typically provide faster and cheaper systems for protein production...of reducing agents such as DTT, reduced glutathione or phosphine derivatives like Tris(2-carboxyethyl)pho- sphine (TCEP). Proteins are typically

  18. Activation of AMP-activated protein kinase inhibits ER stress and renal fibrosis.

    Science.gov (United States)

    Kim, Hyosang; Moon, Soo Young; Kim, Joon-Seok; Baek, Chung Hee; Kim, Miyeon; Min, Ji Yeon; Lee, Sang Koo

    2015-02-01

    It has been suggested that endoplasmic reticulum (ER) stress facilitates fibrotic remodeling. Therefore, modulation of ER stress may serve as one of the possible therapeutic approaches to renal fibrosis. We examined whether and how activation of AMP-activated protein kinase (AMPK) suppressed ER stress induced by chemical ER stress inducers [tunicamycin (TM) and thapsigargin (TG)] and also nonchemical inducers in tubular HK-2 cells. We further investigated the in vivo effects of AMPK on ER stress and renal fibrosis. Western blot analysis, immunofluorescence, small interfering (si)RNA experiments, and immunohistochemical staining were performed. Metformin (the best known clinical activator of AMPK) suppressed TM- or TG-induced ER stress, as shown by the inhibition of TM- or TG-induced upregulation of glucose-related protein (GRP)78 and phosphorylated eukaryotic initiation factor-2α through induction of heme oxygenase-1. Metformin inhibited TM- or TG-induced epithelial-mesenchymal transitions as well. Compound C (AMPK inhibitor) blocked the effect of metformin, and 5-aminoimidazole-4-carboxamide-1β riboside (another AMPK activator) exerted the same effects as metformin. Transfection with siRNA targeting AMPK blocked the effect of metformin. Consistent with the results of cell culture experiments, metformin reduced renal cortical GRP78 expression and increased heme oxygenase-1 expression in a mouse model of ER stress-induced acute kidney injury by TM. Activation of AMPK also suppressed ER stress by transforming growth factor-β, ANG II, aldosterone, and high glucose. Furthermore, metformin reduced GRP78 expression and renal fibrosis in a mouse model of unilateral ureteral obstruction. In conclusion, AMPK may serve as a promising therapeutic target through reducing ER stress and renal fibrosis.

  19. Low salt concentrations activate AMP-activated protein kinase in mouse macula densa cells.

    Science.gov (United States)

    Cook, Natasha; Fraser, Scott A; Katerelos, Marina; Katsis, Frosa; Gleich, Kurt; Mount, Peter F; Steinberg, Gregory R; Levidiotis, Vicki; Kemp, Bruce E; Power, David A

    2009-04-01

    The energy-sensing kinase AMP-activated protein kinase (AMPK) is associated with the sodium-potassium-chloride cotransporter NKCC2 in the kidney and phosphorylates it on a regulatory site in vitro. To identify a potential role for AMPK in salt sensing at the macula densa, we have used the murine macula densa cell line MMDD1. In this cell line, AMPK was rapidly activated by isosmolar low-salt conditions. In contrast to the known salt-sensing pathway in the macula densa, AMPK activation occurred in the presence of either low sodium or low chloride and was unaffected by inhibition of NKCC2 with bumetanide. Assays using recombinant AMPK demonstrated activation of an upstream kinase by isosmolar low salt. The specific calcium/calmodulin-dependent kinase kinase inhibitor STO-609 failed to suppress AMPK activation, suggesting that it was not part of the signal pathway. AMPK activation was associated with increased phosphorylation of the specific substrate acetyl-CoA carboxylase (ACC) at Ser(79), as well as increased NKCC2 phosphorylation at Ser(126). AMPK activation due to low salt concentrations was inhibited by an adenovirus construct encoding a kinase dead mutant of AMPK, leading to reduced ACC Ser(79) and NKCC2 Ser(126) phosphorylation. This work demonstrates that AMPK activation in macula densa-like cells occurs via isosmolar changes in sodium or chloride concentration, leading to phosphorylation of ACC and NKCC2. Phosphorylation of these substrates in vivo is predicted to increase intracellular chloride and so reduce the effect of salt restriction on tubuloglomerular feedback and renin secretion.

  20. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation.

    Science.gov (United States)

    Carpenter, Byron; Tate, Christopher G

    2016-12-01

    G protein-coupled receptors (GPCRs) modulate cytoplasmic signalling in response to extracellular stimuli, and are important therapeutic targets in a wide range of diseases. Structure determination of GPCRs in all activation states is important to elucidate the precise mechanism of signal transduction and to facilitate optimal drug design. However, due to their inherent instability, crystallisation of GPCRs in complex with cytoplasmic signalling proteins, such as heterotrimeric G proteins and β-arrestins, has proved challenging. Here, we describe the design of a minimal G protein, mini-Gs, which is composed solely of the GTPase domain from the adenylate cyclase stimulating G protein Gs Mini-Gs is a small, soluble protein, which efficiently couples GPCRs in the absence of Gβγ subunits. We engineered mini-Gs, using rational design mutagenesis, to form a stable complex with detergent-solubilised β1-adrenergic receptor (β1AR). Mini G proteins induce similar pharmacological and structural changes in GPCRs as heterotrimeric G proteins, but eliminate many of the problems associated with crystallisation of these complexes, specifically their large size, conformational dynamics and instability in detergent. They are therefore novel tools, which will facilitate the biochemical and structural characterisation of GPCRs in their active conformation.

  1. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals.

    Science.gov (United States)

    Prochazka, Radek; Blaha, Milan

    2015-01-01

    In vivo, resumption of oocyte meiosis occurs in large ovarian follicles after the preovulatory surge of luteinizing hormone (LH). The LH surge leads to the activation of a broad signaling network in mural granulosa cells equipped with LH receptors. The signals generated in the mural granulosa cells are further augmented by locally produced peptides or steroids and transferred to the cumulus cell compartment and the oocyte itself. Over the last decade, essential progress has been made in the identification of molecular events associated with the final maturation and ovulation of mammalian oocytes. All new evidence argues for a multiple roles of mitogen-activated protein kinase 3/1 (MAPK3/1) in the gonadotropin-induced ovulation processes. However, the knowledge of gonadotropin-induced signaling pathways leading to MAPK3/1 activation in follicular cells seems limited. To date, only the LH-induced transactivation of the epidermal growth factor receptor/MAPK3/1 pathway has been described in granulosa/cumulus cells even though other mechanisms of MAPK3/1 activation have been detected in other types of cells. In this review, we aimed to summarize recent advances in the elucidation of gonadotropin-induced mechanisms leading to the activation of MAPK3/1 in preovulatory follicles and cultured cumulus-oocyte complexes and to point out a specific role of this kinase in the processes accompanying final maturation of the mammalian oocyte.

  2. Cheese from Ultrafiltered Milk : whey proteins and chymosin activity

    NARCIS (Netherlands)

    Buijsse, C.

    1999-01-01

    The manufacture of (semi-)hard cheese from ultrafiltered milk (UF-cheese) enables the partial incorporation of whey proteins in the cheese, thereby increasing its yield. The transfer of whey proteins in curd from (UF-)milk was studied in relation to the degree of ultrafiltration of the milk and the

  3. 5'-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Jakob Nis; Mustard, Kirsty J.W.; Graham, Drew A.

    2002-01-01

    5'-AMP-activated protein kinase (AMPK) has been proposed to be a pivotal factor in cellular responses to both acute exercise and exercise training. To investigate whether protein levels and gene expression of catalytic (alpha(1), alpha(2)) and regulatory (beta(1), beta(2), gamma(1), gamma(2), gam...... muscle has increased alpha(1)-AMPK protein levels and blunted AMPK activation during exercise.......5'-AMP-activated protein kinase (AMPK) has been proposed to be a pivotal factor in cellular responses to both acute exercise and exercise training. To investigate whether protein levels and gene expression of catalytic (alpha(1), alpha(2)) and regulatory (beta(1), beta(2), gamma(1), gamma(2), gamma......(3)) AMPK subunits and exercise-induced AMPK activity are influenced by exercise training status, muscle biopsies were obtained from seven endurance exercise-trained and seven sedentary young healthy men. The alpha(1)- and alpha(2)-AMPK mRNA contents in trained subjects were both 117 +/- 2...

  4. Astragaloside Ⅱ triggers T cell activation through regulation of CD45 protein tyrosine phosphatase activity

    Institute of Scientific and Technical Information of China (English)

    Chun-ping WAN; Li-xin GAO; Li-fei HOU; Xiao-qian YANG; Pei-lan HE; Yi-fu YANG; Wei TANG

    2013-01-01

    Aim:To investigate the immunomodulating activity of astragalosides,the active compounds from a traditional tonic herb Astragalus membranaceus Bge,and to explore the molecular mechanisms underlying the actions,focusing on CD45 protein tyrosine phosphatase (CD45 PTPase),which plays a critical role in T lymphocyte activation.Methods:Primary splenocytes and T cells were prepared from mice.CD45 PTPase activity was assessed using a colorimetric assay.Cell proliferation was measured using a [3H]-thymidine incorporation assay.Cytokine proteins and mRNAs were examined with ELISA and RT-PCR,respectively.Activation markers,including CD25 and CD69,were analyzed using flow cytometry.Activation of LCK (Tyr505) was detected using Western blot analysis.Mice were injected with the immunosuppressant cyclophosphamide (CTX,80 mg/kg),and administered astragaloside Ⅱ (50 mg/kg).Results:Astragaloside Ⅰ,Ⅱ,Ⅲ,and Ⅳ concentration-dependently increased the CD45-mediated of pNPP/OMFP hydrolysis with the EC50 values ranged from 3.33 to 10.42 μg/mL.Astragaloside Ⅱ (10 and 30 μg/mL) significantly enhanced the proliferation of primary splenocytes induced by ConA,alloantigen or anti-CD3.Astragaloside Ⅱ (30 μg/mL) significantly increased IL-2 and IFN-y secretion,upregulated the mRNA levels of IFN-y and T-bet in primary splenocytes,and promoted CD25 and CD69 expression on primary CD4+T cells upon TCR stimulation.Furthermore,astragaloside Ⅱ (100 ng/mL) promoted CD45-mediated dephosphorylation of LCK (Tyr505) in primary T cells,which could be blocked by a specific CD45 PTPase inhibitor.In CTX-induced immunosuppressed mice,oral administration of astragaloside Ⅱ restored the proliferation of splenic T cells and the production of IFN-Y and IL-2.However,astragaloside Ⅱ had no apparent effects on B cell proliferation.Conclusion:Astragaloside Ⅱ enhances T cell activation by regulating the activity of CD45 PTPase,which may explain why Astragalus membranaceus Bge is used as a tonic

  5. Evolutionary history of the vertebrate mitogen activated protein kinases family.

    Directory of Open Access Journals (Sweden)

    Meng Li

    Full Text Available BACKGROUND: The mitogen activated protein kinases (MAPK family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear. METHODOLOGY/PRINCIPAL FINDINGS: The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gene expression level of both MAPK genes. CONCLUSIONS/SIGNIFICANCE: These results provide valuable insight into the evolutionary history of the vertebrate MAPK family.

  6. Protein kinase A inhibition facilitates the antitumor activity of xanthohumol, a valosin-containing protein inhibitor.

    Science.gov (United States)

    Shikata, Yuki; Yoshimaru, Tetsuro; Komatsu, Masato; Katoh, Hiroto; Sato, Reiko; Kanagaki, Shuhei; Okazaki, Yasumasa; Toyokuni, Shinya; Tashiro, Etsu; Ishikawa, Shumpei; Katagiri, Toyomasa; Imoto, Masaya

    2017-01-25

    Xanthohumol (XN), a simple prenylated chalcone, can be isolated from hops and has the potential to be a cancer chemopreventive agent against several human tumor cell lines. We previously identified valosin-containing protein (VCP) as a target of XN; VCP can also play crucial roles in cancer progression and prognosis. Therefore, we investigated the molecular mechanisms governing the contribution of VCP to the antitumor activity of XN. Several human tumor cell lines were treated with XN to investigate which human tumor cell lines are sensitive to XN. Several cell lines exhibited high sensitivity to XN both in vitro and in vivo. shRNA screening and bioinformatics analysis identified that the inhibition of the adenylate cyclase (AC) pathway synergistically facilitated apoptosis induced by VCP inhibition. These results suggest there is crosstalk between the AC pathway and VCP function, and targeting both VCP and the AC pathway is a potential chemotherapeutic strategy for a subset of tumor cells. This article is protected by copyright. All rights reserved.

  7. Protein Synthesis Inhibition Activity by Strawberry Tissue Protein Extracts during Plant Life Cycle and under Biotic and Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Walther Faedi

    2013-07-01

    Full Text Available Ribosome-inactivating proteins (RIPs, enzymes that are widely distributed in the plant kingdom, inhibit protein synthesis by depurinating rRNA and many other polynucleotidic substrates. Although RIPs show antiviral, antifungal, and insecticidal activities, their biological and physiological roles are not completely understood. Additionally, it has been described that RIP expression is augmented under stressful conditions. In this study, we evaluated protein synthesis inhibition activity in partially purified basic proteins (hereafter referred to as RIP activity from tissue extracts of Fragaria × ananassa (strawberry cultivars with low (Dora and high (Record tolerance to root pathogens and fructification stress. Association between the presence of RIP activity and the crop management (organic or integrated soil, growth stage (quiescence, flowering, and fructification, and exogenous stress (drought were investigated. RIP activity was found in every tissue tested (roots, rhizomes, leaves, buds, flowers, and fruits and under each tested condition. However, significant differences in RIP distribution were observed depending on the soil and growth stage, and an increase in RIP activity was found in the leaves of drought-stressed plants. These results suggest that RIP expression and activity could represent a response mechanism against biotic and abiotic stresses and could be a useful tool in selecting stress-resistant strawberry genotypes.

  8. Using an FPLC to Promote Active Learning of the Principles of Protein Structure and Purification

    Science.gov (United States)

    Robinson, Rebekah L.; Neely, Amy E.; Mojadedi, Wais; Threatt, Katie N.; Davis, Nicole Y.; Weiland, Mitch H.

    2017-01-01

    The concepts of protein purification are often taught in undergraduate biology and biochemistry lectures and reinforced during laboratory exercises; however, very few reported activities allow students to directly gain experience using modern protein purification instruments, such as Fast Protein Liquid Chromatography (FPLC). This laboratory…

  9. Refolding Techniques for Recovering Biologically Active Recombinant Proteins from Inclusion Bodies

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamaguchi

    2014-02-01

    Full Text Available Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  10. Cisplatin induces cytotoxicity through the mitogen-activated protein kinase pathways and activating transcription factor 3.

    Science.gov (United States)

    St Germain, Carly; Niknejad, Nima; Ma, Laurie; Garbuio, Kyla; Hai, Tsonwin; Dimitroulakos, Jim

    2010-07-01

    The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3) as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cisplatin and carboplatin treatments consistently induced ATF3 expression in five tumor-derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response-independent mechanism, all previously implicated in stress-mediated ATF3 induction. Analysis of mitogen-activated protein kinase (MAPK) pathway involvement in ATF3 induction by cisplatin revealed a MAPK-dependent mechanism. Cisplatin treatment combined with specific inhibitors to each MAPK pathway (c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38) resulted in decreased ATF3 induction at the protein level. MAPK pathway inhibition led to decreased ATF3 messenger RNA expression and reduced cytotoxic effects of cisplatin as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific small hairpin RNA also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3-/- murine embryonic fibroblasts (MEFs) were shown to be less sensitive to cisplatin-induced cytotoxicity compared with ATF3+/+ MEFs. This study identifies cisplatin as a MAPK pathway-dependent inducer of ATF3, whose expression influences cisplatin's cytotoxic effects.

  11. Vegetative Storage Protein with Trypsin Inhibitor Activity Occurs in Sapindus mukorassi,a Sapindaceae Deciduous Tree

    Institute of Scientific and Technical Information of China (English)

    Shi-Biao Liu; Xu-Chu Wang; Min-Jing Shi; Yue-Yi Chen; Zheng-Hai Hu; Wei-Min Tian

    2009-01-01

    A vegetative storage protein (VSP) with trypsin inhibitor activity in a deciduous tree,Sapindus mukorassi,was characterized by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis,Western-blot,immuno-histochemical localization,light- and electro-microscopy,together with analysis of proteinase inhibitor activity of the purified VSP in vitro.There were two proteins with molecular masses of about 23 and 27 kDa in a relatively high content in the bark tissues of terminal branches of S.mukorassi in leafless periods.The proteins decreased markedly during young shoot development,indicating their role in seasonal nitrogen storage.Immuno-histochemical localization with the polyclonal antibodies raised against the 23 kDa protein demonstrated that the 23 kDa protein was the major component of protein inclusions in protein-storing cells.The protein inclusions were identified by protein-specific staining and should correspond to the electron-dense materials in different forms in the vacuoles of phloem parenchyma cells and phloem ray parenchyma cells under an electron microscope.So,the 23 kDa protein was a typical VSP in S.mukorassi.The 23 and 27 kDa proteins shared no immuno-relatedness,whereas the 23 kDa protein was immuno-related with the 22 kDa VSP in lychee and possessed trypsin inhibitor activity.The 23 kDa protein may confer dual functions:nitrogen storage and defense.

  12. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling.

    Science.gov (United States)

    Blumer, Joe B; Smrcka, Alan V; Lanier, Stephen M

    2007-03-01

    Signal processing via heterotrimeric G-proteins in response to cell surface receptors is a central and much investigated aspect of how cells integrate cellular stimuli to produce coordinated biological responses. The system is a target of numerous therapeutic agents and plays an important role in adaptive processes of organs; aberrant processing of signals through these transducing systems is a component of various disease states. In addition to G-protein coupled receptor (GPCR)-mediated activation of G-protein signaling, nature has evolved creative ways to manipulate and utilize the Galphabetagamma heterotrimer or Galpha and Gbetagamma subunits independent of the cell surface receptor stimuli. In such situations, the G-protein subunits (Galpha and Gbetagamma) may actually be complexed with alternative binding partners independent of the typical heterotrimeric Galphabetagamma. Such regulatory accessory proteins include the family of regulator of G-protein signaling (RGS) proteins that accelerate the GTPase activity of Galpha and various entities that influence nucleotide binding properties and/or subunit interaction. The latter group of proteins includes receptor-independent activators of G-protein signaling (AGS) proteins that play surprising roles in signal processing. This review provides an overview of our current knowledge regarding AGS proteins. AGS proteins are indicative of a growing number of accessory proteins that influence signal propagation, facilitate cross talk between various types of signaling pathways, and provide a platform for diverse functions of both the heterotrimeric Galphabetagamma and the individual Galpha and Gbetagamma subunits.

  13. Spacial isolation of protein kinase C activation in thrombin stimulated human platelets.

    Science.gov (United States)

    Crouch, M F; Lapetina, E G

    1988-10-14

    Thrombin stimulation of human platelets is associated with turnover of inositol phospholipids, mobilization of intracellular Ca2+ stores, and activation of protein kinase C. However, within 5 minutes, the thrombin receptor desensitizes, but can be re-coupled to its effectors by stimulation of alpha 2-adrenergic receptors (Crouch and Lapetina, J. Biol. Chem. 263, 3363-3371, 1988). This effect of epinephrine was found to be inhibited by preincubation of platelets with phorbol ester, suggesting that protein kinase C was inhibitory. However, since thrombin also activated protein kinase C and epinephrine was active following thrombin stimulation of platelets, this implied that thrombin activation of protein kinase C may have been spacially isolated near the thrombin receptor and could not inactivate alpha 2-receptor activity. In the present paper, we have tested this possibility, and we present evidence which strongly favours the possibility that protein kinase C activation by receptors induces its local translocation to the cell membrane.

  14. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  15. Vitamin K dependent protein activity and incident ischemic cardiovascular disease: The multi ethnic study of atherosclerosis

    Science.gov (United States)

    OBJECTIVE: Vitamin K-dependent proteins (VKDPs), which require post-translational modification to achieve biological activity, seem to contribute to thrombus formation, vascular calcification, and vessel stiffness. Whether VKDP activity is prospectively associated with incident cardiovascular diseas...

  16. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein

    DEFF Research Database (Denmark)

    Whorton, Matthew R; Bokoch, Michael P; Rasmussen, Søren Gøgsig Faarup;

    2007-01-01

    G protein-coupled receptors (GPCRs) respond to a diverse array of ligands, mediating cellular responses to hormones and neurotransmitters, as well as the senses of smell and taste. The structures of the GPCR rhodopsin and several G proteins have been determined by x-ray crystallography, yet...... the organization of the signaling complex between GPCRs and G proteins is poorly understood. The observations that some GPCRs are obligate heterodimers, and that many GPCRs form both homo- and heterodimers, has led to speculation that GPCR dimers may be required for efficient activation of G proteins. However......, technical limitations have precluded a definitive analysis of G protein coupling to monomeric GPCRs in a biochemically defined and membrane-bound system. Here we demonstrate that a prototypical GPCR, the beta2-adrenergic receptor (beta2AR), can be incorporated into a reconstituted high-density lipoprotein...

  17. Tsetse salivary gland proteins 1 and 2 are high affinity nucleic acid binding proteins with residual nuclease activity.

    Directory of Open Access Journals (Sweden)

    Guy Caljon

    Full Text Available Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2 display DNA/RNA non-specific, high affinity nucleic acid binding with K(D values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents.

  18. Isolation of a novel protein, P12-from adult Drosophila melanogaster that inhibits deoxyribonucleoside and protein kinase activities and activates 3'-5'- exonuclease activity

    DEFF Research Database (Denmark)

    Christiansen, Louise Slot; Zanten, Gabriella van; Berenstein, Dvora;

    2016-01-01

    We have previously found that Drosophila melanogaster only has one deoxyribonucleoside kinase, Dm-dNK, however, capable to phosphorylate all four natural deoxyribonucleosides. Dm-dNK was originally isolated from an embryonic cell line. We wanted to study the expression of Dm-dNK during development......-dNK, also inhibited the two protein kinases to the same degree. Furthermore, testing P12 in a DNA polymerase based assay we found that the 3'-5'-exonuclease part of the DNA polymerase (Klenow polymerase) was activated....

  19. Interaction of Bacillus thuringiensis Vegetative Insecticidal Protein with Ribosomal S2 Protein Triggers Larvicidal Activity in Spodoptera frugiperda▿ †

    OpenAIRE

    Singh, Gatikrushna; Sachdev, Bindiya; Sharma, Nathilal; Seth, Rakesh; Bhatnagar, Raj K.

    2010-01-01

    Vegetative insecticidal protein (Vip3A) is synthesized as an extracellular insecticidal toxin by certain strains of Bacillus thuringiensis. Vip3A is active against several lepidopteran pests of crops. Polyphagous pest, Spodoptera frugiperda, and its cell line Sf21 are sensitive for lyses to Vip3A. Screening of cDNA library prepared from Sf21 cells through yeast two-hybrid system with Vip3A as bait identified ribosomal protein S2 as a toxicity-mediating interacting partner protein. The Vip3A-r...

  20. SPLICEFINDER - a fast and easy screening method for active protein trans-splicing positions.

    Directory of Open Access Journals (Sweden)

    Joachim Zettler

    Full Text Available Split intein enabled protein trans-splicing (PTS is a powerful method for the ligation of two protein fragments, thereby paving the way for various protein modification or protein function control applications. PTS activity is strongly influenced by the amino acids directly flanking the splice junctions. However, to date no reliable prediction can be made whether or not a split intein is active in a particular foreign extein context. Here we describe SPLICEFINDER, a PCR-based method, allowing fast and easy screening for active split intein insertions in any target protein. Furthermore we demonstrate the applicability of SPLICEFINDER for segmental isotopic labeling as well as for the generation of multi-domain and enzymatically active proteins.

  1. BRIEF REPORT OF ACTIVE CONTROLLED AND OBSERVABLE PROTEIN CRYSTALLIZATION FACILITY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ There are two tendency of development on space protein crystal growth facility.Increase the number of samples, for commercial purpose, or observe and control the crystallization process, for study of crystallization process.

  2. Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase.

    Science.gov (United States)

    Park, Chan Sun; Bang, Bo-Ram; Kwon, Hyouk-Soo; Moon, Keun-Ai; Kim, Tae-Bum; Lee, Ki-Young; Moon, Hee-Bom; Cho, You Sook

    2012-12-15

    Recent reports have suggested that metformin has anti-inflammatory and anti-tissue remodeling properties. We investigated the potential effect of metformin on airway inflammation and remodeling in asthma. The effect of metformin treatment on airway inflammation and pivotal characteristics of airway remodeling were examined in a murine model of chronic asthma generated by repetitive challenges with ovalbumin and fungal-associated allergenic protease. To investigate the underlying mechanism of metformin, oxidative stress levels and AMP-activated protein kinase (AMPK) activation were assessed. To further elucidate the role of AMPK, we examined the effect of 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) as a specific activator of AMPK and employed AMPKα1-deficient mice as an asthma model. The role of metformin and AMPK in tissue fibrosis was evaluated using a bleomycin-induced acute lung injury model and in vitro experiments with cultured fibroblasts. Metformin suppressed eosinophilic inflammation and significantly reduced peribronchial fibrosis, smooth muscle layer thickness, and mucin secretion. Enhanced AMPK activation and decreased oxidative stress in lungs was found in metformin-treated asthmatic mice. Similar results were observed in the AICAR-treated group. In addition, the enhanced airway inflammation and fibrosis in heterozygous AMPKα1-deficient mice were induced by both allergen and bleomycin challenges. Fibronectin and collagen expression was diminished by metformin through AMPKα1 activation in cultured fibroblasts. Therefore metformin reduced both airway inflammation and remodeling at least partially through the induction of AMPK activation and decreased oxidative stress. These data provide insight into the beneficial role of metformin as a novel therapeutic drug for chronic asthma.

  3. Strategies for production of active eukaryotic proteins in bacterial expression system

    Institute of Scientific and Technical Information of China (English)

    Orawan Khow; Sunutcha Suntrarachun

    2012-01-01

    Bacteria have long been the favorite expression system for recombinant protein production. However, the flaw of the system is that insoluble and inactive proteins are co-produced due to codon bias, protein folding, phosphorylation, glycosylation, mRNA stability and promoter strength. Factors are cited and the methods to convert to soluble and active proteins are described, for example a tight control of Escherichia coli milieu, refolding from inclusion body and through fusion technology.

  4. Alteration and modulation of protein activity by varying post-translational modification

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Reed, David W.; Thompson, Vicki S.; Lacey, Jeffrey A.; Apel, William A.

    2016-07-12

    Embodiments of the invention include methods of altering the enzymatic activity or solubility of an extremophilic enzyme or post-translationally modifying a protein of interest via using isolated or partially purified glycosyltransferases and/or post-translational modification proteins, extracts of cells comprising glycosyltransferases and/or post-translational modification proteins, and/or in cells comprising one or more glycosyltransferases and/or post-translational modification proteins.

  5. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide

    OpenAIRE

    Lopez-Girona, A; Mendy, D; Ito, T.; Miller, K; A K Gandhi; Kang, J.(Yonsei University, Seoul, South Korea); Karasawa, S; Carmel, G; P Jackson; Abbasian, M; A Mahmoudi; Cathers, B; Rychak, E; Gaidarova, S; Chen, R.

    2012-01-01

    Thalidomide and the immunomodulatory drug, lenalidomide, are therapeutically active in hematological malignancies. The ubiquitously expressed E3 ligase protein cereblon (CRBN) has been identified as the primary teratogenic target of thalidomide. Our studies demonstrate that thalidomide, lenalidomide and another immunomodulatory drug, pomalidomide, bound endogenous CRBN and recombinant CRBN–DNA damage binding protein-1 (DDB1) complexes. CRBN mediated antiproliferative activities of lenalidomid...

  6. Regulator of G Protein Signaling 6 (RGS6) Induces Apoptosis via a Mitochondrial-dependent Pathway Not Involving Its GTPase-activating Protein Activity*

    Science.gov (United States)

    Maity, Biswanath; Yang, Jianqi; Huang, Jie; Askeland, Ryan W.; Bera, Soumen; Fisher, Rory A.

    2011-01-01

    Regulator of G protein signaling 6 (RGS6) is a member of a family of proteins called RGS proteins, which function as GTPase-activating proteins (GAPs) for Gα subunits. Given the role of RGS6 as a G protein GAP, the link between G protein activation and cancer, and a reduction of cancer risk in humans expressing a RGS6 SNP leading to its increased translation, we hypothesized that RGS6 might function to inhibit growth of cancer cells. Here, we show a marked down-regulation of RGS6 in human mammary ductal epithelial cells that correlates with the progression of their transformation. RGS6 exhibited impressive antiproliferative actions in breast cancer cells, including inhibition of cell growth and colony formation and induction of cell cycle arrest and apoptosis by mechanisms independent of p53. RGS6 activated the intrinsic pathway of apoptosis involving regulation of Bax/Bcl-2, mitochondrial outer membrane permeabilization (MOMP), cytochrome c release, activation of caspases-3 and -9, and poly(ADP-ribose) polymerase cleavage. RGS6 promoted loss of mitochondrial membrane potential (ΔΨm) and increases in reactive oxygen species (ROS). RGS6-induced caspase activation and loss of ΔΨm was mediated by ROS, suggesting an amplification loop in which ROS provided a feed forward signal to induce MOMP, caspase activation, and cell death. Loss of RGS6 in mouse embryonic fibroblasts dramatically impaired doxorubicin-induced growth suppression and apoptosis. Surprisingly, RGS6-induced apoptosis in both breast cancer cells and mouse embryonic fibroblasts does not require its GAP activity toward G proteins. This work demonstrates a novel signaling action of RGS6 in cell death pathways and identifies it as a possible therapeutic target for treatment of breast cancer. PMID:21041304

  7. Regulator of G protein signaling 6 (RGS6) induces apoptosis via a mitochondrial-dependent pathway not involving its GTPase-activating protein activity.

    Science.gov (United States)

    Maity, Biswanath; Yang, Jianqi; Huang, Jie; Askeland, Ryan W; Bera, Soumen; Fisher, Rory A

    2011-01-14

    Regulator of G protein signaling 6 (RGS6) is a member of a family of proteins called RGS proteins, which function as GTPase-activating proteins (GAPs) for Gα subunits. Given the role of RGS6 as a G protein GAP, the link between G protein activation and cancer, and a reduction of cancer risk in humans expressing a RGS6 SNP leading to its increased translation, we hypothesized that RGS6 might function to inhibit growth of cancer cells. Here, we show a marked down-regulation of RGS6 in human mammary ductal epithelial cells that correlates with the progression of their transformation. RGS6 exhibited impressive antiproliferative actions in breast cancer cells, including inhibition of cell growth and colony formation and induction of cell cycle arrest and apoptosis by mechanisms independent of p53. RGS6 activated the intrinsic pathway of apoptosis involving regulation of Bax/Bcl-2, mitochondrial outer membrane permeabilization (MOMP), cytochrome c release, activation of caspases-3 and -9, and poly(ADP-ribose) polymerase cleavage. RGS6 promoted loss of mitochondrial membrane potential (ΔΨ(m)) and increases in reactive oxygen species (ROS). RGS6-induced caspase activation and loss of ΔΨ(m) was mediated by ROS, suggesting an amplification loop in which ROS provided a feed forward signal to induce MOMP, caspase activation, and cell death. Loss of RGS6 in mouse embryonic fibroblasts dramatically impaired doxorubicin-induced growth suppression and apoptosis. Surprisingly, RGS6-induced apoptosis in both breast cancer cells and mouse embryonic fibroblasts does not require its GAP activity toward G proteins. This work demonstrates a novel signaling action of RGS6 in cell death pathways and identifies it as a possible therapeutic target for treatment of breast cancer.

  8. Altered protein expression in gestational diabetes mellitus placentas provides insight into insulin resistance and coagulation/fibrinolysis pathways.

    Directory of Open Access Journals (Sweden)

    Bin Liu

    Full Text Available OBJECTIVE: To investigate the placental proteome differences between pregnant women complicated with gestational diabetes mellitus (GDM and those with normal glucose tolerance (NGT. METHODS: We used two-dimensional electrophoresis (2DE to separate and compare placental protein levels from GDM and NGT groups. Differentially expressed proteins between the two groups were identified by MALDI-TOF/TOF mass spectrometry and further confirmed by Western blotting. The mRNA levels of related proteins were measured by realtime RT-PCR. Immunohistochemistry (IHC was performed to examine the cellular location of the proteins expressed in placenta villi. RESULTS: Twenty-one protein spots were differentially expressed between GDM and NGT placenta villi in the tested samples, fifteen of which were successfully identified by mass spectrometry. The molecular functions of these differentially expressed proteins include blood coagulation, signal transduction, anti-apoptosis, ATP binding, phospholipid binding, calcium ion binding, platelet activation, and tryptophan-tRNA ligase activity. Both protein and mRNA levels of Annexin A2, Annexin A5 and 14-3-3 protein ζ/δ were up-regulated, while the expression of the Ras-related protein Rap1A was down-regulated in the GDM placenta group. CONCLUSION: Placenta villi derived from GDM pregnant women exhibit significant proteome differences compared to those of NGT mothers. The identified differentially expressed proteins are mainly associated with the development of insulin resistance, transplacental transportation of glucose, hyperglucose-mediated coagulation and fibrinolysis disorders in the GDM placenta villi.

  9. Activation of brain B-Raf protein kinase by Rap1B small GTP-binding protein.

    Science.gov (United States)

    Ohtsuka, T; Shimizu, K; Yamamori, B; Kuroda, S; Takai, Y

    1996-01-19

    Rap1 small GTP-binding protein has the same amino acid sequence at its effector domain as that of Ras. Rap1 has been shown to antagonize the Ras functions, such as the Ras-induced transformation of NIH 3T3 cells and the Ras-induced activation of the c-Raf-1 protein kinase-dependent mitogen-activated protein (MAP) kinase cascade in Rat-1 cells, whereas we have shown that Rap1 as well as Ras stimulates DNA synthesis in Swiss 3T3 cells. We have established a cell-free assay system in which Ras activates bovine brain B-Raf protein kinase. Here we have used this assay system and examined the effect of Rap1 on the B-Raf activity to phosphorylate recombinant MAP kinase kinase (MEK). Recombinant Rap1B stimulated the activity of B-Raf, which was partially purified from bovine brain and immunoprecipitated by an anti-B-Raf antibody. The GTP-bound form was active, but the GDP-bound form was inactive. The fully post-translationally lipid-modified form was active, but the unmodified form was nearly inactive. The maximum B-Raf activity stimulated by Rap1B was nearly the same as that stimulated by Ki-Ras. Rap1B enhanced the Ki-Ras-stimulated B-Raf activity in an additive manner. These results indicate that not only Ras but also Rap1 is involved in the activation of the B-Raf-dependent MAP kinase cascade.

  10. Characterization of the interactions between the active site of a protein tyrosine kinase and a divalent metal activator

    Directory of Open Access Journals (Sweden)

    Ayrapetov Marina K

    2005-11-01

    Full Text Available Abstract Background Protein tyrosine kinases are important enzymes for cell signalling and key targets for anticancer drug discovery. The catalytic mechanisms of protein tyrosine kinase-catalysed phosphorylation are not fully understood. Protein tyrosine kinase Csk requires two Mg2+ cations for activity: one (M1 binds to ATP, and the other (M2 acts as an essential activator. Results Experiments in this communication characterize the interaction between M2 and Csk. Csk activity is sensitive to pH in the range of 6 to 7. Kinetic characterization indicates that the sensitivity is not due to altered substrate binding, but caused by the sensitivity of M2 binding to pH. Several residues in the active site with potential of binding M2 are mutated and the effect on metal activation studied. An active mutant of Asn319 is generated, and this mutation does not alter the metal binding characteristics. Mutations of Glu236 or Asp332 abolish the kinase activity, precluding a positive or negative conclusion on their role in M2 coordination. Finally, the ability of divalent metal cations to activate Csk correlates to a combination of ionic radius and the coordination number. Conclusion These studies demonstrate that M2 binding to Csk is sensitive to pH, which is mainly responsible for Csk activity change in the acidic arm of the pH response curve. They also demonstrate critical differences in the metal activator coordination sphere in protein tyrosine kinase Csk and a protein Ser/Thr kinase, the cAMP-dependent protein kinase. They shed light on the physical interactions between a protein tyrosine kinase and a divalent metal activator.

  11. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis.

    Science.gov (United States)

    Kir, Serkan; Beddow, Sara A; Samuel, Varman T; Miller, Paul; Previs, Stephen F; Suino-Powell, Kelly; Xu, H Eric; Shulman, Gerald I; Kliewer, Steven A; Mangelsdorf, David J

    2011-03-25

    Fibroblast growth factor (FGF) 19 is an enterokine synthesized and released when bile acids are taken up into the ileum. We show that FGF19 stimulates hepatic protein and glycogen synthesis but does not induce lipogenesis. The effects of FGF19 are independent of the activity of either insulin or the protein kinase Akt and, instead, are mediated through a mitogen-activated protein kinase signaling pathway that activates components of the protein translation machinery and stimulates glycogen synthase activity. Mice lacking FGF15 (the mouse FGF19 ortholog) fail to properly maintain blood concentrations of glucose and normal postprandial amounts of liver glycogen. FGF19 treatment restored the loss of glycogen in diabetic animals lacking insulin. Thus, FGF19 activates a physiologically important, insulin-independent endocrine pathway that regulates hepatic protein and glycogen metabolism.

  12. Cell-Free Expression of Protein Kinase A for Rapid Activity Assays

    Directory of Open Access Journals (Sweden)

    Donna M. Leippe

    2010-05-01

    Full Text Available Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag® fusion protein. The cell-free protein synthesis systems provide quick access to the protein of interest, while the HaloTag technology provides efficient, covalent protein immobilization of the fusion protein, eliminating the need for further protein purification and minimizing storage-related stability issues. The immobilized cPKA fusion protein is assayed directly on magnetic beads and can be used in inhibitor analyses. The combination of rapid protein synthesis and capture technologies can greatly facilitate the process of protein expression and activity screening, and therefore, can become a valuable tool for functional proteomics studies.

  13. Proteolytic activity of prostate-specific antigen (PSA towards protein substrates and effect of peptides stimulating PSA activity.

    Directory of Open Access Journals (Sweden)

    Johanna M Mattsson

    Full Text Available Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3 exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.

  14. Proteins associated with cork formation in Quercus suber L. stem tissues.

    Science.gov (United States)

    Ricardo, Cândido P P; Martins, Isabel; Francisco, Rita; Sergeant, Kjell; Pinheiro, Carla; Campos, Alexandre; Renaut, Jenny; Fevereiro, Pedro

    2011-08-12

    Cork (phellem) formation in Quercus suber stem was studied by proteomic analysis of young shoots of increasing age (Y0, Y1 and Y4) and recently-formed phellem (Y8Ph) and xylem (Y8X) from an 8-year-old branch. In this study 99 proteins were identified, 45 excised from Y8X and 54 from Y8Ph. These ones, specifically associated with phellem, are of "carbohydrate metabolism" (28%), "defence" (22%), "protein folding, stability and degradation" (19%), "regulation/signalling" (11%), "secondary metabolism" (9%), "energy metabolism" (6%), and "membrane transport" (2%). The identification in phellem of galactosidases, xylosidases, apiose/xylose synthase, laccases and diphenol oxidases suggests intense cell wall reorganization, possibly with participation of hemicellulose/pectin biosynthesis and phenol oxidation. The identification of proteasome subunits, heat shock proteins, cyclophylin, subtilisin-like proteases, 14-3-3 proteins, Rab2 protein and enzymes interacting with nucleosides/nucleic acids gives additional evidence for cellular reorganization, involving cellular secretion, protein turnover regulation and active control processes. The high involvement in phellem of defence proteins (thioredoxin-dependent peroxidase, glutathione-S-transferase, SGT1 protein, cystatin, and chitinases) suggests a strong need for cell protection from the intense stressful events occurring in active phellem, namely, desiccation, pests/disease protection, detoxification and cell death. Identically, highly enhanced defence functions were previously reported for potato periderm formation.

  15. α/β-Peptide Foldamers Targeting Intracellular Protein-Protein Interactions with Activity in Living Cells.

    Science.gov (United States)

    Checco, James W; Lee, Erinna F; Evangelista, Marco; Sleebs, Nerida J; Rogers, Kelly; Pettikiriarachchi, Anne; Kershaw, Nadia J; Eddinger, Geoffrey A; Belair, David G; Wilson, Julia L; Eller, Chelcie H; Raines, Ronald T; Murphy, William L; Smith, Brian J; Gellman, Samuel H; Fairlie, W Douglas

    2015-09-09

    Peptides can be developed as effective antagonists of protein-protein interactions, but conventional peptides (i.e., oligomers of l-α-amino acids) suffer from significant limitations in vivo. Short half-lives due to rapid proteolytic degradation and an inability to cross cell membranes often preclude biological applications of peptides. Oligomers that contain both α- and β-amino acid residues ("α/β-peptides") manifest decreased susceptibility to proteolytic degradation, and when properly designed these unnatural oligomers can mimic the protein-recognition properties of analogous "α-peptides". This report documents an extension of the α/β-peptide approach to target intracellular protein-protein interactions. Specifically, we have generated α/β-peptides based on a "stapled" Bim BH3 α-peptide, which contains a hydrocarbon cross-link to enhance α-helix stability. We show that a stapled α/β-peptide can structurally and functionally mimic the parent stapled α-peptide in its ability to enter certain types of cells and block protein-protein interactions associated with apoptotic signaling. However, the α/β-peptide is nearly 100-fold more resistant to proteolysis than is the parent stapled α-peptide. These results show that backbone modification, a strategy that has received relatively little attention in terms of peptide engineering for biomedical applications, can be combined with more commonly deployed peripheral modifications such as side chain cross-linking to produce synergistic benefits.

  16. Protective effects of inhibition of adenosine monophosphate activated protein kinase activity against cerebral ischemia-reperfusion injury in mice

    Institute of Scientific and Technical Information of China (English)

    补娟

    2013-01-01

    Objective To observe the effect of inhibition of adenosine monophosphate activated protein kinase (AMPK) on shape,function and inflammatory factor of microglia for mice after cerebral ischemia-reperfusion

  17. AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle

    DEFF Research Database (Denmark)

    Brandauer, Josef; Vienberg, Sara Gry; Andersen, Marianne Agerholm

    2013-01-01

    for increasing Nampt protein levels is unknown. To this end, we assessed whether exercise training- or 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR)-mediated increases in skeletal muscle Nampt abundance are AMPK dependant. One-legged knee-extensor exercise training in humans increased Nampt protein......-activated protein kinase (AMPK) increases sirtuin activity by elevating NAD levels. As NAM directly inhibits sirtuins, increased Nampt activation or expression could be a metabolic stress response. Evidence suggests that AMPK regulates Nampt mRNA content, but whether repeated AMPK activation is necessary...

  18. Helicobacter pylori neutrophil activating protein as target for new drugs against H.pylori inflammation

    Institute of Scientific and Technical Information of China (English)

    Theodora Choli-Papadopoulou; Filippos Kottakis; Georgios Papadopoulos; Stefanos Pendas

    2011-01-01

    Helicobacter pylori (H. pylori ) infection is among the most common human infections and the major risk factor for peptic ulcer disease and gastric cancer. Within this work we present the implication of C-terminal region of H. pylori neutrophil activating protein in the stimulation of neutrophil activation as well as the evidence that the C-terminal region of H. pylori activating protein is indispensable for neutrophil adhesion to endothelial cells, a step necessary to H. pylori inflammation. In addition we show that arabino galactan proteins derived from chios mastic gum, the natural resin of the plant Pistacia lentiscus var. Chia inhibit neutrophil activation in vitro .

  19. The protein C omega-loop substitution Asn2Ile is associated with reduced protein C anticoagulant activity.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2012-02-01

    We report a kindred with heritable protein C (PC) deficiency in which two siblings with severe thrombosis showed a composite type I and IIb PC deficiency phenotype, identified using commercial PC assays (proband: PC antigen 42 u\\/dl, amidolytic activity 40 u\\/dl, anticoagulant activity 9 u\\/dl). The independent PROC nucleotide variations c.669C>A (predictive of Ser181Arg) and c.131C>T (predictive of Asn2Ile) segregated with the type I and type IIb PC deficiency phenotypes respectively, but co-segregated in the siblings with severe thrombosis. Soluble thrombomodulin (sTM)-mediated inhibition of plasma thrombin generation from an individual with PC-Asn2Ile was lower (endogenous thrombin potential (ETP) 56 +\\/- 1% that of ETP determined without sTM) than control plasma (ETP 15 +\\/- 2%) indicating reduced PC anticoagulant activity. Recombinant APC-Asn2Ile exhibited normal amidolytic activity but impaired anticoagulant activity. Protein S (PS)-dependent anticoagulant activity of recombinant APC-Asn2Ile and binding of recombinant APC-Asn2Ile to endothelial protein C receptor (EPCR) were reduced compared to recombinant wild-type APC. Asn2 lies within the omega-loop of the PC\\/APC Gla domain and this region is critical for calcium-induced folding and subsequent interactions with anionic phospholipids, EPCR and PS. The disruption of these interactions in this naturally-occurring PC variant highlights their collective importance in mediating APC anticoagulant activity in vivo.

  20. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity.

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-09-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids.

  1. Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase

    Science.gov (United States)

    Mendoza-Mendoza, Artemio; Pozo, María J.; Grzegorski, Darlene; Martínez, Pedro; García, Juan M.; Olmedo-Monfil, Vianey; Cortés, Carlos; Kenerley, Charles; Herrera-Estrella, Alfredo

    2003-01-01

    The production of lytic enzymes in Trichoderma is considered determinant in its parasitic response against fungal species. A mitogen-activated protein kinase encoding gene, tvk1, from Trichoderma virens was cloned, and its role during the mycoparasitism, conidiation, and biocontrol was examined in tvk1 null mutants. These mutants showed a clear increase in the level of the expression of mycoparasitism-related genes under simulated mycoparasitism and during direct confrontation with the plant pathogen Rhizoctonia solani. The null mutants displayed an increased protein secretion phenotype as measured by the production of lytic enzymes in culture supernatant compared to the wild type. Consistently, biocontrol assays demonstrated that the null mutants were considerably more effective in disease control than the wild-type strain or a chemical fungicide. In addition, tvk1 gene disruptant strains sporulated abundantly in submerged cultures, a condition that is not conducive to sporulation in the wild type. These data suggest that Tvk1 acts as a negative modulator during host sensing and sporulation in T. virens. PMID:14673101

  2. A Gammaherpesvirus Complement Regulatory Protein Promotes Initiation of Infection by Activation of Protein Kinase Akt/PKB

    Science.gov (United States)

    Steer, Beatrix; Adler, Barbara; Jonjic, Stipan; Stewart, James P.; Adler, Heiko

    2010-01-01

    Background Viruses have evolved to evade the host's complement system. The open reading frames 4 (ORF4) of gammaherpesviruses encode homologs of regulators of complement activation (RCA) proteins, which inhibit complement activation at the level of C3 and C4 deposition. Besides complement regulation, these proteins are involved in heparan sulfate and glycosaminoglycan binding, and in case of MHV-68, also in viral DNA synthesis in macrophages. Methodology/Principal Findings Here, we made use of MHV-68 to study the role of ORF4 during infection of fibroblasts. While attachment and penetration of virions lacking the RCA protein were not affected, we observed a delayed delivery of the viral genome to the nucleus of infected cells. Analysis of the phosphorylation status of a variety of kinases revealed a significant reduction in phosphorylation of the protein kinase Akt in cells infected with ORF4 mutant virus, when compared to cells infected with wt virus. Consistent with a role of Akt activation in initial stages of infection, inhibition of Akt signaling in wt virus infected cells resulted in a phenotype resembling the phenotype of the ORF4 mutant virus, and activation of Akt by addition of insulin partially reversed the phenotype of the ORF4 mutant virus. Importantly, the homologous ORF4 of KSHV was able to rescue the phenotype of the MHV-68 ORF4 mutant, indicating that ORF4 is functionally conserved and that ORF4 of KSHV might have a similar function in infection initiation. Conclusions/Significance In summary, our studies demonstrate that ORF4 contributes to efficient infection by activation of the protein kinase Akt and thus reveal a novel function of a gammaherpesvirus RCA protein. PMID:20657771

  3. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete;

    2013-01-01

    DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed...... replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling....... knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation...

  4. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Jose L Nieto-Torres

    2014-05-01

    Full Text Available Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV envelope (E gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS

  5. [Tyrosine-protein kinase activity in breast neoplasm. Comparison with activity obtained in benign diseases and in normal tissues].

    Science.gov (United States)

    Pierart, J; Oñate, E; Klaassen, R; Cid, L; Gutierrez, S; Talbot, E; Ross, E; Zambrano, C; Burmeister, R; Puchi, M

    1995-02-01

    Tyrosine protein kinase (TPK) activity is associated to malignant cellular transformation. This work compares TPK activity in 27 surgical biopsy samples of mammary carcinoma, 10 samples of fibroadenomas, 13 samples of fibrocystic breast disease and 27 samples of normal mammary tissue. TPK activity was determined in tissue homogenates using (Val5) angiotensin II as exogenous substrate. In samples of mammary carcinoma, TPK activity was 33.86 +/- 31.98 pmol P32/mg protein/30 min. This value was significantly higher that those observed in fibrocystic disease (3.92 +/- 2.35), fibroadenomas (13.86 +/- 10.9) and normal tissue (3.56 +/- 3.02).

  6. Mitogen-activated protein kinases mediate Mycobacterium tuberculosis–induced CD44 surface expression in monocytes

    Indian Academy of Sciences (India)

    Natarajan Palaniappan; S Anbalagan; Sujatha Narayanan

    2012-03-01

    CD44, an adhesion molecule, has been reported to be a binding site for Mycobacterium tuberculosis (M. tuberculosis) in macrophages and it also mediates mycobacterial phagocytosis, macrophage recruitment and protective immunity against pulmonary tuberculosis in vivo. However, the signalling pathways that are involved in M. tuberculosis–induced CD44 surface expression in monocytic cells are currently unknown. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv and H37Ra induced distinct, time-dependent, phosphorylation of mitogen-activated protein kinase kinase-1, extracellular signal regulated kinase 1/2, mitogen-activated protein kinase kinase 3/6, p38 mitogen-activated protein kinase and c-jun N-terminal kinases. The strains also differed in their usage of CD14 and human leukocyte antigen-DR (HLA-DR) receptors in mediating mitogen-activated protein kinase activation. M. tuberculosis H37Rv strain induced lower CD44 surface expression and tumour necrosis factor-alpha levels, whereas H37Ra the reverse. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and c-jun N-terminal kinase, we report that inhibition of extracellular signal regulated kinase 1/2 and c-jun N-terminal kinases increases, but that inhibition of p38 mitogen-activated protein kinase decreases M. tuberculosis–induced CD44 surface expression in THP-1 human monocytes.

  7. Interactive protein network of FXIII-A1 in lipid rafts of activated and non-activated platelets.

    Science.gov (United States)

    Rabani, Vahideh; Montange, Damien; Davani, Siamak

    2016-09-01

    Lipid-rafts are defined as membrane microdomains enriched in cholesterol and glycosphingolipids within platelet plasma membrane. Lipid raft-mediated clot retraction requires factor XIII and other interacting proteins. The aim of this study was to investigate the proteins that interact with factor XIII in raft and non-raft domains of activated and non-activated platelet plasma membrane. By lipidomics analysis, we identified cholesterol- and sphingomyelin-enriched areas as lipid rafts. Platelets were activated by thrombin. Proteomics analysis provided an overview of the pathways in which proteins of rafts and non-rafts participated in the interaction network of FXIII-A1, a catalytic subunit of FXIII. "Platelet activation" was the principal pathway among KEGG pathways for proteins of rafts, both before and after activation. Network analysis showed four types of interactions (activation, binding, reaction, and catalysis) in raft and non-raft domains in interactive network of FXIII-A1. FXIII-A1 interactions with other proteins in raft domains and their role in homeostasis highlight the specialization of the raft domain in clot retraction via the Factor XIII protein network.

  8. The Cytotoxicity of Elderberry Ribosome-Inactivating Proteins Is Not Solely Determined by Their Protein Translation Inhibition Activity.

    Directory of Open Access Journals (Sweden)

    Chenjing Shang

    Full Text Available Although the protein translation inhibition activity of ribosome inactivating proteins (RIPs is well documented, little is known about the contribution of the lectin chain to the biological activity of these proteins. In this study, we compared the in vitro and intracellular activity of several S. nigra (elderberry RIPs and non-RIP lectins. Our data demonstrate that RIPs from elderberry are much more toxic to HeLa cells than to primary fibroblasts. Differences in the cytotoxicity between the elderberry proteins correlated with differences in glycan specificity of their lectin domain, cellular uptake efficiency and intracellular destination. Despite the fact that the bulk of the RIPs accumulated in the lysosomes and partly in the Golgi apparatus, we could demonstrate effective inhibition of protein synthesis in cellula. As we also observed cytotoxicity for non-RIP lectins, it is clear that the lectin chain triggers additional pathways heralding cell death. Our data suggest that one of these pathways involves the induction of autophagy.

  9. The WW-HECT protein Smurf2 interacts with the Docking Protein NEDD9/HEF1 for Aurora A activation

    Directory of Open Access Journals (Sweden)

    Moore Finola E

    2010-09-01

    Full Text Available Abstract The multi-functional adaptor protein NEDD9/HEF1/Cas-L regulates cell motility, invasion and cell cycle progression, and plays key roles in cancer progression and metastasis. NEDD9 is localized to the centrosome and is required for activation of Aurora A kinase in mitosis. Here we demonstrate that the HECT-WW protein Smurf2 physically associates with NEDD9 and is required for the stability of NEDD9 protein. Smurf2 depletion results in a marked decrease in NEDD9 protein levels, by facilitating polyubiquitination and proteasomal degradation of NEDD9. Conversely, forced overexpression of Smurf2 results in upregulation of endogenous NEDD9 protein, confirming the role for Smurf2 in NEDD9 stability. Cells with Smurf2 depletion fail to activate Aurora A at the G2/M boundary, leading to a marked delay in mitotic entry. These observations suggest that the stable complex of Smurf2 and NEDD9 is required for timely entry into mitosis via Aurora A activation.

  10. Inhibiting p38 mitogen-activated protein kinase attenuates cerebral ischemic injury in Swedish mutant amyloid precursor protein transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Liangyu Zou; Haiyan Qin; Yitao He; Heming Huang; Yi Lu; Xiaofan Chu

    2012-01-01

    Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor SB239063 into Swedish mutant amyloid precursor protein (APP/SWE) transgenic and non-transgenic mice. The number of surviving neurons in the penumbra was quantified using Nissl staining, and the activity of p38 MAPKs was measured by western blotting. The number of surviving neurons in the penumbra was significantly reduced in APP/SWE transgenic mice compared with non-transgenic controls 7 days after cerebral ischemia, but the activity of p38 MAPKs was significantly elevated compared with the non-ischemic hemisphere in the APP/SWE transgenic mice. SB239063 prevented these changes. The APP/SWE mutation exacerbated ischemic brain injury, and this could be alleviated by inhibiting p38 MAPK activity.

  11. Cooperative hydration effect causes thermal unfolding of proteins and water activity plays a key role in protein stability in solutions.

    Science.gov (United States)

    Miyawaki, Osato; Dozen, Michiko; Hirota, Kaede

    2016-08-01

    The protein unfolding process observed in a narrow temperature range was clearly explained by evaluating the small difference in the enthalpy of hydrogen-bonding between amino acid residues and the hydration of amino acid residue separately. In aqueous solutions, the effect of cosolute on the protein stability is primarily dependent on water activity, aw, the role of which has been long neglected in the literature. The effect of aw on protein stability works as a power law so that a small change in aw is amplified substantially through the cooperative hydration effect. In the present approach, the role of hydrophobic interaction stands behind. This affects protein stability indirectly through the change in solution structure caused by the existence of cosolute.

  12. Domains of Bacillus thuringiensis crystal proteins involved in insecticidal activity

    NARCIS (Netherlands)

    Bosch, H.J.; Schipper, B.; Kleij, van der H.; Maagd, de R.A.; Stiekema, W.J.

    1994-01-01

    The expected increase in application of Bacillus thuringiensis (Bt) in crop protection makes it necessary to anticipate the development of Bt-resistant insects. To safeguard the long-term use of Bt-based insecticides, we studied the mode of action of Bt crystal proteins. CryIA(b), CryIC and CryIE ar

  13. Interaction of Bacillus thuringiensis vegetative insecticidal protein with ribosomal S2 protein triggers larvicidal activity in Spodoptera frugiperda.

    Science.gov (United States)

    Singh, Gatikrushna; Sachdev, Bindiya; Sharma, Nathilal; Seth, Rakesh; Bhatnagar, Raj K

    2010-11-01

    Vegetative insecticidal protein (Vip3A) is synthesized as an extracellular insecticidal toxin by certain strains of Bacillus thuringiensis. Vip3A is active against several lepidopteran pests of crops. Polyphagous pest, Spodoptera frugiperda, and its cell line Sf21 are sensitive for lyses to Vip3A. Screening of cDNA library prepared from Sf21 cells through yeast two-hybrid system with Vip3A as bait identified ribosomal protein S2 as a toxicity-mediating interacting partner protein. The Vip3A-ribosomal-S2 protein interaction was validated by in vitro pulldown assays and by RNA interference-induced knockdown experiments. Knockdown of expression of S2 protein in Sf21 cells resulted in reduced toxicity of the Vip3A protein. These observations were further extended to adult fifth-instar larvae of Spodoptera litura. Knockdown of S2 expression by injecting corresponding double-stranded RNA resulted in reduced mortality of larvae to Vip3A toxin. Intracellular visualization of S2 protein and Vip3A through confocal microscopy revealed their interaction and localization in cytoplasm and surface of Sf21 cells.

  14. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    Directory of Open Access Journals (Sweden)

    Mamoru Tanida

    Full Text Available In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb. We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  15. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    Science.gov (United States)

    Tanida, Mamoru; Yamamoto, Naoki; Shibamoto, Toshishige; Rahmouni, Kamal

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  16. Snow-mold-induced apoplastic proteins in winter rye leaves lack antifreeze activity

    Science.gov (United States)

    Hiilovaara-Teijo; Hannukkala; Griffith; Yu; Pihakaski-Maunsbach

    1999-10-01

    During cold acclimation, winter rye (Secale cereale L.) plants secrete antifreeze proteins that are similar to pathogenesis-related (PR) proteins. In this experiment, the secretion of PR proteins was induced at warm temperatures by infection with pink snow mold (Microdochium nivale), a pathogen of overwintering cereals. A comparison of cold-induced and pathogen-induced proteins showed that PR proteins accumulated in the leaf apoplast to a greater level in response to cold. The PR proteins induced by cold and by snow mold were similar when separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and examined by immunoblotting. Both groups of PR proteins contained glucanase-like, chitinase-like, and thaumatin-like proteins, and both groups exhibited similar levels of glucanase and chitinase activities. However, only the PR proteins induced by cold exhibited antifreeze activity. Our findings suggest that the cold-induced PR proteins may be isoforms that function as antifreeze proteins to modify the growth of ice during freezing while also providing resistance to the growth of low-temperature pathogens in advance of infection. Both functions of the cold-induced PR proteins may improve the survival of overwintering cereals.

  17. Oscillatory change of SR-protein kinase activities during oocyte maturation meiosis in fish

    Institute of Scientific and Technical Information of China (English)

    杨仲安; 曹丹; 桂建芳

    2000-01-01

    The SR-protein kinase activity was analyzed and the cytological changes were observed during oocyte maturation in bisexual transparent color crucian carp ( Carassius auratus color variety). The results revealed that the SR-protein kinase activity was sensitive to the artificially induced spawning hormones, and the change of oscillatory activity was similar to that of the maturation-promoting factor (MPF) kinase that regulates meiotic cell cycle in fish.

  18. Characterization of Adapter Protein NRBP as a Negative Regulator of T Cell Activation

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; LIN Zhi-xin; WU Jun

    2008-01-01

    Adapter proteins can regulate the gene transcriptions in disparate signaling pathway by interacting with multiple signaling molecules, including T cell activation signaling. Nuclear receptor binding protein (NRBP), a novel adapter protein, represents a small family of evolutionarily conserved proteins with homologs in Caenorhabditis elegans (C. elegans), Drosophila melanogaster (D.melanogaster), mouse and human. Here, we demonstrated that overexpression of NRBP in Jurkat TAg cells specifically impairs T cell receptor (TCR) or phorbol myristate acetate (PMA)/ionomycin-mediated signaling leading to nuclear factor of activated T cells (NFAT) promoter activation. Furthermore, the N-terminal of NRBP is necessary for its regulation of NFAT activation. Finally, we showed that NRBP has minimal effect on both TCR- and PMA-induced CD69 up-regulation in Jurkat TAg cells, which suggests that NRBP may function downstream of protein kinase C (PKC)/Ras pathway.

  19. Stabilizing effects of G protein on the active conformation of adenosine A1 receptor differ depending on G protein type.

    Science.gov (United States)

    Tateyama, Michihiro; Kubo, Yoshihiro

    2016-10-05

    G protein coupled receptors (GPCRs) trigger various cellular and physiological responses upon the ligand binding. The ligand binding induces conformational change in GPCRs which allows G protein to interact with the receptor. The interaction of G protein also affects the active conformation of GPCRs. In this study, we have investigated the effects of Gαi1, Gαo and chimeric Gαqi5 on the active conformation of the adenosine A1 receptor, as each Gα showed difference in the interaction with adenosine A1 receptor. The conformational changes in the adenosine A1 receptor were detected as the agonist-induced decreases in efficiency of Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) fused at the two intracellular domains of the adenosine A1 receptor. Amplitudes of the agonist-induced FRET decreases were subtle when the FP-tagged adenosine A1 receptor was expressed alone, whereas they were significantly enhanced when co-expressed with Gαi1Gβ1Gγ22 (Gi1) or Gαqi5Gβ1Gγ22 (Gqi5) but not with GαοGβ1Gγ22 (Go). The enhancement of the agonist-induced FRET decrease in the presence of Gqi5 was significantly larger than that of Gi1. Furthermore, the FRET recovery upon the agonist removal in the presence of Gqi5 was significantly slower than that of Gi1. From these results it was revealed that the agonist-bound active conformation of adenosine A1 receptor is unstable without the binding of G protein and that the stabilizing effects of G protein differ depending on the types of G protein.

  20. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  1. Beneficial effects of metformin on primary cardiomyocytes via activation of adenosine monophosphate-activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-fang; ZHANG Jin-ying; LI Ling; ZHAO Xiao-yan

    2011-01-01

    Background Metformin has become a cornerstone in the treatment of patients with type-2 diabetes. Accumulated evidence suggests that metformin supports direct cardiovascular effects. The present study aimed to investigate if metformin has beneficial effects on primary cardiomyocytes damaged by H2O2, and reveal the potential mechanism of action of metformin.Methods Cardiomyocytes were incubated in the presence of 100 umol/L. H2O2 for 12 hours. Cardiomyocytes were pretreated with metformin at different concentrations and time and with aminoimidazole carboxamide ribonucleotide (AICAR) (500 umol/L), an adenosine monophophate (AMP)-activated protein kinase (AMPK) agonist for 60 minutes before the addition of H2O2. Other cells were preincubated with compound C (an AMPK antagonist, 20 umol/L) for 4 hours. The viability and apoptosis of cells were analyzed. AMPK, endothelial nitric oxide synthase (eNOS), and transforming growth factor (TGF)-β1 were analyzed using immunblotting.Results Metformin had antagonistic effects on the influences of H2O2 on cell viability and attenuated oxidative stress-induced apoptosis. Metformin also increased phosphorylation of AMPK and eNOS, and reduced the expression of TGF-β1, basic fibroblast growth factor (bFGF), and tumor necrosis factor (TNF)-α.Conclusions Metformin has beneficial effects on cardiomyocytes, and this effect involves activation of the AMPK-eNOS pathway. Metformin may be potentially beneficial for the treatment of heart disease.

  2. Activated mechanisms in proteins: a multiple-temperature activation-relaxation technique study

    Science.gov (United States)

    Malek, Rachid; Mousseau, Normand; Derreumaux, Philippe

    2001-03-01

    The low-temperature dynamics of proteins is controlled by a complex activated dynamics taking place over long time-scales compared with the period of thermal oscillations. In view of the range of relevant time scales, the numerical study of these processes remains a challenge and numerous methods have been introduced to address this problem. We introduce here a mixture of two algorithms, the activation-relaxation technique (ART)^1,2 coupled with the parallel tempering method, and use it to study the structure of the energy landscape around the native state of a 38-residue polypeptide. While ART samples rapidly the local energy landscape, the parallel tempering, which sets up exchanges of configuration between simultaneous runs at multiple temperatures, generates a very efficient sampling of energy basins separated by high barriers^(3). Results show the nature of the barriers and local minima surrounding the native state of this 38-residue peptide, modeled with off-lattice OPEP-like interactions^4. (1) G.T. Barkema and N. Mousseau, PRL 77, 4358 (1996) (2) N. Mousseau and G.T. Barkema, PRE 57, 2419 (1998) (3) E. Marinari and G. Parisi, Europhys. Lett., 19 (6), 451 (1992) (4) Ph. Derreumaux, J. Chem. Phys. 111, 2301 (1999); PRB 85, 206 (2000)

  3. Protein Mediated Oxidative Stress in Patients with Diabetes and its Associated Neuropathy: Correlation with Protein Carbonylation and Disease Activity Markers

    Science.gov (United States)

    Almogbel, Ebtehal

    2017-01-01

    Introduction Free radicals have been implicated as Diabetes Mellitus (DM) contributors in type 2 DM and its associated Diabetes Mellitus Neuropathy (DMN). However, the potential for protein mediated oxidative stress to contribute disease pathogenesis remains largely unexplored. Aim To investigate the status and contribution of protein mediated oxidative stress in patients with DM or DMN and to explore whether oxidative protein modification has a role in DM progression to DM associated neuropathy. Materials and Methods Sera from 42 DM and 37 DMN patients with varying levels of disease activities biomarkers (HbA1C, patients’ age or disease duration) and 21 age- and sex-matched healthy controls were evaluated for serum levels of protein mediated oxidative stress. Results Serum analysis showed significantly higher levels of protein carbonyl contents in both DM and DMN patients compared with healthy controls. Importantly, not only was there an increased number of subjects positive for protein carbonylation, but also the levels of protein carbonyl contents were significantly higher among DM and DMN patients, whose HbA1C were ≥8.8 as compared with patients with lower HbA1C (HbA1Cdiabetes to diabetes neuropathy. Conclusion These findings support an association between protein oxidation and DM or DMN progression. The stronger response observed in patients with higher HbA1C or patients’ ages or disease durations suggests, that protein mediated oxidative stress may be useful in evaluating the progression of DM and its associated DMN and in elucidating the mechanisms of these disorders pathogenesis.

  4. The Ginkgo biloba Extract EGb 761 Modulates Proteasome Activity and Polyglutamine Protein Aggregation

    Directory of Open Access Journals (Sweden)

    Marcel Stark

    2014-01-01

    Full Text Available The standardized Ginkgo biloba extract EGb 761 has well-described antioxidative activities and effects on different cytoprotective signaling pathways. Consequently, a potential use of EGb 761 in neurodegenerative diseases has been proposed. A common characteristic feature of a variety of such disorders is the pathologic formation of protein aggregates, suggesting a crucial role for protein homeostasis. In this study, we show that EGb 761 increased the catalytic activity of the proteasome and enhanced protein degradation in cultured cells. We further investigated this effect in a cellular model of Huntington’s disease (HD by employing cells expressing pathologic variants of a polyglutamine protein (polyQ protein. We show that EGb 761 affected these cells by (i increasing proteasome activity and (ii inducing a more efficient degradation of aggregation-prone proteins. These results demonstrate a novel activity of EGb 761 on protein aggregates by enhancing proteasomal protein degradation, suggesting a therapeutic use in neurodegenerative disorders with a disturbed protein homeostasis.

  5. Anticariogenic and Hemolytic Activity of Selected Seed Protein Extracts In vitro conditions.

    Directory of Open Access Journals (Sweden)

    Kalpesh B Ishnava

    2014-10-01

    Full Text Available This study aimed to assess the anticariogenic and hemolytic activity of crude plant seed protein extracts against tooth decaying bacteria.The proteins from seeds of 12 different plants were extracted and used for antimicrobial assay against six different organisms. The extraction was carried out in 10mM of sodium phosphate buffer (pH 7.0. Protein concentrations were determined as described by Bradford method. Anticariogenic activity was studied by agar well diffusion method and Minimum Inhibitory Concentration (MIC was evaluated by the two-fold serial broth dilution method. Hemolytic activity, treatment of proteinase K and Kinetic study in Mimusops elengi crude seed protein extract.The anticariogenic assay demonstrated the activity of Mimusops elengi against Staphylococcus aureus and Streptococcus pyogenes. A minor activity of Glycine wightii against Streptococcus mutans was also found. The protein content of Mimusops elengi seed protein extract was 5.84mg/ml. The MIC values for Staphylococcus aureus and Streptococcus pyogenes against Mimusops elengi seed protein extract were 364.36μg/ml and 182.19μg/ml, respectively. Kinetic study further elucidated the mode of inhibition in the presence of the Mimusops elengi plant seed protein with respect to time. The concentration of crude extract which gave 50% hemolysis compared to Triton X-100 treatment (HC50 value was 1.58 mg/ml; which is more than five times larger than that of the MIC. Treatment with proteinase K of the Mimusops elengi seed protein resulted in absence of the inhibition zone; which clearly indicates that the activity was only due to protein.Our results showed the prominence of Mimusops elengi plant seed protein extract as an effective herbal medication against tooth decaying bacteria.

  6. Monitoring and validating active site redox states in protein crystals.

    Science.gov (United States)

    Antonyuk, Svetlana V; Hough, Michael A

    2011-06-01

    High resolution protein crystallography using synchrotron radiation is one of the most powerful tools in modern biology. Improvements in resolution have arisen from the use of X-ray beamlines with higher brightness and flux and the development of advanced detectors. However, it is increasingly recognised that the benefits brought by these advances have an associated cost, namely deleterious effects of X-ray radiation on the sample (radiation damage). In particular, X-ray induced reduction and damage to redox centres has been shown to occur much more rapidly than other radiation damage effects, such as loss of resolution or damage to disulphide bridges. Selection of an appropriate combination of in-situ single crystal spectroscopies during crystallographic experiments, such as UV-visible absorption and X-ray absorption spectroscopy (XAFS), allows for effective monitoring of redox states in protein crystals in parallel with structure determination. Such approaches are also essential in cases where catalytic intermediate species are generated by exposure to the X-ray beam. In this article, we provide a number of examples in which multiple single crystal spectroscopies have been key to understanding the redox status of Fe and Cu centres in crystal structures. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

  7. Metallocarbene Artificial Enzymes : Extending Transition Metal Selectivity and Protein Activity

    NARCIS (Netherlands)

    Basauri Molina, M.

    2015-01-01

    A series of new semi-synthetic metalloprotein hybrids were created via the covalent binding of organometallic species in the active site of lipases, accordingly resulting in the first active site-directed (ASD) homogeneous artificial metalloenzymes. The use of this method promises the generation of

  8. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain

    DEFF Research Database (Denmark)

    Adari, H; Lowy, D R; Willumsen, B M;

    1988-01-01

    A cytoplasmic protein that greatly enhances the guanosine triphosphatase (GTPase) activity of N-ras protein but does not affect the activity of oncogenic ras mutants has been recently described. This protein (GAP) is shown here to be ubiquitous in higher eukaryotes and to interact with H-ras as w......A cytoplasmic protein that greatly enhances the guanosine triphosphatase (GTPase) activity of N-ras protein but does not affect the activity of oncogenic ras mutants has been recently described. This protein (GAP) is shown here to be ubiquitous in higher eukaryotes and to interact with H......-ras as well as with N-ras proteins. To identify the region of ras p21 with which GAP interacts, 21 H-ras mutant proteins were purified and tested for their ability to undergo stimulation of GTPase activity by GAP. Mutations in nonessential regions of H-ras p21 as well as mutations in its carboxyl....... Transforming mutations at positions 12, 59, and 61 (the phosphoryl binding region) abolished GTPase stimulation by GAP. Point mutations in the putative effector region of ras p21 (amino acids 35, 36, and 38) were also insensitive to GAP. However, a point mutation at position 39, shown previously not to impair...

  9. Frontal-subcortical protein expression following prenatal exposure to maternal inflammation.

    Directory of Open Access Journals (Sweden)

    Michelle Y Deng

    Full Text Available BACKGROUND: Maternal immune activation (MIA during prenatal life is a risk factor for neurodevelopmental disorders including schizophrenia and autism. Such conditions are associated with alterations in fronto-subcortical circuits, but their molecular basis is far from clear. METHODOLOGY/PRINCIPAL FINDINGS: Using two-dimensional differential in-gel electrophoresis (2D-DIGE and mass spectrometry, with targeted western blot analyses for confirmation, we investigated the impact of MIA on the prefrontal and striatal proteome from an established MIA mouse model generated in C57B6 mice, by administering the viral analogue PolyI:C or saline vehicle (control intravenously on gestation day (GD 9. In striatum, 11 proteins were up-regulated and 4 proteins were down-regulated in the PolyI:C mice, while 10 proteins were up-regulated and 7 proteins down-regulated in prefrontal cortex (PFC. These were proteins involved in the mitogen-activated protein kinase (MAPK signaling pathway, oxidation and auto-immune targets, including dual specificity mitogen-activated protein kinase kinase 1 (MEK, eukaryotic initiation factor (eIF 4A-II, creatine kinase (CK-B, L-lactate dehydrogenase (LDH-B, WD repeat-containing protein and NADH dehydrogenase in the striatum; and guanine nucleotide-binding protein (G-protein, 14-3-3 protein, alpha-enolase, olfactory maker protein and heat shock proteins (HSP 60, and 90-beta in the PFC. CONCLUSIONS/SIGNIFICANCE: This data fits with emerging evidence for disruption of critical converging intracellular pathways involving MAPK pathways in neurodevelopmental conditions and it shows considerable overlap with protein pathways identified by genetic modeling and clinical post-mortem studies. This has implications for understanding causality and may offer potential biomarkers and novel treatment targets for neurodevelopmental conditions.

  10. Computer-aided design of modular protein devices: Boolean AND gene activation

    Science.gov (United States)

    Salis, H.; Kaznessis, Y. N.

    2006-12-01

    Many potentially useful synthetic gene networks require the expression of an engineered gene if and only if two different DNA-binding proteins exist in sufficient concentration. While some natural and engineered systems activate gene expression according to a logical AND-like behavior, they often utilize allosteric or cooperative protein-protein interactions, rendering their components unsuitable for a toolbox of modular parts for use in multiple applications. Here, we develop a quantitative model to demonstrate that a small system of interacting fusion proteins, called a protein device, can activate an engineered gene according to the Boolean AND behavior while using only modular protein domains and DNA sites. The fusion proteins are created from transactivating, DNA-binding, non-DNA binding, and protein-protein interaction domains along with the corresponding peptide ligands. Using a combined kinetic and thermodynamic model, we identify the characteristics of the molecular components and their rates of constitutive production that maximize the fidelity of AND behavior. These AND protein devices facilitate the creation of complex genetic programs and may be used to create gene therapies, biosensors and other biomedical and biotechnological applications that turn on gene expression only when multiple DNA-binding proteins are simultaneously present.

  11. A technique for detecting antifungal activity of proteins separated by polyacrylamide gel electrophoresis.

    Science.gov (United States)

    De Bolle, M F; Goderis, I J; Terras, F R; Cammue, B P; Broekaert, W F

    1991-06-01

    A technique was developed for the detection of antifungal activity of proteins after discontinuous polyacrylamide gel electrophoresis under native conditions. The antifungal activity is detected as growth inhibition zones in a homogeneous fungal lawn, grown in an agar layer spread on top of the polyacrylamide gel. The position of proteins with antifungal activity can be determined on a diffusion blot prepared from the same gel. The technique is illustrated for three antifungal plant proteins, i.e. alpha-purothionin, Urtica dioica agglutinin, and tobacco chitinase.

  12. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years.

  13. Cisplatin Induces Cytotoxicity through the Mitogen-Activated Protein Kinase Pathways ana Activating Transcription Factor 3

    Directory of Open Access Journals (Sweden)

    Carly St. Germain

    2010-07-01

    Full Text Available The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3 as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cis