WorldWideScience

Sample records for activated receptor signaling

  1. Modulation of β-catenin signaling by glucagon receptor activation.

    Directory of Open Access Journals (Sweden)

    Jiyuan Ke

    Full Text Available The glucagon receptor (GCGR is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin-mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R and glucagon-like peptide 1 (GLP-1R receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5 is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1 or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.

  2. Steroid signaling activation and intracellular localization of sex steroid receptors

    OpenAIRE

    Giraldi, Tiziana; Giovannelli, Pia; Di Donato, Marzia; Castoria, Gabriella; Migliaccio, Antimo; Auricchio, Ferdinando

    2010-01-01

    In addition to stimulating gene transcription, sex steroids trigger rapid, non-genomic responses in the extra-nuclear compartment of target cells. These events take place within seconds or minutes after hormone administration and do not require transcriptional activity of sex steroid receptors. Depending on cell systems, activation of extra-nuclear signaling pathways by sex steroids fosters cell cycle progression, prevents apoptosis, leads to epigenetic modifications and increases cell migrat...

  3. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells.

    Science.gov (United States)

    Freund, Jacquelyn; May, Rebecca M; Yang, Enjun; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K; Kambayashi, Taku

    2016-08-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells.

  4. Monocyte Signal Transduction Receptors in Active and Latent Tuberculosis

    Directory of Open Access Journals (Sweden)

    Magdalena Druszczynska

    2013-01-01

    Full Text Available The mechanisms that promote either resistance or susceptibility to TB disease remain insufficiently understood. Our aim was to compare the expression of cell signaling transduction receptors, CD14, TLR2, CD206, and β2 integrin LFA-1 on monocytes from patients with active TB or nonmycobacterial lung disease and healthy individuals with M.tb latency and uninfected controls to explain the background of the differences between clinical and subclinical forms of M.tb infection. A simultaneous increase in the expression of the membrane bound mCD14 receptor and LFA-1 integrin in patients with active TB may be considered a prodrome of breaking immune control by M.tb bacilli in subjects with the latent TB and absence of clinical symptoms.

  5. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  6. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    International Nuclear Information System (INIS)

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer

  7. Activation of the chicken gonadotropin-inhibitory hormone receptor reduces gonadotropin releasing hormone receptor signaling.

    Science.gov (United States)

    Shimizu, Mamiko; Bédécarrats, Grégoy Y

    2010-06-01

    Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic peptide from the RFamide peptide family that has been identified in multiple avian species. Although GnIH has clearly been shown to reduce LH release from the anterior pituitary gland, its mechanism of action remains to be determined. The overall objectives of this study were (1) to characterize the GnIH receptor (GnIH-R) signaling pathway, (2) to evaluate potential interactions with gonadotropin releasing hormone type III receptor (GnRH-R-III) signaling, and (3) to determine the molecular mechanisms by which GnIH and GnRH regulate pituitary gonadotrope function during a reproductive cycle in the chicken. Using real-time PCR, we showed that in the chicken pituitary gland, GnIH-R mRNA levels fluctuate in an opposite manner to GnRH-R-III, with higher and lower levels observed during inactive and active reproductive stages, respectively. We demonstrated that the chicken GnIH-R signals by inhibiting adenylyl cyclase cAMP production, most likely by coupling to G(alphai). We also showed that this inhibition is sufficient to significantly reduce GnRH-induced cAMP responsive element (CRE) activation in a dose-dependent manner, and that the ratio of GnRH/GnIH receptors is a significant factor. We propose that in avian species, sexual maturation is characterized by a change in GnIH/GnRH receptor ratio, resulting in a switch in pituitary sensitivity from inhibitory (involving GnIH) to stimulatory (involving GnRH). In turn, decreasing GnIH-R signaling, combined with increasing GnRH-R-III signaling, results in significant increases in CRE activation, possibly initiating gonadotropin synthesis. PMID:20350548

  8. The angiotensin II type 1 receptor antagonist Losartan binds and activates bradykinin B2 receptor signaling

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Olsen, Kristine Boisen; Erikstrup, Niels;

    2011-01-01

    The angiotensin II type 1 receptor (AT1R) blocker (ARB) Losartan has cardioprotective effects during ischemia-reperfusion injury and inhibits reperfusion arrhythmias -effects that go beyond the benefits of lowering blood pressure. The renin-angiotensin and kallikrein-kinin systems are intricately...... connected and some of the cardioprotective effects of Losartan are abolished by blocking the bradykinin B2 receptor (B2R) signaling. In this study, we investigated the ability of six clinically available ARBs to specifically bind and activate the B2R. First, we investigated their ability to activate...... phosphoinositide (PI) hydrolysis in COS-7 cells transiently expressing the B2R. We found that only Losartan activated the B2R, working as a partial agonist compared to the endogenous ligand bradykinin. This effect was blocked by the B2R antagonist HOE 140. A competitive binding analysis revealed that Losartan does...

  9. Identification of key residues involved in the activation and signaling properties of dopamine D3 receptor.

    Science.gov (United States)

    Kota, Kokila; Kuzhikandathil, Eldo V; Afrasiabi, Milad; Lacy, Brett; Kontoyianni, Maria; Crider, A Michael; Song, Daniel

    2015-09-01

    The dopamine D3 receptor exhibits agonist-dependent tolerance and slow response termination (SRT) signaling properties that distinguish it from the closely-related D2 receptors. While amino acid residues important for D3 receptor ligand binding have been identified, the residues involved in activation of D3 receptor signaling and induction of signaling properties have not been determined. In this paper, we used cis and trans isomers of a novel D3 receptor agonist, 8-OH-PBZI, and site-directed mutagenesis to identify key residues involved in D3 receptor signaling function. Our results show that trans-8-OH-PBZI, but not cis-8-OH-PBZI, elicit the D3 receptor tolerance and SRT properties. We show that while both agonists require a subset of residues in the orthosteric binding site of D3 receptors for activation of the receptor, the ability of the two isomers to differentially induce tolerance and SRT is mediated by interactions with specific residues in the sixth transmembrane helix and third extracellular loop of the D3 receptor. We also show that unlike cis-8-OH-PBZI, which is a partial agonist at the dopamine D2S receptor and full agonist at dopamine D2L receptor, trans-8-OH-PBZI is a full agonist at both D2S and D2L receptors. The different effect of the two isomers on D3 receptor signaling properties and D2S receptor activation correlated with differential effects of the isomers on agonist-induced mouse locomotor activity. The two isomers of 8-OH-PBZI represent novel pharmacological tools for in silico D3 and D2 receptor homology modeling and for determining the role of D3 receptor tolerance and SRT properties in signaling and behavior. PMID:26116441

  10. Thrombin-Mediated Direct Activation of Proteinase-Activated Receptor-2: Another Target for Thrombin Signaling.

    Science.gov (United States)

    Mihara, Koichiro; Ramachandran, Rithwik; Saifeddine, Mahmoud; Hansen, Kristina K; Renaux, Bernard; Polley, Danny; Gibson, Stacy; Vanderboor, Christina; Hollenberg, Morley D

    2016-05-01

    Thrombin is known to signal to cells by cleaving/activating a G-protein-coupled family of proteinase-activated receptors (PARs). The signaling mechanism involves the proteolytic unmasking of an N-terminal receptor sequence that acts as a tethered receptor-activating ligand. To date, the recognized targets of thrombin cleavage and activation for signaling are PAR1 and PAR4, in which thrombin cleaves at a conserved target arginine to reveal a tethered ligand. PAR2, which like PAR1 is also cleaved at an N-terminal arginine to unmask its tethered ligand, is generally regarded as a target for trypsin but not for thrombin signaling. We now show that thrombin, at concentrations that can be achieved at sites of acute injury or in a tumor microenvironment, can directly activate PAR2 vasorelaxation and signaling, stimulating calcium and mitogen-activated protein kinase responses along with triggeringβ-arrestin recruitment. Thus, PAR2 can be added alongside PAR1 and PAR4 to the targets, whereby thrombin can affect tissue function.

  11. NMDA receptor activation regulates sociability by its effect on mTOR signaling activity.

    Science.gov (United States)

    Burket, Jessica A; Benson, Andrew D; Tang, Amy H; Deutsch, Stephen I

    2015-07-01

    Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORC1 in neurons (e.g., cerebellar Purkinje cells). mTORC1 is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORC1, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORC1 overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORC1 activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are "drivers" of mTORC1 activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders.

  12. Signaling Mechanism of Cannabinoid Receptor-2 Activation-Induced β-Endorphin Release.

    Science.gov (United States)

    Gao, Fang; Zhang, Ling-Hong; Su, Tang-Feng; Li, Lin; Zhou, Rui; Peng, Miao; Wu, Cai-Hua; Yuan, Xiao-Cui; Sun, Ning; Meng, Xian-Fang; Tian, Bo; Shi, Jing; Pan, Hui-Lin; Li, Man

    2016-08-01

    Activation of cannabinoid receptor-2 (CB2) results in β-endorphin release from keratinocytes, which then acts on primary afferent neurons to inhibit nociception. However, the underlying mechanism is still unknown. The CB2 receptor is generally thought to couple to Gi/o to inhibit cAMP production, which cannot explain the peripheral stimulatory effects of CB2 receptor activation. In this study, we found that in a keratinocyte cell line, the Gβγ subunits from Gi/o, but not Gαs, were involved in CB2 receptor activation-induced β-endorphin release. Inhibition of MAPK kinase, but not PLC, abolished CB2 receptor activation-induced β-endorphin release. Also, CB2 receptor activation significantly increased intracellular Ca(2+). Treatment with BAPTA-AM or thapsigargin blocked CB2 receptor activation-induced β-endorphin release. Using a rat model of inflammatory pain, we showed that the MAPK kinase inhibitor PD98059 abolished the peripheral effect of the CB2 receptor agonist on nociception. We thus present a novel mechanism of CB2 receptor activation-induced β-endorphin release through Gi/o-Gβγ-MAPK-Ca(2+) signaling pathway. Our data also suggest that stimulation of MAPK contributes to the peripheral analgesic effect of CB2 receptor agonists. PMID:26108183

  13. Quantitative impedimetric NPY-receptor activation monitoring and signal pathway profiling in living cells.

    Science.gov (United States)

    te Kamp, Verena; Lindner, Ricco; Jahnke, Heinz-Georg; Krinke, Dana; Kostelnik, Katja B; Beck-Sickinger, Annette G; Robitzki, Andrea A

    2015-05-15

    Label-free and non-invasive monitoring of receptor activation and identification of the involved signal pathways in living cells is an ongoing analytic challenge and a great opportunity for biosensoric systems. In this context, we developed an impedance spectroscopy-based system for the activation monitoring of NPY-receptors in living cells. Using an optimized interdigital electrode array for sensitive detection of cellular alterations, we were able for the first time to quantitatively detect the NPY-receptor activation directly without a secondary or enhancer reaction like cAMP-stimulation by forskolin. More strikingly, we could show that the impedimetric based NPY-receptor activation monitoring is not restricted to the Y1-receptor but also possible for the Y2- and Y5-receptor. Furthermore, we could monitor the NPY-receptor activation in different cell lines that natively express NPY-receptors and proof the specificity of the observed impedimetric effect by agonist/antagonist studies in recombinant NPY-receptor expressing cell lines. To clarify the nature of the observed impedimetric effect we performed an equivalent circuit analysis as well as analyzed the role of cell morphology and receptor internalization. Finally, an antagonist based extensive molecular signal pathway analysis revealed small alterations of the actin cytoskeleton as well as the inhibition of at least L-type calcium channels as major reasons for the observed NPY-induced impedance increase. Taken together, our novel impedance spectroscopy based NPY-receptor activation monitoring system offers the opportunity to identify signal pathways as well as for novel versatile agonist/antagonist screening systems for identification of novel therapeutics in the field of obesity and cancer.

  14. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling.

    Science.gov (United States)

    Blumer, Joe B; Smrcka, Alan V; Lanier, Stephen M

    2007-03-01

    Signal processing via heterotrimeric G-proteins in response to cell surface receptors is a central and much investigated aspect of how cells integrate cellular stimuli to produce coordinated biological responses. The system is a target of numerous therapeutic agents and plays an important role in adaptive processes of organs; aberrant processing of signals through these transducing systems is a component of various disease states. In addition to G-protein coupled receptor (GPCR)-mediated activation of G-protein signaling, nature has evolved creative ways to manipulate and utilize the Galphabetagamma heterotrimer or Galpha and Gbetagamma subunits independent of the cell surface receptor stimuli. In such situations, the G-protein subunits (Galpha and Gbetagamma) may actually be complexed with alternative binding partners independent of the typical heterotrimeric Galphabetagamma. Such regulatory accessory proteins include the family of regulator of G-protein signaling (RGS) proteins that accelerate the GTPase activity of Galpha and various entities that influence nucleotide binding properties and/or subunit interaction. The latter group of proteins includes receptor-independent activators of G-protein signaling (AGS) proteins that play surprising roles in signal processing. This review provides an overview of our current knowledge regarding AGS proteins. AGS proteins are indicative of a growing number of accessory proteins that influence signal propagation, facilitate cross talk between various types of signaling pathways, and provide a platform for diverse functions of both the heterotrimeric Galphabetagamma and the individual Galpha and Gbetagamma subunits.

  15. PROKR2 missense mutations associated with Kallmann syndrome impair receptor signalling activity.

    Science.gov (United States)

    Monnier, Carine; Dodé, Catherine; Fabre, Ludovic; Teixeira, Luis; Labesse, Gilles; Pin, Jean-Philippe; Hardelin, Jean-Pierre; Rondard, Philippe

    2009-01-01

    Kallmann syndrome (KS) combines hypogonadism due to gonadotropin-releasing hormone deficiency, and anosmia or hyposmia, related to defective olfactory bulb morphogenesis. In a large series of KS patients, ten different missense mutations (p.R85C, p.R85H, p.R164Q, p.L173R, p.W178S, p.Q210R, p.R268C, p.P290S, p.M323I, p.V331M) have been identified in the gene encoding the G protein-coupled receptor prokineticin receptor-2 (PROKR2), most often in the heterozygous state. Many of these mutations were, however, also found in clinically unaffected individuals, thus raising the question of their actual implication in the KS phenotype. We reproduced each of the ten mutations in a recombinant murine Prokr2, and tested their effects on the signalling activity in transfected HEK-293 cells, by measuring intracellular calcium release upon ligand-activation of the receptor. We found that all mutated receptors except one (M323I) had decreased signalling activities. These could be explained by different defective mechanisms. Three mutations (L173R, W178S, P290S) impaired cell surface-targeting of the receptor. One mutation (Q210R) abolished ligand-binding. Finally, five mutations (R85C, R85H, R164Q, R268C, V331M) presumably impaired G protein-coupling of the receptor. In addition, when wild-type and mutant receptors were coexpressed in HEK-293 cells, none of the mutant receptors that were retained within the cells did affect cell surface-targeting of the wild-type receptor, and none of the mutant receptors properly addressed at the plasma membrane did affect wild-type receptor signalling activity. This argues against a dominant negative effect of the mutations in vivo. PMID:18826963

  16. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner.

    Science.gov (United States)

    Sjöqvist, Marika; Antfolk, Daniel; Ferraris, Saima; Rraklli, Vilma; Haga, Cecilia; Antila, Christian; Mutvei, Anders; Imanishi, Susumu Y; Holmberg, Johan; Jin, Shaobo; Eriksson, John E; Lendahl, Urban; Sahlgren, Cecilia

    2014-04-01

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick central nervous system and in cultured myoblasts, Notch-stimulated cells were allowed to undergo differentiation. PKCζ phosphorylates membrane-tethered forms of Notch and regulates two distinct routing steps, depending on the Notch activation state. When Notch is activated, PKCζ promotes re-localization of Notch from late endosomes to the nucleus and enhances production of the Notch intracellular domain, which leads to increased Notch activity. In the non-activated state, PKCζ instead facilitates Notch receptor internalization, accompanied with increased ubiquitylation and interaction with the endosomal sorting protein Hrs. Collectively, these data identify PKCζ as a key regulator of Notch trafficking and demonstrate that distinct steps in intracellular routing are differentially modulated depending on Notch signaling status.

  17. CXC Chemokine Receptor 3 Alternative Splice Variants Selectively Activate Different Signaling Pathways.

    Science.gov (United States)

    Berchiche, Yamina A; Sakmar, Thomas P

    2016-10-01

    The G protein-coupled receptor (GPCR) C-X-C chemokine receptor 3 (CXCR3) is a potential drug target that mediates signaling involved in cancer metastasis and inflammatory diseases. The CXCR3 primary transcript has three potential alternative splice variants and cell-type specific expression results in receptor variants that are believed to have different functional characteristics. However, the molecular pharmacology of ligand binding to CXCR3 alternative splice variants and their downstream signaling pathways remain poorly explored. To better understand the role of the functional consequences of alternative splicing of CXCR3, we measured signaling in response to four different chemokine ligands (CXCL4, CXCL9, CXCL10, and CXCL11) with agonist activity at CXCR3. Both CXCL10 and CXCL11 activated splice variant CXCR3A. Whereas CXCL10 displayed full agonistic activity for Gαi activation and extracellular signal regulated kinase (ERK) 1/2 phosphorylation and partial agonist activity for β-arrestin recruitment, CXCL9 triggered only modest ERK1/2 phosphorylation. CXCL11 induced CXCR3B-mediated β-arrestin recruitment and little ERK phosphorylation. CXCR3Alt signaling was limited to modest ligand-induced receptor internalization and ERK1/2 phosphorylation in response to chemokines CXCL11, CXCL10, and CXCL9. These results show that CXCR3 splice variants activate different signaling pathways and that CXCR3 variant function is not redundant, suggesting a mechanism for tissue specific biased agonism. Our data show an additional layer of complexity for chemokine receptor signaling that might be exploited to target specific CXCR3 splice variants. PMID:27512119

  18. Morbilliviruses Use Signaling Lymphocyte Activation Molecules (CD150) as Cellular Receptors

    OpenAIRE

    Tatsuo, Hironobu; Ono, Nobuyuki; Yanagi, Yusuke

    2001-01-01

    Morbilliviruses comprise measles virus, canine distemper virus, rinderpest virus, and several other viruses that cause devastating human and animal diseases accompanied by severe immunosuppression and lymphopenia. Recently, we have shown that human signaling lymphocyte activation molecule (SLAM) is a cellular receptor for measles virus. In this study, we examined whether canine distemper and rinderpest viruses also use canine and bovine SLAMs, respectively, as cellular receptors. The Onderste...

  19. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak-Wismann, Martin; Schjerling, Peter;

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  20. Ligand Perception, Activation, and Early Signaling of Plant Steroid Receptor Brassinosteroid Insensitive 1

    Institute of Scientific and Technical Information of China (English)

    Jianjun Jiang; Chi Zhang; Xuelu Wang

    2013-01-01

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) belong to a large group of cell surface proteins involved in many aspects of plant development and environmental responses in both monocots and dicots. Brassinosteroid insensitive 1 (BRI1), a member of the LRR X subfamily, was first identified through several forward genetic screenings for mutants insensitive to brassinosteroids (BRs), which are a class of plant-specific steroid hormones. Since its identification, BRI1 and its homologs had been proved as receptors perceiving BRs and initiating BR signaling. The co-receptor BRI1-associated kinase 1 and its homologs, and other BRI1 interacting proteins such as its inhibitor BRI1 kinase inhibitor 1 (BKI1) were identified by genetic and biochemical approaches. The detailed mechanisms of BR perception by BRI1 and the activation of BRI1 receptor complex have also been elucidated. Moreover, several mechanisms for termination of the activated BRI1 signaling were also discovered. In this review, we will focus on the recent advances on the mechanism of BRI1 phosphorylation and activation, the regulation of its receptor complex, the structure basis of BRI1 ectodomain and BR recognition, its direct substrates, and the termination of the activated BRI1 receptor complex.

  1. Activation of GABA(B) receptors inhibits protein kinase B/glycogen synthase kinase 3 signaling.

    Science.gov (United States)

    Lu, Frances Fangjia; Su, Ping; Liu, Fang; Daskalakis, Zafiris J

    2012-11-28

    Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt)/glycogen synthase kinase (GSK)-3 signaling. Here we report that activation of GABA(B) receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABA(B) receptors enhances the phosphorylation of Akt (Thr-308) and enhances the phosphorylation of GSK-3α (Ser-21)/β (Ser-9) in both HEK-293T cells expressing GABA(B) receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABA(B) receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABA(B) receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  2. Agmatine produces antidepressant-like effects by activating AMPA receptors and mTOR signaling.

    Science.gov (United States)

    Neis, Vivian Binder; Moretti, Morgana; Bettio, Luis Eduardo B; Ribeiro, Camille M; Rosa, Priscila Batista; Gonçalves, Filipe Marques; Lopes, Mark William; Leal, Rodrigo Bainy; Rodrigues, Ana Lúcia S

    2016-06-01

    The activation of AMPA receptors and mTOR signaling has been reported as mechanisms underlying the antidepressant effects of fast-acting agents, specially the NMDA receptor antagonist ketamine. In the present study, oral administration of agmatine (0.1mg/kg), a neuromodulator that has been reported to modulate NMDA receptors, caused a significant reduction in the immobility time of mice submitted to the tail suspension test (TST), an effect prevented by the administration of DNQX (AMPA receptor antagonist, 2.5μg/site, i.c.v.), BDNF antibody (1μg/site, i.c.v.), K-252a (TrkB receptor antagonist, 1μg/site, i.c.v.), LY294002 (PI3K inhibitor, 10nmol/site, i.c.v.) or rapamycin (selective mTOR inhibitor, 0.2nmol/site, i.c.v.). Moreover, the administration of lithium chloride (non-selective GSK-3β inhibitor, 10mg/kg, p.o.) or AR-A014418 (selective GSK-3β inhibitor, 0.01μg/site, i.c.v.) in combination with a sub-effective dose of agmatine (0.0001mg/kg, p.o.) reduced the immobility time in the TST when compared with either drug alone. Furthermore, increased immunocontents of BDNF, PSD-95 and GluA1 were found in the prefrontal cortex of mice just 1h after agmatine administration. These results indicate that the antidepressant-like effect of agmatine in the TST may be dependent on the activation of AMPA and TrkB receptors, PI3K and mTOR signaling as well as inhibition of GSK-3β, and increase in synaptic proteins. The results contribute to elucidate the complex signaling pathways involved in the antidepressant effect of agmatine and reinforce the pivotal role of these molecular targets for antidepressant responses. PMID:27061850

  3. H(1)-Receptor activation triggers the endogenous nitric oxide signalling system in the rat submandibular gland.

    Science.gov (United States)

    Borda, Enri; Stranieri, Graciela; Sterin-Borda, Leonor

    2002-01-01

    BACKGROUND: Histamine is released from mast cells by immunologic and non-immunologic stimuli during salivary gland inflammation, regulating salivary secretion. The receptor-secretory mechanism has not been studied in detail. AIMS: The studies reported were directed toward elucidating signal transduction/second messenger pathways within the rat submandibular gland associated with 2-thiazolylethylamine (ThEA)-induced H(1)-receptor responses. MATERIALS AND METHODS: To assess the H(1) receptor subtype expression in the rat submandibular gland, a radioligand binding assay was performed. The study also included inositolphosphates and cyclic GMP accumulation, protein kinase C and nitric oxide synthase activities, and amylase release. RESULTS: The histamine H(1) receptor subtype is expressed on the rat submandibular gland with high-affinity binding sites. The ThEA effect was associated with activation of phosphoinositide-specific phospholipase C, translocation of protein kinase C, stimulation of nitric oxide synthase activity and increased production of cyclic GMP. ThEA stimulation of nitric oxide synthase and cyclic GMP was blunted by agents able to interfere with calcium movilization, while a protein kinase C inhibitor was able to stimulate ThEA action. On the other hand, ThEA stimulation evoked amylase release via the H1 receptor but was not followed by the L-arginine/nitric oxide pathway activation. CONCLUSIONS: These results suggest that, apart from the effect of ThEA on amylase release, it also appears to be a vasoactive chemical mediator that triggers vasodilatation, modulating the course of inflammation. PMID:12581497

  4. Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R; Henriksen, Zanne; Sørensen, Ole;

    2002-01-01

    Signaling between osteoblasts and osteoclasts is important in bone homeostasis. We previously showed that human osteoblasts propagate intercellular calcium signals via two mechanisms: autocrine activation of P2Y receptors, and gap junctional communication. In the current work we identified...... mechanically induced intercellular calcium signaling between osteoblasts and osteoclasts and among osteoclasts. Intercellular calcium responses in osteoclasts required P2 receptor activation but not gap junctional communication. Pharmacological studies and reverse transcriptase-PCR amplification demonstrated...... that human osteoclasts expressed functional P2Y1 receptors, but, unexpectedly, desensitization of P2Y1 did not block calcium signaling to osteoclasts. We also found that osteoclasts expressed functional P2X7 receptors and showed that pharmacological inhibition of these receptors blocked calcium signaling...

  5. Single molecule analysis of B cell receptor motion during signaling activation

    Science.gov (United States)

    Rey Suarez, Ivan; Koo, Peter; Mochrie, Simon; Song, Wenxia; Upadhyaya, Arpita

    B cells are an essential part of the adaptive immune system. They patrol the body looking for signs of infection in the form of antigen on the surface of antigen presenting cells. The binding of the B cell receptor (BCR) to antigen induces signaling cascades that lead to B cell activation and eventual production of high affinity antibodies. During activation, BCR organize into signaling microclusters, which are platforms for signal amplification. The physical processes underlying receptor movement and aggregation are not well understood. Here we study the dynamics of single BCRs on activated murine primary B cells using TIRF imaging and single particle tracking. The tracks obtained are analyzed using perturbation expectation-maximization (pEM) a systems-level analysis that allows the identification of different short-time diffusive states from a set of single particle tracks. We identified five different diffusive states on wild type cells, which correspond to different molecular states of the BCR. By using actin polymerization inhibitors and mutant cells lacking important actin regulators we were able to identify the BCR molecule configuration associated with each diffusive state.

  6. Quantitative Single-Cell Analysis of Signaling Pathways Activated Immediately Downstream of Histamine Receptor Subtypes.

    Science.gov (United States)

    van Unen, Jakobus; Rashidfarrokhi, Ali; Hoogendoorn, Eelco; Postma, Marten; Gadella, Theodorus W J; Goedhart, Joachim

    2016-09-01

    Genetically encoded biosensors based on Förster resonance energy transfer (FRET) can visualize responses of individual cells in real time. Here, we evaluated whether FRET-based biosensors provide sufficient contrast and specificity to measure activity of G-protein-coupled receptors. The four histamine receptor subtypes (H1R, H2R, H3R, and H4R) respond to the ligand histamine by activating three canonical heterotrimeric G-protein-mediated signaling pathways with a reported high degree of specificity. Using FRET-based biosensors, we demonstrate that H1R activates Gαq. We also observed that H1R activates Gαi, albeit at a 10-fold lower potency. In addition to increasing cAMP levels, most likely via Gαs, we found that the H2R induces Gαq-mediated calcium release. The H3R and H4R activated Gαi with high specificity and a high potency. We demonstrate that a number of FRET sensors provide sufficient contrast to: 1) analyze the specificity of the histamine receptor subtypes for different heterotrimeric G-protein families with single-cell resolution, 2) probe for antagonist specificity, and 3) allow the measurement of single-cell concentration-response curves. PMID:27358232

  7. Roles of activin receptor-like kinase 7 signaling and its target, peroxisome proliferator-activated receptor γ, in lean and obese adipocytes

    OpenAIRE

    Yogosawa, Satomi; Izumi, Tetsuro

    2013-01-01

    We recently discovered a novel signaling pathway involving activin receptor-like kinase 7 (ALK7), one of the type I transforming growth factor-β receptors. ALK7 and activated Smads 2, 3, and 4 inhibit the master regulators of adipogenesis, CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) specifically in differentiated adipocytes, but surprisingly increase both the adipocyte size and lipid content by suppressing lipolysis. Here, we show that, a...

  8. Nuclear Factor-κB: Activation and Regulation during Toll-like Receptor Signaling

    Institute of Scientific and Technical Information of China (English)

    Ruaidhrí J. Carmody; Youhai H. Chen

    2007-01-01

    Toll-like receptors (TLRs) recognize distinct microbial components to initiate the innate and adaptive immune responses. TLR activation culminates in the expression of appropriate pro-inflammatory and immunomodulatory factors to meet pathogenic challenges. The transcription factor NF-κB is the master regulator of all TLR-induced responses and its activation is the pivotal event in TLR-mediated activation of the innate immune response. Many of the key molecular events required for TLR-induced NF-κB activation have been elucidated. However, much remain to be learned about the ability of TLRs to generate pathogen-specific responses using a limited number of transcription factors. This review will focus on our current understanding of NF-κB activation by TLRs and potential mechanisms for achieving a signal-specific response through NF-κB.

  9. Enhanced airway smooth muscle cell thromboxane receptor signaling via activation of JNK MAPK and extracellular calcium influx

    DEFF Research Database (Denmark)

    Lei, Ying; Cao, Yongxiao; Zhang, Yaping;

    2011-01-01

    airway smooth muscle cells by using an organ culture model and a set of selective pharmacological inhibitors for mitogen-activated protein kinase (MAPK) and calcium signal pathways. Western-blot, immunohistochemistry, myograph and a selective TP receptor agonist U46619 were used for examining TP receptor...... signal proteins and function. Organ culture of rat bronchial segments for up to 48 h induces a time-dependently increased airway contractile response to U46619. This indicates that organ culture increases TP receptor signaling in the airway smooth muscle cells. The enhanced bronchial contraction was...... attenuated by the inhibition of c-Jun N-terminal kinase (JNK) MAPK activity, chelation of extracellular calcium and calcium channel blocker nifedipine, suggesting that JNK MAPK activity and elevated intracellular calcium level are required for the TP receptor signaling. In conclusion, airway smooth muscle...

  10. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Dennis J Grab

    Full Text Available BACKGROUND: Using human brain microvascular endothelial cells (HBMECs as an in vitro model for how African trypanosomes cross the human blood-brain barrier (BBB we recently reported that the parasites cross the BBB by generating calcium activation signals in HBMECs through the activity of parasite cysteine proteases, particularly cathepsin L (brucipain. In the current study, we examined the possible role of a class of protease stimulated HBMEC G protein coupled receptors (GPCRs known as protease activated receptors (PARs that might be implicated in calcium signaling by African trypanosomes. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA interference (RNAi we found that in vitro PAR-2 gene (F2RL1 expression in HBMEC monolayers could be reduced by over 95%. We also found that the ability of Trypanosoma brucei rhodesiense to cross F2RL1-silenced HBMEC monolayers was reduced (39%-49% and that HBMECs silenced for F2RL1 maintained control levels of barrier function in the presence of the parasite. Consistent with the role of PAR-2, we found that HBMEC barrier function was also maintained after blockade of Galpha(q with Pasteurella multocida toxin (PMT. PAR-2 signaling has been shown in other systems to have neuroinflammatory and neuroprotective roles and our data implicate a role for proteases (i.e. brucipain and PAR-2 in African trypanosome/HBMEC interactions. Using gene-profiling methods to interrogate candidate HBMEC pathways specifically triggered by brucipain, several pathways that potentially link some pathophysiologic processes associated with CNS HAT were identified. CONCLUSIONS/SIGNIFICANCE: Together, the data support a role, in part, for GPCRs as molecular targets for parasite proteases that lead to the activation of Galpha(q-mediated calcium signaling. The consequence of these events is predicted to be increased permeability of the BBB to parasite transmigration and the initiation of neuroinflammation, events precursory to CNS disease.

  11. Brain-derived neurotrophic factor activation of extracellular signal-regulated kinase is autonomous from the dominant extrasynaptic NMDA receptor extracellular signal-regulated kinase shutoff pathway.

    Science.gov (United States)

    Mulholland, P J; Luong, N T; Woodward, J J; Chandler, L J

    2008-01-24

    NMDA receptors bidirectionally modulate extracellular signal-regulated kinase (ERK) through the coupling of synaptic NMDA receptors to an ERK activation pathway that is opposed by a dominant ERK shutoff pathway thought to be coupled to extrasynaptic NMDA receptors. In the present study, synaptic NMDA receptor activation of ERK in rat cortical cultures was partially inhibited by the highly selective NR2B antagonist Ro25-6981 (Ro) and the less selective NR2A antagonist NVP-AAM077 (NVP). When Ro and NVP were added together, inhibition appeared additive and equal to that observed with the NMDA open-channel blocker MK-801. Consistent with a selective coupling of extrasynaptic NMDA receptors to the dominant ERK shutoff pathway, pre-block of synaptic NMDA receptors with MK-801 did not alter the inhibitory effect of bath-applied NMDA on ERK activity. Lastly, in contrast to a complete block of synaptic NMDA receptor activation of ERK by extrasynaptic NMDA receptors, activation of extrasynaptic NMDA receptors had no effect upon ERK activation by brain-derived neurotrophic factor. These results suggest that the synaptic NMDA receptor ERK activation pathway is coupled to both NR2A and NR2B containing receptors, and that the extrasynaptic NMDA receptor ERK inhibitory pathway is not a non-selective global ERK shutoff.

  12. Melanocortin-4 receptor activation inhibits c-Jun N-terminal kinase activity and promotes insulin signaling

    OpenAIRE

    Chai, Biaoxin; Li, Ji-Yao; Zhang, Weizhen; Wang, Hui; Mulholland, Michael W.

    2009-01-01

    The melanocortin system is crucial to regulation of energy homeostasis. The melanocortin receptor type 4 (MC4R) modulates insulin signaling via effects on c-Jun N-terminal kinase (JNK). The melanocortin agonist NDP-MSH dose-dependently inhibited JNK activity in HEK293 cells stably expressing the human MC4R; effects were reversed by melanocortin receptor antagonist. NDP-MSH time- and dose-dependently inhibited IRS-1ser307 phosphorylation, effects also reversed by a specific melanocortin recept...

  13. The Relaxin Receptor (RXFP1) Utilizes Hydrophobic Moieties on a Signaling Surface of Its N-terminal Low Density Lipoprotein Class A Module to Mediate Receptor Activation*

    Science.gov (United States)

    Kong, Roy C. K.; Petrie, Emma J.; Mohanty, Biswaranjan; Ling, Jason; Lee, Jeremy C. Y.; Gooley, Paul R.; Bathgate, Ross A. D.

    2013-01-01

    The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true “ligand” of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation. PMID:23926099

  14. The relaxin receptor (RXFP1) utilizes hydrophobic moieties on a signaling surface of its N-terminal low density lipoprotein class A module to mediate receptor activation.

    Science.gov (United States)

    Kong, Roy C K; Petrie, Emma J; Mohanty, Biswaranjan; Ling, Jason; Lee, Jeremy C Y; Gooley, Paul R; Bathgate, Ross A D

    2013-09-27

    The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true "ligand" of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation. PMID:23926099

  15. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis.

    Science.gov (United States)

    Wee, Ping; Shi, Huaiping; Jiang, Jennifer; Wang, Yuluan; Wang, Zhixiang

    2015-03-01

    Mitosis and epidermal growth factor (EGF) receptor (EGFR) are both targets for cancer therapy. The role of EGFR signaling in mitosis has been rarely studied and poorly understood. The limited studies indicate that the activation of EGFR and downstream signaling pathways is mostly inhibited during mitosis. However, we recently showed that EGFR is phosphorylated in response to EGF stimulation in mitosis. Here we studied EGF-induced EGFR activation and the activation of major signaling pathways downstream of EGFR during mitosis. We showed that EGFR was strongly activated by EGF during mitosis as all the five major tyrosine residues including Y992, Y1045, Y1068, Y1086, and Y1173 were phosphorylated to a level similar to that in the interphase. We further showed that the activated EGFR is able to selectively activate some downstream signaling pathways while avoiding others. Activated EGFR is able to activate PI3K and AKT2, but not AKT1, which may be responsible for the observed effects of EGF against nocodazole-induced cell death. Activated EGFR is also able to activate c-Src, c-Cbl and PLC-γ1 during mitosis. However, activated EGFR is unable to activate ERK1/2 and their downstream substrates RSK and Elk-1. While it activated Ras, EGFR failed to fully activate Raf-1 in mitosis due to the lack of phosphorylation at Y341 and the lack of dephosphorylation at pS259. We conclude that contrary to the dogma, EGFR is activated by EGF during mitosis. Moreover, EGFR-mediated cell signaling is regulated differently from the interphase to specifically serve the needs of the cell in mitosis.

  16. Melanocortin-1 receptor-mediated signalling pathways activated by NDP-MSH and HBD3 ligands

    OpenAIRE

    Beaumont, Kimberley A.; Smit, Darren J.; Liu, Yan Yan; Chai, Eric; Patel, Mira P.; Millhauser, Glenn L.; Smith, Jennifer J.; Alewood, Paul F.; Sturm, Richard A.

    2012-01-01

    Binding of melanocortin peptide agonists to the melanocortin-1 receptor of melanocytes results in eumelanin production, whereas binding of the agouti signalling protein inverse agonist results in pheomelanin synthesis. Recently, a novel melanocortin-1 receptor ligand was reported. A β-defensin gene mutation was found to beresponsible for black coat colour in domestic dogs. Notably, the human equivalent, β-defensin 3, was found to bind with high affinity to the melanocortin-1 receptor; however...

  17. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by xmeta, an allosteric partial agonist antibody

    Science.gov (United States)

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  18. Diverse signaling systems activated by the sweet taste receptor in human GLP-1-secreting cells.

    Science.gov (United States)

    Ohtsu, Yoshiaki; Nakagawa, Yuko; Nagasawa, Masahiro; Takeda, Shigeki; Arakawa, Hirokazu; Kojima, Itaru

    2014-08-25

    Sweet taste receptor regulates GLP-1 secretion in enteroendocrine L-cells. We investigated the signaling system activated by this receptor using Hutu-80 cells. We stimulated them with sucralose, saccharin, acesulfame K and glycyrrhizin. These sweeteners stimulated GLP-1 secretion, which was attenuated by lactisole. All these sweeteners elevated cytoplasmic cyclic AMP ([cAMP]c) whereas only sucralose and saccharin induced a monophasic increase in cytoplasmic Ca(2+) ([Ca(2+)]c). Removal of extracellular calcium or sodium and addition of a Gq/11 inhibitor greatly reduced the [Ca(2+)]c responses to two sweeteners. In contrast, acesulfame K induced rapid and sustained reduction of [Ca(2+)]c. In addition, glycyrrhizin first reduced [Ca(2+)]c which was followed by an elevation of [Ca(2+)]c. Reductions of [Ca(2+)]c induced by acesulfame K and glycyrrhizin were attenuated by a calmodulin inhibitor or by knockdown of the plasma membrane calcium pump. These results indicate that various sweet molecules act as biased agonists and evoke strikingly different patterns of intracellular signals. PMID:25017733

  19. Attenuation of signaling pathways stimulated by pathologically activated FGF-receptor 2 mutants prevents craniosynostosis.

    Science.gov (United States)

    Eswarakumar, V P; Ozcan, F; Lew, E D; Bae, J H; Tomé, F; Booth, C J; Adams, D J; Lax, I; Schlessinger, J

    2006-12-01

    Craniosynostosis, the fusion of one or more of the sutures of the skull vault before the brain completes its growth, is a common (1 in 2,500 births) craniofacial abnormality, approximately 20% of which occurrences are caused by gain-of-function mutations in FGF receptors (FGFRs). We describe a genetic and pharmacological approach for the treatment of a murine model system of Crouzon-like craniosynostosis induced by a dominant mutation in Fgfr2c. Using genetically modified mice, we demonstrate that premature fusion of sutures mediated by Crouzon-like activated Fgfr2c mutant is prevented by attenuation of signaling pathways by selective uncoupling between the docking protein Frs2alpha and activated Fgfr2c, resulting in normal skull development. We also demonstrate that attenuation of Fgfr signaling in a calvaria organ culture with an Fgfr inhibitor prevents premature fusion of sutures without adversely affecting calvaria development. These experiments show that attenuation of FGFR signaling by pharmacological intervention could be applied for the treatment of craniosynostosis or other severe bone disorders caused by mutations in FGFRs that currently have no treatment. PMID:17132737

  20. Aberrant Activation of the RANK Signaling Receptor Induces Murine Salivary Gland Tumors.

    Directory of Open Access Journals (Sweden)

    Maria M Szwarc

    Full Text Available Unlike cancers of related exocrine tissues such as the mammary and prostate gland, diagnosis and treatment of aggressive salivary gland malignancies have not markedly advanced in decades. Effective clinical management of malignant salivary gland cancers is undercut by our limited knowledge concerning the key molecular signals that underpin the etiopathogenesis of this rare and heterogeneous head and neck cancer. Without knowledge of the critical signals that drive salivary gland tumorigenesis, tumor vulnerabilities cannot be exploited that allow for targeted molecular therapies. This knowledge insufficiency is further exacerbated by a paucity of preclinical mouse models (as compared to other cancer fields with which to both study salivary gland pathobiology and test novel intervention strategies. Using a mouse transgenic approach, we demonstrate that deregulation of the Receptor Activator of NFkB Ligand (RANKL/RANK signaling axis results in rapid tumor development in all three major salivary glands. In line with its established role in other exocrine gland cancers (i.e., breast cancer, the RANKL/RANK signaling axis elicits an aggressive salivary gland tumor phenotype both at the histologic and molecular level. Despite the ability of this cytokine signaling axis to drive advanced stage disease within a short latency period, early blockade of RANKL/RANK signaling markedly attenuates the development of malignant salivary gland neoplasms. Together, our findings have uncovered a tumorigenic role for RANKL/RANK in the salivary gland and suggest that targeting this pathway may represent a novel therapeutic intervention approach in the prevention and/or treatment of this understudied head and neck cancer.

  1. Integration of G-Protein Coupled Receptor Signaling Pathways for Activation of a Transcription Factor (EGR-3)

    Institute of Scientific and Technical Information of China (English)

    Xuehai Tan; Pam Sanders; Jack Bolado Jr.; Mike Whitney

    2003-01-01

    We recently reported the use of a gene-trapping approach to isolate cell clones in which a reporter gene had integrated into genes modulated by T-cell activation. We have now tested a panel of clones from that report and identified the one that responds to a variety of G-protein coupled receptors (GPCR). The βlactamase tagged EGR-3 Jurkat cell was used to dissect specific GPCR signaling in vivo. Three GPCRs were studied, including the chemokine receptor CXCR4 (Gicoupled) that was endogenously expressed, the platelet activation factor (PAF) receptor (Gq-coupled), andβ2 adrenergic receptor (Gs-coupled) that was both stably transfected. Agonists for each receptor activated transcription of theβ-lactamase tagged EGR-3 gene. Induction of EGR-3 through CXCR4 was blocked by pertussis toxin and PD58059, a specific inhibitor of MEK (MAPK/ERK kinase). Neither of these inhibitors blocked isoproterenol or PAF-mediated activation of EGR-3. Conversely, β2- and PAF-mediated EGR-3 activation was blocked by the p38, specific inhibitor SB580. In addition, bothβ2- and PAF-mediated EGR-3 activation could be synergistically activated by CXCR4 activation. This combined result indicates that EGR-3 can be activated through distinct signal transduction pathways by different GPCRs and that signals can be integrated and amplified to efficiently tune the level of activation.

  2. Binding of receptor-recognized forms of alpha2-macroglobulin to the alpha2-macroglobulin signaling receptor activates phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Misra, U K; Pizzo, S V

    1998-05-29

    Ligation of the alpha2-macroglobulin (alpha2M) signaling receptor by receptor-recognized forms of alpha2M (alpha2M*) initiates mitogenesis secondary to increased intracellular Ca2+. We report here that ligation of the alpha2M signaling receptor also causes a 1. 5-2.5-fold increase in wortmannin-sensitive phosphatidylinositol 3-kinase (PI3K) activity as measured by the quantitation of phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 formation was alpha2M* concentration-dependent with a maximal response at approximately 50 pM ligand concentration. The peak formation of PIP3 occurred at 10 min of incubation. The alpha2M receptor binding fragment mutant K1370R which binds to the alpha2M signaling receptor activating the signaling cascade, increased PIP3 formation by 2-fold. The mutant K1374A, which binds very poorly to the alpha2M signaling receptor, did not cause any increase in PIP3 formation. alpha2M*-induced DNA synthesis was inhibited by wortmannin. 1, 2Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acetoxymethylester a chelator of intracellular Ca2+, drastically reduced alpha2M*-induced increases in PIP3 formation. We conclude that PI3K is involved in alpha2M*-induced mitogenesis in macrophages and intracellular Ca2+ plays a role in PI3K activation. PMID:9593670

  3. TGFβ activated kinase 1 (TAK1 at the crossroad of B cell receptor and Toll-like receptor 9 signaling pathways in human B cells.

    Directory of Open Access Journals (Sweden)

    Dániel Szili

    Full Text Available B cell development and activation are regulated by combined signals mediated by the B cell receptor (BCR, receptors for the B-cell activating factor of the tumor necrosis factor family (BAFF-R and the innate receptor, Toll-like receptor 9 (TLR9. However, the underlying mechanisms by which these signals cooperate in human B cells remain unclear. Our aim was to elucidate the key signaling molecules at the crossroads of BCR, BAFF-R and TLR9 mediated pathways and to follow the functional consequences of costimulation.Therefore we stimulated purified human B cells by combinations of anti-Ig, B-cell activating factor of the tumor necrosis factor family (BAFF and the TLR9 agonist, CpG oligodeoxynucleotide. Phosphorylation status of various signaling molecules, B cell proliferation, cytokine secretion, plasma blast generation and the frequency of IgG producing cells were investigated. We have found that BCR induced signals cooperate with BAFF-R- and TLR9-mediated signals at different levels of cell activation. BCR and BAFF- as well as TLR9 and BAFF-mediated signals cooperate at NFκB activation, while BCR and TLR9 synergistically costimulate mitogen activated protein kinases (MAPKs, ERK, JNK and p38. We show here for the first time that the MAP3K7 (TGF beta activated kinase, TAK1 is responsible for the synergistic costimulation of B cells by BCR and TLR9, resulting in an enhanced cell proliferation, plasma blast generation, cytokine and antibody production. Specific inhibitor of TAK1 as well as knocking down TAK1 by siRNA abrogates the synergistic signals. We conclude that TAK1 is a key regulator of receptor crosstalk between BCR and TLR9, thus plays a critical role in B cell development and activation.

  4. Dopamine D2 receptor-mediated Akt/PKB signalling: initiation by the D2S receptor and role in quinpirole-induced behavioural activation

    OpenAIRE

    Jin‑Chung Chen; Nan‑Yu Ruan; Tzu‑Yung Lin; Han‑Ting Chen

    2012-01-01

    The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively) are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3). To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney)-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 ago...

  5. Dopamine D2 receptor-mediated Akt/PKB signalling: initiation by the D2S receptor and role in quinpirole-induced behavioural activation.

    Science.gov (United States)

    Chen, Han-Ting; Ruan, Nan-Yu; Chen, Jin-Chung; Lin, Tzu-Yung

    2012-09-24

    The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively) are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3). To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney)-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2) activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase) inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.

  6. Dopamine D2 receptor-mediated Akt/PKB signalling: initiation by the D2S receptor and role in quinpirole-induced behavioural activation

    Directory of Open Access Journals (Sweden)

    Jin‑Chung Chen

    2012-09-01

    Full Text Available The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3. To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2 activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.

  7. A Computational Study of the Effects of Syk Activity on B Cell Receptor Signaling Dynamics

    Directory of Open Access Journals (Sweden)

    Reginald L. McGee

    2015-02-01

    Full Text Available The kinase Syk is intricately involved in early signaling events in B cells and isrequired for proper response when antigens bind to B cell receptors (BCRs. Experimentsusing an analog-sensitive version of Syk (Syk-AQL have better elucidated its role, buthave not completely characterized its behavior. We present a computational model for BCRsignaling, using dynamical systems, which incorporates both wild-type Syk and Syk-AQL.Following the use of sensitivity analysis to identify significant reaction parameters, we screenfor parameter vectors that produced graded responses to BCR stimulation as is observedexperimentally. We demonstrate qualitative agreement between the model and dose responsedata for both mutant and wild-type kinases. Analysis of our model suggests that the level of NF-KB activation, which is reduced in Syk-AQL cells relative to wild-type, is more sensitiveto small reductions in kinase activity than Erkp activation, which is essentially unchanged.Since this profile of high Erkp and reduced NF-KB is consistent with anergy, this implies thatanergy is particularly sensitive to small changes in catalytic activity. Also, under a range offorward and reverse ligand binding rates, our model of Erkp and NF-KB activation displaysa dependence on a power law affinity: the ratio of the forward rate to a non-unit power of thereverse rate. This dependence implies that B cells may respond to certain details of bindingand unbinding rates for ligands rather than simple affinity alone.

  8. Olfactory receptor signaling.

    Science.gov (United States)

    Antunes, Gabriela; Simoes de Souza, Fabio Marques

    2016-01-01

    The guanine nucleotide protein (G protein)-coupled receptors (GPCRs) superfamily represents the largest class of membrane protein in the human genome. More than a half of all GPCRs are dedicated to interact with odorants and are termed odorant-receptors (ORs). Linda Buck and Richard Axel, the Nobel Prize laureates in physiology or medicine in 2004, first cloned and characterized the gene family that encode ORs, establishing the foundations to the understanding of the molecular basis for odor recognition. In the last decades, a lot of progress has been done to unravel the functioning of the sense of smell. This chapter gives a general overview of the topic of olfactory receptor signaling and reviews recent advances in this field. PMID:26928542

  9. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  10. N-linked glycosylation of protease-activated receptor-1 at extracellular loop 2 regulates G-protein signaling bias.

    Science.gov (United States)

    Soto, Antonio G; Smith, Thomas H; Chen, Buxin; Bhattacharya, Supriyo; Cordova, Isabel Canto; Kenakin, Terry; Vaidehi, Nagarajan; Trejo, JoAnn

    2015-07-01

    Protease-activated receptor-1 (PAR1) is a G-protein-coupled receptor (GPCR) for the coagulant protease thrombin. Similar to other GPCRs, PAR1 is promiscuous and couples to multiple heterotrimeric G-protein subtypes in the same cell and promotes diverse cellular responses. The molecular mechanism by which activation of a given GPCR with the same ligand permits coupling to multiple G-protein subtypes is unclear. Here, we report that N-linked glycosylation of PAR1 at extracellular loop 2 (ECL2) controls G12/13 versus Gq coupling specificity in response to thrombin stimulation. A PAR1 mutant deficient in glycosylation at ECL2 was more effective at stimulating Gq-mediated phosphoinositide signaling compared with glycosylated wildtype receptor. In contrast, wildtype PAR1 displayed a greater efficacy at G12/13-dependent RhoA activation compared with mutant receptor lacking glycosylation at ECL2. Endogenous PAR1 rendered deficient in glycosylation using tunicamycin, a glycoprotein synthesis inhibitor, also exhibited increased PI signaling and diminished RhoA activation opposite to native receptor. Remarkably, PAR1 wildtype and glycosylation-deficient mutant were equally effective at coupling to Gi and β-arrestin-1. Consistent with preferential G12/13 coupling, thrombin-stimulated PAR1 wildtype strongly induced RhoA-mediated stress fiber formation compared with mutant receptor. In striking contrast, glycosylation-deficient PAR1 was more effective at increasing cellular proliferation, associated with Gq signaling, than wildtype receptor. These studies suggest that N-linked glycosylation at ECL2 contributes to the stabilization of an active PAR1 state that preferentially couples to G12/13 versus Gq and defines a previously unidentified function for N-linked glycosylation of GPCRs in regulating G-protein signaling bias. PMID:26100877

  11. Induction of proteinuria by cannabinoid receptors 1 signaling activation in CB1 transgenic mice.

    Science.gov (United States)

    Hsu, Yung-Chien; Lei, Chen-Chou; Shih, Ya-Hsueh; Ho, Cheng; Lin, Chun-Liang

    2015-02-01

    Proteinuria is not only a sign of kidney damage but is also involved in the progression of renal disease as an independent pathologic factor. Although patients with mutated type 1 cannabinoid receptors (CB1) polymorphism are associated with renal microvascular damage, the biologic role of CB1 signaling in proteinuria remains uncharacterized till now. Herein, we investigate whether CB1 participates in glomerular proteinuria in CB1 transgenic mice and treatment with CB1 agonist WIN55212-2 rat, neither of which are diabetic models. The CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 had higher kidney weight and urinary protein concentrations but not blood glucose levels compared with the wild-type group. A combination of laser-capture microsdissection, quantitative reverse transcription-polymerase chain reaction, immunoblotting and immunohistochemical validation revealed that CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 had higher vascular endothelial growth factor (VEGF) expression in renal glomeruli than that of the wild-type group. Geneticorpharmacological activation of CB1 by transgenic CB1 mice or treatment with WIN55212-2 reduced nephrin expression in the renal glomeruli compared with that of the wild-type group in the glomerular mesanglium. Taken together, CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 induced proteinuria with upregulation of CB1 resulting in impaired nephrin expression, by inducing excess VEGF reaction in the renal glomeruli. Genetic and pharmacological manipulation of CB1 signaling revealed VEGF-dependent nephrin depression of glomerulopathy. Controlling CB1 activity can be used an alternative strategy for sustaining renal function in the presence of CB1 activation.

  12. Valerian inhibits rat hepatocarcinogenesis by activating GABA(A) receptor-mediated signaling.

    Science.gov (United States)

    Kakehashi, Anna; Kato, Ayumi; Ishii, Naomi; Wei, Min; Morimura, Keiichirou; Fukushima, Shoji; Wanibuchi, Hideki

    2014-01-01

    Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P(+)) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2'-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P(+) foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21(Waf1/Cip1), p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P(+) foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P(+) foci by activating GABA(A)R-mediated signaling. PMID:25419570

  13. Valerian inhibits rat hepatocarcinogenesis by activating GABA(A receptor-mediated signaling.

    Directory of Open Access Journals (Sweden)

    Anna Kakehashi

    Full Text Available Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA A receptor (GABA(AR system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(AR agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN. Formation of glutathione S-transferase placental form positive (GST-P(+ foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2'-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P(+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21(Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(AR alpha 1 subunit was observed in GST-P(+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P(+ foci by activating GABA(AR-mediated signaling.

  14. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins. PMID:24297163

  15. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling.

    Science.gov (United States)

    Lohse, Martin J; Nuber, Susanne; Hoffmann, Carsten

    2012-04-01

    Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments. PMID:22407612

  16. Rice Bran Feruloylated Oligosaccharides Activate Dendritic Cells via Toll-Like Receptor 2 and 4 Signaling

    Directory of Open Access Journals (Sweden)

    Chi Chen Lin

    2014-04-01

    Full Text Available This work presents the effects of feruloylated oligosaccharides (FOs of rice bran on murine bone marrow-derived dendritic cells (BMDCs and the potential pathway through which the effects are mediated. We found that FOs induced phenotypic maturation of DCs, as shown by the increased expression of CD40, CD80/CD86 and MHC-I/II molecules. FOs efficiently induced maturation of DCs generated from C3H/HeN or C57BL/6 mice with normal toll-like receptor 4 (TLR-4 or TLR-2 but not DCs from mice with mutated TLR4 or TLR2. The mechanism of action of FOs may be mediated by increased phosphorylation of ERK, p38 and JNK mitogen-activated protein kinase (MAPKs and increased NF-kB activity, which are important signaling molecules downstream of TLR-4 and TLR-2. These data suggest that FOs induce DCs maturation through TLR-4 and/or TLR-2 and that FOs might have potential efficacy against tumor or virus infection or represent a candidate-adjuvant approach for application in immunotherapy and vaccination.

  17. Rice bran feruloylated oligosaccharides activate dendritic cells via Toll-like receptor 2 and 4 signaling.

    Science.gov (United States)

    Lin, Chi Chen; Chen, Hua Han; Chen, Yu Kuo; Chang, Hung Chia; Lin, Ping Yi; Pan, I-Hong; Chen, Der-Yuan; Chen, Chuan Mu; Lin, Su Yi

    2014-01-01

    This work presents the effects of feruloylated oligosaccharides (FOs) of rice bran on murine bone marrow-derived dendritic cells (BMDCs) and the potential pathway through which the effects are mediated. We found that FOs induced phenotypic maturation of DCs, as shown by the increased expression of CD40, CD80/CD86 and MHC-I/II molecules. FOs efficiently induced maturation of DCs generated from C3H/HeN or C57BL/6 mice with normal toll-like receptor 4 (TLR-4) or TLR-2 but not DCs from mice with mutated TLR4 or TLR2. The mechanism of action of FOs may be mediated by increased phosphorylation of ERK, p38 and JNK mitogen-activated protein kinase (MAPKs) and increased NF-kB activity, which are important signaling molecules downstream of TLR-4 and TLR-2. These data suggest that FOs induce DCs maturation through TLR-4 and/or TLR-2 and that FOs might have potential efficacy against tumor or virus infection or represent a candidate-adjuvant approach for application in immunotherapy and vaccination. PMID:24762969

  18. Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling.

    Science.gov (United States)

    Aznar, Nicolas; Midde, Krishna K; Dunkel, Ying; Lopez-Sanchez, Inmaculada; Pavlova, Yelena; Marivin, Arthur; Barbazán, Jorge; Murray, Fiona; Nitsche, Ulrich; Janssen, Klaus-Peter; Willert, Karl; Goel, Ajay; Abal, Miguel; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2015-01-01

    Wnt signaling is essential for tissue homeostasis and its dysregulation causes cancer. Wnt ligands trigger signaling by activating Frizzled receptors (FZDRs), which belong to the G-protein coupled receptor superfamily. However, the mechanisms of G protein activation in Wnt signaling remain controversial. In this study, we demonstrate that FZDRs activate G proteins and trigger non-canonical Wnt signaling via the Dishevelled-binding protein, Daple. Daple contains a Gα-binding and activating (GBA) motif, which activates Gαi proteins and an adjacent domain that directly binds FZDRs, thereby linking Wnt stimulation to G protein activation. This triggers non-canonical Wnt responses, that is, suppresses the β-catenin/TCF/LEF pathway and tumorigenesis, but enhances PI3K-Akt and Rac1 signals and tumor cell invasiveness. In colorectal cancers, Daple is suppressed during adenoma-to-carcinoma transformation and expressed later in metastasized tumor cells. Thus, Daple activates Gαi and enhances non-canonical Wnt signaling by FZDRs, and its dysregulation can impact both tumor initiation and progression to metastasis. PMID:26126266

  19. Progesterone receptors - animal models and cell signalling in breast cancer: Diverse activation pathways for the progesterone receptor: possible implications for breast biology and cancer

    International Nuclear Information System (INIS)

    Progesterone and estradiol, and their nuclear receptors, play essential roles in the physiology of the reproductive tract, the mammary gland and the nervous system. Estrogens have traditionally been considered associated with an increased risk of breast cancer. There is, however, compelling evidence that progesterone plays an important role in breast cell proliferation and cancer. Herein, we review the possible role of progestins and the progesterone receptor-associated signaling pathways in the development of breast cancer, as well as the therapeutic possibilities arising from our growing knowledge of the activation of the progesterone receptor by other proliferative mechanisms

  20. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora;

    2012-01-01

    Activation of the NLRP3 inflammasome enables monocytes and macrophages to release high levels of interleukin-1ß during inflammatory responses. Concentrations of extracellular calcium can increase at sites of infection, inflammation or cell activation. Here we show that increased extracellular cal......, and this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  1. S6K1 Negatively Regulates TAK1 Activity in the Toll-Like Receptor Signaling Pathway

    OpenAIRE

    Kim, So Yong; Baik, Kyung-Hwa; Baek, Kwan-Hyuck; Chah, Kyong-Hwa; Kim, Kyung Ah; Moon, Gyuyoung; Jung, Eunyu; Kim, Seong-Tae; Shim, Jae-Hyuck; Greenblatt, Matthew B.; Chun, Eunyoung; Lee, Ki-Young

    2014-01-01

    Transforming growth factor β (TGF-β)-activated kinase 1 (TAK1) is a key regulator in the signals transduced by proinflammatory cytokines and Toll-like receptors (TLRs). The regulatory mechanism of TAK1 in response to various tissue types and stimuli remains incompletely understood. Here, we show that ribosomal S6 kinase 1 (S6K1) negatively regulates TLR-mediated signals by inhibiting TAK1 activity. S6K1 overexpression causes a marked reduction in NF-κB and AP-1 activity induced by stimulation...

  2. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity

    DEFF Research Database (Denmark)

    Bindesbøll, Christian; Fan, Qiong; Nørgaard, Rikke C;

    2015-01-01

    Liver X receptor (LXR)α and LXRβ play key roles in hepatic de novo lipogenesis through their regulation of lipogenic genes, including sterol regulatory element-binding protein (SREBP)-1c and carbohydrate responsive element-binding protein (ChREBP). LXRs activate lipogenic gene transcription...... metabolic sensors upstream of ChREBP by modulating GK expression, nuclear O-GlcNAc signaling, and ChREBP expression and activity....

  3. LPA receptor signaling: pharmacology, physiology, and pathophysiology

    OpenAIRE

    Yung, Yun C.; Stoddard, Nicole C.; Chun, Jerold

    2014-01-01

    Lysophosphatidic acid (LPA) is a small ubiquitous lipid found in vertebrate and nonvertebrate organisms that mediates diverse biological actions and demonstrates medicinal relevance. LPA’s functional roles are driven by extracellular signaling through at least six 7-transmembrane G protein-coupled receptors. These receptors are named LPA1–6 and signal through numerous effector pathways activated by heterotrimeric G proteins, including Gi/o, G12/13, Gq, and Gs. LPA receptor-mediated effects ha...

  4. Blood coagulation-(in)dependent protease activated receptor signaling in pancreatic cancer

    NARCIS (Netherlands)

    K. Shi

    2015-01-01

    There is no doubt that pancreatic cancer is one of the most lethal diseases in general and current treatment options are limited. The studies described in this thesis pinpoint Protease activated receptors (PARs) as key players in pancreatic cancer progression. Inhibition of PAR-1 may be clinical rel

  5. TRPC3 amplifies B-cell receptor-induced ERK signalling via protein kinase D-dependent Rap1 activation.

    Science.gov (United States)

    Numaga-Tomita, Takuro; Nishida, Motohiro; Putney, James W; Mori, Yasuo

    2016-01-15

    Sustained activation of extracellular-signal-regulated kinase (ERK) has an important role in the decision regarding the cell fate of B-lymphocytes. Recently, we demonstrated that the diacylglycerol-activated non-selective cation channel canonical transient receptor potential 3 (TRPC3) is required for the sustained ERK activation induced by the B-cell receptor. However, the signalling mechanism underlying TRPC3-mediated ERK activation remains elusive. In the present study, we have shown that TRPC3 mediates Ca(2+) influx to sustain activation of protein kinase D (PKD) in a protein kinase C-dependent manner in DT40 B-lymphocytes. The later phase of ERK activation depends on the small G-protein Rap1, known as a downstream target of PKD, whereas the earlier phase of ERK activation depends on the Ras protein. It is of interest that sustained ERK phosphorylation is required for the full induction of the immediate early gene Egr-1 (early growth response 1). These results suggest that TRPC3 reorganizes the BCR signalling complex by switching the subtype of small G-proteins to sustain ERK activation in B-lymphocytes.

  6. The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants

    KAUST Repository

    Kwezi, Lusisizwe

    2011-04-19

    Phytosulfokines (PSKs) are sulfated pentapeptides that stimulate plant growth and differentiation mediated by the PSK receptor (PSKR1), which is a leucine-rich repeat receptor-like kinase. We identified a putative guanylate cyclase (GC) catalytic center in PSKR1 that is embedded within the kinase domain and hypothesized that the GC works in conjunction with the kinase in downstream PSK signaling. We expressed the recombinant complete kinase (cytoplasmic) domain of AtPSKR1 and show that it has serine/threonine kinase activity using the Ser/Thr peptide 1 as a substrate with an approximate Km of 7.5 μM and Vmax of 1800 nmol min-1 mg-1 of protein. This same recombinant protein also has GC activity in vitro that is dependent on the presence of either Mg2+ or Mn2+. Overexpression of the full-length AtPSKR1 receptor in Arabidopsis leaf protoplasts raised the endogenous basal cGMP levels over 20-fold, indicating that the receptor has GC activity in vivo. In addition, PSK-α itself, but not the non-sulfated backbone, induces rapid increases in cGMP levels in protoplasts. Together these results indicate that the PSKR1 contains dual GC and kinase catalytic activities that operate in vivo and that this receptor constitutes a novel class of enzymes with overlapping catalytic domains. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Anika; Ammer, Hermann [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany); Eisinger, Daniela A., E-mail: eisinger@pharmtox.vetmed.uni-muenchen.de [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany)

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  8. α1A-adrenergic receptor induces activation of extracellular signal-regulated kinase 1/2 through endocytic pathway.

    Directory of Open Access Journals (Sweden)

    Fei Liu

    Full Text Available G protein-coupled receptors (GPCRs activate mitogen-activated protein kinases through a number of distinct pathways in cells. Increasing evidence has suggested that endosomal signaling has an important role in receptor signal transduction. Here we investigated the involvement of endocytosis in α(1A-adrenergic receptor (α(1A-AR-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2. Agonist-mediated endocytic traffic of α(1A-AR was assessed by real-time imaging of living, stably transfected human embryonic kidney 293A cells (HEK-293A. α(1A-AR was internalized dynamically in cells with agonist stimulation, and actin filaments regulated the initial trafficking of α(1A-AR. α(1A-AR-induced activation of ERK1/2 but not p38 MAPK was sensitive to disruption of endocytosis, as demonstrated by 4°C chilling, dynamin mutation and treatment with cytochalasin D (actin depolymerizing agent. Activation of protein kinase C (PKC and C-Raf by α(1A-AR was not affected by 4°C chilling or cytochalasin D treatment. U73122 (a phospholipase C [PLC] inhibitor and Ro 31-8220 (a PKC inhibitor inhibited α(1B-AR- but not α(1A-AR-induced ERK1/2 activation. These data suggest that the endocytic pathway is involved in α(1A-AR-induced ERK1/2 activation, which is independent of G(q/PLC/PKC signaling.

  9. Transferrin receptor facilitates TGF-β and BMP signaling activation to control craniofacial morphogenesis.

    Science.gov (United States)

    Lei, R; Zhang, K; Liu, K; Shao, X; Ding, Z; Wang, F; Hong, Y; Zhu, M; Li, H; Li, H

    2016-01-01

    The Pierre Robin Sequence (PRS), consisting of cleft palate, glossoptosis and micrognathia, is a common human birth defect. However, how this abnormality occurs remains largely unknown. Here we report that neural crest cell (NCC)-specific knockout of transferrin receptor (Tfrc), a well known transferrin transporter protein, caused micrognathia, cleft palate, severe respiratory distress and inability to suckle in mice, which highly resemble human PRS. Histological and anatomical analysis revealed that the cleft palate is due to the failure of palatal shelves elevation that resulted from a retarded extension of Meckel's cartilage. Interestingly, Tfrc deletion dramatically suppressed both transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in cranial NCCs-derived mandibular tissues, suggesting that Tfrc may act as a facilitator of these two signaling pathways during craniofacial morphogenesis. Together, our study uncovers an unknown function of Tfrc in craniofacial development and provides novel insight into the etiology of PRS. PMID:27362800

  10. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  11. Xingshentongqiao Decoction Mediates Proliferation, Apoptosis, Orexin-A Receptor and Orexin-B Receptor Messenger Ribonucleic Acid Expression and Represses Mitogen-activated Protein Kinase Signaling

    Institute of Scientific and Technical Information of China (English)

    Yuanli Dong; Mei Li; Shaojie Wang; Yuwei Dong; Hongxia Zhao; Zhong Dai

    2015-01-01

    Background:Hypocretin (HCRT) signaling plays an important role in the pathogenesis of narcolepsy and can be significantly influenced by Chinese herbal therapy.Our previous study showed that xingshentongqiao decoction (XSTQ) is clinically effective for the treatment of narcolepsy.To determine whether XSTQ improves narcolepsy by modulating HCRT signaling,we investigated its effects on SH-SY5Y cell proliferation,apoptosis,and HCRT receptor 1/2 (orexin receptor 1 [OXl R] and orexin receptor 2 [OX2R]) expression.The signaling pathways involved in these processes were also assessed.Methods:The effects of XSTQ on proliferation and apoptosis in SH-SY5Y cells were assessed using cell counting kit-8 and annexin V-fluorescein isothiocyanate assays.OX1R and OX2R expression was assessed by quantitative real-time polymerase chain reaction analysis.Western blotting for mitogen-activated protein kinase (MAPK) pathway activation was performed to further assess the signaling mechanism of XSTQ.Results:XSTQ reduced the proliferation and induced apoptosis of SH-SY5Y cells.This effect was accompanied by the upregulation of OX 1R and OX2R expression and the reduced phosphorylation of extracellular signal-regulated kinase (Erk) 1/2,p38 MAPK and c-Jun N-terminal kinase (JNK).Conclusions:XSTQ inhibits proliferation and induces apoptosis in SH-SY5Y cells.XSTQ also promotes OX1R and OX2R expression.These effects are associated with the repression of the Erkl/2,p38 MAPK,and JNK signaling pathways.These results define a molecular mechanism for XSTQ in regulating HCRT and MAPK activation,which may explain its ability to treat narcolepsy.

  12. Estrogen receptor and aryl hydrocarbon receptor signaling pathways

    OpenAIRE

    Matthews, Jason; Gustafsson, Jan-Åke

    2006-01-01

    Estrogen receptors (ERs) and the aryl hydrocarbon receptor (AhR) are ligand activated transcription factors and members of the nuclear receptor and bHLH-PAS superfamilies, respectively. AhR is involved in xenobiotic metabolism and in mediating the toxic effects of dioxin-like compounds. Crosstalk has been observed among AhR and nuclear receptors, but has been most well studied with respect to ER signaling. Activated AhR inhibits ER activity through a number of different mechanisms, whereas ER...

  13. Selective estrogen receptor modulator BC-1 activates antioxidant signaling pathway in vitro via formation of reactive metabolites

    Institute of Scientific and Technical Information of China (English)

    Bo-lan YU; Zi-xin MAI; Xu-xiang LIU; Zhao-feng HUANG

    2013-01-01

    Aim:Benzothiophene compounds are selective estrogen receptor modulators (SERMs),which are recently found to activate antioxidant signaling.In this study the molecular mechanisms of antioxidant signaling activation by benzothiophene compound BC-1 were investigated.Methods:HepG2 cells were stably transfected with antioxidant response element (ARE)-Iuciferase reporter (HepG2-ARE cells).The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in HepG2-ARE cells was suppressed using siRNA.The metabolites of BC-1 in rat liver microsome incubation were analyzed using LC-UV and LC-MS.Results:Addition of BC-1 (5 μmol/L) in HepG2-ARE cells resulted in a 17-fold increase of ARE-luciferase activity.Pretreatment with the estrogen receptor agonist E2 (5 μmol/L) or antagonist ICl 182,780 (5 μmol/L) did not affect BC-1-induced ARE-luciferase activity.However,transfection of the cells with anti-Nrf2 siRNA suppressed this effect by 79%.Addition of BC-1 in rat microsome incubation resulted in formation of di-quinone methides and o-quinones,followed by formation of GSH conjugates.BC-1 analogues with hydrogen (BC-2) or fluorine (BC-3) at the 4' position did not form the di-quinone methides.Both BC-2 and BC-3 showed comparable estrogenic activity with BC-1,but did not induce ARE-luciferase activity in HepG2-ARE cells.Conclusion:Benzothiophene compound BC-1 activates ARE signaling via reactive metabolite formation that is independent of estrogen receptors.

  14. Multiple signaling pathways involved in stimulation of osteoblast differentiation by N-methyl-D-aspartate receptors activation in vitro

    Institute of Scientific and Technical Information of China (English)

    Jie-li LI; Lin ZHAO; Bin CUI; Lian-fu DENG; Guang NING; Jian-min LIU

    2011-01-01

    Aim: Glutamate receptors are expressed in osteoblastic cells. The present study was undertaken to investigate the mechanisms underlying the stimulation of osteoblast differentiation by N-methyl-D-aspartate (NMDA) receptor activation in vitro.Methods: Primary culture of osteoblasts was prepared from SD rats. Microarray was used to detect the changes of gene expression.The effect of NMDA receptor agonist or antagonist on individual gene was examined using RT-PCR. The activity of alkaloid phosphotase (ALP) was assessed using a commercial ALP staining kit.Results: Microarray analyses revealed that 10 genes were up-regulated by NMDA (0.5 mmol/L) and down-regulated by MK801 (100μmol/L), while 13 genes down-regulated by NMDA (0.5 mmol/L) and up-regulated by MK801 (100 μmol/L). Pretreatment of osteoblasts with the specific PKC inhibitor Calphostin C (0.05 μmol/L), the PKA inhibitor H-89 (20 nmol/L), or the PI3K inhibitor wortmannin (100 nmol/L) blocked the ALP activity increase caused by NMDA (0.5 mmol/L). Furthermore, NMDA (0.5 mmol/L) rapidly increased PI3K phosphorylation, which could be blocked by pretreatment of wortmannin (100 nmol/L).Conclusion: The results suggest that activation of NMDA receptors stimulates osteoblasts differentiation through PKA, PKC, and PI3K signaling pathways, which is a new role for glutamate in regulating bone remodeling.

  15. Natural killer cell immunomodulation: targeting activating, inhibitory, and co-stimulatory receptor signaling for cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Cariad eChester

    2015-12-01

    Full Text Available There is compelling clinical and experimental evidence to suggest natural killer (NK cells play a critical role in the recognition and eradication of tumors. Efforts at using NK cells as antitumor agents began over two decades ago, but recent advances in elucidating NK cell biology have accelerated the development of NK cell-targeting therapeutics. NK cell activation and the triggering of effector functions is governed by a complex set of activating and inhibitory receptors. In the early phases of cancer immune surveillance, NK cells directly identify and lyse cancer cells. Nascent transformed cells elicit NK cell activation and are eliminated. However, as tumors progress, cancerous cells develop immunosuppressive mechanisms that circumvent NK cell-mediated killing, allowing for tumor escape and proliferation. Therapeutic intervention aims to reverse tumor-induced NK cell suppression and sustain NK cells’ tumorlytic capacities. Here, we review tumor-NK cell interactions, discuss the mechanisms by which NK cells generate an antitumor immune response, and discuss NK cell-based therapeutic strategies targeting activating, inhibitory, and costimulatory receptors.

  16. Orphan nuclear receptor TLX activates Wnt/β-catenin signalling to stimulate neural stem cell proliferation and self-renewal

    OpenAIRE

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T.; Gage, Fred H; Evans, Ronald M; Shi, Yanhong

    2009-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/β-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/β-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active β-catenin...

  17. Probiotics modulate intestinal expression of nuclear receptor and provide counter-regulatory signals to inflammation-driven adipose tissue activation.

    Directory of Open Access Journals (Sweden)

    Andrea Mencarelli

    Full Text Available BACKGROUND: Adipocytes from mesenteric white adipose tissue amplify the inflammatory response and participate in inflammation-driven immune dysfunction in Crohn's disease by releasing proinflammatory mediators. Peroxisome proliferator-activated receptors (PPAR-α and -γ, pregnane x receptor (PXR, farnesoid x receptor (FXR and liver x-receptor (LXR are ligand-activated nuclear receptor that provide counter-regulatory signals to dysregulated immunity and modulates adipose tissue. AIMS: To investigate the expression and function of nuclear receptors in intestinal and adipose tissues in a rodent model of colitis and mesenteric fat from Crohn's patients and to investigate their modulation by probiotics. METHODS: Colitis was induced by TNBS administration. Mice were administered vehicle or VSL#3, daily for 10 days. Abdominal fat explants obtained at surgery from five Crohn's disease patients and five patients with colon cancer were cultured with VSL#3 medium. RESULTS: Probiotic administration attenuated development of signs and symptoms of colitis, reduced colonic expression of TNFα, IL-6 and IFNγ and reserved colonic downregulation of PPARγ, PXR and FXR caused by TNBS. Mesenteric fat depots isolated from TNBS-treated animals had increased expression of inflammatory mediators along with PPARγ, FXR, leptin and adiponectin. These changes were prevented by VSL#3. Creeping fat and mesenteric adipose tissue from Crohn's patients showed a differential expression of PPARγ and FXR with both tissue expressing high levels of leptin. Exposure of these tissues to VSL#3 medium abrogates leptin release. CONCLUSIONS: Mesenteric adipose tissue from rodent colitis and Crohn's disease is metabolically active and shows inflammation-driven regulation of PPARγ, FXR and leptin. Probiotics correct the inflammation-driven metabolic dysfunction.

  18. Elucidation of tonic and activated B-cell receptor signaling in Burkitt's lymphoma provides insights into regulation of cell survival.

    Science.gov (United States)

    Corso, Jasmin; Pan, Kuan-Ting; Walter, Roland; Doebele, Carmen; Mohr, Sebastian; Bohnenberger, Hanibal; Ströbel, Philipp; Lenz, Christof; Slabicki, Mikolaj; Hüllein, Jennifer; Comoglio, Federico; Rieger, Michael A; Zenz, Thorsten; Wienands, Jürgen; Engelke, Michael; Serve, Hubert; Urlaub, Henning; Oellerich, Thomas

    2016-05-17

    Burkitt's lymphoma (BL) is a highly proliferative B-cell neoplasm and is treated with intensive chemotherapy that, because of its toxicity, is often not suitable for the elderly or for patients with endemic BL in developing countries. BL cell survival relies on signals transduced by B-cell antigen receptors (BCRs). However, tonic as well as activated BCR signaling networks and their relevance for targeted therapies in BL remain elusive. We have systematically characterized and compared tonic and activated BCR signaling in BL by quantitative phosphoproteomics to identify novel BCR effectors and potential drug targets. We identified and quantified ∼16,000 phospho-sites in BL cells. Among these sites, 909 were related to tonic BCR signaling, whereas 984 phospho-sites were regulated upon BCR engagement. The majority of the identified BCR signaling effectors have not been described in the context of B cells or lymphomas yet. Most of these newly identified BCR effectors are predicted to be involved in the regulation of kinases, transcription, and cytoskeleton dynamics. Although tonic and activated BCR signaling shared a considerable number of effector proteins, we identified distinct phosphorylation events in tonic BCR signaling. We investigated the functional relevance of some newly identified BCR effectors and show that ACTN4 and ARFGEF2, which have been described as regulators of membrane-trafficking and cytoskeleton-related processes, respectively, are crucial for BL cell survival. Thus, this study provides a comprehensive dataset for tonic and activated BCR signaling and identifies effector proteins that may be relevant for BL cell survival and thus may help to develop new BL treatments. PMID:27155012

  19. Prostaglandin Receptor Signaling in Disease

    Directory of Open Access Journals (Sweden)

    Toshiyuki Matsuoka

    2007-01-01

    Full Text Available Prostanoids, consisting of the prostaglandins (PGs and the thromboxanes (TXs, are a group of lipid mediators formed in response to various stimuli. They include PGD2, PGE2, PGF2α, PGI2, and TXA2. They are released outside of the cells immediately after synthesis, and exert their actions by binding to a G-protein coupled rhodopsin-type receptor on the surface of target cells. There are eight types of the prostanoid receptors conserved in mammals from mouse to human. They are the PGD receptor (DP, four subtypes of the PGE receptor (EP1, EP2, EP3, and EP4, the PGF receptor (FP, PGI receptor (IP, and TXA receptor (TP. Recently, mice deficient in each of these prostanoid receptors were generated and subjected to various experimental models of disease. These studies have revealed the roles of PG receptor signaling in various pathological conditions, and suggest that selective manipulation of the prostanoid receptors may be beneficial in treatment of the pathological conditions. Here we review these recent findings of roles of prostanoid receptor signaling and their therapeutic implications.

  20. Nuclear Receptor Signaling Atlas (NURSA)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Nuclear Receptor Signaling Atlas (NURSA) is designed to foster the development of a comprehensive understanding of the structure, function, and role in disease...

  1. Pathogenic role of B-cell receptor signaling and canonical NF-κB activation in mantle cell lymphoma.

    Science.gov (United States)

    Saba, Nakhle S; Liu, Delong; Herman, Sarah E M; Underbayev, Chingiz; Tian, Xin; Behrend, David; Weniger, Marc A; Skarzynski, Martin; Gyamfi, Jennifer; Fontan, Lorena; Melnick, Ari; Grant, Cliona; Roschewski, Mark; Navarro, Alba; Beà, Sílvia; Pittaluga, Stefania; Dunleavy, Kieron; Wilson, Wyndham H; Wiestner, Adrian

    2016-07-01

    To interrogate signaling pathways activated in mantle cell lymphoma (MCL) in vivo, we contrasted gene expression profiles of 55 tumor samples isolated from blood and lymph nodes from 43 previously untreated patients with active disease. In addition to lymph nodes, MCL often involves blood, bone marrow, and spleen and is incurable for most patients. Recently, the Bruton tyrosine kinase (BTK) inhibitor ibrutinib demonstrated important clinical activity in MCL. However, the role of specific signaling pathways in the lymphomagenesis of MCL and the biologic basis for ibrutinib sensitivity of these tumors are unknown. Here, we demonstrate activation of B-cell receptor (BCR) and canonical NF-κB signaling specifically in MCL cells in the lymph node. Quantification of BCR signaling strength, reflected in the expression of BCR regulated genes, identified a subset of patients with inferior survival after cytotoxic therapy. Tumor proliferation was highest in the lymph node and correlated with the degree of BCR activation. A subset of leukemic tumors showed active BCR and NF-κB signaling apparently independent of microenvironmental support. In one of these samples, we identified a novel somatic mutation in RELA (E39Q). This sample was resistant to ibrutinib-mediated inhibition of NF-κB and apoptosis. In addition, we identified germ line variants in genes encoding regulators of the BCR and NF-κB pathway previously implicated in lymphomagenesis. In conclusion, BCR signaling, activated in the lymph node microenvironment in vivo, appears to promote tumor proliferation and survival and may explain the sensitivity of this lymphoma to BTK inhibitors. PMID:27127301

  2. Role of Toll-like receptor 4 and Janus kinase and signal transducer and activator of transcription signal transduction pathway in sepsis-induced brain damage

    Institute of Scientific and Technical Information of China (English)

    Haiyan Yin; Jianrui Wei; Rui Zhang; Xiaoling Ye; Youfeng Zhu

    2011-01-01

    The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs.However, the cellular and molecular mechanisms underlying sepsis-induced brain damage remain elusive.In the present study, we found severe loss of neurons in the hippocampal CA1 region in rats with sepsis-induced brain damage following intraperitoneal injection of endotoxin, The expression of toll-like receptor 4, tumor necrosis factor α, and interleukin-6 was significantly increased in brain tissues following lipopolysaccharide exposure.AG490 (JAK2 antagonist) and rapamycin (STAT3 antagonist) significantly reduced neuronal loss and suppressed the increased expression of toll-like receptor 4, tumor necrosis factor α, and interleukin-6 in the hippocampal CA1 region in sepsis-induced brain damaged rats.Overall, these data suggest that blockade of the JAK/STAT signal transduction pathway is neuroprotective in sepsis-induced brain damage via the inhibition of toll-like receptor 4, tumor necrosis factor α, and interleukin-6 expression.

  3. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy;

    2007-01-01

    -out by mass spectrometry-based proteomics has allowed exciting views on the very early events in signal transduction. Activation profiles of regulated phosphorylation sites on epidermal growth factor receptor and downstream signal transducers showed different kinetics within the first ten seconds...

  4. GABA-A receptor-mediated signaling alters the structure of spontaneous activity in the developing retina

    OpenAIRE

    Wang, Chih-Tien; Blankenship, Aaron G.; Anishchenko, Anastasia; Elstrott, Justin; Fikhman, Michael; Nakanishi, Shigetada; Feller, Marla B

    2007-01-01

    Ambient GABA modulates firing patterns in adult neural circuits by tonically activating extrasynaptic GABA-A receptors. Here, we demonstrate that during a developmental period when activation of GABA-A receptors causes membrane depolarization, tonic activation of GABA-A receptors blocks all spontaneous activity recorded in retinal ganglion cells (RGCs) and starburst amacrine cells (SACs). Bath application of the GABA-A receptor agonist muscimol blocked spontaneous correlated increases in intr...

  5. Towards predicting the lung fibrogenic activity of MWCNT: Key role of endocytosis, kinase receptors and ERK 1/2 signaling.

    Science.gov (United States)

    Vietti, Giulia; Ibouraadaten, Saloua; Palmai-Pallag, Mihaly; Yakoub, Yousof; Piret, Jean-Pascal; Marbaix, Etienne; Lison, Dominique; van den Brule, Sybille

    2016-01-01

    Carbon nanotubes (CNT) have been reported to induce lung inflammation and fibrosis in rodents. We investigated the direct and indirect cellular mechanisms mediating the fibrogenic activity of multi-wall (MW) CNT on fibroblasts. We showed that MWCNT indirectly stimulate lung fibroblast (MLg) differentiation, via epithelial cells and macrophages, whereas no direct effect of MWCNT on fibroblast differentiation or collagen production was detected. MWCNT directly stimulated the proliferation of fibroblasts primed with low concentrations of growth factors, such as PDGF, TGF-β or EGF. MWCNT prolonged ERK 1/2 phosphorylation induced by low concentrations of PDGF or TGF-β in fibroblasts. This phenomenon and the proliferative activity of MWCNT on fibroblasts was abrogated by the inhibitors of ERK 1/2, PDGF-, TGF-β- and EGF-receptors. This activity was also reduced by amiloride, an endocytosis inhibitor. Finally, the lung fibrotic response to several MWCNT samples (different in length and diameter) correlated with their in vitro capacity to stimulate the proliferation of fibroblasts and to prolong ERK 1/2 signaling in these cells. Our findings point to a crosstalk between MWCNT, kinase receptors, ERK 1/2 signaling and endocytosis which stimulates the proliferation of fibroblasts. The mechanisms of action identified in this study contribute to predict the fibrogenic potential of MWCNT.

  6. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms.

    Science.gov (United States)

    Lai, Xiangru; Ye, Lingyan; Liao, Yuan; Jin, Lili; Ma, Qiang; Lu, Bing; Sun, Yi; Shi, Ying; Zhou, Naiming

    2016-04-01

    The histamine H3 receptor (H3R), abundantly expressed in the central and the peripheral nervous system, has been recognized as a promising target for the treatment of various important CNS diseases including narcolepsy, Alzheimer's disease, and attention deficit hyperactivity disorder. The H3R acts via Gi/o -proteins to inhibit adenylate cyclase activity and modulate MAPK activity. However, the underlying molecular mechanisms for H3R mediation of the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) remain to be elucidated. In this study, using HEK293 cells stably expressing human H3R and mouse primary cortical neurons endogenously expressing mouse H3R, we found that the H3R-mediated activation of ERK1/2 was significantly blocked by both the pertussis toxin and the MEK1/2 inhibitor U0126. Upon stimulation by H3R agonist histamine or imetit, H3R was shown to rapidly induce ERK1/2 phosphorylation via PLC/PKC-, PLDs-, and epidermal growth factor receptor (EGFR) transactivation-dependent pathways. Furthermore, it was also indicated that while the βγ-subunits play a key role in H3R-activated ERK1/2 phosphorylation, β-arrestins were not required for ERK1/2 activation. In addition, when the cultured mouse cortical neurons were exposed to oxygen and glucose deprivation conditions (OGD), imetit exhibited neuroprotective properties through the H3R. Treatment of cells with the inhibitor UO126 abolished these protective effects. This suggests a possible neuroprotective role of the H3R-mediated ERK1/2 pathway under hypoxia conditions. These observations may provide new insights into the pharmacological effects and the physiological functions modulated by the H3R-mediated activation of ERK1/2. Histamine H3 receptors are abundantly expressed in the brain and play important roles in various CNS physiological functions. However, the underlying mechanisms for H3R-induced activation of extracellular signal-regulated kinase (ERK)1/2 remain largely unknown. Here

  7. Suppressed Microglial E Prostanoid Receptor 1 Signaling Selectively Reduces TNFα and IL-6 Secretion from Toll-like Receptor 3 Activation

    Science.gov (United States)

    Li, Xianwu; Cudaback, Eiron; Keene, C. Dirk; Breyer, Richard M.; Montine, Thomas J.

    2010-01-01

    Activation of innate immunity via Toll-like receptors (TLRs) is associated with neurodegenerative diseases, and some effectors, like tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6), directly contribute to neurodegeneration. We tested the hypothesis that prostaglandin (PG) E2 receptor subtype 1 (EP1) was necessary for induction of microglial cytokines following activation of innate immunity. Primary murine microglia had cytokine secretion by activators of TLR3 > TLR9 >TLR4 > TLR2. TLR3 activation induced early expression of cyclooxygenase 2 (COX2) and delayed expression of membranous PGE synthase and secretion of PGE2. Non-selective and COX2-selective inhibitors blocked TLR3 induction of TNFα and IL-6. Moreover, of the eight out of twenty cytokines and chemokines induced by TLR3 activation, only TNFα and IL-6 were significantly dependent on EP1 signaling as determined using microglia from mice homozygous deficient for EP1 gene or wild type (WT) microglia co-incubated with an EP1 antagonist. These results were confirmed by blocking intracellular Ca2+ release with 2-aminoethoxy-diphenyl borate (2-APB) or Xestospongin C (XC), inhibitors of IP3 receptors. Our results show that suppression of microglial EP1 signaling achieves much of the desired effect of COX inhibitors by selectively blocking TLR3-induced microglial secretion of two major effectors of paracrine neuron damage. In combination with the ability of EP1 suppression to ameliorate excitotoxicity, these data point to blockade of EP1 as an attractive candidate therapeutic for neurodegenerative diseases. PMID:21319223

  8. GnRH receptor activation competes at a low level with growth signaling in stably transfected human breast cell lines

    International Nuclear Information System (INIS)

    Gonadotrophin releasing hormone (GnRH) analogs lower estrogen levels in pre-menopausal breast cancer patients. GnRH receptor (GnRH-R) activation also directly inhibits the growth of certain cells. The applicability of GnRH anti-proliferation to breast cancer was therefore analyzed. GnRH-R expression in 298 primary breast cancer samples was measured by quantitative immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125I-ligand binding and stimulation of 3H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting. GnRH-R immunoscoring was highest in hormone receptor (triple) negative and grade 3 breast tumors. However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231). After transfection with GnRH-R, high levels of cell surface GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7 clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3H-inositol phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231 clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-phosphorylation. Breast cancers exhibit a range of GnRH-R immunostaining, with higher levels of

  9. GnRH receptor activation competes at a low level with growth signaling in stably transfected human breast cell lines

    Directory of Open Access Journals (Sweden)

    Morgan Kevin

    2011-11-01

    Full Text Available Abstract Background Gonadotrophin releasing hormone (GnRH analogs lower estrogen levels in pre-menopausal breast cancer patients. GnRH receptor (GnRH-R activation also directly inhibits the growth of certain cells. The applicability of GnRH anti-proliferation to breast cancer was therefore analyzed. Methods GnRH-R expression in 298 primary breast cancer samples was measured by quantitative immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125I-ligand binding and stimulation of 3H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting. Results GnRH-R immunoscoring was highest in hormone receptor (triple negative and grade 3 breast tumors. However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231. After transfection with GnRH-R, high levels of cell surface GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7 clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3H-inositol phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231 clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-phosphorylation. Conclusions Breast cancers

  10. P2X7 receptor activates extracellular signal-regulated kinases ERK1 and ERK2 independently of Ca2+ influx

    DEFF Research Database (Denmark)

    Amstrup, Jan; Novak, Ivana

    2003-01-01

    P2X7 nucleotide receptors modulate a spectrum of cellular events in various cells including epithelia, such as exocrine pancreas. Although the pharmacology and channel properties of the P2X7 receptors have been studied intensively, signal transduction pathways are relatively unknown. In this study...... we applied a heterologous expression system of rat P2X7 receptors in HEK-293 cells. We followed the receptor expression and function using the enhanced green fluorescent protein (EGFP) tag, activation of intracellular proteins and increases in cellular Ca2+. EGFP-P2X7 receptors localized...

  11. Neu1 desialylation of sialyl alpha-2,3-linked beta-galactosyl residues of TOLL-like receptor 4 is essential for receptor activation and cellular signaling.

    Science.gov (United States)

    Amith, Schammim Ray; Jayanth, Preethi; Franchuk, Susan; Finlay, Trisha; Seyrantepe, Volkan; Beyaert, Rudi; Pshezhetsky, Alexey V; Szewczuk, Myron R

    2010-02-01

    The ectodomain of TOLL-like receptors (TLR) is highly glycosylated with several N-linked gylcosylation sites located in the inner concave surface. The precise role of these sugar N-glycans in TLR receptor activation is unknown. Recently, we have shown that Neu1 sialidase and not Neu2, -3 and -4 forms a complex with TLR-2, -3 and -4 receptors on the cell-surface membrane of naïve and activated macrophage cells (Glycoconj J DOI 10.1007/s10719-009-9239-8). Activation of Neu1 is induced by TLR ligands binding to their respective receptors. Here, we show that endotoxin lipopolysaccharide (LPS)-induced MyD88/TLR4 complex formation and subsequent NFkappaB activation is dependent on the removal of alpha-2,3-sialyl residue linked to beta-galactoside of TLR4 by the Neu1 activity associated with LPS-stimulated live primary macrophage cells, macrophage and dendritic cell lines but not with primary Neu1-deficient macrophage cells. Exogenous alpha-2,3 sialyl specific neuraminidase (Streptoccocus pneumoniae) and wild-type T. cruzi trans-sialidase (TS) but not the catalytically inactive mutant TSAsp98-Glu mediate TLR4 dimerization to facilitate MyD88/TLR4 complex formation and NFkappaB activation similar to those responses seen with LPS. These same TLR ligand-induced NFkappaB responses are not observed in TLR deficient HEK293 cells, but are re-established in HEK293 cells stably transfected with TLR4/MD2, and are significantly inhibited by alpha-2,3-sialyl specific Maackia amurensis (MAL-2) lectin, alpha-2,3-sialyl specific galectin-1 and neuraminidase inhibitor Tamiflu but not by alpha-2,6-sialyl specific Sambucus nigra lectin (SNA). Taken together, the findings suggest that Neu1 desialylation of alpha-2,3-sialyl residues of TLR receptors enables in removing a steric hinderance to receptor association for TLR activation and cellular signaling. PMID:19796680

  12. Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human natural killer cells.

    Directory of Open Access Journals (Sweden)

    Karsten Köhler

    Full Text Available It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions.

  13. Erythropoietin receptor signaling is membrane raft dependent.

    Directory of Open Access Journals (Sweden)

    Kathy L McGraw

    Full Text Available Upon erythropoietin (Epo engagement, Epo-receptor (R homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft (MR microdomains in creation of discrete signaling platforms essential for Epo-R signaling. Treatment of UT7 cells with Epo induced MR assembly and coalescence. Confocal microscopy showed that raft aggregates significantly increased after Epo stimulation (mean, 4.3±1.4(SE vs. 25.6±3.2 aggregates/cell; p≤0.001, accompanied by a >3-fold increase in cluster size (p≤0.001. Raft fraction immunoblotting showed Epo-R translocation to MR after Epo stimulation and was confirmed by fluorescence microscopy in Epo stimulated UT7 cells and primary erythroid bursts. Receptor recruitment into MR was accompanied by incorporation of JAK2, Lyn, and STAT5 and their activated forms. Raft disruption by cholesterol depletion extinguished Epo induced Jak2, STAT5, Akt and MAPK phosphorylation in UT7 cells and erythroid progenitors. Furthermore, inhibition of the Rho GTPases Rac1 or RhoA blocked receptor recruitment into raft fractions, indicating a role for these GTPases in receptor trafficking. These data establish a critical role for MR in recruitment and assembly of Epo-R and signal intermediates into discrete membrane signaling units.

  14. Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-{kappa}B ligand (RANKL) expression in rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Harunori [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Kitano, Masayasu, E-mail: mkitano6@hyo-med.ac.jp [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi [Department of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima Kobe, Hyogo 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sato, Chieri; Sekiguchi, Masahiro; Azuma, Naoto [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Miyazawa, Keiji [Discovery Research III, Research and Development, Kissei Pharmaceutical Company, 4365-1 Hodakakashiwara, Azumino, Nagano 399-8304 (Japan); Hla, Timothy [Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, 1300 York Avenue, Box 69, NY 10065 (United States); Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer MH7A cells and CD4{sup +} T cells expressed S1P1 and RANKL. Black-Right-Pointing-Pointer S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells. Black-Right-Pointing-Pointer The effect of S1P in MH7A cells was inhibited by specific Gi/Go inhibitors. -- Abstract: Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-{kappa}B ligand (RANKL) in RA synoviocytes and CD4{sup +} T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4{sup +} T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-{alpha} in MH7A cells and CD4{sup +} T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4{sup +} T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.

  15. Muscarinic Receptor Signaling in Colon Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rosenvinge, Erik C. von, E-mail: evonrose@medicine.umaryland.edu; Raufman, Jean-Pierre [University of Maryland School of Medicine, Division of Gastroenterology & Hepatology, 22 S. Greene Street, N3W62, Baltimore, MD 21201 (United States); Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD 21201 (United States)

    2011-03-02

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  16. Muscarinic Receptor Signaling in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Raufman

    2011-03-01

    Full Text Available According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  17. Lipid IVa incompletely activates MyD88-independent Toll-like receptor 4 signaling in mouse macrophage cell lines.

    Science.gov (United States)

    Ogura, Norihiko; Muroi, Masashi; Sugiura, Yuka; Tanamoto, Ken-ichi

    2013-04-01

    We investigated the difference in the effect of synthetic lipid A compounds on MyD88-dependent and -independent Toll-like receptor 4 (TLR4) signaling in mouse macrophage cells. At higher concentrations, Escherichia coli-type hexa-acylated lipid A 506, Salmonella-type hepta-acylated lipid A 516, the lipid A precursor lipid IVa and monophosphoryl lipid A induced similar levels of production of the MyD88-dependent cytokine IL-1β although their potencies varied, whereas the maximum production of the MyD88-independent cytokine RANTES induced by lipid IVa was less than 50% that of other lipid A compounds. A maximum level of NF-κB activation, which is involved in IL-1β gene transcription, was also induced to a similar level by these four lipid A compounds, while the maximum level of IFN-β promoter activity induced during MyD88-independent signaling was also less than 50% for lipid IVa stimulation compared with other lipid A compounds. Early IκBα phosphorylation activated by MyD88-dependent signaling was similarly induced by 506 and lipid IVa, whereas lipid IVa barely stimulated the phosphorylation of IRF3, a MyD88-independent transcription factor, although efficient phosphorylation was observed with 506 stimulation. These results indicate that lipid IVa has limited activity toward MyD88-independent signaling of TLR4, in macrophage cell lines, despite having efficient activity in the MyD88-dependent pathway.

  18. Calycosin promotes angiogenesis involving estrogen receptor and mitogen-activated protein kinase (MAPK signaling pathway in zebrafish and HUVEC.

    Directory of Open Access Journals (Sweden)

    Jing Yan Tang

    Full Text Available BACKGROUND: Angiogenesis plays an important role in a wide range of physiological processes, and many diseases are associated with the dysregulation of angiogenesis. Radix Astragali is a Chinese medicinal herb commonly used for treating cardiovascular disorders and has been shown to possess angiogenic effect in previous studies but its active constituent and underlying mechanism remain unclear. The present study investigates the angiogenic effects of calycosin, a major isoflavonoid isolated from Radix Astragali, in vitro and in vivo. METHODOLOGY: Tg(fli1:EGFP and Tg(fli1:nEGFP transgenic zebrafish embryos were treated with different concentrations of calycosin (10, 30, 100 microM from 72 hpf to 96 hpf prior morphological observation and angiogenesis phenotypes assessment. Zebrafish embryos were exposed to calycosin (10, 100 microM from 72 hpf to 78 hpf before gene-expression analysis. The effects of VEGFR tyrosine kinase inhibitor on calycosin-induced angiogenesis were studied using 72 hpf Tg(fli1:EGFP and Tg(fli1:nEGFP zebrafish embryos. The pro-angiogenic effects of calycosin were compared with raloxifene and tamoxifen in 72 hpf Tg(fli1:EGFP zebrafish embryos. The binding affinities of calycosin to estrogen receptors (ERs were evaluated by cell-free and cell-based estrogen receptor binding assays. Human umbilical vein endothelial cell cultures (HUVEC were pretreated with different concentrations of calycosin (3, 10, 30, 100 microM for 48 h then tested for cell viability and tube formation. The role of MAPK signaling in calycosin-induced angiogenesis was evaluated using western blotting. CONCLUSION: Calycosin was shown to induce angiogenesis in human umbilical vein endothelial cell cultures (HUVEC in vitro and zebrafish embryos in vivo via the up-regulation of vascular endothelial growth factor (VEGF, VEGFR1 and VEGFR2 mRNA expression. It was demonstrated that calycosin acted similar to other selective estrogen receptor modulators (SERMs, such

  19. Activation of retinoid receptor-mediated signaling ameliorates diabetes-induced cardiac dysfunction in Zucker diabetic rats.

    Science.gov (United States)

    Guleria, Rakeshwar S; Singh, Amar B; Nizamutdinova, Irina T; Souslova, Tatiana; Mohammad, Amin A; Kendall, Jonathan A; Baker, Kenneth M; Pan, Jing

    2013-04-01

    Diabetic cardiomyopathy (DCM) is a significant contributor to the morbidity and mortality associated with diabetes and metabolic syndrome. Retinoids, through activation of retinoic acid receptor (RAR) and retinoid x receptor (RXR), have been linked to control glucose and lipid homeostasis, with effects on obesity and diabetes. However, the functional role of RAR and RXR in the development of DCM remains unclear. Zucker diabetic fatty (ZDF) and lean rats were treated with Am580 (RARα agonist) or LGD1069 (RXR agonist) for 16 weeks, and cardiac function and metabolic alterations were determined. Hyperglycemia, hyperlipidemia and insulin resistance were observed in ZDF rats. Diabetic cardiomyopathy was characterized in ZDF rats by increased oxidative stress, apoptosis, fibrosis, inflammation, activation of MAP kinases and NF-κB signaling and diminished Akt phosphorylation, along with decreased glucose transport and increased cardiac lipid accumulation, and ultimately diastolic dysfunction. Am580 and LGD1069 attenuated diabetes-induced cardiac dysfunction and the pathological alterations, by improving glucose tolerance and insulin resistance; facilitating Akt activation and glucose utilization, and attenuating oxidative stress and interrelated MAP kinase and NF-κB signaling pathways. Am580 inhibited body weight gain, attenuated the increased cardiac fatty acid uptake, β-oxidation and lipid accumulation in the hearts of ZDF rats. However, LGD1069 promoted body weight gain, hyperlipidemia and cardiac lipid accumulation. In conclusion, our data suggest that activation of RAR and RXR may have therapeutic potential in the treatment of diabetic cardiomyopathy. However, further studies are necessary to clarify the role of RAR and RXR in the regulation of lipid metabolism and homeostasis.

  20. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation.

    Science.gov (United States)

    Lahiri, Amit; Hedl, Matija; Abraham, Clara

    2015-08-18

    Inflammatory bowel disease (IBD) is characterized by dysregulated host:microbial interactions and cytokine production. Host pattern recognition receptors (PRRs) are critical in regulating these interactions. Multiple genetic loci are associated with IBD, but altered functions for most, including in the rs713875 MTMR3/HORMAD2/LIF/OSM region, are unknown. We identified a previously undefined role for myotubularin-related protein 3 (MTMR3) in amplifying PRR-induced cytokine secretion in human macrophages and defined MTMR3-initiated mechanisms contributing to this amplification. MTMR3 decreased PRR-induced phosphatidylinositol 3-phosphate (PtdIns3P) and autophagy levels, thereby increasing PRR-induced caspase-1 activation, autocrine IL-1β secretion, NFκB signaling, and, ultimately, overall cytokine secretion. This MTMR3-mediated regulation required the N-terminal pleckstrin homology-GRAM domain and Cys413 within the phosphatase domain of MTMR3. In MTMR3-deficient macrophages, reducing the enhanced autophagy or restoring NFκB signaling rescued PRR-induced cytokines. Macrophages from rs713875 CC IBD risk carriers demonstrated increased MTMR3 expression and, in turn, decreased PRR-induced PtdIns3P and autophagy and increased PRR-induced caspase-1 activation, signaling, and cytokine secretion. Thus, the rs713875 IBD risk polymorphism increases MTMR3 expression, which modulates PRR-induced outcomes, ultimately leading to enhanced PRR-induced cytokines.

  1. Selective Activator of the Glucocorticoid Receptor Compound A Dissociates Therapeutic and Atrophogenic Effects of Glucocorticoid Receptor Signaling in Skin

    OpenAIRE

    Klopot, Anna; Baida, Gleb; Bhalla, Pankaj; Haegeman, Guy; Budunova, Irina

    2015-01-01

    Background: Glucocorticoids are effective anti-inflammatory drugs widely used in dermatology and for the treatment of blood cancer patients. Unfortunately, chronic treatment with glucocorticoids results in serious metabolic and atrophogenic adverse effects including skin atrophy. Glucocorticoids act via the glucocorticoid receptor (GR), a transcription factor that causes either gene transactivation (TA) or transrepression (TR). Compound A (CpdA), a novel non-steroidal GR ligand, does not prom...

  2. Decreased peroxisome proliferator-activated receptor γ level and signalling in sebaceous glands of patients with acne vulgaris.

    Science.gov (United States)

    Dozsa, A; Mihaly, J; Dezso, B; Csizmadia, E; Keresztessy, T; Marko, L; Rühl, R; Remenyik, E; Nagy, L

    2016-07-01

    Little is known about the altered lipid metabolism-related transcriptional events occuring in sebaceous glands of patients with acne vulgaris. Peroxisome proliferator-activated receptor (PPAR)γ, a lipid-activated transcription factor, is implicated in differentiation and lipid metabolism of sebocytes. We have observed that PPARγ and its target genes, ADRP (adipose differentiation related protein) and PGAR (PPARγ angioprotein related protein) are expressed at lower levels in sebocytes from patients with acne than in those from healthy controls (HCs) Furthermore, endogenous PPARγ activator lipids such as arachidonic acid-derived keto-metabolites (e.g. 5KETE, 12KETE) are increased in acne-involved and nonacne-involved skin of patients with acne, compared with skin from healthy individuals. Our findings highlight the possible anti-inflammatory role of endogenous ligand-activated PPARγ signaling in human sebocyte biology, and suggest that modulating PPARγ- expression and thereby signaling might be a promising strategy for the clinical management of acne vulgaris.

  3. The Receptor for Activated C Kinase in Plant Signaling: Tale of a Promiscuous Little Molecule

    Directory of Open Access Journals (Sweden)

    Tania Islas Flores

    2015-12-01

    Full Text Available Two decades after the first report of the plant homologue of the Receptor for Activated C Kinase 1 (RACK1 in cultured tobacco BY2 cells, a significant advancement has been made in the elucidation of its celular and molecular role. The protein is now implicated in many biological functions including protein translation, multiple hormonal responses, developmental processes, pathogen infection resistance, environmental stress responses, and miRNA production. Such multiple functional roles are consistent with the scaffolding nature of the plant RACK1 protein. A significant advance was achieved when the β-propeller structure of the Arabidopsis RACK1A isoform was elucidated, thus revealing that its conserved seven WD repeats also assembled into this typical topology. From its crystal structure, it became apparent that it shares the structural platform for the interaction with ligands identified in other systems such as mammals. Although RACK1 proteins maintain conserved Protein Kinase C binding sites, the lack of a bona fide PKC adds complexity and enigma to the nature of the ligand partners with which RACK1 interacts in plants. Nevertheless, ligands recently identified using the split-ubiquitin based and conventional yeast two-hybrid assays, have revealed that plant RACK1 is involved in several processes that include defense response, drought and salt stress, ribosomal function, cell wall biogenesis, and photosynthesis. The information acquired indicates that, in spite of the high degree of conservation of its structure, the functions of the plant RACK1 homologue appear to be distinct and diverse from those in yeast, mammals, insects, etc. In this review, we take a critical look at the novel information regarding the many functions in which plant RACK1 has been reported to participate, with a special emphasis on the information on its currently identified and missing ligand partners.

  4. Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74

    DEFF Research Database (Denmark)

    McLean, Katherine A; Holst, Peter J; Martini, Lene;

    2004-01-01

    The virally encoded chemokine receptors US28 from human cytomegalovirus and ORF74 from human herpesvirus 8 are both constitutively active. We show that both receptors constitutively activate the transcription factors nuclear factor of activated T cells (NFAT) and cAMP response element binding pro...

  5. Neuropeptide Y1 receptor inhibits cell growth through inactivating mitogen-activated protein kinase signal pathway in human hepatocellular carcinoma.

    Science.gov (United States)

    Lv, Xiufang; Zhao, Fengbo; Huo, Xisong; Tang, Weidong; Hu, Baoying; Gong, Xiu; Yang, Juan; Shen, Qiujin; Qin, Wenxin

    2016-07-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers, and its incidence is increasing worldwide. Neuropeptide Y (NPY) broadly expressed in the central and peripheral nervous system. It participates in multiple physiological and pathological processes through specific receptors. Evidences are accumulating that NPY is involved in development and progression in neuro- or endocrine-related cancers. However, little is known about the potential roles and underlying mechanisms of NPY receptors in HCC. In this study, we analyzed the expression of NPY receptors by real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Correlation between NPY1R levels and clinicopathological characteristics, and survival of HCC patients were explored, respectively. Cell proliferation was researched by CCK-8 in vitro, and tumor growth was studied by nude mice xenografts in vivo. We found that mRNA and protein level of NPY receptor Y1 subtype (NPY1R) significantly decreased in HCC tissues. Low expression of NPY1R closely correlated with poor prognosis in HCC patients. Proliferation of HCC cells was significantly inhibited by recombinant NPY protein in vitro. This inhibitory effect could be blocked by selected NPY1R antagonist BIBP3226. Furthermore, overexpression of NPY1R could significantly inhibit HCC cell proliferation. Knockdown of NPY1R promoted cell multiplication in vitro and increased tumorigenicity and tumor growth in vivo. NPY1R was found to participate in the inhibition of cell proliferation via inactivating mitogen-activated protein kinase signal pathway in HCC cells. Collectively, NPY1R plays an inhibitory role in tumor growth and may be a promising therapeutic target for HCC. PMID:27262566

  6. Chemotaxis receptor complexes: from signaling to assembly.

    Directory of Open Access Journals (Sweden)

    Robert G Endres

    2007-07-01

    Full Text Available Complexes of chemoreceptors in the bacterial cytoplasmic membrane allow for the sensing of ligands with remarkable sensitivity. Despite the excellent characterization of the chemotaxis signaling network, very little is known about what controls receptor complex size. Here we use in vitro signaling data to model the distribution of complex sizes. In particular, we model Tar receptors in membranes as an ensemble of different sized oligomer complexes, i.e., receptor dimers, dimers of dimers, and trimers of dimers, where the relative free energies, including receptor modification, ligand binding, and interaction with the kinase CheA determine the size distribution. Our model compares favorably with a variety of signaling data, including dose-response curves of receptor activity and the dependence of activity on receptor density in the membrane. We propose that the kinetics of complex assembly can be measured in vitro from the temporal response to a perturbation of the complex free energies, e.g., by addition of ligand.

  7. Muscarinic receptor signaling and colon cancer progression

    Institute of Scientific and Technical Information of China (English)

    Guofeng Xie; Jean-Pierre Raufman

    2016-01-01

    Due to the lack of effective treatments, advanced colorectal cancer (CRC) remains a leading cause of cancer death in the United States. Emerging evidence supports the observation that muscarinic receptor (MR) signaling plays a critical role in growth and progression of CRC. MR activation by acetylcholine and bile acids results in transactivation of epidermal growth factor receptors (EGFR) and post-EGFR signal transduction that enhances cell proliferation, migration, and invasion. Here, the authors review recent progress in understanding the molecular mechanisms underlying MR-mediated CRC progression and its therapeutic implications.

  8. Modulation of constitutive activity and signaling bias of the ghrelin receptor by conformational constraint in the second extracellular loop

    DEFF Research Database (Denmark)

    Mokrosinski, Jacek; Frimurer, Thomas M; Sivertsen, Bjoern;

    2012-01-01

    . Moreover, the constitutive activity of the receptor was inhibited by Zn(2+) binding in an engineered metal-ion site stabilizing an a-helical conformation of this loop segment. It is concluded that the high constitutive activity of the ghrelin receptor is dependent upon flexibility in the C-terminal segment...

  9. Activated PTHLH Coupling Feedback Phosphoinositide to G-Protein Receptor Signal-Induced Cell Adhesion Network in Human Hepatocellular Carcinoma by Systems-Theoretic Analysis

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2012-01-01

    Full Text Available Studies were done on analysis of biological processes in the same high expression (fold change ≥2 activated PTHLH feedback-mediated cell adhesion gene ontology (GO network of human hepatocellular carcinoma (HCC compared with the corresponding low expression activated GO network of no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection. Activated PTHLH feedback-mediated cell adhesion network consisted of anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolism, cell adhesion, cell differentiation, cell-cell signaling, G-protein-coupled receptor protein signaling pathway, intracellular transport, metabolism, phosphoinositide-mediated signaling, positive regulation of transcription, regulation of cyclin-dependent protein kinase activity, regulation of transcription, signal transduction, transcription, and transport in HCC. We proposed activated PTHLH coupling feedback phosphoinositide to G-protein receptor signal-induced cell adhesion network. Our hypothesis was verified by the different activated PTHLH feedback-mediated cell adhesion GO network of HCC compared with the corresponding inhibited GO network of no-tumor hepatitis/cirrhotic tissues, or the same compared with the corresponding inhibited GO network of HCC. Activated PTHLH coupling feedback phosphoinositide to G-protein receptor signal-induced cell adhesion network included BUB1B, GNG10, PTHR2, GNAZ, RFC4, UBE2C, NRXN3, BAP1, PVRL2, TROAP, and VCAN in HCC from GEO dataset using gene regulatory network inference method and our programming.

  10. Promyelocytic leukemia zinc finger protein activates GATA4 transcription and mediates cardiac hypertrophic signaling from angiotensin II receptor 2.

    Directory of Open Access Journals (Sweden)

    Ning Wang

    Full Text Available BACKGROUND: Pressure overload and prolonged angiotensin II (Ang II infusion elicit cardiac hypertrophy in Ang II receptor 1 (AT(1 null mouse, whereas Ang II receptor 2 (AT(2 gene deletion abolishes the hypertrophic response. The roles and signals of the cardiac AT(2 receptor still remain unsettled. Promyelocytic leukemia zinc finger protein (PLZF was shown to bind to the AT(2 receptor and transmit the hypertrophic signal. Using PLZF knockout mice we directed our studies on the function of PLZF concerning the cardiac specific transcription factor GATA4, and GATA4 targets. METHODOLOGY AND PRINCIPAL FINDINGS: PLZF knockout and age-matched wild-type (WT mice were treated with Ang II, infused at a rate of 4.2 ng·kg(-1·min(-1 for 3 weeks. Ang II elevated systolic blood pressure to comparable levels in PLZF knockout and WT mice (140 mmHg. WT mice developed prominent cardiac hypertrophy and fibrosis after Ang II infusion. In contrast, there was no obvious cardiac hypertrophy or fibrosis in PLZF knockout mice. An AT(2 receptor blocker given to Ang II-infused wild type mice prevented hypertrophy, verifying the role of AT(2 receptor for cardiac hypertrophy. Chromatin immunoprecipitation and electrophoretic mobility shift assay showed that PLZF bound to the GATA4 gene regulatory region. A Luciferase assay verified that PLZF up-regulated GATA4 gene expression and the absence of PLZF expression in vivo produced a corresponding repression of GATA4 protein. CONCLUSIONS: PLZF is an important AT(2 receptor binding protein in mediating Ang II induced cardiac hypertrophy through an AT(2 receptor-dependent signal pathway. The angiotensin II-AT(2-PLZF-GATA4 signal may further augment Ang II induced pathological effects on cardiomyocytes.

  11. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation.

    Science.gov (United States)

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre; Polakowska, Renata

    2014-04-15

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Y(low) stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  12. Insulin-Like Growth Factor 1 Receptor and p38 Mitogen-Activated Protein Kinase Signals Inversely Regulate Signal Transducer and Activator of Transcription 3 Activity to Control Human Dental Pulp Stem Cell Quiescence, Propagation, and Differentiation

    Science.gov (United States)

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre

    2014-01-01

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Ylow stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  13. Effect of hyperprolactinemia on PRL-receptor expression and activation of Stat and Mapk cell signaling in the prostate of long-term sexually-active rats.

    Science.gov (United States)

    Pascual-Mathey, Luz I; Rojas-Duran, Fausto; Aranda-Abreu, Gonzalo E; Manzo, Jorge; Herrera-Covarrubias, Deissy; Muñoz-Zavaleta, David A; Garcia, Luis I; Hernandez, Ma Elena

    2016-04-01

    The abnormal elevation of serum PRL, referred to as hyperprolactinemia (HyperPRL), produces alterations in several reproductive parameters of male rats such as penile erection or decreased tendency to reach ejaculation. Additionally, this situation produces a significant modification of prostate histology, as observed in the epithelial structure and alveolar area, which could reach a level of hyperplasia in the long-term. In this tissue, HyperPRL produces an increase in expression of PRL receptors and activation of the Stat3 signaling pathway that is correlated with the evolution of prostate pathologies. However, the impact of HyperPRL in long-term sexually active male rats is unknown. In this work, using constantly copulating Wistar male rats with induced HyperPRL, we analyzed the level of serum PRL, the effect on prostate PRL receptors, and activation of pStat3, pStat5 and Mapk signaling pathways. Two procedures to induce HyperPRL were employed, comprising daily IP administration or adenohypophysis transplant, and although neither affected the execution of sexual behavior, the serum PRL profile following successive ejaculations was affected. Messenger RNA expression of the short and long isoforms of the PRL receptor at the ventral prostate was affected in different ways depending on the procedure to induce HyperPRL. The ventral prostate did not show any modification in terms of activation of the pStat5 signaling pathway in subjects with daily administration of PRL, although this was significantly increased in ADH transplanted subjects in the second and fourth consecutive ejaculation. A similar profile was found for the pStat3 pathway which additionally showed a significant increase in the third and fourth ejaculation of daily-injected subjects. The Mapk signaling pathway did not show any modifications in subjects with daily administration of PRL, but showed a significant increase in the second and third ejaculations of subjects with ADH transplants. Thus

  14. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  15. Plasmin-induced migration requires signaling through protease-activated receptor 1 and integrin alpha(9)beta(1).

    Science.gov (United States)

    Majumdar, Mousumi; Tarui, Takehiko; Shi, Biao; Akakura, Nobuaki; Ruf, Wolfram; Takada, Yoshikazu

    2004-09-01

    Plasmin is a major extracellular protease that elicits intracellular signals to mediate platelet aggregation, chemotaxis of peripheral blood monocytes, and release of arachidonate and leukotriene from several cell types in a G protein-dependent manner. Angiostatin, a fragment of plasmin(ogen), is a ligand and an antagonist for integrin alpha(9)beta(1). Here we report that plasmin specifically interacts with alpha(9)beta(1) and that plasmin induces of cells expressing migration recombinant alpha(9)beta(1) (alpha(9)-Chinese hamster ovary (CHO) cells). Migration was dependent on an interaction of the kringle domains of plasmin with alpha(9)beta(1) as well as the catalytic activity of plasmin. Angiostatin, representing the kringle domains of plasmin, alone did not induce the migration of alpha(9)-CHO cells, but simultaneous activation of the G protein-coupled protease-activated receptor (PAR)-1 with an agonist peptide induced the migration on angiostatin, whereas PAR-2 or PAR-4 agonist peptides were without effect. Furthermore, a small chemical inhibitor of PAR-1 (RWJ 58259) and a palmitoylated PAR-1-blocking peptide inhibited plasmin-induced migration of alpha(9)-CHO cells. These results suggest that plasmin induces migration by kringle-mediated binding to alpha(9)beta(1) and simultaneous proteolytic activation of PAR-1. PMID:15247268

  16. Protease-activated receptors (PARs) in cancer: Novel biased signaling and targets for therapy.

    Science.gov (United States)

    Bar-Shavit, R; Maoz, M; Kancharla, A; Jaber, M; Agranovich, D; Grisaru-Granovsky, S; Uziely, B

    2016-01-01

    Despite the fact that G protein-coupled receptors (GPCRs) mediate numerous physiological processes and represent targets for therapeutics for a vast array of diseases, their role in tumor biology is under appreciated. Protease-activated receptors (PARs) form a family which belongs to GPCR class A. PAR1&2 emerge with a central role in epithelial malignancies. Although the part of PAR1&2 in cancer is on the rise, their underlying signaling events are poorly understood. We review hereby past, present, and future cancer-associated PAR biology. Mainly, their role in physiological (placenta-cytotophobalst) and patho-physiological invasion processes. The identification and characterization of signal pleckstrin homology (PH)-domain-binding motifs established critical sites for breast cancer growth in PAR1&2. Among the proteins found to harbor important PH-domains and are involved in PAR biology are Akt/PKB as also Etk/Bmx and Vav3. A point mutation in PAR2, H349A, but not R352A, abrogated PH-protein association and is sufficient to markedly reduce PAR2-instigated breast tumor growth in vivo as also placental extravillous trophoblast (EVT) invasion in vitro is markedly reduced. Similarly, the PAR1 mutant hPar1-7A, which is unable to bind PH-domain, inhibits mammary tumors and EVT invasion, endowing these motifs with physiological significance and underscoring the importance of these previously unknown PAR1 and PAR2 PH-domain-binding motifs in both pathological and physiological invasion processes. PMID:26928551

  17. Fibroblast growth factor receptor 3 interacts with and activates TGFβ-activated kinase 1 tyrosine phosphorylation and NFκB signaling in multiple myeloma and bladder cancer.

    Directory of Open Access Journals (Sweden)

    Lisa Salazar

    Full Text Available Cancer is a major public health problem worldwide. In the United States alone, 1 in 4 deaths is due to cancer and for 2013 a total of 1,660,290 new cancer cases and 580,350 cancer-related deaths are projected. Comprehensive profiling of multiple cancer genomes has revealed a highly complex genetic landscape in which a large number of altered genes, varying from tumor to tumor, impact core biological pathways and processes. This has implications for therapeutic targeting of signaling networks in the development of treatments for specific cancers. The NFκB transcription factor is constitutively active in a number of hematologic and solid tumors, and many signaling pathways implicated in cancer are likely connected to NFκB activation. A critical mediator of NFκB activity is TGFβ-activated kinase 1 (TAK1. Here, we identify TAK1 as a novel interacting protein and target of fibroblast growth factor receptor 3 (FGFR3 tyrosine kinase activity. We further demonstrate that activating mutations in FGFR3 associated with both multiple myeloma and bladder cancer can modulate expression of genes that regulate NFκB signaling, and promote both NFκB transcriptional activity and cell adhesion in a manner dependent on TAK1 expression in both cancer cell types. Our findings suggest TAK1 as a potential therapeutic target for FGFR3-associated cancers, and other malignancies in which TAK1 contributes to constitutive NFκB activation.

  18. Rice Bran Feruloylated Oligosaccharides Activate Dendritic Cells via Toll-Like Receptor 2 and 4 Signaling

    OpenAIRE

    Chi Chen Lin; Hua Han Chen; Yu Kuo Chen; Hung Chia Chang; Ping Yi Lin; I-Hong Pan; Der-Yuan Chen; Chuan Mu Chen; Su Yi Lin

    2014-01-01

    This work presents the effects of feruloylated oligosaccharides (FOs) of rice bran on murine bone marrow-derived dendritic cells (BMDCs) and the potential pathway through which the effects are mediated. We found that FOs induced phenotypic maturation of DCs, as shown by the increased expression of CD40, CD80/CD86 and MHC-I/II molecules. FOs efficiently induced maturation of DCs generated from C3H/HeN or C57BL/6 mice with normal toll-like receptor 4 (TLR-4) or TLR-2 but not DCs from mice with ...

  19. Immune receptor signaling: from ubiquitination to NF-κB activation

    Institute of Scientific and Technical Information of China (English)

    Shao-Cong Sun

    2012-01-01

    The immune system functions as a dynamic and sophisticated network that ensures efficient response to foreign antigens and tolerance to self-tissues.1 The function of the immune system relies on signal transduction that connects immune cells to the extracellular environment and mediates communication among the different types of immune cells.

  20. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines.

    Science.gov (United States)

    Chalifoux, Jason R; Carter, Adam G

    2010-04-15

    Metabotropic GABA(B) receptors play a fundamental role in modulating the excitability of neurons and circuits throughout the brain. These receptors influence synaptic transmission by inhibiting presynaptic release or activating postsynaptic potassium channels. However, their ability to directly influence different types of postsynaptic glutamate receptors remains unresolved. Here we examine GABA(B) receptor modulation in layer 2/3 pyramidal neurons from the mouse prefrontal cortex. We use two-photon laser-scanning microscopy to study synaptic modulation at individual dendritic spines. Using two-photon optical quantal analysis, we first demonstrate robust presynaptic modulation of multivesicular release at single synapses. Using two-photon glutamate uncaging, we then reveal that GABA(B) receptors strongly inhibit NMDA receptor calcium signals. This postsynaptic modulation occurs via the PKA pathway and does not affect synaptic currents mediated by AMPA or NMDA receptors. This form of GABA(B) receptor modulation has widespread implications for the control of calcium-dependent neuronal function.

  1. Peptides derived from specific interaction sites of the fibroblast growth factor 2 - FGF receptor complexes induce receptor activation and signaling

    DEFF Research Database (Denmark)

    Manfè, Valentina; Kochoyan, Artur; Bock, Elisabeth;

    2010-01-01

    , promoting survival of cerebellar granule neurons induced to undergo apoptosis. Our results suggest that canofins mirror the effect of specific interaction sites in FGF2 for FGFR. Thus, canofins are valuable pharmacological tools to study the functional roles of specific molecular interactions of FGF2...... by canofins, indicating that canofins are partial FGFR agonists. Furthermore, canofins were demonstrated to induce neuronal differentiation determined by neurite outgrowth from cerebellar granule neurons, and this effect was dependent on FGFR activation. Additionally, canofins acted as neuroprotectants...

  2. Receptor downregulation and desensitization enhance the information processing ability of signalling receptors

    OpenAIRE

    Resat Haluk; Wiley H Steven; Shankaran Harish

    2007-01-01

    Abstract Background In addition to initiating signaling events, the activation of cell surface receptors also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (endocytic downregulation) or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of adaptation wherein the receptor system enters a refractory state in th...

  3. Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways

    International Nuclear Information System (INIS)

    The endothelial protein C receptor (EPCR) plays a pivotal role in coagulation, inflammation, cell proliferation, and cancer, but its activity is markedly changed by ectodomain cleavage and release as the soluble protein (sEPCR). In this study we examined the mechanisms involved in the regulation of EPCR shedding in human umbilical endothelial cells (HUVEC). Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), but not interferon-γ and interleukin-6, suppressed EPCR mRNA transcription and cell-associated EPCR expression in HUVEC. The release of sEPCR induced by IL-1β and TNF-α correlated with activation of p38 MAPK and c-Jun N-terminal kinase (JNK). EPCR shedding was also induced by phorbol 12-myristate 13-acetate, ionomycin, anisomycin, thiol oxidants or alkylators, thrombin, and disruptors of lipid rafts. Both basal and induced shedding of EPCR was blocked by the metalloproteinase inhibitors, TAPI-0 and GM6001, and by the reduced non-protein thiols, glutathione, dihydrolipoic acid, dithiothreitol, and N-acetyl-L-cysteine. Because other antioxidants and scavengers of reactive oxygen species failed to block the cleavage of EPCR, a direct suppression of metalloproteinase activity seems responsible for the observed effects of reduced thiols. In summary, the shedding of EPCR in HUVEC is effectively regulated by IL-1β and TNF-α, and downstream by MAP kinase signaling pathways and metalloproteinases.

  4. Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Menschikowski, Mario, E-mail: Mario.Menschikowski@uniklinikum-dresden.de [Institute of Clinical Chemistry and Laboratory Medicine, Technical University of Dresden, Medical Faculty ' Carl Gustav Carus' , Fetscherstrasse 74, D-01307 Dresden (Germany); Hagelgans, Albert; Eisenhofer, Graeme; Siegert, Gabriele [Institute of Clinical Chemistry and Laboratory Medicine, Technical University of Dresden, Medical Faculty ' Carl Gustav Carus' , Fetscherstrasse 74, D-01307 Dresden (Germany)

    2009-09-10

    The endothelial protein C receptor (EPCR) plays a pivotal role in coagulation, inflammation, cell proliferation, and cancer, but its activity is markedly changed by ectodomain cleavage and release as the soluble protein (sEPCR). In this study we examined the mechanisms involved in the regulation of EPCR shedding in human umbilical endothelial cells (HUVEC). Interleukin-1{beta} (IL-1{beta}) and tumor necrosis factor-{alpha} (TNF-{alpha}), but not interferon-{gamma} and interleukin-6, suppressed EPCR mRNA transcription and cell-associated EPCR expression in HUVEC. The release of sEPCR induced by IL-1{beta} and TNF-{alpha} correlated with activation of p38 MAPK and c-Jun N-terminal kinase (JNK). EPCR shedding was also induced by phorbol 12-myristate 13-acetate, ionomycin, anisomycin, thiol oxidants or alkylators, thrombin, and disruptors of lipid rafts. Both basal and induced shedding of EPCR was blocked by the metalloproteinase inhibitors, TAPI-0 and GM6001, and by the reduced non-protein thiols, glutathione, dihydrolipoic acid, dithiothreitol, and N-acetyl-L-cysteine. Because other antioxidants and scavengers of reactive oxygen species failed to block the cleavage of EPCR, a direct suppression of metalloproteinase activity seems responsible for the observed effects of reduced thiols. In summary, the shedding of EPCR in HUVEC is effectively regulated by IL-1{beta} and TNF-{alpha}, and downstream by MAP kinase signaling pathways and metalloproteinases.

  5. The haematopoietic GTPase RhoH modulates IL3 signalling through regulation of STAT activity and IL3 receptor expression

    Directory of Open Access Journals (Sweden)

    Gündogdu Mehtap S

    2010-08-01

    Full Text Available Abstract Background RhoH is a constitutively active member of the family of Rho GTPases. Its expression is restricted to the haematopoietic lineage, where it serves as a positive regulator for T cell selection and mast cell function and as a negative regulator for growth-related functions in other lineages. Here, we examined the activation of signal transducer and activator of transcription (STAT proteins in response to stimulation with interleukin 3 (IL3. Results Using the murine IL3-dependent cell line BaF3 we investigated the influence of RhoH protein expression levels on IL3-mediated cellular responses. RhoH overexpressing cells showed lower sensitivity to IL3 and decreased STAT5 activation. SiRNA-mediated repression of RhoH gene expression led to an increase in proliferation and STAT5 activity which correlated with an increased number of IL3 receptor α chain molecules, also known as CD123, expressed at the cell surface. Interestingly, these findings could be reproduced using human THP-1 cells as a model system for acute myeloid leukaemia, where low RhoH levels are known to be an unfavourable prognostic marker. Overexpression of RhoH on the other hand caused an induction of STAT1 activity and western blot analysis revealed that activated STAT1 is phosphorylated on Tyr701. STAT1 is known to induce apoptosis or cell cycle arrest and we detected an upregulation of cyclin-dependent kinase inhibitors (CDKI p21Cip1 and p27Kip1 in RhoH overexpressing BaF3 cells. Conclusions We propose that RhoH functions as a negative regulator for IL3-induced signals through modulation of the JAK-STAT pathway. High levels of RhoH allow the IL3-dependent activation of STAT1 causing decreased proliferation through upregulation of p21Cip1 and p27Kip1. Low RhoH levels on the other hand led to an upregulation of IL3-dependent cell growth, STAT5 activity and an increase of CD123 surface expression, linking RhoH to a CD123/STAT5 phenotype that has been described in AML

  6. Antigen receptor signaling: integration of protein tyrosine kinase functions.

    Science.gov (United States)

    Tamir, I; Cambier, J C

    1998-09-17

    Antigen receptors on T and B cells function to transduce signals leading to a variety of biologic responses minimally including antigen receptor editing, apoptotic death, developmental progression, cell activation, proliferation and survival. The response to antigen depends upon antigen affinity and valence, involvement of coreceptors in signaling and differentiative stage of the responding cell. The requirement that these receptors integrate signals that drive an array of responses may explain their evolved structural complexity. Antigen receptors are composed of multiple subunits compartmentalized to provide antigen recognition and signal transduction function. In lieu of on-board enzymatic activity these receptors rely on associated Protein Tyrosine Kinases (PTKs) for their signaling function. By aggregating the receptors, and hence their appended PTKs, antigens induce PTK transphosphorylation, activating them to phosphorylate the receptor within conserved motifs termed Immunoreceptor Tyrosine-based Activation Motifs (ITAMs) found in transducer subunits. The tyrosyl phosphorylated ITAMs then interact with Src Homology 2 (SH2) domains within the PTKs leading to their further activation. As receptor phosphorylation is amplified, other effectors, such as Shc, dock by virtue of SH2 binding, and serve, in-turn, as substrates for these PTKs. This sequence of events not only provides a signal amplification mechanism by combining multiple consecutive steps with positive feedback, but also allows for signal diversification by differential recruitment of effectors that provide access to distinct parallel downstream signaling pathways. The subject of antigen receptor signaling has been recently reviewed in depth (DeFranco, 1997; Kurosaki, 1997). Here we discuss the biochemical basis of antigen receptor signal transduction, using the B cell receptor (BCR) as a paradigm, with specific emphasis on the involved PTKs. We review several specific mechanisms by which responses

  7. Examining the critical roles of human CB2 receptor residues Valine 3.32 (113) and Leucine 5.41 (192) in ligand recognition and downstream signaling activities.

    Science.gov (United States)

    Alqarni, Mohammed; Myint, Kyaw Zeyar; Tong, Qin; Yang, Peng; Bartlow, Patrick; Wang, Lirong; Feng, Rentian; Xie, Xiang-Qun

    2014-09-26

    We performed molecular modeling and docking to predict a putative binding pocket and associated ligand-receptor interactions for human cannabinoid receptor 2 (CB2). Our data showed that two hydrophobic residues came in close contact with three structurally distinct CB2 ligands: CP-55,940, SR144528 and XIE95-26. Site-directed mutagenesis experiments and subsequent functional assays implicated the roles of Valine residue at position 3.32 (V113) and Leucine residue at position 5.41 (L192) in the ligand binding function and downstream signaling activities of the CB2 receptor. Four different point mutations were introduced to the wild type CB2 receptor: V113E, V113L, L192S and L192A. Our results showed that mutation of Val113 with a Glutamic acid and Leu192 with a Serine led to the complete loss of CB2 ligand binding as well as downstream signaling activities. Substitution of these residues with those that have similar hydrophobic side chains such as Leucine (V113L) and Alanine (L192A), however, allowed CB2 to retain both its ligand binding and signaling functions. Our modeling results validated by competition binding and site-directed mutagenesis experiments suggest that residues V113 and L192 play important roles in ligand binding and downstream signaling transduction of the CB2 receptor.

  8. Activation of the signaling cascade in response to T lymphocyte receptor stimulation and prostanoids in a case of cutaneous lupus

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu-Velez

    2011-01-01

    Full Text Available Context: Discoid lupus erythematosus is a chronic inflammatory skin disorder presenting with scarring lesions that occur predominately on sun exposed areas of the face and scalp. Case Report: A 22-year-old male was evaluated after presenting with reddish-purple, atrophic and erythematous plaques on the scalp, with loss of hair within the plaques. Biopsies for hematoxylin and eosin examination, direct immunofluorescence and immunohistochemistry analysis were performed. The hematoxylin and eosin staining demonstrated classic features of cutaneous lupus. Direct immunofluorescence revealed strong deposits of immunoglobulins IgG and IgM, fibrinogen and Complement/C3, present in 1 a shaggy pattern at the epidermal basement membrane zone, and 2 focal pericytoplasmic and perinuclear staining within epidermal keratynocytes. Immunohistochemisty staining revealed strongly positive staining with antibodies to cyclooxygenase-2, Zeta-chain-associated protein kinase 70, and HLA-DPDQDR in areas where the inflammatory infiltrate was predominant, as well as around dermal blood vessels and within the dermal extracellular matrix. Conclusions : Noting the autoimmune nature of lupus and its strong inflammatory component, we present a patient with active discoid lupus erythematosus and strong expression of Zeta-chain-associated protein kinase 70, cyclo-oxygenase-2, and HLA-DPDQDR in the inflammatory areas. We suggest that these molecules may play a significant role in the immune response of discoid cutaneous lupus, possibly including 1 the biosynthesis of the prostanoids and 2 activation of the signaling cascade in response to T-lymphocyte receptor stimulation.

  9. Notch Signaling Activation in Cervical Cancer Cells Induces Cell Growth Arrest with the Involvement of the Nuclear Receptor NR4A2

    Science.gov (United States)

    Sun, Lichun; Liu, Mingqiu; Sun, Guang-Chun; Yang, Xu; Qian, Qingqing; Feng, Shuyu; Mackey, L. Vienna; Coy, David H.

    2016-01-01

    Cervical cancer is a second leading cancer death in women world-wide, with most cases in less developed countries. Notch signaling is highly conserved with its involvement in many cancers. In the present study, we established stable cervical cell lines with Notch activation and inactivation and found that Notch activation played a suppressive role in cervical cancer cells. Meanwhile, the transient overexpression of the active intracellular domain of all four Notch receptors (ICN1, 2, 3, and 4) also induced the suppression of cervical cancer Hela cell growth. ICN1 also induced cell cycle arrest at phase G1. Notch1 signaling activation affected the expression of serial genes, especially the genes associated with cAMP signaling, with an increase of genes like THBS1, VCL, p63, c-Myc and SCG2, a decrease of genes like NR4A2, PCK2 and BCL-2. Particularly, The nuclear receptor NR4A2 was observed to induce cell proliferation via MTT assay and reduce cell apoptosis via FACS assay. Furthermore, NR4A2's activation could reverse ICN1-induced suppression of cell growth while erasing ICN1-induced increase of tumor suppressor p63. These findings support that Notch signaling mediates cervical cancer cell growth suppression with the involvement of nuclear receptor NR4A2. Notably, Notch/NR4A2/p63 signaling cascade possibly is a new signling pathway undisclosed. PMID:27471554

  10. Gamma-secretase activity of presenilin 1 regulates acetylcholine muscarinic receptor-mediated signal transduction

    DEFF Research Database (Denmark)

    Popescu, Bogdan O; Cedazo-Minguez, Angel; Benedikz, Eirikur;

    2004-01-01

    Familial Alzheimer's disease (FAD) presenilin 1 (PS1) mutations give enhanced calcium responses upon different stimuli, attenuated capacitative calcium entry, an increased sensitivity of cells to undergo apoptosis, and increased gamma-secretase activity. We previously showed that the FAD mutation...

  11. Membrane Trafficking of Death Receptors: Implications on Signalling

    Directory of Open Access Journals (Sweden)

    Wulf Schneider-Brachert

    2013-07-01

    Full Text Available Death receptors were initially recognised as potent inducers of apoptotic cell death and soon ambitious attempts were made to exploit selective ignition of controlled cellular suicide as therapeutic strategy in malignant diseases. However, the complexity of death receptor signalling has increased substantially during recent years. Beyond activation of the apoptotic cascade, involvement in a variety of cellular processes including inflammation, proliferation and immune response was recognised. Mechanistically, these findings raised the question how multipurpose receptors can ensure selective activation of a particular pathway. A growing body of evidence points to an elegant spatiotemporal regulation of composition and assembly of the receptor-associated signalling complex. Upon ligand binding, receptor recruitment in specialized membrane compartments, formation of receptor-ligand clusters and internalisation processes constitute key regulatory elements. In this review, we will summarise the current concepts of death receptor trafficking and its implications on receptor-associated signalling events.

  12. Complexity of Receptor Tyrosine Kinase Signal Processing

    Science.gov (United States)

    Volinsky, Natalia; Kholodenko, Boris N.

    2013-01-01

    Our knowledge of molecular mechanisms of receptor tyrosine kinase (RTK) signaling advances with ever-increasing pace. Yet our understanding of how the spatiotemporal dynamics of RTK signaling control specific cellular outcomes has lagged behind. Systems-centered experimental and computational approaches can help reveal how overlapping networks of signal transducers downstream of RTKs orchestrate specific cell-fate decisions. We discuss how RTK network regulatory structures, which involve the immediate posttranslational and delayed transcriptional controls by multiple feed forward and feedback loops together with pathway cross talk, adapt cells to the combinatorial variety of external cues and conditions. This intricate network circuitry endows cells with emerging capabilities for RTK signal processing and decoding. We illustrate how mathematical modeling facilitates our understanding of RTK network behaviors by unraveling specific systems properties, including bistability, oscillations, excitable responses, and generation of intricate landscapes of signaling activities. PMID:23906711

  13. Interleukin-7 Receptor Signaling Network: An Integrated Systems Perspective

    Institute of Scientific and Technical Information of China (English)

    Megan J. Palmer; Vinay S. Mahajan; Lily C. Trajman; Darrell J. Irvine; Douglas A.Lauffenburger; Jianzhu Chen

    2008-01-01

    Interleukin-7 (IL-7) is an essential cytokine for the development and homeostatic maintenance of T and B lymphocytes. Binding of IL-7 to its cognate receptor, the IL-7 receptor (IL-7R), activates multiple pathways that regulate lymphocyte survival, glucose uptake, proliferation and differentiation. There has been much interest in understanding how IL-7 receptor signaling is modulated at multiple interconnected network levels. This review examines how the strength of the signal through the IL-7 receptor is modulated in T and B cells, including the use of shared receptor components, signaling crosstaik, shared interaction domains, feedback loops, integrated gene regulation, muitimerization and ligand competition. We discuss how these network control mechanisms could integrate to govern the properties of IL-7R signaling in lymphocytes in health and disease. Analysis of IL-7receptor signaling at a network level in a systematic manner will allow for a comprehensive approach to understanding the impact of multiple signaling pathways on lymphocyte biology.

  14. Inhibitory signaling by CB1 receptors in smooth muscle mediated by GRK5/β-arrestin activation of ERK1/2 and Src kinase.

    Science.gov (United States)

    Mahavadi, Sunila; Sriwai, Wimolpak; Huang, Jiean; Grider, John R; Murthy, Karnam S

    2014-03-01

    We examined whether CB1 receptors in smooth muscle conform to the signaling pattern observed with other Gi-coupled receptors that stimulate contraction via two Gβγ-dependent pathways (PLC-β3 and phosphatidylinositol 3-kinase/integrin-linked kinase). Here we show that the anticipated Gβγ-dependent signaling was abrogated. Except for inhibition of adenylyl cyclase via Gαi, signaling resulted from Gβγ-independent phosphorylation of CB1 receptors by GRK5, recruitment of β-arrestin1/2, and activation of ERK1/2 and Src kinase. Neither uncoupling of CB1 receptors from Gi by pertussis toxin (PTx) or Gi minigene nor expression of a Gβγ-scavenging peptide had any effect on ERK1/2 activity. The latter was abolished in muscle cells expressing β-arrestin1/2 siRNA. CB1 receptor internalization and both ERK1/2 and Src kinase activities were abolished in cells expressing kinase-deficient GRK5(K215R). Activation of ERK1/2 and Src kinase endowed CB1 receptors with the ability to inhibit concurrent contractile activity. We identified a consensus sequence (102KSPSKLSP109) for phosphorylation of RGS4 by ERK1/2 and showed that expression of a RGS4 mutant lacking Ser103/Ser108 blocked the ability of anandamide to inhibit acetylcholine-mediated phosphoinositide hydrolysis or enhance Gαq:RGS4 association and inactivation of Gαq. Activation of Src kinase by anandamide enhanced both myosin phosphatase RhoA-interacting protein (M-RIP):RhoA and M-RIP:MYPT1 association and inhibited Rho kinase activity, leading to increase of myosin light chain (MLC) phosphatase activity and inhibition of sustained muscle contraction. Thus, unlike other Gi-coupled receptors in smooth muscle, CB1 receptors did not engage Gβγ but signaled via GRK5/β-arrestin activation of ERK1/2 and Src kinase: ERK1/2 accelerated inactivation of Gαq by RGS4, and Src kinase enhanced MLC phosphatase activity, leading to inhibition of ACh-stimulated contraction.

  15. Ca 2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca 2+ channels

    KAUST Repository

    Qia, Zhi

    2010-11-18

    A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogendefense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca 2+ permeable channels in mesophyll cells, resulting in cytosolic Ca 2+ elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor- like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2- dependent cytosolic Ca 2+ elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca 2+ signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca 2+ conductance and resulting cytosolic Ca 2+ elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen- defense genes in a Ca 2+-dependent manner.

  16. Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels.

    Science.gov (United States)

    Qi, Zhi; Verma, Rajeev; Gehring, Chris; Yamaguchi, Yube; Zhao, Yichen; Ryan, Clarence A; Berkowitz, Gerald A

    2010-12-01

    A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogen-defense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca(2+) permeable channels in mesophyll cells, resulting in cytosolic Ca(2+) elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor-like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2-dependent cytosolic Ca(2+) elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca(2+) signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca(2+) conductance and resulting cytosolic Ca(2+) elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen-defense genes in a Ca(2+)-dependent manner.

  17. Novel, unifying mechanism for mescaline in the central nervous system: electrochemistry, catechol redox metabolite, receptor, cell signaling and structure activity relationships.

    Science.gov (United States)

    Kovacic, Peter; Somanathan, Ratnasamy

    2009-01-01

    A unifying mechanism for abused drugs has been proposed previously from the standpoint of electron transfer. Mescaline can be accommodated within the theoretical framework based on redox cycling by the catechol metabolite with its quinone counterpart. Electron transfer may play a role in electrical effects involving the nervous system in the brain. This approach is in accord with structure activity relationships involving mescaline, abused drugs, catecholamines, and etoposide. Inefficient demethylation is in keeping with the various drug properties, such as requirement for high dosage and slow acting. There is a discussion of receptor binding, electrical effects, cell signaling and other modes of action. Mescaline is a nonselective, seretonin receptor agonist. 5-HTP receptors are involved in the stimulus properties. Research addresses the aspect of stereochemical requirements. Receptor binding may involve the proposed quinone metabolite and/or the amino sidechain via protonation. Electroencephalographic studies were performed on the effects of mescaline on men. Spikes are elicited by stimulation of a cortical area. The potentials likely originate in nonsynaptic dendritic membranes. Receptor-mediated signaling pathways were examined which affect mescaline behavior. The hallucinogen belongs to the class of 2AR agonists which regulate pathways in cortical neurons. The research identifies neural and signaling mechanisms responsible for the biological effects. Recently, another hallucinogen, psilocybin, has been included within the unifying mechanistic framework. This mushroom constituent is hydrolyzed to the phenol psilocin, also active, which is subsequently oxidized to an ET o-quinone or iminoquinone.

  18. Protease-activated Receptor-4 Signaling and Trafficking Is Regulated by the Clathrin Adaptor Protein Complex-2 Independent of β-Arrestins.

    Science.gov (United States)

    Smith, Thomas H; Coronel, Luisa J; Li, Julia G; Dores, Michael R; Nieman, Marvin T; Trejo, JoAnn

    2016-08-26

    Protease-activated receptor-4 (PAR4) is a G protein-coupled receptor (GPCR) for thrombin and is proteolytically activated, similar to the prototypical PAR1. Due to the irreversible activation of PAR1, receptor trafficking is intimately linked to signal regulation. However, unlike PAR1, the mechanisms that control PAR4 trafficking are not known. Here, we sought to define the mechanisms that control PAR4 trafficking and signaling. In HeLa cells depleted of clathrin by siRNA, activated PAR4 failed to internalize. Consistent with clathrin-mediated endocytosis, expression of a dynamin dominant-negative K44A mutant also blocked activated PAR4 internalization. However, unlike most GPCRs, PAR4 internalization occurred independently of β-arrestins and the receptor's C-tail domain. Rather, we discovered a highly conserved tyrosine-based motif in the third intracellular loop of PAR4 and found that the clathrin adaptor protein complex-2 (AP-2) is important for internalization. Depletion of AP-2 inhibited PAR4 internalization induced by agonist. In addition, mutation of the critical residues of the tyrosine-based motif disrupted agonist-induced PAR4 internalization. Using Dami megakaryocytic cells, we confirmed that AP-2 is required for agonist-induced internalization of endogenous PAR4. Moreover, inhibition of activated PAR4 internalization enhanced ERK1/2 signaling, whereas Akt signaling was markedly diminished. These findings indicate that activated PAR4 internalization requires AP-2 and a tyrosine-based motif and occurs independent of β-arrestins, unlike most classical GPCRs. Moreover, these findings are the first to show that internalization of activated PAR4 is linked to proper ERK1/2 and Akt activation. PMID:27402844

  19. Nontranscriptional activation of PI3K/Akt signaling mediates hypotensive effect following activation of estrogen receptor β in the rostral ventrolateral medulla of rats

    Directory of Open Access Journals (Sweden)

    Wu Kay LH

    2012-08-01

    Full Text Available Abstract Background Estrogen acts on the rostral ventrolateral medulla (RVLM, where sympathetic premotor neurons are located, to elicit vasodepressor effects via an estrogen receptor (ERβ-dependent mechanism. We investigated in the present study nontranscriptional mechanism on cardiovascular effects following activation of ERβ in the RVLM, and delineated the involvement of phosphatidylinositol 3-kinase (PI3K/serine/threonine kinase (Akt signaling pathway in the effects. Methods In male Sprague–Dawley rats maintained under propofol anesthesia, changes in arterial pressure, heart rate and sympathetic neurogenic vasomotor tone were examined after microinjection bilaterally into RVLM of 17β-estradiol (E2β or a selective ERα or ERβ agonist. Involvement of ER subtypes and PI3K/Akt signaling pathway in the induced cardiovascular effects were studied using pharmacological tools of antagonists or inhibitors, gene manipulation with antisense oligonucleotide (ASON or adenovirus-mediated gene transfection. Results Similar to E2β (1 pmol, microinjection of ERβ agonist, diarylpropionitrile (DPN, 1, 2 or 5 pmol, into bilateral RVLM evoked dose-dependent hypotension and reduction in sympathetic neurogenic vasomotor tone. These vasodepressive effects of DPN (2 pmol were inhibited by ERβ antagonist, R,R-tetrahydrochrysene (50 pmol, ASON against ERβ mRNA (250 pmol, PI3K inhibitor LY294002 (5 pmol, or Akt inhibitor (250 pmol, but not by ERα inhibitor, methyl-piperidino-pyrazole (1 nmol, or transcription inhibitor, actinomycin D (5 or 10 nmol. Gene transfer by microinjection into bilateral RVLM of adenovirus encoding phosphatase and tensin homologues deleted on chromosome 10 (5 × 108 pfu reversed the vasodepressive effects of DPN. Conclusions Our results indicate that vasodepressive effects following activation of ERβ in RVLM are mediated by nongenomic activation of PI3K/Akt signaling pathway. This study provides new insight in the

  20. Stress regulates endocannabinoid-CB1 receptor signaling.

    Science.gov (United States)

    Hillard, Cecilia J

    2014-10-01

    The CB1 cannabinoid receptor is a G protein coupled receptor that is widely expressed throughout the brain. The endogenous ligands for the CB1 receptor (endocannabinoids) are N-arachidonylethanolamine and 2-arachidonoylglycerol; together the endocannabinoids and CB1R subserve activity dependent, retrograde inhibition of neurotransmitter release in the brain. Deficiency of CB1 receptor signaling is associated with anhedonia, anxiety, and persistence of negative memories. CB1 receptor-endocannabinoid signaling is activated by stress and functions to buffer or dampen the behavioral and endocrine effects of acute stress. Its role in regulation of neuronal responses is more complex. Chronic variable stress exposure reduces endocannabinoid-CB1 receptor signaling and it is hypothesized that the resultant deficiency in endocannabinoid signaling contributes to the negative consequences of chronic stress. On the other hand, repeated exposure to the same stress can sensitize CB1 receptor signaling, resulting in dampening of the stress response. Data are reviewed that support the hypothesis that CB1 receptor signaling is stress responsive and that maintaining robust endocannabinoid/CB1 receptor signaling provides resilience against the development of stress-related pathologies.

  1. Biased and G protein-independent signaling of chemokine receptors

    Directory of Open Access Journals (Sweden)

    Anne eSteen

    2014-06-01

    Full Text Available Biased signaling or functional selectivity occurs when a 7TM receptor preferentially activates one of several available pathways. It can be divided into three distinct forms: ligand bias, receptor bias, and tissue or cell bias, where it is mediated by different ligands (on the same receptor, different receptors (with the same ligand or different tissues or cells (for the same ligand-receptor pair. Most often biased signaling is differentiated into G protein-dependent and β-arrestin-dependent signaling. Yet, it may also cover signaling differences within these groups. Moreover, it may not be absolute, i.e. full versus no activation. Here we discuss biased signaling in the chemokine system, including the structural basis for biased signaling in chemokine receptors, as well as in class A 7TM receptors in general. This includes overall helical movements and the contributions of micro-switches based on recently published 7TM crystals and molecular dynamics studies. All three forms of biased signaling are abundant in the chemokine system. This challenges our understanding of classic redundancy inevitably ascribed to this system, where multiple chemokines bind to the same receptor and where a single chemokine may bind to several receptors – in both cases with the same functional outcome. The ubiquitous biased signaling confer a hitherto unknown specificity to the chemokine system with a complex interaction pattern that is better described as promiscuous with context-defined roles and different functional outcomes in a ligand-, receptor- or cell/tissue-defined manner. As the low number of successful drug development plans implies, there are great difficulties in targeting chemokine receptors; in particular with regard to receptor antagonists as anti-inflammatory drugs. Un-defined and putative non-selective targeting of the complete cellular signaling system could be the underlying cause of lack of success. Therefore, biased ligands could be the

  2. Physiological and receptor-selective retinoids modulate interferon gamma signaling by increasing the expression, nuclear localization, and functional activity of interferon regulatory factor-1.

    Science.gov (United States)

    Luo, Xin M; Ross, A Catharine

    2005-10-28

    Synergistic actions between all-trans-retinoic acid (atRA) and interferon gamma (IFNgamma) on modulation of cellular functions have been reported both in vitro and in vivo. However, the mechanism of atRA-mediated regulation of IFNgamma signaling is poorly understood. In this study, we have used the human lung epithelial cell line A549 to examine the effect of atRA on IFNgamma-induced expression of IFN regulatory factor-1 (IRF-1), an important transcription factor involved in cell growth and apoptosis, differentiation, and antiviral and antibacterial immune responses. At least 4 h of pretreatment with atRA followed by suboptimal concentrations of IFNgamma induced a faster, higher, and more stable expression of IRF-1 than IFNgamma alone. Actinomycin D completely blocked the induction of IRF-1 by the combination, suggesting regulation at the transcriptional level. Further, we found that activation of signal transducer and activator of transcription-1 was induced more dramatically by atRA and IFNgamma than by IFNgamma alone. Expression of IFNgamma receptor-1 on the cell surface was also increased upon atRA pretreatment. Experiments using receptor-selective retinoids revealed that ligands for retinoic acid receptor-alpha (RARalpha), including atRA, 9-cis-retinoic acid, and Am580, sequentially increased the levels of IFNgamma receptor-1, activated signal transducer and activator of transcription-1, and IRF-1 and that an RARalpha antagonist was able to inhibit the effects of atRA and Am580. In addition, atRA pretreatment affected the transcriptional functions of IFNgamma-induced IRF-1, increasing its nuclear localization and DNA binding activity as well as the transcript levels of IRF-1 target genes. These results suggest that atRA, an RARalpha ligand, regulates IFNgamma-induced IRF-1 by affecting multiple components of the IFNgamma signaling pathway, from the plasma membrane to the nuclear transcription factors.

  3. CB1 Cannabinoid Receptor-Dependent Activation of mTORC1/Pax6 Signaling Drives Tbr2 Expression and Basal Progenitor Expansion in the Developing Mouse Cortex.

    Science.gov (United States)

    Díaz-Alonso, Javier; Aguado, Tania; de Salas-Quiroga, Adán; Ortega, Zaira; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-09-01

    The CB1 cannabinoid receptor regulates cortical progenitor proliferation during embryonic development, but the molecular mechanism of this action remains unknown. Here, we report that CB1-deficient mouse embryos show premature cell cycle exit, decreased Pax6- and Tbr2-positive cell number, and reduced mammalian target of rapamycin complex 1 (mTORC1) activation in the ventricular and subventricular cortical zones. Pharmacological stimulation of the CB1 receptor in cortical slices and progenitor cell cultures activated the mTORC1 pathway and increased the number of Pax6- and Tbr2-expressing cells. Likewise, acute CB1 knockdown in utero reduced mTORC1 activation and cannabinoid-induced Tbr2-positive cell generation. Luciferase reporter and chromatin immunoprecipitation assays revealed that the CB1 receptor drives Tbr2 expression downstream of Pax6 induction in an mTORC1-dependent manner. Altogether, our results demonstrate that the CB1 receptor tunes dorsal telencephalic progenitor proliferation by sustaining the transcriptional activity of the Pax6-Tbr2 axis via the mTORC1 pathway, and suggest that alterations of CB1 receptor signaling, by producing the missexpression of progenitor identity determinants may contribute to neurodevelopmental alterations.

  4. The human angiotensin AT(1) receptor supports G protein-independent extracellular signal-regulated kinase 1/2 activation and cellular proliferation

    DEFF Research Database (Denmark)

    Hansen, Jakob Lerche; Aplin, Mark; Hansen, Jonas Tind;

    2008-01-01

    (1) receptor actions. However, it is currently unknown whether the human angiotensin AT(1) receptor can signal through G protein-independent mechanisms - and if so, what the physiological impact of such signalling is. We have performed a detailed pharmacological analysis of the human angiotensin AT(1......) receptor using a battery of angiotensin analogues and registered drugs targeting this receptor. We show that the human angiotensin AT(1) receptor signals directly through G protein-independent pathways and supports NIH3T3 cellular proliferation. The realization of G protein-independent signalling...

  5. Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes

    DEFF Research Database (Denmark)

    Aplin, Mark; Christensen, Gitte Lund; Schneider, Mikael;

    2007-01-01

    The angiotensin II (AngII) type 1 receptor (AT(1)R) is a seven-transmembrane receptor well established to activate extracellular signal-regulated kinases 1 and 2 (ERK1/2) by discrete G protein-dependent and beta-arrestin2-dependent pathways. The biological importance of this, however, remains...... obscure. Application of the modified analogue [Sar(1), Ile(4), Ile(8)]-AngII ([SII] AngII) allowed us to dissect the two pathways of ERK1/2 activation in native cardiac myocytes. Although cytosol-retained, the beta-arrestin2-bound pool of ERK1/2 represents an active signalling component...... that phosphorylates p90 Ribosomal S6 Kinase, a ubiquitous and versatile mediator of ERK1/2 signal transduction. Moreover, the beta-arrestin2-dependent ERK1/2 signal supports intact proliferation of cardiac myocytes. In contrast to G(q)-activated ERK1/2, and in keeping with its failure to translocate to the nucleus...

  6. Proliferative signaling initiated in ACTH receptors

    Directory of Open Access Journals (Sweden)

    C.F.P. Lotfi

    2000-10-01

    Full Text Available This article reviews recent results of studies aiming to elucidate modes of integrating signals initiated in ACTH receptors and FGF2 receptors, within the network system of signal transduction found in Y1 adrenocortical cells. These modes of signal integration should be central to the mechanisms underlying the regulation of the G0->G1->S transition in the adrenal cell cycle. FGF2 elicits a strong mitogenic response in G0/G1-arrested Y1 adrenocortical cells, that includes a rapid and transient activation of extracellular signal-regulated kinases-mitogen-activated protein kinases (ERK-MAPK (2 to 10 min, b transcription activation of c-fos, c-jun and c-myc genes (10 to 30 min, c induction of c-Fos and c-Myc proteins by 1 h and cyclin D1 protein by 5 h, and d onset of DNA synthesis stimulation within 8 h. ACTH, itself a weak mitogen, interacts with FGF2 in a complex manner, blocking the FGF2 mitogenic response during the early and middle G1 phase, keeping ERK-MAPK activation and c-Fos and cyclin D1 induction at maximal levels, but post-transcriptionally inhibiting c-Myc expression. c-Fos and c-Jun proteins are mediators in both the strong and the weak mitogenic responses respectively triggered by FGF2 and ACTH. Induction of c-Fos and stimulation of DNA synthesis by ACTH are independent of PKA and are inhibited by the PKC inhibitor GF109203X. In addition, ACTH is a poor activator of ERK-MAPK, but c-Fos induction and DNA synthesis stimulation by ACTH are strongly inhibited by the inhibitor of MEK1 PD98059.

  7. Epileptiform activity triggers long-term plasticity of GABA(B) receptor signalling in the developing rat hippocampus.

    OpenAIRE

    Tosetti, Patrizia; Ferrand, Nadine; Colin-Le Brun, Isabelle; Gaïarsa, Jean-Luc

    2005-01-01

    International audience GABA(B) receptor (GABA(B)R)-mediated presynaptic inhibition regulates neurotransmitter release from synaptic terminals. In the neonatal hippocampus, GABA(B)R activation reduces GABA release and terminates spontaneous network discharges called giant depolarizing potentials (GDPs). Blocking GABA(B)Rs transforms GDPs into longer epileptiform discharges. Thus, GABA(B)R-mediated presynaptic inhibition of GABA release (GABA auto-inhibition) controls both spontaneous networ...

  8. Rotavirus activates lymphocytes from non-obese diabetic mice by triggering toll-like receptor 7 signaling and interferon production in plasmacytoid dendritic cells.

    Directory of Open Access Journals (Sweden)

    Jessica A Pane

    2014-03-01

    Full Text Available It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I

  9. Effects of Somatic Mutations in the C-Terminus of Insulin-Like Growth Factor 1 Receptor on Activity and Signaling

    Directory of Open Access Journals (Sweden)

    Barbara P. Craddock

    2012-01-01

    Full Text Available The insulin-like growth factor I receptor (IGF1R is overexpressed in several forms of human cancer, and it has emerged as an important target for anticancer drug design. Cancer genome sequencing efforts have recently identified three somatic mutations in IGF1R: A1374V, a deletion of S1278 in the C-terminal tail region of the receptor, and M1255I in the C-terminal lobe of the kinase catalytic domain. The possible effects of these mutations on IGF1R activity and biological function have not previously been tested. Here, we tested the effects of the mutations on the in vitro biochemical activity of IGF1R and on major IGF1R signaling pathways in mammalian cells. While the mutations do not affect the intrinsic tyrosine kinase activity of the receptor, we demonstrate that the basal (unstimulated levels of MAP kinase and Akt activation are increased in the mutants (relative to wild-type IGF1R. We hypothesize that the enhanced signaling potential of these mutants is due to changes in protein-protein interactions between the IGF1R C-terminus and cellular substrates or modulators.

  10. Comparative analyses of downstream signal transduction targets modulated after activation of the AT1 receptor by two β-arrestin-biased agonists.

    Science.gov (United States)

    Santos, Geisa A; Duarte, Diego A; Parreiras-E-Silva, Lucas T; Teixeira, Felipe R; Silva-Rocha, Rafael; Oliveira, Eduardo B; Bouvier, Michel; Costa-Neto, Claudio M

    2015-01-01

    G protein-coupled receptors (GPCRs) are involved in essentially all physiological processes in mammals. The classical GPCR signal transduction mechanism occurs by coupling to G protein, but it has recently been demonstrated that interaction with β-arrestins leads to activation of pathways that are independent of the G protein pathway. Also, it has been reported that some ligands can preferentially activate one of these signaling pathways; being therefore called biased agonists for G protein or β-arrestin pathways. The angiotensin II (AngII) AT1 receptor is a prototype GPCR in the study of biased agonism due to the existence of well-known β-arrestin-biased agonists, such as [Sar(1), Ile(4), Ile(8)]-AngII (SII), and [Sar(1), D-Ala(8)]-AngII (TRV027). The aim of this study was to comparatively analyze the two above mentioned β-arrestin-biased agonists on downstream phosphorylation events and gene expression profiles. Our data reveal that activation of AT1 receptor by each ligand led to a diversity of activation profiles that is far broader than that expected from a simple dichotomy between "G protein-dependent" and "β-arrestin-dependent" signaling. We observed clusters of activation profiles common to AngII, SII, and TRV027, as well as downstream effector activation that are unique to AngII, SII, or TRV027. Analyses of β-arrestin conformational changes after AT1 receptor stimulation with SII or TRV027 suggests that the observed differences could account, at least partially, for the diversity of modulated targets observed. Our data reveal that, although the categorization "G protein-dependent" vs. "β-arrestin-dependent" signaling can be of pharmacological relevance, broader analyses of signaling pathways and downstream targets are necessary to generate an accurate activation profile for a given ligand. This may bring relevant information for drug development, as it may allow more refined comparison of drugs with similar mechanism of action and effects, but with

  11. Comparative analyses of downstream signal transduction targets modulated after activation of the AT1 receptor by two β-arrestin biased agonists

    Directory of Open Access Journals (Sweden)

    Geisa A Santos

    2015-07-01

    Full Text Available G protein-coupled receptors (GPCRs are involved in essentially all physiological processes in mammals. The classical GPCR signal transduction mechanism occurs by coupling to G protein, but it has recently been demonstrated that interaction with β-arrestins leads to activation of pathways that are independent of the G protein pathway. Also, it has been reported that some ligands can preferentially activate one of these signaling pathways; being therefore called biased agonists for G protein or β-arrestin pathways. The angiotensin II (AngII AT1 receptor is a prototype GPCR in the study of biased agonism due to the existence of well-known β-arrestin biased agonists, such as [Sar1,Ile4,Ile8]-AngII (SII, and [Sar1,D-Ala8]-AngII (TRV027. The aim of this study was to comparatively analyze the two above mentioned β-arrestin biased agonists on downstream phosphorylation events and gene expression profiles. Our data reveal that activation of AT1 receptor by each ligand led to a diversity of activation profiles that is far broader than that expected from a simple dichotomy between G protein-dependent and β-arrestin-dependent signaling. We observed clusters of activation profiles common to AngII, SII and TRV027, as well as downstream effector activation that are unique to AngII, SII, or TRV027. Analyses of β-arrestin conformational changes after AT1 receptor stimulation with SII or TRV027 suggests that the observed differences could account, at least partially, for the diversity of modulated targets observed. Our data reveal that, although the categorization G protein-dependent vs. β-arrestin-dependent signaling can be of pharmacological relevance, broader analyses of signaling pathways and downstream targets are necessary to generate an accurate activation profile for a given ligand. This may bring relevant information for drug development, as it may allow more refined comparison of drugs with similar mechanism of action and effects, but with

  12. Induction of Proinflammatory Responses in Macrophages by the Glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum: CELL SIGNALING RECEPTORS, GPI STRUCTURAL REQUIREMENT, AND REGULATION OF GPI ACTIVITY*

    Science.gov (United States)

    Krishnegowda, Gowdahalli; Hajjar, Adeline M.; Zhu, Jianzhong; Douglass, Erika J.; Uematsu, Satoshi; Akira, Shizuo; Woods, Amina S.; Gowda, D. Channe

    2016-01-01

    SUMMARY The proinflammatory cytokines produced by the innate immune system in response to pathogenic infection protect the host by controlling microbial growth. However, excessive proinflammatory responses could disrupt the host’s vital physiological functions, causing severe pathological conditions. In the case of Plasmodium falciparum, the protozoan parasite that causes fatal malaria in man, the glycosylphosphatidylinositol (GPI) anchors are thought to be the major factors that contribute to malaria pathogenesis through their ability to induce proinflammatory responses. In this study, we identified the receptors for P. falciparum GPI-induced cell signaling that leads to proinflammatory responses, and studied the GPI structure-activity relationship. The data show that GPI-signaling is mediated mainly through recognition by TLR2 and to a lesser extent by TLR4. The activity of sn-2 lyso GPIs is comparable to that of the intact GPIs, whereas the activity of Man3-GPIs is about 80% that of the intact GPIs. The GPIs with three (intact GPIs and Man3-GPIs) and two fatty acids (sn-2 lyso GPIs) appear to differ considerably in the requirement of the auxiliary receptor, TLR1 or TLR6, for recognition by TLR2. The former are preferentially recognized by TLR2/TLR1, whereas the latter are favored by TLR2/TLR6. However, the signaling pathways initiated by all three GPI types are similar, involving the MyD88-dependent activation of ERK, JNK and p38, and NF-κB signaling pathways. The signaling molecules of these pathways differentially contribute to the production of various cytokines and nitric oxide (Zhu, J., et al. (2004) J. Biol. Chem., accompanying manuscript). Our data also show that GPIs are degraded by the macrophage surface phospholipases, predominantly into inactive species, indicating that the host can regulate GPI activity, at least in part, by this mechanism. These results imply that macrophage surface phospholipases play important roles in the GPI-induced innate

  13. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haitao; Du, Yuxuan; Zhang, Xulong; Sun, Ying; Li, Shentao; Dou, Yunpeng [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Li, Zhanguo [Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People' s Hospital, No. 11 Xizhimen South Street, Beijing 100044 (China); Yuan, Huihui, E-mail: huihui_yuan@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Zhao, Wenming, E-mail: zhao-wenming@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China)

    2014-11-01

    Ahr activation is known to be associated with synovitis and exacerbated rheumatoid arthritis (RA), but its contributions to bone loss have not been completely elucidated. Osteoblast proliferation and differentiation are abnormal at the erosion site in RA. Here, we reported that the expression of Ahr was increased in the hind paws' bone upon collagen-induced arthritis (CIA) in mice, and the levels of Ahr were negatively correlated with bone mineral density (BMD). In addition, immunofluorescent staining showed that the high expression of Ahr was mainly localized in osteoblasts from the CIA mice compared to normal controls. Moreover, the luciferase intensity of Ahr in the nucleus increased by 12.5% in CIA osteoblasts compared to that in normal controls. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activation of the Ahr inhibited pre-osteoblast MC3T3-E1 cellular proliferation and differentiation in a dose-dependent manner. Interestingly, the levels of alkaline phosphatase (ALP) mRNA expression in the osteoblasts of CIA mice were reduced compared to normal controls. In contrast, decreased ALP expression by activated Ahr was completely reversed after pretreatment with an Ahr inhibitor (CH-223191) in MC3T3-E1 cell lines and primary osteoblasts on day 5. Our data further showed that activation of Ahr promoted the phosphorylation of ERK after 5 days. Moreover, Ahr-dependent activation of the ERK signaling pathway decreased the levels of proliferation cells and inhibited ALP activity in MC3T3-E1 cells. These results demonstrated that the high expression of Ahr may suppress osteoblast proliferation and differentiation through activation of the ERK signaling pathway, further enabling bone erosion in CIA mice. - Highlights: • The upregulation of Ahr was localized in osteoblasts of CIA mice. • The overexpression of Ahr suppressed osteoblast development. • The Ahr activated ERK signaling pathway to exacerbate bone erosion.

  14. A hepatoprotective Lindera obtusiloba extract suppresses growth and attenuates insulin like growth factor-1 receptor signaling and NF-kappaB activity in human liver cancer cell lines

    Directory of Open Access Journals (Sweden)

    Stroh Thorsten

    2011-05-01

    Full Text Available Abstract Background In traditional Chinese and Korean medicine, an aqueous extract derived from wood and bark of the Japanese spice bush Lindera obtusiloba (L.obtusiloba is applied to treat inflammations and chronic liver diseases including hepatocellular carcinoma. We previously demonstrated anti-fibrotic effects of L.obtusiloba extract in hepatic stellate cells. Thus, we here consequently examine anti-neoplastic effects of L.obtusiloba extract on human hepatocellular carcinoma (HCC cell lines and the signaling pathways involved. Methods Four human HCC cell lines representing diverse stages of differentiation were treated with L.obtusiloba extract, standardized according to its known suppressive effects on proliferation and TGF-β-expression. Beside measurement of proliferation, invasion and apoptosis, effects on signal transduction and NF-κB-activity were determined. Results L.obtusiloba extract inhibited proliferation and induced apoptosis in all HCC cell lines and provoked a reduced basal and IGF-1-induced activation of the IGF-1R signaling cascade and a reduced transcriptional NF-κB-activity, particularly in the poorly differentiated SK-Hep1 cells. Pointing to anti-angiogenic effects, L.obtusiloba extract attenuated the basal and IGF-1-induced expression of hypoxia inducible factor-1α, vascular endothelial growth factor, peroxisome proliferator-activated receptor-γ, cyclooxygenase-2 and inducible nitric oxide synthase. Conclusions The traditional application of the extract is confirmed by our experimental data. Due to its potential to inhibit critical receptor tyrosine kinases involved in HCC progression via the IGF-1 signaling pathway and NF-κB, the standardized L.obtusiloba extract should be further analysed for its active compounds and explored as (complementary treatment option for HCC.

  15. Molecular mechanisms of glucocorticoid receptor signaling

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  16. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity

    Science.gov (United States)

    Liu, Lijing; Sonbol, Fathi-Mohamed; Huot, Bethany; Gu, Yangnan; Withers, John; Mwimba, Musoki; Yao, Jian; He, Sheng Yang; Dong, Xinnian

    2016-01-01

    It is an apparent conundrum how plants evolved effector-triggered immunity (ETI), involving programmed cell death (PCD), as a major defence mechanism against biotrophic pathogens, because ETI-associated PCD could leave them vulnerable to necrotrophic pathogens that thrive on dead host cells. Interestingly, during ETI, the normally antagonistic defence hormones, salicylic acid (SA) and jasmonic acid (JA) associated with defence against biotrophs and necrotrophs respectively, both accumulate to high levels. In this study, we made the surprising finding that JA is a positive regulator of RPS2-mediated ETI. Early induction of JA-responsive genes and de novo JA synthesis following SA accumulation is activated through the SA receptors NPR3 and NPR4, instead of the JA receptor COI1. We provide evidence that NPR3 and NPR4 may mediate this effect by promoting degradation of the JA transcriptional repressor JAZs. This unique interplay between SA and JA offers a possible explanation of how plants can mount defence against a biotrophic pathogen without becoming vulnerable to necrotrophic pathogens. PMID:27725643

  17. Biased and g protein-independent signaling of chemokine receptors

    DEFF Research Database (Denmark)

    Steen, Anne; Larsen, Olav; Thiele, Stefanie;

    2014-01-01

    not be absolute, i.e., full versus no activation. Here we discuss biased signaling in the chemokine system, including the structural basis for biased signaling in chemokine receptors, as well as in class A 7TM receptors in general. This includes overall helical movements and the contributions of micro......-switches based on recently published 7TM crystals and molecular dynamics studies. All three forms of biased signaling are abundant in the chemokine system. This challenges our understanding of "classic" redundancy inevitably ascribed to this system, where multiple chemokines bind to the same receptor and where...... a single chemokine may bind to several receptors - in both cases with the same functional outcome. The ubiquitous biased signaling confers a hitherto unknown specificity to the chemokine system with a complex interaction pattern that is better described as promiscuous with context-defined roles...

  18. The Size of Activating and Inhibitory Killer Ig-like Receptor Nanoclusters Is Controlled by the Transmembrane Sequence and Affects Signaling

    Directory of Open Access Journals (Sweden)

    Anna Oszmiana

    2016-05-01

    Full Text Available Super-resolution microscopy has revealed that immune cell receptors are organized in nanoscale clusters at cell surfaces and immune synapses. However, mechanisms and functions for this nanoscale organization remain unclear. Here, we used super-resolution microscopy to compare the surface organization of paired killer Ig-like receptors (KIR, KIR2DL1 and KIR2DS1, on human primary natural killer cells and cell lines. Activating KIR2DS1 assembled in clusters two-fold larger than its inhibitory counterpart KIR2DL1. Site-directed mutagenesis established that the size of nanoclusters is controlled by transmembrane amino acid 233, a lysine in KIR2DS1. Super-resolution microscopy also revealed two ways in which the nanoscale clustering of KIR affects signaling. First, KIR2DS1 and DAP12 nanoclusters are juxtaposed in the resting cell state but coalesce upon receptor ligation. Second, quantitative super-resolution microscopy revealed that phosphorylation of the kinase ZAP-70 or phosphatase SHP-1 is favored in larger KIR nanoclusters. Thus, the size of KIR nanoclusters depends on the transmembrane sequence and affects downstream signaling.

  19. Activation of AMPA receptor promotes TNF-α release via the ROS-cSrc-NFκB signaling cascade in RAW264.7 macrophages

    International Nuclear Information System (INIS)

    The relationship between glutamate signaling and inflammation has not been well defined. This study aimed to investigate the role of AMPA receptor (AMPAR) in the expression and release of tumor necrosis factor-alpha (TNF-α) from macrophages and the underlying mechanisms. A series of approaches, including confocal microscopy, immunofluorescency, flow cytometry, ELISA and Western blotting, were used to estimate the expression of AMPAR and downstream signaling molecules, TNF-α release and reactive oxygen species (ROS) generation in the macrophage-like RAW264.7 cells. The results demonstrated that AMPAR was expressed in RAW264.7 cells. AMPA significantly enhanced TNF-α release from RAW264.7 cells, and this effect was abolished by CNQX (AMPAR antagonist). AMPA also induced elevation of ROS production, phosphorylation of c-Src and activation of nuclear factor (NF)-κB in RAW264.7 cells. Blocking c-Src by PP2, scavenging ROS by glutathione (GSH) or inhibiting NF-κB activation by pyrrolidine dithiocarbamate (PDTC) decreased TNF-α production from RAW264.7 cells. We concluded that AMPA promotes TNF-α release in RAW264.7 macrophages likely through the following signaling cascade: AMPAR activation → ROS generation → c-Src phosphorylation → NF-κB activation → TNF-α elevation. The study suggests that AMPAR may participate in macrophage activation and inflammation. - Highlights: • AMPAR is expressed in RAW264.7 macrophages and is upregulated by AMPA stimulation. • Activation of AMPAR stimulates TNF-α release in macrophages through the ROS-cSrc-NFκB signaling cascade. • Macrophage AMPAR signaling may play an important role in inflammation

  20. Activation of AMPA receptor promotes TNF-α release via the ROS-cSrc-NFκB signaling cascade in RAW264.7 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiu-Li [Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Ding, Fan [Office of Scientific R& D, Tsinghua University, Beijing (China); Li, Hui; Tan, Xiao-Qiu [Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Liu, Xiao [Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Cao, Ji-Min, E-mail: caojimin@126.com [Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Gao, Xue, E-mail: longlongnose@163.com [Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China)

    2015-05-29

    The relationship between glutamate signaling and inflammation has not been well defined. This study aimed to investigate the role of AMPA receptor (AMPAR) in the expression and release of tumor necrosis factor-alpha (TNF-α) from macrophages and the underlying mechanisms. A series of approaches, including confocal microscopy, immunofluorescency, flow cytometry, ELISA and Western blotting, were used to estimate the expression of AMPAR and downstream signaling molecules, TNF-α release and reactive oxygen species (ROS) generation in the macrophage-like RAW264.7 cells. The results demonstrated that AMPAR was expressed in RAW264.7 cells. AMPA significantly enhanced TNF-α release from RAW264.7 cells, and this effect was abolished by CNQX (AMPAR antagonist). AMPA also induced elevation of ROS production, phosphorylation of c-Src and activation of nuclear factor (NF)-κB in RAW264.7 cells. Blocking c-Src by PP2, scavenging ROS by glutathione (GSH) or inhibiting NF-κB activation by pyrrolidine dithiocarbamate (PDTC) decreased TNF-α production from RAW264.7 cells. We concluded that AMPA promotes TNF-α release in RAW264.7 macrophages likely through the following signaling cascade: AMPAR activation → ROS generation → c-Src phosphorylation → NF-κB activation → TNF-α elevation. The study suggests that AMPAR may participate in macrophage activation and inflammation. - Highlights: • AMPAR is expressed in RAW264.7 macrophages and is upregulated by AMPA stimulation. • Activation of AMPAR stimulates TNF-α release in macrophages through the ROS-cSrc-NFκB signaling cascade. • Macrophage AMPAR signaling may play an important role in inflammation.

  1. Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation

    Directory of Open Access Journals (Sweden)

    Gordon Richard

    2012-04-01

    Full Text Available Abstract Background The mechanisms of progressive dopaminergic neuronal loss in Parkinson’s disease (PD remain poorly understood, largely due to the complex etiology and multifactorial nature of disease pathogenesis. Several lines of evidence from human studies and experimental models over the last decade have identified neuroinflammation as a potential pathophysiological mechanism contributing to disease progression. Tumor necrosis factor α (TNF has recently emerged as the primary neuroinflammatory mediator that can elicit dopaminergic cell death in PD. However, the signaling pathways by which TNF mediates dopaminergic cell death have not been completely elucidated. Methods In this study we used a dopaminergic neuronal cell model and recombinant TNF to characterize intracellular signaling pathways activated during TNF-induced dopaminergic neurotoxicity. Etanercept and neutralizing antibodies to tumor necrosis factor receptor 1 (TNFR1 were used to block TNF signaling. We confirmed the results from our mechanistic studies in primary embryonic mesencephalic cultures and in vivo using the stereotaxic lipopolysaccharide (LPS model of nigral dopaminergic degeneration. Results TNF signaling in dopaminergic neuronal cells triggered the activation of protein kinase Cδ (PKCδ, an isoform of the novel PKC family, by caspase-3 and caspase-8 dependent proteolytic cleavage. Both TNFR1 neutralizing antibodies and the soluble TNF receptor Etanercept blocked TNF-induced PKCδ proteolytic activation. Proteolytic activation of PKCδ was accompanied by translocation of the kinase to the nucleus. Notably, inhibition of PKCδ signaling by small interfering (siRNA or overexpression of a PKCδ cleavage-resistant mutant protected against TNF-induced dopaminergic neuronal cell death. Further, primary dopaminergic neurons obtained from PKCδ knockout (−/− mice were resistant to TNF toxicity. The proteolytic activation of PKCδ in the mouse substantia nigra in the

  2. Cannabinoid receptor 2 expression modulates Gβ(1)γ(2) protein interaction with the activator of G protein signalling 2/dynein light chain protein Tctex-1.

    Science.gov (United States)

    Nagler, Marina; Palkowitsch, Lysann; Rading, Sebastian; Moepps, Barbara; Karsak, Meliha

    2016-01-01

    The activator of G protein signalling AGS2 (Tctex-1) forms protein complexes with Gβγ, and controls cell proliferation by regulating cell cycle progression. A direct interaction of Tctex-1 with various G protein-coupled receptors has been reported. Since the carboxyl terminal portion of CB2 carries a putative Tctex-1 binding motif, we investigated the potential interplay of CB2 and Tctex-1 in the absence and presence of Gβγ. The supposed interaction of cannabinoid receptor CB2 with Tctex-1 and the influence of CB2 on the formation of Tctex-1-Gβγ-complexes were studied by co- and/or immunoprecipitation experiments in transiently transfected HEK293 cells. The analysis on Tctex-1 protein was performed in the absence and presence of the ligands JWH 133, 2-AG, and AM 630, the protein biosynthesis inhibitor cycloheximide or the protein degradation blockers MG132, NH4Cl/leupeptin or bafilomycin. Our results show that CB2 neither directly nor indirectly via Gβγ interacts with Tctex-1, but competes with Tctex-1 in binding to Gβγ. The Tctex-1-Gβγ protein interaction was disrupted by CB2 receptor expression resulting in a release of Tctex-1 from the complex, and its degradation by the proteasome and partly by lysosomes. The decrease in Tctex-1 protein levels is induced by CB2 expression "dose-dependently" and is independent of stimulation by agonist or blocking by an inverse agonist treatment. The results suggest that CB2 receptor expression independent of its activation by agonists is sufficient to competitively disrupt Gβγ-Tctex-1 complexes, and to initiate Tctex-1 degradation. These findings implicate that CB2 receptor expression modifies the stability of intracellular protein complexes by a non-canonical pathway.

  3. Insulin glulisine: insulin receptor signaling characteristics in vivo.

    Science.gov (United States)

    Hennige, Anita M; Lehmann, Rainer; Weigert, Cora; Moeschel, Klaus; Schäuble, Myriam; Metzinger, Elisabeth; Lammers, Reiner; Häring, Hans-Ulrich

    2005-02-01

    In recent years, recombinant DNA technology has been used to design insulin molecules that overcome the limitations of regular insulin in mealtime supplementation. However, safety issues have been raised with these alternatives, as the alteration of the three-dimensional structure may alter the interaction with the insulin and/or IGF-I receptors and therefore lead to the activation of alternate metabolic as well as mitogenic signaling pathways. It is therefore essential to carefully study acute and long-term effects in a preclinical state, as insulin therapy is meant to be a lifelong treatment. In this study, we determined in vivo the insulin receptor signaling characteristics activated by insulin glulisine (Lys(B3), Glu(B29)) at the level of insulin receptor phosphorylation, insulin receptor substrate phosphorylation, and downstream signaling elements such as phosphatidylinositol (PI) 3-kinase, AKT, and mitogen-activated protein kinase. C57BL/6 mice were injected with insulin glulisine or regular insulin and Western blot analysis was performed for liver and muscle tissue. The extent and time course of insulin receptor phosphorylation and activation of downstream signaling elements after insulin glulisine treatment was similar to that of human regular insulin in vivo. Moreover, insulin signaling in hypothalamic tissue determined by PI 3-kinase activity was comparable. Therefore, insulin glulisine may be a useful tool for diabetes treatment. PMID:15677493

  4. Signal transduction through the IL-4 and insulin receptor families.

    Science.gov (United States)

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Rho-kinase signaling controls nucleocytoplasmic shuttling of class IIa Histone Deacetylase (HDAC7) and transcriptional activation of orphan nuclear receptor NR4A1

    Energy Technology Data Exchange (ETDEWEB)

    Compagnucci, Claudia; Barresi, Sabina [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Petrini, Stefania [Research Laboratories, Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Bertini, Enrico [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Zanni, Ginevra, E-mail: ginevra.zanni@opbg.net [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy)

    2015-04-03

    Rho-kinase (ROCK) has been well documented to play a key role in RhoA-induced actin remodeling. ROCK activation results in myosin light chain (MLC) phosphorylation either by direct action on MLC kinase (MLCK) or by inhibition of MLC phosphatase (MLCP), modulating actin–myosin contraction. We found that inhibition of the ROCK pathway in induced pluripotent stem cells, leads to nuclear export of HDAC7 and transcriptional activation of the orphan nuclear receptor NR4A1 while in cells with constitutive ROCK hyperactivity due to loss of function of the RhoGTPase activating protein Oligophrenin-1 (OPHN1), the orphan nuclear receptor NR4A1 is downregulated. Our study identify a new target of ROCK signaling via myosin phosphatase subunit (MYPT1) and Histone Deacetylase (HDAC7) at the nuclear level and provide new insights in the cellular functions of ROCK. - Highlights: • ROCK regulates nucleocytoplasmic shuttling of HDAC7 via phosphorylation of MYPT1. • Nuclear export of HDAC7 and upregulation of NR4A1 occurs with low ROCK activity. • High levels of ROCK activity due to OPHN1 loss of function downregulate NR4A1.

  6. Rho-kinase signaling controls nucleocytoplasmic shuttling of class IIa Histone Deacetylase (HDAC7) and transcriptional activation of orphan nuclear receptor NR4A1

    International Nuclear Information System (INIS)

    Rho-kinase (ROCK) has been well documented to play a key role in RhoA-induced actin remodeling. ROCK activation results in myosin light chain (MLC) phosphorylation either by direct action on MLC kinase (MLCK) or by inhibition of MLC phosphatase (MLCP), modulating actin–myosin contraction. We found that inhibition of the ROCK pathway in induced pluripotent stem cells, leads to nuclear export of HDAC7 and transcriptional activation of the orphan nuclear receptor NR4A1 while in cells with constitutive ROCK hyperactivity due to loss of function of the RhoGTPase activating protein Oligophrenin-1 (OPHN1), the orphan nuclear receptor NR4A1 is downregulated. Our study identify a new target of ROCK signaling via myosin phosphatase subunit (MYPT1) and Histone Deacetylase (HDAC7) at the nuclear level and provide new insights in the cellular functions of ROCK. - Highlights: • ROCK regulates nucleocytoplasmic shuttling of HDAC7 via phosphorylation of MYPT1. • Nuclear export of HDAC7 and upregulation of NR4A1 occurs with low ROCK activity. • High levels of ROCK activity due to OPHN1 loss of function downregulate NR4A1

  7. INSULIN ANALOGUES: ANALYSIS OF PROLIFERATIVE POTENCY AND CHARACTERIZATION OF RECEPTORS AND SIGNALLING PATHWAYS ACTIVATED IN HUMAN MAMMARY EPITHELIAL CELLS

    OpenAIRE

    Shukla, Ashish

    2009-01-01

    Insulin analogues have been developed with the aim to provide better glycaemic control to diabetic patients. They are generated by modifying the insulin backbone which, however, may alter relevant biochemical characteristics such as the affinity to insulin receptor and type I insulin-like growth factor receptor (IGF-IR), and the insulin receptor dissociation rate. As a result insulin analogues may exhibit stronger mitogenic potency than regular insulin. Normal mammary epithelial cells show hi...

  8. Interdependent epidermal growth factor receptor signalling and trafficking.

    Science.gov (United States)

    Jones, Sylwia; Rappoport, Joshua Z

    2014-06-01

    Epidermal growth factor (EGF) receptor (EGFR) signalling regulates diverse cellular functions, promoting cell proliferation, differentiation, migration, cell growth and survival. EGFR signalling is critical during embryogenesis, in particular in epithelial development, and disruption of the EGFR gene results in epithelial immaturity and perinatal death. EGFR signalling also functions during wound healing responses through accelerating wound re-epithelialisation, inducing cell migration, proliferation and angiogenesis. Upregulation of EGFR signalling is often observed in carcinomas and has been shown to promote uncontrolled cell proliferation and metastasis. Therefore aberrant EGFR signalling is a common target for anticancer therapies. Various reports indicate that EGFR signalling primarily occurs at the plasma membrane and EGFR degradation following endocytosis greatly attenuates signalling. Other studies argue that EGFR internalisation is essential for complete activation of downstream signalling cascades and that endosomes can serve as signalling platforms. The aim of this review is to discuss current understanding of intersection between EGFR signalling and trafficking. PMID:24681003

  9. Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory.

    Science.gov (United States)

    Li, P; Rial, D; Canas, P M; Yoo, J-H; Li, W; Zhou, X; Wang, Y; van Westen, G J P; Payen, M-P; Augusto, E; Gonçalves, N; Tomé, A R; Li, Z; Wu, Z; Hou, X; Zhou, Y; IJzerman, A P; PIJzerman, Ad; Boyden, E S; Cunha, R A; Qu, J; Chen, J-F

    2015-11-01

    Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and Alzheimer's disease through the antagonism of adenosine A2A receptors (A2ARs). To test if A2AR activation in the hippocampus is actually sufficient to impair memory function and to begin elucidating the intracellular pathways operated by A2AR, we have developed a chimeric rhodopsin-A2AR protein (optoA2AR), which retains the extracellular and transmembrane domains of rhodopsin (conferring light responsiveness and eliminating adenosine-binding pockets) fused to the intracellular loop of A2AR to confer specific A2AR signaling. The specificity of the optoA2AR signaling was confirmed by light-induced selective enhancement of cAMP and phospho-mitogen-activated protein kinase (p-MAPK) (but not cGMP) levels in human embryonic kidney 293 (HEK293) cells, which was abolished by a point mutation at the C terminal of A2AR. Supporting its physiological relevance, optoA2AR activation and the A2AR agonist CGS21680 produced similar activation of cAMP and p-MAPK signaling in HEK293 cells, of p-MAPK in the nucleus accumbens and of c-Fos/phosphorylated-CREB (p-CREB) in the hippocampus, and similarly enhanced long-term potentiation in the hippocampus. Remarkably, optoA2AR activation triggered a preferential p-CREB signaling in the hippocampus and impaired spatial memory performance, while optoA2AR activation in the nucleus accumbens triggered MAPK signaling and modulated locomotor activity. This shows that the recruitment of intracellular A2AR signaling in the hippocampus is sufficient to trigger memory dysfunction. Furthermore, the demonstration that the biased A2AR signaling and functions depend on intracellular A2AR loops prompts the possibility of targeting the intracellular A2AR-interacting partners to selectively control different neuropsychiatric behaviors. PMID:25687775

  10. IL-1RI (interleukin-1 receptor type I signalling is essential for host defence and hemichannel activity during acute central nervous system bacterial infection

    Directory of Open Access Journals (Sweden)

    Tammy Kielian

    2012-04-01

    Full Text Available Staphylococcus aureus is a common aetiological agent of bacterial brain abscesses. We have previously established that a considerable IL-1 (interleukin-1 response is elicited immediately following S. aureus infection, where the cytokine can exert pleiotropic effects on glial activation and blood–brain barrier permeability. To assess the combined actions of IL-1α and IL-1β during CNS (central nervous system infection, host defence responses were evaluated in IL-1RI (IL-1 receptor type I KO (knockout animals. IL-1RI KO mice were exquisitely sensitive to intracerebral S. aureus infection, as demonstrated by enhanced mortality rates and bacterial burdens within the first 24 h following pathogen exposure compared with WT (wild-type animals. Loss of IL-1RI signalling also dampened the expression of select cytokines and chemokines, concomitant with significant reductions in neutrophil and macrophage infiltrates into the brain. In addition, the opening of astrocyte hemichannels during acute infection was shown to be dependent on IL-1RI activity. Collectively, these results demonstrate that IL-1RI signalling plays a pivotal role in the genesis of immune responses during the acute stage of brain abscess development through S. aureus containment, inflammatory mediator production, peripheral immune cell recruitment, and regulation of astrocyte hemichannel activity. Taken in the context of previous studies with MyD88 (myeloid differentiation primary response gene 88 and TLR2 (Toll-like receptor 2 KO animals, the current report advances our understanding of MyD88-dependent cascades and implicates IL-1RI signalling as a major antimicrobial effector pathway during acute brain-abscess formation.

  11. 17-Beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30.

    Science.gov (United States)

    Kleuser, Burkhard; Malek, Daniela; Gust, Ronald; Pertz, Heinz H; Potteck, Henrik

    2008-12-01

    Breast cancer development and breast cancer progression involves the deregulation of growth factors leading to uncontrolled cellular proliferation, invasion and metastasis. Transforming growth factor (TGF)-beta plays a crucial role in breast cancer because it has the potential to act as either a tumor suppressor or a pro-oncogenic chemokine. A cross-communication between the TGF-beta signaling network and estrogens has been postulated, which is important for breast tumorigenesis. Here, we provide evidence that inhibition of TGF-beta signaling is associated with a rapid estrogen-dependent nongenomic action. Moreover, we were able to demonstrate that estrogens disrupt the TGF-beta signaling network as well as TGF-beta functions in breast cancer cells via the G protein-coupled receptor 30 (GPR30). Silencing of GPR30 in MCF-7 cells completely reduced the ability of 17-beta-estradiol (E2) to inhibit the TGF-beta pathway. Likewise, in GPR30-deficient MDA-MB-231 breast cancer cells, E2 achieved the ability to suppress TGF-beta signaling only after transfection with GPR30-encoding plasmids. It is most interesting that the antiestrogen fulvestrant (ICI 182,780), which possesses agonistic activity at the GPR30, also diminished TGF-beta signaling. Further experiments attempted to characterize the molecular mechanism by which activated GPR30 inhibits the TGF-beta pathway. Our results indicate that GPR30 induces the stimulation of the mitogen-activated protein kinases (MAPKs), which interferes with the activation of Smad proteins. Inhibition of MAPK activity prevented the ability of E2 from suppressing TGF-beta signaling. These findings are of great clinical relevance, because down-regulation of TGF-beta signaling is associated with the development of breast cancer resistance in response to antiestrogens.

  12. Heterotrimeric G Proteins Serve as a Converging Point in Plant Defense Signaling Activated by Multiple Receptor-Like Kinases1[C][W][OA

    Science.gov (United States)

    Liu, Jinman; Ding, Pingtao; Sun, Tongjun; Nitta, Yukino; Dong, Oliver; Huang, Xingchuan; Yang, Wei; Li, Xin; Botella, José Ramón; Zhang, Yuelin

    2013-01-01

    In fungi and metazoans, extracellular signals are often perceived by G-protein-coupled receptors (GPCRs) and transduced through heterotrimeric G-protein complexes to downstream targets. Plant heterotrimeric G proteins are also involved in diverse biological processes, but little is known about their upstream receptors. Moreover, the presence of bona fide GPCRs in plants is yet to be established. In Arabidopsis (Arabidopsis thaliana), heterotrimeric G protein consists of one Gα subunit (G PROTEIN α-SUBUNIT1), one Gβ subunit (ARABIDOPSIS G PROTEIN β-SUBUNIT1 [AGB1]), and three Gγs subunits (ARABIDOPSIS G PROTEIN γ-SUBUNIT1 [AGG1], AGG2, and AGG3). We identified AGB1 from a suppressor screen of BAK1-interacting receptor-like kinase1-1 (bir1-1), a mutant that activates cell death and defense responses mediated by the receptor-like kinase (RLK) SUPPRESSOR OF BIR1-1. Mutations in AGB1 suppress the cell death and defense responses in bir1-1 and transgenic plants overexpressing SUPPRESSOR OF BIR1-1. In addition, agb1 mutant plants were severely compromised in immunity mediated by three other RLKs, FLAGELLIN-SENSITIVE2 (FLS2), Elongation Factor-TU RECEPTOR (EFR), and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1), respectively. By contrast, G PROTEIN α-SUBUNIT1 is not required for either cell death in bir1-1 or pathogen-associated molecular pattern-triggered immunity mediated by FLS2, EFR, and CERK1. Further analysis of agg1 and agg2 mutant plants indicates that AGG1 and AGG2 are also required for pathogen-associated molecular pattern-triggered immune responses mediated by FLS2, EFR, and CERK1, as well as cell death and defense responses in bir1-1. We hypothesize that the Arabidopsis heterotrimeric G proteins function as a converging point of plant defense signaling by mediating responses initiated by multiple RLKs, which may fulfill equivalent roles to GPCRs in fungi and animals. PMID:23424249

  13. Activation of ERK, JNK, Akt, and G-protein coupled signaling by hybrid angiotensin II AT1/bradykinin B2 receptors expressed in HEK-293 cells

    DEFF Research Database (Denmark)

    Yu, Jun; Lubinsky, David; Tsomaia, Natia;

    2007-01-01

    Bradykinin (BK) and angiotensin II (AngII) often have opposite roles in cardiovascular diseases. Our aim here was to construct hybrid receptors which bind AngII but signal as BK. Various sequences of the intracellular face of the AngII type I receptor, AT1R, were replaced with corresponding seque...

  14. RAG-mediated DNA double-strand breaks activate a cell type-specific checkpoint to inhibit pre-B cell receptor signals.

    Science.gov (United States)

    Bednarski, Jeffrey J; Pandey, Ruchi; Schulte, Emily; White, Lynn S; Chen, Bo-Ruei; Sandoval, Gabriel J; Kohyama, Masako; Haldar, Malay; Nickless, Andrew; Trott, Amanda; Cheng, Genhong; Murphy, Kenneth M; Bassing, Craig H; Payton, Jacqueline E; Sleckman, Barry P

    2016-02-01

    DNA double-strand breaks (DSBs) activate a canonical DNA damage response, including highly conserved cell cycle checkpoint pathways that prevent cells with DSBs from progressing through the cell cycle. In developing B cells, pre-B cell receptor (pre-BCR) signals initiate immunoglobulin light (Igl) chain gene assembly, leading to RAG-mediated DNA DSBs. The pre-BCR also promotes cell cycle entry, which could cause aberrant DSB repair and genome instability in pre-B cells. Here, we show that RAG DSBs inhibit pre-BCR signals through the ATM- and NF-κB2-dependent induction of SPIC, a hematopoietic-specific transcriptional repressor. SPIC inhibits expression of the SYK tyrosine kinase and BLNK adaptor, resulting in suppression of pre-BCR signaling. This regulatory circuit prevents the pre-BCR from inducing additional Igl chain gene rearrangements and driving pre-B cells with RAG DSBs into cycle. We propose that pre-B cells toggle between pre-BCR signals and a RAG DSB-dependent checkpoint to maintain genome stability while iteratively assembling Igl chain genes. PMID:26834154

  15. SOCS proteins in regulation of receptor tyrosine kinase signaling

    DEFF Research Database (Denmark)

    Kazi, Julhash U.; Kabir, Nuzhat N.; Flores Morales, Amilcar;

    2014-01-01

    signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar...... proteins, SOCS1-7, and cytokine-inducible SH2-containing protein (CIS). A key feature of this family of proteins is the presence of an SH2 domain and a SOCS box. Recent studies suggest that SOCS proteins also play a role in RTK signaling. Activation of RTK results in transcriptional activation of SOCS......-encoding genes. These proteins associate with RTKs through their SH2 domains and subsequently recruit the E3 ubiquitin machinery through the SOCS box, and thereby limit receptor stability by inducing ubiquitination. In a similar fashion, SOCS proteins negatively regulate mitogenic signaling by RTKs. It is also...

  16. Identification of tyrosine residues in the intracellular domain of the growth hormone receptor required for transcriptional signaling and Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, L. H.; Wang, X.; Kopchick, J J;

    1996-01-01

    The binding of growth hormone (GH) to its receptor results in its dimerization followed by activation of Jak2 kinase and tyrosine phosphorylation of the GH receptor itself, as well as Jak2 and the transcription factors Stat1, -3, and -5. In order to study the role of GH receptor tyrosine phosphor...

  17. Activation of α7 nicotinic acetylcholine receptor decreases on-site mortality in crush syndrome through insulin signaling-Na/K-ATPase pathway

    Directory of Open Access Journals (Sweden)

    Bo-Shi eFan

    2016-03-01

    Full Text Available On-site mortality in crush syndrome remains high due to lack of effective drugs based on definite diagnosis. Anisodamine is widely used in China for treatment of shock, and activation of α7 nicotinic acetylcholine receptor (α7nAChR mediates such antishock effect. The present work was designed to test whether activation of α7nAChR with anisodamine decreased mortality in crush syndrome shortly after decompression. Sprague-Dawley rats and C57BL/6 mice with crush syndrome were injected with anisodamine (20 mg/kg and 28 mg/kg respectively, i.p. 30 min before decompression. Survival time, serum potassium, insulin, and glucose levels were observed shortly after decompression. Involvement of α7nAChR was verified with methyllycaconitine (selective α7nAChR antagonist and PNU282987 (selective α7nAChR agonist, or in α7nAChR knockout mice. Effect of anisodamine was also appraised in C2C12 myotubes. Anisodamine reduced mortality and serum potassium and enhanced insulin sensitivity shortly after decompression in animals with crush syndrome, and PNU282987 exerted similar effects. Such effects were counteracted by methyllycaconitine or in α7nAChR knockout mice. Mortality and serum potassium in rats with hyperkalemia were also reduced by anisodamine. Phosphorylation of Na/K-ATPase was enhanced by anisodamine in C2C12 myotubes. Inhibition of tyrosine kinase on insulin receptor, phosphoinositide 3-kinase, mammalian target of rapamycin, signal transducer and activator of transcription 3, and Na/K-ATPase counteracted the effect of anisodamine on extracellular potassium. These findings demonstrated that activation of α7nAChR could decrease on-site mortality in crush syndrome, at least in part based on the decline of serum potassium through insulin signaling-Na/K-ATPase pathway.

  18. A selective estrogen receptor modulator inhibits TNF-alpha-induced apoptosis by activating ERK1/2 signaling pathway in vascular endothelial cells.

    Science.gov (United States)

    Yu, Jing; Eto, Masato; Akishita, Masahiro; Okabe, Tetsuro; Ouchi, Yasuyoshi

    2009-07-01

    Tumor necrosis factor (TNF-alpha) is a pleiotropic cytokine exerting both inflammatory and cell death activity and is thought to play a role in the pathogenesis of atherosclerosis. The present study was designed to examine whether the raloxifene analogue, LY117018 could inhibit TNF-alpha-induced apoptosis in vascular endothelial cells and to clarify the involved mechanisms. Apoptosis of endothelial cells was determined by DNA fragmentation assay and the activation of caspase-3. LY117018 significantly inhibited TNF-alpha-induced caspase-3 activation and cell DNA fragmentation levels in bovine carotid artery endothelial cells. The inhibitory effect of LY117018 was abolished by an estrogen receptor antagonist ICI 182,780. p38 MAPK, JNK, ERK1/2 and Akt have been shown to act as apoptotic or anti-apoptotic signals. TNF-alpha stimulated the phosphorylation levels of p38 MAPK, JNK, ERK1/2 and Akt in vascular endothelial cells. TNF-alpha-induced apoptosis was significantly decreased by SB203580, a p38 MAPK inhibitor or SP600125, a JNK inhibitor, but was enhanced by an ERK1/2 pathway inhibitor, PD98059 or a PI3-kinase/Akt pathway inhibitor, wortmannin. The anti-apoptotic effect of LY117018 was abrogated only by PD98059 but was not affected by the inhibitors for p38 MAPK, JNK, or Akt. LY117018 stimulated the further increase in phosphorylation of ERK1/2 in TNF-alpha treated endothelial cells but it did not affect phosphorylation levels of p38 MAPK, JNK or Akt. These results suggest that LY 110718 prevents caspase-3 dependent apoptosis induced by TNF-alpha in vascular endothelial cells through activation of the estrogen receptors and the ERK1/2 signaling pathway. PMID:19275968

  19. Electrospun Gelatin/β-TCP Composite Nanofibers Enhance Osteogenic Differentiation of BMSCs and In Vivo Bone Formation by Activating Ca2+-Sensing Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Xuehui Zhang

    2015-01-01

    Full Text Available Calcium phosphate- (CaP- based composite scaffolds have been used extensively for the bone regeneration in bone tissue engineering. Previously, we developed a biomimetic composite nanofibrous membrane of gelatin/β-tricalcium phosphate (TCP and confirmed their biological activity in vitro and bone regeneration in vivo. However, how these composite nanofibers promote the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs is unknown. Here, gelatin/β-TCP composite nanofibers were fabricated by incorporating 20 wt% β-TCP nanoparticles into electrospun gelatin nanofibers. Electron microscopy showed that the composite β-TCP nanofibers had a nonwoven structure with a porous network and a rough surface. Spectral analyses confirmed the presence and chemical stability of the β-TCP and gelatin components. Compared with pure gelatin nanofibers, gelatin/β-TCP composite nanofibers caused increased cell attachment, proliferation, alkaline phosphatase activity, and osteogenic gene expression in rat BMSCs. Interestingly, the expression level of the calcium-sensing receptor (CaSR was significantly higher on the composite nanofibrous scaffolds than on pure gelatin. For rat calvarial critical sized defects, more extensive osteogenesis and neovascularization occurred in the composite scaffolds group compared with the gelatin group. Thus, gelatin/β-TCP composite scaffolds promote osteogenic differentiation of BMSCs in vitro and bone regeneration in vivo by activating Ca2+-sensing receptor signaling.

  20. NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss.

    Science.gov (United States)

    Mukherjea, Debashree; Jajoo, Sarvesh; Sheehan, Kelly; Kaur, Tejbeer; Sheth, Sandeep; Bunch, Jennifer; Perro, Christopher; Rybak, Leonard P; Ramkumar, Vickram

    2011-03-15

    Transient receptor potential vanilloid 1 (TRPV1) is implicated in cisplatin ototoxicity. Activation of this channel by cisplatin increases reactive oxygen species generation, which contribute to loss of outer hair cells in the cochlea. Knockdown of TRPV1 by short interfering RNA protected against cisplatin ototoxicity. In this study, we examined the mechanism underlying TRPV1-mediated ototoxicity using cultured organ of Corti transformed cells (UB/OC-1) and rats. Trans-tympanic injections of capsaicin produced transient hearing loss within 24 h, which recovered by 72 h. In UB/OC-1 cells, capsaicin increased NOX3 NADPH oxidase activity and activation of signal transducer and activator of transcription 1 (STAT1). Intratympanic administration of capsaicin transiently increased STAT1 activity and expression of downstream proinflammatory molecules. Capsaicin produced a transient increase in CD14-positive inflammatory cells into the cochlea, which mimicked the temporal course of STAT1 activation but did not alter the expression of apoptotic genes or damage to outer hair cells. In addition, trans-tympanic administration of STAT1 short interfering RNA protected against capsaicin-induced hearing loss. These data suggest that activation of TRPV1 mediates temporary hearing loss by initiating an inflammatory process in the cochlea via activation of NOX3 and STAT1. Thus, these proteins represent reasonable targets for ameliorating hearing loss. PMID:20712533

  1. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    Science.gov (United States)

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  2. Signal Transducer and Activator of Transcription (Stat)-Induced Stat Inhibitor 1 (Ssi-1)/Suppressor of Cytokine Signaling 1 (Socs1) Inhibits Insulin Signal Transduction Pathway through Modulating Insulin Receptor Substrate 1 (Irs-1) Phosphorylation

    OpenAIRE

    Kawazoe, Yoshinori; Naka, Tetsuji; Fujimoto, Minoru; Kohzaki, Hidetsugu; Morita, Yoshiaki; Narazaki, Masashi; Okumura, Kohichi; Saitoh, Hiroshi; Nakagawa, Reiko; Uchiyama, Yasuo; Akira, Shizuo; Kishimoto, Tadamitsu

    2001-01-01

    Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1) is known to function as a negative feedback regulator of cytokine signaling, but it is unclear whether it is involved in other biological events. Here, we show that SSI-1 participates and plays an important role in the insulin signal transduction pathway. SSI-1–deficient mice showed a significantly low level of blood sugar. While the forced expression of SSI-1 reduced the phosphorylation level of insulin ...

  3. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression

    OpenAIRE

    Hung, Liang-Yi; Tseng, Joseph T.; Lee, Yi-Chao; Xia, Weiya; Wang, Ying-Nai; Wu, Min-Li; Chuang, Yu-Hsuan; Lai, Chein-Hsien; Chang, Wen-Chang

    2008-01-01

    Loss of the maintenance of genetic material is a critical step leading to tumorigenesis. It was reported that overexpression of Aurora-A and the constitutive activation of the epidermal growth factor (EGF) receptor (EGFR) are implicated in chromosome instability. In this study, we examined that when cells treated with EGF result in centrosome amplification and microtubule disorder, which are critical for genetic instability. Interestingly, the expression of Aurora-A was also increased by EGF ...

  4. Implantation serine proteinase 2 is a monomeric enzyme with mixed serine proteolytic activity and can silence signalling via proteinase activated receptors.

    Science.gov (United States)

    Sharma, Navneet; Fahr, Jochen; Renaux, Bernard; Saifeddine, Mahmoud; Kumar, Rajeev; Nishikawa, Sandra; Mihara, Koichiro; Ramachandran, Rithwik; Hollenberg, Morley D; Rancourt, Derrick E

    2013-12-01

    Implantation serine proteinase 2 (ISP2), a S1 family serine proteinase, is known for its role in the critical processes of embryo hatching and implantation in the mouse uterus. Native implantation serine proteinases (ISPs) are co-expressed and co-exist as heterodimers in uterine and blastocyst tissues. The ISP1-ISP2 enzyme complex shows trypsin-like substrate specificity. In contrast, we found that ISP2, isolated as a 34 kDa monomer from a Pichia pastoris expression system, exhibited a mixed serine proteolytic substrate specificity, as determined by a phage display peptide cleavage approach and verified by the in vitro cleavage of synthetic peptides. Based upon the peptide sequence substrate selectivity, a database search identified many potential ISP2 targets of physiological relevance, including the proteinase activated receptor 2 (PAR2). The in vitro cleavage studies with PAR2-derived peptides confirmed the mixed substrate specificity of ISP2. Treatment of cell lines expressing proteinase-activated receptors (PARs) 1, 2, and 4 with ISP2 prevented receptor activation by either thrombin (PARs 1 and 4) or trypsin (PAR2). The disarming and silencing of PARs by ISP2 may play a role in successful embryo implantation.

  5. Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling.

    Science.gov (United States)

    Avanzato, D; Genova, T; Fiorio Pla, A; Bernardini, M; Bianco, S; Bussolati, B; Mancardi, D; Giraudo, E; Maione, F; Cassoni, P; Castellano, I; Munaron, L

    2016-01-01

    Purinergic signaling is involved in inflammation and cancer. Extracellular ATP accumulates in tumor interstitium, reaching hundreds micromolar concentrations, but its functional role on tumor vasculature and endothelium is unknown. Here we show that high ATP doses (>20 μM) strongly inhibit migration of endothelial cells from human breast carcinoma (BTEC), but not of normal human microvascular EC. Lower doses (1-10 mm result ineffective. The anti-migratory activity is associated with cytoskeleton remodeling and is significantly prevented by hypoxia. Pharmacological and molecular evidences suggest a major role for P2X7R and P2Y11R in ATP-mediated inhibition of TEC migration: selective activation of these purinergic receptors by BzATP mimics the anti-migratory effect of ATP, which is in turn impaired by their pharmacological or molecular silencing. Downstream pathway includes calcium-dependent Adenilyl Cyclase 10 (AC10) recruitment, cAMP release and EPAC-1 activation. Notably, high ATP enhances TEC-mediated attraction of human pericytes, leading to a decrease of endothelial permeability, a hallmark of vessel normalization. Finally, we provide the first evidence of in vivo P2X7R expression in blood vessels of murine and human breast carcinoma. In conclusion, we have identified a purinergic pathway selectively acting as an antiangiogenic and normalizing signal for human tumor-derived vascular endothelium. PMID:27586846

  6. Relaxin Family Peptide Receptors – former orphans reunite with their parent ligands to activate multiple signalling pathways

    OpenAIRE

    Halls, M L; van der Westhuizen, E T; Bathgate, R A D; Summers, R. J.

    2007-01-01

    The relaxin family peptides, although structurally closely related to insulin, act on a group of four G protein-coupled receptors now known as Relaxin Family Peptide (RXFP) Receptors. The leucine-rich repeat containing RXFP1 and RXFP2 and the small peptide-like RXFP3 and RXFP4 are the physiological targets for relaxin, insulin-like (INSL) peptide 3, relaxin-3 and INSL5, respectively. RXFP1 and RXFP2 have at least two binding sites – a high-affinity site in the leucine-rich repeat region of th...

  7. Evolution of retinoic acid receptors and retinoic acid signaling.

    Science.gov (United States)

    Gutierrez-Mazariegos, Juliana; Schubert, Michael; Laudet, Vincent

    2014-01-01

    Retinoic acid (RA) is a vitamin A-derived morphogen controlling important developmental processes in vertebrates, and more generally in chordates, including axial patterning and tissue formation and differentiation. In the embryo, endogenous RA levels are controlled by RA synthesizing and degrading enzymes and the RA signal is transduced by two retinoid receptors: the retinoic acid receptor (RAR) and the retinoid X receptor (RXR). Both RAR and RXR are members of the nuclear receptor superfamily of ligand-activated transcription factors and mainly act as heterodimers to activate the transcription of target genes in the presence of their ligand, all-trans RA. This signaling pathway was long thought to be a chordate innovation, however, recent findings of gene homologs involved in RA signaling in the genomes of a wide variety of non-chordate animals, including ambulacrarians (sea urchins and acorn worms) and lophotrochozoans (annelids and mollusks), challenged this traditional view and suggested that the RA signaling pathway might have a more ancient evolutionary origin than previously thought. In this chapter, we discuss the evolutionary history of the RA signaling pathway, and more particularly of the RARs, which might have experienced independent gene losses and duplications in different animal lineages. In sum, the available data reveal novel insights into the origin of the RA signaling pathway as well as into the evolutionary history of the RARs. PMID:24962881

  8. Receptor downregulation and desensitization enhance the information processing ability of signaling receptors

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Wiley, H. S.; Resat, Haluk

    2007-11-09

    The activation of cell surface receptors in addition to initiating signaling events also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (receptor downregulation) or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of “adaptation” wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from “over-responding” to the ligand. Here we use the epidermal growth factor receptor (EGFR) and G-protein coupled receptors (GPCR) as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli. We show that downregulation and desensitization mechanisms can lead to tight and efficient input-output coupling thereby ensuring synchronous processing of ligand inputs. Frequency response analysis indicates that upstream elements of the EGFR and GPCR networks behave like low-pass filters. Receptor downregulation and desensitization increase the filter bandwidth thereby enabling the receptor systems to decode inputs in a wider frequency range. Further, system-theoretic analysis reveals that the receptor systems are analogous to classical mechanical over-damped oscillators. This analogy enables us to describe downregulation and desensitization as phenomena that make the systems more resilient in responding to ligand perturbations thereby improving the stability of the system resting state. We hypothesize that, in addition to serving as mechanisms for adaptation, receptor downregulation and desensitization play a critical role in temporal information processing.

  9. Etk/Bmx regulates proteinase-activated-receptor1 (PAR1 in breast cancer invasion: signaling partners, hierarchy and physiological significance.

    Directory of Open Access Journals (Sweden)

    Irit Cohen

    Full Text Available BACKGROUND: While protease-activated-receptor 1 (PAR(1 plays a central role in tumor progression, little is known about the cell signaling involved. METHODOLOGY/PRINCIPAL FINDINGS: We show here the impact of PAR(1 cellular activities using both an orthotopic mouse mammary xenograft and a colorectal-liver metastasis model in vivo, with biochemical analyses in vitro. Large and highly vascularized tumors were generated by cells over-expressing wt hPar1, Y397Z hPar1, with persistent signaling, or Y381A hPar1 mutant constructs. In contrast, cells over-expressing the truncated form of hPar1, which lacks the cytoplasmic tail, developed small or no tumors, similar to cells expressing empty vector or control untreated cells. Antibody array membranes revealed essential hPar1 partners including Etk/Bmx and Shc. PAR(1 activation induces Etk/Bmx and Shc binding to the receptor C-tail to form a complex. Y/A mutations in the PAR(1 C-tail did not prevent Shc-PAR(1 association, but enhanced the number of liver metastases compared with the already increased metastases obtained with wt hPar1. We found that Etk/Bmx first binds via the PH domain to a region of seven residues, located between C378-S384 in PAR(1 C-tail, enabling subsequent Shc association. Importantly, expression of the hPar1-7A mutant form (substituted A, residues 378-384, which is incapable of binding Etk/Bmx, resulted in inhibition of invasion through Matrigel-coated membranes. Similarly, knocking down Etk/Bmx inhibited PAR(1-induced MDA-MB-435 cell migration. In addition, intact spheroid morphogenesis of MCF10A cells is markedly disrupted by the ectopic expression of wt hPar1. In contrast, the forced expression of the hPar1-7A mutant results in normal ball-shaped spheroids. Thus, by preventing binding of Etk/Bmx to PAR(1 -C-tail, hPar1 oncogenic properties are abrogated. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration that a cytoplasmic portion of the PAR(1 C-tail functions as a scaffold

  10. Cell surface-bound TIMP3 induces apoptosis in mesenchymal Cal78 cells through ligand-independent activation of death receptor signaling and blockade of survival pathways.

    Directory of Open Access Journals (Sweden)

    Christina Koers-Wunrau

    Full Text Available BACKGROUND: The matrix metalloproteinases (MMPs and their endogenous regulators, the tissue inhibitor of metalloproteinases (TIMPs 1-4 are responsible for the physiological remodeling of the extracellular matrix (ECM. Among all TIMPs, TIMP3 appears to play a unique role since TIMP3 is a secreted protein and, unlike the other TIMP family members, is tightly bound to the ECM. Moreover TIMP3 has been shown to be able to induce apoptotic cell death. As little is known about the underlying mechanisms, we set out to investigate the pro-apoptotic effect of TIMP3 in human mesenchymal cells. METHODOLOGY/PRINCIPAL FINDINGS: Lentiviral overexpression of TIMP3 in mesenchymal cells led to a strong dose-dependent induction of ligand-independent apoptosis as reflected by a five-fold increase in caspase 3 and 7 activity compared to control (pLenti6/V5-GW/lacZ or uninfected cells, whereas exogenous TIMP3 failed to induce apoptosis. Concordantly, increased cleavage of death substrate PARP and the caspases 3 and 7 was observed in TIMP3 overexpressing cultures. Notably, activation of caspase-8 but not caspase-9 was observed in TIMP3-overexpressing cells, indicating a death receptor-dependent mechanism. Moreover, overexpression of TIMP3 led to a further induction of apoptosis after stimulation with TNF-alpha, FasL and TRAIL. Most interestingly, TIMP3-overexpression was associated with a decrease in phosphorylation of cRaf, extracellular signal-regulated protein kinase (Erk1/2, ribosomal S6 kinase (RSK1 and Akt and serum deprivation of TIMP3-overexpressing cells resulted in a distinct enhancement of apoptosis, pointing to an impaired signaling of serum-derived survival factors. Finally, heparinase treatment of heparan sulfate proteoglycans led to the release of TIMP3 from the surface of overexpressing cells and to a significant decrease in apoptosis indicating that the binding of TIMP3 is necessary for apoptosis induction. CONCLUSION: The results demonstrate that

  11. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    International Nuclear Information System (INIS)

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  12. The poly-γ-d-glutamic acid capsule surrogate of the Bacillus anthracis capsule induces nitric oxide production via the platelet activating factor receptor signaling pathway.

    Science.gov (United States)

    Lee, Hae-Ri; Jeon, Jun Ho; Park, Ok-Kyu; Chun, Jeong-Hoon; Park, Jungchan; Rhie, Gi-Eun

    2015-12-01

    The poly-γ-d-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis, confers protection of the bacillus from phagocytosis and allows its unimpeded growth in the host. PGA capsules released from B. anthracis are associated with lethal toxin in the blood of experimentally infected animals and enhance the cytotoxic effect of lethal toxin on macrophages. In addition, PGA capsule itself activates macrophages and dendritic cells to produce proinflammatory cytokine such as IL-1β, indicating multiple roles of PGA capsule in anthrax pathogenesis. Here we report that PGA capsule of Bacillus licheniformis, a surrogate of B. anthracis capsule, induces production of nitric oxide (NO) in RAW264.7 cells and bone marrow-derived macrophages. NO production was induced by PGA in a dose-dependent manner and was markedly reduced by inhibitors of inducible NO synthase (iNOS), suggesting iNOS-dependent production of NO. Induction of NO production by PGA was not observed in macrophages from TLR2-deficient mice and was also substantially inhibited in RAW264.7 cells by pretreatment of TLR2 blocking antibody. Subsequently, the downstream signaling events such as ERK, JNK and p38 of MAPK pathways as well as NF-κB activation were required for PGA-induced NO production. In addition, the induced NO production was significantly suppressed by treatment with antagonists of platelet activating factor receptor (PAFR) or PAFR siRNA, and mediated through PAFR/Jak2/STAT-1 signaling pathway. These findings suggest that PGA capsule induces NO production in macrophages by triggering both TLR2 and PAFR signaling pathways which lead to activation of NF-kB and STAT-1, respectively. PMID:26350415

  13. Activation of the SPHK/S1P signalling pathway is coupled to muscarinic receptor-dependent regulation of peripheral airways

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang

    2005-05-01

    Full Text Available Abstract Background In peripheral airways, acetylcholine induces contraction via activation of muscarinic M2-and M3-receptor subtypes (M2R and M3R. Cholinergic hypersensitivity is associated with chronic obstructive pulmonary disease and asthma, and therefore the identification of muscarinic signaling pathways are of great therapeutic interest. A pathway that has been shown to be activated via MR and to increase [Ca2+]i includes the activation of sphingosine kinases (SPHK and the generation of the bioactive sphingolipid sphingosine 1-phosphate (S1P. Whether the SPHK/S1P signaling pathway is integrated in the muscarinic control of peripheral airways is not known. Methods To address this issue, we studied precision cut lung slices derived from FVB and M2R-KO and M3R-KO mice. Results In peripheral airways of FVB, wild-type, and MR-deficient mice, SPHK1 was mainly localized to smooth muscle. Muscarine induced a constriction in all investigated mouse strains which was reduced by inhibition of SPHK using D, L-threo-dihydrosphingosine (DHS and N, N-dimethyl-sphingosine (DMS but not by N-acetylsphingosine (N-AcS, a structurally related agent that does not affect SPHK function. The initial phase of constriction was nearly absent in peripheral airways of M3R-KO mice when SPHK was inhibited by DHS and DMS but was unaffected in M2R-KO mice. Quantitative RT-PCR revealed that the disruption of the M2R and M3R genes had no significant effect on the expression levels of the SPHK1-isoform in peripheral airways. Conclusion These results demonstrate that the SPHK/S1P signaling pathway contributes to cholinergic constriction of murine peripheral airways. In addition, our data strongly suggest that SPHK is activated via the M2R. Given the important role of muscarinic mechanisms in pulmonary disease, these findings should be of considerable therapeutic relevance.

  14. The poly-γ-d-glutamic acid capsule surrogate of the Bacillus anthracis capsule induces nitric oxide production via the platelet activating factor receptor signaling pathway.

    Science.gov (United States)

    Lee, Hae-Ri; Jeon, Jun Ho; Park, Ok-Kyu; Chun, Jeong-Hoon; Park, Jungchan; Rhie, Gi-Eun

    2015-12-01

    The poly-γ-d-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis, confers protection of the bacillus from phagocytosis and allows its unimpeded growth in the host. PGA capsules released from B. anthracis are associated with lethal toxin in the blood of experimentally infected animals and enhance the cytotoxic effect of lethal toxin on macrophages. In addition, PGA capsule itself activates macrophages and dendritic cells to produce proinflammatory cytokine such as IL-1β, indicating multiple roles of PGA capsule in anthrax pathogenesis. Here we report that PGA capsule of Bacillus licheniformis, a surrogate of B. anthracis capsule, induces production of nitric oxide (NO) in RAW264.7 cells and bone marrow-derived macrophages. NO production was induced by PGA in a dose-dependent manner and was markedly reduced by inhibitors of inducible NO synthase (iNOS), suggesting iNOS-dependent production of NO. Induction of NO production by PGA was not observed in macrophages from TLR2-deficient mice and was also substantially inhibited in RAW264.7 cells by pretreatment of TLR2 blocking antibody. Subsequently, the downstream signaling events such as ERK, JNK and p38 of MAPK pathways as well as NF-κB activation were required for PGA-induced NO production. In addition, the induced NO production was significantly suppressed by treatment with antagonists of platelet activating factor receptor (PAFR) or PAFR siRNA, and mediated through PAFR/Jak2/STAT-1 signaling pathway. These findings suggest that PGA capsule induces NO production in macrophages by triggering both TLR2 and PAFR signaling pathways which lead to activation of NF-kB and STAT-1, respectively.

  15. TLR2 Activation Limits Rhinovirus-Stimulated CXCL-10 by Attenuating IRAK-1-Dependent IL-33 Receptor Signaling in Human Bronchial Epithelial Cells.

    Science.gov (United States)

    Ganesan, Shyamala; Pham, Duc; Jing, Yaxun; Farazuddin, Mohammad; Hudy, Magdalena H; Unger, Benjamin; Comstock, Adam T; Proud, David; Lauring, Adam S; Sajjan, Uma S

    2016-09-15

    Airway epithelial cells are the major target for rhinovirus (RV) infection and express proinflammatory chemokines and antiviral cytokines that play a role in innate immunity. Previously, we demonstrated that RV interaction with TLR2 causes ILR-associated kinase-1 (IRAK-1) depletion in both airway epithelial cells and macrophages. Further, IRAK-1 degradation caused by TLR2 activation was shown to inhibit ssRNA-induced IFN expression in dendritic cells. Therefore, in this study, we examined the role of TLR2 and IRAK-1 in RV-induced IFN-β, IFN-λ1, and CXCL-10, which require signaling by viral RNA. In airway epithelial cells, blocking TLR2 enhanced RV-induced expression of IFNs and CXCL-10. By contrast, IRAK-1 inhibition abrogated RV-induced expression of CXCL-10, but not IFNs in these cells. Neutralization of IL-33 or its receptor, ST2, which requires IRAK-1 for signaling, inhibited RV-stimulated CXCL-10 expression. In addition, RV induced expression of both ST2 and IL-33 in airway epithelial cells. In macrophages, however, RV-stimulated CXCL-10 expression was primarily dependent on TLR2/IL-1R. Interestingly, in a mouse model of RV infection, blocking ST2 not only attenuated RV-induced CXCL-10, but also lung inflammation. Finally, influenza- and respiratory syncytial virus-induced CXCL-10 was also found to be partially dependent on IL-33/ST2/IRAK-1 signaling in airway epithelial cells. Together, our results indicate that RV stimulates CXCL-10 expression via the IL-33/ST2 signaling axis, and that TLR2 signaling limits RV-induced CXCL-10 via IRAK-1 depletion at least in airway epithelial cells. To our knowledge, this is the first report to demonstrate the role of respiratory virus-induced IL-33 in the induction of CXCL-10 in airway epithelial cells. PMID:27503209

  16. Signal transducer and activator of transcription-3 licenses Toll-like receptor 4-dependent interleukin (IL)-6 and IL-8 production via IL-6 receptor-positive feedback in endometrial cells.

    Science.gov (United States)

    Cronin, J G; Kanamarlapudi, V; Thornton, C A; Sheldon, I M

    2016-09-01

    Interleukin 6 (IL-6), acting via the IL-6 receptor (IL6R) and signal transducer and activator of transcription-3 (STAT3), limits neutrophil recruitment once bacterial infections are resolved. Bovine endometritis is an exemplar mucosal disease, characterized by sustained neutrophil infiltration and elevated IL-6 and IL-8, a neutrophil chemoattractant, following postpartum Gram-negative bacterial infection. The present study examined the impact of the IL6R/STAT3 signaling pathway on IL-8 production by primary endometrial cells in response to short- or long-term exposure to lipopolysaccharide (LPS) from Gram-negative bacteria. Tyrosine phosphorylation of STAT3 is required for DNA binding and expression of specific targets genes. Immunoblotting indicated constitutive tyrosine phosphorylation of STAT3 in endometrial cells was impeded by acute exposure to LPS. After 24 h exposure to LPS, STAT3 returned to a tyrosine phosphorylated state, indicating cross-talk between the Toll-like receptor 4 (TLR4) and the IL6R/STAT3 signaling pathways. This was confirmed by short interfering RNA targeting the IL6R, which abrogated the accumulation of IL-6 and IL-8, induced by LPS. Furthermore, there was a differential endometrial cell response, as the accumulation of IL-6 and IL-8 was dependent on STAT3, suppressor of cytokine signaling 3, and Src kinase signaling in stromal cells, but not epithelial cells. In conclusion, positive feedback through the IL6R amplifies LPS-induced IL-6 and IL-8 production in the endometrium. These findings provide a mechanistic insight into how elevated IL-6 concentrations in the postpartum endometrium during bacterial infection leads to marked and sustained neutrophil infiltration. PMID:26813342

  17. Penicillin binding proteins as danger signals: meningococcal penicillin binding protein 2 activates dendritic cells through Toll-like receptor 4.

    Directory of Open Access Journals (Sweden)

    Marcelo Hill

    Full Text Available Neisseria meningitidis is a human pathogen responsible for life-threatening inflammatory diseases. Meningococcal penicillin-binding proteins (PBPs and particularly PBP2 are involved in bacterial resistance to β-lactams. Here we describe a novel function for PBP2 that activates human and mouse dendritic cells (DC in a time and dose-dependent manner. PBP2 induces MHC II (LOGEC50 = 4.7 µg/ml ± 0.1, CD80 (LOGEC50 = 4.88 µg/ml ± 0.15 and CD86 (LOGEC50 = 5.36 µg/ml ± 0.1. This effect was abolished when DCs were co-treated with anti-PBP2 antibodies. PBP2-treated DCs displayed enhanced immunogenic properties in vitro and in vivo. Furthermore, proteins co-purified with PBP2 showed no effect on DC maturation. We show through different in vivo and in vitro approaches that this effect is not due to endotoxin contamination. At the mechanistic level, PBP2 induces nuclear localization of p65 NF-kB of 70.7 ± 5.1% cells versus 12 ± 2.6% in untreated DCs and needs TLR4 expression to mature DCs. Immunoprecipitation and blocking experiments showed thatPBP2 binds TLR4. In conclusion, we describe a novel function of meningococcal PBP2 as a pathogen associated molecular pattern (PAMP at the host-pathogen interface that could be recognized by the immune system as a danger signal, promoting the development of immune responses.

  18. Cocaine-induced changes in NMDA receptor signaling

    OpenAIRE

    Ortinski, Pavel I.

    2014-01-01

    Addictive states are often thought to rely on lasting modification of signaling at relevant synapses. A long-standing theory posits that activity at N-methyl-D-aspartate receptors (NMDARs) is a critical component of long-term synaptic plasticity in many brain areas. Indeed, NMDAR signaling has been found to play a role in the etiology of addictive states, in particular following cocaine exposure. However, no consensus is apparent with respect to the specific effects of cocaine exposure on NMD...

  19. Regulation of C3a Receptor Signaling in Human Mast Cells by G Protein Coupled Receptor Kinases

    OpenAIRE

    Qiang Guo; Hariharan Subramanian; Kshitij Gupta; Hydar Ali

    2011-01-01

    BACKGROUND: The complement component C3a activates human mast cells via its cell surface G protein coupled receptor (GPCR) C3aR. For most GPCRs, agonist-induced receptor phosphorylation leads to receptor desensitization, internalization as well as activation of downstream signaling pathways such as ERK1/2 phosphorylation. Previous studies in transfected COS cells overexpressing G protein coupled receptor kinases (GRKs) demonstrated that GRK2, GRK3, GRK5 and GRK6 participate in agonist-induced...

  20. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors α- and γ-mediated gene expression via liver fatty acid binding protein: A signaling path to the nucleus

    OpenAIRE

    Wolfrum, Christian; Borrmann, Carola M.; Börchers, Torsten; Spener, Friedrich

    2001-01-01

    Peroxisome proliferator-activated receptor α (PPARα) is a key regulator of lipid homeostasis in hepatocytes and target for fatty acids and hypolipidemic drugs. How these signaling molecules reach the nuclear receptor is not known; however, similarities in ligand specificity suggest the liver fatty acid binding protein (L-FABP) as a possible candidate. In localization studies using laser-scanning microscopy, we show that L-FABP and PPARα colocalize in the nucleus of...

  1. Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein-Coupled Receptor 120

    DEFF Research Database (Denmark)

    Prihandoko, Rudi; Alvarez-Curto, Elisa; Hudson, Brian D;

    2016-01-01

    of these phosphoacceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation. Rather, an inhibitor of Gq/11proteins completely prevented receptor signaling to ERK1/2. By contrast, the recruitment...

  2. AT(1) receptor Gαq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the β2-adrenergic receptor

    DEFF Research Database (Denmark)

    Christensen, Gitte Lund; Knudsen, Steen; Schneider, Mikael;

    2011-01-01

    of Gαq protein-dependent and -independent regulation of AT(1)R mediated gene expression. We found angiotensin II to regulate 212 genes, whereas Gαq-independent signalling obtained with the biased agonist, SII angiotensin II only regulated few genes. Interestingly, SII angiotensin II, like Ang II vastly...

  3. p21-activated kinase group II small compound inhibitor GNE-2861 perturbs estrogen receptor alpha signaling and restores tamoxifen-sensitivity in breast cancer cells

    OpenAIRE

    Zhuang, Ting; Zhu, Jian; Li, Zhilun; Lorent, Julie; Zhao, Chunyan; Dahlman-Wright, Karin; Strömblad, Staffan

    2015-01-01

    Estrogen receptor alpha (ERα) is highly expressed in most breast cancers. Consequently, ERα modulators, such as tamoxifen, are successful in breast cancer treatment, although tamoxifen resistance is commonly observed. While tamoxifen resistance may be caused by altered ERα signaling, the molecular mechanisms regulating ERα signaling and tamoxifen resistance are not entirely clear. Here, we found that PAK4 expression was consistently correlated to poor patient outcome in endocrine treated and ...

  4. RELAXIN ACTIVATES PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA

    OpenAIRE

    Singh, Sudhir; Bennett, Robert G

    2009-01-01

    Relaxin is a polypeptide hormone that triggers multiple signaling pathways through its receptor RXFP1. Many of relaxin’s functions, including vascular and antifibrotic effects, are similar to those induced by activation of PPARγ. In this study, we tested the hypothesis that relaxin signaling through RXFP1 would activate PPARγ activity. In cells overexpressing RXFP1 (HEK-RXFP1), relaxin increased transcriptional activity through a PPAR response element (PPRE) in a concentration-dependent manne...

  5. Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40.

    Science.gov (United States)

    Kruska, Nicol; Reiser, Georg

    2011-08-01

    The accumulation of the two branched-chain fatty acids phytanic acid and pristanic acid is known to play an important role in several diseases with peroxisomal impairment, like Refsum disease, Zellweger syndrome and α-methylacyl-CoA racemase deficiency. Recent studies elucidated that the toxic activity of phytanic acid and pristanic acid is mediated by multiple mitochondrial dysfunctions, generation of reactive oxygen species and Ca2+ deregulation via the InsP3-Ca2+ signaling pathway in glial cells. However, the exact signaling mechanism through which both fatty acids mediate toxicity is still under debate. Here, we studied the ability of phytanic acid and pristanic acid to activate the free fatty acid receptor GPR40, a G-protein-coupled receptor, which was described to be involved in the Ca2+ signaling of fatty acids. We treated HEK 293 cells expressing the GPR40 receptor with phytanic acid or pristanic acid. This resulted in a significant increase in the intracellular Ca2+ level, similar to the effect seen after treatment with the synthetic GPR40 agonist GW9508. Furthermore, we demonstrate that the GPR40 activation might be due to an interaction of the carboxylate moiety of fatty acids with the receptor. Our findings indicate that the phytanic acid- and pristanic acid-mediated Ca2+ deregulation can involve the activation of GPR40. Therefore, we suppose that activation of GPR40 might be part of the signaling cascade of the toxicity of phytanic and pristanic acids.

  6. S-Nitrosothiols modulate G protein-coupled receptor signaling in a reversible and highly receptor-specific manner

    Directory of Open Access Journals (Sweden)

    Mönkkönen Kati S

    2005-04-01

    Full Text Available Abstract Background Recent studies indicate that the G protein-coupled receptor (GPCR signaling machinery can serve as a direct target of reactive oxygen species, including nitric oxide (NO and S-nitrosothiols (RSNOs. To gain a broader view into the way that receptor-dependent G protein activation – an early step in signal transduction – might be affected by RSNOs, we have studied several receptors coupling to the Gi family of G proteins in their native cellular environment using the powerful functional approach of [35S]GTPγS autoradiography with brain cryostat sections in combination with classical G protein activation assays. Results We demonstrate that RSNOs, like S-nitrosoglutathione (GSNO and S-nitrosocysteine (CysNO, can modulate GPCR signaling via reversible, thiol-sensitive mechanisms probably involving S-nitrosylation. RSNOs are capable of very targeted regulation, as they potentiate the signaling of some receptors (exemplified by the M2/M4 muscarinic cholinergic receptors, inhibit others (P2Y12 purinergic, LPA1lysophosphatidic acid, and cannabinoid CB1 receptors, but may only marginally affect signaling of others, such as adenosine A1, μ-opioid, and opiate related receptors. Amplification of M2/M4 muscarinic responses is explained by an accelerated rate of guanine nucleotide exchange, as well as an increased number of high-affinity [35S]GTPγS binding sites available for the agonist-activated receptor. GSNO amplified human M4 receptor signaling also under heterologous expression in CHO cells, but the effect diminished with increasing constitutive receptor activity. RSNOs markedly inhibited P2Y12 receptor signaling in native tissues (rat brain and human platelets, but failed to affect human P2Y12 receptor signaling under heterologous expression in CHO cells, indicating that the native cellular signaling partners, rather than the P2Y12 receptor protein, act as a molecular target for this action. Conclusion These in vitro studies

  7. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  8. In vivo characterization of high Basal signaling from the ghrelin receptor

    DEFF Research Database (Denmark)

    Petersen, Pia Steen; Woldbye, David P D; Madsen, Andreas Nygaard;

    2009-01-01

    The receptor for the orexigenic peptide, ghrelin, is one of the most constitutively active 7TM receptors known, as demonstrated under in vitro conditions. Change in expression of a constitutively active receptor is associated with change in signaling independent of the endogenous ligand. In the f...

  9. Androgen receptor signaling and mutations in prostate cancer

    OpenAIRE

    Koochekpour, Shahriar

    2010-01-01

    Normal and neoplastic growth of the prostate gland are dependent on androgen receptor (AR) expression and function. Androgenic activation of the AR, in association with its coregulatory factors, is the classical pathway that leads to transcriptional activity of AR target genes. Alternatively, cytoplasmic signaling crosstalk of AR by growth factors, neurotrophic peptides, cytokines or nonandrogenic hormones may have important roles in prostate carcinogenesis and in metastatic or androgen-indep...

  10. Transport of receptors, receptor signaling complexes and ion channels via neuropeptide-secretory vesicles

    Institute of Scientific and Technical Information of China (English)

    Bo Zhao; Hai-Bo Wang; Ying-Jin Lu; Jian-Wen Hu; Lan Bao; Xu Zhang

    2011-01-01

    Stimulus-induced exocytosis of large dense-core vesicles(LDCVs)leads to discharge of neuropeptides and fusion of LDCV membranes with the plasma membrane. However, the contribution of LDCVs to the properties of the neuronal membrane remains largely unclear. The present study found that LDCVs were associated with multiple receptors, channels and signaling molecules, suggesting that neuronal sensitivity is modulated by an LDCV-mediated mechanism. Liquid chromatography-mass spectrometry combined with immunoblotting of subcellular fractions identified 298 proteins in LDCV membranes purified from the dorsal spinal cord, including Gprotein-coupled receptors, Gproteins and other signaling molecules, ion channels and trafficking-related proteins. Morphological assays showed that δ-opioid receptor 1(DORI), β2 adrenergic receptor(AR), Gα12,voltage-gated calcium channel a2δ1subunit and P2X purinoceptor 2 were localized in substance P(SP)-positive LDCVs in small-diameter dorsal root ganglion neurons, whereas β1 AR, Wnt receptor frizzled 8 and dishevelled 1 were present in SP-negative LDCVs.Furthermore, DOR1/α12/Gβ1γ5/phospholipase C β2 complexes were associated with LDCVs. Blockade of the DOR1/Gαi2 interaction largely abolished the LDCV localization of Gαi2 and impaired stimulation-induced surface expression of Gαi2. Thus, LDCVs serve as carriers of receptors, ion channels and preassembled receptor signaling complexes, enabling a rapid, activity-dependent modulation of neuronal sensitivity.

  11. Interfering with interferon receptor sorting and trafficking: impact on signaling.

    Science.gov (United States)

    Claudinon, Julie; Monier, Marie-Noëlle; Lamaze, Christophe

    2007-01-01

    Interferons (IFNs) and their receptors (IFN-Rs) play fundamental roles in a multitude of biological functions. Many articles and reviews emphasize that the JAK/STAT machinery is obligatory for relay of the information transmitted by IFNs after binding to their cognate receptors at the plasma membrane. In contrast, very few studies have addressed the endocytosis and the intracellular trafficking of IFN-Rs, the immediate step following IFN binding. However, recent findings have shed light on the importance of IFN-R sorting and trafficking in the control of IFN signaling. Thus, IFN-Rs can be included in the growing family of signaling receptors for which regulation of biological activity critically involves endocytosis and trafficking. PMID:17493737

  12. Enhanced Proliferation of Porcine Bone Marrow Mesenchymal Stem Cells Induced by Extracellular Calcium is Associated with the Activation of the Calcium-Sensing Receptor and ERK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jingjing Ye

    2016-01-01

    Full Text Available Porcine bone marrow mesenchymal stem cells (pBMSCs have the potential for application in regenerative medicine. This study aims to investigate the effects of extracellular calcium (Ca2+o on pBMSCs proliferation and to explore the possible underlying mechanisms. The results demonstrated that 4 mM Ca2+o significantly promoted pBMSCs proliferation by reducing the G0/G1 phase cell percentage and by increasing the S phase cell proportion and the proliferation index of pBMSCs. Accordingly, Ca2+o stimulated the expression levels of proliferative genes such as cyclin A2, cyclin D1/3, cyclin E2, and PCNA and inhibited the expression of p21. In addition, Ca2+o resulted in a significant elevation of intracellular calcium and an increased ratio of p-ERK/ERK. However, inhibition of calcium-sensing receptor (CaSR by its antagonist NPS2143 abolished the aforementioned effects of Ca2+o. Moreover, Ca2+o-induced promotion of pBMSCs proliferation, the changes of proliferative genes expression levels, and the activation of ERK1/2 signaling pathway were effectively blocked by U0126, a selective ERK kinase inhibitor. In conclusion, our findings provided evidence that the enhanced pBMSCs proliferation in response to Ca2+o was associated with the activation of CaSR and ERK1/2 signaling pathway, which may be useful for the application of pBMSCs in future clinical studies aimed at tissue regeneration and repair.

  13. Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor

    DEFF Research Database (Denmark)

    Chen, Y; Grall, D; Salcini, A E;

    1996-01-01

    The serine protease thrombin activates G protein signaling systems that lead to Ras activation and, in certain cells, proliferation. Whereas the steps leading to Ras activation by G protein-coupled receptors are not well defined, the mechanisms of Ras activation by receptor tyrosine kinases have...... kinase activation, gene induction and cell growth. From these data, we conclude that Shc represents a crucial point of convergence between signaling pathways activated by receptor tyrosine kinases and G protein-coupled receptors....

  14. Prunetin signals via G-protein-coupled receptor, GPR30(GPER1): Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration.

    Science.gov (United States)

    Khan, Kainat; Pal, Subhashis; Yadav, Manisha; Maurya, Rakesh; Trivedi, Arun Kumar; Sanyal, Sabyasachi; Chattopadhyay, Naibedya

    2015-12-01

    Prunetin is found in red clover and fruit of Prunus avium (red cherry). The effect of prunetin on osteoblast function, its mode of action and bone regeneration in vivo were investigated. Cultures of primary osteoblasts, osteoblastic cell line and HEK293T cells were used for various in vitro studies. Adult female rats received drill-hole injury at the femur diaphysis to assess the bone regenerative effect of prunetin. Prunetin at 10nM significantly (a) increased proliferation and differentiation of primary cultures of osteoblasts harvested from rats and (b) promoted formation of mineralized nodules by bone marrow stromal/osteoprogenitor cells. At this concentration, prunetin did not activate any of the two nuclear estrogen receptors (α and β). However, prunetin triggered signaling via a G-protein-coupled receptor, GPR30/GPER1, and enhanced cAMP levels in osteoblasts. G15, a selective GPR30 antagonist, abolished prunetin-induced increases in osteoblast proliferation, differentiation and intracellular cAMP. In osteoblasts, prunetin up-regulated runt-related transcription factor 2 (Runx2) protein through cAMP-dependent Erk/MAP kinase activation that ultimately resulted in the up-regulation of GPR30. Administration of prunetin at 0.25mg/kg given to rats stimulated bone regeneration at the site of drill hole and up-regulated Runx2 expression in the fractured callus and the effect was comparable to human parathyroid hormone, the only clinically used osteogenic therapy. We conclude that prunetin promotes osteoinduction in vivo and the mechanism is defined by signaling through GPR30 resulting in the up-regulation of the key osteogenic gene Runx2 that in turn up-regulates GPR30. PMID:26345541

  15. Regulation of Toll-like receptor signaling in innate immunity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Toll-like receptors sense invading pathogens by recognizing a wide variety of conserved pathogen-associated molecular patterns(PAMPs).The members of the TLR family selectively utilize adaptor proteins MyD88,TRIF,TIRAP and TRAM to activate overlapping but distinct signal transduction pathways which trigger production of different panels of mediators such as proinflammatory cytokines and type I interferon.These mediators not only control innate immunity but also direct subsequently developed adaptive immunity.TLR activation is strictly and finely regulated at multiple levels of the signal transduction pathways.

  16. The co-stimulatory effects of MyD88-dependent Toll-like receptor signaling on activation of murine γδ T cells.

    Directory of Open Access Journals (Sweden)

    Jinping Zhang

    Full Text Available γδ T cells express several different toll-like receptor (TLRs. The role of MyD88- dependent TLR signaling in TCR activation of murine γδ T cells is incompletely defined. Here, we report that Pam3CSK4 (PAM, TLR2 agonist and CL097 (TLR7 agonist, but not lipopolysaccharide (TLR4 agonist, increased CD69 expression and Th1-type cytokine production upon anti-CD3 stimulation of γδ T cells from young adult mice (6-to 10-week-old. However, these agonists alone did not induce γδ T cell activation. Additionally, we noted that neither PAM nor CL097 synergized with anti-CD3 in inducing CD69 expression on γδ T cells of aged mice (21-to 22-month-old. Compared to young γδ T cells, PAM and CL097 increased Th-1 type cytokine production with a lower magnitude from anti-CD3- stimulated, aged γδ T cells. Vγ1+ and Vγ4+ cells are two subpopulations of splenic γδ T cells. PAM had similar effects in anti-CD3-activated control and Vγ4+ subset- depleted γδ T cells; whereas CL097 induced more IFN-γ production from Vγ4+ subset-depleted γδ T cells than from the control group. Finally, we studied the role of MyD88-dependent TLRs in γδ T cell activation during West Nile virus (WNV infection. γδ T cell, in particular, Vγ1+ subset expansion was significantly reduced in both MyD88- and TLR7- deficient mice. Treatment with TLR7 agonist induced more Vγ1+ cell expansion in wild-type mice during WNV infection. In summary, these results suggest that MyD88-dependent TLRs provide co-stimulatory signals during TCR activation of γδ T cells and these have differential effects on distinct subsets.

  17. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway.

    Science.gov (United States)

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun; Lee, Myeung Su; Oh, Jaemin; Kim, Ju-Young

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis.

  18. Physician Education: The Erythropoietin Receptor and Signal Transduction.

    Science.gov (United States)

    Yoshimura; Arai

    1996-01-01

    receptor gene was cloned by D'Andrea and coworkers in 1989 from murine erythroleukemia cells [1]. It became clear that the EPO receptor belongs to the cytokine receptor family that comprises receptors for the various interleukins, GM-CSF, granulocyte colony-stimulating factor (G-CSF), growth hormone and prolactin. The special characteristic of this family of receptors is that they are switched on (i.e., the receptor is activated) and transduce signals to the interior of the cell by the formation of homo- or hetero-oligomers (dimers or trimers). Moreover, hetero-oligomers of these receptors share a common receptor subunit. As shown in Figure 2, the IL-3, IL-5 and GM-CSF receptors have a common &bgr; subunit, and their ligand specificity is determined by the &agr; subunit. In the same manner, the IL-6, LIF and oncostatin M (OSM) receptors all share gp130, which is the &bgr; subunit of the IL-6 receptor. The IL-2, IL-4 and IL-7 receptors all share the &ggr; subunit of the IL-2 receptor. All the above receptors are activated by the formation of hetero-oligomers, but the G-CSF receptor, EPO receptor, and growth hormone receptor are activated by the formation of homodimers of the same types of molecules [2]. We can see that groups of cytokines such as the interleukins that affect a relatively wide range of cells and have redundant biological activity create this redundancy through the common use of a single receptor subunit. On the other hand, EPO and G-CSF act with high specificity on a relatively limited range of cells, so it was probably unnecessary for their receptors to share one of the subunits. EPO RECEPTOR AND JAK2 KINASE: The signal for cellular proliferation and differentiation into erythroblasts is thought to originate at the EPO receptor. The cytoplasmic domain of the EPO receptor can be divided into two major regions. Roughly half of the cytoplasmic domain, the part lying nearest the plasma membrane, is required for generating the signals for proliferation and

  19. Assembly of Oligomeric Death Domain Complexes during Toll Receptor Signaling*

    OpenAIRE

    Moncrieffe, Martin C.; Grossmann, J. Günter; Gay, Nicholas J.

    2008-01-01

    The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show ...

  20. Norepinephrine-Induced Adrenergic Activation Strikingly Increased the Atrial Fibrillation Duration through β1- and α1-Adrenergic Receptor-Mediated Signaling in Mice.

    Directory of Open Access Journals (Sweden)

    Kenji Suita

    Full Text Available Atrial fibrillation (AF is the most common arrhythmias among old people. It causes serious long-term health problems affecting the quality of life. It has been suggested that the autonomic nervous system is involved in the onset and maintenance of AF in human. However, investigation of its pathogenesis and potential treatment has been hampered by the lack of suitable AF models in experimental animals.Our aim was to establish a long-lasting AF model in mice. We also investigated the role of adrenergic receptor (AR subtypes, which may be involved in the onset and duration of AF.Trans-esophageal atrial burst pacing in mice could induce AF, as previously shown, but with only a short duration (29.0 ± 8.1 sec. We found that adrenergic activation by intraperitoneal norepinephrine (NE injection strikingly increased the AF duration. It increased the duration to more than 10 minutes, i.e., by more than 20-fold (656.2 ± 104.8 sec; P<0.001. In this model, a prior injection of a specific β1-AR blocker metoprolol and an α1-AR blocker prazosin both significantly attenuated NE-induced elongation of AF. To further explore the mechanisms underlying these receptors' effects on AF, we assessed the SR Ca(2+ leak, a major trigger of AF, and consequent spontaneous SR Ca(2+ release (SCR in atrial myocytes. Consistent with the results of our in-vivo experiments, both metoprolol and prazosin significantly inhibited the NE-induced SR Ca(2+ leak and SCR. These findings suggest that both β1-AR and α1-AR may play important roles in the development of AF.We have established a long-lasting AF model in mice induced by adrenergic activation, which will be valuable in future AF study using experimental animals, such as transgenic mice. We also revealed the important role of β1- and α1-AR-mediated signaling in the development of AF through in-vivo and in-vitro experiments.

  1. ITAM-coupled receptors inhibit IFNAR signaling and alter macrophage responses to TLR4 and Listeria monocytogenes1

    OpenAIRE

    Huynh, Linda; WANG, LU; Shi, Chao; Park-Min, Kyung-Hyun; Ivashkiv, Lionel B.

    2012-01-01

    Immunoreceptor tyrosine based activation motif (ITAM)-coupled receptors play an essential role in regulating macrophage activation and function by cross-regulating signaling from heterologous receptors. We investigated mechanisms by which ITAM-associated receptors inhibit type I interferon (IFN-α/β) signaling in primary human macrophages and tested the effects of simultaneous ligation of ITAM-associated receptors and TLR4 on TLR4-induced Jak-STAT signaling that is mediated by autocrine IFN-β....

  2. Disruption of Fas Receptor Signaling by Nitric Oxide in Eosinophils

    Science.gov (United States)

    Hebestreit, Holger; Dibbert, Birgit; Balatti, Ivo; Braun, Doris; Schapowal, Andreas; Blaser, Kurt; Simon, Hans-Uwe

    1998-01-01

    It has been suggested that Fas ligand–Fas receptor interactions are involved in the regulation of eosinophil apoptosis and that dysfunctions in this system could contribute to the accumulation of these cells in allergic and asthmatic diseases. Here, we demonstrate that nitric oxide (NO) specifically prevents Fas receptor–mediated apoptosis in freshly isolated human eosinophils. In contrast, rapid acceleration of eosinophil apoptosis by activation of the Fas receptor occurs in the presence of eosinophil hematopoietins. Analysis of the intracellular mechanisms revealed that NO disrupts Fas receptor–mediated signaling events at the level of, or proximal to, Jun kinase (JNK), but distal to sphingomyelinase (SMase) activation and ceramide generation. In addition, activation of SMase occurs downstream of an interleukin 1 converting enzyme–like (ICE-like) protease(s) that is not blocked by NO. However, NO prevents activation of a protease that targets lamin B1. These findings suggest a role for an additional NO-sensitive apoptotic signaling pathway that amplifies the proteolytic cascade initialized by activation of the Fas receptor. Therefore, NO concentrations within allergic inflammatory sites may be important in determining whether an eosinophil survives or undergoes apoptosis upon Fas ligand stimulation. PMID:9449721

  3. Optodynamic simulation of β-adrenergic receptor signalling

    Science.gov (United States)

    Siuda, Edward R.; McCall, Jordan G.; Al-Hasani, Ream; Shin, Gunchul; Il Park, Sung; Schmidt, Martin J.; Anderson, Sonya L.; Planer, William J.; Rogers, John A.; Bruchas, Michael R.

    2015-01-01

    Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β2 adrenergic receptor (opto-β2AR) is similar in dynamics to endogenous β2AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β2AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β2ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo. PMID:26412387

  4. Integrating signals from the T-cell receptor and the interleukin-2 receptor.

    Directory of Open Access Journals (Sweden)

    Tilo Beyer

    2011-08-01

    Full Text Available T cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR signaling. However, to have a model that is able to predict new therapeutic approaches, the current drug targets must be included. Therefore, as a next step we generated the interleukin-2 receptor (IL-2R signaling network and developed a tool to merge logical models. For IL-2R signaling, we show that STAT activation is independent of both Src- and PI3-kinases, while ERK activation depends upon both kinases and additionally requires novel PKCs. In addition, our merged model correctly predicted TCR-induced STAT activation. The combined network also allows information transfer from one receptor to add detail to another, thereby predicting that LAT mediates JNK activation in IL-2R signaling. In summary, the merged model not only enables us to unravel potential cross-talk, but it also suggests new experimental designs and provides a critical step towards designing strategies to reprogram T cells.

  5. Biased signaling through G-protein-coupled PROKR2 receptors harboring missense mutations.

    Science.gov (United States)

    Sbai, Oualid; Monnier, Carine; Dodé, Catherine; Pin, Jean-Philippe; Hardelin, Jean-Pierre; Rondard, Philippe

    2014-08-01

    Various missense mutations in the gene coding for prokineticin receptor 2 (PROKR2), a G-protein-coupled receptor, have been identified in patients with Kallmann syndrome. However, the functional consequences of these mutations on the different signaling pathways of this receptor have not been studied. We first showed that the wild-type PROKR2 can activate different G-protein subtypes (Gq, Gs, and Gi/o) and recruit β-arrestins in transfected HEK-293 cells. We then examined, for each of these signaling pathways, the effects of 9 mutations that did not significantly impair cell surface targeting or ligand binding of the receptor. Four mutant receptors showing defective Gq signaling (R85C, R85H, R164Q, and V331M) could still recruit β-arrestins on ligand activation, which may cause biased signaling in vivo. Conversely, the R80C receptor could activate the 3 types of G proteins but could not recruit β-arrestins. Finally, the R268C receptor could recruit β-arrestins and activate the Gq and Gs signaling pathways but could not activate the Gi/o signaling pathway. Our results validate the concept that mutations in the genes encoding membrane receptors can bias downstream signaling in various ways, possibly leading to pathogenic and, perhaps in some cases, protective (e.g., R268C) effects. PMID:24830383

  6. Transcription, Signaling Receptor Activity, Oxidative Phosphorylation, and Fatty Acid Metabolism Mediate the Presence of Closely Related Species in Distinct Intertidal and Cold-Seep Habitats.

    Science.gov (United States)

    Van Campenhout, Jelle; Vanreusel, Ann; Van Belleghem, Steven; Derycke, Sofie

    2016-01-01

    Bathyal cold seeps are isolated extreme deep-sea environments characterized by low species diversity while biomass can be high. The Håkon Mosby mud volcano (Barents Sea, 1,280 m) is a rather stable chemosynthetic driven habitat characterized by prominent surface bacterial mats with high sulfide concentrations and low oxygen levels. Here, the nematode Halomonhystera hermesi thrives in high abundances (11,000 individuals 10 cm(-2)). Halomonhystera hermesi is a member of the intertidal Halomonhystera disjuncta species complex that includes five cryptic species (GD1-5). GD1-5's common habitat is characterized by strong environmental fluctuations. Here, we compared the transcriptomes of H. hermesi and GD1, H. hermesi's closest relative. Genes encoding proteins involved in oxidative phosphorylation are more strongly expressed in H. hermesi than in GD1, and many genes were only observed in H. hermesi while being completely absent in GD1. Both observations could in part be attributed to high sulfide concentrations and low oxygen levels. Additionally, fatty acid elongation was also prominent in H. hermesi confirming the importance of highly unsaturated fatty acids in this species. Significant higher amounts of transcription factors and genes involved in signaling receptor activity were observed in GD1 (many of which were completely absent in H. hermesi), allowing fast signaling and transcriptional reprogramming which can mediate survival in dynamic intertidal environments. GC content was approximately 8% higher in H. hermesi coding unigenes resulting in differential codon usage between both species and a higher proportion of amino acids with GC-rich codons in H. hermesi. In general our results showed that most pathways were active in both environments and that only three genes are under natural selection. This indicates that also plasticity should be taken in consideration in the evolutionary history of Halomonhystera species. Such plasticity, as well as possible

  7. Noncell- and cell-autonomous G-protein-signaling converges with Ca2+/mitogen-activated protein kinase signaling to regulate str-2 receptor gene expression in Caenorhabditis elegans.

    NARCIS (Netherlands)

    H. Lans (Hannes); G. Jansen (Gert)

    2006-01-01

    textabstractIn the sensory system of C. elegans, the candidate odorant receptor gene str-2 is strongly expressed in one of the two AWC neurons and weakly in both ASI neurons. Asymmetric AWC expression results from suppression of str-2 expression by a Ca2+/MAPK signaling pathway in one of the AWC neu

  8. IgE receptor signaling in food allergy pathogenesis.

    Science.gov (United States)

    Oettgen, Hans C; Burton, Oliver T

    2015-10-01

    The pathogenesis of food allergy remains poorly understood. Recent advances in the use of murine models have led to discoveries that mast cells and IgE receptor signaling not only drive immediate hypersensitivity reactions but also exert an immunoregulatory function, promoting the development of allergic sensitivity to foods. We review the evidence that IgE, IgE receptors, key signaling kinases and mast cells impair oral tolerance to ingested foods, preventing the induction of regulatory T cells (Treg) and promoting the acquisition of pro-allergic T helper (Th) 2 responses. We discuss innovative strategies that that could be implemented to counteract these immunoregulatory effects of IgE-mediated mast cell activation, and potentially reverse established sensitization, curing food allergy. PMID:26296054

  9. Human Neuropeptide S Receptor Is Activated via a Gαq Protein-biased Signaling Cascade by a Human Neuropeptide S Analog Lacking the C-terminal 10 Residues.

    Science.gov (United States)

    Liao, Yuan; Lu, Bin; Ma, Qiang; Wu, Gang; Lai, Xiangru; Zang, Jiashu; Shi, Ying; Liu, Dongxiang; Han, Feng; Zhou, Naiming

    2016-04-01

    Human neuropeptide S (NPS) and its cognate receptor regulate important biological functions in the brain and have emerged as a future therapeutic target for treatment of a variety of neurological and psychiatric diseases. The human NPS (hNPS) receptor has been shown to dually couple to Gαs- and Gαq-dependent signaling pathways. The human NPS analog hNPS-(1-10), lacking 10 residues from the C terminus, has been shown to stimulate Ca(2+)mobilization in a manner comparable with full-length hNPSin vitrobut seems to fail to induce biological activityin vivo Here, results derived from a number of cell-based functional assays, including intracellular cAMP-response element (CRE)-driven luciferase activity, Ca(2+)mobilization, and ERK1/2 phosphorylation, show that hNPS-(1-10) preferentially activates Gαq-dependent Ca(2+)mobilization while exhibiting less activity in triggering Gαs-dependent CRE-driven luciferase activity. We further demonstrate that both Gαq- and Gαs-coupled signaling pathways contribute to full-length hNPS-mediated activation of ERK1/2, whereas hNPS-(1-10)-promoted ERK1/2 activation is completely inhibited by the Gαqinhibitor UBO-QIC but not by the PKA inhibitor H89. Moreover, the results of Ala-scanning mutagenesis of hNPS-(1-13) indicated that residues Lys(11)and Lys(12)are structurally crucial for the hNPS receptor to couple to Gαs-dependent signaling. In conclusion, our findings demonstrate that hNPS-(1-10) is a biased agonist favoring Gαq-dependent signaling. It may represent a valuable chemical probe for further investigation of the therapeutic potential of human NPS receptor-directed signalingin vivo. PMID:26865629

  10. Prohibitin: A Novel Molecular Player in KDEL Receptor Signalling

    Directory of Open Access Journals (Sweden)

    Monica Giannotta

    2015-01-01

    Full Text Available The KDEL receptor (KDELR is a seven-transmembrane-domain protein involved in retrograde transport of protein chaperones from the Golgi complex to the endoplasmic reticulum. Our recent findings have shown that the Golgi-localised KDELR acts as a functional G-protein-coupled receptor by binding to and activating Gs and Gq. These G proteins induce activation of PKA and Src and regulate retrograde and anterograde Golgi trafficking. Here we used an integrated coimmunoprecipitation and mass spectrometry approach to identify prohibitin-1 (PHB as a KDELR interactor. PHB is a multifunctional protein that is involved in signal transduction, cell-cycle control, and stabilisation of mitochondrial proteins. We provide evidence that depletion of PHB induces intense membrane-trafficking activity at the ER–Golgi interface, as revealed by formation of GM130-positive Golgi tubules, and recruitment of p115, β-COP, and GBF1 to the Golgi complex. There is also massive recruitment of SEC31 to endoplasmic-reticulum exit sites. Furthermore, absence of PHB decreases the levels of the Golgi-localised KDELR, thus preventing KDELR-dependent activation of Golgi-Src and inhibiting Golgi-to-plasma-membrane transport of VSVG. We propose a model whereby in analogy to previous findings (e.g., the RAS-RAF signalling pathway, PHB can act as a signalling scaffold protein to assist in KDELR-dependent Src activation.

  11. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion.

    Directory of Open Access Journals (Sweden)

    Yuko Nakagawa

    Full Text Available BACKGROUND: Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS: The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+ ([Ca(2+](c and cAMP ([cAMP](c were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+](c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+](c response. The effect of sucralose on [Ca(2+](c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q inhibitor. Sucralose also induced sustained elevation of [cAMP](c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS: Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+ and cAMP-dependent mechanisms.

  12. Noradrenaline represses PPAR (peroxisome-proliferator-activated receptor) gamma2 gene expression in brown adipocytes: intracellular signalling and effects on PPARgamma2 and PPARgamma1 protein levels

    DEFF Research Database (Denmark)

    Lindgren, Eva M; Nielsen, Ronni; Petrovic, Natasa;

    2004-01-01

    PPAR (peroxisome-proliferator-activated receptor) gamma is expressed in brown and white adipose tissues and is involved in the control of differentiation and proliferation. Noradrenaline stimulates brown pre-adipocyte proliferation and brown adipocyte differentiation. The aim of the present study...

  13. Analysis of C-type lectin receptor induced NF-kappaB signaling

    OpenAIRE

    Straßer, Andreas Dominikus

    2014-01-01

    Myeloid C-type lectin receptors (CLRs) that signal via Syk and the central Card9-Bcl10-Malt1 (CBM) complex induce the transcription of NF-κB-regulated genes. Activation of those receptors mediates inflammatory reactions and the defense against various pathogens. Despite the non-redundant role of CLRs for the induction of innate immune responses, particularly receptor-proximal events that transduce ligand binding to downstream signaling remain to be defined. This dissertation identifies PKCδ a...

  14. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T-cell receptor-killer inhibitory receptor

    DEFF Research Database (Denmark)

    Christensen, M D; Geisler, C

    2000-01-01

    Receptors expressing the immunoreceptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic tail play an important role in the negative regulation of natural killer and B-cell activation. A subpopulation of T cells expresses the ITIM containing killer cell inhibitory receptor (KIR), which...... recognize MHC class I molecules. Following coligation of KIR with an activating receptor, the tyrosine in the ITIM is phosphorylated and the cytoplasmic protein tyrosine phosphatase SHP-1 is recruited to the ITIM via its SH2 domains. It is still not clear how SHP-1 affects T-cell receptor (TCR) signalling....... In this study, we constructed a chimeric TCR-KIR receptor. We demonstrated that SHP-1 is recruited to the chimeric TCR-KIR receptor following T-cell stimulation with either anti-TCR monoclonal antibody (MoAb) or superantigen. However, in spite of this we could not detect any effect of SHP-1 on TCR signalling...

  15. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors

    DEFF Research Database (Denmark)

    Pandey, A; Podtelejnikov, A V; Blagoev, B;

    2000-01-01

    Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2...

  16. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun [Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Myeung Su [Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Oh, Jaemin, E-mail: jmoh@wku.ac.kr [Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Ju-Young, E-mail: kimjy1014@gmail.com [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation.

  17. NMDA receptor activity in neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Shaheen E Lakhan

    2013-06-01

    Full Text Available N-Methyl-D-aspartate (NMDA receptors play a variety of physiologic roles and their proper signaling is essential for cellular homeostasis. Any disruption in this pathway, leading to either enhanced or decreased activity, may result in the manifestation of neuropsychiatric pathologies such as schizophrenia, mood disorders, substance induced psychosis, Huntington's disease, Alzheimer's disease, and neuropsychiatric systemic lupus erythematosus. Here, we explore the notion that the overlap in activity of at least one biochemical pathway, the NMDA receptor pathway, may be the link to understanding the overlap in psychotic symptoms between diseases. This review intends to present a broad overview of those neuropsychiatric disorders for which alternations in NMDA receptor activity is prominent thus suggesting that continued direction of pharmaceutical intervention to this pathway may present a viable option for managing symptoms.

  18. Cysteinyl-Leukotriene Receptors and Cellular Signals

    Directory of Open Access Journals (Sweden)

    G. Enrico Rovati

    2007-01-01

    Full Text Available Cysteinyl-leukotrienes (cysteinyl-LTs exert a range of proinflammatory effects, such as constriction of airways and vascular smooth muscle, increase of endothelial cell permeability leading to plasma exudation and edema, and enhanced mucus secretion. They have proved to be important mediators in asthma, allergic rhinitis, and other inflammatory conditions, including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. The classification into subtypes of the cysteinyl-LT receptors (CysLTRs was based initially on binding and functional data, obtained using the natural agonists and a wide range of antagonists. CysLTRs have proved remarkably resistant to cloning. However, in 1999 and 2000, the CysLT1R and CysLT2R were successfully cloned and both shown to be members of the G-protein coupled receptors (GPCRs superfamily. Molecular cloning has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Recombinant CysLTRs couple to the Gq/11 pathway that modulates inositol phospholipids hydrolysis and calcium mobilization, whereas in native systems, they often activate a pertussis toxin-insensitive Gi/o-protein, or are coupled promiscuously to both G-proteins. Interestingly, recent data provide evidence for the existence of an additional receptor subtype that seems to respond to both cysteinyl-LTs and uracil nucleosides, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Finally, a cross-talk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize recent data derived from studies on the molecular and cellular pharmacology of CysLTRs.

  19. DMPD: Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15379975 Signal transduction by the lipopolysaccharide receptor, Toll-like receptor... Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. PubmedID 15379975 Title Signa...l transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Authors

  20. Strigolactone and karrikin signal perception: receptors, enzymes, or both?

    Directory of Open Access Journals (Sweden)

    Bart Jan Janssen

    2012-12-01

    Full Text Available The signaling molecules strigolactone (SL and karrikin are involved in seed germination, development of axillary meristems, senescence of leaves and interactions with arbuscular mycorrhizal fungi. The signal transduction pathways for both SLs and karrikins require the same F-box protein (MAX2 and closely related α/β hydrolase fold proteins (DAD2 and KAI2. The crystal structure of DAD2 has been solved revealing an α/β hydrolase fold protein with an internal cavity capable of accommodating SLs. DAD2 responds to the SL analog GR24 by changing conformation and binding to MAX2 in a GR24 concentration-dependent manner. DAD2 can also catalyse hydrolysis of GR24. Structure activity relationships of analogs indicate that the butenolide ring common to both SLs and karrikins is essential for biological activity, but the remainder of the molecules can be significantly modified without loss of activity. The combination of data from the study of DAD2, KAI2 and chemical analogs of SLs and karrikins suggests a model for binding that requires nucleophilic attack by the active site serine of the hydrolase at the carbonyl atom of the butenolide ring. A conformational change occurs in the hydrolase that results in interaction with the F-box protein MAX2. Downstream signal transduction is then likely to occur via SCF complex-mediated ubiquitination of target proteins and their subsequent degradation. The role of the catalytic activity of the hydrolase is unclear but it may be integral in binding as well as possibly allowing the signal to be cleared from the receptor. The α/β hydrolase fold family consists mostly of active enzymes, with a few notable exceptions. We suggest that the DAD2 and KAI2 represent an intermediate where some catalytic activity is retained at the same time as a receptor role has evolved.

  1. Metazoan-like signaling in a unicellular receptor tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Schultheiss Kira P

    2013-02-01

    Full Text Available Abstract Background Receptor tyrosine kinases (RTKs are crucial components of signal transduction systems in multicellular animals. Surprisingly, numerous RTKs have been identified in the genomes of unicellular choanoflagellates and other protists. Here, we report the first biochemical study of a unicellular RTK, namely RTKB2 from Monosiga brevicollis. Results We cloned, expressed, and purified the RTKB2 kinase, and showed that it is enzymatically active. The activity of RTKB2 is controlled by autophosphorylation, as in metazoan RTKs. RTKB2 possesses six copies of a unique domain (designated RM2 in its C-terminal tail. An isolated RM2 domain (or a synthetic peptide derived from the RM2 sequence served as a substrate for RTKB2 kinase. When phosphorylated, the RM2 domain bound to the Src homology 2 domain of MbSrc1 from M. brevicollis. NMR structural studies of the RM2 domain indicated that it is disordered in solution. Conclusions Our results are consistent with a model in which RTKB2 activation stimulates receptor autophosphorylation within the RM2 domains. This leads to recruitment of Src-like kinases (and potentially other M. brevicollis proteins and further phosphorylation, which may serve to increase or dampen downstream signals. Thus, crucial features of signal transduction circuitry were established prior to the evolution of metazoans from their unicellular ancestors.

  2. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    Science.gov (United States)

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  3. Microwave Exposure Impairs Synaptic Plasticity in the Rat Hippocampus and PC12 Cells through Over-activation of the NMDA Receptor Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    XIONG Lu; DONG Ji; YAO Bin Wei; ZHAO Li; PENG Rui Yun; SUN Cheng Feng; ZHANG Jing; GAO Ya Bing; WANG Li Feng; ZUO Hong Yan; WANG Shui Ming; ZHOU Hong Mei; XU Xin Ping

    2015-01-01

    Objective The aim of this study is to investigate whether microwave exposure would affect the N-methyl-D-aspartate receptor (NMDAR) signaling pathway to establish whether this plays a role in synaptic plasticity impairment. Methods 48 male Wistar rats were exposed to 30 mW/cm² microwave for 10 min every other day for three times. Hippocampal structure was observed through H&E staining and transmission electron microscope. PC12 cells were exposed to 30 mW/cm² microwave for 5 min and the synapse morphology was visualized with scanning electron microscope and atomic force microscope. The release of amino acid neurotransmitters and calcium influx were detected. The expressions of several key NMDAR signaling molecules were evaluated. Results Microwave exposure caused injury in rat hippocampal structure and PC12 cells, especially the structure and quantity of synapses. The ratio of glutamic acid and gamma-aminobutyric acid neurotransmitters was increased and the intracellular calcium level was elevated in PC12 cells. A significant change in NMDAR subunits (NR1, NR2A, and NR2B) and related signaling molecules (Ca2+/calmodulin-dependent kinase II gamma and phosphorylated cAMP-response element binding protein) were examined. Conclusion 30 mW/cm² microwave exposure resulted in alterations of synaptic structure, amino acid neurotransmitter release and calcium influx. NMDAR signaling molecules were closely associated with impaired synaptic plasticity.

  4. Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses.

    Science.gov (United States)

    Abdulkhalek, Samar; Szewczuk, Myron R

    2013-11-01

    The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses. PMID:23827939

  5. Dynamic phospholipid signaling by G protein-coupled receptors

    NARCIS (Netherlands)

    Weernink, Paschal A. Oude; Han, Li; Jakobs, Karl H.; Schmidt, Martina

    2007-01-01

    G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP2 by phospholipase C (PLC) into the second messengers IP

  6. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  7. Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning

    Directory of Open Access Journals (Sweden)

    Menizibeya O. Welcome

    2015-01-01

    Full Text Available Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet” molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning.

  8. Structural Dynamics of Insulin Receptor and Transmembrane Signaling.

    Science.gov (United States)

    Tatulian, Suren A

    2015-09-15

    The insulin receptor (IR) is a (αβ)2-type transmembrane tyrosine kinase that plays a central role in cell metabolism. Each αβ heterodimer consists of an extracellular ligand-binding α-subunit and a membrane-spanning β-subunit that comprises the cytoplasmic tyrosine kinase (TK) domain and the phosphorylation sites. The α- and β-subunits are linked via a single disulfide bridge, and the (αβ)2 tetramer is formed by disulfide bonds between the α-chains. Insulin binding induces conformational changes in IR that reach the intracellular β-subunit followed by a protein phosphorylation and activation cascade. Defects in this signaling process, including IR dysfunction caused by mutations, result in type 2 diabetes. Rational drug design aimed at treatment of diabetes relies on knowledge of the detailed structure of IR and the dynamic structural transformations during transmembrane signaling. Recent X-ray crystallographic studies have provided important clues about the mode of binding of insulin to IR, the resulting structural changes and their transmission to the TK domain, but a complete understanding of the structural basis underlying insulin signaling has not been achieved. This review presents a critical analysis of the current status of the structure-function relationship of IR, with a comparative assessment of the other IR family receptors, and discusses potential advancements that may provide insight into the molecular mechanism of insulin signaling.

  9. Anti-inflammatory activity of Odina wodier Roxb, an Indian folk remedy, through inhibition of toll-like receptor 4 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Durbadal Ojha

    Full Text Available Inflammation is part of self-limiting non-specific immune response, which occurs during bodily injury. In some disorders the inflammatory process becomes continuous, leading to the development of chronic inflammatory diseases including cardiovascular diseases, diabetes, cancer etc. Several Indian tribes used the bark of Odina wodier (OWB for treating inflammatory disorders. Thus, we have evaluated the immunotherapeutic potential of OWB methanol extract and its major constituent chlorogenic acid (CA, using three popular in vivo antiinflammatory models: Carrageenan- and Dextran-induced paw edema, Cotton pellet granuloma, and Acetic acid-induced vascular permeability. To elucidate the possible anti-inflammatory mechanism of action we determine the level of major inflammatory mediators (NO, iNOS, COX-2-dependent prostaglandin E2 or PGE2, and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-12. Further, we determine the toll-like receptor 4 (TLR4, Myeloid differentiation primary response gene 88 (MyD88, c-Jun N-terminal kinases (JNK, nuclear factor kappa-B cells (NF-κB, and NF-kB inhibitor alpha (IK-Bα by protein and mRNA expression, and Western blot analysis in drug treated LPS-induced murine macrophage model. Moreover, we determined the acute and sub-acute toxicity of OWB extract in BALB/c mice. Our study demonstrated a significant anti-inflammatory activity of OWB extract and CA along with the inhibition of TNF-α, IL-1β, IL-6 and IL-12 expressions. Further, the expression of TLR4, NF-κBp65, MyD88, iNOS and COX-2 molecules were reduced in drug-treated groups, but not in the LPS-stimulated untreated or control groups, Thus, our results collectively indicated that the OWB extract and CA can efficiently inhibit inflammation through the down regulation of TLR4/MyD88/NF-kB signaling pathway.

  10. Berberine attenuates high glucose-induced fibrosis by activating the G protein-coupled bile acid receptor TGR5 and repressing the S1P2/MAPK signaling pathway in glomerular mesangial cells.

    Science.gov (United States)

    Yang, Zhiying; Li, Jie; Xiong, Fengxiao; Huang, Junying; Chen, Cheng; Liu, Peiqing; Huang, Heqing

    2016-08-15

    Berberine (BBR) exerts powerful renoprotective effects on diabetic nephropathy (DN), but the underlying mechanisms remain unclear. We previously demonstrated that activation of the G protein-coupled bile acid receptor TGR5 ameliorates diabetic nephropathy by inhibiting the activation of the sphingosine 1-phosphate (S1P)/sphingosine 1-phosphate receptor 2 (S1P2) signaling pathway. In this study, we explored the role of TGR5 in the BBR-induced downregulation of sphingosine 1-phosphate receptor 2 (S1P2)/mitogen-activated protein kinase (MAPK)-mediated fibrosis in glomerular mesangial cells (GMCs). Results showed that, BBR suppressed the expression of FN, ICAM-1, and TGF-β1 in high-glucose cultures of GMCs, and the phosphorylation level of c-Jun/c-Fos was downregulated. The high glucose lowered TGR5 expression in a time-dependent manner; this effect was reversed by BBR in a dose-dependent manner. The TGR5 agonist INT-777 decreased the high glucose-induced FN, ICAM-1, and TGF-β1 protein contents. In addition, TGR5 siRNA blocked S1P2 degradation by BBR. And MAPK signaling, which plays important regulatory roles in the pathological progression of DN, was activated by TGR5 siRNA. Apart from this, MAPK signaling as well as FN, ICAM-1, and TGF-β1 suppressed by BBR under high glucose conditions were limited by TGR5 depletion. Thus, BBR decreases FN, ICAM-1, and TGF-β1 levels under high glucose conditions in GMCs possibly by activating TGR5 and inhibiting S1P2/MAPK signaling. PMID:27292312

  11. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    Science.gov (United States)

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  12. Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors.

    Science.gov (United States)

    Maródi, L; Schreiber, S; Anderson, D C; MacDermott, R P; Korchak, H M; Johnston, R B

    1993-01-01

    In contrast to its macrophage-activating capacity, IFN-gamma downregulates expression of the macrophage mannose receptor (MMR), which mediates uptake of Candida and other microorganisms. We found that IFN-gamma induced a concentration-dependent increase in the capacity of human monocyte-derived macrophages to ingest and kill both opsonized and unopsonized Candida albicans and to release superoxide anion upon stimulation with Candida. Mannan or mannosylated albumin inhibited this activated uptake of unopsonized Candida, but glucan did not. Addition of mAb to complement receptor (CR) 3 did not inhibit ingestion; macrophages that lacked CR3 (leukocyte adhesion defect) showed normal upregulation of ingestion by IFN-gamma. The increased candidacidal activity of IFN-gamma-activated macrophages was associated with reduced expression of MMR by a mean of 79% and decreased pinocytic uptake of 125I-mannosylated BSA by 73%; K(uptake) of pinocytosis was not changed. Exposure of resident macrophages to unopsonized Candida did not elicit a transient increase in intracellular free Ca2+ ([Ca2+]i); macrophages activated by IFN-gamma expressed a brisk increase in [Ca2+]i on exposure to Candida. These data suggest that macrophage activation by IFN-gamma can enhance resistance to C. albicans infection in spite of downregulation of the MMR, perhaps through enhanced coupling of the MMR to microbicidal functions. PMID:8390485

  13. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Lauren B Becnel

    Full Text Available Signaling pathways involving nuclear receptors (NRs, their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA is a Consortium focused around a Hub website (www.nursa.org that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs. These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  14. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways

    Science.gov (United States)

    Becnel, Lauren B.; Darlington, Yolanda F.; Ochsner, Scott A.; Easton-Marks, Jeremy R.; Watkins, Christopher M.; McOwiti, Apollo; Kankanamge, Wasula H.; Wise, Michael W.; DeHart, Michael; Margolis, Ronald N.; McKenna, Neil J.

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse ‘omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy “Web 2.0” technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA’s Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  15. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

    OpenAIRE

    Johnson Hamlet, M R; Perkins, L A

    2001-01-01

    The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities...

  16. Transient Suppression of TGFβ Receptor Signaling Facilitates Human Islet Transplantation.

    Science.gov (United States)

    Xiao, Xiangwei; Fischbach, Shane; Song, Zewen; Gaffar, Iljana; Zimmerman, Ray; Wiersch, John; Prasadan, Krishna; Shiota, Chiyo; Guo, Ping; Ramachandran, Sabarinathan; Witkowski, Piotr; Gittes, George K

    2016-04-01

    Although islet transplantation is an effective treatment for severe diabetes, its broad application is greatly limited due to a shortage of donor islets. Suppression of TGFβ receptor signaling in β-cells has been shown to increase β-cell proliferation in mice, but has not been rigorously examined in humans. Here, treatment of human islets with a TGFβ receptor I inhibitor, SB-431542 (SB), significantly improved C-peptide secretion by β-cells, and significantly increased β-cell number by increasing β-cell proliferation. In addition, SB increased cell-cycle activators and decreased cell-cycle suppressors in human β-cells. Transplantation of SB-treated human islets into diabetic immune-deficient mice resulted in significant improvement in blood glucose control, significantly higher serum and graft insulin content, and significantly greater increases in β-cell proliferation in the graft, compared with controls. Thus, our data suggest that transient suppression of TGFβ receptor signaling may improve the outcome of human islet transplantation, seemingly through increasing β-cell number and function. PMID:26872091

  17. alpha-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling

    NARCIS (Netherlands)

    Bantel, H; Sinha, B; Domschke, W; Peters, G; Schulze-Osthoff, K; Jänicke, R U

    2001-01-01

    Infections with Staphylococcus aureus, a common inducer of septic and toxic shock, often result in tissue damage and death of various cell types. Although S. aureus was suggested to induce apoptosis, the underlying signal transduction pathways remained elusive. We show that caspase activation and DN

  18. Appetitive Cue-Evoked ERK Signaling in the Nucleus Accumbens Requires NMDA and D1 Dopamine Receptor Activation and Regulates CREB Phosphorylation

    Science.gov (United States)

    Kirschmann, Erin K. Z.; Mauna, Jocelyn C.; Willis, Cory M.; Foster, Rebecca L.; Chipman, Amanda M.; Thiels, Edda

    2014-01-01

    Conditioned stimuli (CS) can modulate reward-seeking behavior. This modulatory effect can be maladaptive and has been implicated in excessive reward seeking and relapse to drug addiction. We previously demonstrated that exposure to an appetitive CS causes an increase in the activation of extracellular signal-regulated kinase (ERK) and cyclic-AMP…

  19. Exponential signaling gain at the receptor level enhances signal-to-noise ratio in bacterial chemotaxis.

    Directory of Open Access Journals (Sweden)

    Silke Neumann

    Full Text Available Cellular signaling systems show astonishing precision in their response to external stimuli despite strong fluctuations in the molecular components that determine pathway activity. To control the effects of noise on signaling most efficiently, living cells employ compensatory mechanisms that reach from simple negative feedback loops to robustly designed signaling architectures. Here, we report on a novel control mechanism that allows living cells to keep precision in their signaling characteristics - stationary pathway output, response amplitude, and relaxation time - in the presence of strong intracellular perturbations. The concept relies on the surprising fact that for systems showing perfect adaptation an exponential signal amplification at the receptor level suffices to eliminate slowly varying multiplicative noise. To show this mechanism at work in living systems, we quantified the response dynamics of the E. coli chemotaxis network after genetically perturbing the information flux between upstream and downstream signaling components. We give strong evidence that this signaling system results in dynamic invariance of the activated response regulator against multiplicative intracellular noise. We further demonstrate that for environmental conditions, for which precision in chemosensing is crucial, the invariant response behavior results in highest chemotactic efficiency. Our results resolve several puzzling features of the chemotaxis pathway that are widely conserved across prokaryotes but so far could not be attributed any functional role.

  20. Regulator of G protein signaling 2 (RGS2 and RGS4 form distinct G protein-dependent complexes with protease activated-receptor 1 (PAR1 in live cells.

    Directory of Open Access Journals (Sweden)

    Sungho Ghil

    Full Text Available Protease-activated receptor 1 (PAR1 is a G-protein coupled receptor (GPCR that is activated by natural proteases to regulate many physiological actions. We previously reported that PAR1 couples to Gi, Gq and G12 to activate linked signaling pathways. Regulators of G protein signaling (RGS proteins serve as GTPase activating proteins to inhibit GPCR/G protein signaling. Some RGS proteins interact directly with certain GPCRs to modulate their signals, though cellular mechanisms dictating selective RGS/GPCR coupling are poorly understood. Here, using bioluminescence resonance energy transfer (BRET, we tested whether RGS2 and RGS4 bind to PAR1 in live COS-7 cells to regulate PAR1/Gα-mediated signaling. We report that PAR1 selectively interacts with either RGS2 or RGS4 in a G protein-dependent manner. Very little BRET activity is observed between PAR1-Venus (PAR1-Ven and either RGS2-Luciferase (RGS2-Luc or RGS4-Luc in the absence of Gα. However, in the presence of specific Gα subunits, BRET activity was markedly enhanced between PAR1-RGS2 by Gαq/11, and PAR1-RGS4 by Gαo, but not by other Gα subunits. Gαq/11-YFP/RGS2-Luc BRET activity is promoted by PAR1 and is markedly enhanced by agonist (TFLLR stimulation. However, PAR1-Ven/RGS-Luc BRET activity was blocked by a PAR1 mutant (R205A that eliminates PAR1-Gq/11 coupling. The purified intracellular third loop of PAR1 binds directly to purified His-RGS2 or His-RGS4. In cells, RGS2 and RGS4 inhibited PAR1/Gα-mediated calcium and MAPK/ERK signaling, respectively, but not RhoA signaling. Our findings indicate that RGS2 and RGS4 interact directly with PAR1 in Gα-dependent manner to modulate PAR1/Gα-mediated signaling, and highlight a cellular mechanism for selective GPCR/G protein/RGS coupling.

  1. Erythropoietin regulates Treg cells in asthma through TGFβ receptor signaling.

    Science.gov (United States)

    Wan, Guoshi; Wei, Bing

    2015-01-01

    Asthma is a chronic inflammatory disorder of the airways, the development of which is suppressed by regulatory T cells (Treg). Erythropoietin (EPO) is originally defined as a hematopoietic growth factor. Recently, the anti-inflammatory effects of EPO in asthma have been acknowledged. However, the underlying mechanisms remain ill-defined. Here, we showed that EPO treatment significantly reduced the severity of an ovalbumin (OVA)-induced asthma in mice, seemingly through promoting Foxp3-mediated activation of Treg cells in OVA-treated mouse lung. The activation of Treg cells resulted from increases in transforming growth factor β1 (TGFβ1), which were mainly produced by M2 macrophages (M2M). In vitro, Co-culture with M2M increased Foxp3 levels in Treg cells and the Treg cell number, in a TGFβ receptor signaling dependent manner. Moreover, elimination of macrophages abolished the therapeutic effects of EPO in vivo. Together, our data suggest that EPO may increase M2M, which activate Treg cells through TGFβ receptor signaling to mitigate the severity of asthma. PMID:26807178

  2. Symmetric signaling by an asymmetric 1 erythropoietin: 2 erythropoietin receptor complex.

    Science.gov (United States)

    Zhang, Yingxin L; Radhakrishnan, Mala L; Lu, Xiaohui; Gross, Alec W; Tidor, Bruce; Lodish, Harvey F

    2009-01-30

    Via sites 1 and 2, erythropoietin binds asymmetrically to two identical receptor monomers, although it is unclear how asymmetry affects receptor activation and signaling. Here we report the design and validation of two mutant erythropoietin receptors that probe the role of individual members of the receptor dimer by selectively binding either site 1 or site 2 on erythropoietin. Ba/F3 cells expressing either mutant receptor do not respond to erythropoietin, but cells co-expressing both receptors respond to erythropoietin by proliferation and activation of the JAK2-Stat5 pathway. A truncated receptor with only one cytosolic tyrosine (Y343) is sufficient for signaling in response to erythropoietin, regardless of the monomer on which it is located. Similarly, only one receptor in the dimer needs a juxtamembrane hydrophobic L253 or W258 residue, essential for JAK2 activation. We conclude that despite asymmetry in the ligand-receptor interaction, both sides are competent for signaling, and appear to signal equally.

  3. Serotonin acts as a novel regulator of interleukin-6 secretion in osteocytes through the activation of the 5-HT(2B) receptor and the ERK1/2 signalling pathway.

    Science.gov (United States)

    Li, Xianxian; Ma, Yuanyuan; Wu, Xiangnan; Hao, Zhichao; Yin, Jian; Shen, Jiefei; Li, Xiaoyu; Zhang, Ping; Wang, Hang

    2013-11-29

    Interleukin-6 (IL-6) is a potent stimulator of osteoclastic bone resorption. Osteocyte secretion of IL-6 plays an important role in bone metabolism. Serotonin (5-HT) has recently been reported to regulate bone metabolism. The aim of this study was to evaluate the effect of serotonin on osteocyte expression of IL-6. The requirement for the 5-HT receptor(s) and the role of the extracellular signal-regulated kinase 1/2 (ERK1/2) in serotonin-induced IL-6 synthesis were examined. In this study, real-time PCR and ELISA were used to analyse IL-6 gene and protein expression in serotonin-stimulated MLO-Y4 cells. ERK1/2 pathway activation was determined by Western blot. We found that serotonin significantly activated the ERK1/2 pathway and induced IL-6 mRNA expression and protein synthesis in cultured MLO-Y4 cells. However, these effects were abolished by pre-treatment of MLO-Y4 cells with a 5-HT2B receptor antagonist, RS127445 or the ERK1/2 inhibitor, PD98059. Our results indicate that serotonin stimulates osteocyte secretion of IL-6 and that this effect is associated with activation of 5-HT2B receptor and the ERK1/2 pathway. These findings provide support for a role of serotonin in bone metabolism by indicating serotonin regulates bone remodelling by mediating an inflammatory cytokine. PMID:24211588

  4. Beclin 1 regulates growth factor receptor signaling in breast cancer.

    Science.gov (United States)

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M

    2015-10-16

    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression.

  5. The maintenance of cisplatin- and paclitaxel-induced mechanical and cold allodynia is suppressed by cannabinoid CB2 receptor activation and independent of CXCR4 signaling in models of chemotherapy-induced peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Deng Liting

    2012-09-01

    Full Text Available Abstract Background Chemotherapeutic agents produce dose-limiting peripheral neuropathy through mechanisms that remain poorly understood. We previously showed that AM1710, a cannabilactone CB2 agonist, produces antinociception without producing central nervous system (CNS-associated side effects. The present study was conducted to examine the antinociceptive effect of AM1710 in rodent models of neuropathic pain evoked by diverse chemotherapeutic agents (cisplatin and paclitaxel. A secondary objective was to investigate the potential contribution of alpha-chemokine receptor (CXCR4 signaling to both chemotherapy-induced neuropathy and CB2 agonist efficacy. Results AM1710 (0.1, 1 or 5 mg/kg i.p. suppressed the maintenance of mechanical and cold allodynia in the cisplatin and paclitaxel models. Anti-allodynic effects of AM1710 were blocked by the CB2 antagonist AM630 (3 mg/kg i.p., but not the CB1 antagonist AM251 (3 mg/kg i.p., consistent with a CB2-mediated effect. By contrast, blockade of CXCR4 signaling with its receptor antagonist AMD3100 (10 mg/kg i.p. failed to attenuate mechanical or cold hypersensitivity induced by either cisplatin or paclitaxel. Moreover, blockade of CXCR4 signaling failed to alter the anti-allodynic effects of AM1710 in the paclitaxel model, further suggesting distinct mechanisms of action. Conclusions Our results indicate that activation of cannabinoid CB2 receptors by AM1710 suppresses both mechanical and cold allodynia in two distinct models of chemotherapy-induced neuropathic pain. By contrast, CXCR4 signaling does not contribute to the maintenance of chemotherapy-induced established neuropathy or efficacy of AM1710. Our studies suggest that CB2 receptors represent a promising therapeutic target for the treatment of toxic neuropathies produced by cisplatin and paclitaxel chemotherapeutic agents.

  6. NMDA受体的活化调节原代皮层神经元的Wnt/β-catenin信号通路%NMDA Receptor Activation Regulates Wnt/β-catenin Signaling Pathway in Primary Cortical Neurons

    Institute of Scientific and Technical Information of China (English)

    彭彦茜; 万仙子; 李屹晨; 李莎莎; 张薇; Tang Shaojun; 钟翎

    2012-01-01

    Wnt signaling has a key role in regulation of synaptic formation and function in the brain. Gluta-mate, which is the mainly excitatory transmitter, binds the glutamic acid receptor to regulate the activity of many signaling pathways. To determine the effect of NMDA receptor activation on Wnt/p-catenin signaling, primary cortical C57 mouse neurons were treated with 10 umol/L MSG and 50 umol/L NMDA and the components of Wnt/ p-catenin signaling were analyzed by Western blot or immunofluorescent experiments. We found that NMDA receptor activation not only increased the p-Ser9-GSK-3p to inhibit its activity but also caused an increase of intracellu-lar P-catenin and induced its translocation into nuclei, thereby up-regulated the downstream gene expression. These results suggest that NMDA receptors activation up-regulates Wnt/p-catenin signaling in primary cortical cultured neurons.%经典的Wnt/β-catenin信号通路在中枢神经系统突触形成和功能中发挥重要的调节作用.作为兴奋性神经递质的谷氨酸,与其受体结合,参与许多信号调节活动.为了探讨NMDA受体活化对Wnt/βcatenin信号通路的作用,该文利用18d的C57小鼠胚胎培养皮层神经元(离体10 d),用10 μmol/L谷氨酸钠(monosodium glutamate,MSG)和50 μmol/L N-甲基-D-天冬氨酸(NMDA)处理细胞,通过蛋白免疫印迹技术或者细胞免疫荧光染色分析Wnt/β-catenin信号通路关键成员.结果发现,NMDA受体的活化能使GSK-3β的Ser9位磷酸化水平增加,活性被抑制,胞浆内β-catenin蛋白降解减少,入核增加,激活下游基因表达.这些结果提示,NMDA受体激活能够上调Wnt/β-catenin信号通路.

  7. 17β-Estradiol responsiveness of MCF-7 laboratory strains is dependent on an autocrine signal activating the IGF type I receptor

    Directory of Open Access Journals (Sweden)

    Steenbergh Paul H

    2003-07-01

    Full Text Available Abstract Background Human MCF-7 cells have been studied extensively as a model for breast cancer cell growth. Many reports have established that serum-starved MCF-7 cells can be induced to proliferate upon the sole addition of 17β-estradiol (E2. However, the extent of the mitogenic response to E2 varies in different MCF-7 strains and may even be absent. In this study we compared the E2-sensitivity of three MCF-7 laboratory strains. Results The MCF-7S line is non-responsive to E2, the MCF-7 ATCC has an intermediate response to E2, while the MCF-7 NKI is highly E2-sensitive, although the levels and activities of the estrogen receptor (ER are not significantly different. Both suramin and IGF type I receptor blocking antibodies are able to inhibit the mitogenic response to E2-treatment in MCF-7 ATCC and MCF-7 NKI cells. From this we conclude that E2-induced proliferation is dependent on IGF type I receptor activation in all three MCF-7 strains. Conclusions The results presented in this article suggest that E2-responsiveness of MCF-7 cells is dependent on the secretion of an autocrine factor activating the IGF-IR. All three strains of MCF-7 breast cancer cells investigated do not respond to E2 if the IGF-RI-pathway is blocked. Generally, breast cancer therapy is targeted at inhibiting estrogen action. This study suggests that inhibition of IGF-action in combination with anti-estrogen-treatment may provide a more effective way in treatment or even prevention of breast cancer.

  8. Insulin receptor substrate 4 couples the leptin receptor to multiple signaling pathways.

    Science.gov (United States)

    Wauman, Joris; De Smet, Anne-Sophie; Catteeuw, Dominiek; Belsham, Denise; Tavernier, Jan

    2008-04-01

    Leptin is an adipokine that regulates food intake and energy expenditure by activating its hypothalamic leptin receptor (LR). Members of the insulin receptor substrate (IRS) family serve as adaptor proteins in the signaling pathways of several cytokines and hormones and a role for IRS2 in central leptin physiology is well established. Using mammalian protein-protein interaction trap (MAPPIT), a cytokine receptor-based two-hybrid method, in the N38 hypothalamic cell line, we here demonstrate that also IRS4 interacts with the LR. This recruitment is leptin dependent and requires phosphorylation of the Y1077 motif of the LR. Domain mapping of IRS4 revealed the critical role of the pleckstrin homology domain for full interaction. In line with its function as an adaptor protein, IRS4 interacted with the regulatory p85 subunit of the phosphatidylinositol 3-kinase, phospholipase Cgamma, and the suppressor of cytokine signaling (SOCS) family members SOCS2, SOCS6, and SOCS7 and thus can modulate LR signaling. PMID:18165436

  9. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules.

    Science.gov (United States)

    Copple, Bryan L; Li, Tiangang

    2016-02-01

    For many years, bile acids were thought to only function as detergents which solubilize fats and facilitate the uptake of fat-soluble vitamins in the intestine. Many early observations; however, demonstrated that bile acids regulate more complex processes, such as bile acids synthesis and immune cell function through activation of signal transduction pathways. These studies were the first to suggest that receptors may exist for bile acids. Ultimately, seminal studies by many investigators led to the discovery of several bile acid-activated receptors including the farnesoid X receptor, the vitamin D receptor, the pregnane X receptor, TGR5, α5 β1 integrin, and sphingosine-1-phosphate receptor 2. Several of these receptors are expressed outside of the gastrointestinal system, indicating that bile acids may have diverse functions throughout the body. Characterization of the functions of these receptors over the last two decades has identified many important roles for these receptors in regulation of bile acid synthesis, transport, and detoxification; regulation of glucose utilization; regulation of fatty acid synthesis and oxidation; regulation of immune cell function; regulation of energy expenditure; and regulation of neural processes such as gastric motility. Through these many functions, bile acids regulate many aspects of digestion ranging from uptake of essential vitamins to proper utilization of nutrients. Accordingly, within a short time period, bile acids moved beyond simple detergents and into the realm of complex signaling molecules. Because of the important processes that bile acids regulate through activation of receptors, drugs that target these receptors are under development for the treatment of several diseases, including cholestatic liver disease and metabolic syndrome. In this review, we will describe the various bile acid receptors, the signal transduction pathways activated by these receptors, and briefly discuss the physiological processes that

  10. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers

  11. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  12. Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.

    Science.gov (United States)

    Kahnt, Thorsten; Weber, Susanna C; Haker, Helene; Robbins, Trevor W; Tobler, Philippe N

    2015-03-01

    The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representations in humans. In the current study, we use dopamine receptor-specific pharmacology and multivoxel pattern-based functional magnetic resonance imaging to test the hypothesis that blocking D2-receptor activation enhances prefrontal representations. Human subjects performed a simple reward prediction task after double-blind and placebo controlled administration of the D2-receptor antagonist amisulpride. Using a whole-brain searchlight decoding approach we show that D2-receptor blockade enhances decoding of reward signals in the medial orbitofrontal cortex. Examination of activity patterns suggests that amisulpride increases the separation of activity patterns related to reward versus no reward. Moreover, consistent with the cortical distribution of D2 receptors, post hoc analyses showed enhanced decoding of motor signals in motor cortex, but not of visual signals in visual cortex. These results suggest that D2-receptor blockade enhances content-specific representations in frontal cortex, presumably by a dopamine-mediated increase in pattern separation. These findings are in line with a dual-state model of prefrontal dopamine, and provide new insights into the potential mechanism of action of dopaminergic drugs. PMID:25740537

  13. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Orfali, Nina [Cork Cancer Research Center, University College Cork, Cork (Ireland); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); McKenna, Sharon L. [Cork Cancer Research Center, University College Cork, Cork (Ireland); Cahill, Mary R. [Department of Hematology, Cork University Hospital, Cork (Ireland); Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu [Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); Mongan, Nigel P., E-mail: nigel.mongan@nottingham.ac.uk [Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD (United Kingdom); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States)

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.

  14. A model for the biosynthesis and transport of plasma membrane-associated signaling receptors to the cell surface

    Directory of Open Access Journals (Sweden)

    Sorina Claudia Popescu

    2012-04-01

    Full Text Available Intracellular protein transport is emerging as critical in determining the outcome of receptor-activated signal transduction pathways. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating receptor synthesis and transport to the cell surface. Recent advances in this field indicate that signaling pathways and intracellular transport machinery converge and coordinate to render receptors competent for signaling at their plasma membrane activity sites. The biogenesis and transport to the cell surface of signaling receptors appears to require both general trafficking and receptor-specific factors. Several molecular determinants, residing or associated with compartments of the secretory pathway and known to influence aspects in receptor biogenesis, are discussed and integrated into a predictive cooperative model for the functional expression of signaling receptors at the plasma membrane.

  15. DMPD: Adaptor usage and Toll-like receptor signaling specificity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15876435 Adaptor usage and Toll-like receptor signaling specificity. Dunne A, O'Nei...sage and Toll-like receptor signaling specificity. PubmedID 15876435 Title Adaptor usage and Toll-like receptor signaling specific

  16. Glutamate Delta-1 Receptor Regulates Metabotropic Glutamate Receptor 5 Signaling in the Hippocampus.

    Science.gov (United States)

    Suryavanshi, Pratyush S; Gupta, Subhash C; Yadav, Roopali; Kesherwani, Varun; Liu, Jinxu; Dravid, Shashank M

    2016-08-01

    The delta family of ionotropic glutamate receptors consists of glutamate delta-1 (GluD1) and glutamate delta-2 receptors. We have previously shown that GluD1 knockout mice exhibit features of developmental delay, including impaired spine pruning and switch in the N-methyl-D-aspartate receptor subunit, which are relevant to autism and other neurodevelopmental disorders. Here, we identified a novel role of GluD1 in regulating metabotropic glutamate receptor 5 (mGlu5) signaling in the hippocampus. Immunohistochemical analysis demonstrated colocalization of mGlu5 with GluD1 punctas in the hippocampus. Additionally, GluD1 protein coimmunoprecipitated with mGlu5 in the hippocampal membrane fraction, as well as when overexpressed in human embryonic kidney 293 cells, demonstrating that GluD1 and mGlu5 may cooperate in a signaling complex. The interaction of mGlu5 with scaffold protein effector Homer, which regulates mechanistic target of rapamycin (mTOR) signaling, was abnormal both under basal conditions and in response to mGlu1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) in GluD1 knockout mice. The basal levels of phosphorylated mTOR and protein kinase B, the signaling proteins downstream of mGlu5 activation, were higher in GluD1 knockout mice, and no further increase was induced by DHPG. We also observed higher basal protein translation and an absence of DHPG-induced increase in GluD1 knockout mice. In accordance with a role of mGlu5-mediated mTOR signaling in synaptic plasticity, DHPG-induced internalization of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits was impaired in the GluD1 knockout mice. These results demonstrate that GluD1 interacts with mGlu5, and loss of GluD1 impairs normal mGlu5 signaling potentially by dysregulating coupling to its effector. These studies identify a novel role of the enigmatic GluD1 subunit in hippocampal function. PMID:27231330

  17. Novel roles of nuclear angiotensin receptors and signaling mechanisms.

    Science.gov (United States)

    Gwathmey, TanYa M; Alzayadneh, Ebaa M; Pendergrass, Karl D; Chappell, Mark C

    2012-03-01

    The renin-angiotensin system (RAS) constitutes an important hormonal system in the physiological regulation of blood pressure. The dysregulation of the RAS is considered a major influence in the development and progression of cardiovascular disease and other pathologies. Indeed, experimental and clinical evidence indicates that blockade of this system with angiotensin-converting enzyme (ACE) inhibitors or angiotensin type 1 receptor (AT1R) antagonists is an effective therapy to attenuate hypertension and diabetic renal injury, and to improve heart failure. Originally defined as a circulating system, multiple tissues express a complete RAS, and compelling evidence now favors an intracellular system involved in cell signaling and function. Within the kidney, intracellular expression of the three predominant ANG receptor subtypes is evident in the nuclear compartment. The ANG type 1 receptor (AT1R) is coupled to the generation of reactive oxygen species (ROS) through the activation of phosphoinositol-3 kinase (PI3K) and PKC. In contrast, both ANG type 2 (AT2R) and ANG-(1-7) (AT7R) receptors stimulate nitric oxide (NO) formation, which may involve nuclear endothelial NO synthase (eNOS). Moreover, blockade of either ACE2-the enzyme that converts ANG II to ANG-(1-7)-or the AT7 receptor exacerbates the ANG II-ROS response on renal nuclei. Finally, in a model of fetal programmed hypertension, the nuclear ROS response to ANG II is enhanced, while both AT2 and AT7 stimulation of NO is attenuated, suggesting that an imbalance in the intracellular RAS may contribute to the development of programming events. We conclude that a functional intracellular or nuclear RAS may have important implications in the therapeutic approaches to cardiovascular disease. PMID:22170620

  18. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    OpenAIRE

    Kourouniotis, George; Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2016-01-01

    The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internali...

  19. A comprehensive map of the toll-like receptor signaling network

    OpenAIRE

    Oda, Kanae; Kitano, Hiroaki

    2006-01-01

    Recognition of pathogen-associated molecular signatures is critically important in proper activation of the immune system. The toll-like receptor (TLR) signaling network is responsible for innate immune response. In mammalians, there are 11 TLRs that recognize a variety of ligands from pathogens to trigger immunological responses. In this paper, we present a comprehensive map of TLRs and interleukin 1 receptor signaling networks based on papers published so far. The map illustrates the possib...

  20. Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle: Differential effects on insulin-receptor substrates 1 and 2

    OpenAIRE

    Chibalin, Alexander V; Yu, Mei; Ryder, Jeffrey W.; Song, Xiao Mei; Galuska, Dana; Krook, Anna; Wallberg-Henriksson, Harriet; Juleen R. Zierath

    2000-01-01

    Level of physical activity is linked to improved glucose homeostasis. We determined whether exercise alters the expression and/or activity of proteins involved in insulin-signal transduction in skeletal muscle. Wistar rats swam 6 h per day for 1 or 5 days. Epitrochlearis muscles were excised 16 h after the last exercise bout, and were incubated with or without insulin (120 nM). Insulin-stimulated glucose transport increased 30% and 50% after 1 and 5 days of exercise, respectively. Glycogen co...

  1. SPATA2 links CYLD to the TNF-α receptor signaling complex and modulates the receptor signaling outcomes.

    Science.gov (United States)

    Wagner, Sebastian A; Satpathy, Shankha; Beli, Petra; Choudhary, Chunaram

    2016-09-01

    TNF-α is a key regulator of innate immune and proinflammatory responses. However, the composition of the TNF-α receptor-associated signaling complexes (TNF-RSC) and the architecture of the downstream signaling networks are incompletely understood. We employed quantitative mass spectrometry to demonstrate that TNF-α stimulation induces widespread protein phosphorylation and that the scope of phosphorylation expands in a temporal manner. TNF-α stimulation also induces rapid ubiquitylation of components of the TNF-RSC Temporal analysis of the TNF-RSC composition identified SPATA2 as a novel component of the TNF-RSC The predicted PUB domain in the N-terminus of SPATA2 interacts with the USP domain of CYLD, whereas the C-terminus of SPATA2 interacts with HOIP SPATA2 is required for recruitment of CYLD to the TNF-RSC Downregulation of SPATA2 augments transcriptional activation of NF-κB and inhibits TNF-α-induced necroptosis, pointing to an important function of SPATA2 in modulating the outcomes of TNF-α signaling. Taken together, our study draws a detailed map of TNF-α signaling, identifies SPATA2 as a novel component of TNF-α signaling, and provides a rich resource for further functional investigations.

  2. T Cell Receptor-induced Nuclear Factor κB (NF-κB) Signaling and Transcriptional Activation Are Regulated by STIM1- and Orai1-mediated Calcium Entry.

    Science.gov (United States)

    Liu, Xiaohong; Berry, Corbett T; Ruthel, Gordon; Madara, Jonathan J; MacGillivray, Katelyn; Gray, Carolyn M; Madge, Lisa A; McCorkell, Kelly A; Beiting, Daniel P; Hershberg, Uri; May, Michael J; Freedman, Bruce D

    2016-04-15

    T cell activation following antigen binding to the T cell receptor (TCR) involves the mobilization of intracellular Ca(2+) to activate the key transcription factors nuclear factor of activated T lymphocytes (NFAT) and NF-κB. The mechanism of NFAT activation by Ca(2+) has been determined. However, the role of Ca(2+) in controlling NF-κB signaling is poorly understood, and the source of Ca(2+) required for NF-κB activation is unknown. We demonstrate that TCR- but not TNF-induced NF-κB signaling upstream of IκB kinase activation absolutely requires the influx of extracellular Ca(2+) via STIM1-dependent Ca(2+) release-activated Ca(2+)/Orai channels. We further show that Ca(2+) influx controls phosphorylation of the NF-κB protein p65 on Ser-536 and that this posttranslational modification controls its nuclear localization and transcriptional activation. Notably, our data reveal that this role for Ca(2+) is entirely separate from its upstream control of IκBα degradation, thereby identifying a novel Ca(2+)-dependent distal step in TCR-induced NF-κB activation. Finally, we demonstrate that this control of distal signaling occurs via Ca(2+)-dependent PKCα-mediated phosphorylation of p65. Thus, we establish the source of Ca(2+) required for TCR-induced NF-κB activation and define a new distal Ca(2+)-dependent checkpoint in TCR-induced NF-κB signaling that has broad implications for the control of immune cell development and T cell functional specificity.

  3. An Integrated Model of Epidermal Growth Factor Receptor Trafficking and Signal Transduction

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Haluk; Ewald, Jonathan A.; Dixon, David A.; Wiley, H. S.

    2003-08-01

    Endocytic trafficking of many types of receptors can have profound effects on subsequent signaling events. Quantitative models of these processes, however, have usually considered trafficking and signaling independently. Here, we present an integrated model of both the trafficking and signaling pathway of the epidermal growth factor receptor (EGFR) using a probability weighted-dynamic Monte Carlo simulation. Our model consists of hundreds of distinct endocytic compartments and about 13,000 reactions/events that occur over a broad spatio-temporal range. By using a realistic multi-compartment model, we can investigate the distribution of the receptors among cellular compartments as well as their potential signal transduction characteristics. Our new model also allows the incorporation of physio-chemical aspects of ligand-receptor interactions, such as pH-dependent binding in different endosomal compartments. To determine the utility of this approach, we simulated the differential activation of the EGFR by two of its ligands, epidermal growth factor (EGF) and transforming growth factor- alpha (TGF-a). Our simulations predict that when EGFR is activated with TGF-a, receptor activation is biased toward the cell surface whereas EGF produces a signaling bias towards the endosomal compartment. Experiments confirm these predictions from our model and simulations. Our model accurately predicts the kinetics and extent of receptor down-regulation induced by either EGF or TGF-a. Our results suggest that receptor trafficking controls the compartmental bias of signal transduction, rather than simply modulating signal magnitude. Our model provides a new approach to evaluating the complex effect of receptor trafficking on signal transduction. Importantly, the stochastic and compartmental nature of the simulation allows these models to be directly tested by high-throughput approaches, such as quantitative image analysis.

  4. Visualization of BRI1 and BAK1(SERK3) membrane receptor heterooligomers during brassinosteroid signaling.

    Science.gov (United States)

    Bücherl, Christoph A; van Esse, G Wilma; Kruis, Alex; Luchtenberg, Jeroen; Westphal, Adrie H; Aker, José; van Hoek, Arie; Albrecht, Catherine; Borst, Jan Willem; de Vries, Sacco C

    2013-08-01

    The leucine-rich repeat receptor-like kinase BRASSINOSTEROID-INSENSITIVE1 (BRI1) is the main ligand-perceiving receptor for brassinosteroids (BRs) in Arabidopsis (Arabidopsis thaliana). Binding of BRs to the ectodomain of plasma membrane (PM)-located BRI1 receptors initiates an intracellular signal transduction cascade that influences various aspects of plant growth and development. Even though the major components of BR signaling have been revealed and the PM was identified as the main site of BRI1 signaling activity, the very first steps of signal transmission are still elusive. Recently, it was shown that the initiation of BR signal transduction requires the interaction of BRI1 with its SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) coreceptors. In addition, the resolved structure of the BRI1 ectodomain suggested that BRI1-ASSOCIATED KINASE1 [BAK1](SERK3) may constitute a component of the ligand-perceiving receptor complex. Therefore, we investigated the spatial correlation between BRI1 and BAK1(SERK3) in the natural habitat of both leucine-rich repeat receptor-like kinases using comparative colocalization analysis and fluorescence lifetime imaging microscopy. We show that activation of BR signaling by exogenous ligand application resulted in both elevated colocalization between BRI1 and BAK1(SERK3) and an about 50% increase of receptor heterooligomerization in the PM of live Arabidopsis root epidermal cells. However, large populations of BRI1 and BAK1(SERK3) colocalized independently of BRs. Moreover, we could visualize that approximately 7% of the BRI1 PM pool constitutively heterooligomerizes with BAK1(SERK3) in live root cells. We propose that only small populations of PM-located BRI1 and BAK1(SERK3) receptors participate in active BR signaling and that the initiation of downstream signal transduction involves preassembled BRI1-BAK1(SERK3) heterooligomers.

  5. An integrated model of epidermal growth factor receptor trafficking and signal transduction.

    Science.gov (United States)

    Resat, Haluk; Ewald, Jonathan A; Dixon, David A; Wiley, H Steven

    2003-08-01

    Endocytic trafficking of many types of receptors can have profound effects on subsequent signaling events. Quantitative models of these processes, however, have usually considered trafficking and signaling independently. Here, we present an integrated model of both the trafficking and signaling pathway of the epidermal growth factor receptor (EGFR) using a probability weighted-dynamic Monte Carlo simulation. Our model consists of hundreds of distinct endocytic compartments and approximately 13,000 reactions/events that occur over a broad spatio-temporal range. By using a realistic multicompartment model, we can investigate the distribution of the receptors among cellular compartments as well as their potential signal transduction characteristics. Our new model also allows the incorporation of physiochemical aspects of ligand-receptor interactions, such as pH-dependent binding in different endosomal compartments. To determine the utility of this approach, we simulated the differential activation of the EGFR by two of its ligands, epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha). Our simulations predict that when EGFR is activated with TGF-alpha, receptor activation is biased toward the cell surface whereas EGF produces a signaling bias toward the endosomal compartment. Experiments confirm these predictions from our model and simulations. Our model accurately predicts the kinetics and extent of receptor downregulation induced by either EGF or TGF-alpha. Our results suggest that receptor trafficking controls the compartmental bias of signal transduction, rather than simply modulating signal magnitude. Our model provides a new approach to evaluating the complex effect of receptor trafficking on signal transduction. Importantly, the stochastic and compartmental nature of the simulation allows these models to be directly tested by high-throughput approaches, such as quantitative image analysis. PMID:12885624

  6. Neurokinin-1 receptor signalling impacts bone marrow repopulation efficiency.

    Directory of Open Access Journals (Sweden)

    Alexandra Berger

    Full Text Available Tachykinins are a large group of neuropeptides with both central and peripheral activity. Despite the increasing number of studies reporting a growth supportive effect of tachykinin peptides in various in vitro stem cell systems, it remains unclear whether these findings are applicable in vivo. To determine how neurokinin-1 receptor (NK-1R deficient hematopoietic stem cells would behave in a normal in vivo environment, we tested their reconstitution efficiency using competitive bone marrow repopulation assays. We show here that bone marrow taken from NK-1R deficient mice (Tacr1(-/- showed lineage specific B and T cell engraftment deficits compared to wild-type competitor bone marrow cells, providing evidence for an involvement of NK-1R signalling in adult hematopoiesis. Tachykinin knockout mice lacking the peptides SP and/or HK-1 (Tac1 (-/-, Tac4 (-/- and Tac1 (-/-/Tac4 (-/- mice repopulated a lethally irradiated wild-type host with similar efficiency as competing wild-type bone marrow. The difference between peptide and receptor deficient mice indicates a paracrine and/or endocrine mechanism of action rather than autocrine signalling, as tachykinin peptides are supplied by the host environment.

  7. E3 ubiquitin ligases Pellinos as regulators of pattern recognition receptor signaling and immune responses.

    Science.gov (United States)

    Medvedev, Andrei E; Murphy, Michael; Zhou, Hao; Li, Xiaoxia

    2015-07-01

    Pellinos are a family of E3 ubiquitin ligases discovered for their role in catalyzing K63-linked polyubiquitination of Pelle, an interleukin-1 (IL-1) receptor-associated kinase homolog in the Drosophila Toll pathway. Subsequent studies have revealed the central and non-redundant roles of mammalian Pellino-1, Pellino-2, and Pelino-3 in signaling pathways emanating from IL-1 receptors, Toll-like receptors, NOD-like receptors, T- and B-cell receptors. While Pellinos ability to interact with many signaling intermediates suggested their scaffolding roles, recent findings in mice expressing ligase-inactive Pellinos demonstrated the importance of Pellino ubiquitin ligase activity. Cell-specific functions of Pellinos have emerged, e.g. Pellino-1 being a negative regulator in T lymphocytes and a positive regulator in myeloid cells, and details of molecular regulation of receptor signaling by various members of the Pellino family have been revealed. In this review, we summarize current information about Pellino-mediated regulation of signaling by pattern recognition receptors, T-cell and B-cell receptors and tumor necrosis factor receptors, and discuss Pellinos roles in sepsis and infectious diseases, as well as in autoimmune, inflammatory, and allergic disorders. We also provide our perspective on the potential of targeting Pellinos with peptide- or small molecule-based drug compounds as a new therapeutic approach for septic shock and autoimmune pathologies.

  8. From pure compounds to complex exposure: Effects of dietary cadmium and lignans on estrogen, epidermal growth factor receptor, and mitogen activated protein kinase signaling in vivo.

    Science.gov (United States)

    Ali, Imran; Hurmerinta, Teija; Nurmi, Tarja; Berglund, Marika; Rüegg, Joelle; Poutanen, Matti; Halldin, Krister; Mäkelä, Sari; Damdimopoulou, Pauliina

    2016-06-24

    Exposure to environmental endocrine active compounds correlates with altered susceptibility to disease in human populations. Chemical risk assessment is single compound based, although exposure often takes place as heterogeneous mixtures of man-made and natural substances within complex matrices like diet. Here we studied whether the effects of cadmium and enterolactone on endocrine endpoints in dietary exposure can be predicted based on pure compound effects. Ovariectomized estrogen reporter ERE-luciferase (ERE-luc) mice were maintained on diets that intrinsically contain increasing concentrations of cadmium and enterolactone precursors for three and 21 days. The activation of the ERE-luc, epidermal growth factor receptor (EGFR), mitogen activated protein kinase (MAPK)-ERK1/2, and classical estrogen responses were measured. Interactions between the diets and endogenous hormone were evaluated by challenging the animals with 17β-estradiol. Compared to animals on basal purified diet, mice consuming experimental diets were exposed to significantly higher levels of cadmium and enterolactone, yet the exposure remained comparable to typical human dietary intake. Surprisingly, we could not detect effects on endpoints regulated by pure enterolactone, such as ERE-luc activation. However, cadmium accumulation in the liver was accompanied with activation of EGFR and MAPK-ERK1/2 in line with our earlier CdCl2 studies. Further, attenuation of 17β-estradiol-induced ERE-luc response in liver by experimental diets was observed. Our findings indicate that the exposure context can have substantial effects on the activity of endocrine active compounds in vivo. Thus, whenever possible, a context that mimics human exposure should be tested along with pure compounds. PMID:27108949

  9. Phagocytosis: receptors, signal integration, and the cytoskeleton.

    Science.gov (United States)

    Freeman, Spencer A; Grinstein, Sergio

    2014-11-01

    Phagocytosis is a remarkably complex and versatile process: it contributes to innate immunity through the ingestion and elimination of pathogens, while also being central to tissue homeostasis and remodeling by clearing effete cells. The ability of phagocytes to perform such diverse functions rests, in large part, on their vast repertoire of receptors. In this review, we address the various receptor types, their mobility in the plane of the membrane, and two modes of receptor crosstalk: priming and synergy. A major section is devoted to the actin cytoskeleton, which not only governs receptor mobility and clustering but also is instrumental in particle engulfment. Four stages of the actin remodeling process are identified and discussed: (i) the 'resting' stage that precedes receptor engagement, (ii) the disruption of the cortical actin prior to formation of the phagocytic cup, (iii) the actin polymerization that propels pseudopod extension, and (iv) the termination of polymerization and removal of preassembled actin that are required for focal delivery of endomembranes and phagosomal sealing. These topics are viewed in the larger context of the differentiation and polarization of the phagocytic cells.

  10. High Cell Surface Death Receptor Expression Determines Type I Versus Type II Signaling*

    Science.gov (United States)

    Meng, Xue Wei; Peterson, Kevin L.; Dai, Haiming; Schneider, Paula; Lee, Sun-Hee; Zhang, Jin-San; Koenig, Alexander; Bronk, Steve; Billadeau, Daniel D.; Gores, Gregory J.; Kaufmann, Scott H.

    2011-01-01

    Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression. PMID:21865165

  11. Role of Phospholipase C-L2, a Novel Phospholipase C-Like Protein That Lacks Lipase Activity, in B-Cell Receptor Signaling

    OpenAIRE

    Takenaka, Kei; Fukami, Kiyoko; Otsuki, Makiko; Nakamura, Yoshikazu; Kataoka, Yuki; Wada, Mika; Tsuji, Kohichiro; Nishikawa, Shin-ichi; Yoshida, Nobuaki; Takenawa, Tadaomi

    2003-01-01

    Phospholipase C (PLC) plays important roles in phosphoinositide turnover by regulating the calcium-protein kinase C signaling pathway. PLC-L2 is a novel PLC-like protein which lacks PLC activity, although it is very homologous with PLC δ. PLC-L2 is expressed in hematopoietic cells, but its physiological roles and intracellular functions in the immune system have not yet been clarified. To elucidate the physiological function of PLC-L2, we generated mice which had a genetic PLC-L2 deficiency. ...

  12. Dopamine D2-like receptor signaling suppresses human osteoclastogenesis.

    Science.gov (United States)

    Hanami, Kentaro; Nakano, Kazuhisa; Saito, Kazuyoshi; Okada, Yosuke; Yamaoka, Kunihiro; Kubo, Satoshi; Kondo, Masahiro; Tanaka, Yoshiya

    2013-09-01

    Dopamine, a major neurotransmitter, transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. Although the relevance of neuroendocrine system to bone metabolism has been emerging, the precise effects of dopaminergic signaling upon osteoclastogenesis remain unknown. Here, we demonstrate that human monocyte-derived osteoclast precursor cells express all dopamine-receptor subtypes. Dopamine and dopamine D2-like receptor agonists such as pramipexole and quinpirole reduced the formation of TRAP-positive multi-nucleated cells, cathepsin K mRNA expression, and pit formation area in vitro. These inhibitory effects were reversed by pre-treatment with a D2-like receptor antagonist haloperidol or a Gαi inhibitor pertussis toxin, but not with the D1-like receptor antagonist SCH-23390. Dopamine and dopamine D2-like receptor agonists, but not a D1-like receptor agonist, suppressed intracellular cAMP concentration as well as RANKL-meditated induction of c-Fos and NFATc1 mRNA expression in human osteoclast precursor cells. Finally, the dopamine D2-like receptor agonist suppressed LPS-induced osteoclast formation in murine bone marrow culture ex vivo. These findings indicate that dopaminergic signaling plays an important role in bone homeostasis via direct effects upon osteoclast differentiation and further suggest that the clinical use of neuroleptics is likely to affect bone mass. PMID:23631878

  13. Receptor clustering affects signal transduction at the membrane level in the reaction-limited regime

    Science.gov (United States)

    Caré, Bertrand R.; Soula, Hédi A.

    2013-01-01

    Many types of membrane receptors are found to be organized as clusters on the cell surface. We investigate the potential effect of such receptor clustering on the intracellular signal transduction stage. We consider a canonical pathway with a membrane receptor (R) activating a membrane-bound intracellular relay protein (G). We use Monte Carlo simulations to recreate biochemical reactions using different receptor spatial distributions and explore the dynamics of the signal transduction. Results show that activation of G by R is severely impaired by R clustering, leading to an apparent blunted biological effect compared to control. Paradoxically, this clustering decreases the half maximal effective dose (ED50) of the transduction stage, increasing the apparent affinity. We study an example of inter-receptor interaction in order to account for possible compensatory effects of clustering and observe the parameter range in which such interactions slightly counterbalance the loss of activation of G. The membrane receptors’ spatial distribution affects the internal stages of signal amplification, suggesting a functional role for membrane domains and receptor clustering independently of proximity-induced receptor-receptor interactions.

  14. Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers.

    Directory of Open Access Journals (Sweden)

    Gemma Navarro

    Full Text Available Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain.

  15. Signalling properties and pharmacology of a 5-HT7 -type serotonin receptor from Tribolium castaneum.

    Science.gov (United States)

    Vleugels, R; Lenaerts, C; Vanden Broeck, J; Verlinden, H

    2014-04-01

    In the last decade, genome sequence data and gene structure information on invertebrate receptors has been greatly expanded by large sequencing projects and cloning studies. This information is of great value for the identification of receptors; however, functional and pharmacological data are necessary for an accurate receptor classification and for practical applications. In insects, an important group of neurotransmitter and neurohormone receptors, for which ample sequence information is available but pharmacological information is missing, are the biogenic amine G protein-coupled receptors (GPCRs). In the present study, we investigated the sequence information, pharmacology and signalling properties of a 5-HT7 -type serotonin receptor from the red flour beetle, Tribolium castaneum (Trica5-HT7 ). The receptor encoding cDNA shows considerable sequence similarity with cognate 5-HT7 receptors and phylogenetic analysis also clusters the receptor within this 5-HT receptor group. Real-time reverse transcription PCR demonstrated high expression levels in the brain, indicating the possible importance of this receptor in neural processes. Trica5-HT7 was dose-dependently activated by 5-HT, which induced elevated intracellular cyclic AMP levels but had no effect on calcium signalling. The synthetic agonists, α-methyl 5-HT, 5-methoxytryptamine, 5-carboxamidotryptamine and 8-hydroxy-2-(dipropylamino)tetralin hydrobromide, showed a response, although with a much lower potency and efficacy than 5-HT. Ketanserin and methiothepin were the most potent antagonists. Both showed characteristics of competitive inhibition on Trica5-HT7 . The signalling pathway and pharmacological profile offer important information that will facilitate functional and comparative studies of 5-HT receptors in insects and other invertebrates. The pharmacology of invertebrate 5-HT receptors differs considerably from that of vertebrates. The present study may therefore contribute to establishing a more

  16. Signal Transduction and Intracellular Trafficking by the Interleukin 36 Receptor*

    Science.gov (United States)

    Saha, Siddhartha S.; Singh, Divyendu; Raymond, Ernest L.; Ganesan, Rajkumar; Caviness, Gary; Grimaldi, Christine; Woska, Joseph R.; Mennerich, Detlev; Brown, Su-Ellen; Mbow, M. Lamine; Kao, C. Cheng

    2015-01-01

    Improper signaling of the IL-36 receptor (IL-36R), a member of the IL-1 receptor family, has been associated with various inflammation-associated diseases. However, the requirements for IL-36R signal transduction remain poorly characterized. This work seeks to define the requirements for IL-36R signaling and intracellular trafficking. In the absence of cognate agonists, IL-36R was endocytosed and recycled to the plasma membrane. In the presence of IL-36, IL-36R increased accumulation in LAMP1+ lysosomes. Endocytosis predominantly used a clathrin-mediated pathway, and the accumulation of the IL-36R in lysosomes did not result in increased receptor turnover. The ubiquitin-binding Tollip protein contributed to IL-36R signaling and increased the accumulation of both subunits of the IL-36R. PMID:26269592

  17. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase

    Directory of Open Access Journals (Sweden)

    Guan Kunliang

    2003-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs interact with heterotrimeric GTP-binding proteins (G proteins to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways. Results Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1 on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin. Conclusion These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.

  18. Cadmium induces urokinase-type plasminogen activator receptor expression and the cell invasiveness of human gastric cancer cells via the ERK-1/2, NF-κB, and AP-1 signaling pathways.

    Science.gov (United States)

    Khoi, Pham Ngoc; Xia, Yong; Lian, Sen; Kim, Ho Dong; Kim, Do Hyun; Joo, Young Eun; Chay, Kee-Oh; Kim, Kyung Keun; Jung, Young Do

    2014-10-01

    Cadmium exposure has been linked to human cancers, including stomach cancer. In this study, the effects of cadmium on urokinase-type plasminogen activator receptor (uPAR) expression in human gastric cancer cells and the underlying signal transduction pathways were investigated. Cadmium induced uPAR expression in a time- and concentration-dependent manner. Cadmium also induced uPAR promoter activity. Additionally, cadmium induced the activation of extracellular signal regulated kinase-1/2 (ERK-1/2), p38 mitogen-activated protein kinase (MAPK), and the activation of c-Jun amino terminal kinase (JNK). A specific inhibitor of MEK-1 (PD98059) inhibited cadmium-induced uPAR expression, while JNK and p38 MAPK inhibitors did not. Expression vectors encoding dominant-negative MEK-1 (pMCL-K97M) also prevented cadmium-induced uPAR promoter activity. Site-directed mutagenesis and electrophoretic mobility shift studies showed that sites for the transcription factors nuclear factor (NF)-κB and activator protein-1 (AP-1) were involved in cadmium-induced uPAR transcription. Suppression of the cadmium-induced uPAR promoter activity by a mutated-type NF-κB-inducing kinase and I-κB and an AP-1 decoy oligonucleotide confirmed that the activation of NF-κB and AP-1 are essential for cadmium-induced uPAR upregulation. Cells pretreated with cadmium showed markedly enhanced invasiveness and this effect was partially abrogated by uPAR-neutralizing antibodies and by inhibitors of ERK-1/2, NF-κB, and AP-1. These results suggest that cadmium induces uPAR expression via ERK-1/2, NF-κB, and AP-1 signaling pathways and, in turn, stimulates cell invasiveness in human gastric cancer AGS cells.

  19. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia.

    LENUS (Irish Health Repository)

    Orfali, Nina

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies.

  20. Ectodysplasin A (EDA) - EDA receptor signalling and its pharmacological modulation.

    Science.gov (United States)

    Kowalczyk-Quintas, Christine; Schneider, Pascal

    2014-04-01

    The TNF family ligand ectodysplasin A (EDA) regulates the induction, morphogenesis and/or maintenance of skin-derived structures such as teeth, hair, sweat glands and several other glands. Deficiencies in the EDA - EDA receptor (EDAR) signalling pathway cause hypohidrotic ectodermal dysplasia (HED). This syndrome is characterized by the absence or malformation of several skin-derived appendages resulting in hypotrychosis, hypodontia, heat-intolerance, dry skin and dry eyes, susceptibility to airways infections and crusting of various secretions. The EDA-EDAR system is an important effector of canonical Wnt signalling in developing skin appendages. It functions by stimulating NF-κB-mediated transcription of effectors or inhibitors of the Wnt, Sonic hedgehog (SHH), fibroblast growth factor (FGF) and transforming growth factor beta (TGFβ) pathways that regulate interactions within or between epithelial and mesenchymal cells and tissues. In animal models of Eda-deficiency, soluble EDAR agonists can precisely correct clinically relevant symptoms with low side effects even at high agonist doses, indicating that efficient negative feedback signals occur in treated tissues. Hijacking of the placental antibody transport system can help deliver active molecules to developing foetuses in a timely manner. EDAR agonists may serve to treat certain forms of ectodermal dysplasia. PMID:24508088

  1. Current Views of Toll-Like Receptor Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Masahiro Yamamoto

    2010-01-01

    Full Text Available On microbial invasion, the host immediately evokes innate immune responses. Recent studies have demonstrated that Toll-like receptors (TLRs play crucial roles in innate responses that lead not only to the clearance of pathogens but also to the efficient establishment of acquired immunity by directly detecting molecules from microbes. In terms of intracellular TLR-mediated signaling pathways, cytoplasmic adaptor molecules containing Toll/IL-1R (TIR domains play important roles in inflammatory immune responses through the production of proinflammatory cytokines, nitric oxide, and type I interferon, and upregulation of costimulatory molecules. In this paper, we will describe our current understanding of the relationship between TLRs and their ligands derived from pathogens such as viruses, bacteria, fungi, and parasites. Moreover, we will review the historical and current literature to describe the mechanisms behind TLR-mediated activation of innate immune responses.

  2. The transcriptomics of glucocorticoid receptor signaling in developing zebrafish.

    Directory of Open Access Journals (Sweden)

    Dinushan Nesan

    Full Text Available Cortisol is the primary corticosteroid in teleosts that is released in response to stressor activation of the hypothalamus-pituitary-interrenal axis. The target tissue action of this hormone is primarily mediated by the intracellular glucocorticoid receptor (GR, a ligand-bound transcription factor. In developing zebrafish (Danio rerio embryos, GR transcripts and cortisol are maternally deposited into the oocyte prior to fertilization and influence early embryogenesis. To better understand of the molecular mechanisms involved, we investigated changes in the developmental transcriptome prior to hatch, in response to morpholino oligonucleotide knockdown of GR using the Agilent zebrafish microarray platform. A total of 1313 and 836 mRNA transcripts were significantly changed at 24 and 36 hours post fertilization (hpf, respectively. Functional analysis revealed numerous developmental processes under GR regulation, including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this study underscores a critical role for glucocorticoid signaling in programming molecular events essential for zebrafish development.

  3. The molecular mechanisms behind receptor signaling

    OpenAIRE

    Blain, Katherine Yoshie

    2010-01-01

    Cell membranes are a crucial component to the life of a cell. The membrane defines boundaries, provides structural elements, and contains proteins that serve as sensor receptors to transmit external cues across the phospholipid bilayer, either from the environment to the cell's interior or from the cytosol to a particular sub- cellular compartment. One type of proteins found spanning these lipid bilayers are known as the integral membrane proteins (IMPs). Since the dysfunction of this class o...

  4. Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices.

    Science.gov (United States)

    Wescott, Melanie P; Kufareva, Irina; Paes, Cheryl; Goodman, Jason R; Thaker, Yana; Puffer, Bridget A; Berdougo, Eli; Rucker, Joseph B; Handel, Tracy M; Doranz, Benjamin J

    2016-08-30

    The atomic-level mechanisms by which G protein-coupled receptors (GPCRs) transmit extracellular ligand binding events through their transmembrane helices to activate intracellular G proteins remain unclear. Using a comprehensive library of mutations covering all 352 residues of the GPCR CXC chemokine receptor 4 (CXCR4), we identified 41 amino acids that are required for signaling induced by the chemokine ligand CXCL12 (stromal cell-derived factor 1). CXCR4 variants with each of these mutations do not signal properly but remain folded, based on receptor surface trafficking, reactivity to conformationally sensitive monoclonal antibodies, and ligand binding. When visualized on the structure of CXCR4, the majority of these residues form a continuous intramolecular signaling chain through the transmembrane helices; this chain connects chemokine binding residues on the extracellular side of CXCR4 to G protein-coupling residues on its intracellular side. Integrated into a cohesive model of signal transmission, these CXCR4 residues cluster into five functional groups that mediate (i) chemokine engagement, (ii) signal initiation, (iii) signal propagation, (iv) microswitch activation, and (v) G protein coupling. Propagation of the signal passes through a "hydrophobic bridge" on helix VI that coordinates with nearly every known GPCR signaling motif. Our results agree with known conserved mechanisms of GPCR activation and significantly expand on understanding the structural principles of CXCR4 signaling. PMID:27543332

  5. Prolactin receptor and signal transduction to milk protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Djiane, J.; Daniel, N.; Bignon, C. [Unite d`Endocrinologie Moleculaire, Jouy en Josas (France)] [and others

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  6. Redox-dependent regulation of epidermal growth factor receptor signaling

    Directory of Open Access Journals (Sweden)

    David E. Heppner

    2016-08-01

    Full Text Available Tyrosine phosphorylation-dependent cell signaling represents a unique feature of multicellular organisms, and is important in regulation of cell differentiation and specialized cell functions. Multicellular organisms also contain a diverse family of NADPH oxidases (NOXs that have been closely linked with tyrosine kinase-based cell signaling and regulate tyrosine phosphorylation via reversible oxidation of cysteine residues that are highly conserved within many proteins involved in this signaling pathway. An example of redox-regulated tyrosine kinase signaling involves the epidermal growth factor receptor (EGFR, a widely studied receptor system with diverse functions in normal cell biology as well as pathologies associated with oxidative stress such as cancer. The purpose of this Graphical Redox Review is to highlight recently emerged concepts with respect to NOX-dependent regulation of this important signaling pathway.

  7. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    Chemokine receptors belong to the large family of 7-transmembrane (7TM) G-protein-coupled receptors. These receptors are targeted and activated by a variety of different ligands, indicating that activation is a result of similar molecular mechanisms but not necessarily similar modes of ligand bin...

  8. Non-genomic actions of aldosterone: From receptors and signals to membrane targets.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-07-26

    In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid \\'non-genomic\\' activation of protein kinases and secondary messenger signalling cascades has also been detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-induced changes in gene expression through receptor and transcription factor phosphorylation.

  9. Non-genomic actions of aldosterone: From receptors and signals to membrane targets.

    LENUS (Irish Health Repository)

    2012-02-01

    In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid \\'non-genomic\\' activation of protein kinases and secondary messenger signalling cascades has also been detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-induced changes in gene expression through receptor and transcription factor phosphorylation.

  10. Comparison of the activation kinetics of the M3 acetylcholine receptor and a constitutively active mutant receptor in living cells.

    Science.gov (United States)

    Hoffmann, Carsten; Nuber, Susanne; Zabel, Ulrike; Ziegler, Nicole; Winkler, Christiane; Hein, Peter; Berlot, Catherine H; Bünemann, Moritz; Lohse, Martin J

    2012-08-01

    Activation of G-protein-coupled receptors is the first step of the signaling cascade triggered by binding of an agonist. Here we compare the activation kinetics of the G(q)-coupled M(3) acetylcholine receptor (M(3)-AChR) with that of a constitutively active mutant receptor (M(3)-AChR-N514Y) using M(3)-AChR constructs that report receptor activation by changes in the fluorescence resonance energy transfer (FRET) signal. We observed a leftward shift in the concentration-dependent FRET response for acetylcholine and carbachol with M(3)-AChR-N514Y. Consistent with this result, at submaximal agonist concentrations, the activation kinetics of M(3)-AChR-N514Y were significantly faster, whereas at maximal agonist concentrations the kinetics of receptor activation were identical. Receptor deactivation was significantly faster with carbachol than with acetylcholine and was significantly delayed by the N514Y mutation. Receptor-G-protein interaction was measured by FRET between M(3)-AChR-yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP)-Gγ(2). Agonist-induced receptor-G-protein coupling was of a time scale similar to that of receptor activation. As observed for receptor deactivation, receptor-G-protein dissociation was slower for acetylcholine than that for carbachol. Acetylcholine-stimulated increases in receptor-G-protein coupling of M(3)-AChR-N514Y reached only 12% of that of M(3)-AChR and thus cannot be kinetically analyzed. G-protein activation was measured using YFP-tagged Gα(q) and CFP-tagged Gγ(2). Activation of G(q) was significantly slower than receptor activation and indistinguishable for the two agonists. However, G(q) deactivation was significantly prolonged for acetylcholine compared with that for carbachol. Consistent with decreased agonist-stimulated coupling to G(q), agonist-stimulated G(q) activation by M(3)-AChR-N514Y was not detected. Taken together, these results indicate that the N514Y mutation produces constitutive activation of M(3

  11. Signaling of human frizzled receptors to the mating pathway in yeast.

    Directory of Open Access Journals (Sweden)

    Dietmar Dirnberger

    Full Text Available Frizzled receptors have seven membrane-spanning helices and are considered as atypical G protein-coupled receptors (GPCRs. The mating response of the yeast Saccharomyces cerevisiae is mediated by a GPCR signaling system and this model organism has been used extensively in the past to study mammalian GPCR function. We show here that human Frizzled receptors (Fz1 and Fz2 can be properly targeted to the yeast plasma membrane, and that they stimulate the yeast mating pathway in the absence of added Wnt ligands, as evidenced by cell cycle arrest in G1 and reporter gene expression dependent on the mating pathway-activated FUS1 gene. Introducing intracellular portions of Frizzled receptors into the Ste2p backbone resulted in the generation of constitutively active receptor chimeras that retained mating factor responsiveness. Introducing intracellular portions of Ste2p into the Frizzled receptor backbone was found to strongly enhance mating pathway activation as compared to the native Frizzleds, likely by facilitating interaction with the yeast Galpha protein Gpa1p. Furthermore, we show reversibility of the highly penetrant G1-phase arrests exerted by the receptor chimeras by deletion of the mating pathway effector FAR1. Our data demonstrate that Frizzled receptors can functionally replace mating factor receptors in yeast and offer an experimental system to study modulators of Frizzled receptors.

  12. Signaling of human frizzled receptors to the mating pathway in yeast.

    Science.gov (United States)

    Dirnberger, Dietmar; Seuwen, Klaus

    2007-09-26

    Frizzled receptors have seven membrane-spanning helices and are considered as atypical G protein-coupled receptors (GPCRs). The mating response of the yeast Saccharomyces cerevisiae is mediated by a GPCR signaling system and this model organism has been used extensively in the past to study mammalian GPCR function. We show here that human Frizzled receptors (Fz1 and Fz2) can be properly targeted to the yeast plasma membrane, and that they stimulate the yeast mating pathway in the absence of added Wnt ligands, as evidenced by cell cycle arrest in G1 and reporter gene expression dependent on the mating pathway-activated FUS1 gene. Introducing intracellular portions of Frizzled receptors into the Ste2p backbone resulted in the generation of constitutively active receptor chimeras that retained mating factor responsiveness. Introducing intracellular portions of Ste2p into the Frizzled receptor backbone was found to strongly enhance mating pathway activation as compared to the native Frizzleds, likely by facilitating interaction with the yeast Galpha protein Gpa1p. Furthermore, we show reversibility of the highly penetrant G1-phase arrests exerted by the receptor chimeras by deletion of the mating pathway effector FAR1. Our data demonstrate that Frizzled receptors can functionally replace mating factor receptors in yeast and offer an experimental system to study modulators of Frizzled receptors.

  13. Progesterone in pregnancy; receptor-ligand interaction and signaling pathways.

    Science.gov (United States)

    Szekeres-Bartho, Julia; Halasz, Melinda; Palkovics, Tamas

    2009-12-01

    Progesterone is indispensable in creating a suitable endometrial environment for implantation, and also for the maintenance of pregnancy. Successful pregnancy depends on an appropriate maternal immune response to the fetus. Along with its endocrine effects, progesterone also acts as an "immunosteroid", by contributing to the establishment of a pregnancy protective immune milieu. Progesterone plays a role in uterine homing of NK cells and upregulates HLA-G gene expression, the ligand for NK inhibitory and activating receptors. At high concentrations, progesterone is a potent inducer of Th2-type cytokines as well as of LIF and M-CSF production by T cells. A protein called progesterone-induced blocking factor (PIBF), by inducing a Th2-dominant cytokine production mediates the immunological effects of progesterone. PIBF binds to a novel type of the IL-4 receptor and signals via the Jak/STAT pathway, to induce a number of genes, that not only affect the immune response, but might also play a role in trophoblast invasiveness. PMID:19880194

  14. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    International Nuclear Information System (INIS)

    Highlights: → A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. → The second zinc finger of LIM domain 1 of testin is critical for interaction. → Testin bound to a region of the receptor tail important for cell signalling. → Testin and receptor interaction was confirmed in mammalian (HEK293) cells. → Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  15. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    Energy Technology Data Exchange (ETDEWEB)

    Magno, Aaron L. [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Ingley, Evan [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Brown, Suzanne J. [Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Conigrave, Arthur D. [School of Molecular Bioscience, University of Sydney, New South Wales 2000 (Australia); Ratajczak, Thomas [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Ward, Bryan K., E-mail: bryanw@cyllene.uwa.edu.au [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia)

    2011-09-09

    Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  16. Mechanism for the activation of glutamate receptors

    Science.gov (United States)

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  17. P2X receptor-mediated ATP purinergic signaling in health and disease

    Directory of Open Access Journals (Sweden)

    Jiang LH

    2012-09-01

    Full Text Available Lin-Hua JiangSchool of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United KingdomAbstract: Purinergic P2X receptors are plasma membrane proteins present in a wide range of mammalian cells where they act as a cellular sensor, enabling cells to detect and respond to extracellular adenosine triphosphate (ATP, an important signaling molecule. P2X receptors function as ligand-gated Ca2+-permeable cationic channels that open upon ATP binding to elevate intracellular Ca2+ concentrations and cause membrane depolarization. In response to sustained activation, P2X receptors induce formation of a pore permeable to large molecules. P2X receptors also interact with distinct functional proteins and membrane lipids to form specialized signaling complexes. Studies have provided compelling evidence to show that such P2X receptor-mediated ATP-signaling mechanisms determine and regulate a growing number and diversity of important physiological processes, including neurotransmission, muscle contraction, and cytokine release. There is accumulating evidence to support strong causative relationships of altered receptor expression and function with chronic pain, inflammatory diseases, cancers, and other pathologies or diseases. Numerous high throughput screening drug discovery programs and preclinical studies have thus far demonstrated the proof of concepts that the P2X receptors are druggable targets and selective receptor antagonism is a promising therapeutics approach. This review will discuss the recent progress in understanding the mammalian P2X receptors with respect to the ATP-signaling mechanisms, physiological and pathophysiological roles, and development and preclinical studies of receptor antagonists.Keywords: extracellular ATP, ion channel, large pore, signaling complex, chronic pain, inflammatory diseases

  18. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways

    Directory of Open Access Journals (Sweden)

    Choi YH

    2014-10-01

    Full Text Available Yung Hyun Choi,1,2 Gi-Young Kim,3 Hye Hyeon Lee4 1Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, 2Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan, 3Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, 4Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea Abstract: Cordycepin is the main functional component of the Cordyceps species, which has been widely used in traditional Oriental medicine. This compound possesses many pharmacological properties, such as an ability to enhance immune function, as well as antioxidant, antiaging, and anticancer effects. In the present study, we investigated the anti-inflammatory effects of cordycepin using a murine macrophage RAW 264.7 cell model. Our data demonstrated that cordycepin suppressed production of proinflammatory mediators such as nitric oxide (NO and prostaglandin E2 by inhibiting inducible NO synthase and cyclooxygenase-2 gene expression. Cordycepin also inhibited the release of proinflammatory cytokines, including tumor necrosis factor-alpha and interleukin-1-beta, through downregulation of respective mRNA expression. In addition, pretreatment with cordycepin significantly inhibited lipopolysaccharide (LPS-induced phosphorylation of mitogen-activating protein kinases and attenuated nuclear translocation of NF-κB by LPS, which was associated with abrogation of inhibitor kappa B-alpha degradation. Furthermore, cordycepin potently inhibited the binding of LPS to macrophages and LPS-induced Toll-like receptor 4 and myeloid differentiation factor 88 expression. Taken together, the results suggest that the inhibitory effects of cordycepin on LPS-stimulated inflammatory responses in RAW 264.7 macrophages are associated with suppression of mitogen-activating protein kinases and activation of NF-κB by inhibition of the Toll-like receptor 4 signaling pathway. Keywords

  19. Striated muscle activator of Rho signalling (STARS) is a PGC-1α/oestrogen-related receptor-α target gene and is upregulated in human skeletal muscle after endurance exercise.

    Science.gov (United States)

    Wallace, Marita A; Hock, M Benjamin; Hazen, Bethany C; Kralli, Anastasia; Snow, Rod J; Russell, Aaron P

    2011-04-15

    The striated muscle activator of Rho signalling (STARS) is an actin-binding protein specifically expressed in cardiac, skeletal and smooth muscle. STARS has been suggested to provide an important link between the transduction of external stress signals to intracellular signalling pathways controlling genes involved in the maintenance of muscle function. The aims of this study were firstly, to establish if STARS, as well as members of its downstream signalling pathway, are upregulated following acute endurance cycling exercise; and secondly, to determine if STARS is a transcriptional target of peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) and oestrogen-related receptor-α (ERRα). When measured 3 h post-exercise, STARS mRNA and protein levels as well as MRTF-A and serum response factor (SRF) nuclear protein content, were significantly increased by 140, 40, 40 and 40%, respectively. Known SRF target genes, carnitine palmitoyltransferase-1β (CPT-1β) and jun B proto-oncogene (JUNB), as well as the exercise-responsive genes PGC-1α mRNA and ERRα were increased by 2.3-, 1.8-, 4.5- and 2.7-fold, 3 h post-exercise. Infection of C2C12 myotubes with an adenovirus-expressing human PGC-1α resulted in a 3-fold increase in Stars mRNA, a response that was abolished following the suppression of endogenous ERRα. Over-expression of PGC-1α also increased Cpt-1β, Cox4 and Vegf mRNA by 6.2-, 2.0- and 2.0-fold, respectively. Suppression of endogenous STARS reduced basal Cpt-1β levels by 8.2-fold and inhibited the PGC-1α-induced increase in Cpt-1β mRNA. Our results show for the first time that the STARS signalling pathway is upregulated in response to acute endurance exercise. Additionally, we show in C2C12 myotubes that the STARS gene is a PGC-1α/ERRα transcriptional target. Furthermore, our results suggest a novel role of STARS in the co-ordination of PGC-1α-induced upregulation of the fat oxidative gene, CPT-1β.

  20. Cannabinoid receptor 1 signaling in embryo neurodevelopment.

    Science.gov (United States)

    Psychoyos, Delphine; Vinod, K Yaragudri; Cao, Jin; Xie, Shan; Hyson, Richard L; Wlodarczyk, Bogdan; He, Weimin; Cooper, Thomas B; Hungund, Basalingappa L; Finnell, Richard H

    2012-04-01

    In utero exposure to tetrahydrocannabinol, the psychoactive component of marijuana, is associated with an increased risk for neurodevelopmental defects in the offspring by interfering with the functioning of the endocannabinoid (eCB) system. At the present time, it is not clearly known whether the eCB system is present before neurogenesis. Using an array of biochemical techniques, we analyzed the levels of CB1 receptors, eCBs (AEA and 2-AG), and the enzymes (NAPE-PLD, DAGLα, DAGLβ, MAGL, and FAAH) involved in the metabolism of the eCBs in chick and mouse models during development. The findings demonstrate the presence of eCB system in early embryo before neurogenesis. The eCB system might play a critical role in early embryogenesis and there might be adverse developmental consequences of in utero exposure to marijuana and other drugs of abuse during this period.

  1. ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5.

    Science.gov (United States)

    Hsu, H; Solovyev, I; Colombero, A; Elliott, R; Kelley, M; Boyle, W J

    1997-05-23

    Members of tumor necrosis factor receptor (TNFR) family signal largely through interactions with death domain proteins and TRAF proteins. Here we report the identification of a novel TNFR family member ATAR. Human and mouse ATAR contain 283 and 276 amino acids, respectively, making them the shortest known members of the TNFR superfamily. The receptor is expressed mainly in spleen, thymus, bone marrow, lung, and small intestine. The intracellular domains of human and mouse ATAR share only 25% identity, yet both interact with TRAF5 and TRAF2. This TRAF interaction domain resides at the C-terminal 20 amino acids. Like most other TRAF-interacting receptors, overexpression of ATAR activates the transcription factor NF-kappaB. Co-expression of ATAR with TRAF5, but not TRAF2, results in synergistic activation of NF-kappaB, suggesting potentially different roles for TRAF2 and TRAF5 in post-receptor signaling. PMID:9153189

  2. Epidermal growth factor receptor and cancer: control of oncogenic signalling by endocytosis

    DEFF Research Database (Denmark)

    Grandal, Michael Vibo; Madshus, I.H.

    2008-01-01

    The epidermal growth factor receptor (EGFR) and other members of the EGFR/ErbB receptor family of receptor tyrosine kinases (RTKs) are important regulators of proliferation, angiogenesis, migration, tumorigenesis and metastasis. Overexpression, mutations, deletions and production of autocrine...... prevents its down-regulation, underscoring the importance of the cellular background for EGFR effects. Signalling from ErbB proteins can either be terminated by dissociation of ligand resulting in dephosphorylation, or blunted by degradation of the receptors. Although proteasomal targeting of ErbB proteins...... ligands contribute to aberrant activation of the ErbB proteins. The signalling output from EGFR is complicated given that other ErbB proteins are often additionally expressed and activated in the same cell, resulting in formation of homo-and/or heterodimers. In particular, association of EGFR with ErbB2...

  3. Estrogen-related receptor α regulates osteoblast differentiation via Wnt/β-catenin signaling.

    Science.gov (United States)

    Auld, Kathryn L; Berasi, Stephen P; Liu, Yan; Cain, Michael; Zhang, Ying; Huard, Christine; Fukayama, Shoichi; Zhang, Jing; Choe, Sung; Zhong, Wenyan; Bhat, Bheem M; Bhat, Ramesh A; Brown, Eugene L; Martinez, Robert V

    2012-04-01

    Based on its homology to the estrogen receptor and its roles in osteoblast and chondrocyte differentiation, the orphan nuclear receptor estrogen-related receptor α (ERRα (ESRRA)) is an intriguing therapeutic target for osteoporosis and other bone diseases. The objective of this study was to better characterize the molecular mechanisms by which ERRα modulates osteoblastogenesis. Experiments from multiple systems demonstrated that ERRα modulates Wnt signaling, a crucial pathway for proper regulation of bone development. This was validated using a Wnt-luciferase reporter, where ERRα showed co-activator-dependent (peroxisome proliferator-activated receptor gamma co-activator 1α, PGC-1α) stimulatory effects. Interestingly, knockdown of ERRα expression also enhanced WNT signaling. In combination, these data indicated that ERRα could serve to either activate or repress Wnt signaling depending on the presence or absence of its co-activator PGC-1α. The observed Wnt pathway modulation was cell intrinsic and did not alter β-catenin nuclear translocation but was dependent on DNA binding of ERRα. We also found that expression of active ERRα correlated with Wnt pathway effects on osteoblastic differentiation in two cell types, consistent with a role for ERRα in modulating the Wnt pathway. In conclusion, this work identifies ERRα, in conjunction with co-activators such as PGC-1α, as a new regulator of the Wnt-signaling pathway during osteoblast differentiation, through a cell-intrinsic mechanism not affecting β-catenin nuclear translocation.

  4. Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster.

    Science.gov (United States)

    Mishra, Abhinava K; Sachan, Nalani; Mutsuddi, Mousumi; Mukherjee, Ashim

    2015-11-15

    Notch signaling pathway represents a principal cellular communication system that plays a pivotal role during development of metazoans. Drosophila misshapen (msn) encodes a protein kinase, which is related to the budding yeast Ste20p (sterile 20 protein) kinase. In a genetic screen, using candidate gene approach to identify novel kinases involved in Notch signaling, we identified msn as a novel regulator of Notch signaling. Data presented here suggest that overexpression of kinase active form of Msn exhibits phenotypes similar to Notch loss-of-function condition and msn genetically interacts with components of Notch signaling pathway. Kinase active form of Msn associates with Notch receptor and regulate its signaling activity. We further show that kinase active Misshapen leads to accumulation of membrane-tethered form of Notch. Moreover, activated Msn also depletes Armadillo and DE-Cadherin from adherens junctions. Thus, this study provides a yet unknown mode of regulation of Notch signaling by Misshapen. PMID:26431585

  5. Cell death sensitization of leukemia cells by opioid receptor activation

    Science.gov (United States)

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  6. The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and langendorff-perfused hearts

    DEFF Research Database (Denmark)

    Aplin, Mark; Christensen, Gitte Lund; Schneider, Mikael;

    2007-01-01

    The angiotensin II (AngII) type 1 receptor (AT(1)R) has been shown to activate extracellular signal-regulated kinases 1 and 2 (ERK1/2) through G proteins or G protein-independently through beta-arrestin2 in cellular expression systems. As activation mechanisms may greatly influence the biological...... effects of ERK1/2 activity, differential activation of the AT(1)R in its native cellular context could have important biological and pharmacological implications. To examine if AT(1)R activates ERK1/2 by G protein-independent mechanisms in the heart, we used the [Sar(1), Ile(4), Ile(8)]-AngII ([SII] Ang......II) analogue in native preparations of cardiac myocytes and beating hearts. We found that [SII] AngII does not activate G(q)-coupling, yet stimulates the beta-arrestin2-dependent ERK1/2. The G(q)-activated pool of ERK1/2 rapidly translocates to the nucleus, while the beta-arrestin2-scaffolded pool remains...

  7. Mitochondrial H2O2 as an enable signal for triggering autophosphorylation of insulin receptor in neurons

    OpenAIRE

    Persiyantseva, Nadezhda A; Storozhevykh, Tatiana P; Senilova, Yana E; Gorbacheva, Lubov R; Pinelis, Vsevolod G.; Pomytkin, Igor A

    2013-01-01

    Background: Insulin receptors are widely distributed in the brain, where they play roles in synaptic function, memory formation, and neuroprotection. Autophosphorylation of the receptor in response to insulin stimulation is a critical step in receptor activation. In neurons, insulin stimulation leads to a rise in mitochondrial H2O2 production, which plays a role in receptor autophosphorylation. However, the kinetic characteristics of the H2O2 signal and its functional relationships with the i...

  8. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis

    Science.gov (United States)

    Wu, L.; Xu, F.; Reinhard, B. M.

    2016-07-01

    It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex.It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF

  9. Pharmacological and signalling properties of a D2-like dopamine receptor (Dop3) in Tribolium castaneum.

    Science.gov (United States)

    Verlinden, Heleen; Vleugels, Rut; Verdonck, Rik; Urlacher, Elodie; Vanden Broeck, Jozef; Mercer, Alison

    2015-01-01

    Dopamine is an important neurotransmitter in the central nervous system of vertebrates and invertebrates. Despite their evolutionary distance, striking parallels exist between deuterostomian and protostomian dopaminergic systems. In both, signalling is achieved via a complement of functionally distinct dopamine receptors. In this study, we investigated the sequence, pharmacology and tissue distribution of a D2-like dopamine receptor from the red flour beetle Tribolium castaneum (TricaDop3) and compared it with related G protein-coupled receptors in other invertebrate species. The TricaDop3 receptor-encoding cDNA shows considerable sequence similarity with members of the Dop3 receptor class. Real time qRT-PCR showed high expression in both the central brain and the optic lobes, consistent with the role of dopamine as neurotransmitter. Activation of TricaDop3 expressed in mammalian cells increased intracellular Ca(2+) signalling and decreased NKH-477 (a forskolin analogue)-stimulated cyclic AMP levels in a dose-dependent manner. We studied the pharmacological profile of the TricaDop3 receptor and demonstrated that the synthetic vertebrate dopamine receptor agonists, 2 - amino- 6,7 - dihydroxy - 1,2,3,4 - tetrahydronaphthalene hydrobromide (6,7-ADTN) and bromocriptine acted as agonists. Methysergide was the most potent of the antagonists tested and showed competitive inhibition in the presence of dopamine. This study offers important information on the Dop3 receptor from Tribolium castaneum that will facilitate functional analyses of dopamine receptors in insects and other invertebrates.

  10. Inhibition of Nuclear Receptor Signalling by Poly(ADP-Ribose) Polymerase

    OpenAIRE

    Miyamoto, Takahide; Kakizawa, Tomoko; Hashizume, Kiyoshi

    1999-01-01

    Mammalian poly(ADP-ribose) polymerase (PARP) is a nuclear chromatin-associated protein with a molecular mass of 114 kDa that catalyzes the transfer of ADP-ribose units from NAD+ to nuclear proteins that are located within chromatin. We report here the identification of a novel property of PARP as a modulator of nuclear receptor signalling. PARP bound directly to retinoid X receptors (RXR) and repressed ligand-dependent transcriptional activities mediated by heterodimers of RXR and thyroid hor...

  11. Identification of intracellular domains in the growth hormone receptor involved in signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Billestrup, N.; Allevato, G.; Moldrup, A. [Hagedorn Research Lab., Gentofte (Denmark)] [and others

    1994-12-31

    The growth hormone (GH) receptor belongs to the GH/prolactin/cytokine super-family of receptors. The signal transduction mechanism utilized by this class of receptors remains largely unknown. In order to identify functional domains in the intracellular region of the GH receptor we generated a number of GH receptor mutants and analyzed their function after transfection into various cell lines. A truncated GH receptor missing 184 amino acids at the C-terminus was unable to medite GH effects on transcription of the Spi 2.1 and insulin genes. However, this mutant was fully active in mediating GH-stimulated metabolic effects such as protein synthesis and lipolysis. Furthermore, this mutant GH receptor internalized rapidly following GH binding. Another truncated GH receptor lacking all but five amino acids of the cytoplasmic domain could not mediate any effects of GH nor did it internalize. Deletion of the proline-rich region or changing the four prolines to alanines also resulted in a GH receptor deficient in signaling. Mutation of phenylalanine 346 to alanine resulted in a GH receptor which did not internalize rapidly; however, this mutant GH receptor was capable of mediating GH-stimulated transcription as well as metabolic effects. These results indicate that the intracellular part of the GH receptor can be divided into at least three functional domains: (1) for transcriptional activity, two domains are involved, one located in the C-terminal 184 amino acids and the other in the proline-rich domain; (2) for metabolic effects, a domain located in or near the proline-rich region is of importance; and (3) for internalization, phenylalanine 346 is necessary. 28 refs., 1 fig.

  12. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Olsen, Jesper V; Brandts, Christian;

    2009-01-01

    Inappropriate activation of oncogenic kinases at intracellular locations is frequently observed in human cancers, but its effects on global signaling are incompletely understood. Here, we show that the oncogenic mutant of Flt3 (Flt3-ITD), when localized at the endoplasmic reticulum (ER), aberrantly...... patterns of the receptor itself. Thus, intracellular activation of RTKs by oncogenic mutations in the biosynthetic route may exploit cellular architecture to initiate aberrant signaling cascades, thus evading negative regulation....

  13. Caffeine inhibits the activation of hepatic stellate cells induced by acetaldehyde via adenosine A2A receptor mediated by the cAMP/PKA/SRC/ERK1/2/P38 MAPK signal pathway.

    Directory of Open Access Journals (Sweden)

    He Wang

    Full Text Available Hepatic stellate cell (HSC activation is an essential event during alcoholic liver fibrosis. Evidence suggests that adenosine aggravates liver fibrosis via the adenosine A2A receptor (A2AR. Caffeine, which is being widely consumed during daily life, inhibits the action of adenosine. In this study, we attempted to validate the hypothesis that caffeine influences acetaldehyde-induced HSC activation by acting on A2AR. Acetaldehyde at 50, 100, 200, and 400 μM significantly increased HSC-T6 cells proliferation, and cell proliferation reached a maximum at 48 h after exposure to 200 μM acetaldehyde. Caffeine and the A2AR antagonist ZM241385 decreased the cell viability and inhibited the expression of procollagen type I and type III in acetaldehyde-induced HSC-T6 cells. In addition, the inhibitory effect of caffeine on the expression of procollagen type I was regulated by A2AR-mediated signal pathway involving cAMP, PKA, SRC, and ERK1/2. Interestingly, caffeine's inhibitory effect on the expression of procollagen type III may depend upon the A2AR-mediated P38 MAPK-dependent pathway.Caffeine significantly inhibited acetaldehyde-induced HSC-T6 cells activation by distinct A2AR mediated signal pathway via inhibition of cAMP-PKA-SRC-ERK1/2 for procollagen type I and via P38 MAPK for procollagen type III.

  14. Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling.

    Science.gov (United States)

    Zhang, Xianming; Brovkovych, Viktor; Zhang, Yongkang; Tan, Fulong; Skidgel, Randal A

    2015-01-01

    Signaling through the G protein-coupled kinin receptors B1 (kB1R) and B2 (kB2R) plays a critical role in inflammatory responses mediated by activation of the kallikrein-kinin system. The kB2R is constitutively expressed and rapidly desensitized in response to agonist whereas kB1R expression is upregulated by inflammatory stimuli and it is resistant to internalization and desensitization. Here we show that the kB1R heterodimerizes with kB2Rs in co-transfected HEK293 cells and natively expressing endothelial cells, resulting in significant internalization and desensitization of the kB1R response in cells pre-treated with kB2R agonist. However, pre-treatment of cells with kB1R agonist did not affect subsequent kB2R responses. Agonists of other G protein-coupled receptors (thrombin, lysophosphatidic acid) had no effect on a subsequent kB1R response. The loss of kB1R response after pretreatment with kB2R agonist was partially reversed with kB2R mutant Y129S, which blocks kB2R signaling without affecting endocytosis, or T342A, which signals like wild type but is not endocytosed. Co-endocytosis of the kB1R with kB2R was dependent on β-arrestin and clathrin-coated pits but not caveolae. The sorting pathway of kB1R and kB2R after endocytosis differed as recycling of kB1R to the cell surface was much slower than that of kB2R. In cytokine-treated human lung microvascular endothelial cells, pre-treatment with kB2R agonist inhibited kB1R-mediated increase in transendothelial electrical resistance (TER) caused by kB1R stimulation (to generate nitric oxide) and blocked the profound drop in TER caused by kB1R activation in the presence of pyrogallol (a superoxide generator). Thus, kB1R function can be downregulated by kB2R co-endocytosis and signaling, suggesting new approaches to control kB1R signaling in pathological conditions. PMID:25289859

  15. Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes.

    Science.gov (United States)

    Bosier, Barbara; Bellocchio, Luigi; Metna-Laurent, Mathilde; Soria-Gomez, Edgar; Matias, Isabelle; Hebert-Chatelain, Etienne; Cannich, Astrid; Maitre, Marlène; Leste-Lasserre, Thierry; Cardinal, Pierre; Mendizabal-Zubiaga, Juan; Canduela, Miren Josune; Reguero, Leire; Hermans, Emmanuel; Grandes, Pedro; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Type-1 cannabinoid (CB1) and leptin (ObR) receptors regulate metabolic and astroglial functions, but the potential links between the two systems in astrocytes were not investigated so far. Genetic and pharmacological manipulations of CB1 receptor expression and activity in cultured cortical and hypothalamic astrocytes demonstrated that cannabinoid signaling controls the levels of ObR expression. Lack of CB1 receptors also markedly impaired leptin-mediated activation of signal transducers and activators of transcription 3 and 5 (STAT3 and STAT5) in astrocytes. In particular, CB1 deletion determined a basal overactivation of STAT5, thereby leading to the downregulation of ObR expression, and leptin failed to regulate STAT5-dependent glycogen storage in the absence of CB1 receptors. These results show that CB1 receptors directly interfere with leptin signaling and its ability to regulate glycogen storage, thereby representing a novel mechanism linking endocannabinoid and leptin signaling in the regulation of brain energy storage and neuronal functions.

  16. Negative Regulation of Receptor Tyrosine Kinase (RTK Signaling: A Developing Field

    Directory of Open Access Journals (Sweden)

    Fernanda Ledda

    2007-01-01

    Full Text Available ophic factors control cellular physiology by activating specific receptor tyrosine kinases (RTKs. While the over activation of RTK signaling pathways is associated with cell growth and cancer, recent findings support the concept that impaired down-regulation or deactivation of RTKs may also be a mechanism involved in tumor formation. Under this perspective, the molecular determinants of RTK signaling inhibition may act as tumor-suppressor genes and have a potential role as tumor markers to monitor and predict disease progression. Here, we review the current understanding of the physiological mechanisms that attenuate RTK signaling and discuss evidence that implicates deregulation of these events in cancer.Abbreviations: BDP1: Brain-derived phosphatase 1; Cbl: Casitas B-lineage lymphoma; CIN-85: Cbl-interacting protein of 85 kDa; DER: Drosophila EGFR; EGFR: Epidermal growth factor receptor; ERK 1/2: Extracellular signal-regulated kinase 1/2; Grb2: Growth factor receptor-bound protein 2; HER2: Human epidermal growth factor receptor 2; LRIG: Leucine-rich repeats and immunoglobulin-like domain 1; MAPK: Mitogen-activated protein kinase; Mig 6: Mitogen-inducible gene 6; PTEN: Phosphatase and tensin homologue; RET: Rearranged in transformation; RTK: Receptor tyrosine kinase. SH2 domain: Src-homology 2 domain; SH3 domain: Src-homology 3 domain; Spry: Sprouty.

  17. An agonist sensitive, quick and simple cell-based signaling assay for determination of ligands mimicking prostaglandin E2 or E1 activity through subtype EP1 receptor: Suitable for high throughput screening

    Directory of Open Access Journals (Sweden)

    Ruan Ke-He

    2011-02-01

    Full Text Available Abstract Background Conventionally the active ingredients in herbal extracts are separated into individual components, by fractionation, desalting, and followed by high-performance liquid chromatography (HPLC. In this study we have tried to directly screen water-soluble fractions of herbs with potential active ingredients before purification or extraction. We propose that the herbal extracts mimicking prostaglandin E1 (PGE1 and E2 (PGE2 can be identified in the water-soluble non-purified fraction. PGE1 is a potent anti-inflammatory molecule used for treating peripheral vascular diseases while PGE2 is an inflammatory molecule. Methods We used cell-based assays (CytoFluor multi-well plate reader and fluorescence microscopy in which a calcium signal was generated by the recombinant EP1 receptor stably expressed in HEK293 cells (human embryonic kidney. PGE1 and PGE2 were tested for their ability to generate a calcium signal. Ninety-six water soluble fractions of Treasures of the east (single Chinese herb dietary supplements were screened. Results After screening, the top ten stimulators were identified. The identified herbs were then desalted and the calcium fluorescent signal reconfirmed using fluorescence microscopy. Among these top ten agonists identified, seven stimulated the calcium signaling (1-40 μM concentration using fluorescence microscopy. Conclusions Fluorescence microscopy and multi-well plate readers can be used as a target specific method for screening water soluble fractions with active ingredients at a very early stage, before purification. Our future work consists of purifying and separating the active ingredients and repeating fluorescence microscopy. Under ordinary circumstances we would have to purify the compounds first and then test all the extracts from 96 herbs. Conventionally, for screening natural product libraries, the procedure followed is the automated separation of all constituents into individual components using

  18. The insulin receptor activation process involves localized conformational changes.

    Science.gov (United States)

    Baron, V; Kaliman, P; Gautier, N; Van Obberghen, E

    1992-11-15

    The molecular process by which insulin binding to the receptor alpha-subunit induces activation of the receptor beta-subunit with ensuing substrate phosphorylation remains unclear. In this study, we aimed at approaching this molecular mechanism of signal transduction and at delineating the cytoplasmic domains implied in this process. To do this, we used antipeptide antibodies to the following sequences of the receptor beta-subunit: (i) positions 962-972 in the juxtamembrane domain, (ii) positions 1247-1261 at the end of the kinase domain, and (iii) positions 1294-1317 and (iv) positions 1309-1326, both in the receptor C terminus. We have previously shown that insulin binding to its receptor induces a conformational change in the beta-subunit C terminus. Here, we demonstrate that receptor autophosphorylation induces an additional conformational change. This process appears to be distinct from the one produced by ligand binding and can be detected in at least three different beta-subunit regions: the juxtamembrane domain, the kinase domain, and the C terminus. Hence, the cytoplasmic part of the receptor beta-subunit appears to undergo an extended conformational change upon autophosphorylation. By contrast, the insulin-induced change does not affect the juxtamembrane domain 962-972 nor the kinase domain 1247-1261 and may be limited to the receptor C terminus. Further, we show that the hormone-dependent conformational change is maintained in a kinase-deficient receptor due to a mutation at lysine 1018. Therefore, during receptor activation, the ligand-induced change could precede ATP binding and receptor autophosphorylation. We propose that insulin binding leads to a transient receptor form that may allow ATP binding and, subsequently, autophosphorylation. The second conformational change could unmask substrate-binding sites and stabilize the receptor in an active conformation. PMID:1331080

  19. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data from a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating using predictive computational...

  20. Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress.

    Science.gov (United States)

    Evanson, Nathan K; Herman, James P

    2015-10-15

    Glutamate is an important neurotransmitter in the regulation of the neural portion of hypothalamus-pituitary-adrenal (HPA) axis activity, and signals through ionotropic and metabotropic receptors. In the current studies we investigated the role of hypothalamic paraventricular group I metabotropic glutamate receptors in the regulation of the HPA axis response to restraint stress in rats. Direct injection of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG) into the PVN prior to restraint leads to blunting of the HPA axis response in awake animals. Consistent with this result, infusion of the group I receptor antagonist hexyl-homoibotenic acid (HIBO) potentiates the HPA axis response to restraint. The excitatory effect of blocking paraventricular group I metabotropic glutamate signaling is blocked by co-administration of dexamethasone into the PVN. However, the inhibitory effect of DHPG is not affected by co-administration of the cannabinoid CB1 receptor antagonist AM-251 into the PVN. Together, these results suggest that paraventricular group I metabotropic glutamate receptor signaling acts to dampen HPA axis reactivity. This effect appears to be similar to the rapid inhibitory effect of glucocorticoids at the PVN, but is not mediated by endocannabinoid signaling.

  1. Altered B cell receptor signaling in human systemic lupus erythematosus

    Science.gov (United States)

    Jenks, Scott A.; Sanz, Iñaki

    2009-01-01

    Regulation of B cell receptor signaling is essential for the development of specific immunity while retaining tolerance to self. Systemic lupus erythematosus (SLE) is characterized by a loss of B cell tolerance and the production of anti-self antibodies. Accompanying this break down in tolerance are alterations in B cell receptor signal transduction including elevated induced calcium responses and increased protein phosphorylation. Specific pathways that negatively regulate B cell signaling have been shown to be impaired in some SLE patients. These patients have reduced levels of the kinase Lyn in lipid raft microdomains and this reduction is inversely correlated with increased CD45 in lipid rafts. Function and expression of the inhibitory immunoglobulin receptor FcγRIIB is also reduced in Lupus IgM- CD27+ memory cells. Because the relative contribution of different memory and transitional B cell subsets can be abnormal in SLE patients, we believe studies targeted to well defined B cell subsets will be necessary to further our understanding of signaling abnormalities in SLE. Intracellular flow cytometric analysis of signaling is a useful approach to accomplish this goal. PMID:18723129

  2. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    Science.gov (United States)

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1. PMID:27235398

  3. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    Science.gov (United States)

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1.

  4. Increased focal adhesion kinase- and urokinase-type plasminogen activator receptor-associated cell signaling in endothelial cells exposed to asbestos.

    OpenAIRE

    Barchowsky, A; Lannon, B M; Elmore, L C; Treadwell, M D

    1997-01-01

    Exposure of low-passage endothelial cells in culture to nonlethal amounts of asbestos, but not refractory ceramic fiber-1, increases cell motility and gene expression. These changes may be initiated by the fibers mimicking matrix proteins as ligands for receptors on the cell surface. In the present study, 1- to 3-hr exposures of endothelial cells to 5 mg/cm2 of chrysotile asbestos caused marked cell elongation and motility. However, little morphological change was seen when chrysotile was add...

  5. Caldendrin-Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus.

    Directory of Open Access Journals (Sweden)

    Daniela C Dieterich

    2008-02-01

    Full Text Available NMDA (N-methyl-D-aspartate receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein abundantly expressed in limbic brain and cerebral cortex. Strictly depending upon activation of NMDA-type glutamate receptors, Jacob is recruited to neuronal nuclei, resulting in a rapid stripping of synaptic contacts and in a drastically altered morphology of the dendritic tree. Jacob's nuclear trafficking from distal dendrites crucially requires the classical Importin pathway. Caldendrin binds to Jacob's nuclear localization signal in a Ca2+-dependent manner, thereby controlling Jacob's extranuclear localization by competing with the binding of Importin-alpha to Jacob's nuclear localization signal. This competition requires sustained synapto-dendritic Ca2+ levels, which presumably cannot be achieved by activation of extrasynaptic NMDA receptors, but are confined to Ca2+ microdomains such as postsynaptic spines. Extrasynaptic NMDA receptors, as opposed to their synaptic counterparts, trigger the cAMP response element-binding protein (CREB shut-off pathway, and cell death. We found that nuclear knockdown of Jacob prevents CREB shut-off after extrasynaptic NMDA receptor activation, whereas its nuclear overexpression induces CREB shut-off without NMDA receptor stimulation. Importantly, nuclear knockdown of Jacob attenuates NMDA-induced loss of synaptic contacts, and neuronal degeneration. This defines a novel mechanism of synapse-to-nucleus communication via a synaptic Ca2+-sensor protein, which links the activity of NMDA receptors to nuclear signalling events involved in modelling synapto-dendritic input and NMDA receptor-induced cellular degeneration.

  6. Delineation of the GPRC6A Receptor Signaling Pathways Using a Mammalian Cell Line Stably Expressing the Receptor

    DEFF Research Database (Denmark)

    Jacobsen, Stine Engesgaard; Nørskov-Lauritsen, Lenea; Thomsen, Alex Rojas Bie;

    2013-01-01

    receptor has been suggested to couple to multiple G protein classes albeit via indirect methods. Thus, the exact ligand preferences and signaling pathways are yet to be elucidated. In the present study, we generated a Chinese hamster ovary (CHO) cell line that stably expresses mouse GPRC6A. In an effort...... of the stable CHO cell line with robust receptor responsiveness and optimization of the highly sensitive homogeneous time resolved fluorescence technology allow fast assessment of Gq activation without previous manipulations like cotransfection of mutated G proteins. This cell-based assay system for GPRC6A...

  7. N-wasp is essential for the negative regulation of B cell receptor signaling.

    Directory of Open Access Journals (Sweden)

    Chaohong Liu

    2013-11-01

    Full Text Available Negative regulation of receptor signaling is essential for controlling cell activation and differentiation. In B-lymphocytes, the down-regulation of B-cell antigen receptor (BCR signaling is critical for suppressing the activation of self-reactive B cells; however, the mechanism underlying the negative regulation of signaling remains elusive. Using genetically manipulated mouse models and total internal reflection fluorescence microscopy, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP, which is coexpressed with WASP in all immune cells, is a critical negative regulator of B-cell signaling. B-cell-specific N-WASP gene deletion causes enhanced and prolonged BCR signaling and elevated levels of autoantibodies in the mouse serum. The increased signaling in N-WASP knockout B cells is concurrent with increased accumulation of F-actin at the B-cell surface, enhanced B-cell spreading on the antigen-presenting membrane, delayed B-cell contraction, inhibition in the merger of signaling active BCR microclusters into signaling inactive central clusters, and a blockage of BCR internalization. Upon BCR activation, WASP is activated first, followed by N-WASP in mouse and human primary B cells. The activation of N-WASP is suppressed by Bruton's tyrosine kinase-induced WASP activation, and is restored by the activation of SH2 domain-containing inositol 5-phosphatase that inhibits WASP activation. Our results reveal a new mechanism for the negative regulation of BCR signaling and broadly suggest an actin-mediated mechanism for signaling down-regulation.

  8. Inflammatory PAF Receptor Signaling Initiates Hedgehog Signaling and Kidney Fibrogenesis During Ethanol Consumption.

    Science.gov (United States)

    Latchoumycandane, Calivarathan; Hanouneh, Mohamad; Nagy, Laura E; McIntyre, Thomas M

    2015-01-01

    Acute inflammation either resolves or proceeds to fibrotic repair that replaces functional tissue. Pro-fibrotic hedgehog signaling and induction of its Gli transcription factor in pericytes induces fibrosis in kidney, but molecular instructions connecting inflammation to fibrosis are opaque. We show acute kidney inflammation resulting from chronic ingestion of the common xenobiotic ethanol initiates Gli1 transcription and hedgehog synthesis in kidney pericytes, and promotes renal fibrosis. Ethanol ingestion stimulated transcription of TGF-ß, collagens I and IV, and alpha-smooth muscle actin with accumulation of these proteins. This was accompanied by deposition of extracellular fibrils. Ethanol catabolism by CYP2E1 in kidney generates local reactive oxygen species that oxidize cellular phospholipids to phospholipid products that activate the Platelet-activating Factor receptor (PTAFR) for inflammatory phospholipids. Genetically deleting this ptafr locus abolished accumulation of mRNA for TGF-ß, collagen IV, and α-smooth muscle actin. Loss of PTAFR also abolished ethanol-stimulated Sonic (Shh) and Indian hedgehog (Ihh) expression, and abolished transcription and accumulation of Gli1. Shh induced in pericytes and Ihh in tubules escaped to urine of ethanol-fed mice. Neutrophil myeloperoxidase (MPO) is required for ethanol-induced kidney inflammation, and Shh was not present in kidney or urine of mpo-/- mice. Shh also was present in urine of patients with acute kidney injury, but not in normal individuals or those with fibrotic liver cirrhosis We conclude neither endogenous PTAFR signaling nor CYP2E1-generated radicals alone are sufficient to initiate hedgehog signaling, but instead PTAFR-dependent neutrophil infiltration with myeloperoxidase activation is necessary to initiate ethanol-induced fibrosis in kidney. We also show fibrogenic mediators escape to urine, defining a new class of urinary mechanistic biomarkers of fibrogenesis for an organ not commonly

  9. Inflammatory PAF Receptor Signaling Initiates Hedgehog Signaling and Kidney Fibrogenesis During Ethanol Consumption.

    Directory of Open Access Journals (Sweden)

    Calivarathan Latchoumycandane

    Full Text Available Acute inflammation either resolves or proceeds to fibrotic repair that replaces functional tissue. Pro-fibrotic hedgehog signaling and induction of its Gli transcription factor in pericytes induces fibrosis in kidney, but molecular instructions connecting inflammation to fibrosis are opaque. We show acute kidney inflammation resulting from chronic ingestion of the common xenobiotic ethanol initiates Gli1 transcription and hedgehog synthesis in kidney pericytes, and promotes renal fibrosis. Ethanol ingestion stimulated transcription of TGF-ß, collagens I and IV, and alpha-smooth muscle actin with accumulation of these proteins. This was accompanied by deposition of extracellular fibrils. Ethanol catabolism by CYP2E1 in kidney generates local reactive oxygen species that oxidize cellular phospholipids to phospholipid products that activate the Platelet-activating Factor receptor (PTAFR for inflammatory phospholipids. Genetically deleting this ptafr locus abolished accumulation of mRNA for TGF-ß, collagen IV, and α-smooth muscle actin. Loss of PTAFR also abolished ethanol-stimulated Sonic (Shh and Indian hedgehog (Ihh expression, and abolished transcription and accumulation of Gli1. Shh induced in pericytes and Ihh in tubules escaped to urine of ethanol-fed mice. Neutrophil myeloperoxidase (MPO is required for ethanol-induced kidney inflammation, and Shh was not present in kidney or urine of mpo-/- mice. Shh also was present in urine of patients with acute kidney injury, but not in normal individuals or those with fibrotic liver cirrhosis We conclude neither endogenous PTAFR signaling nor CYP2E1-generated radicals alone are sufficient to initiate hedgehog signaling, but instead PTAFR-dependent neutrophil infiltration with myeloperoxidase activation is necessary to initiate ethanol-induced fibrosis in kidney. We also show fibrogenic mediators escape to urine, defining a new class of urinary mechanistic biomarkers of fibrogenesis for an organ not

  10. Regulation of T cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm

    OpenAIRE

    Beemiller, Peter; Krummel, Matthew F.

    2013-01-01

    The actin cytoskeleton plays essential roles in modulating T-cell activation. Most models of T-cell receptor (TCR) triggering, signalosome assembl, y and immune synapse formation invoke actin-dependent mechanisms. As T cells are constitutively motile cells, TCR triggering and signaling occur against a cytoskeletal backdrop that is constantly remodeling. While the interplay between actin dynamics and TCR signaling have been the focus of research for many years, much of the work in T cells has ...

  11. Alcohol,nutrition and liver cancer:Role of Toll-like receptor signaling

    Institute of Scientific and Technical Information of China (English)

    Samuel; W; French; Joan; Oliva; Barbara; A; French; Fawzia; Bardag-Gorce

    2010-01-01

    This article reviews the evidence that ties the development of hepatocellular carcinoma (HCC) to the natural immune pro-inflammatory response to chronic liver disease, with a focus on the role of Toll-like receptor (TLR) signaling as the mechanism of liver stem cell/progenitor transformation to HCC. Two exemplary models of this phenomenon are reviewed in detail. One model applies chronic ethanol/lipopolysaccharide feeding to the activated TLR4 signaling pathway. The other applies chronic feeding of a carcin...

  12. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    Science.gov (United States)

    Kourouniotis, George; Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2016-01-01

    The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ) and tagged a green fluorescent protein (GFP) at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc), extracellular signal-regulated kinase (ERK) and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis. PMID:27463710

  13. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    Directory of Open Access Journals (Sweden)

    George Kourouniotis

    2016-07-01

    Full Text Available The binding of epidermal growth factor (EGF to EGF receptor (EGFR stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ and tagged a green fluorescent protein (GFP at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc, extracellular signal-regulated kinase (ERK and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis.

  14. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors.

    Directory of Open Access Journals (Sweden)

    Davide Calebiro

    2009-08-01

    Full Text Available G-protein-coupled receptors (GPCRs are generally thought to signal to second messengers like cyclic AMP (cAMP from the cell surface and to become internalized upon repeated or prolonged stimulation. Once internalized, they are supposed to stop signaling to second messengers but may trigger nonclassical signals such as mitogen-activated protein kinase (MAPK activation. Here, we show that a GPCR continues to stimulate cAMP production in a sustained manner after internalization. We generated transgenic mice with ubiquitous expression of a fluorescent sensor for cAMP and studied cAMP responses to thyroid-stimulating hormone (TSH in native, 3-D thyroid follicles isolated from these mice. TSH stimulation caused internalization of the TSH receptors into a pre-Golgi compartment in close association with G-protein alpha(s-subunits and adenylyl cyclase III. Receptors internalized together with TSH and produced downstream cellular responses that were distinct from those triggered by cell surface receptors. These data suggest that classical paradigms of GPCR signaling may need revision, as they indicate that cAMP signaling by GPCRs may occur both at the cell surface and from intracellular sites, but with different consequences for the cell.

  15. Characterisation of the tissue-specific expression, pharmacology and signalling cascades activated by chicken GnRH receptor subtypes suggested evolutionary specialisation of type III cGnRH receptor function

    OpenAIRE

    Joseph, Nerine Theresa

    2010-01-01

    Variant GnRH ligand and receptor subtypes have been identified in a number of non-mammalian vertebrate species, however research into avian species GnRH systems is lacking. Two isoforms of GnRH are present in the domestic chicken, the evolutionarily conserved GnRH-II and diverged cGnRH-I. The expression of two GnRH ligands parallels the expression of two chicken GnRH receptor subtypes; cGnRH-R-I and the novel cGnRH-R-III. The occurrence of two isoforms of the receptor in the chicken raises qu...

  16. OCA-B integrates B cell antigen receptor-, CD40L- and IL 4-mediated signals for the germinal center pathway of B cell development.

    OpenAIRE

    Qin, X F; Reichlin, A; Luo, Y.; Roeder, R. G.; Nussenzweig, M.C.

    1998-01-01

    Many of the key decisions in lymphocyte differentiation and activation are dependent on integration of antigen receptor and co-receptor signals. Although there is significant understanding of these receptors and their signaling pathways, little is known about the molecular requirements for signal integration at the level of activation of gene expression. Here we show that in primary B cells, expression of the B-cell specific transcription coactivator OCA-B (also known as OBF-1 or Bob-1) is re...

  17. Inhibition of cytokines and JAK-STAT activation by distinct signaling pathways.

    OpenAIRE

    Sengupta, T K; Schmitt, E M; Ivashkiv, L B

    1996-01-01

    An important component of cytokine regulation of cell growth and differentiation is rapid transcriptional activation of genes by the JAK-STAT (signal transducer and activator of transcription) signaling pathway. Ligation of cytokine receptors results in tyrosine phosphorylation and activation of receptor-associated Jak protein tyrosine kinases and cytoplasmic STAT transcription factors, which then translocate to the nucleus. We describe the interruption of cytokine triggered JAK-STAT signals ...

  18. Growth Hormone-induced JAK2 Signaling and GH Receptor Down-regulation: Role of GH Receptor Intracellular Domain Tyrosine Residues

    OpenAIRE

    Deng, Luqin; Jiang, Jing; Frank, Stuart J.

    2012-01-01

    GH receptor (GHR) mediates important somatogenic and metabolic effects of GH. A thorough understanding of GH action requires intimate knowledge of GHR activation mechanisms, as well as determinants of GH-induced receptor down-regulation. We previously demonstrated that a GHR mutant in which all intracellular tyrosine residues were changed to phenylalanine was defective in its ability to activate signal transducer and activator of transcription (STAT)5 and deficient in GH-induced down-regulati...

  19. Abelson tyrosine kinase links PDGFbeta receptor activation to cytoskeletal regulation of NMDA receptors in CA1 hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Beazely Michael A

    2008-12-01

    Full Text Available Abstract Background We have previously demonstrated that PDGF receptor activation indirectly inhibits N-methyl-D-aspartate (NMDA currents by modifying the cytoskeleton. PDGF receptor ligand is also neuroprotective in hippocampal slices and cultured neurons. PDGF receptors are tyrosine kinases that control a variety of signal transduction pathways including those mediated by PLCγ. In fibroblasts Src and another non-receptor tyrosine kinase, Abelson kinase (Abl, control PDGF receptor regulation of cytoskeletal dynamics. The mechanism whereby PDGF receptor regulates cytoskeletal dynamics in central neurons remains poorly understood. Results Intracellular applications of active Abl, but not heat-inactivated Abl, decreased NMDA-evoked currents in isolated hippocampal neurons. This mimics the effects of PDGF receptor activation in these neurons. The Abl kinase inhibitor, STI571, blocked the inhibition of NMDA currents by Abl. We demonstrate that PDGF receptors can activate Abl kinase in hippocampal neurons via mechanisms similar to those observed previously in fibroblasts. Furthermore, PDGFβ receptor activation alters the subcellular localization of Abl. Abl kinase is linked to actin cytoskeletal dynamics in many systems. We show that the inhibition of NMDA receptor currents by Abl kinase is blocked by the inclusion of the Rho kinase inhibitor, Y-27632, and that activation of Abl correlates with an increase in ROCK tyrosine phosphorylation. Conclusion This study demonstrates that PDGFβ receptors act via an interaction with Abl kinase and Rho kinase to regulated cytoskeletal regulation of NMDA receptor channels in CA1 pyramidal neurons.

  20. Hormone activation of baculovirus expressed progesterone receptors.

    Science.gov (United States)

    Elliston, J F; Beekman, J M; Tsai, S Y; O'Malley, B W; Tsai, M J

    1992-03-15

    Human and chicken progesterone receptors (A form) were overproduced in a baculovirus expression system. These recombinant progesterone receptors were full-length bound progesterone specifically and were recognized by monoclonal antibodies, AB52 and PR22, specific for human and chicken progesterone receptor, respectively. In gel retardation studies, binding of recombinant human and chicken progesterone receptors to their progesterone response element (PRE) was specific and was enhanced in the presence of progesterone. Binding of human progesterone receptor to the PRE was also enhanced in the presence of the antiprogestin, RU486, but very little effect was observed in the presence of estradiol, dexamethasone, testosterone, and vitamin D. In our cell-free transcription system, human progesterone receptor induced transcription in a receptor-dependent and hormone-activable manner. Receptor-stimulated transcription required the presence of the PRE in the test template and could be specifically inhibited by excess PRE oligonucleotides. Furthermore, chicken progesterone receptor also induced in vitro transcription in a hormone-activable manner. These results demonstrate that steroid receptors overexpressed in a baculovirus expression system are functional and exhibit steroid-responsive binding and transcription. These observations support our present understanding of the mechanism of steroid receptor-regulated gene expression and provide a technological format for studies of the role of hormone and antihormone in altering gene expression. PMID:1544902

  1. Role of ERK/MAPK in endothelin receptor signaling in human aortic smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Edvinsson Lars

    2009-07-01

    Full Text Available Abstract Background Endothelin-1 (ET-1 is a potent vasoactive peptide, which induces vasoconstriction and proliferation in vascular smooth muscle cells (VSMCs through activation of endothelin type A (ETA and type B (ETB receptors. The extracellular signal-regulated kinase 1 and 2 (ERK1/2 mitogen-activated protein kinases (MAPK are involved in ET-1-induced VSMC contraction and proliferation. This study was designed to investigate the ETA and ETB receptor intracellular signaling in human VSMCs and used phosphorylation (activation of ERK1/2 as a functional signal molecule for endothelin receptor activity. Results Subconfluent human VSMCs were stimulated by ET-1 at different concentrations (1 nM-1 μM. The activation of ERK1/2 was examined by immunofluorescence, Western blot and phosphoELISA using specific antibody against phosphorylated ERK1/2 protein. ET-1 induced a concentration- and time- dependent activation of ERK1/2 with a maximal effect at 10 min. It declined to baseline level at 30 min. The ET-1-induced activation of ERK1/2 was completely abolished by MEK1/2 inhibitors U0126 and SL327, and partially inhibited by the MEK1 inhibitor PD98059. A dual endothelin receptor antagonist bosentan or the ETA antagonist BQ123 blocked the ET-1 effect, while the ETB antagonist BQ788 had no significant effect. However, a selective ETB receptor agonist, Sarafotoxin 6c (S6c caused a time-dependent ERK1/2 activation with a maximal effect by less than 20% of the ET-1-induced activation of ERK1/2. Increase in bosentan concentration up to 10 μM further inhibited ET-1-induced activation of ERK1/2 and had a stronger inhibitory effect than BQ123 or the combined use of BQ123 and BQ788. To further explore ET-1 intracellular signaling, PKC inhibitors (staurosporin and GF109203X, PKC-delta inhibitor (rottlerin, PKA inhibitor (H-89, and phosphatidylinositol 3-kinase (PI3K inhibitor (wortmannin were applied. The inhibitors showed significant inhibitory effects on ET-1

  2. Kappa-opioid receptor signaling and brain reward function

    OpenAIRE

    Bruijnzeel, Adrie W.

    2009-01-01

    The dynorphin-like peptides have profound effects on the state of the brain reward system and human and animal behavior. The dynorphin-like peptides affect locomotor activity, food intake, sexual behavior, anxiety-like behavior, and drug intake. Stimulation of kappa-opioid receptors, the endogenous receptor for the dynorphin-like peptides, inhibits dopamine release in the striatum (nucleus accumbens and caudate putamen) and induces a negative mood state in humans and animals. The administrati...

  3. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons

    Institute of Scientific and Technical Information of China (English)

    Xu-Qiao Chen; BinWang; Chengbiao Wu; Jin Pan; Bo Yuan; Yuan-Yuan Su; Xing-Yu Jiang; Xu Zhang; Lan Bao

    2012-01-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals.However,the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood.Here,we report that the signals of the purinergic (P)2X3 receptor,an ATP-gated ion channel are retrogradely transported in dorsal root ganglion (DRG) neuron axons.We found that Rab5,a small GTPase,controls the early sorting of P2X3 receptors into endosomes,while Rab7 mediates the fast retrograde transport of P2X3 receptors.Intraplantar injection and axonal application into the microfluidic chamber of α,β-methylene-ATP (α,β-MeATP),a P2X selective agonist,enhanced the endocytosis and retrograde transport of P2X3 receptors.The α,β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C,rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK),which associated with endocytic P2X3 receptors to form signaling endosomes.Disruption of the lipid rafts abolished the α,β-MeATP-induced ERK phosphorylation,endocytosis and retrograde transport of P2X3 receptors.Furthermore,treatment of peripheral axons with α,β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability.Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α,β-MeATP-induced retrograde signals.These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.

  4. DMPD: TGF-beta signaling from receptors to the nucleus. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10611754 TGF-beta signaling from receptors to the nucleus. Roberts AB. Microbes Inf...leus. PubmedID 10611754 Title TGF-beta signaling from receptors to the nucleus. Authors Roberts AB. Publicat

  5. Receptor-recognized α₂-macroglobulin binds to cell surface-associated GRP78 and activates mTORC1 and mTORC2 signaling in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Uma K Misra

    Full Text Available OBJECTIVE: Tetrameric α(2-macroglobulin (α(2M, a plasma panproteinase inhibitor, is activated upon interaction with a proteinase, and undergoes a major conformational change exposing a receptor recognition site in each of its subunits. Activated α(2M (α(2M* binds to cancer cell surface GRP78 and triggers proliferative and antiapoptotic signaling. We have studied the role of α(2M* in the regulation of mTORC1 and TORC2 signaling in the growth of human prostate cancer cells. METHODS: Employing immunoprecipitation techniques and Western blotting as well as kinase assays, activation of the mTORC1 and mTORC2 complexes, as well as down stream targets were studied. RNAi was also employed to silence expression of Raptor, Rictor, or GRP78 in parallel studies. RESULTS: Stimulation of cells with α(2M* promotes phosphorylation of mTOR, TSC2, S6-Kinase, 4EBP, Akt(T308, and Akt(S473 in a concentration and time-dependent manner. Rheb, Raptor, and Rictor also increased. α(2M* treatment of cells elevated mTORC1 kinase activity as determined by kinase assays of mTOR or Raptor immunoprecipitates. mTORC1 activity was sensitive to LY294002 and rapamycin or transfection of cells with GRP78 dsRNA. Down regulation of Raptor expression by RNAi significantly reduced α(2M*-induced S6-Kinase phosphorylation at T389 and kinase activity in Raptor immunoprecipitates. α(2M*-treated cells demonstrate about a twofold increase in mTORC2 kinase activity as determined by kinase assay of Akt(S473 phosphorylation and levels of p-Akt(S473 in mTOR and Rictor immunoprecipitates. mTORC2 activity was sensitive to LY294002 and transfection of cells with GRP78 dsRNA, but insensitive to rapamycin. Down regulation of Rictor expression by RNAi significantly reduces α(2M*-induced phosphorylation of Akt(S473 phosphorylation in Rictor immunoprecipitates. CONCLUSION: Binding of α(2M* to prostate cancer cell surface GRP78 upregulates mTORC1 and mTORC2 activation and promotes protein

  6. Glucose Enhances Leptin Signaling through Modulation of AMPK Activity

    OpenAIRE

    Haoran Su; Lin Jiang; Christin Carter-Su; Liangyou Rui

    2012-01-01

    Leptin exerts its action by binding to and activating the long form of leptin receptors (LEPRb). LEPRb activates JAK2 that subsequently phosphorylates and activates STAT3. The JAK2/STAT3 pathway is required for leptin control of energy balance and body weight. Defects in leptin signaling lead to leptin resistance, a primary risk factor for obesity. Body weight is also regulated by nutrients, including glucose. Defects in glucose sensing also contribute to obesity. Here we report crosstalk bet...

  7. Growth factor receptors and related signalling pathways as targets for novel treatment strategies of hepatocellular cancer

    Institute of Scientific and Technical Information of China (English)

    Michael Hopfner; Detlef Schuppan; Hans Scherübl

    2008-01-01

    Growth factors and their corresponding receptors are commonly overexpressed and/or dysregulated in many cancers including hepatocellular cancer (HCC). Clinical trials indicate that growth factor receptors and their related signalling pathways play important roles in HCC cancer etiology and progression, thus providing rational targets for innovative cancer therapies. A number of strategies including monoclonal antibodies, tyrosine kinase inhibitors ("small molecule inhibitors") and antisense oligonucleotides have already been evaluated for their potency to inhibit the activity and downstream signalling cascades of these receptors in HCC. First clinical trials have also shown that multi-kinase inhibition is an effective novel treatment strategy in HCC. In this respect sorafenib, an inhibitor of Raf-, VEGF- and PDGF-signalling, is the first multi-kinase inhibitor that has been approved by the FDA for the treatment of advanced HCC. Moreover, the serine-threonine kinase of mammalian target of rapamycin (mTOR) upon which the signalling of several growth factor receptors converge plays a central role in cancer cell proliferation, mTOR inhibition of HCC is currently also being studied in preclinical trials. As HCCs represent hypervascularized neoplasms, inhibition of tumour vessel formation via interfering with the VEGF/VEGFR system is another promising approach in HCC treatment. This review will summarize the current status of the various growth factor receptor-based treatment strategies and in view of the multitude of novel targeted approaches, the rationale for combination therapies for advanced HCC treatment will also be taken into account.

  8. Up-regulation of endothelin type B receptors in the human internal mammary artery in culture is dependent on protein kinase C and mitogen-activated kinase signaling pathways

    DEFF Research Database (Denmark)

    Nilsson, David; Gustafsson, Lotta; Wackenfors, Angelica;

    2008-01-01

    Up-regulation of vascular endothelin type B (ETB) receptors is implicated in the pathogenesis of cardiovascular disease. Culture of intact arteries has been shown to induce similar receptor alterations and has therefore been suggested as a suitable method for, ex vivo, in detail delineation of th...... of the regulation of endothelin receptors. We hypothesize that mitogen-activated kinases (MAPK) and protein kinase C (PKC) are involved in the regulation of endothelin ETB receptors in human internal mammary arteries.......Up-regulation of vascular endothelin type B (ETB) receptors is implicated in the pathogenesis of cardiovascular disease. Culture of intact arteries has been shown to induce similar receptor alterations and has therefore been suggested as a suitable method for, ex vivo, in detail delineation...

  9. RGS proteins destroy spare receptors: Effects of GPCR-interacting proteins and signal deamplification on measurements of GPCR agonist potency.

    Science.gov (United States)

    Chidiac, Peter

    2016-01-01

    Many GPCRs are able to activate multiple distinct signaling pathways, and these may include biochemical cascades activated via either heterotrimeric G proteins or by β-arrestins. The relative potencies and/or efficacies among a series of agonists that act on a common receptor can vary depending upon which signaling pathway is being activated. This phenomenon is known as biased signaling or functional selectivity, and is presumed to reflect underlying differences in ligand binding affinities for alternate conformational states of the receptor. The first part of this review discusses how various cellular GPCR interacting proteins (GIPs) can influence receptor conformation and thereby affect ligand-receptor interactions and contribute to signaling bias. Upon activation, receptors trigger biochemical cascades that lead to altered cellular function, and measuring points along the cascade (e.g., second messenger production) conveys information about receptor activity. As a signal continues along its way, the observed concentration dependence of a GPCR ligand may change due to amplification and saturation of biochemical steps. The second part of this review considers additional cellular factors that affect signal processing, focusing mainly on structural elements and deamplification mechanisms, and discusses the relevance of these to measurements of potency and functional selectivity. PMID:26297537

  10. ABA receptors: The START of a new paradigm in phytohormone signalling

    KAUST Repository

    Klingler, John

    2010-06-03

    The phytohormone abscisic acid (ABA) plays a central role in plant development and in plant adaptation to both biotic and abiotic stressors. In recent years, knowledge of ABA metabolism and signal transduction has advanced rapidly to provide detailed glimpses of the hormone\\'s activities at the molecular level. Despite this progress, many gaps in understanding have remained, particularly at the early stages of ABA perception by the plant cell. The search for an ABA receptor protein has produced multiple candidates, including GCR2, GTG1, and GTG2, and CHLH. In addition to these candidates, in 2009 several research groups converged on a novel family of Arabidopsis proteins that bind ABA, and thereby interact directly with a class of protein phosphatases that are well known as critical players in ABA signal transduction. The PYR/PYL/RCAR receptor family is homologous to the Bet v 1-fold and START domain proteins. It consists of 14 members, nearly all of which appear capable of participating in an ABA receptor-signal complex that responds to the hormone by activating the transcription of ABA-responsive genes. Evidence is provided here that PYR/PYL/RCAR receptors can also drive the phosphorylation of the slow anion channel SLAC1 to provide a fast and timely response to the ABA signal. Crystallographic studies have vividly shown the mechanics of ABA binding to PYR/PYL/RCAR receptors, presenting a model that bears some resemblance to the binding of gibberellins to GID1 receptors. Since this ABA receptor family is highly conserved in crop species, its discovery is likely to usher a new wave of progress in the elucidation and manipulation of plant stress responses in agricultural settings. © 2010 The Author(s).

  11. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn;

    2014-01-01

    In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack...... with central roles in TCR signaling. The model was used to generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel...

  12. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling

    Science.gov (United States)

    Yang, Shasha; Deng, Huacong; Zhang, Qunzhou; Xie, Jing; Zeng, Hui; Jin, Xiaolong; Ling, Zixi; Shan, Qiaoyun; Liu, Momo; Ma, Yuefei; Tang, Juan; Wei, Qianping

    2016-01-01

    Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication. PMID:26986757

  13. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling.

    Directory of Open Access Journals (Sweden)

    Shasha Yang

    Full Text Available Growth factor receptor-bound protein 10 (Grb10 is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R. The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication.

  14. Human herpesvirus 6 infection impairs Toll-like receptor signaling

    OpenAIRE

    Ochi Toshiki; Suemori Koichiro; An Jun; Fujiwara Hiroshi; Tanimoto Kazushi; Murakami Yuichi; Hasegawa Hitoshi; Yasukawa Masaki

    2010-01-01

    Abstract Human herpesvirus 6 (HHV-6) has a tropism for immunocompetent cells, including T lymphocytes, monocytes/macrophages, and dendritic cells (DCs) suggesting that HHV-6 infection affects the immunosurveillance system. Toll-like receptor (TLR) system plays an important role in innate immunity against various pathogens. In the present study, we investigated the effect of HHV-6 infection on the expression and intracellular signaling of TLRs in DCs. Although expression levels of TLRs were no...

  15. Identification of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways

    DEFF Research Database (Denmark)

    Pandey, A; Fernandez, M M; Steen, H;

    2000-01-01

    In an effort to clone novel tyrosine-phosphorylated substrates of the epidermal growth factor receptor, we have initiated an approach coupling affinity purification using anti-phosphotyrosine antibodies to mass spectrometry-based identification. Here, we report the identification of a signaling m...

  16. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Directory of Open Access Journals (Sweden)

    Anshula eSamarajeewa

    2014-11-01

    Full Text Available The serotonin (5-HT type 7 receptor is expressed throughout the CNS including cortical neurons. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA-induced toxicity. The tropomyosin-related kinase B (TrkB receptor is one of the receptors for brain-derived neurotrophic factor (BDNF and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins towards the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  17. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Science.gov (United States)

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  18. GABA-A receptor inhibition of local calcium signaling in spines and dendrites.

    Science.gov (United States)

    Marlin, Joseph J; Carter, Adam G

    2014-11-26

    Cortical interneurons activate GABA-A receptors to rapidly control electrical and biochemical signaling at pyramidal neurons. Different populations of interneurons are known to uniquely target the soma and dendrites of pyramidal neurons. However, the ability of these interneurons to inhibit Ca(2+) signaling at spines and dendrites is largely unexplored. Here we use whole-cell recordings, two-photon microscopy, GABA uncaging and optogenetics to study dendritic inhibition at layer 5 (L5) pyramidal neurons in slices of mouse PFC. We first show that GABA-A receptors strongly inhibit action potential (AP)-evoked Ca(2+) signals at both spines and dendrites. We find robust inhibition over tens of milliseconds that spreads along the dendritic branch. However, we observe no difference in the amount of inhibition at neighboring spines and dendrites. We then examine the influence of interneurons expressing parvalbumin (PV), somatostatin (SOM), or 5HT3a receptors. We determine that these populations of interneurons make unique contacts onto the apical and basal dendrites of L5 pyramidal neurons. We also show that SOM and 5HT3a but not PV interneurons potently inhibit AP Ca(2+) signals via GABA-A receptors at both spines and dendrites. These findings reveal how multiple interneurons regulate local Ca(2+) signaling in pyramidal neurons, with implications for cortical function and disease.

  19. Intracellular transactivation of epidermal growth factor receptor by α1A-adrenoceptor is mediated by phosphatidylinositol 3-kinase independently of activation of extracellular signal regulated kinases 1/2 and serine-threonine kinases in Chinese hamster ovary cells.

    Science.gov (United States)

    Ulu, Nadir; Henning, Robert H; Guner, Sahika; Zoto, Teuta; Duman-Dalkilic, Basak; Duin, Marry; Gurdal, Hakan

    2013-10-01

    Transactivation of epidermal growth factor receptor (EGFR) by α1-adrenoceptor (α1-AR) is implicated in contraction and hypertrophy of vascular smooth muscle (VSM). We examine whether all α1-AR subtypes transactivate EGFR and explore the mechanism of transactivation. Chinese hamster ovary (CHO) cells stably expressing one subtype of α1-AR were transiently transfected with EGFR. The transactivation mechanism was examined both by coexpression of a chimeric erythropoietin (EPO)-EGFR with an extracellular EPO and intracellular EGFR domain, and by pharmacologic inhibition of external and internal signaling routes. All three α1-AR subtypes transactivated EGFR, which was dependent on the increase in intracellular calcium. The EGFR kinase inhibitor AG1478 [4-(3'-chloroanilino)-6,7-dimethoxyquinazoline] abrogated α1A-AR and α1D-AR induced phosphorylation of EGFR, but both the inhibition of matrix metalloproteinases by GM6001 [(R)-N4-hydroxy-N(1)-[(S)-2-(1H-indol-3-yl)-1-methylcarbamoyl-ethyl]-2-isobutyl-succinamide] or blockade of EGFR by cetuximab did not. Stimulation of α1A-AR and α1D-AR also induced phosphorylation of EPO-EGFR chimeric receptors. Moreover, α1A-AR stimulation enhanced phosphorylation of extracellular signal regulated kinase (ERK) 1/2 and serine-threonine kinases (Akt), which were both unaffected by AG1478, indicating that ERK1/2 and Akt phosphorylation is independent of EGFR transactivation. Accordingly, inhibitors of ERK1/2 or Akt did not influence the α1A-AR-mediated EGFR transactivation. Inhibition of calcium/calmodulin-dependent kinase II (CaMKII), phosphatidylinositol 3-kinase (PI3K), and Src, however, did block EGFR transactivation by α1A-AR and α1D-AR. These findings demonstrate that all α1-AR subtypes transactivate EGFR, which is dependent on an intracellular signaling route involving an increase in calcium and activation of CaMKII, PI3K, and Src, but not the of ERK1/2 and Akt pathways.

  20. DMPD: Lysophospholipid receptors: signaling and biology. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15189145 Lysophospholipid receptors: signaling and biology. Ishii I, Fukushima N, Y...e X, Chun J. Annu Rev Biochem. 2004;73:321-54. (.png) (.svg) (.html) (.csml) Show Lysophospholipid receptors: signaling and biology.... PubmedID 15189145 Title Lysophospholipid receptors: signaling and biology. Authors

  1. DMPD: Nuclear receptor signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14698033 Nuclear receptor signaling in macrophages. Valledor AF, Ricote M. Biochem ...Pharmacol. 2004 Jan 15;67(2):201-12. (.png) (.svg) (.html) (.csml) Show Nuclear receptor signaling in macrop...hages. PubmedID 14698033 Title Nuclear receptor signaling in macrophages. Authors Valledor AF, Ricote M. Pub

  2. DMPD: Signals and receptors involved in recruitment of inflammatory cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 7744810 Signals and receptors involved in recruitment of inflammatory cells. Ben-Ba...ow Signals and receptors involved in recruitment of inflammatory cells. PubmedID 7744810 Title Signals and r...eceptors involved in recruitment of inflammatory cells. Authors Ben-Baruch A, Mic

  3. Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells.

    Science.gov (United States)

    Rodríguez-Hernández, A; Navarro-Villarán, E; González, R; Pereira, S; Soriano-De Castro, L B; Sarrias-Giménez, A; Barrera-Pulido, L; Álamo-Martínez, J M; Serrablo-Requejo, A; Blanco-Fernández, G; Nogales-Muñoz, A; Gila-Bohórquez, A; Pacheco, D; Torres-Nieto, M A; Serrano-Díaz-Canedo, J; Suárez-Artacho, G; Bernal-Bellido, C; Marín-Gómez, L M; Barcena, J A; Gómez-Bravo, M A; Padilla, C A; Padillo, F J; Muntané, J

    2015-12-01

    Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10 µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.

  4. Vitamin D receptor-retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation.

    Science.gov (United States)

    de la Fuente, Alerie Guzman; Errea, Oihana; van Wijngaarden, Peter; Gonzalez, Ginez A; Kerninon, Christophe; Jarjour, Andrew A; Lewis, Hilary J; Jones, Clare A; Nait-Oumesmar, Brahim; Zhao, Chao; Huang, Jeffrey K; ffrench-Constant, Charles; Franklin, Robin J M

    2015-12-01

    The mechanisms regulating differentiation of oligodendrocyte (OLG) progenitor cells (OPCs) into mature OLGs are key to understanding myelination and remyelination. Signaling via the retinoid X receptor γ (RXR-γ) has been shown to be a positive regulator of OPC differentiation. However, the nuclear receptor (NR) binding partner of RXR-γ has not been established. In this study we show that RXR-γ binds to several NRs in OPCs and OLGs, one of which is vitamin D receptor (VDR). Using pharmacological and knockdown approaches we show that RXR-VDR signaling induces OPC differentiation and that VDR agonist vitamin D enhances OPC differentiation. We also show expression of VDR in OLG lineage cells in multiple sclerosis. Our data reveal a role for vitamin D in the regenerative component of demyelinating disease and identify a new target for remyelination medicines. PMID:26644513

  5. Role of ERK/MAPK in endothelin receptor signaling in human aortic smooth muscle cells

    DEFF Research Database (Denmark)

    Chen, Qing-wen; Edvinsson, Lars; Xu, Cang-Bao

    2009-01-01

    muscle cells (VSMCs) through activation of endothelin type A (ETA) and type B (ETB) receptors. The extracellular signal-regulated kinase 1 and 2 (ERK1/2) mitogen-activated protein kinases (MAPK) are involved in ET-1-induced VSMC contraction and proliferation. This study was designed to investigate...... the ETA and ETB receptor intracellular signaling in human VSMCs and used phosphorylation (activation) of ERK1/2 as a functional signal molecule for endothelin receptor activity. RESULTS: Subconfluent human VSMCs were stimulated by ET-1 at different concentrations (1 nM-1 microM). The activation of ERK1/2...... was examined by immunofluorescence, Western blot and phosphoELISA using specific antibody against phosphorylated ERK1/2 protein. ET-1 induced a concentration- and time- dependent activation of ERK1/2 with a maximal effect at 10 min. It declined to baseline level at 30 min. The ET-1-induced activation of ERK1/2...

  6. Design principles of nuclear receptor signaling: How complex networking improves signal transduction

    NARCIS (Netherlands)

    A.N. Kolodkin (Alexey); F.J. Bruggeman (Frank); N. Plant (Nick); M.J. Moné (Martijn); B.M. Bakker (Barbara); M.J. Campbell (Moray); J.P.T.M. van Leeuwen (Hans); C. Carlberg (Carsten); J.L. Snoep (Jacky); H.V. Westerhoff (Hans)

    2010-01-01

    textabstractThe topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of design aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic

  7. Design principles of nuclear receptor signaling : how complex networking improves signal transduction

    NARCIS (Netherlands)

    Kolodkin, Alexey N.; Bruggeman, Frank J.; Plant, Nick; Mone, Martijn J.; Bakker, Barbara M.; Campbell, Moray J.; van Leeuwen, Johannes P. T. M.; Carlberg, Carsten; Snoep, Jacky L.; Westerhoff, Hans V.

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of 'design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of

  8. Inhibition of Dengue Virus Replication by a Class of Small-Molecule Compounds That Antagonize Dopamine Receptor D4 and Downstream Mitogen-Activated Protein Kinase Signaling

    OpenAIRE

    Smith, Jessica L.; Stein, David A.; Shum, David; Fischer, Matthew A.; Radu, Constantin; Bhinder, Bhavneet; Djaballah, Hakim; Nelson, Jay A.; Früh, Klaus; Hirsch, Alec J.

    2014-01-01

    Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds—dihydrodibenzothiepines (DHBTs), identified through high-throughput screening—with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of ...

  9. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling.

    Science.gov (United States)

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-25

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol. PMID:27545348

  10. Research Resource: A Reference Transcriptome for Constitutive Androstane Receptor and Pregnane X Receptor Xenobiotic Signaling.

    Science.gov (United States)

    Ochsner, Scott A; Tsimelzon, Anna; Dong, Jianrong; Coarfa, Cristian; McKenna, Neil J

    2016-08-01

    The pregnane X receptor (PXR) (PXR/NR1I3) and constitutive androstane receptor (CAR) (CAR/NR1I2) members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors are well-characterized mediators of xenobiotic and endocrine-disrupting chemical signaling. The Nuclear Receptor Signaling Atlas maintains a growing library of transcriptomic datasets involving perturbations of NR signaling pathways, many of which involve perturbations relevant to PXR and CAR xenobiotic signaling. Here, we generated a reference transcriptome based on the frequency of differential expression of genes across 159 experiments compiled from 22 datasets involving perturbations of CAR and PXR signaling pathways. In addition to the anticipated overrepresentation in the reference transcriptome of genes encoding components of the xenobiotic stress response, the ranking of genes involved in carbohydrate metabolism and gonadotropin action sheds mechanistic light on the suspected role of xenobiotics in metabolic syndrome and reproductive disorders. Gene Set Enrichment Analysis showed that although acetaminophen, chlorpromazine, and phenobarbital impacted many similar gene sets, differences in direction of regulation were evident in a variety of processes. Strikingly, gene sets representing genes linked to Parkinson's, Huntington's, and Alzheimer's diseases were enriched in all 3 transcriptomes. The reference xenobiotic transcriptome will be supplemented with additional future datasets to provide the community with a continually updated reference transcriptomic dataset for CAR- and PXR-mediated xenobiotic signaling. Our study demonstrates how aggregating and annotating transcriptomic datasets, and making them available for routine data mining, facilitates research into the mechanisms by which xenobiotics and endocrine-disrupting chemicals subvert conventional NR signaling modalities. PMID:27409825

  11. Cannabinoid receptor-interacting protein 1a modulates CB1 receptor signaling and regulation.

    Science.gov (United States)

    Smith, Tricia H; Blume, Lawrence C; Straiker, Alex; Cox, Jordan O; David, Bethany G; McVoy, Julie R Secor; Sayers, Katherine W; Poklis, Justin L; Abdullah, Rehab A; Egertová, Michaela; Chen, Ching-Kang; Mackie, Ken; Elphick, Maurice R; Howlett, Allyn C; Selley, Dana E

    2015-04-01

    Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor-interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca(2+) channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated CB1R-mediated guanine nucleotide-binding regulatory protein (G-protein) activity. Stable overexpression of CRIP1a in human embryonic kidney (HEK)-293 cells stably expressing CB1Rs (CB1-HEK), or in N18TG2 cells endogenously expressing CB1Rs, decreased CB1R-mediated G-protein activation (measured by agonist-stimulated [(35)S]GTPγS (guanylyl-5'-[O-thio]-triphosphate) binding) in both cell lines and attenuated inverse agonism by rimonabant in CB1-HEK cells. Conversely, small-interfering RNA-mediated knockdown of CRIP1a in N18TG2 cells enhanced CB1R-mediated G-protein activation. These effects were not attributable to differences in CB1R expression or endocannabinoid tone because CB1R levels did not differ between cell lines varying in CRIP1a expression, and endocannabinoid levels were undetectable (CB1-HEK) or unchanged (N18TG2) by CRIP1a overexpression. In CB1-HEK cells, 4-hour pretreatment with cannabinoid agonists downregulated CB1Rs and desensitized agonist-stimulated [(35)S]GTPγS binding. CRIP1a overexpression attenuated CB1R downregulation without altering CB1R desensitization. Finally, in cultured autaptic hippocampal neurons, CRIP1a overexpression attenuated both depolarization-induced suppression of excitation and inhibition of excitatory synaptic activity induced by exogenous application of cannabinoid but not by adenosine A1 agonists. These results confirm that CRIP1a inhibits constitutive CB1R activity and demonstrate that CRIP1a can also inhibit agonist

  12. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    Science.gov (United States)

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  13. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    Science.gov (United States)

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation.

  14. Chronic Cocaine Dampens Dopamine Signaling during Cocaine Intoxication and Unbalances D1 over D2 Receptor Signaling

    Science.gov (United States)

    Park, Kicheon; Pan, Yingtian

    2013-01-01

    Dopamine increases triggered by cocaine and consequent stimulation of dopamine receptors (including D1 and D2) are associated with its rewarding effects. However, while facilitation of D1 receptor (D1R) signaling enhances the rewarding effects of cocaine, facilitation of D2R signaling decreases it, which indicates that for cocaine to be rewarding it must result in a predominance of D1R over D2R signaling. Moreover, the transition to compulsive cocaine intake might result from an imbalance between D1R and D2R signaling. To test the hypothesis that chronic cocaine use unbalances D1R over D2R signaling during cocaine intoxication, we used microprobe optical imaging to compare dynamic changes in intracellular calcium ([Ca2+]i, marker of neuronal activation) to acute cocaine in striatal D1R-EGFP and D2R-EGFP-expressing neurons between control and chronically treated mice. Chronic cocaine attenuated responses to acute cocaine in D1R (blunting Ca2+ increases by 67 ± 16%) and D2R (blunting Ca2+ decrease by 72 ± 17%) neurons in most D1R and D2R neurons (∼75%). However, the dynamics of this attenuation during cocaine intoxication was longer lasting for D2R than for D1R. Thus, whereas control mice showed a fast but short-lasting predominance of D1R over D2R signaling (peaking at ∼8 min) during acute cocaine intoxication, in chronically treated mice D1R predominance was sustained for >30 min (throughout the measurement period). Thus, chronic cocaine use dramatically reduced cocaine-induced DA signaling, shifting the balance between D1R and D2R signaling during intoxication to a predominance of D1R (stimulatory) over D2R (inhibitory) signaling, which might facilitate compulsive intake in addiction. PMID:24089490

  15. Prediction of compounds activity in nuclear receptor signaling and stress pathway assays using machine learning algorithms and low dimensional molecular descriptors

    OpenAIRE

    Filip eStefaniak

    2015-01-01

    Toxicity evaluation of newly synthesized or used compounds is one of the main challenges during product development in many areas of industry. For example, toxicity is the second reason - after lack of efficacy - for failure in preclinical and clinical studies of drug candidates. To avoid attrition at the late stage of the drug development process, the toxicity analyses are employed at the early stages of a discovery pipeline, along with activity and selectivity enhancing. Although many assa...

  16. Prediction of Compounds Activity in Nuclear Receptor Signaling and Stress Pathway Assays Using Machine Learning Algorithms and Low-Dimensional Molecular Descriptors

    OpenAIRE

    Stefaniak, Filip

    2015-01-01

    Toxicity evaluation of newly synthesized or used compounds is one of the main challenges during product development in many areas of industry. For example, toxicity is the second reason—after lack of efficacy—for failure in preclinical and clinical studies of drug candidates. To avoid attrition at the late stage of the drug development process, the toxicity analyses are employed at the early stages of a discovery pipeline, along with activity and selectivity enhancing. Although many assays fo...

  17. The Concept of Divergent Targeting through the Activation and Inhibition of Receptors as a Novel Chemotherapeutic Strategy: Signaling Responses to Strong DNA-Reactive Combinatorial Mimicries

    Directory of Open Access Journals (Sweden)

    Heather L. Watt

    2012-01-01

    Full Text Available Recently, we reported the combination of multitargeted ErbB1 inhibitor–DNA damage combi-molecules with OCT in order to downregulate ErbB1 and activate SSTRs. Absence of translation to cell kill was believed to be partially due to insufficient ErbB1 blockage and DNA damage. In this study, we evaluated cell response to molecules that damage DNA more aggressively and induce stronger attenuation of ErbB1 phosphorylation. We used three cell lines expressing low levels (U87MG or transfected to overexpress wildtype (U87/EGFR or a variant (U87/EGFRvIII of ErbB1. The results showed that Iressa±HN2 and the combi-molecules, ZRBA4 and ZR2003, significantly blocked ErbB1 phosphorylation in U87MG cells. Addition of OCT significantly altered cell cycle distribution. Analysis of the DNA damage response pathway revealed strong upregulation of p53 by HN2 and the combi-molecules. Apoptosis was only induced by a 48 h exposure to HN2. All other treatments resulted in cell necrosis. This is in agreement with Akt-Bad pathway activation and survivin upregulation. Despite strong DNA damaging properties and downregulation of ErbB1 phosphorylation by these molecules, the strongest effect of SSTR activation was on cell cycle distribution. Therefore, any enhanced antiproliferative effects of combining ErbB1 inhibition with SSTR activation must be addressed in the context of cell cycle arrest.

  18. Effect of Spatial Inhomogeneities on the Membrane Surface on Receptor Dimerization and Signal Initiation.

    Science.gov (United States)

    Kerketta, Romica; Halász, Ádám M; Steinkamp, Mara P; Wilson, Bridget S; Edwards, Jeremy S

    2016-01-01

    Important signal transduction pathways originate on the plasma membrane, where microdomains may transiently entrap diffusing receptors. This results in a non-random distribution of receptors even in the resting state, which can be visualized as "clusters" by high resolution imaging methods. Here, we explore how spatial in-homogeneities in the plasma membrane might influence the dimerization and phosphorylation status of ErbB2 and ErbB3, two receptor tyrosine kinases that preferentially heterodimerize and are often co-expressed in cancer. This theoretical study is based upon spatial stochastic simulations of the two-dimensional membrane landscape, where variables include differential distributions and overlap of transient confinement zones ("domains") for the two receptor species. The in silico model is parameterized and validated using data from single particle tracking experiments. We report key differences in signaling output based on the degree of overlap between domains and the relative retention of receptors in such domains, expressed as escape probability. Results predict that a high overlap of domains, which favors transient co-confinement of both receptor species, will enhance the rate of hetero-interactions. Where domains do not overlap, simulations confirm expectations that homo-interactions are favored. Since ErbB3 is uniquely dependent on ErbB2 interactions for activation of its catalytic activity, variations in domain overlap or escape probability markedly alter the predicted patterns and time course of ErbB3 and ErbB2 phosphorylation. Taken together, these results implicate membrane domain organization as an important modulator of signal initiation, motivating the design of novel experimental approaches to measure these important parameters across a wider range of receptor systems. PMID:27570763

  19. Effect of spatial inhomogeneities on the membrane surface on receptor dimerization and signal initiation

    Directory of Open Access Journals (Sweden)

    Romica Kerketta

    2016-08-01

    Full Text Available Important signal transduction pathways originate on the plasma membrane, where microdomains may transiently entrap diffusing receptors. This results in a non-random distribution of receptors even in the resting state, which can be visualized as clusters by high resolution imaging methods. Here, we explore how spatial in-homogeneities in the plasma membrane might influence the dimerization and phosphorylation status of ErbB2 and ErbB3, two receptor tyrosine kinases that preferentially heterodimerize and are often co-expressed in cancer. This theoretical study is based upon spatial stochastic simulations of the two-dimensional membrane landscape, where variables include differential distributions and overlap of transient confinement zones (domains for the two receptor species. The in silico model is parameterized and validated using data from single particle tracking experiments. We report key differences in signaling output based on the degree of overlap between domains and the relative retention of receptors in such domains, expressed as escape probability. Results predict that a high overlap of domains, which favors transient co-confinement of both receptor species, will enhance the rate of hetero-interactions. Where domains do not overlap, simulations confirm expectations that homo-interactions are favored. Since ErbB3 is uniquely dependent on ErbB2 interactions for activation of its catalytic activity, variations in domain overlap or escape probability markedly alter the predicted patterns and time course of ErbB3 and ErbB2 phosphorylation. Taken together, these results implicate membrane domain organization as an important modulator of signal initiation, motivating the design of novel experimental approaches to measure these important parameters across a wider range of receptor systems.

  20. Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    Full Text Available Dopamine (DA, a neurotransmitter in the nervous system, has been shown to modulate immune function. We have previously reported that five subtypes of DA receptors, including D1R, D2R, D3R, D4R and D5R, are expressed in T lymphocytes and they are involved in regulation of T cells. However, roles of these DA receptor subtypes and their coupled signal-transduction pathway in modulation of natural killer (NK cells still remain to be clarified. The spleen of mice was harvested and NK cells were isolated and purified by negative selection using magnetic activated cell sorting. After NK cells were incubated with various drugs for 4 h, flow cytometry measured cytotoxicity of NK cells against YAC-1 lymphoma cells. NK cells expressed the five subtypes of DA receptors at mRNA and protein levels. Activation of D1-like receptors (including D1R and D5R with agonist SKF38393 enhanced NK cell cytotoxicity, but activation of D2-like receptors (including D2R, D3R and D4R with agonist quinpirole attenuated NK cells. Simultaneously, SKF38393 elevated D1R and D5R expression, cAMP content, and phosphorylated cAMP-response element-binding (CREB level in NK cells, while quinpirole reduced D3R and D4R expression, cAMP content, and phosphorylated CREB level in NK cells. These effects of SKF38393 were blocked by SCH23390, an antagonist of D1-like receptors, and quinpirole effects were abolished by haloperidol, an antagonist of D2-like receptors. In support these results, H89, an inhibitor of phosphokinase A (PKA, prevented the SKF38393-dependent enhancement of NK cells and forskolin, an activator of adenylyl cyclase (AC, counteracted the quinpirole-dependent suppression of NK cells. These findings show that DA receptor subtypes are involved in modulation of NK cells and suggest that D1-like receptors facilitate NK cells by stimulating D1R/D5R-cAMP-PKA-CREB signaling pathway and D2-like receptors suppress NK cells by inhibiting D3R/D4R-cAMP-PKA-CREB signaling pathway. The

  1. Transcriptional Crosstalk between Nuclear Receptors and Cytokine Signal Transduction Pathways in Immunity

    Institute of Scientific and Technical Information of China (English)

    Lihua Wang; Xiaohu Zhang; William L. Farrar; Xiaoyi Yang

    2004-01-01

    The nuclear receptor superfamily and the transcriptional factors associated with cytokines are inherently different families of signaling molecules and activate gene transcription by binding to their respective responsive element. However, it has become increasingly clear from our works and others that nuclear receptors are important regulators of cytokine production and function through complex and varied interactions between these distinct transcriptional factors. This review provides a general overview of the mechanism of action of nuclear receptors and their transcriptional crosstalk with transcriptional factors associated with cytokine transduction pathways. One of the most important mechanistic aspects is protein to protein interaction through a direct or co-regulator-mediated indirect manner. Such crosstalk is crucially involved in physiological and therapeutic roles of nuclear receptors and their ligands in immunity,inflammation and cytokine-related tumors. Cellular & Molecular Immunology. 2004;1(6):416-424.

  2. CD28 and T cell antigen receptor signal transduction coordinately regulate interleukin 2 gene expression in response to superantigen stimulation

    OpenAIRE

    1992-01-01

    Activation of an immune response requires intercellular contact between T lymphocytes and antigen-presenting cells (APC). Interaction of the T cell antigen receptor (TCR) with antigen in the context of major histocompatibility molecules mediates signal transduction, but T cell activation appears to require the induction of a second costimulatory signal transduction pathway. Recent studies suggest that interaction of CD28 with B7 on APC might deliver such a costimulatory signal. To investigate...

  3. Transmembrane adaptor proteins in the high-affinity IgE receptor signaling

    Directory of Open Access Journals (Sweden)

    Petr eDraber

    2012-01-01

    Full Text Available Aggregation of the high-affinity IgE receptor (FcεRI initiates a cascade of signaling events leading to release of preformed inflammatory and allergy mediators and de novo synthesis and secretion of cytokines and other compounds. The first biochemically well defined step of this signaling cascade is tyrosine phosphorylation of the FcεRI subunits by Src family kinase Lyn, followed by recruitment and activation of Syk kinase. Activity of Syk is decisive for the formation of multicomponent signaling assemblies, the signalosomes, in the vicinity of the receptors. Formation of the signalosomes is dependent on the presence of transmembrane adaptor proteins (TRAPs. These proteins are characterized by a short extracellular domain, a single transmembrane domain and a cytoplasmic tail with various motifs serving as anchors for cytoplasmic signaling molecules. In mast cells five TRAPs have been identified (LAT, NTAL, LAX, PAG and GAPT; engagement of four of them (LAT, NTAL, LAX and PAG in FcεRI signaling has been documented. Here we discuss recent progress in the understanding of how TRAPs affect FcεRI-mediated mast cell signaling. The combined data indicate that individual TRAPs have irreplaceable roles in important signaling events such as calcium response, degranulation, cytokines production and chemotaxis.

  4. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    Science.gov (United States)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells.

  5. Cannabinoid CB1 receptor signaling dichotomously modulates inhibitory and excitatory synaptic transmission in rat inner retina.

    Science.gov (United States)

    Wang, Xiao-Han; Wu, Yi; Yang, Xiao-Fang; Miao, Yanying; Zhang, Chuan-Qiang; Dong, Ling-Dan; Yang, Xiong-Li; Wang, Zhongfeng

    2016-01-01

    In the inner retina, ganglion cells (RGCs) integrate and process excitatory signal from bipolar cells (BCs) and inhibitory signal from amacrine cells (ACs). Using multiple labeling immunohistochemistry, we first revealed the expression of the cannabinoid CB1 receptor (CB1R) at the terminals of ACs and BCs in rat retina. By patch-clamp techniques, we then showed how the activation of this receptor dichotomously regulated miniature inhibitory postsynaptic currents (mIPSCs), mediated by GABAA receptors and glycine receptors, and miniature excitatory postsynaptic currents (mEPSCs), mediated by AMPA receptors, of RGCs in rat retinal slices. WIN55212-2 (WIN), a CB1R agonist, reduced the mIPSC frequency due to an inhibition of L-type Ca(2+) channels no matter whether AMPA receptors were blocked. In contrast, WIN reduced the mEPSC frequency by suppressing T-type Ca(2+) channels only when inhibitory inputs to RGCs were present, which could be in part due to less T-type Ca(2+) channels of cone BCs, presynaptic to RGCs, being in an inactivation state under such condition. This unique feature of CB1R-mediated retrograde regulation provides a novel mechanism for modulating excitatory synaptic transmission in the inner retina. Moreover, depolarization of RGCs suppressed mIPSCs of these cells, an effect that was eliminated by the CB1R antagonist SR141716, suggesting that endocannabinoid is indeed released from RGCs.

  6. Estrogen receptor and PI3K/Akt signaling pathway involvement in S-(-equol-induced activation of Nrf2/ARE in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available S-(-equol, a natural product of the isoflavone daidzein, has been reported to offer cytoprotective effects with respect to the cardiovascular system, but how this occurs is unclear. Interestingly, S-(-equol is produced by the human gut, suggesting a role in physiological processes. We report that treatment of human umbilical vein endothelial cells and EA.hy926 cells with S-(-equol induces ARE-luciferase reporter gene activity that is dose and time dependent. S-(-equol (10-250 nM increases nuclear factor-erythroid 2-related factor 2 (Nrf2 as well as gene products of Nrf2 target genes heme oxygenase-1 (HO-1 and NAD(PH (nicotinamide-adenine-dinucleotide-phosphate quinone oxidoreductase 1 (NQO1. Endothelial cells transfected with an HA-Nrf2 expression plasmid had elevated HA-Nrf2, HO-1, and NQO1 in response to S-(-equol exposure. S-(-equol treatment affected Nrf2 mRNA only slightly but significantly increased HO-1 and NQO1 mRNA. The pretreatment of cells with specific ER inhibitors or PI3K/Akt (ICI182,780 and LY294002 increased Nrf2, HO-1, and NQO1 protein, impaired nuclear translocation of HA-Nrf2, and decreased ARE-luciferase activity. Identical experiments were conducted with daidzein, which had effects similar to S-(-equol. In addition, DPN treatment (an ERβ agonist induced the ARE-luciferase reporter gene, promoting Nrf2 nuclear translocation. Cell pretreatment with an ERβ antagonist (PHTPP impaired S-(-equol-induced Nrf2 activation. Pre-incubation of cells followed by co-treatment with S-(-equol significantly improved cell survival in response to H2O2 or tBHP and reduced apoptotic and TUNEL-positively-stained cells. Notably, the ability of S-(-equol to protect against H2O2-induced cell apoptosis was attenuated in cells transfected with an siRNA against Nrf2. Thus, beneficial effects of S-(-equol with respect to cytoprotective antioxidant gene activation may represent a novel strategy to prevent and treat cardiovascular diseases.

  7. Novel, Unifying Mechanism for Mescaline in The Central Nervous System: Electrochemistry, Catechol Redox Metabolite, Receptor, Cell Signaling and Structure Activity Relationships

    Directory of Open Access Journals (Sweden)

    Peter Kovacic

    2009-01-01

    Full Text Available A unifying mechanism for abused drugs has been proposed previously from the standpoint of electron transfer. Mescaline can be accommodated within the theoretical framework based on redox cycling by the catechol metabolite with its quinone counterpart. Electron transfer may play a role in electrical effects involving the nervous system in the brain. This approach is in accord with structure activity relationships involving mescaline, abused drugs, catecholamines and etoposide. Inefficient demethylation is in keeping with the various drug properties, such as requirement for high dosage and slow acting.

  8. Dasatinib inhibits proliferation and activation of CD8+ T-lymphocytes by down-regulation of the T-cell receptor signaling

    OpenAIRE

    Fei, Fei

    2007-01-01

    The novel Src/Abl inhibitor dasatinib (BMS-354825) is a promising therapeutic agent with imatinib-resistant BCR-ABL mutations in patients with chronic myelogenous leukemia (CML) or Ph-positive acute lymphoblastic leukemia (ALL). However, little is known about its effects on T-cell function, especially for patients undergoing allogeneic transplantation for leukemia. Here, we demonstrate that dasatinib at a concentration of 5 nM to 250 nM inhibits the proliferation and activation of CD8+ T-lymp...

  9. Activation of estrogen receptor β-dependent nitric oxide signaling mediates the hypotensive effects of estrogen in the rostral ventrolateral medulla of anesthetized rats

    Directory of Open Access Journals (Sweden)

    Shih Cheng-Dean

    2009-07-01

    Full Text Available Abstract Background Apart from their well-known peripheral cardiovascular effects, emerging evidence indicates that estrogen acts as a modulator in the brain to regulate cardiovascular functions. The underlying mechanisms of estrogen in central cardiovascular regulation, however, are poorly understood. The present study investigated the cardiovascular effects of 17β-estradiol (E2β in the rostral ventrolateral medulla (RVLM, where sympathetic premotor neurons are located, and delineated the engagement of nitric oxide (NO in E2β-induced cardiovascular responses. Methods In male Sprague-Dawley rats maintained under propofol anesthesia, the changes of blood pressure, heart rate and sympathetic vasomotor tone after microinjection bilaterally into the RVLM of a synthetic estrogen, E2β were examined for at least 120 min. The involvement of ERα and/or ERβ subtypes was determined by microinjection of selective ERα or ERβ agonist into bilateral RVLM. Different NO synthase (NOS inhibitors were used to evaluate the involvement of differential of NOS isoforms in the cardiovascular effects of E2β. Results Bilateral microinjection of E2β (0.5, 1, or 5 pmol into the RVLM dose-dependently decreased systemic arterial pressure (SAP and the power density of the vasomotor components of SAP signals, our experimental index for sympathetic neurogenic vasomotor tone. These cardiovascular depressive effects of E2β (1 pmol were abolished by co-injection of ER antagonist ICI 182780 (0.25 or 0.5 pmol, but not a transcription inhibitor actinomycin D (10 nmol. Like E2β, microinjection bilaterally into the RVLM of a selective ERβ agonist 2,3-bis(4-hydroxyphenyl propionitrile (DPN, 1, 2, or 5 pmol induced significant decreases in these hemodynamic parameters in a dose-dependent manner. In contrast, the selective ERα agonist 1,3,5-tris(4-hydroxyphenyl-4-propyl-1H-pyrazole (5 pmol did not influence the same cardiovascular parameters. Co-administration bilaterally

  10. Extracts of Feijoa Inhibit Toll-Like Receptor 2 Signaling and Activate Autophagy Implicating a Role in Dietary Control of IBD.

    Directory of Open Access Journals (Sweden)

    Noha Ahmed Nasef

    Full Text Available Inflammatory bowel disease (IBD is a heterogeneous chronic inflammatory disease affecting the gut with limited treatment success for its sufferers. This suggests the need for better understanding of the different subtypes of the disease as well as nutritional interventions to compliment current treatments. In this study we assess the ability of a hydrophilic feijoa fraction (F3 to modulate autophagy a process known to regulate inflammation, via TLR2 using IBD cell lines.Mouse embryonic fibroblasts (MEF deleted for ATG5, and two intestinal epithelial cells HCT15 and HCT116, were used to test the anti-inflammatory effect of F3 after stimulating the cells with a TLR2 specific ligand PAM3CSK4.F3 was able to reduce TLR2 specific inflammation and stimulate autophagy in MEFs and HCT15 cells but not in HCT116 cells. The anti-inflammatory effect was reduced in the MEF cells deleted for ATG5. In addition, the activation of autophagy by F3 was enhanced by PAM3CSK4.F3 of feijoa can interact with cells via a TLR2 specific mechanism and reduce Nuclear factor kappa B (NF-κB activation in part due to stimulation of autophagy. These results suggest that there is potential benefit in using feijoa extracts as part of dietary interventions to manage IBD in patients.

  11. Anti-cancer activity of an osthole derivative, NBM-T-BMX-OS01: targeting vascular endothelial growth factor receptor signaling and angiogenesis.

    Science.gov (United States)

    Yang, Hung-Yu; Hsu, Ya-Fen; Chiu, Pei-Ting; Ho, Shiau-Jing; Wang, Chi-Han; Chi, Chih-Chin; Huang, Yu-Han; Lee, Cheng-Feng; Li, Ying-Shiuan; Ou, George; Hsu, Ming-Jen

    2013-01-01

    Angiogenesis occurs during tissue growth, development and wound healing. It is also required for tumor progression and represents a rational target for therapeutic intervention. NBM-T-BMX-OS01 (BMX), derived from the semisynthesis of osthole, an active ingredient isolated from Chinese herb Cnidium monnieri (L.) Cuss., was recently shown to enhance learning and memory in rats. In this study, we characterized the anti-angiogenic activities of NBM-T-BMX-OS01 (BMX) in an effort to develop novel inhibitors to suppress angiogenesis and tumor growth. BMX inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration and endothelial tube formation in human umbilical endothelial cells (HUVECs). BMX also attenuated VEGF-induced microvessel sprouting from aortic rings ex vivo and reduced HCT116 colorectal cancer cells-induced angiogenesis in vivo. Moreover, BMX inhibited the phosphorylation of VEGFR2, FAK, Akt and ERK in HUVECs exposed to VEGF. BMX was also shown to inhibit HCT116 cell proliferation and to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. Taken together, this study provides evidence that BMX modulates vascular endothelial cell remodeling and leads to the inhibition of tumor angiogenesis. These results also support the role of BMX as a potential drug candidate and warrant the clinical development in the treatment of cancer. PMID:24312323

  12. Membrane receptor signaling and control of DNA repair after exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Accumulated evidence indicates that activation of erbB family of receptors, when mutated or over-expressed, mediates chemo and radiotherapy resistance. In this context signaling pathways down-stream of epidermal growth factor receptor (EGFR), when abnormally activated, invoke cell survival mechanisms, which leads to resistance against radiation. In several reports it has been demonstrated that molecular targeting of EGFR signaling enhances the cytotoxic effects of radiotherapy. The radiosensitizing effects of EGFR antagonists correlate with a suppression of the ability of tumor cells to repair radiation-induced DNA double strand breaks (DNA-DSBs) through non-homologous endjoining repair pathway (NHEJ). The purpose of this review is to highlight the function of EGFR and erbB2 receptors on signaling pathways, i.e. PI3K/Akt activated by ionizing radiation (IR) and involved in repair of DNA-DSB which can explain the radiosensitizing effects of related antagonists. Advances in understanding the mechanism of erbB-signaling in regulating DNA-DSB repair will promote translational approaches to test new strategies for clinically applicable molecular targeting. (orig.)

  13. Activities of nicotinic acetylcholine receptors modulate neurotransmission and synaptic architecture

    Institute of Scientific and Technical Information of China (English)

    Akira Oda; Hidekazu Tanaka

    2014-01-01

    The cholinergic system is involved in a broad spectrum of brain function, and its failure has been implicated in Alzheimer’s disease. Acetylcholine transduces signals through muscarinic and nicotinic acetylcholine receptors, both of which inlfuence synaptic plasticity and cognition. However, the mechanisms that relate the rapid gating of nicotinic acetylcholine receptors to per-sistent changes in brain function have remained elusive. Recent evidence indicates that nicotinic acetylcholine receptors activities affect synaptic morphology and density, which result in per-sistent rearrangements of neural connectivity. Further investigations of the relationships between nicotinic acetylcholine receptors and rearrangements of neural circuitry in the central nervous system may help understand the pathogenesis of Alzheimer’s disease.

  14. MicroRNA-27b plays a role in pulmonary arterial hypertension by modulating peroxisome proliferator-activated receptor γ dependent Hsp90-eNOS signaling and nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Rui; Bao, Chunrong; Jiang, Lianyong; Liu, Hao; Yang, Yang; Mei, Ju; Ding, Fangbao, E-mail: dbcar126@126.com

    2015-05-01

    Pulmonary artery endothelial dysfunction is associated with pulmonary arterial hypertension (PAH). Based on recent studies showing that microRNA (miR)-27b is aberrantly expressed in PAH, we hypothesized that miR-27b may contribute to pulmonary endothelial dysfunction and vascular remodeling in PAH. The effect of miR-27b on pulmonary endothelial dysfunction and the underlying mechanism were investigated in human pulmonary artery endothelial cells (HPAECs) in vitro and in a monocrotaline (MCT)-induced model of PAH in vivo. miR-27b expression was upregulated in MCT-induced PAH and inversely correlated with the levels of peroxisome proliferator-activated receptor (PPAR)-γ, and miR-27b inhibition attenuated MCT-induced endothelial dysfunction and remodeling and prevented PAH associated right ventricular hypertrophy and systolic pressure in rats. PPARγ was confirmed as a direct target of miR-27b in HPAECs and shown to mediate the effect of miR-27b on the disruption of endothelial nitric oxide synthase (eNOS) coupling to Hsp90 and the suppression of NO production associated with the PAH phenotype. We showed that miR-27b plays a role endothelial function and NO release and elucidated a potential mechanism by which miR-27b regulates Hsp90-eNOS and NO signaling by modulating PPARγ expression, providing potential therapeutic targets for the treatment of PAH. - Highlights: • miR-27b plays a role in endothelial function and NO release. • miR-27b inhibition ameliorates MCT-induced endothelial dysfunction and PAH. • miR-27b targets PPARγ in HPAECs. • miR-27b regulates PPARγ dependent Hsp90-eNOS and NO signaling.

  15. Prediction of compounds activity in nuclear receptor signaling and stress pathway assays using machine learning algorithms and low dimensional molecular descriptors

    Directory of Open Access Journals (Sweden)

    Filip eStefaniak

    2015-12-01

    Full Text Available Toxicity evaluation of newly synthesized or used compounds is one of the main challenges during product development in many areas of industry. For example, toxicity is the second reason - after lack of efficacy - for failure in preclinical and clinical studies of drug candidates. To avoid attrition at the late stage of the drug development process, the toxicity analyses are employed at the early stages of a discovery pipeline, along with activity and selectivity enhancing. Although many assays for screening in vitro toxicity are available, their massive application is not always time and cost effective. Thus the need for fast and reliable in silico tools, which can be used not only for toxicity prediction of existing compounds, but also for prioritization of compounds planned for synthesis or acquisition. Here I present the benchmark results of the combination of various attribute selection methods and machine learning algorithms and their application to the data sets of the Tox21 Data Challenge. The best performing method: Best First for attribute selection with the Rotation Forest/ADTree classifier offers good accuracy for most tested cases. For 11 out of 12 targets, the AUROC value for the final evaluation set was ≥0.72, while for three targets the AUROC value was ≥ 0.80, with the average AUROC being 0.784±0.069. The use of two-dimensional descriptors sets enables fast screening and compound prioritization even for a very large database. Open source tools used in this project make the presented approach widely available and encourage the community to further improve the presented scheme.

  16. The Architecture of the TIR Domain Signalosome in the Toll-like Receptor-4 Signaling Pathway

    OpenAIRE

    Emine Guven-Maiorov; Ozlem Keskin; Attila Gursoy; Carter VanWaes; Zhong Chen; Chung-Jung Tsai; Ruth Nussinov

    2015-01-01

    Scientific Reports | 5:13128 | DOI: 10.1038/srep13128 1 www.nature.com/scientificreports The Architecture of the TIR Domain Signalosome in the Toll-like Receptor-4 Signaling Pathway Emine Guven-Maiorov1,2, Ozlem Keskin1,2, Attila Gursoy2,3, Carter VanWaes4, Zhong Chen4, Chung-Jung Tsai5 & Ruth Nussinov5,6 Activated Toll-like receptors (TLRs) cluster in lipid rafts and induce pro- and anti-tumor responses. The organization of the assembly is critical to the understandin...

  17. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    International Nuclear Information System (INIS)

    Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor grade

  18. Structural motifs of importance for the constitutive activity of the orphan 7TM receptor EBI2: analysis of receptor activation in the absence of an agonist

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Rosenkilde, Mette M

    2008-01-01

    The Epstein-Barr induced receptor 2 (EBI2) is a lymphocyte-expressed orphan seven transmembrane-spanning (7TM) receptor that signals constitutively through Galphai, as shown, for instance by guanosine 5'-O-(3-thio)triphosphate incorporation. Two regions of importance for the constitutive activity...

  19. Monitoring leptin activity using the chicken leptin receptor.

    Science.gov (United States)

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold.

  20. Monitoring leptin activity using the chicken leptin receptor.

    Science.gov (United States)

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold. PMID:18434362

  1. Activation of the transcription factor FosB/activating protein-1 (AP-1) is a prominent downstream signal of the extracellular nucleotide receptor P2RX7 in monocytic and osteoblastic cells.

    Science.gov (United States)

    Gavala, Monica L; Hill, Lindsay M; Lenertz, Lisa Y; Karta, Maya R; Bertics, Paul J

    2010-10-29

    Activation of the ionotropic P2RX7 nucleotide receptor by extracellular ATP has been implicated in modulating inflammatory disease progression. Continuous exposure of P2RX7 to ligand can result in apoptosis in many cell types, including monocytic cells, whereas transient activation of P2RX7 is linked to inflammatory mediator production and the promotion of cell growth. Given the rapid hydrolysis of ATP in the circulation and interstitial space, transient activation of P2RX7 appears critically important for its action, yet its effects on gene expression are unclear. The present study demonstrates that short-term stimulation of human and mouse monocytic cells as well as mouse osteoblasts with P2RX7 agonists substantially induces the expression of several activating protein-1 (AP-1) members, particularly FosB. The potent activation of FosB after P2RX7 stimulation is especially noteworthy considering that little is known concerning the role of FosB in immunological regulation. Interestingly, the magnitude of FosB activation induced by P2RX7 stimulation appears greater than that observed with other known inducers of FosB expression. In addition, we have identified a previously unrecognized role for FosB in osteoblasts with respect to nucleotide-induced expression of cyclooxygenase-2 (COX-2), which is the rate-limiting enzyme in prostaglandin biosynthesis from arachidonic acid and is critical for osteoblastic differentiation and immune behavior. The present studies are the first to link P2RX7 action to FosB/AP-1 regulation in multiple cell types, including a role in nucleotide-induced COX-2 expression, and support a role for FosB in the control of immune and osteogenic function by P2RX7. PMID:20813842

  2. Cytoplasmic truncation of the p55 tumour necrosis factor (TNF) receptor abolishes signalling, but not induced shedding of the receptor

    DEFF Research Database (Denmark)

    Brakebusch, C; Nophar, Y; Kemper, O;

    1992-01-01

    The mechanistic relationship between the signalling for the TNF effects by the human p55 TNF receptor (hu-p55-TNF-R) and the formation of a soluble form of the receptor, which is inhibitory to these effects, was explored by examining the function of C-terminally truncated mutants of the receptor,...

  3. Connexins and M3 Muscarinic Receptors Contribute to Heterogeneous Ca2+ Signaling in Mouse Aortic Endothelium

    Directory of Open Access Journals (Sweden)

    François-Xavier Boittin

    2013-02-01

    Full Text Available Background/Aims: Smooth muscle tone is controlled by Ca2+ signaling in the endothelial layer. Mouse endothelial cells are interconnected by gap junctions made of Connexin40 (Cx40 and Cx37, which allow the exchange of signaling molecules to coordinate their activity. Here, we investigated the role of Cx40 in the endothelial Ca2+ signaling of the mouse aorta. Methods: Ca2+ imaging was performed on intact aortic endothelium from both wild type (Cx40+/+ and Connexin40-deficient (Cx40 -/- mice. Results: Acetylcholine (ACh induced early fast and high amplitude Ca2+ transients in a fraction of endothelial cells expressing the M3 muscarinic receptors. Inhibition of intercellular communication using carbenoxolone or octanol fully blocked the propagation of ACh-induced Ca2+ transients toward adjacent cells in WT and Cx40-/- mice. As compared to WT, Cx40-/- mice displayed a reduced propagation of ACh-induced Ca2+ waves, indicating that Cx40 contributes to the spreading of Ca2+ signals. The propagation of those Ca2+ responses was not blocked by suramin, a blocker of purinergic ATP receptors, indicating that there is no paracrine effect of ATP release on the Ca2+ waves. Conclusions: Altogether our data show that Cx40 and Cx37 contribute to the propagation and amplification of the Ca2+ signaling triggered by ACh in endothelial cells expressing the M3 muscarinic receptors.

  4. Inflammatory Mediators and Insulin Resistance in Obesity: Role of Nuclear Receptor Signaling in Macrophages

    Directory of Open Access Journals (Sweden)

    Lucía Fuentes

    2010-01-01

    Full Text Available Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR. The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development of obesity-associated IR and consequent metabolic abnormalities. The ligand-dependent transcription factors peroxisome proliferator activated receptors (PPARs have recently been implicated in the determination of the M1/M2 phenotype. Liver X receptors (LXRs, which form another subgroup of the nuclear receptor superfamily, are also important regulators of proinflammatory cytokine production in macrophages. Disregulation of macrophage-mediated inflammation by PPARs and LXRs therefore underlies the development of IR. This review summarizes the role of PPAR and LXR signaling in macrophages and current knowledge about the impact of these actions in the manifestation of IR and obesity comorbidities such as liver steatosis and diabetic osteopenia.

  5. Mediators, Receptors, and Signalling Pathways in the Anti-Inflammatory and Antihyperalgesic Effects of Acupuncture

    Directory of Open Access Journals (Sweden)

    John L. McDonald

    2015-01-01

    Full Text Available Acupuncture has been used for millennia to treat allergic diseases including both intermittent rhinitis and persistent rhinitis. Besides the research on the efficacy and safety of acupuncture treatment for allergic rhinitis, research has also investigated how acupuncture might modulate immune function to exert anti-inflammatory effects. A proposed model has previously hypothesized that acupuncture might downregulate proinflammatory neuropeptides, proinflammatory cytokines, and neurotrophins, modulating transient receptor potential vallinoid (TRPV1, a G-protein coupled receptor which plays a central role in allergic rhinitis. Recent research has been largely supportive of this model. New advances in research include the discovery of a novel cholinergic anti-inflammatory pathway activated by acupuncture. A chemokine-mediated proliferation of opioid-containing macrophages in inflamed tissues, in response to acupuncture, has also been demonstrated for the first time. Further research on the complex cross talk between receptors during inflammation is also helping to elucidate the mediators and signalling pathways activated by acupuncture.

  6. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    Science.gov (United States)

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  7. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo

    OpenAIRE

    Kono, Mari; Tucker, Ana E.; Tran, Jennifer; Bergner, Jennifer B.; Turner, Ewa M; Proia, Richard L.

    2014-01-01

    Activation of the GPCR sphingosine-1-phosphate receptor 1 (S1P1) by sphingosine-1-phosphate (S1P) regulates key physiological processes. S1P1 activation also has been implicated in pathologic processes, including autoimmunity and inflammation; however, the in vivo sites of S1P1 activation under normal and disease conditions are unclear. Here, we describe the development of a mouse model that allows in vivo evaluation of S1P1 activation. These mice, known as S1P1 GFP signaling mice, produce a ...

  8. Androgen insensitivity syndrome: gonadal androgen receptor activity

    International Nuclear Information System (INIS)

    To determine whether abnormalities of the androgen receptor previously observed in skin fibroblasts from patients with androgen insensitivity syndrome also occur in the gonads of affected individuals, androgen receptor activity in the gonads of a patient with testicular feminization syndrome was investigated. Using conditions for optimal recovery of androgen receptor from human testes established by previous studies, we detected the presence of a high-affinity (dissociation constant . 3.2 X 10(-10) mol/L), low-capacity (4.2 X 10(-12) mol/mg DNA), androgen-binding protein when tritium-labeled R1881 was incubated at 4 degrees C with nuclear extracts from the gonads of control patients or from a patient with testicular feminization syndrome but not when incubated at 37 degrees C. Thus this patient has an androgen receptor with a temperature lability similar to that of receptors from normal persons

  9. Src-Like adaptor protein (SLAP) binds to the receptor tyrosine kinase Flt3 and modulates receptor stability and downstream signaling.

    Science.gov (United States)

    Kazi, Julhash U; Rönnstrand, Lars

    2012-01-01

    Fms-like tyrosine kinase 3 (Flt3) is an important growth factor receptor in hematopoiesis. Gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia (AML). Src-like adaptor protein (SLAP) is an interaction partner of the E3 ubiquitin ligase Cbl that can regulate receptor tyrosine kinases-mediated signal transduction. In this study, we analyzed the role of SLAP in signal transduction downstream of the type III receptor tyrosine kinase Flt3. The results show that upon ligand stimulation SLAP stably associates with Flt3 through multiple phosphotyrosine residues in Flt3. SLAP constitutively interacts with oncogenic Flt3-ITD and co-localizes with Flt3 near the cell membrane. This association initiates Cbl-dependent receptor ubiquitination and degradation. Depletion of SLAP expression by shRNA in Flt3-transfected Ba/F3 cells resulted in a weaker activation of FL-induced PI3K-Akt and MAPK signaling. Meta-analysis of microarray data from patient samples suggests that SLAP mRNA is differentially expressed in different cancers and its expression was significantly increased in patients carrying the Flt3-ITD mutation. Thus, our data suggest a novel role of SLAP in different cancers and in modulation of receptor tyrosine kinase signaling apart from its conventional role in regulation of receptor stability.

  10. Src-Like adaptor protein (SLAP binds to the receptor tyrosine kinase Flt3 and modulates receptor stability and downstream signaling.

    Directory of Open Access Journals (Sweden)

    Julhash U Kazi

    Full Text Available Fms-like tyrosine kinase 3 (Flt3 is an important growth factor receptor in hematopoiesis. Gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia (AML. Src-like adaptor protein (SLAP is an interaction partner of the E3 ubiquitin ligase Cbl that can regulate receptor tyrosine kinases-mediated signal transduction. In this study, we analyzed the role of SLAP in signal transduction downstream of the type III receptor tyrosine kinase Flt3. The results show that upon ligand stimulation SLAP stably associates with Flt3 through multiple phosphotyrosine residues in Flt3. SLAP constitutively interacts with oncogenic Flt3-ITD and co-localizes with Flt3 near the cell membrane. This association initiates Cbl-dependent receptor ubiquitination and degradation. Depletion of SLAP expression by shRNA in Flt3-transfected Ba/F3 cells resulted in a weaker activation of FL-induced PI3K-Akt and MAPK signaling. Meta-analysis of microarray data from patient samples suggests that SLAP mRNA is differentially expressed in different cancers and its expression was significantly increased in patients carrying the Flt3-ITD mutation. Thus, our data suggest a novel role of SLAP in different cancers and in modulation of receptor tyrosine kinase signaling apart from its conventional role in regulation of receptor stability.

  11. Chemosensory signals and their receptors in the olfactory neural system.

    Science.gov (United States)

    Ihara, S; Yoshikawa, K; Touhara, K

    2013-12-19

    Chemical communication is widely used among various organisms to obtain essential information from their environment required for life. Although a large variety of molecules have been shown to act as chemical cues, the molecular and neural basis underlying the behaviors elicited by these molecules has been revealed for only a limited number of molecules. Here, we review the current knowledge regarding the signaling molecules whose flow from receptor to specific behavior has been characterized. Discussing the molecules utilized by mice, insects, and the worm, we focus on how each organism has optimized its reception system to suit its living style. We also highlight how the production of these signaling molecules is regulated, an area in which considerable progress has been recently made.

  12. Role of ERK/MAPK in endothelin receptor signaling in human aortic smooth muscle cells

    DEFF Research Database (Denmark)

    Chen, Qing-wen; Edvinsson, Lars; Xu, Cang-Bao

    2009-01-01

    muscle cells (VSMCs) through activation of endothelin type A (ETA) and type B (ETB) receptors. The extracellular signal-regulated kinase 1 and 2 (ERK1/2) mitogen-activated protein kinases (MAPK) are involved in ET-1-induced VSMC contraction and proliferation. This study was designed to investigate...... showed significant inhibitory effects on ET-1-induced activation of ERK1/2. However, blockage of L-type Ca2+ channels or calcium/calmodulin-dependent protein kinase II, chelating extracellular Ca2+ or emptying internal Ca2+ stores, did not affect ET-1-induced activation of ERK1/2. CONCLUSION: The ETA...

  13. Charged MVB protein 5 is involved in T-cell receptor signaling.

    Science.gov (United States)

    Wi, Sae Mi; Min, Yoon; Lee, Ki-Young

    2016-01-01

    Charged multivesicular body protein 5 (CHMP5) has a key role in multivesicular body biogenesis and a critical role in the downregulation of signaling pathways through receptor degradation. However, the role of CHMP5 in T-cell receptor (TCR)-mediated signaling has not been previously investigated. In this study, we utilized a short hairpin RNA-based RNA interference approach to investigate the functional role of CHMP5. Upon TCR stimulation, CHMP5-knockdown (CHMP5(KD)) Jurkat T cells exhibited activation of TCR downstream signaling molecules, such as PKCθ and IKKαβ, and resulted in the activation of nuclear factor-κB and the marked upregulation of TCR-induced gene expression. Moreover, we found that activator protein-1 and nuclear factor of activated T-cells transcriptional factors were markedly activated in CHMP5(KD) Jurkat cells in response to TCR stimulation, which led to a significant increase in interleukin-2 secretion. Biochemical studies revealed that CHMP5 endogenously forms high-molecular-weight complexes, including TCR molecules, and specifically interacts with TCRβ. Interestingly, flow cytometry analysis also revealed that CHMP5(KD) Jurkat T cells exhibit upregulation of TCR expression on the cell surface compared with control Jurkat T cells. Taken together, these findings demonstrated that CHMP5 might be involved in the homeostatic regulation of TCR on the cell surface, presumably through TCR recycling or degradation. Thus CHMP5 is implicated in TCR-mediated signaling. PMID:26821576

  14. Charged MVB protein 5 is involved in T-cell receptor signaling.

    Science.gov (United States)

    Wi, Sae Mi; Min, Yoon; Lee, Ki-Young

    2016-01-29

    Charged multivesicular body protein 5 (CHMP5) has a key role in multivesicular body biogenesis and a critical role in the downregulation of signaling pathways through receptor degradation. However, the role of CHMP5 in T-cell receptor (TCR)-mediated signaling has not been previously investigated. In this study, we utilized a short hairpin RNA-based RNA interference approach to investigate the functional role of CHMP5. Upon TCR stimulation, CHMP5-knockdown (CHMP5(KD)) Jurkat T cells exhibited activation of TCR downstream signaling molecules, such as PKCθ and IKKαβ, and resulted in the activation of nuclear factor-κB and the marked upregulation of TCR-induced gene expression. Moreover, we found that activator protein-1 and nuclear factor of activated T-cells transcriptional factors were markedly activated in CHMP5(KD) Jurkat cells in response to TCR stimulation, which led to a significant increase in interleukin-2 secretion. Biochemical studies revealed that CHMP5 endogenously forms high-molecular-weight complexes, including TCR molecules, and specifically interacts with TCRβ. Interestingly, flow cytometry analysis also revealed that CHMP5(KD) Jurkat T cells exhibit upregulation of TCR expression on the cell surface compared with control Jurkat T cells. Taken together, these findings demonstrated that CHMP5 might be involved in the homeostatic regulation of TCR on the cell surface, presumably through TCR recycling or degradation. Thus CHMP5 is implicated in TCR-mediated signaling.

  15. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity.

    Science.gov (United States)

    Gray, John A; Zito, Karen; Hell, Johannes W

    2016-01-01

    Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction.

  16. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    John A. Gray

    2016-05-01

    Full Text Available Provocative emerging evidence suggests that the N-methyl-D-aspartate (NMDA receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD, directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction.

  17. Tyrosine kinase JAK1 is associated with the granulocyte-colony-stimulating factor receptor and both become tyrosine-phosphorylated after receptor activation.

    OpenAIRE

    Nicholson, S. E.; Oates, A. C.; Harpur, A G; Ziemiecki, A; Wilks, A F; Layton, J E

    1994-01-01

    Granulocyte-colony-stimulating factor (G-CSF) stimulates the proliferation and differentiation of cells of the neutrophil lineage by interaction with a specific receptor. Early signal transduction events following G-CSF receptor activation were studied. We detected tyrosine phosphorylation of both the G-CSF receptor and the protein tyrosine kinase JAK1 following G-CSF binding to the human G-CSF receptor. In vitro, the kinase activity of JAK1 was increased by G-CSF stimulation. Coimmunoprecipi...

  18. DMPD: Modulation of Toll-interleukin 1 receptor mediated signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15662540 Modulation of Toll-interleukin 1 receptor mediated signaling. Li X, Qin J....iated signaling. PubmedID 15662540 Title Modulation of Toll-interleukin 1 receptor media... J Mol Med. 2005 Apr;83(4):258-66. Epub 2005 Jan 21. (.png) (.svg) (.html) (.csml) Show Modulation of Toll-interleukin 1 receptor med

  19. DMPD: Signalling adaptors used by Toll-like receptors: an update. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18706831 Signalling adaptors used by Toll-like receptors: an update. Kenny EF, O'Ne...tors used by Toll-like receptors: an update. PubmedID 18706831 Title Signalling adaptors used by Toll-like receptors: an update

  20. Inhibitory effects of omega-3 fatty acids on early brain injury after subarachnoid hemorrhage in rats: Possible involvement of G protein-coupled receptor 120/β-arrestin2/TGF-β activated kinase-1 binding protein-1 signaling pathway.

    Science.gov (United States)

    Yin, Jia; Li, Haiying; Meng, Chengjie; Chen, Dongdong; Chen, Zhouqing; Wang, Yibin; Wang, Zhong; Chen, Gang

    2016-06-01

    Omega-3 fatty acids have been reported to improve neuron functions during aging and in patients affected by mild cognitive impairment, and mediate potent anti-inflammatory via G protein-coupled receptor 120 (GPR120) signal pathway. Neuron dysfunction and inflammatory response also contributed to the progression of subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). This study was to examine the effects of omega-3 fatty acids on SAH-induced EBI. Two weeks before SAH, 30% Omega-3 fatty acids was administered by oral gavage at 1g/kg body weight once every 24h. Specific siRNA for GPR120 was exploited. Terminal deoxynucleotidyl transferase dUTP nick end labeling, fluoro-Jade B staining, and neurobehavioral scores and brain water content test showed that omega-3 fatty acids effectively suppressed SAH-induced brain cell apoptosis and neuronal degradation, behavioral impairment, and brain edema. Western blot, immunoprecipitation, and electrophoretic mobility shift assays results showed that omega-3 fatty acids effectively suppressed SAH-induced elevation of inflammatory factors, including cyclooxygenase-2, monocyte chemoattractant protein-1, and inducible nitric oxide synthase. In addition, omega-3 fatty acids could inhibit phosphorylation of transforming growth factor β activated kinase-1 (TAK1), MEK4, c-Jun N-terminal kinase, and IkappaB kinase as well as activation of nuclear factor kappa B through regulating GPR120/β-arrestin2/TAK1 binding protein-1 pathway. Furthermore, siRNA-induced GPR120 silencing blocked the protective effects of omega-3 fatty acids. Here, we show that stimulation of GPR120 with omega-3 fatty acids pretreatment causes anti-apoptosis and anti-inflammatory effects via β-arrestin2/TAK1 binding protein-1/TAK1 pathway in the brains of SAH rats. Fish omega-3 fatty acids as part of a daily diet may reduce EBI in an experimental rat model of SAH.

  1. Inhibitory effects of omega-3 fatty acids on early brain injury after subarachnoid hemorrhage in rats: Possible involvement of G protein-coupled receptor 120/β-arrestin2/TGF-β activated kinase-1 binding protein-1 signaling pathway.

    Science.gov (United States)

    Yin, Jia; Li, Haiying; Meng, Chengjie; Chen, Dongdong; Chen, Zhouqing; Wang, Yibin; Wang, Zhong; Chen, Gang

    2016-06-01

    Omega-3 fatty acids have been reported to improve neuron functions during aging and in patients affected by mild cognitive impairment, and mediate potent anti-inflammatory via G protein-coupled receptor 120 (GPR120) signal pathway. Neuron dysfunction and inflammatory response also contributed to the progression of subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). This study was to examine the effects of omega-3 fatty acids on SAH-induced EBI. Two weeks before SAH, 30% Omega-3 fatty acids was administered by oral gavage at 1g/kg body weight once every 24h. Specific siRNA for GPR120 was exploited. Terminal deoxynucleotidyl transferase dUTP nick end labeling, fluoro-Jade B staining, and neurobehavioral scores and brain water content test showed that omega-3 fatty acids effectively suppressed SAH-induced brain cell apoptosis and neuronal degradation, behavioral impairment, and brain edema. Western blot, immunoprecipitation, and electrophoretic mobility shift assays results showed that omega-3 fatty acids effectively suppressed SAH-induced elevation of inflammatory factors, including cyclooxygenase-2, monocyte chemoattractant protein-1, and inducible nitric oxide synthase. In addition, omega-3 fatty acids could inhibit phosphorylation of transforming growth factor β activated kinase-1 (TAK1), MEK4, c-Jun N-terminal kinase, and IkappaB kinase as well as activation of nuclear factor kappa B through regulating GPR120/β-arrestin2/TAK1 binding protein-1 pathway. Furthermore, siRNA-induced GPR120 silencing blocked the protective effects of omega-3 fatty acids. Here, we show that stimulation of GPR120 with omega-3 fatty acids pretreatment causes anti-apoptosis and anti-inflammatory effects via β-arrestin2/TAK1 binding protein-1/TAK1 pathway in the brains of SAH rats. Fish omega-3 fatty acids as part of a daily diet may reduce EBI in an experimental rat model of SAH. PMID:27000704

  2. Activation of EphA receptors mediates the recruitment of the adaptor protein Slap, contributing to the downregulation of N-methyl-D-aspartate receptors.

    Science.gov (United States)

    Semerdjieva, Sophia; Abdul-Razak, Hayder H; Salim, Sharifah S; Yáñez-Muñoz, Rafael J; Chen, Philip E; Tarabykin, Victor; Alifragis, Pavlos

    2013-04-01

    Regulation of the activity of N-methyl-d-aspartate receptors (NMDARs) at glutamatergic synapses is essential for certain forms of synaptic plasticity underlying learning and memory and is also associated with neurotoxicity and neurodegenerative diseases. In this report, we investigate the role of Src-like adaptor protein (Slap) in NMDA receptor signaling. We present data showing that in dissociated neuronal cultures, activation of ephrin (Eph) receptors by chimeric preclustered eph-Fc ligands leads to recruitment of Slap and NMDA receptors at the sites of Eph receptor activation. Interestingly, our data suggest that prolonged activation of EphA receptors is as efficient in recruiting Slap and NMDA receptors as prolonged activation of EphB receptors. Using established heterologous systems, we examined whether Slap is an integral part of NMDA receptor signaling. Our results showed that Slap does not alter baseline activity of NMDA receptors and does not affect Src-dependent potentiation of NMDA receptor currents in Xenopus oocytes. We also demonstrate that Slap reduces excitotoxic cell death triggered by activation of NMDARs in HEK293 cells. Finally, we present evidence showing reduced levels of NMDA receptors in the presence of Slap occurring in an activity-dependent manner, suggesting that Slap is part of a mechanism that homeostatically modulates the levels of NMDA receptors.

  3. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system

    Institute of Scientific and Technical Information of China (English)

    Jian-xin SHEN; Jerrel L YAKEL

    2009-01-01

    Based on the composition of the five subunits forming functional neuronal nicotinic acetylcholine receptors (nAChRs), they are grouped into either heteromeric (comprising both α and β subunits) or homomeric (comprising only α subunits) recep-tors. The nAChRs are known to be differentially permeable to calcium ions, with the α7 nAChR subtype having one of the highest permeabilities to calcium. Calcium influx through nAChRs, particularly through the α-bungarotoxin-sensitive α7-containing nAChRs, is a very efficient way to raise cytoplasmic calcium levels. The activation of nAChRs can mediate three types of cytoplasmic calcium signals: (1) direct calcium influx through the nAChRs, (2) indirect calcium influx through voltage-dependent calcium channels (VDCCs) which are activated by the nAChR-mediated depolarization, and (3) calcium-induced calcium release (CICR) (triggered by the first two sources) from the endoplasmic reticulum (ER) through the ryanodine receptors and inositol (1,4,5)-triphosphate receptors (IP3Rs). Downstream signaling events mediated by nAChR-mediated calcium responses can be grouped into instantaneous effects (such as neurotransmitter release, which can occur in milliseconds after nAChR activation), short-term effects (such as the recovery of nAChR desensitization through cellular signaling cascades), and long-term effects (such as neuroprotection via gene expression). In addition, nAChR activity can be regulated by cytoplasmic calcium levels, suggesting a complex reciprocal relationship. Further advances in imaging techniques, animal models, and more potent and subtype-selective ligands for neuronal nAChRs would help in understand-ing the neuronal nAChR-mediated calcium signaling, and lead to the development of improved therapeutic treatments.

  4. Bupleurum Polysaccharides Attenuates Lipopolysaccharide-Induced Inflammation via Modulating Toll-Like Receptor 4 Signaling

    OpenAIRE

    Wu, Jian; Zhang, Yun-Yi; Guo, Li; LI Hong; Chen, Dao-Feng

    2013-01-01

    Background Bupleurum polysaccharides (BPs), isolated from Bupleurum smithii var. parvifolium, possesses immunomodulatory activity, particularly on inflammation. Bacterial endotoxin lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor 4 (TLR4) on host cell membrane. The present study was performed to evaluate whether the therapeutic efficacy of BPs on suppression of LPS’s pathogenecity could be associated with the modulating of TLR4 signaling pathway. Methodolog...

  5. Distinct Signaling Cascades Elicited by Different Formyl Peptide Receptor 2 (FPR2 Agonists

    Directory of Open Access Journals (Sweden)

    Fabio Cattaneo

    2013-04-01

    Full Text Available The formyl peptide receptor 2 (FPR2 is a remarkably versatile transmembrane protein belonging to the G-protein coupled receptor (GPCR family. FPR2 is activated by an array of ligands, which include structurally unrelated lipids and peptide/proteins agonists, resulting in different intracellular responses in a ligand-specific fashion. In addition to the anti-inflammatory lipid, lipoxin A4, several other endogenous agonists also bind FPR2, including serum amyloid A, glucocorticoid-induced annexin 1, urokinase and its receptor, suggesting that the activation of FPR2 may result in potent pro- or anti-inflammatory responses. Other endogenous ligands, also present in biological samples, include resolvins, amyloidogenic proteins, such as beta amyloid (Aβ-42 and prion protein (Prp106–126, the neuroprotective peptide, humanin, antibacterial peptides, annexin 1-derived peptides, chemokine variants, the neuropeptides, vasoactive intestinal peptide (VIP and pituitary adenylate cyclase activating polypeptide (PACAP-27, and mitochondrial peptides. Upon activation, intracellular domains of FPR2 mediate signaling to G-proteins, which trigger several agonist-dependent signal transduction pathways, including activation of phospholipase C (PLC, protein kinase C (PKC isoforms, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt pathway, the mitogen-activated protein kinase (MAPK pathway, p38MAPK, as well as the phosphorylation of cytosolic tyrosine kinases, tyrosine kinase receptor transactivation, phosphorylation and nuclear translocation of regulatory transcriptional factors, release of calcium and production of oxidants. FPR2 is an attractive therapeutic target, because of its involvement in a range of normal physiological processes and pathological diseases. Here, we review and discuss the most significant findings on the intracellular pathways and on the cross-communication between FPR2 and tyrosine kinase receptors triggered by different FPR2

  6. Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling

    DEFF Research Database (Denmark)

    Argetsinger, L S; Norstedt, G; Billestrup, Nils;

    1996-01-01

    In this report, we demonstrate that insulin receptor substrate-2 (IRS-2) is tyrosyl-phosphorylated following stimulation of 3T3-F442A fibroblasts with growth hormone (GH), leukemia inhibitory factor and interferon-gamma. In response to GH and leukemia inhibitory factor, IRS-2 is immediately...... indicated that tyrosine residues in GH receptor are not necessary for tyrosyl phosphorylation of IRS-2; however, the regions of GH receptor necessary for IRS-2 tyrosyl phosphorylation are the same as those required for JAK2 association and tyrosyl phosphorylation. The role of IRS-2 as a signaling molecule...... of multiple members of the cytokine family of receptors that activate JAK kinases....

  7. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors.

    Directory of Open Access Journals (Sweden)

    Hannah Karlsson

    Full Text Available CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs.

  8. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis

    International Nuclear Information System (INIS)

    The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases

  9. Idiopathic basal ganglia calcification-associated PDGFRB mutations impair the receptor signalling

    Science.gov (United States)

    Arts, Florence A; Velghe, Amélie I; Stevens, Monique; Renauld, Jean-Christophe; Essaghir, Ahmed; Demoulin, Jean-Baptiste

    2015-01-01

    Platelet-derived growth factors (PDGF) bind to two related receptor tyrosine kinases, which are encoded by the PDGFRA and PDGFRB genes. Recently, heterozygous PDGFRB mutations have been described in patients diagnosed with idiopathic basal ganglia calcification (IBGC or Fahr disease), a rare inherited neurological disorder. The goal of the present study was to determine whether these mutations had a positive or negative impact on the PDGFRB activity. We first showed that the E1071V mutant behaved like wild-type PDGFRB and may represent a polymorphism unrelated to IBGC. In contrast, the L658P mutant had no kinase activity and failed to activate any of the pathways normally stimulated by PDGF. The R987W mutant activated Akt and MAP kinases but did not induce the phosphorylation of signal transducer and activator of transcription 3 (STAT3) after PDGF stimulation. Phosphorylation of phospholipase Cγ was also decreased. Finally, we showed that the R987W mutant was more rapidly degraded upon PDGF binding compared to wild-type PDGFRB. In conclusion, PDGFRB mutations associated with IBGC impair the receptor signalling. PDGFRB loss of function in IBGC is consistent with recently described inactivating mutations in the PDGF-B ligand. These results raise concerns about the long-term safety of PDGF receptor inhibition by drugs such as imatinib. PMID:25292412

  10. Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor.

    Science.gov (United States)

    Calandra, B; Portier, M; Kernéis, A; Delpech, M; Carillon, C; Le Fur, G; Ferrara, P; Shire, D

    1999-06-25

    It has long been established that the cannabinoid CB1 receptor transduces signals through a pertussis toxin-sensitive Gi/Go inhibitory pathway. Although there have been reports that the cannabinoid CB1 receptor can also mediate an increase in cyclic AMP levels, in most cases the presence of an adenylyl cyclase costimulant or the use of very high amounts of agonist was necessary. Here, we present evidence for dual coupling of the cannabinoid CB receptor to the classical pathway and to a pertussis toxin-insensitive adenylyl cyclase stimulatory pathway initiated with low quantities of agonist in the absence of any costimulant. Treatment of Chinese hamster ovary (CHO) cells expressing the cannabinoid CB1 receptor with the cannabinoid CP 55,940, {(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hyd roxypropyl) cyclohexan-1-ol} resulted in cyclic AMP accumulation in a dose-response manner, an accumulation blocked by the cannabinoid CB1 receptor-specific antagonist SR 141716A, {N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride}. In CHO cells coexpressing the cannabinoid CB1 receptor and a cyclic AMP response element (CRE)-luciferase reporter gene system, CP 55,940 induced luciferase expression by a pathway blocked by the protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-89). Under the same conditions the peripheral cannabinoid CB2 receptor proved to be incapable of inducing cAMP accumulation or luciferase activity. This incapacity allowed us to study the luciferase activation mediated by CB /CB2 chimeric constructs, from which we determined that the first and second internal loop regions of the cannabinoid CB1 receptor were involved in transducing the pathway leading to luciferase gene expression. PMID:10422789

  11. The role of GPCR dimerisation/oligomerisation in receptor signalling.

    Science.gov (United States)

    Milligan, G; Canals, M; Pediani, J D; Ellis, J; Lopez-Gimenez, J F

    2006-01-01

    A wide range of techniques have been employed to examine the quaternary structure of G-protein-coupled receptors (GPCRs). Although it is well established that homo-dimerisation is common, recent studies have sought to explore the physical basis of these interactions and the role of dimerisation in signal transduction. Growing evidence hints at the existence of higher-order organisation of individual GPCRs and the potential for hetero-dimerisation between pairs of co-expressed GPCRs. Here we consider how both homo-dimerisation/oligomerisation and hetero-dimerisation can regulate signal transduction through GPCRs and the potential consequences of this for function of therapeutic medicines that target GPCRs. Hetero-dimerisation is not the sole means by which co-expressed GPCRs may regulate the function of one another. Heterologous desensitisation may be at least as important and we also consider if this can be the basis for physiological antagonism between pairs of co-expressed GPCRs. Although there may be exceptions (Meyer et al. 2006), a great deal of recent evidence has indicated that most G-protein-coupled receptors (GPCRs) do not exist as monomers but rather as dimers or, potentially, within higher-order oligomers (Milligan 2004b; Park et al. 2004). Support for such models has been provided by a range of studies employing different approaches, including co-immunoprecipitation of differentially epitope-tagged but co-expressed forms of the same GPCR, co-operativity in ligand binding and a variety of resonance energy transfer techniques (Milligan and Bouvier 2005). Only for the photon receptor rhodopsin has the organisational structure of a GPCR been studied in situ. The application of atomic force microscopy to murine rod outer segment discs indicated that rhodopsin is organised in a series of parallel arrays of dimers (Liang et al. 2003) and based on this, molecular models were constructed to try to define and interpret regions of contact between the monomers

  12. Lack of glucagon receptor signaling and its implications beyond glucose homeostasis.

    Science.gov (United States)

    Charron, Maureen J; Vuguin, Patricia M

    2015-03-01

    Glucagon action is transduced by a G protein-coupled receptor located in liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart, pancreatic β-cells, and placenta. Genetically modified animal models have provided important clues about the role of glucagon and its receptor (Gcgr) beyond glucose control. The PubMed database was searched for articles published between 1995 and 2014 using the key terms glucagon, glucagon receptor, signaling, and animal models. Lack of Gcgr signaling has been associated with: i) hypoglycemic pregnancies, altered placentation, poor fetal growth, and increased fetal-neonatal death; ii) pancreatic glucagon cell hyperplasia and hyperglucagonemia; iii) altered body composition, energy state, and protection from diet-induced obesity; iv) impaired hepatocyte survival; v) altered glucose, lipid, and hormonal milieu; vi) altered metabolic response to prolonged fasting and exercise; vii) reduced gastric emptying and increased intestinal length; viii) altered retinal function; and ix) prevention of the development of diabetes in insulin-deficient mice. Similar phenotypic findings were observed in the hepatocyte-specific deletion of Gcgr. Glucagon action has been involved in the modulation of sweet taste responsiveness, inotropic and chronotropic effects in the heart, satiety, glomerular filtration rate, secretion of insulin, cortisol, ghrelin, GH, glucagon, and somatostatin, and hypothalamic signaling to suppress hepatic glucose production. Glucagon (α) cells under certain conditions can transdifferentiate into insulin (β) cells. These findings suggest that glucagon signaling plays an important role in multiple organs. Thus, treatment options designed to block Gcgr activation in diabetics may have implications beyond glucose homeostasis.

  13. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Chang [National Institute of Health, Chungbuk (Korea, Republic of); School of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Kim, Hyeon Guk [National Institute of Health, Chungbuk (Korea, Republic of); Roh, Tae-Young [Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Park, Jihwan [Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Jung, Kyung-Min; Lee, Joo-Shil [National Institute of Health, Chungbuk (Korea, Republic of); Choi, Sang-Yun [School of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Kim, Sung Soon [National Institute of Health, Chungbuk (Korea, Republic of); Choi, Byeong-Sun, E-mail: byeongsun@korea.kr [National Institute of Health, Chungbuk (Korea, Republic of)

    2011-01-14

    Research highlights: {yields} CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. {yields} CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. {yields} HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. {yields} H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. {yields} HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56{sup Lck}, ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56{sup Lck}, ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new

  14. Systems model of T cell receptor proximal signaling reveals emergent ultrasensitivity.

    Directory of Open Access Journals (Sweden)

    Hi