WorldWideScience

Sample records for activated endothelial cells

  1. Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation.

    Science.gov (United States)

    Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan

    2017-09-15

    Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by

  2. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    Science.gov (United States)

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics.

  3. Cyclosporine Induces Endothelial Cell Release of Complement-Activating Microparticles

    Science.gov (United States)

    Renner, Brandon; Klawitter, Jelena; Goldberg, Ryan; McCullough, James W.; Ferreira, Viviana P.; Cooper, James E.; Christians, Uwe

    2013-01-01

    Defective control of the alternative pathway of complement is an important risk factor for several renal diseases, including atypical hemolytic uremic syndrome. Infections, drugs, pregnancy, and hemodynamic insults can trigger episodes of atypical hemolytic uremic syndrome in susceptible patients. Although the mechanisms linking these clinical events with disease flares are unknown, recent work has revealed that each of these clinical conditions causes cells to release microparticles. We hypothesized that microparticles released from injured endothelial cells promote intrarenal complement activation. Calcineurin inhibitors cause vascular and renal injury and can trigger hemolytic uremic syndrome. Here, we show that endothelial cells exposed to cyclosporine in vitro and in vivo release microparticles that activate the alternative pathway of complement. Cyclosporine-induced microparticles caused injury to bystander endothelial cells and are associated with complement-mediated injury of the kidneys and vasculature in cyclosporine-treated mice. Cyclosporine-induced microparticles did not bind factor H, an alternative pathway regulatory protein present in plasma, explaining their complement-activating phenotype. Finally, we found that in renal transplant patients, the number of endothelial microparticles in plasma increases 2 weeks after starting tacrolimus, and treatment with tacrolimus associated with increased C3 deposition on endothelial microparticles in the plasma of some patients. These results suggest that injury-associated release of endothelial microparticles is an important mechanism by which systemic insults trigger intravascular complement activation and complement-dependent renal diseases. PMID:24092930

  4. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells

    Science.gov (United States)

    Kobayashi, Hideki; Butler, Jason M.; O'Donnell, Rebekah; Kobayashi, Mariko; Ding, Bi-Sen; Bonner, Bryant; Chiu, Vi K.; Nolan, Daniel J.; Shido, Koji; Benjamin, Laura; Rafii, Shahin

    2010-01-01

    Endothelial cells establish an instructive vascular niche that reconstitutes haematopoietic stem and progenitor cells (HSPCs) through release of specific paracrine growth factors, known as angiocrine factors. However, the mechanism by which endothelial cells balance the rate of proliferation and lineage-specific differentiation of HSPCs is unknown. Here, we demonstrate that Akt activation in endothelial cells, through recruitment of mTOR, but not the FoxO pathway, upregulates specific angiocrine factors that support expansion of CD34−Flt3− KLS HSPCs with long-term haematopoietic stem cell (LT-HSC) repopulation capacity. Conversely, co-activation of Akt-stimulated endothelial cells with p42/44 MAPK shifts the balance towards maintenance and differentiation of the HSPCs. Selective activation of Akt1 in the endothelial cells of adult mice increased the number of colony forming units in the spleen and CD34−Flt3− KLS HSPCs with LT-HSC activity in the bone marrow, accelerating haematopoietic recovery. Therefore, the activation state of endothelial cells modulates reconstitution of HSPCs through the upregulation of angiocrine factors, with Akt–mTOR-activated endothelial cells supporting the self-renewal of LT-HSCs and expansion of HSPCs, whereas MAPK co-activation favours maintenance and lineage-specific differentiation of HSPCs. PMID:20972423

  5. Activation of Endothelial Nitric Oxide (eNOS Occurs through Different Membrane Domains in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jason Tran

    Full Text Available Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC with cholesterol and the oxysterol 7-ketocholesterol (7KC. Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1 colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  6. Endothelial RIG-I activation impairs endothelial function

    International Nuclear Information System (INIS)

    Asdonk, Tobias; Motz, Inga; Werner, Nikos; Coch, Christoph; Barchet, Winfried; Hartmann, Gunther; Nickenig, Georg; Zimmer, Sebastian

    2012-01-01

    Highlights: ► RIG-I activation impairs endothelial function in vivo. ► RIG-I activation alters HCAEC biology in vitro. ► EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 μg of the RIG-ligand 3pRNA (RNA with triphosphate at the 5′end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  7. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  8. XIAP reverses various functional activities of FRNK in endothelial cells

    International Nuclear Information System (INIS)

    Ahn, Sunyoung; Kim, Hyun Jeong; Chi, Sung-Gil; Park, Heonyong

    2012-01-01

    Highlights: ► FRNK domain is recruited into focal adhesion (FA), controlling endothelial cell adhesion. ► XIAP binds the FRNK domain of FAK. ► XIAP inhibits recruitment of FRNK into Fas and FRNK-promoted cell adhesion. ► XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK. -- Abstract: In endothelial cells, focal adhesion kinase (FAK) regulates cell proliferation, migration, adhesion, and shear-stimulated activation of MAPK. We recently found that FAK is recruited into focal adhesion (FA) sites through interactions with XIAP (X-chromosome linked inhibitor of apoptosis protein) and activated by Src kinase in response to shear stress. In this study, we examined which domain(s) of FAK is(are) important for various vascular functions such as FA recruiting, XIAP-binding and shear stress-stimulated ERK activation. Through a series of experiments, we determined that the FRNK domain is recruited into FA sites and promotes endothelial cell adhesion. Interestingly, XIAP knockdown was shown to reduce FA recruitment of FRNK and the cell adhesive effect of FRNK. In addition, we found that XIAP interacts with FRNK, suggesting cross-talk between XIAP and FRNK. We also demonstrated that FRNK inhibits endothelial cell migration and shear-stimulated ERK activation. These inhibitory effects of FRNK were reversed by XIAP knockdown. Taken together, we can conclude that XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK.

  9. Integrin Targeting and Toxicological Assessment of Peptide-Conjugated Liposome Delivery Systems to Activated Endothelial Cells

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Villadsen, Klaus; Østrem, Ragnhild Garborg

    2017-01-01

    constructed with the aim of targeting integrins (i.e. vitronectin and/or fibronectin receptors) on activated endothelial cells. The peptide-conjugated liposomes induced only cytotoxicity at the highest concentration in non-activated or activated endothelial cells, as well as in co-culture of endothelial cells...... and macrophages. There was unaltered secretion of cytokines following exposure of peptide-conjugated liposomes to endothelial cells, indicating that the materials were not inflammogenic. Liposomes with a peptide targeting the fibronectin receptor (integrin α5β1) were more effective in targeting of activated....... Therefore, this study demonstrates the feasibility of constructing a peptide-conjugated cationic liposome, which displays targeting to activated endothelial cells at concentrations that are not cytotoxic or inflammogenic to the cells....

  10. Telmisartan activates endothelial nitric oxide synthase via Ser1177 phosphorylation in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Masahiro Myojo

    Full Text Available Because endothelial nitric oxide synthase (eNOS has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177 in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172 and eNOS and the concentration of intracellular guanosine 3',5'-cyclic monophosphate (cGMP. Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling.

  11. Activated ovarian endothelial cells promote early follicular development and survival.

    Science.gov (United States)

    Kedem, Alon; Aelion-Brauer, Anate; Guo, Peipei; Wen, Duancheng; Ding, Bi-Sen; Lis, Raphael; Cheng, Du; Sandler, Vladislav M; Rafii, Shahin; Rosenwaks, Zev

    2017-09-19

    New data suggests that endothelial cells (ECs) elaborate essential "angiocrine factors". The aim of this study is to investigate the role of activated ovarian endothelial cells in early in-vitro follicular development. Mouse ovarian ECs were isolated using magnetic cell sorting or by FACS and cultured in serum free media. After a constitutive activation of the Akt pathway was initiated, early follicles (50-150 um) were mechanically isolated from 8-day-old mice and co-cultured with these activated ovarian endothelial cells (AOEC) (n = 32), gel (n = 24) or within matrigel (n = 27) in serum free media for 14 days. Follicular growth, survival and function were assessed. After 6 passages, flow cytometry showed 93% of cells grown in serum-free culture were VE-cadherin positive, CD-31 positive and CD 45 negative, matching the known EC profile. Beginning on day 4 of culture, we observed significantly higher follicular and oocyte growth rates in follicles co-cultured with AOECs compared with follicles on gel or matrigel. After 14 days of culture, 73% of primary follicles and 83% of secondary follicles co-cultured with AOEC survived, whereas the majority of follicles cultured on gel or matrigel underwent atresia. This is the first report of successful isolation and culture of ovarian ECs. We suggest that co-culture with activated ovarian ECs promotes early follicular development and survival. This model is a novel platform for the in vitro maturation of early follicles and for the future exploration of endothelial-follicular communication. In vitro development of early follicles necessitates a complex interplay of growth factors and signals required for development. Endothelial cells (ECs) may elaborate essential "angiocrine factors" involved in organ regeneration. We demonstrate that co-culture with ovarian ECs enables culture of primary and early secondary mouse ovarian follicles.

  12. Tissue Factor-Expressing Tumor-Derived Extracellular Vesicles Activate Quiescent Endothelial Cells via Protease-Activated Receptor-1

    Directory of Open Access Journals (Sweden)

    Sara P. Y. Che

    2017-11-01

    Full Text Available Tissue factor (TF-expressing tumor-derived extracellular vesicles (EVs can promote metastasis and pre-metastatic niche formation, but the mechanisms by which this occurs remain largely unknown. We hypothesized that generation of activated factor X (FXa by TF expressed on tumor-derived EV could activate protease-activated receptors (PARs on non-activated endothelial cells to induce a pro-adhesive and pro-inflammatory phenotype. We obtained EV from TF-expressing breast (MDA-MB-231 and pancreatic (BxPC3 and Capan-1 tumor cell lines. We measured expression of E-selectin and secretion of interleukin-8 (IL-8 in human umbilical vein endothelial cells after exposure to EV and various immunologic and chemical inhibitors of TF, FXa, PAR-1, and PAR-2. After 6 h of exposure to tumor-derived EV (pretreated with factor VIIa and FX in vitro, endothelial cells upregulated E-selectin expression and secreted IL-8. These changes were decreased with an anti-TF antibody, FXa inhibitors (FPRCK and EGRCK, and PAR-1 antagonist (E5555, demonstrating that FXa generated by TF-expressing tumor-derived EV was signaling through endothelial PAR-1. Due to weak constitutive PAR-2 expression, these endothelial responses were not induced by a PAR-2 agonist peptide (SLIGKV and were not inhibited by a PAR-2 antagonist (FSLLRY after exposure to tumor-derived EV. In conclusion, we found that TF-expressing cancer-derived EVs activate quiescent endothelial cells, upregulating E-selectin and inducing IL-8 secretion through generation of FXa and cleavage of PAR-1. Conversion of resting endothelial cells to an activated phenotype by TF-expressing cancer-derived EV could promote cancer metastases.

  13. Biomaterials trigger endothelial cell activation when co-incubated with human whole blood.

    Science.gov (United States)

    Herklotz, Manuela; Hanke, Jasmin; Hänsel, Stefanie; Drichel, Juliane; Marx, Monique; Maitz, Manfred F; Werner, Carsten

    2016-10-01

    Endothelial cell activation resulting from biomaterial contact or biomaterial-induced blood activation may in turn also affect hemostasis and inflammatory processes in the blood. Current in vitro hemocompatibility assays typically ignore these modulating effects of the endothelium. This study describes a co-incubation system of human whole blood, biomaterial and endothelial cells (ECs) that was developed to overcome this limitation. First, human endothelial cells were characterized in terms of their expression of coagulation- and inflammation-relevant markers in response to various activators. Subsequently, their capacity to regulate hemostasis as well as complement and granulocyte activation was monitored in a hemocompatibility assay. After blood contact, quiescent ECs exhibited anticoagulant and anti-inflammatory properties. When they were co-incubated with surfaces exhibiting pro-coagulant or pro-inflammatory characteristics, the ECs down-regulated coagulation but not complement or leukocyte activation. Analysis of intracellular levels of the endothelial activation markers E-selectin and tissue factor showed that co-incubation with model surfaces and blood significantly increased the activation state of ECs. Finally, the coagulation- and inflammation-modulating properties of the ECs were tested after blood/biomaterial exposure. Pre-activation of ECs by biomaterials in the blood induced a pro-coagulant and pro-inflammatory state of the ECs, wherein the pro-coagulant response was higher for biomaterial/blood pre-activated ECs than for TNF-α-pre-activated cells. This work provides evidence that biomaterials, even without directly contacting the endothelium, affect the endothelial activation state with and have consequences for plasmatic and cellular reactions in the blood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Reduced Ang2 expression in aging endothelial cells

    International Nuclear Information System (INIS)

    Hohensinner, P.J.; Ebenbauer, B.; Kaun, C.; Maurer, G.; Huber, K.; Wojta, J.

    2016-01-01

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  15. Reduced Ang2 expression in aging endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Hohensinner, P.J., E-mail: philipp.hohensinner@meduniwien.ac.at [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ebenbauer, B. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); Kaun, C.; Maurer, G. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Huber, K. [Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); 3rd Medical Department, Wilhelminenhospital, Vienna (Austria); Sigmund Freud University, Medical Faculty, Vienna (Austria); Wojta, J. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); Core Facilities, Medical University of Vienna, Vienna (Austria)

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  16. Ulex europaeus I lectin induces activation of matrix-metalloproteinase-2 in endothelial cells.

    Science.gov (United States)

    Gomez, D E; Yoshiji, H; Kim, J C; Thorgeirsson, U P

    1995-11-02

    In this report, we show that the lectin Ulex europaeus agglutinin I (UEA I), which binds to alpha-linked fucose residues on the surface of endothelial cells, mediates activation of the 72-kDa matrix metalloproteinase-2 (MMP-2). A dose-dependent increase in the active 62-kDa form of MMP-2 was observed in conditioned medium from monkey aortic endothelial cells (MAEC) following incubation with concentrations of UEA I ranging from 2 to 100 micrograms/ml. The increase in the 62-kDa MMP-2 gelatinolytic activity was not reflected by a rise in MMP-2 gene expression. The UEA I-mediated activation of MMP-2 was blocked by L-fucose, which competes with UEA I for binding to alpha-fucose. These findings may suggest that a similar in vivo mechanism exists, whereby adhesive interactions between tumor cell lectins and endothelial cells can mediate MMP-2 activation.

  17. Mycoplasma suis infection results endothelial cell damage and activation: new insight into the cell tropism and pathogenicity of hemotrophic mycoplasma

    Directory of Open Access Journals (Sweden)

    Sokoli Albina

    2013-02-01

    Full Text Available Abstract Hemotrophic mycoplasmas (HM are highly specialized red blood cell parasites that cause infectious anemia in a variety of mammals, including humans. To date, no in vitro cultivation systems for HM have been available, resulting in relatively little information about the pathogenesis of HM infection. In pigs, Mycoplasma suis-induced infectious anemia is associated with hemorrhagic diathesis, and coagulation dysfunction. However, intravasal coagulation and subsequent consumption coagulopathy can only partly explain the sequence of events leading to hemorrhagic diathesis manifesting as cyanosis, petechial bleeding, and ecchymosis, and to disseminated coagulation. The involvement of endothelial activation and damage in M. suis-associated pathogenesis was investigated using light and electron microscopy, immunohistochemistry, and cell sorting. M. suis interacted directly with endothelial cells in vitro and in vivo. Endothelial activation, widespread endothelial damage, and adherence of red blood cells to the endothelium were evident in M. suis-infected pigs. These alterations of the endothelium were accompanied by hemorrhage, intravascular coagulation, vascular occlusion, and massive morphological changes within the parenchyma. M. suis biofilm-like microcolonies formed on the surface of endothelial cells, and may represent a putative persistence mechanism of M. suis. In vitro analysis demonstrated that M. suis interacted with the endothelial cytoskeletal protein actin, and induced actin condensation and activation of endothelial cells, as determined by the up-regulation of ICAM, PECAM, E-selectin, and P-selectin. These findings demonstrate an additional cell tropism of HM for endothelial cells and suggest that M. suis interferes with the protective function of the endothelium, resulting in hemorrhagic diathesis.

  18. Complement Activation Induces Neutrophil Adhesion and Neutrophil-Platelet Aggregate Formation on Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Magdalena Riedl

    2017-01-01

    Discussion: Therefore, our findings of (i neutrophils adhering to complement-activated endothelial cells, (ii the formation of neutrophil-platelet aggregates on endothelial cells, and (iii the ability of aHUS serum to induce similar effects identify a possible role for neutrophils in aHUS manifestation.

  19. Reduced Ang2 expression in aging endothelial cells.

    Science.gov (United States)

    Hohensinner, P J; Ebenbauer, B; Kaun, C; Maurer, G; Huber, K; Wojta, J

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Activation of the canonical Wnt/β-catenin pathway enhances monocyte adhesion to endothelial cells

    International Nuclear Information System (INIS)

    Lee, Dong Kun; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-01-01

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/β-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3β or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/β-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/β-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules

  1. Acute radiation effects on the content and release of plasminogen activator activity in cultured aortic endothelial cells

    International Nuclear Information System (INIS)

    Ts'ao, C.H.; Ward, W.F.

    1985-01-01

    Confluent monolayers from three lines of bovine aortic endothelial cells were exposed to a single dose of 10 Gy of 60 Co γ rays. Seventy-two hours later, the morphology of the irradiated and sham-irradiated monolayers was examined, and cellular DNA and protein contents were determined. In addition, the release of plasminogen activator (PA) activity into the culture media and PA activity in the cell lysates were assayed. DNA and protein contents in the irradiated monolayers were reduced to 43-50% and 72-95% of the control levels, respectively. These data indicate that radiation induced cell loss (detachment and/or lysis) from the monolayer, with hypertrophy of surviving (attached) cells to preserve the continuity of the monolayer surface. Total PA activity (lysate plus medium) in the irradiated dishes was reduced to 50-75% of the control level. However, when endothelial PA activity was expressed on the basis of DNA content, the irradiated monolayers from two of the three cell lines contained significantly more PA activity than did sham-irradiated monolayers. These data suggest that fibrinolytic defects observed in irradiated tissues in situ may be attributable at least in part to a radiation-induced inhibition of PA release by vascular endothelial cells

  2. Hormonal regulation of Na+/K+-dependent ATPase activity and pump function in corneal endothelial cells.

    Science.gov (United States)

    Hatou, Shin

    2011-10-01

    Na- and K-dependent ATPase (Na,K-ATPase) in the basolateral membrane of corneal endothelial cells plays an important role in the pump function of the corneal endothelium. We investigated the role of dexamethasone in the regulation of Na,K-ATPase activity and pump function in these cells. Mouse corneal endothelial cells were exposed to dexamethasone or insulin. ATPase activity was evaluated by spectrophotometric measurement, and pump function was measured using an Ussing chamber. Western blotting and immunocytochemistry were performed to measure the expression of the Na,K-ATPase α1-subunit. Dexamethasone increased Na,K-ATPase activity and the pump function of endothelial cells. Western blot analysis indicated that dexamethasone increased the expression of the Na,K-ATPase α1-subunit but decreased the ratio of active to inactive Na,K-ATPase α1-subunit. Insulin increased Na,K-ATPase activity and pump function of cultured corneal endothelial cells. These effects were transient and blocked by protein kinase C inhibitors and inhibitors of protein phosphatases 1 (PP1) and 2A (PP2A). Western blot analysis indicated that insulin decreased the amount of inactive Na,K-ATPase α1-subunit, but the expression of total Na,K-ATPase α1-subunit was unchanged. Immunocytochemistry showed that insulin increased cell surface expression of the Na,K-ATPase α1-subunit. Our results suggest that dexamethasone and insulin stimulate Na,K-ATPase activity in mouse corneal endothelial cells. The effect of dexamethasone activation in these cells was mediated by Na,K-ATPase synthesis and an increased enzymatic activity because of dephosphorylation of Na,K-ATPase α1-subunits. The effect of insulin is mediated by the protein kinase C, PP1, and/or PP2A pathways.

  3. In Vivo FRET Imaging of Tumor Endothelial Cells Highlights a Role of Low PKA Activity in Vascular Hyperpermeability.

    Science.gov (United States)

    Yamauchi, Fumio; Kamioka, Yuji; Yano, Tetsuya; Matsuda, Michiyuki

    2016-09-15

    Vascular hyperpermeability is a pathological hallmark of cancer. Previous in vitro studies have elucidated roles of various signaling molecules in vascular hyperpermeability; however, the activities of such signaling molecules have not been examined in live tumor tissues for technical reasons. Here, by in vivo two-photon excitation microscopy with transgenic mice expressing biosensors based on Förster resonance energy transfer, we examined the activity of protein kinase A (PKA), which maintains endothelial barrier function. The level of PKA activity was significantly lower in the intratumoral endothelial cells than the subcutaneous endothelial cells. PKA activation with a cAMP analogue alleviated the tumor vascular hyperpermeability, suggesting that the low PKA activity in the endothelial cells may be responsible for the tumor-tissue hyperpermeability. Because the vascular endothelial growth factor (VEGF) receptor is a canonical inducer of vascular hyperpermeability and a molecular target of anticancer drugs, we examined the causality between VEGF receptor activity and the PKA activity. Motesanib, a kinase inhibitor for VEGF receptor, activated tumor endothelial PKA and reduced the vascular permeability in the tumor. Conversely, subcutaneous injection of VEGF decreased endothelial PKA activity and induced hyperpermeability of subcutaneous blood vessels. Notably, in cultured human umbilical vascular endothelial cells, VEGF activated PKA rather than decreasing its activity, highlighting the remarkable difference between its actions in vitro and in vivo These data suggested that the VEGF receptor signaling pathway increases vascular permeability, at least in part, by reducing endothelial PKA activity in the live tumor tissue. Cancer Res; 76(18); 5266-76. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Activation of endothelial cells after exposure to ambient ultrafine particles: The role of NADPH oxidase

    International Nuclear Information System (INIS)

    Mo Yiqun; Wan Rong; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2009-01-01

    Several studies have shown that ultrafine particles (UFPs) may pass from the lungs to the circulation because of their very small diameter, and induce lung oxidative stress with a resultant increase in lung epithelial permeability. The direct effects of UFPs on vascular endothelium remain unknown. We hypothesized that exposure to UFPs leads to endothelial cell O 2 ·- generation via NADPH oxidase and results in activation of endothelial cells. Our results showed that UFPs, at a non-toxic dose, induced reactive oxygen species (ROS) generation in mouse pulmonary microvascular endothelial cells (MPMVEC) that was inhibited by pre-treatment with the ROS scavengers or inhibitors, but not with the mitochondrial inhibitor, rotenone. UFP-induced ROS generation in MPMVEC was abolished by p67 phox siRNA transfection and UFPs did not cause ROS generation in MPMVEC isolated from gp91 phox knock-out mice. UFP-induced ROS generation in endothelial cells was also determined in vivo by using a perfused lung model with imaging. Moreover, Western blot and immunofluorescence staining results showed that MPMVEC treated with UFPs resulted in the translocation of cytosolic proteins of NADPH oxidase, p47 phox , p67 phox and rac 1, to the plasma membrane. These results demonstrate that NADPH oxidase in the pulmonary endothelium is involved in ROS generation following exposure to UFPs. To investigate the activation of endothelial cells by UFP-induced oxidative stress, we determined the activation of the mitogen-activated protein kinases (MAPKs) in MPMVEC. Our results showed that exposure of MPMVEC to UFPs caused increased phosphorylation of p38 and ERK1/2 MAPKs that was blocked by pre-treatment with DPI or p67 phox siRNA. Exposure of MPMVEC obtained from gp91 phox knock-out mice to UFPs did not cause increased phosphorylation of p38 and ERK1/2 MAPKs. These findings confirm that UFPs can cause endothelial cells to generate ROS directly via activation of NADPH oxidase. UFP-induced ROS lead to

  5. Androgen Modulates Functions of Endothelial Progenitor Cells through Activated Egr1 Signaling

    Directory of Open Access Journals (Sweden)

    Yizhou Ye

    2016-01-01

    Full Text Available Researches show that androgens have important effects on migration of endothelial cells and endothelial protection in coronary heart disease. Endothelial progenitor cells (EPCs as a progenitor cell type that can differentiate into endothelial cells, have a critical role in angiogenesis and endothelial protection. The relationship between androgen and the functions of EPCs has animated much interest and controversy. In this study, we investigated the angiogenic and migratory functions of EPCs after treatment by dihydrotestosterone (DHT and the molecular mechanisms as well. We found that DHT treatment enhanced the incorporation of EPCs into tubular structures formed by HUVECs and the migratory activity of EPCs in the transwell assay dose dependently. Moreover, microarray analysis was performed to explore how DHT changes the gene expression profiles of EPCs. We found 346 differentially expressed genes in androgen-treated EPCs. Angiogenesis-related genes like Egr-1, Vcan, Efnb2, and Cdk2ap1 were identified to be regulated upon DHT treatment. Furthermore, the enhanced angiogenic and migratory abilities of EPCs after DHT treatment were inhibited by Egr1-siRNA transfection. In conclusion, our findings suggest that DHT markedly enhances the vessel forming ability and migration capacity of EPCs. Egr1 signaling may be a possible pathway in this process.

  6. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    Science.gov (United States)

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and

  7. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    Science.gov (United States)

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  8. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system.

    Directory of Open Access Journals (Sweden)

    Shannon L Taylor

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS and hantavirus pulmonary syndrome (HPS are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF. To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS. We show that incubation of factor XII (FXII, prekallikrein (PK, and high molecular weight kininogen (HK plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL and increased liberation of bradykinin (BK. Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS, we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation

  9. Cilostazol activates function of bone marrow-derived endothelial progenitor cell for re-endothelialization in a carotid balloon injury model.

    Directory of Open Access Journals (Sweden)

    Rie Kawabe-Yako

    Full Text Available BACKGROUND: Cilostazol(CLZ has been used as a vasodilating anti-platelet drug clinically and demonstrated to inhibit proliferation of smooth muscle cells and effect on endothelial cells. However, the effect of CLZ on re-endothelialization including bone marrow (BM-derived endothelial progenitor cell (EPC contribution is unclear. We have investigated the hypothesis that CLZ might accelerate re-endothelialization with EPCs. METHODOLOGY/PRINCIPAL FINDINGS: Balloon carotid denudation was performed in male Sprague-Dawley rats. CLZ group was given CLZ mixed feed from 2 weeks before carotid injury. Control group was fed normal diet. CLZ accelerated re-endothelialization at 2 weeks after surgery and resulted in a significant reduction of neointima formation 4 weeks after surgery compared with that in control group. CLZ also increased the number of circulating EPCs throughout the time course. We examined the contribution of BM-derived EPCs to re-endothelialization by BM transplantation from Tie2/lacZ mice to nude rats. The number of Tie2-regulated X-gal positive cells on injured arterial luminal surface was increased at 2 weeks after surgery in CLZ group compared with that in control group. In vitro, CLZ enhanced proliferation, adhesion and migration activity, and differentiation with mRNA upregulation of adhesion molecule integrin αvβ3, chemokine receptor CXCR4 and growth factor VEGF assessed by real-time RT-PCR in rat BM-derived cultured EPCs. In addition, CLZ markedly increased the expression of SDF-1α that is a ligand of CXCR4 receptor in EPCs, in the media following vascular injury. CONCLUSIONS/SIGNIFICANCE: CLZ promotes EPC mobilization from BM and EPC recruitment to sites of arterial injury, and thereby inhibited neointima formation with acceleration of re-endothelialization with EPCs as well as pre-existing endothelial cells in a rat carotid balloon injury model. CLZ could be not only an anti-platelet agent but also a promising tool for

  10. Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yae Jin Yoon

    Full Text Available Various mammalian cells, including cancer cells, shed extracellular vesicles (EVs, also known as exosomes and microvesicles, into surrounding tissues. These EVs play roles in tumor growth and metastasis by promoting angiogenesis. However, the detailed mechanism of how cancer-derived EVs elicit endothelial cell activation remains unknown. Here, we provide evidence that early growth response-1 (Egr-1 activation in endothelial cells is involved in the angiogenic activity of colorectal cancer cell-derived EVs. Both RNA interference-mediated downregulation of Egr-1 and ERK1/2 or JNK inhibitor significantly blocked EV-mediated Egr-1 activation and endothelial cell migration. Furthermore, lipid raft-mediated endocytosis inhibitor effectively blocked endothelial Egr-1 activation and migration induced by cancer-derived EVs. Our results suggest that Egr-1 activation in endothelial cells may be a key mechanism involved in the angiogenic activity of cancer-derived EVs. These findings will improve our understanding regarding the proangiogenic activities of EVs in diverse pathological conditions including cancer, cardiovascular diseases, and neurodegenerative diseases.

  11. Transport of lipoprotein lipase across endothelial cells

    International Nuclear Information System (INIS)

    Saxena, U.; Klein, M.G.; Goldberg, I.J.

    1991-01-01

    Lipoprotein lipase (LPL), synthesized in muscle and fat, hydrolyzes plasma triglycerides primarily while bound to luminal endothelial cell surfaces. To obtain information about the movement of LPL from the basal to the luminal endothelial cell surface, the authors studied the transport of purified bovine milk LPL across bovine aortic endothelial cell monolayers. 125 I-labeled LPL ( 125 I-LPL) added to the basal surface of the monolayers was detected on the apical side of the cells in two compartments: (1) in the medium of the upper chamber, and (2) bound to the apical cell surface. The amount of 125 I-LPL on the cell surface, but not in the medium, reached saturation with time and LPL dose. Catalytically active LPL was transported to the apical surface but very little LPL activity appeared in the medium. Heparinase treatment of the basal cell surface and addition of dextran sulfate to the lower chamber decreased the amount of 125 I-LPL appearing on the apical surface. Similarly, the presence of increasing molar ratios of oleic acid/bovine serum albumin at the basal surface decreased the transport of active LPL across the monolayer. Thus, a saturable transport system, which requires haparan sulfate proteoglycans and is inhibited by high concentrations of free fatty acids on the basal side of the cells, appears to exist for passage of enzymatically active LPL across endothelial cells. They postulate that regulation of LPL transport to the endothelial luminal surface modulates the physiologically active pool of LPL in vivo

  12. Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability

    International Nuclear Information System (INIS)

    Gabrys, Dorota; Greco, Olga; Patel, Gaurang; Prise, Kevin M.; Tozer, Gillian M.; Kanthou, Chryso

    2007-01-01

    Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation. Methods and Materials: Cultured endothelial cells were X-ray irradiated, and actin filaments, microtubules, intermediate filaments, and vascular endothelial (VE)-cadherin junctions were examined by immunofluorescence. Permeability was determined by the passage of fluorescent dextran through cell monolayers. Signal transduction pathways were analyzed using RhoA, Rho kinase, and stress-activated protein kinase-p38 (SAPK2/p38) inhibitors by guanosine triphosphate-RhoA activation assay and transfection with RhoAT19N. The levels of junction protein expression and phosphorylation of myosin light chain and SAPK2/p38 were assessed by Western blotting. The radiation effects on cell death were verified by clonogenic assays. Results: Radiation induced rapid and persistent actin stress fiber formation and redistribution of VE-cadherin junctions in microvascular, but not umbilical vein endothelial cells, and microtubules and intermediate filaments remained unaffected. Radiation also caused a rapid and persistent increase in microvascular permeability. RhoA-guanosine triphosphatase and Rho kinase were activated by radiation and caused phosphorylation of downstream myosin light chain and the observed cytoskeletal and permeability changes. SAPK2/p38 was activated by radiation but did not influence either the cytoskeleton or permeability. Conclusion: This study is the first to show rapid activation of the RhoA/Rho kinase by radiation in endothelial cells and has demonstrated a link between this pathway and cytoskeletal remodeling and permeability. The results also suggest that the RhoA pathway might be a useful target for modulating the permeability and other effects of radiation for therapeutic gain

  13. Endothelial cells in the eyes of an immunologist.

    Science.gov (United States)

    Young, M Rita

    2012-10-01

    Endothelial cell activation in the process of tumor angiogenesis and in various aspects of vascular biology has been extensively studied. However, endothelial cells also function in other capacities, including in immune regulation. Compared to the more traditional immune regulatory populations (Th1, Th2, Treg, etc.), endothelial cells have received far less credit as being immune regulators. Their regulatory capacity is multifaceted. They are critical in both limiting and facilitating the trafficking of various immune cell populations, including T cells and dendritic cells, out of the vasculature and into tissue. They also can be induced to stimulate immune reactivity or to be immune inhibitory. In each of these parameters (trafficking, immune stimulation and immune inhibition), their role can be physiological, whereby they have an active role in maintaining health. Alternatively, their role can be pathological, whereby they contribute to disease. In theory, endothelial cells are in an ideal location to recruit cells that can mediate immune reactivity to tumor tissue. Furthermore, they can activate the immune cells as they transmigrate across the endothelium into the tumor. However, what is seen is the absence of these protective effects of endothelial cells and, instead, the endothelial cells succumb to the defense mechanisms of the tumor, resulting in their acquisition of a tumor-protective role. To understand the immune regulatory potential of endothelial cells in protecting the host versus the tumor, it is useful to better understand the other circumstances in which endothelial cells modulate immune reactivities. Which of the multitude of immune regulatory roles that endothelial cells can take on seems to rely on the type of stimulus that they are encountering. It also depends on the extent to which they can be manipulated by potential dangers to succumb and contribute toward attack on the host. This review will explore the physiological and pathological roles

  14. Characterization of human endothelial cell urokinase-type plasminogen activator receptor protein and messenger RNA

    DEFF Research Database (Denmark)

    Barnathan, E S; Kuo, A; Karikó, K

    1990-01-01

    Human umbilical vein endothelial cells in culture (HUVEC) express receptors for urokinase-type plasminogen activators (u-PA). The immunochemical nature of this receptor and its relationship to u-PA receptors expressed by other cell types is unknown. Cross-linking active site-blocked u-PA to HUVEC...... an endothelial cell cDNA library using the polymerase chain reaction (PCR) and oligonucleotide primers corresponding to the DNA sequence of the receptor cloned from transformed human fibroblasts (Roldan et al, EMBO J 9:467, 1990). The size of the cDNA (approximately 1,054 base pairs, bp) and the presence...

  15. Activation of the endoplasmic reticulum stress response by the amyloid-beta 1-40 peptide in brain endothelial cells.

    Science.gov (United States)

    Fonseca, Ana Catarina R G; Ferreiro, Elisabete; Oliveira, Catarina R; Cardoso, Sandra M; Pereira, Cláudia F

    2013-12-01

    Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1-40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca(2+) homeostasis due to the release of Ca(2+) from this intracellular store. Finally, Aβ1-40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1-40 concomitantly with caspase-12 activation. Furthermore, Aβ1-40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1-40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration. © 2013.

  16. Ionizing radiation activates vascular endothelial growth factor-A transcription in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyounji; Kim, Kwang Seok; Jeong, Jae Hoon; Lim, Young Bin [Radiation Cancer Biology Team, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-12-15

    Vascular endothelial growth factor (VEGF) is an essential paracrine factor for developmental and pathological angiogenesis. VEGF also exerts its effects in an autocrine manner in VEGF-producing cells. For instance, autocrine VEGF signaling occurs in tumor cells and contributes to key aspects of tumorigenesis, such as in the function of cancer stem cells and tumor initiation, which are independent of angiogenesis. In addition to tumors cells, non-transformed cells also express VEGF. For example, a VEGF dependent intracellular autocrine mechanism is crucial for the survival of hematopoietic stem cells and hematopoiesis. Stereotactic body radiation therapy (SBRT) is a novel treatment modality for early primary cancer and oligometastatic disease. SBRT delivers high-dose hypofractionated radiation, such as 20-60 Gy, to tumors in a single fraction or 2-5 fractions. As VEGF is a critical regulator of functional integrity and viability of vascular endothelial cells, we examined whether high-dose irradiation alters VEGF signaling by measuring the expression levels of VEGFA transcript. It is generally believed that endothelial cells do not produce VEGF in response to radiation. In present study, however, we provide the first demonstration of transcriptional regulation of VEGFA in human vascular endothelial cells by IR treatment. Irradiation with doses higher than 10 Gy in a single exposure triggers up-regulation of VEGFA transcription within 2 hours in HUVECs, whereas irradiation with 10 Gy does not alter VEGFA levels. Our data have shown that high-dose irradiation triggers immediate transactivation of VEGFA in human vascular endothelial cells.

  17. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. TGF-β2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    International Nuclear Information System (INIS)

    Lu Jiawei; Lu Zhenyu; Reinach, Peter

    2006-01-01

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-β2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-β2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-β2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-β2 and FGF-2 oppositely affect BCE cell proliferation and TGF-β2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-β2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-β2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-β2-induced suppression of the PI3-kinase/AKT signaling pathway

  19. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    Science.gov (United States)

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  20. [The role of endothelial cells and endothelial precursor cells in angiogenesis].

    Science.gov (United States)

    Poreba, Małgorzata; Usnarska-Zubkiewicz, Lidia; Kuliczkowski, Kazimierz

    2006-01-01

    Endothelium plays a key role in maintenance of vascular homeostasis in human organism. According to new data endothelial cells and hematopoietic cells have a common precursor in prenatal life--a hemangioblast, which explains the fact of sharing the same determinants on the surface of both type of cells. Circulating endothelial precursors were identified in adults and this suggests that hemangioblasts may be present not only during embriogenesis. In some clinical situations the increased numbers of endothelial cells and endothelial precursors were noted, and especially in patients with neoplastic diseases, which is probably the result of increased angiogenesis. Endothelial precursors are thought to be the promice for therapeutic purposes in future--to increase local angiogenesis.

  1. Down-regulation of histamine-induced endothelial cell activation as potential anti-atherosclerotic activity of peptides from Spirulina maxima.

    Science.gov (United States)

    Vo, Thanh-Sang; Kim, Se-Kwon

    2013-10-09

    Histamine, a potent inflammatory mediator, has been known to cause the pathogenesis of atherosclerosis. In this sense, two bioactive peptides P1 (LDAVNR; 686Da) and P2 (MMLDF; 655Da) purified from gastric enzymatic hydrolysate of Spirulina maxima were examined for their protective effects against early atherosclerotic responses induced by histamine in EA.hy926 endothelial cells. Interestingly, both P1 and P2 exhibited inhibitory activities on the production and expression of IL-6 and MCP-1. Furthermore, P1 and P2 inhibited the production of adhesion molecules including P-selectin and E-selectin, and thus reducing in vitro cell adhesion of monocyte onto endothelial cells. In addition, the production of intracellular reactive oxygen species was observed to reduce in the presence of P1 or P2. Notably, the inhibitory activities of P1 and P2 were found due to down-regulating Egr-1 expression via histamine receptor and PKCδ-dependent MAPKs activation pathway. These results suggest that peptides P1 and P2 from S. maxima are effective to suppress histamine-induced endothelial cell activation that may contribute to the prevention of early atherosclerosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Irradiation-induced up-regulation of HLA-E on macrovascular endothelial cells confers protection against killing by activated natural killer cells.

    Directory of Open Access Journals (Sweden)

    Isabelle Riederer

    Full Text Available BACKGROUND: Apart from the platelet/endothelial cell adhesion molecule 1 (PECAM-1, CD31, endoglin (CD105 and a positive factor VIII-related antigen staining, human primary and immortalized macro- and microvascular endothelial cells (ECs differ in their cell surface expression of activating and inhibitory ligands for natural killer (NK cells. Here we comparatively study the effects of irradiation on the phenotype of ECs and their interaction with resting and activated NK cells. METHODOLOGY/PRINCIPAL FINDINGS: Primary macrovascular human umbilical vein endothelial cells (HUVECs only express UL16 binding protein 2 (ULBP2 and the major histocompatibility complex (MHC class I chain-related protein MIC-A (MIC-A as activating signals for NK cells, whereas the corresponding immortalized EA.hy926 EC cell line additionally present ULBP3, membrane heat shock protein 70 (Hsp70, intercellular adhesion molecule ICAM-1 (CD54 and HLA-E. Apart from MIC-B, the immortalized human microvascular endothelial cell line HMEC, resembles the phenotype of EA.hy926. Surprisingly, primary HUVECs are more sensitive to Hsp70 peptide (TKD plus IL-2 (TKD/IL-2-activated NK cells than their immortalized EC counterpatrs. This finding is most likely due to the absence of the inhibitory ligand HLA-E, since the activating ligands are shared among the ECs. The co-culture of HUVECs with activated NK cells induces ICAM-1 (CD54 and HLA-E expression on the former which drops to the initial low levels (below 5% when NK cells are removed. Sublethal irradiation of HUVECs induces similar but less pronounced effects on HUVECs. Along with these findings, irradiation also induces HLA-E expression on macrovascular ECs and this correlates with an increased resistance to killing by activated NK cells. Irradiation had no effect on HLA-E expression on microvascular ECs and the sensitivity of these cells to NK cells remained unaffected. CONCLUSION/SIGNIFICANCE: These data emphasize that an irradiation

  3. Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells

    International Nuclear Information System (INIS)

    Solomon, Kimberly D.; Ong, Joo L.

    2013-01-01

    Currently, tissue engineered constructs for critical sized bone defects are non-vascularized. There are many strategies used in order to promote vascularization, including delivery of growth factors such as vascular endothelial growth factor (VEGF). In this study, hydroxyapatite (HA) was coated with self-assembled monolayers (SAMs). The SAMs were in turn used to covalently bind VEGF to the surface of HA. The different SAM chain length ratios (phosphonoundecanoic acid (11-PUDA):16-phosphonohexadecanoic acid (16-PHDA) utilized in this study were 0:100, 25:75, 50:50, 75:25, and 100:0. Surfaces were characterized by contact angle (CA) and atomic force microscopy, and an in vitro VEGF release study was performed. It was observed that CA and root-mean-squared roughness were not significantly affected by the addition of SAMs, but that CA was significantly lowered with the addition of VEGF. VEGF release profiles of bound VEGF groups all demonstrated less initial burst release than adsorbed control, indicating that VEGF was retained on the HA surface when bound by SAMs. An in vitro study using human aortic endothelial cells (HAECs) demonstrated that bound VEGF increased metabolic activity and caused sustained production of angiopoietin-2, an angiogenic marker, over 28 days. In conclusion, SAMs provide a feasible option for growth factor delivery from HA surfaces, enhancing angiogenic activity of HAECs in vitro. - Highlights: • Vascular endothelial growth factor (VEGF) is attached to hydroxyapatite (HA). • Self-assembled monolayers (SAMs) delay the release of VEGF from hydroxyapatite. • SAM chain length ratio affects the total mass of VEGF released. • VEGF on HA up-regulates proliferation and angiogenic activity of endothelial cells

  4. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration.

    Science.gov (United States)

    Fearnley, Gareth W; Bruns, Alexander F; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-04-24

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response. © 2015. Published by The Company of Biologists Ltd.

  5. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2015-07-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  6. [Circulating endothelial cells: biomarkers for monitoring activity of antiangiogenic therapy].

    Science.gov (United States)

    Farace, Françoise; Bidart, Jean-Michel

    2007-07-01

    Tumor vessel formation is largely dependent on the recruitment of endothelial cells. Rare in healthy individuals, circulating endothelial cells (CEC) are shed from vessel walls and enter the circulation reflecting endothelial damage or dysfunction. Increased numbers of CEC have been documented in different types of cancer. Recent studies have suggested the role for CEC in tumor angiogenesis, but whose presence could also reflect normal endothelium perturbation in cancer. Originating from the bone marrow rather than from vessel walls, endothelial progenitor cells (EPC) are mobilized following tissue ischemia and may be recruited to complement local angiogenesis supplied by existing endothelium. Recently, studies in mouse models suggest that the circulating fraction of endothelial progenitors (CEP) is involved in tumor angiogenesis but their contribution is less clear in humans. The detection of CEC and CEP is difficult and impeded by the rarity of these cells. They may have important clinical implication as novel biomarkers susceptible to predict more efficiently and rapidly the therapeutic response to anti-angiogenic treatments. However, a methodological consensus would be necessary in order to correctly evaluate the clinical interest of CEC and CEP in patients.

  7. T-cell clones from Th1, Th17 or Th1/17 lineages and their signature cytokines have different capacity to activate endothelial cells or synoviocytes.

    Science.gov (United States)

    Lavocat, Fabien; Maggi, Laura; Annunziato, Francesco; Miossec, Pierre

    2016-12-01

    To compare the direct effect of cytokines on synoviocytes and endothelial cells to the effects of supernatants from Th1, Th17 and Th1/17 clones and the direct cell-cell interactions with the same clones. Th17 and Th1/17 clones were obtained from the CD161+CCR6+ fraction and Th1 clones from the CD161-CCR6- fraction of human CD4+ T-cells. Endothelial cells or synoviocytes were cultured in the presence of either isolated pro-inflammatory cytokines (IL-17 and/or TNF-α) or supernatants from the T-cell clones or co-cultured with T-cell clones themselves. IL-6 and IL-8 expression and production were analyzed. IL-17 and TNF-α induced IL-6 and IL-8 expression, although IL-17 alone had a limited effect on endothelial cells compared to synoviocytes. Supernatants from activated T-helper clones also induced IL-6 and IL-8 expression but with discrepancies between endothelial cells and synoviocytes. Endothelial cells were mostly activated by Th1 clone supernatants whereas synoviocytes were activated by all T-cell subtypes. Finally, cell-cell contact experiments showed a great heterogeneity among cell clones, even from the same lineage. IL-6 expression was mostly induced by contact with Th1 clones both in endothelial and mesenchymal cells whereas IL-8 expression was induced by all T-cell clones whatever their phenotype. We showed that endothelial cells were much more sensitive to Th1 activation whereas synoviocytes were activated by all T-helper lineages. This work highlights the heterogeneity of interactions between T-cells and stromal cells through soluble factors or direct cell contact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The effects of dexamethasone on the Na,K-ATPase activity and pump function of corneal endothelial cells.

    Science.gov (United States)

    Hatou, Shin; Yamada, Masakazu; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo

    2009-05-01

    The Na(+)- and K(+)-dependent ATPase (Na,K-ATPase) expressed in the basolateral membrane of corneal endothelial cells plays an important role in the pump function of the corneal endothelium. We investigated the possible role of dexamethasone in the regulation of Na,K-ATPase activity and pump function in corneal endothelial cells. Confluent monolayers of mouse corneal endothelial cells were exposed to dexamethasone. ATPase activity of the cells was evaluated by spectrophotometric measurement of phosphate released from ATP with the use of ammonium molybdate, with Na,K-ATPase activity being defined as the portion of total ATPase activity sensitive to ouabain. Pump function of the cells was measured with the use of an Ussing chamber, with the pump function attributable to Na,K-ATPase activity being defined as the portion of the total short-circuit current sensitive to ouabain. Western blot analysis was examined to measure the expression of the Na,K-ATPase alpha(1)-subunit. Dexamethasone (1 or 10 microM) increased the Na,K-ATPase activity and pump function of the cultured cells. These effects of dexamethasone were blocked by cycloheximide, a protein synthesis inhibitor. Western blot analysis also indicated that dexamethasone increased the expression of the Na,K-ATPase alpha(1)-subunit, whereas it decreased the expression of the phospho-Na,K-ATPase alpha(1)-subunit. Our results suggest that dexamethasone stimulates Na,K-ATPase activity in mouse corneal endothelial cells. The effect of dexamethasone activation in these cells is mediated by Na,K-ATPase synthesis and increase in an enzymatic activity by dephosphorylation of Na,K-ATPase alpha(1)-subunits.

  9. Role of insulin in regulation of Na+-/K+-dependent ATPase activity and pump function in corneal endothelial cells.

    Science.gov (United States)

    Hatou, Shin; Yamada, Masakazu; Akune, Yoko; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo; Tsubota, Kazuo

    2010-08-01

    The Na(+)-/K(+)-dependent ATPase (Na,K-ATPase) expressed in the basolateral membrane of corneal endothelial cells plays an important role in the pump function of the corneal endothelium. The role of insulin in the regulation of Na,K-ATPase activity and pump function in corneal endothelial cells was investigated. Confluent monolayers of mouse corneal endothelial cells were exposed to insulin. ATPase activity was evaluated by spectrophotometric measurement of phosphate released from ATP with the use of ammonium molybdate; Na,K-ATPase activity was defined as the portion of total ATPase activity sensitive to ouabain. Pump function was measured with the use of a Ussing chamber; pump function attributable to Na,K-ATPase activity was defined as the portion of the total short-circuit current sensitive to ouabain. Western blot analysis and immunocytochemistry were performed to measure the expression of the Na,K-ATPase alpha(1)-subunit. Insulin increased the Na,K-ATPase activity and pump function of cultured corneal endothelial cells. These effects were blocked by protein kinase C (PKC) inhibitors and protein phosphatases 1 and 2A inhibitor. Western blot analysis indicated that insulin decreased the ratio of the inactive Na,K-ATPase alpha(1)-subunit. Immunocytochemistry indicated that insulin increased the cell surface expression of the Na,K-ATPase alpha(1)-subunit. These results suggest that insulin increases the Na,K-ATPase activity and pump function of cultured corneal endothelial cells. The effect of insulin is mediated by PKC and presumably results in the activation of PP1, 2A, or both, which are essential for activating Na,K-ATPase by alpha(1)-subunit dephosphorylation.

  10. Endothelial-regenerating cells: an expanding universe.

    Science.gov (United States)

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  11. 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Qilong Wang

    2011-02-01

    Full Text Available Autophagy is a cellular self-digestion process activated in response to stresses such as energy deprivation and oxidative stress. However, the mechanisms by which energy deprivation and oxidative stress trigger autophagy remain undefined. Here, we report that activation of AMP-activated protein kinase (AMPK by mitochondria-derived reactive oxygen species (ROS is required for autophagy in cultured endothelial cells. AMPK activity, ROS levels, and the markers of autophagy were monitored in confluent bovine aortic endothelial cells (BAEC treated with the glycolysis blocker 2-deoxy-D-glucose (2-DG. Treatment of BAEC with 2-DG (5 mM for 24 hours or with low concentrations of H(2O(2 (100 µM induced autophagy, including increased conversion of microtubule-associated protein light chain 3 (LC3-I to LC3-II, accumulation of GFP-tagged LC3 positive intracellular vacuoles, and increased fusion of autophagosomes with lysosomes. 2-DG-treatment also induced AMPK phosphorylation, which was blocked by either co-administration of two potent anti-oxidants (Tempol and N-Acetyl-L-cysteine or overexpression of superoxide dismutase 1 or catalase in BAEC. Further, 2-DG-induced autophagy in BAEC was blocked by overexpressing catalase or siRNA-mediated knockdown of AMPK. Finally, pretreatment of BAEC with 2-DG increased endothelial cell viability after exposure to hypoxic stress. Thus, AMPK is required for ROS-triggered autophagy in endothelial cells, which increases endothelial cell survival in response to cell stress.

  12. The adaptor CRADD/RAIDD controls activation of endothelial cells by proinflammatory stimuli.

    Science.gov (United States)

    Qiao, Huan; Liu, Yan; Veach, Ruth A; Wylezinski, Lukasz; Hawiger, Jacek

    2014-08-08

    A hallmark of inflammation, increased vascular permeability, is induced in endothelial cells by multiple agonists through stimulus-coupled assembly of the CARMA3 signalosome, which contains the adaptor protein BCL10. Previously, we reported that BCL10 in immune cells is targeted by the "death" adaptor CRADD/RAIDD (CRADD), which negatively regulates nuclear factor κB (NFκB)-dependent cytokine and chemokine expression in T cells (Lin, Q., Liu, Y., Moore, D. J., Elizer, S. K., Veach, R. A., Hawiger, J., and Ruley, H. E. (2012) J. Immunol. 188, 2493-2497). This novel anti-inflammatory CRADD-BCL10 axis prompted us to analyze CRADD expression and its potential anti-inflammatory action in non-immune cells. We focused our study on microvascular endothelial cells because they play a key role in inflammation. We found that CRADD-deficient murine endothelial cells display heightened BCL10-mediated expression of the pleotropic proinflammatory cytokine IL-6 and chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) in response to LPS and thrombin. Moreover, these agonists also induce significantly increased permeability in cradd(-/-), as compared with cradd(+/+), primary murine endothelial cells. CRADD-deficient cells displayed more F-actin polymerization with concomitant disruption of adherens junctions. In turn, increasing intracellular CRADD by delivery of a novel recombinant cell-penetrating CRADD protein (CP-CRADD) restored endothelial barrier function and suppressed the induction of IL-6 and MCP-1 evoked by LPS and thrombin. Likewise, CP-CRADD enhanced barrier function in CRADD-sufficient endothelial cells. These results indicate that depletion of endogenous CRADD compromises endothelial barrier function in response to inflammatory signals. Thus, we define a novel function for CRADD in endothelial cells as an inducible suppressor of BCL10, a key mediator of responses to proinflammatory agonists. © 2014 by The American Society for Biochemistry and Molecular Biology

  13. Effects of blood products on inflammatory response in endothelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Martin Urner

    Full Text Available BACKGROUND: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. METHODS: The inflammatory response from pre-activated (endotoxin-stimulated and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC, platelet concentrates (PC and fresh frozen plasma (FFP was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. RESULTS: Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. CONCLUSION: Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells.

  14. Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells.

    Science.gov (United States)

    Gust, Juliane; Hay, Kevin A; Hanafi, Laïla-Aïcha; Li, Daniel; Myerson, David; Gonzalez-Cuyar, Luis F; Yeung, Cecilia; Liles, W Conrad; Wurfel, Mark; Lopez, Jose A; Chen, Junmei; Chung, Dominic; Harju-Baker, Susanna; Özpolat, Tahsin; Fink, Kathleen R; Riddell, Stanley R; Maloney, David G; Turtle, Cameron J

    2017-12-01

    Lymphodepletion chemotherapy followed by infusion of CD19-targeted chimeric antigen receptor-modified T (CAR-T) cells can be complicated by neurologic adverse events (AE) in patients with refractory B-cell malignancies. In 133 adults treated with CD19 CAR-T cells, we found that acute lymphoblastic leukemia, high CD19 + cells in bone marrow, high CAR-T cell dose, cytokine release syndrome, and preexisting neurologic comorbidities were associated with increased risk of neurologic AEs. Patients with severe neurotoxicity demonstrated evidence of endothelial activation, including disseminated intravascular coagulation, capillary leak, and increased blood-brain barrier (BBB) permeability. The permeable BBB failed to protect the cerebrospinal fluid from high concentrations of systemic cytokines, including IFNγ, which induced brain vascular pericyte stress and their secretion of endothelium-activating cytokines. Endothelial activation and multifocal vascular disruption were found in the brain of a patient with fatal neurotoxicity. Biomarkers of endothelial activation were higher before treatment in patients who subsequently developed grade ≥4 neurotoxicity. Significance: We provide a detailed clinical, radiologic, and pathologic characterization of neurotoxicity after CD19 CAR-T cells, and identify risk factors for neurotoxicity. We show endothelial dysfunction and increased BBB permeability in neurotoxicity and find that patients with evidence of endothelial activation before lymphodepletion may be at increased risk of neurotoxicity. Cancer Discov; 7(12); 1404-19. ©2017 AACR. See related commentary by Mackall and Miklos, p. 1371 This article is highlighted in the In This Issue feature, p. 1355 . ©2017 American Association for Cancer Research.

  15. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology

    DEFF Research Database (Denmark)

    Fens, Marcel H A M; van Wijk, Richard; Andringa, Grietje

    2012-01-01

    with endothelial cells, marked erythrophagocytosis occurred in the presence of lactadherin under both static and flow conditions. As a consequence, intracellular organization was disturbed and endothelial cells were seen to change shape (‘rounding up’). Increased expression of apoptotic markers indicated...

  16. An ibuprofen-antagonized plasmin inhibitor released by human endothelial cells.

    Science.gov (United States)

    Rockwell, W B; Ehrlich, H P

    1991-02-01

    Serum-free culture medium harvested from endothelial cell monolayer cultures derived from human scars and dermis was examined for inhibition of fibrinolysis using a fibrin plate assay. Human cultured fibroblasts and smooth muscle cells did not produce any detectable inhibitory activity. The inhibitor is spontaneously released from the cultured endothelial cells over time. In the fibrin plate assay of plasmin-induced fibrinolysis, one nonsteroidal antiinflammatory (NSAI) drug, ibuprofen, was demonstrated to antagonize the inhibition of fibrinolysis. The antagonistic activity of ibuprofen appears unrelated to its NSAI drug activity because other NSAI drugs such as indomethacin and tolmetin have minimal antagonistic activity. Heating the cultured endothelial cells to 42 degrees C stimulates greater release of the inhibitor in a shorter period of time. This plasmin inhibitor, which is produced by endothelial cells, may contribute to postburn vascular occlusion, leading to secondary progressive necrosis in burn-traumatized patients.

  17. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    Science.gov (United States)

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  18. Indirect induction of endothelial cell injury by PU- or PTFE-mediated activation of monocytes.

    Science.gov (United States)

    Liu, Xin; Xue, Yang; Sun, Jiao

    2010-01-01

    Polyurethanes (PUs) and polytetrafluoroethylene (PTFE) are widely used for making cardiovascular devices, but thrombus formation on the surfaces of these devices is inevitable. Since endothelial injury can lead to thrombosis, most of the studies on PUs or PTFE focused on their damage to endothelial cells. However, few studies have attempted to clarify whether the use of foreign objects as biomaterials can cause endothelial injury by activating the innate immune system. In this study, we aimed to investigate the roles of PU- or PTFE-stimulated immune cells in endothelial-cell injury. First, monocytes (THP-1 cells) were stimulated with PU or PTFE for 24 h and, subsequently, human umbilical vein endothelial cells (HUVECs) were treated with the supernatants of the stimulated cells for 24 h. We measured the generation of intracellular reactive oxygen species (ROS) from THP-1 cells treated with PU and PTFE for 24 h, meanwhile hydrogen dioxide (H(2)O(2)), tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the supernatants were also detected. Then, we assessed the apoptosis rate of the HUVECs and determined the expression of NO, inducible nitric oxide synthase (iNOS), and apoptosis-related proteins (p53, Bax, Bcl-2) in the HUVECs. The results showed that large amounts of ROS and low levels of pro-inflammatory cytokines (TNF-α and IL-1β) were produced by the stimulated THP-1 cells. After culturing with the supernatants of the PU- or PTFE-stimulated THP-1 cells, the apoptosis rate, NO production and expression of iNOS, p53 and Bax in the HUVECs were up-regulated, while Bcl-2 expression was down-regulated. In conclusion, the release of ROS by PU- or PTFE-treated THP-1 cells may induce iNOS expression and cause apoptosis in HUVECs via the p53, Bax and Bcl-2 proteins. These data provide the interesting finding that endothelial injury in the process of biomaterial-induced thrombosis can be initiated through the release of soluble mediators by monocytes.

  19. CXCL10 can inhibit endothelial cell proliferation independently of CXCR3.

    Directory of Open Access Journals (Sweden)

    Gabriele S V Campanella

    2010-09-01

    Full Text Available CXCL10 (or Interferon-inducible protein of 10 kDa, IP-10 is an interferon-inducible chemokine with potent chemotactic activity on activated effector T cells and other leukocytes expressing its high affinity G protein-coupled receptor CXCR3. CXCL10 is also active on other cell types, including endothelial cells and fibroblasts. The mechanisms through which CXCL10 mediates its effects on non-leukocytes is not fully understood. In this study, we focus on the anti-proliferative effect of CXCL10 on endothelial cells, and demonstrate that CXCL10 can inhibit endothelial cell proliferation in vitro independently of CXCR3. Four main findings support this conclusion. First, primary mouse endothelial cells isolated from CXCR3-deficient mice were inhibited by CXCL10 as efficiently as wildtype endothelial cells. We also note that the proposed alternative splice form CXCR3-B, which is thought to mediate CXCL10's angiostatic activity, does not exist in mice based on published mouse CXCR3 genomic sequences as an in-frame stop codon would terminate the proposed CXCR3-B splice variant in mice. Second, we demonstrate that human umbilical vein endothelial cells and human lung microvascular endothelial cells that were inhibited by CXL10 did not express CXCR3 by FACS analysis. Third, two different neutralizing CXCR3 antibodies did not inhibit the anti-proliferative effect of CXCL10. Finally, fourth, utilizing a panel of CXCL10 mutants, we show that the ability to inhibit endothelial cell proliferation correlates with CXCL10's glycosaminoglycan binding affinity and not with its CXCR3 binding and signaling. Thus, using a very defined system, we show that CXCL10 can inhibit endothelial cell proliferation through a CXCR3-independent mechanism.

  20. Air pollution upregulates endothelial cell procoagulant activity via ultrafine particle-induced oxidant signaling and tissue factor expression.

    Science.gov (United States)

    Snow, S J; Cheng, W; Wolberg, A S; Carraway, M S

    2014-07-01

    Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mechanisms of increased endothelial cell procoagulant activity following exposure to soluble components of ultrafine particles (soluble UF). Human coronary artery endothelial cells (HCAEC) were exposed to soluble UF and assessed for their ability to trigger procoagulant activity in platelet-free plasma. Exposed HCAEC triggered earlier thrombin generation and faster fibrin clot formation, which was abolished by an anti-tissue factor (TF) antibody, indicating TF-dependent effects. Soluble UF exposure increased TF mRNA expression without compensatory increases in key anticoagulant proteins. To identify early events that regulate TF expression, we measured endothelial H2O2 production following soluble UF exposure and identified the enzymatic source. Soluble UF exposure increased endothelial H2O2 production, and antioxidants attenuated UF-induced upregulation of TF, linking the procoagulant responses to reactive oxygen species (ROS) formation. Chemical inhibitors and RNA silencing showed that NOX-4, an important endothelial source of H2O2, was involved in UF-induced upregulation of TF mRNA. These data indicate that soluble UF exposure induces endothelial cell procoagulant activity, which involves de novo TF synthesis, ROS production, and the NOX-4 enzyme. These findings provide mechanistic insight into the adverse cardiovascular effects associated with air pollution exposure. Published by Oxford University Press on behalf of Toxicological Sciences 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. The Expression Profiles of Lysophospholipid Receptors (LPLRs in Different Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Yu-Wei Lee

    2006-03-01

    Full Text Available Sphingosine-1-phosphate (S1P and lysophosphatidic acid (LPA are two bioactive lysophospholipids (LPLs, stored primarily in platelets and released during platelet activation. Both LPLs are capable of regulating endothelial cell functions. The physiological functions of S1P and LPA are mediated by interacting with eight different G-protein coupled receptors: S1P1 through 5 and LPA1 through 3, which activate three different heterotrimeric GTP proteins-including Gi、Gq and G(12/13. The expression of LPL receptors in endothelial cells would affect the responses of S1P and LPA to these cells. There is no previous report discussing the expression profiles of LPL receptors in different endothelial cells from various species. In this study, we aim to investigate the expression profiles of S1P and LPA receptors in different endothelial cells isolated from human, rat, mouse and bovine origin. We used RT-PCR to determine LPLs receptors expression profiles in different endothelial cells. Our results indicated that endothelial cells from various species express different LPL receptors. Endothelial cells isolated from the same source of different species also had different LPLs receptors expression profiles. Therefore, different endothelial cells should respond to LPLs in different manners.

  2. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  3. Analysis of correlations between selected endothelial cell activation markers, disease activity, and nailfold capillaroscopy microvascular changes in systemic lupus erythematosus patients.

    Science.gov (United States)

    Ciołkiewicz, Mariusz; Kuryliszyn-Moskal, Anna; Klimiuk, Piotr Adrian

    2010-02-01

    The aim of the study was to evaluate the correlation between selected serum endothelial cell activation markers such as vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), soluble thrombomodulin (sTM), soluble E-selectin (sE-selectin), disease activity, and microvascular changes determined by nailfold capillaroscopy in patients with systemic lupus erythematosus (SLE). Serum levels of VEGF, ET-1, sTM, and sE-selectin were determined by an enzyme-linked immunosorbent assay in 80 SLE patients. The disease activity was measured with Systemic Lupus Erythematosus Disease Activity Index score. Nailfold capillaroscopy was performed in all patients. Positive correlation was found between VEGF and both ET-1 (r = 0.294, p nailfold capillaroscopy (r = 0.458, p nailfold capillaroscopy. The relationship between changes in nailfold capillaroscopy, endothelial cell activation markers, and the clinical activity of SLE points to an important role of microvascular abnormalities in the clinical manifestation of the disease.

  4. Maggot debridement therapy promotes diabetic foot wound healing by up-regulating endothelial cell activity.

    Science.gov (United States)

    Sun, Xinjuan; Chen, Jin'an; Zhang, Jie; Wang, Wei; Sun, Jinshan; Wang, Aiping

    2016-03-01

    To determine the role of maggot debridement therapy (MDT) on diabetic foot wound healing, we compared growth related factors in wounds before and after treatment. Furthermore, we utilized human umbilical vein endothelial cells (HUVECs) to explore responses to maggot excretions/secretions on markers of angiogenesis and proliferation. The results showed that there was neo-granulation and angiogenesis in diabetic foot wounds after MDT. Moreover, significant elevation in CD34 and CD68 levels was also observed in treated wounds. In vitro, ES increased HUVEC proliferation, improved tube formation, and increased expression of vascular endothelial growth factor receptor 2 in a dose dependent manner. These results demonstrate that MDT and maggot ES can promote diabetic foot wound healing by up-regulating endothelial cell activity. Copyright © 2016. Published by Elsevier Inc.

  5. Infections and endothelial cells

    NARCIS (Netherlands)

    Keller, Tymen T.; Mairuhu, Albert T. A.; de Kruif, Martijn D.; Klein, Saskia K.; Gerdes, Victor E. A.; ten Cate, Hugo; Brandjes, Dees P. M.; Levi, Marcel; van Gorp, Eric C. M.

    2003-01-01

    Systemic infection by various pathogens interacts with the endothelium and may result in altered coagulation, vasculitis and atherosclerosis. Endothelium plays a role in the initiation and regulation of both coagulation and fibrinolysis. Exposure of endothelial cells may lead to rapid activation of

  6. Characterization of tissue plasminogen activator binding proteins isolated from endothelial cells and other cell types

    International Nuclear Information System (INIS)

    Beebe, D.P.; Wood, L.L.; Moos, M.

    1990-01-01

    Human tissue plasminogen activator (t-PA) was shown to bind specifically to human osteosarcoma cells (HOS), and human epidermoid carcinoma cells (A-431 cells). Crosslinking studies with DTSSP demonstrated high molecular weight complexes (130,000) between 125 I-t-PA and cell membrane protein on human umbilical vein endothelial cells (HUVEC), HOS, and A-431 cells. A 48-65,000 molecular weight complex was demonstrated after crosslinking t-PA peptide (res. 7-20) to cells. Ligand blotting of cell lysates which had been passed over a t-PA affinity column revealed binding of t-PA to 54,000 and 95,000 molecular weight proteins. Several t-PA binding proteins were identified in immunopurified cell lysates, including tubulin beta chain, plasminogen activator inhibitor type 1 and single chain urokinase

  7. Sustained apnea induces endothelial activation.

    Science.gov (United States)

    Eichhorn, Lars; Dolscheid-Pommerich, Ramona; Erdfelder, Felix; Ayub, Muhammad Ajmal; Schmitz, Theresa; Werner, Nikos; Jansen, Felix

    2017-09-01

    Apnea diving has gained worldwide popularity, even though the pathophysiological consequences of this challenging sport on the human body are poorly investigated and understood. This study aims to assess the influence of sustained apnea in healthy volunteers on circulating microparticles (MPs) and microRNAs (miRs), which are established biomarkers reflecting vascular function. Short intermittent hypoxia due to voluntary breath-holding affects circulating levels of endothelial cell-derived MPs (EMPs) and endothelial cell-derived miRs. Under dry laboratory conditions, 10 trained apneic divers performed maximal breath-hold. Venous blood samples were taken, once before and at 4 defined points in time after apnea. Samples were analyzed for circulating EMPs and endothelial miRs. Average apnea time was 329 seconds (±103), and SpO 2 at the end of apnea was 79% (±12). Apnea was associated with a time-dependent increase of circulating endothelial cell-derived EMPs and endothelial miRs. Levels of circulating EMPs in the bloodstream reached a peak 4 hours after the apnea period and returned to baseline levels after 24 hours. Circulating miR-126 levels were elevated at all time points after a single voluntary maximal apnea, whereas miR-26 levels were elevated significantly only after 30 minutes and 4 hours. Also miR-21 and miR-92 levels increased, but did not reach the level of significance. Even a single maximal breath-hold induces acute endothelial activation and should be performed with great caution by subjects with preexisting vascular diseases. Voluntary apnea might be used as a model to simulate changes in endothelial function caused by hypoxia in humans. © 2017 Wiley Periodicals, Inc.

  8. VEGFR-3 signaling is regulated by a G-protein activator, activator of G-protein signaling 8, in lymphatic endothelial cells.

    Science.gov (United States)

    Sakima, Miho; Hayashi, Hisaki; Mamun, Abdullah Al; Sato, Motohiko

    2018-07-01

    Vascular endothelial growth factor C (VEGFC) and its cognate receptor VEGFR-3 play a key role in lymphangiogenesis. We previously reported that an ischemia-inducible Gβγ signal regulator, activator of G-protein signaling 8 (AGS8), regulated the subcellular distribution of vascular endothelial growth factor receptor-2 (VEGFR-2) and influenced VEGFA-induced signaling in vascular endothelial cells. Here, we report that AGS8 regulates VEGFR-3, which is another subtype of the VEGF receptor family, and mediates VEGFC signaling in human dermal lymphatic endothelial cells (HDLECs). VEGFC stimulated the proliferation of HDLECs and tube formation by HDLECs, which were inhibited by knocking down AGS8 by small interfering RNA (siRNA). AGS8 siRNA inhibited VEGFC-mediated phosphorylation of VEGFR-3 and its downstream molecules, including ERK1/2 and AKT. Analysis of fluorescence-activated cell sorting and immunofluorescence staining demonstrated that AGS8 knockdown was associated with a reduction of VEGFR-3 at the cell surface. Endocytosis inhibitors did not rescue the decrease of cell-surface VEGFR-3, suggesting that AGS8 regulated the trafficking of VEGFR-3 to the plasma membrane. An immunoprecipitation assay indicated that VEGFR-3 formed a complex including AGS8 and Gβγ in cells. These data suggest the novel regulation of VEGFC-VEGFR-3 by AGS8 in HDLECs and a potential role for AGS8 in lymphangiogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Curcumin modulates endothelial permeability and monocyte transendothelial migration by affecting endothelial cell dynamics.

    Science.gov (United States)

    Monfoulet, Laurent-Emmanuel; Mercier, Sylvie; Bayle, Dominique; Tamaian, Radu; Barber-Chamoux, Nicolas; Morand, Christine; Milenkovic, Dragan

    2017-11-01

    Curcumin is a phenolic compound that exhibits beneficial properties for cardiometabolic health. We previously showed that curcumin reduced the infiltration of immune cells into the vascular wall and prevented atherosclerosis development in mice. This study aimed to investigate the effect of curcumin on monocyte adhesion and transendothelial migration (TEM) and to decipher the underlying mechanisms of these actions. Human umbilical vein endothelial cells (HUVECs) were exposed to curcumin (0.5-1μM) for 3h prior to their activation by Tumor Necrosis Factor alpha (TNF-α). Endothelial permeability, monocyte adhesion and transendothelial migration assays were conducted under static condition and shear stress that mimics blood flow. We further investigated the impact of curcumin on signaling pathways and on the expression of genes using macroarrays. Pre-exposure of endothelial cells to curcumin reduced monocyte adhesion and their transendothelial migration in both static and shear stress conditions. Curcumin also prevented changes in both endothelial permeability and the area of HUVECs when induced by TNF-α. We showed that curcumin modulated the expression of 15 genes involved in the control of cytoskeleton and endothelial junction dynamic. Finally, we showed that curcumin inhibited NF-κB signaling likely through an antagonist interplay with several kinases as suggested by molecular docking analysis. Our findings demonstrate the ability of curcumin to reduce monocyte TEM through a multimodal regulation of the endothelial cell dynamics with a potential benefit on the vascular endothelial function barrier. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Low-Intensity Pulsed Ultrasound Prevents the Oxidative Stress Induced Endothelial-Mesenchymal Transition in Human Aortic Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jiamin Li

    2018-02-01

    Full Text Available Background/Aims: Endothelial-mesenchymal transition (EndMT has been shown to take part in the generation and progression of diverse diseases, involving a series of changes leading to a loss of their endothelial characteristics and an acquirement of properties typical of mesenchymal cells. Low-intensity pulsed ultrasound (LIPUS is a new therapeutic option that has been successfully used in fracture healing. However, whether LIPUS can inhibit oxidative stress-induced endothelial cell damages through inhibiting EndMT remained unknown. This study aimed to investigate the protective effects of LIPUS against oxidative stress-induced endothelial cell damages and the underlying mechanisms. Methods: EndMT was induced by H2O2 (100 µm for seven days. Human aortic endothelial cells (HAECs were exposed to H2O2 with or without LIPUS treatment for seven days. The expression of EndMT markers (CD31, VE-cadherin, FSP1 and α-SMA were analyzed. The levels of total and phosphorylated PI3K and AKT proteins were detected by Western Blot analysis. Cell chemotaxis was determined by wound healing and transwell assay. Results: LIPUS relieved EndMT by decreasing ROS accumulation and increasing activation of the PI3K signaling cascade. LIPUS alleviated the migration of EndMT-derived mesenchymal-like cells through reducing extracellular matrix (ECM deposition that is associated with matrix metallopeptidase (MMP proteolytic activity and collagen production. Conclusion: LIPUS produces cytoprotective effects against oxidative injuries to endothelial cells through suppressing the oxidative stress-induced EndMT, activating the PI3K/AKT pathway under oxidative stress, and limiting cell migration and excessive ECM deposition.

  11. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nagane, Masaki; Yasui, Hironobu; Sakai, Yuri; Yamamori, Tohru [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Niwa, Koichi [Laboratory of Biochemistry, Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493 (Japan); Hattori, Yuichi [Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Kondo, Takashi [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Inanami, Osamu, E-mail: inanami@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan)

    2015-01-02

    Highlights: • eNOS activity is increased in BAECs exposed to X-rays. • ATM is involved in this increased eNOS activity. • HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced by treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.

  12. 5-Hydroxytryptamine 4 Receptor in the Endothelial Cells

    DEFF Research Database (Denmark)

    Profirovic, Jasmina; Vardya, Irina; Voyno-Yasenetskaya, Tatyana

    2006-01-01

    39 5-HYDROXYTRYPTAMINE 4 RECEPTOR IN THE ENDOTHELIAL CELLS. J. Profirovic, I. Vardya, T. Voyno-Yasenetskaya, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL. Serotonin (5-hydroxytryptamine [5-HT]) is an important neurotransmitter that regulates multiple events in the ce......39 5-HYDROXYTRYPTAMINE 4 RECEPTOR IN THE ENDOTHELIAL CELLS. J. Profirovic, I. Vardya, T. Voyno-Yasenetskaya, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL. Serotonin (5-hydroxytryptamine [5-HT]) is an important neurotransmitter that regulates multiple events...... gap formation in HUVECs. We are currently investigating the mechanism underlying 5-HT4 receptor-induced actin cytoskeleton changes in the endothelial cells. These data suggest that by activating 5-HT4 receptor, serotonin could be involved in regulation of actin cytoskeleton dynamics in the endothelial...

  13. Expression and activity of multidrug resistance proteins in mature endothelial cells and their precursors: A challenging correlation.

    Science.gov (United States)

    Krawczenko, Agnieszka; Bielawska-Pohl, Aleksandra; Wojtowicz, Karolina; Jura, Roksana; Paprocka, Maria; Wojdat, Elżbieta; Kozłowska, Urszula; Klimczak, Aleksandra; Grillon, Catherine; Kieda, Claudine; Duś, Danuta

    2017-01-01

    Active cellular transporters of harmful agents-multidrug resistance (mdr) proteins-are present in tumor, stem and endothelial cells, among others. While mdr proteins are broadly studied in tumor cells, their role in non-tumor cells and the significance of their action not connected with removal of harmful xenobiotics is less extensively documented. Proper assessment of mdr proteins expression is difficult. Mdr mRNA presence is most often evaluated but that does not necessarily correlate with the protein level. The protein expression itself is difficult to determine; usually cells with mdr overexpression are studied, not cells under physiological conditions, in which a low expression level of mdr protein is often insufficient for detection in vitro. Various methods are used to identify mdr mRNA and protein expression, together with functional tests demonstrating their biological drug transporting activities. Data comparing different methods of investigating expression of mdr mRNAs and their corresponding proteins are still scarce. In this article we present the results of a study concerning mdr mRNA and protein expression. Our goal was to search for the best method to investigate the expression level and functional activity of five selected mdr proteins-MDR1, BCRP, MRP1, MRP4 and MRP5-in established in vitro cell lines of human endothelial cells (ECs) and their progenitors. Endothelial cells demonstrated mdr presence at the mRNA level, which was not always confirmed at the protein level or in functional tests. Therefore, several different assays had to be applied for evaluation of mdr proteins expression and functions in endothelial cells. Among them functional tests seemed to be the most conclusive, although not very specific.

  14. Sphingosine 1-Phosphate Induces Platelet/Endothelial Cell Adhesion Molecule-1 Tyrosine Phosphorylation in Bovine Aortic Endothelial Cells through a PP2-Inhibitable Mechanism

    Directory of Open Access Journals (Sweden)

    Yu-Ting Huang

    2007-12-01

    Full Text Available Sphingosine-1-phosphate (S1P is a low-molecular-weight phospholipid derivative released by activated platelets. S1P transduces signals through a family of G protein-coupled receptors to modulate various physiological behaviors of endothelial cells. Platelet/endothelial cell adhesion molecule-1 (PECAM-1; CD31 is a 130-kDa protein expressed on the surfaces of leukocytes, platelets, and endothelial cells. Upon PECAM-1 activation, its cytoplasmic tyrosine residues become phosphorylated and bind with SH2 domain-containing proteins, thus leading to the downstream functions mediated by PECAM-1. In the present study, we found that S1P induced PECAM-1 tyrosine phosphorylation and SHP-2 association in bovine aortic endothelial cells (BAECs by immunoprecipitation and western blotting. The pretreatment of BAECs with a series of chemical inhibitors to determine the signaling pathway showed that the PECAM-1 phosphorylation was inhibited by PP2, indicating the participation of Src family kinases. These results demonstrated that S1P induced PECAM-1 tyrosine phosphorylation in BAECs through mediation of Src family kinases, and this may regulate the physiological behaviors of endothelial cells.

  15. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    International Nuclear Information System (INIS)

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-01-01

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of 125 I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid

  16. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    Science.gov (United States)

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells.

    Science.gov (United States)

    Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea

    2017-01-01

    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.

  18. Endothelial-monocyte activating polypeptide II alters fibronectin based endothelial cell adhesion and matrix assembly via alpha5 beta1 integrin

    International Nuclear Information System (INIS)

    Schwarz, Margaret A.; Zheng, Hiahua; Liu, Jie; Corbett, Siobhan; Schwarz, Roderich E.

    2005-01-01

    Mature Endothelial-Monocyte Activating Polypeptide (mEMAP) II functions as a potent antiangiogenic peptide. Although the anti-tumor effect of mEMAP II has been described, little is known regarding its mechanism of action. Observations that mEMAP II induced apoptosis only in a subset of migrating and proliferating endothelial cells (EC) suggests a targeted effect on cells engaged in angiogenic activities which are known to rely upon cell adhesion and migration. Indeed, we demonstrate that mEMAP II inhibited fibronectin (FN) dependent microvascular EC (MEC) adhesion and spreading and we show that this depends upon the alpha5 beta1 integrin. Immunofluorescence analysis demonstrated that mEMAP II-dependent blockade of FN-alpha5 beta1 interactions was associated with disassembly of both actin stress fiber networks and FN matrix. These findings suggest that mEMAP II blocks MEC adhesion and spreading on fibronectin, via a direct interaction with the integrin alpha5 beta1, thus implicating that alpha5 integrin may be a mediator of mEMAP II's antiangiogenic function

  19. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase.

    Science.gov (United States)

    Kuebler, Wolfgang M; Wittenberg, Claudia; Lee, Warren L; Reppien, Eike; Goldenberg, Neil M; Lindner, Karsten; Gao, Yizhuo; Winoto-Morbach, Supandi; Drab, Marek; Mühlfeld, Christian; Dombrowsky, Heike; Ochs, Matthias; Schütze, Stefan; Uhlig, Stefan

    2016-04-15

    Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts. Copyright © 2016 the American Physiological Society.

  20. Flow-induced endothelial cell alignment requires the RhoGEF Trio as a scaffold protein to polarize active Rac1 distribution.

    Science.gov (United States)

    Kroon, Jeffrey; Heemskerk, Niels; Kalsbeek, Martin J T; de Waard, Vivian; van Rijssel, Jos; van Buul, Jaap D

    2017-07-01

    Endothelial cells line the lumen of the vessel wall and are exposed to flow. In linear parts of the vessel, the endothelial cells experience laminar flow, resulting in endothelial cell alignment in the direction of flow, thereby protecting the vessel wall from inflammation and permeability. In order for endothelial cells to align, they undergo rapid remodeling of the actin cytoskeleton by local activation of the small GTPase Rac1. However, it is not clear whether sustained and local activation of Rac1 is required for long-term flow-induced cell alignment. Using a FRET-based DORA Rac1 biosensor, we show that local Rac1 activity remains for 12 h upon long-term flow. Silencing studies show that the RhoGEF Trio is crucial for keeping active Rac1 at the downstream side of the cell and, as a result, for long-term flow-induced cell alignment. Surprisingly, Trio appears to be not involved in flow-induced activation of Rac1. Our data show that flow induces Rac1 activity at the downstream side of the cell in a Trio-dependent manner and that Trio functions as a scaffold protein rather than a functional GEF under long-term flow conditions. © 2017 Kroon et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Increased endothelial cell-leukocyte interaction in murine schistosomiasis: possible priming of endothelial cells by the disease.

    Directory of Open Access Journals (Sweden)

    Suellen D S Oliveira

    Full Text Available BACKGROUND AND AIMS: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. METHODOLOGY AND PRINCIPAL FINDINGS: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF. Nitric oxide (NO donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. CONCLUSION/SIGNIFICANCE: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially

  2. Signaling hierarchy regulating human endothelial cell development.

    Science.gov (United States)

    Kelly, Melissa A; Hirschi, Karen K

    2009-05-01

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.

  3. Endothelial cell energy metabolism, proliferation, and apoptosis in pulmonary hypertension.

    Science.gov (United States)

    Xu, Weiling; Erzurum, Serpil C

    2011-01-01

    Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary hemodynamics and excessive growth and dysfunction of the endothelial cells that line the arteries in PAH lungs. Establishment of methods for culture of pulmonary artery endothelial cells from PAH lungs has provided the groundwork for mechanistic translational studies that confirm and extend findings from model systems and spontaneous pulmonary hypertension in animals. Endothelial cell hyperproliferation, survival, and alterations of biochemical-metabolic pathways are the unifying endothelial pathobiology of the disease. The hyperproliferative and apoptosis-resistant phenotype of PAH endothelial cells is dependent upon the activation of signal transducer and activator of transcription (STAT) 3, a fundamental regulator of cell survival and angiogenesis. Animal models of PAH, patients with PAH, and human PAH endothelial cells produce low nitric oxide (NO). In association with the low level of NO, endothelial cells have reduced mitochondrial numbers and cellular respiration, which is associated with more than a threefold increase in glycolysis for energy production. The shift to glycolysis is related to low levels of NO and likely to the pathologic expression of the prosurvival and proangiogenic signal transducer, hypoxia-inducible factor (HIF)-1, and the reduced mitochondrial antioxidant manganese superoxide dismutase (MnSOD). In this article, we review the phenotypic changes of the endothelium in PAH and the biochemical mechanisms accounting for the proliferative, glycolytic, and strongly proangiogenic phenotype of these dysfunctional cells, which consequently foster the panvascular progressive pulmonary remodeling in PAH. © 2011 American Physiological Society.

  4. Effects of endothelial cells on human mesenchymal stem cell activity in a three-dimensional in vitro model

    Directory of Open Access Journals (Sweden)

    A Saleh

    2011-10-01

    Full Text Available An increasing body of data suggest that mesenchymal stem cells (MSCs reside in a perivascular niche. To more closely mimic this in vivo microenvironment and for better understanding of its complexity, and the factors that regulate the MSC activity, human umbilical vein endothelial cells (HUVECs were co-cultured with human bone marrow MSCs – using a novel three-dimensional (3D spheroid co-culture system. Using confocal microscopy of fluorescently labelled cells, we observed HUVECs and MSCs to self-assemble and form organised structures with segregated cell-type partitioning. Under osteogenic conditions, the rate and extent of differentiation in MSC/HUVEC spheroids was significantly elevated compared to 3D co-cultures of MSCs and human dermal fibroblast controls as shown by alkaline phosphatase staining. Conversely, HUVECs inhibited adipogenic differentiation and the proliferation of MSCs in 3D co-cultures indicating that HUVECs suppressed MSC cycling and selectively promoted osteogenic differentiation in 3D. We have also shown that HUVECs enhanced activation of endogenous Wnt signalling and bone morphogenetic protein (BMP signalling as shown by increased levels of active nuclear β-catenin and pSmad 1/5/8 immunopositivity respectively. These data suggest strongly that endothelial cells regulate the MSC activity in simulated in vivo conditions, by maintaining quiescence and facilitating niche exit via osteogenic differentiation following appropriate cues. Our findings also underline the importance of 3D heterotypic cell-cell interactions in the regulation of MSC behaviour, suggesting that multicellular cocktails and/or 3D-based delivery strategies may be beneficial for bone repair.

  5. Cell proliferation and migration are modulated by Cdk-1-phosphorylated endothelial-monocyte activating polypeptide II.

    Directory of Open Access Journals (Sweden)

    Margaret A Schwarz

    Full Text Available Endothelial-Monocyte Activating Polypeptide (EMAP II is a secreted protein with well-established anti-angiogenic activities. Intracellular EMAP II expression is increased during fetal development at epithelial/mesenchymal boundaries and in pathophysiologic fibroproliferative cells of bronchopulmonary dysplasia, emphysema, and scar fibroblast tissue following myocardial ischemia. Precise function and regulation of intracellular EMAP II, however, has not been explored to date.Here we show that high intracellular EMAP II suppresses cellular proliferation by slowing progression through the G2M cell cycle transition in epithelium and fibroblast. Furthermore, EMAP II binds to and is phosphorylated by Cdk1, and exhibits nuclear/cytoplasmic partitioning, with only nuclear EMAP II being phosphorylated. We observed that extracellular secreted EMAP II induces endothelial cell apoptosis, where as excess intracellular EMAP II facilitates epithelial and fibroblast cells migration.Our findings suggest that EMAP II has specific intracellular effects, and that this intracellular function appears to antagonize its extracellular anti-angiogenic effects during fetal development and pulmonary disease progression.

  6. Production of soluble Neprilysin by endothelial cells

    International Nuclear Information System (INIS)

    Kuruppu, Sanjaya; Rajapakse, Niwanthi W.; Minond, Dmitriy; Smith, A. Ian

    2014-01-01

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC 50 values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17

  7. Effect of sunitinib combined with ionizing radiation on endothelial cells

    International Nuclear Information System (INIS)

    Zhang Haiping; Jiao Xiaodong; Li Rui; Wang Jiejun; Takayama, Koichi; Su Bo

    2011-01-01

    The aims of present study were to evaluate the efficacy of combining sunitinib with ionizing radiation (IR) on endothelial cells in vitro and in vivo. Human umbilical vein endothelial cells (HUVECs) were exposed to IR with or without sunitinib pretreatment. Apoptosis assay and cell cycle distribution were analyzed by flow cytometry. Clonogenic survival assay at 3 Gy dose with or without sunitinib was performed. The activity of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway was detected by Western immunoblot. Lewis lung carcinoma mouse model was built to examine the effect of combination therapy on endothelial cells in vivo. Microvasculature changes were detected by immunohistochemistry using anti-CD31 antibody. Our results showed combination therapy of sunitinib and IR significantly increased apoptosis of endothelial cells and inhibited colony formation compared to sunitinib or radiotherapy alone. It also resulted in cell cycle redistribution (decreasing cells in S phase and increasing cells in G2/M phase). The activity of PI3K/Akt signal pathway was inhibited, which could be the potential mechanisms that account for the enhanced radiation response induced by sunitinib. In vivo analysis showed that combination therapy significantly decreased microvasculature formation. The results demonstrated that combination therapy of sunitinib and IR has the potential to increase the cytotoxic effects on endothelial cells. (author)

  8. The cAMP effectors PKA and Epac activate endothelial NO synthase through PI3K/Akt pathway in human endothelial cells.

    Science.gov (United States)

    García-Morales, Verónica; Luaces-Regueira, María; Campos-Toimil, Manuel

    2017-12-01

    3',5'-Cyclic adenosine monophosphate (cAMP) exerts an endothelium-dependent vasorelaxant action by stimulating endothelial NO synthase (eNOS) activity, and the subsequent NO release, through cAMP protein kinase (PKA) and exchange protein directly activated by cAMP (Epac) activation in endothelial cells. Here, we have investigated the mechanism by which the cAMP-Epac/PKA pathway activates eNOS. cAMP-elevating agents (forskolin and dibutyryl-cAMP) and the joint activation of PKA (6-Bnz-cAMP) and Epac (8-pCPT-2'-O-Me-cAMP) increased cytoplasmic Ca 2+ concentration ([Ca 2+ ] c ) in ≤30% of fura-2-loaded isolated human umbilical vein endothelial cells (HUVEC). However, these drugs did not modify [Ca 2+ ] c in fluo-4-loaded HUVEC monolayers. In DAF-2-loaded HUVEC monolayers, forskolin, PKA and Epac activators significantly increased NO release, and the forskolin effect was reduced by inhibition of PKA (Rp-cAMPs), Epac (ESI-09), eNOS (L-NAME) or phosphoinositide 3-kinase (PI3K; LY-294,002). On the other hand, inhibition of CaMKII (KN-93), AMPK (Compound C), or total absence of Ca 2+ , was without effect. In Western blot experiments, Serine 1177 phosphorylated-eNOS was significantly increased in HUVEC by cAMP-elevating agents and PKA or Epac activators. In isolated rat aortic rings LY-294,002, but not KN-93 or Compound C, significantly reduced the vasorelaxant effects of forskolin in the presence of endothelium. Our results suggest that Epac and PKA activate eNOS via Ser 1177 phosphorylation by activating the PI3K/Akt pathway, and independently of AMPK or CaMKII activation or [Ca 2+ ] c increase. This action explains, in part, the endothelium-dependent vasorelaxant effect of cAMP. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival.

    Science.gov (United States)

    Ahluwalia, A; Jones, M K; Szabo, S; Tarnawski, A S

    2014-04-01

    In some tissues, aging impairs angiogenesis and reduces expression of vascular endothelial growth factor A (VEGF), a fundamental regulator of angiogenesis. We previously examined angiogenesis in aging and young gastric mucosa in vivo and in vitro and showed that an imbalance between expressions of VEGF (pro-angiogenic factor) and endostatin (anti-angiogenic protein) results in an aging-related impairment of angiogenesis in rats. However, the human relevance of these findings, and whether these mechanisms apply to endothelial cells derived from other tissues, is not clear. Since P-STAT3 and P-CREB are transcription factors that, in association with HIF-1α, can activate VEGF gene expression in some cells (e.g., liver cancer cells, vascular smooth muscle cells), we examined the expression of these two proteins in human dermal microvascular endothelial cells (HMVECs) derived from aging and neonatal individuals. We examined and quantified in vitro angiogenesis, expression of VEGF, P-STAT3, P-CREB and importin-α in HMVECs isolated from neonates (neonatal) and a 66 year old subject (aging). We also examined the effects of treatment with exogenous VEGF and endostatin on in vitro angiogenesis in these cells. Endothelial cells isolated from aging individuals had impaired angiogenesis (vs. neonatal endothelial cells) and reduced expression of VEGF mRNA and protein. Aged HMVECs also had reduced importin-α expression, and reduced expression and nuclear translocation of P-STAT3 and P-CREB. Reduced VEGF gene expression in aged HMVECs strongly correlated with the decreased levels of P-STAT3, P-CREB and importin-α in these cells. Our study clearly demonstrates that endothelial cells from aging individuals have impaired angiogenesis and reduced expression of VEGF likely due to impaired nuclear transport of P-STAT3 and P-CREB transcription factors in these cells.

  10. Heme Oxygenase-1 Inhibits HLA Class I Antibody-Dependent Endothelial Cell Activation.

    Directory of Open Access Journals (Sweden)

    Eva Zilian

    Full Text Available Antibody-mediated rejection (AMR is a key limiting factor for long-term graft survival in solid organ transplantation. Human leukocyte antigen (HLA class I (HLA I antibodies (Abs play a major role in the pathogenesis of AMR via their interactions with HLA molecules on vascular endothelial cells (ECs. The antioxidant enzyme heme oxygenase (HO-1 has anti-inflammatory functions in the endothelium. As complement-independent effects of HLA I Abs can activate ECs, it was the goal of the current study to investigate the role of HO-1 on activation of human ECs by HLA I Abs. In cell cultures of various primary human macro- and microvascular ECs treatment with monoclonal pan- and allele-specific HLA I Abs up-regulated the expression of inducible proinflammatory adhesion molecules and chemokines (vascular cell adhesion molecule-1 [VCAM-1], intercellular cell adhesion molecule-1 [ICAM-1], interleukin-8 [IL-8] and monocyte chemotactic protein 1 [MCP-1]. Pharmacological induction of HO-1 with cobalt-protoporphyrin IX reduced, whereas inhibition of HO-1 with either zinc-protoporphyrin IX or siRNA-mediated knockdown increased HLA I Ab-dependent up-regulation of VCAM-1. Treatment with two carbon monoxide (CO-releasing molecules, which liberate the gaseous HO product CO, blocked HLA I Ab-dependent EC activation. Finally, in an in vitro adhesion assay exposure of ECs to HLA I Abs led to increased monocyte binding, which was counteracted by up-regulation of HO-1. In conclusion, HLA I Ab-dependent EC activation is modulated by endothelial HO-1 and targeted induction of this enzyme may be a novel therapeutic approach for the treatment of AMR in solid organ transplantation.

  11. Endothelial cell oxidative stress and signal transduction

    Directory of Open Access Journals (Sweden)

    ROCIO FONCEA

    2000-01-01

    Full Text Available Endothelial dysfunction (ED is an early event in atherosclerotic disease, preceding clinical manifestations and complications. Increased reactive oxygen species (ROS have been implicated as important mechanisms that contribute to ED, and ROS’s may function as intracellular messengers that modulate signaling pathways. Several intracellular signal events stimulated by ROS have been defined, including the identification of two members of the mitogen activated protein kinase family (ERK1/2 and big MAP kinase, BMK1, tyrosine kinases (Src and Syk and different isoenzymes of PKC as redox-sensitive kinases. ROS regulation of signal transduction components include the modification in the activity of transcriptional factors such as NFkB and others that result in changes in gene expression and modifications in cellular responses. In order to understand the intracellular mechanisms induced by ROS in endothelial cells (EC, we are studying the response of human umbilical cord vein endothelial cells to increased ROS generation by different pro-atherogenic stimuli. Our results show that Homocysteine (Hcy and oxidized LDL (oxLDL enhance the activity and expression of oxidative stress markers, such as NFkB and heme oxygenase 1. These results suggest that these pro-atherogenic stimuli increase oxidative stress in EC, and thus explain the loss of endothelial function associated with the atherogenic process

  12. PECAM-1 polymorphism affects monocyte adhesion to endothelial cells.

    Science.gov (United States)

    Goodman, Reyna S; Kirton, Christopher M; Oostingh, Gertie J; Schön, Michael P; Clark, Michael R; Bradley, J Andrew; Taylor, Craig J

    2008-02-15

    Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) plays an important role in leukocyte-endothelial cell adhesion and transmigration. Single nucleotide polymorphisms of PECAM-1 encoding amino acid substitutions at positions 98 leucine/valine (L/V), 536 serine/asparagine (S/N), and 643 arginine/glycine (R/G) occur in strong genetic linkage resulting in two common haplotypes (LSR and VNG). These PECAM-1 polymorphisms are associated with graft-versus-host disease after hematopoietic stem cell transplantation and with cardiovascular disease, but whether they influence PECAM-1 function is unknown. We examined the effect of homozygous and heterozygous expression of the PECAM-1 LSR and VNG genotypes on the adhesive interactions of peripheral blood monocytes and activated endothelial cell monolayers under shear stress in a flow-based cell adhesion assay. There was no difference in monocyte adhesion between the two homozygous genotypes of PECAM-1 but when monocytes expressed both alleles in heterozygous form, firm adhesion of monocytes to endothelial cells was markedly increased. PECAM-1 polymorphism expressed in homozygous or heterozygous form by endothelial cells did not influence monocyte adhesion. This is, to our knowledge, the first demonstration that PECAM-1 genotype can alter the level of monocyte binding to endothelial cells and a demonstration that heterozygous expression of a polymorphic protein may lead to altered function.

  13. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Science.gov (United States)

    Papa, Michelle P.; Meuren, Lana M.; Coelho, Sharton V. A.; Lucas, Carolina G. de Oliveira; Mustafá, Yasmin M.; Lemos Matassoli, Flavio; Silveira, Paola P.; Frost, Paula S.; Pezzuto, Paula; Ribeiro, Milene R.; Tanuri, Amilcar; Nogueira, Mauricio L.; Campanati, Loraine; Bozza, Marcelo T.; Paula Neto, Heitor A.; Pimentel-Coelho, Pedro M.; Figueiredo, Claudia P.; de Aguiar, Renato S.; de Arruda, Luciana B.

    2017-01-01

    Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways. PMID:29312238

  14. Human Brain Microvascular Endothelial Cells and Umbilical Vein Endothelial Cells Differentially Facilitate Leukocyte Recruitment and Utilize Chemokines for T Cell Migration

    Directory of Open Access Journals (Sweden)

    Shumei Man

    2008-01-01

    Full Text Available Endothelial cells that functionally express blood brain barrier (BBB properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs and human umbilical vein endothelial cells (HUVECs. With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.

  15. Lipoprotein receptors in cultured bovine endothelial cells

    International Nuclear Information System (INIS)

    Struempfer, A.E.M.

    1983-07-01

    In this study, receptors that may be involved in the uptake of low density lipoproteins (LDL) and low density lipoproteins which have been modified by acetylation (AcLDL), were characterized. Aortic epithelial cells were used and a cell culture system which closely resembled the in vivo monolayer was established. Endothelial cell and lipoprotein interactions were examined by incubating the cells with 125 l-labelled lipoproteins under various conditions. The receptor affinity of bovine aortic endothelial cells was higher for AcLDL than that for LDL. Competition studies demonstrated that there were two distinct receptors for LDL and AcLDL on the endothelial cells. AcLDL did not compete with LDL for the LDL receptor, and conversely LDL did not compete with AcLDL for the AcLDL receptor. The receptor activities for LDL and AcLDL were examined as a function of culture age. Whereas the LDL receptor could be regulated, the AcLDL receptor was not as susceptible to regulation. Upon exposing endothelial cells for 72 h to either LDL or AcLDL, it was found that the total amount of cellular cholesterol increased by about 50%. However, the increase of total cholesterol was largely in the form of free cholesterol. This is in contrast to macrophages, where the increase in total cholesterol upon exposure to AcLDL is largely in the form cholesteryl esters

  16. Angiogenesis interactome and time course microarray data reveal the distinct activation patterns in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Liang-Hui Chu

    Full Text Available Angiogenesis involves stimulation of endothelial cells (EC by various cytokines and growth factors, but the signaling mechanisms are not completely understood. Combining dynamic gene expression time-course data for stimulated EC with protein-protein interactions associated with angiogenesis (the "angiome" could reveal how different stimuli result in different patterns of network activation and could implicate signaling intermediates as points for control or intervention. We constructed the protein-protein interaction networks of positive and negative regulation of angiogenesis comprising 367 and 245 proteins, respectively. We used five published gene expression datasets derived from in vitro assays using different types of blood endothelial cells stimulated by VEGFA (vascular endothelial growth factor A. We used the Short Time-series Expression Miner (STEM to identify significant temporal gene expression profiles. The statistically significant patterns between 2D fibronectin and 3D type I collagen substrates for telomerase-immortalized EC (TIME show that different substrates could influence the temporal gene activation patterns in the same cell line. We investigated the different activation patterns among 18 transmembrane tyrosine kinase receptors, and experimentally measured the protein level of the tyrosine-kinase receptors VEGFR1, VEGFR2 and VEGFR3 in human umbilical vein EC (HUVEC and human microvascular EC (MEC. The results show that VEGFR1-VEGFR2 levels are more closely coupled than VEGFR1-VEGFR3 or VEGFR2-VEGFR3 in HUVEC and MEC. This computational methodology can be extended to investigate other molecules or biological processes such as cell cycle.

  17. Clinical significance of nailfold capillaroscopy in systemic lupus erythematosus: correlation with endothelial cell activation markers and disease activity.

    Science.gov (United States)

    Kuryliszyn-Moskal, A; Ciolkiewicz, M; Klimiuk, P A; Sierakowski, S

    2009-01-01

    To evaluate whether nailfold capillaroscopy (NC) changes are associated with the main serum endothelial cell activation markers and the disease activity of systemic lupus erythematosus (SLE). Serum levels of vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), soluble E-selectin (sE-selectin), and soluble thrombomodulin (sTM) were determined by an enzyme-linked immunosorbent assay (ELISA) in 80 SLE patients and 33 healthy controls. Nailfold capillary abnormalities were seen in 74 out of 80 (92.5%) SLE patients. A normal capillaroscopic pattern or mild changes were found in 33 (41.25%) and moderate/severe abnormalities in 47 (58.75%) of all SLE patients. In SLE patients a capillaroscopic score >1 was more frequently associated with the presence of internal organ involvement (p 1 and controls. SLE patients with severe/moderate capillaroscopic abnormalities showed significantly higher VEGF serum levels than patients with mild changes (p < 0.001). Moreover, there was a significant positive correlation between the severity of capillaroscopic changes and the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) (p < 0.005) as well as between capillaroscopic score and VEGF serum levels (p < 0.001). Our findings confirm the usefulness of NC as a non-invasive technique for the evaluation of microvascular involvement in SLE patients. A relationship between changes in NC, endothelial cell activation markers and clinical features of SLE suggest an important role for microvascular abnormalities in clinical manifestation of the disease.

  18. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do, E-mail: ydjung@chonnam.ac.kr

    2012-03-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H{sub 2}O{sub 2}) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H{sub 2}O{sub 2} increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells

  19. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    International Nuclear Information System (INIS)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do

    2012-01-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H 2 O 2 ) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H 2 O 2 increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells treated with nicotine

  20. Selective intracellular delivery of dexamethasone into activated endothelial cells using an E-selectin-directed immunoconjugate

    NARCIS (Netherlands)

    Kok, RJ; Asgeirsdottir, SA; Melgert, BN; Moolenaar, TJM; Koning, GA; van Luyn, MJA; Meijer, DKF; Molema, G

    2002-01-01

    In chronic inflammatory diseases, the endothelium is an attractive target for pharmacological intervention because it plays an important role in leukocyte recruitment. Hence, inhibition of endothelial cell activation and consequent leukocyte infiltration may improve therapeutic outcome in these

  1. Inhibition of endothelial cell expression of plasminogen activator inhibitor type-1 by gemfibrozil.

    Science.gov (United States)

    Fujii, S; Sawa, H; Sobel, B E

    1993-10-18

    Increased concentrations of plasminogen activator inhibitor type-1 (PAI-1) in plasma are associated with impaired fibrinolysis and venous and arterial thrombo-embolic disease. In pilot studies designed to identify pharmacologic approaches capable of diminishing such increases, we found that gemfibrozil attenuated the stimulation of synthesis of PAI-1 in a human, immortal, hepatoma cell line (Hep G2) induced by platelets. The present study was performed to determine whether it exerts analogous effects in non-immortal endothelial cells and whether it may therefore facilitate fibrinolysis locally in vivo. Human umbilical vein endothelial cells were incubated with pharmacologic concentrations of gemfibrozil. Gemfibrozil, 100 microM, suppressed basal PAI-1 production by 15% and attenuated the augmentation of synthesis of PAI-1 induced by lysates from platelets (4 x 10(7)/ml) by 36% over 24 h without inhibiting overall protein synthesis. In addition, the increases in PAI-1 mRNA otherwise induced by platelet lysates over 6 h were suppressed by 49% (Northern blots) without any demonstrable change in the intracellular half-life of PAI-1 mRNA. Pulse-chase experiments demonstrated diminution of PAI-1 protein synthesis in parallel with the changes observed in PAI-1 mRNA. To determine whether these effects of gemfibrozil on endothelial cells in vitro were paralleled by consistent changes in the concentrations of PAI-1 in plasma in vivo, we studied rabbits with induced carotid artery thrombosis and thrombolysis.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    International Nuclear Information System (INIS)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu

    2007-01-01

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-κB activation and nuclear translocation in an IκBα-dependent manner. The inhibitory effects were associated with reduction of inhibitor IκB kinase activity and stabilization of the NF-κB inhibitor IκB. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations

  3. Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells.

    NARCIS (Netherlands)

    Paleolog, E.M.; Delasalle, S.A.; Buurman, W.A.; Feldmann, M.

    1994-01-01

    Tumor necrosis factor-alpha (TNF-alpha) plays a critical role in the control of endothelial cell function and hence in regulating traffic of circulating cells into tissues in vivo. Stimulation of endothelial cells in vitro by TNF-alpha increases the surface expression of leukocyte adhesion

  4. Drug-induced in vitro inhibition of neutrophil-endothelial cell adhesion.

    Science.gov (United States)

    Pellegatta, F.; Lu, Y.; Radaelli, A.; Zocchi, M. R.; Ferrero, E.; Chierchia, S.; Gaja, G.; Ferrero, M. E.

    1996-01-01

    1. Leukocyte-endothelial cell interactions play an important role during ischaemia-reperfusion events. Adhesion molecules are specifically implicated in this interaction process. 2. Since defibrotide has been shown to be an efficient drug in reducing damage due to ischaemia-reperfusion in many experimental models, we analysed the effect of defibrotide in vitro on leukocyte adhesion to endothelial cells in basal conditions and after their stimulation. 3. In basal conditions, defibrotide (1000 micrograms ml-1) partially inhibited leukocyte adhesion to endothelial cells by 17.3% +/- 3.6 (P defibrotide. 5. This result was confirmed in NIH/3T3-ICAM-1 transfected cells. 6. We conclude that defibrotide is able to interfere with leukocyte adhesion to endothelial cells mainly in activated conditions and that the ICAM-1/LFA-1 adhesion system is involved in the defibrotide mechanism of action. PMID:8762067

  5. Counterbalancing anti-adhesive effects of Tenascin-C through fibronectin expression in endothelial cells.

    Science.gov (United States)

    Radwanska, Agata; Grall, Dominique; Schaub, Sébastien; Divonne, Stéphanie Beghelli-de la Forest; Ciais, Delphine; Rekima, Samah; Rupp, Tristan; Sudaka, Anne; Orend, Gertraud; Van Obberghen-Schilling, Ellen

    2017-10-06

    Cellular fibronectin (FN) and tenascin-C (TNC) are prominent development- and disease-associated matrix components with pro- and anti-adhesive activity, respectively. Whereas both are present in the tumour vasculature, their functional interplay on vascular endothelial cells remains unclear. We have previously shown that basally-oriented deposition of a FN matrix restricts motility and promotes junctional stability in cultured endothelial cells and that this effect is tightly coupled to expression of FN. Here we report that TNC induces FN expression in endothelial cells. This effect counteracts the potent anti-adhesive activity of TNC and leads to the assembly of a dense highly-branched subendothelial matrix that enhances tubulogenic activity. These findings suggest that pro-angiogenic remodelling of the perivascular matrix may involve TNC-induced upregulation of FN in endothelial cells.

  6. Protein S binding to human endothelial cells is required for expression of cofactor activity for activated protein C

    NARCIS (Netherlands)

    Hackeng, T. M.; Hessing, M.; van 't Veer, C.; Meijer-Huizinga, F.; Meijers, J. C.; de Groot, P. G.; van Mourik, J. A.; Bouma, B. N.

    1993-01-01

    An important feedback mechanism in blood coagulation is supplied by the protein C/protein S anticoagulant pathway. In this study we demonstrate that the binding of human protein S to cultured human umbilical vein endothelial cells (HUVECs) is required for the expression of cofactor activity of

  7. Role of protein kinase C in regulation of Na+- and K +-dependent ATPase activity and pump function in corneal endothelial cells.

    Science.gov (United States)

    Hatou, Shin; Yamada, Masakazu; Mochizuki, Hiroshi; Nishida, Teruo

    2009-05-01

    Na+- and K+-dependent ATPase (Na,K-ATPase) plays an important role in the pump function of the corneal endothelium. We investigated the possible role of protein kinase C (PKC) in regulation of Na,K-ATPase activity and pump function in corneal endothelial cells. Confluent monolayers of mouse corneal endothelial cells were exposed to phorbol 12,13-dibutyrate (PDBu) to induce activation of PKC. ATPase activity of the cells was evaluated by using ammonium molybdate in spectrophotometric measurement of phosphate released from ATP, with Na,K-ATPase activity being defined as the portion of total ATPase activity sensitive to ouabain. Pump function of the cells was measured with a Ussing chamber, with the pump function attributable to Na,K-ATPase activity being defined as the portion of the total short-circuit current sensitive to ouabain. PDBu (10(-7) M) increased the Na,K-ATPase activity and pump function of the cultured cells. These effects of PDBu were potentiated by the cyclooxygenase inhibitor indomethacin and the cytochrome P(450) inhibitor resorufin and were blocked by okadaic acid, an inhibitor of protein phosphatases 1 and 2A. Our results suggest that PKC bidirectionally regulates Na,K-ATPase activity in mouse corneal endothelial cells: it inhibits Na,K-ATPase activity in a cyclooxygenase- and cytochrome P(450)-dependent manner, whereas it stimulates such activity by activating protein phosphatases 1 or 2A.

  8. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity.

    Science.gov (United States)

    Pardanaud, Luc; Pibouin-Fragner, Laurence; Dubrac, Alexandre; Mathivet, Thomas; English, Isabel; Brunet, Isabelle; Simons, Michael; Eichmann, Anne

    2016-08-19

    Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. We set out to identify factors that promote arterial endothelial cell fate in vivo. We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease. © 2016 American Heart Association, Inc.

  9. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    Science.gov (United States)

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  10. A Cell Culture Platform to Maintain Long-term Phenotype of Primary Human Hepatocytes and Endothelial Cells.

    Science.gov (United States)

    Ware, Brenton R; Durham, Mitchell J; Monckton, Chase P; Khetani, Salman R

    2018-03-01

    Modeling interactions between primary human hepatocytes (PHHs) and primary human liver sinusoidal endothelial cells (LSECs) in vitro can help elucidate human-specific mechanisms underlying liver physiology/disease and drug responses; however, existing hepatocyte/endothelial coculture models are suboptimal because of their use of rodent cells, cancerous cell lines, and/or nonliver endothelial cells. Hence, we sought to develop a platform that could maintain the long-term phenotype of PHHs and primary human LSECs. Primary human LSECs or human umbilical vein endothelial cells as the nonliver control were cocultivated with micropatterned PHH colonies (to control homotypic interactions) followed by an assessment of PHH morphology and functions (albumin and urea secretion, and cytochrome P-450 2A6 and 3A4 enzyme activities) over 3 weeks. Endothelial phenotype was assessed via gene expression patterns and scanning electron microscopy to visualize fenestrations. Hepatic responses in PHH/endothelial cocultures were benchmarked against responses in previously developed PHH/3T3-J2 fibroblast cocultures. Finally, PHH/fibroblast/endothelial cell tricultures were created and characterized as described previously. LSECs, but not human umbilical vein endothelial cells, induced PHH albumin secretion for ∼11 days; however, neither endothelial cell type could maintain PHH morphology and functions to the same magnitude/longevity as the fibroblasts. In contrast, both PHHs and endothelial cells displayed stable phenotype for 3 weeks in PHH/fibroblast/endothelial cell tricultures; furthermore, layered tricultures in which PHHs and endothelial cells were separated by a protein gel to mimic the space of Disse displayed similar functional levels as the coplanar tricultures. PHH/fibroblast/endothelial tricultures constitute a robust platform to elucidate reciprocal interactions between PHHs and endothelial cells in physiology, disease, and after drug exposure.

  11. Acrylamide induces accelerated endothelial aging in a human cell model.

    Science.gov (United States)

    Sellier, Cyril; Boulanger, Eric; Maladry, François; Tessier, Frédéric J; Lorenzi, Rodrigo; Nevière, Rémi; Desreumaux, Pierre; Beuscart, Jean-Baptiste; Puisieux, François; Grossin, Nicolas

    2015-09-01

    Acrylamide (AAM) has been recently discovered in food as a Maillard reaction product. AAM and glycidamide (GA), its metabolite, have been described as probably carcinogenic to humans. It is widely established that senescence and carcinogenicity are closely related. In vitro, endothelial aging is characterized by replicative senescence in which primary cells in culture lose their ability to divide. Our objective was to assess the effects of AAM and GA on human endothelial cell senescence. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as model. HUVECs were cultured over 3 months with AAM or GA (1, 10 or 100 μM) until growth arrest. To analyze senescence, β-galactosidase activity and telomere length of HUVECs were measured by cytometry and semi-quantitative PCR, respectively. At all tested concentrations, AAM or GA reduced cell population doubling compared to the control condition (p < 0.001). β-galactosidase activity in endothelial cells was increased when exposed to AAM (≥10 μM) or GA (≥1 μM) (p < 0.05). AAM (≥10 μM) or GA (100 μM) accelerated telomere shortening in HUVECs (p < 0.05). In conclusion, in vitro chronic exposure to AAM or GA at low concentrations induces accelerated senescence. This result suggests that an exposure to AAM might contribute to endothelial aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Endotoxin induction of an inhibitor of plasminogen activator in bovine pulmonary artery endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-05

    The effects of bacterial lipopolysaccharide (endotoxin) on the fibrinolytic activity of bovine pulmonary artery endothelial cells were examined. Endotoxin suppressed the net fibrinolytic activity of cell extracts and conditioned media in a dose-dependent manner. The effects of endotoxin required at least 6 h for expression. Cell extracts and conditioned media contained a 44-kDa urokinase-like plasminogen activator. Media also contained multiple plasminogen activators with molecular masses of 65-75 and 80-100 kDa. Plasminogen activators in extracts and media were unchanged by treatment of cells with endotoxin. Diisopropyl fluorophosphate (DFP)-abolished fibrinolytic activity of extracts and conditioned media. DFP-treated samples from endotoxin-treated but not untreated cells inhibited urokinase and tissue plasminogen activator, but not plasmin. Inhibitory activity was lost by incubation at pH 3 or heating to 56/sup 0/C for 10 min. These treatments did not affect inhibitory activity of fetal bovine serum. Incubation of /sup 125/I-urokinase with DFP-treated medium from endotoxin-treated cells produced an inactive complex with an apparent molecular mass of 80-85 kDa.

  13. Oxidative Stress Induces Endothelial Cell Senescence via Downregulation of Sirt6

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2014-01-01

    Full Text Available Accumulating evidence has shown that diabetes accelerates aging and endothelial cell senescence is involved in the pathogenesis of diabetic vascular complications, including diabetic retinopathy. Oxidative stress is recognized as a key factor in the induction of endothelial senescence and diabetic retinopathy. However, specific mechanisms involved in oxidative stress-induced endothelial senescence have not been elucidated. We hypothesized that Sirt6, which is a nuclear, chromatin-bound protein critically involved in many pathophysiologic processes such as aging and inflammation, may have a role in oxidative stress-induced vascular cell senescence. Measurement of Sirt6 expression in human endothelial cells revealed that H2O2 treatment significantly reduced Sirt6 protein. The loss of Sirt6 was associated with an induction of a senescence phenotype in endothelial cells, including decreased cell growth, proliferation and angiogenic ability, and increased expression of senescence-associated β-galactosidase activity. Additionally, H2O2 treatment reduced eNOS expression, enhanced p21 expression, and dephosphorylated (activated retinoblastoma (Rb protein. All of these alternations were attenuated by overexpression of Sirt6, while partial knockdown of Sirt6 expression by siRNA mimicked the effect of H2O2. In conclusion, these results suggest that Sirt6 is a critical regulator of endothelial senescence and oxidative stress-induced downregulation of Sirt6 is likely involved in the pathogenesis of diabetic retinopathy.

  14. RCAN1.4 regulates VEGFR-2 internalisation, cell polarity and migration in human microvascular endothelial cells.

    Science.gov (United States)

    Alghanem, Ahmad F; Wilkinson, Emma L; Emmett, Maxine S; Aljasir, Mohammad A; Holmes, Katherine; Rothermel, Beverley A; Simms, Victoria A; Heath, Victoria L; Cross, Michael J

    2017-08-01

    Regulator of calcineurin 1 (RCAN1) is an endogenous inhibitor of the calcineurin pathway in cells. It is expressed as two isoforms in vertebrates: RCAN1.1 is constitutively expressed in most tissues, whereas transcription of RCAN1.4 is induced by several stimuli that activate the calcineurin-NFAT pathway. RCAN1.4 is highly upregulated in response to VEGF in human endothelial cells in contrast to RCAN1.1 and is essential for efficient endothelial cell migration and tubular morphogenesis. Here, we show that RCAN1.4 has a role in the regulation of agonist-stimulated VEGFR-2 internalisation and establishment of endothelial cell polarity. siRNA-mediated gene silencing revealed that RCAN1 plays a vital role in regulating VEGF-mediated cytoskeletal reorganisation and directed cell migration and sprouting angiogenesis. Adenoviral-mediated overexpression of RCAN1.4 resulted in increased endothelial cell migration. Antisense-mediated morpholino silencing of the zebrafish RCAN1.4 orthologue revealed a disrupted vascular development further confirming a role for the RCAN1.4 isoform in regulating vascular endothelial cell physiology. Our data suggest that RCAN1.4 plays a novel role in regulating endothelial cell migration by establishing endothelial cell polarity in response to VEGF.

  15. Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248.

    Science.gov (United States)

    Bagley, Rebecca G; Rouleau, Cecile; St Martin, Thia; Boutin, Paula; Weber, William; Ruzek, Melanie; Honma, Nakayuki; Nacht, Mariana; Shankara, Srinivas; Kataoka, Shiro; Ishida, Isao; Roberts, Bruce L; Teicher, Beverly A

    2008-08-01

    Angiogenesis occurs during normal physiologic processes as well as under pathologic conditions such as tumor growth. Serial analysis of gene expression profiling revealed genes [tumor endothelial markers (TEM)] that are overexpressed in tumor endothelial cells compared with normal adult endothelial cells. Because blood vessel development of malignant tumors under certain conditions may include endothelial precursor cells (EPC) recruited from bone marrow, we investigated TEM expression in EPC. The expression of TEM1 or endosialin (CD248) and other TEM has been discovered in a population of vascular endothelial growth factor receptor 2+/CD31+/CD45-/VE-cadherin+ EPC derived from human CD133+/CD34+ cells. EPC share some properties with fully differentiated endothelial cells from normal tissue, yet reverse transcription-PCR and flow cytometry reveal that EPC express higher levels of endosialin at the molecular and protein levels. The elevated expression of endosialin in EPC versus mature endothelial cells suggests that endosialin is involved in the earlier stages of tumor angiogenesis. Anti-endosialin antibodies inhibited EPC migration and tube formation in vitro. In vivo, immunohistochemistry indicated that human EPC continued to express endosialin protein in a Matrigel plug angiogenesis assay established in nude mice. Anti-endosialin antibodies delivered systemically at 25 mg/kg were also able to inhibit circulating murine EPC in nude mice bearing s.c. SKNAS tumors. EPC and bone marrow-derived cells have been shown previously to incorporate into malignant blood vessels in some instances, yet they remain controversial in the field. The data presented here on endothelial genes that are up-regulated in tumor vasculature and in EPC support the hypothesis that the angiogenesis process in cancer can involve EPC.

  16. Binding of tissue plasminogen activator to human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Beebe, D.P.

    1987-01-01

    The binding of purified, recombinant tissue plasminogen activator (tPA) to human umbilical vein endothelial cells (HUVEC) was studied in vitro using immunofluorescence as well as radiolabeled tPA. Immunofluorescence was performed on HUVEC grown on round glass coverslips using rabbit anti-human tPA and fluorescein-conjugated anti-rabbit immunoglobulin. Positive fluorescence was observed only after incubation of HUVEC with tPA. HUVEC were grown to confluence in 24-well tissue culture plates, washed, and incubated with a constant amount of 125 I-tPA and various concentrations of unlabeled tPA. The binding of tPA to HUVEC was found to be specific, saturable, and reversible. Scatchard analysis yielded as equilibrium constant (K/sub eq/) of 4.2 x 10 6 M -1 and 1.2 x 10 7 binding sites per cell. Binding was inhibited by positively charged amino acids and by D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone but not by carbohydrates including mannose, galactose, N-acetyl glucosamine and N-acetyl galactosamine. Neat human plasma abrogates but does not totally inhibit binding of tPA to HUVEC. Binding was neither enhanced nor inhibited by fibronectin. Although the affinity of binding of tPA to HUVEC is low, the endothelial cell may be involved in regulating plasma levels of tPA in vivo which may have therapeutic significance

  17. An In Vitro Study of Differentiation of Hematopoietic Cells to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Qi Ru Wang

    2011-01-01

    medium (ECCM. BM-EPCs were characterized in terms of phenotype, lineage potential, and their functional properties. Endothelial cell colonies derived from BM-EPC were cultured with ECCM for 3 months. Cultured EPC colony cells expressed endothelial cell markers and formed the capillary-like network in vitro. EPC colony cells expressed differential proliferative capacity; some of the colonies exhibited a high proliferative potential (HPP capacity up to 20 population doublings. More importantly, these HPP-EPCs expressed hematopoietic marker CD45, exhibited endocytic activities, and preserved some of the myeloid cell activity. In addition, the HPP-EPCs secrete various growth factors including VEGF and GM-CSF into the culture medium. The results demonstrate that these EPCs were primarily derived from hematopoietic origin of early precursor cells and maintained high proliferative potential capacity, a feature with a significant potential in the application of cell therapy in ischemic diseases.

  18. Endothelial cell repopulation after stenting determines in-stent neointima formation: effects of bare-metal vs. drug-eluting stents and genetic endothelial cell modification.

    Science.gov (United States)

    Douglas, Gillian; Van Kampen, Erik; Hale, Ashley B; McNeill, Eileen; Patel, Jyoti; Crabtree, Mark J; Ali, Ziad; Hoerr, Robert A; Alp, Nicholas J; Channon, Keith M

    2013-11-01

    Understanding endothelial cell repopulation post-stenting and how this modulates in-stent restenosis is critical to improving arterial healing post-stenting. We used a novel murine stent model to investigate endothelial cell repopulation post-stenting, comparing the response of drug-eluting stents with a primary genetic modification to improve endothelial cell function. Endothelial cell repopulation was assessed en face in stented arteries in ApoE(-/-) mice with endothelial-specific LacZ expression. Stent deployment resulted in near-complete denudation of endothelium, but was followed by endothelial cell repopulation, by cells originating from both bone marrow-derived endothelial progenitor cells and from the adjacent vasculature. Paclitaxel-eluting stents reduced neointima formation (0.423 ± 0.065 vs. 0.240 ± 0.040 mm(2), P = 0.038), but decreased endothelial cell repopulation (238 ± 17 vs. 154 ± 22 nuclei/mm(2), P = 0.018), despite complete strut coverage. To test the effects of selectively improving endothelial cell function, we used transgenic mice with endothelial-specific overexpression of GTP-cyclohydrolase 1 (GCH-Tg) as a model of enhanced endothelial cell function and increased NO production. GCH-Tg ApoE(-/-) mice had less neointima formation compared with ApoE(-/-) littermates (0.52 ± 0.08 vs. 0.26 ± 0.09 mm(2), P = 0.039). In contrast to paclitaxel-eluting stents, reduced neointima formation in GCH-Tg mice was accompanied by increased endothelial cell coverage (156 ± 17 vs. 209 ± 23 nuclei/mm(2), P = 0.043). Drug-eluting stents reduce not only neointima formation but also endothelial cell repopulation, independent of strut coverage. In contrast, selective targeting of endothelial cell function is sufficient to improve endothelial cell repopulation and reduce neointima formation. Targeting endothelial cell function is a rational therapeutic strategy to improve vascular healing and decrease neointima formation after stenting.

  19. Importance of large conductance calcium-activated potassium channels (BKCa) in interleukin-1b-induced adhesion of monocytes to endothelial cells.

    Science.gov (United States)

    Burgazli, K M; Venker, C J; Mericliler, M; Atmaca, N; Parahuleva, M; Erdogan, A

    2014-01-01

    The present study investigated the role of the large conductance calcium-activated potassium channels (BKCa) in interleukin-1b (IL-1b) induced inflammation. Human umbilical vein endothelial cells (HUVECs) were isolated and cultured. Endothelial cell membrane potential measurements were accomplished using the fluorescent dye DiBAC4(3). The role of BKCa was assessed using iberiotoxin, a highly selective BKCa inhibitor. Changes in the calcium intracellular calcium were investigated using Fura-2-AM imaging. Fluorescent dyes DCF-AM and DAF-AM were further used in order to measure the formation of reactive oxygen species (ROS) and nitric oxide (NO) synthesis, respectively. Endothelial cell adhesion tests were conducted with BCECF-AM adhesion assay and tritium thymidine uptake using human monocytic cells (U937). Expression of cellular adhesion molecules (ICAM-1, VCAM-1) was determined by flow cytometer. Interleukin-1b induced a BKCa dependent hyperpolarization of HUVECs. This was followed by an increase in the intracellular calcium concentration. Furthermore, IL-1b significantly increased the synthesis of NO and ROS. The increase of intracellular calcium, radicals and NO resulted in a BKCa dependent adhesion of monocytes to HUVECs. Endothelial cells treated with IL-1b expressed both ICAM-1 and VCAM-1 in significantly higher amounts as when compared to controls. It was further shown that the cellular adhesion molecules ICAM-1 and VCAM-1 were responsible for the BKCa-dependent increase in cellular adhesion. Additionally, inhibition of the NADPH oxidase with DPI led to a significant downregulation of IL-1b-induced expression of ICAM and VCAM, as well as inhibition of eNOS by L-NMMA, and intracellular calcium by BAPTA. Activation of the endothelial BKCa plays an important role in the IL-1b-induced monocyte adhesion to endothelial cells.

  20. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  1. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    International Nuclear Information System (INIS)

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K.

    1990-01-01

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling

  2. Enhanced adhesion of early endothelial progenitor cells to radiation-induced senescence-like vascular endothelial cells in vitro

    International Nuclear Information System (INIS)

    Sermsathanasawadi, N.; Inoue, Yoshinori; Iwai, Takehisa; Ishii, Hideto; Yoshida, Masayuki; Igarashi, Kaori; Miura, Masahiko

    2009-01-01

    The effects of ionizing radiation (IR) on tumor neovascularization are still unclear. We previously reported that vascular endothelial cells (ECs) expressing the IR-induced senescence-like (IRSL) phenotype exhibit a significant decrease in angiogenic activity in vitro. In this study, we examined the effects of the IRSL phenotype on adhesion to early endothelial progenitor cells (early EPCs). Adhesion of human peripheral blood-derived early EPCs to human umbilical vein endothelial cells (HUVECs) expressing the IRSL phenotype was evaluated by an adhesion assay under static conditions. It was revealed that the IRSL HUVECs supported significantly more adhesion of early EPCs than normal HUVECs. Expressions of ICAM-1, VCAM-1 and E-selectin were up-regulated in IRSL HUVECs. Pre-treatment of IRSL HUVECs with adhesion-blocking monoclonal antibodies against E-selectin and VCAM-1 significantly reduced early EPC adhesion to IRSL HUVECs, suggesting a potential role for the E-selectin and VCAM-1 in the adhesion between IRSL ECs and early EPCs. Therefore, the IRSL phenotype expressed in ECs may enhance neovascularization via increased homing of early EPCs. Our findings are first to implicate the complex effects of this phenotype on tumor neovascularization following irradiation. (author)

  3. Uptake of gold nanoparticles in primary human endothelial cells

    DEFF Research Database (Denmark)

    Klingberg, Henrik; Oddershede, Lene B.; Löschner, Katrin

    2015-01-01

    Gold nanoparticles (AuNPs) are relevant in nanomedicine for drug delivery in the vascular system, where endothelial cells are the first point of contact. We investigated the uptake of 80 nm AuNPs in primary human umbilical vein endothelial cells (HUVECs) by flow cytometry, 3D confocal microscopy......–3 or more particles. Pre-treatment with chlorpromazine inhibited the AuNP-uptake in HUVECs, indicating that internalisation occurred mainly by clathrin-mediated endocytosis. Cell activation by exposure to tumour necrosis factor or lipopolysaccharide had a slight or no effect on the uptake of Au...

  4. A novel minimally-invasive method to sample human endothelial cells for molecular profiling.

    Directory of Open Access Journals (Sweden)

    Stephen W Waldo

    Full Text Available The endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity.Nine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34/CD105/CD146 with the concomitant absence of leukocyte and platelet specific markers (CD11b/CD45. Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR.A median of 4,212 (IQR: 2161-6583 endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001, nitric oxide synthase 3 (NOS3, P<0.001 and vascular cell adhesion molecule 1 (VCAM-1, P<0.003 in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001.This state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets.

  5. Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Valerie E. Ryman

    2016-01-01

    Full Text Available Inflammation is an essential host response during bacterial infections such as bovine mastitis. Endothelial cells are critical for an appropriate inflammatory response and loss of vascular barrier integrity is implicated in the pathogenesis of Streptococcus uberis-induced mastitis. Previous studies suggested that accumulation of linoleic acid (LA oxygenation products derived from 15-lipoxygenase-1 (15-LOX-1 metabolism could regulate vascular functions. The initial LA derivative from the 15-LOX-1 pathway, 13-hydroperoxyoctadecadienoic acid (HPODE, can induce endothelial death, whereas the reduced hydroxyl product, 13-hydroxyoctadecadienoic acid (HODE, is abundantly produced during vascular activation. However, the relative contribution of specific LA-derived metabolites on impairment of mammary endothelial integrity is unknown. Our hypothesis was that S. uberis-induced LA-derived 15-LOX-1 oxygenation products impair mammary endothelial barrier integrity by apoptosis. Exposure of bovine mammary endothelial cells (BMEC to S. uberis did not increase 15-LOX-1 LA metabolism. However, S. uberis challenge of bovine monocytes demonstrated that monocytes may be a significant source of both 13-HPODE and 13-HODE during mastitis. Exposure of BMEC to 13-HPODE, but not 13-HODE, significantly reduced endothelial barrier integrity and increased apoptosis. Changing oxidant status by coexposure to an antioxidant during 13-HPODE treatment prevented adverse effects of 13-HPODE, including amelioration of apoptosis. A better understanding of how the oxidant status of the vascular microenvironment impacts endothelial barrier properties could lead to more efficacious treatments for S. uberis mastitis.

  6. Abrogation of Antibody-Induced Arthritis in Mice by a Self-Activating Viridin Prodrug and Association With Impaired Neutrophil and Endothelial Cell Function

    Science.gov (United States)

    Stangenberg, Lars; Ellson, Chris; Cortez-Retamozo, Virna; Ortiz-Lopez, Adriana; Yuan, Hushan; Blois, Joseph; Smith, Ralph A.; Yaffe, Michael B.; Weissleder, Ralph; Benoist, Christophe; Mathis, Diane; Josephson, Lee; Mahmood, Umar

    2009-01-01

    Objective To test a novel self-activating viridin (SAV) prodrug that slowly releases wortmannin, a potent phosphoinositide 3-kinase inhibitor, in a model of antibody-mediated inflammatory arthritis. Methods The SAV prodrug was administered to K/BxN mice or to C57BL/6 (B6) mice that had been injected with K/BxN serum. Ankle thickness was measured, and histologic changes were scored after a 10-day disease course (serum-transfer arthritis). Protease activity was measured by a near-infrared imaging approach using a cleavable cathepsin–selective probe. Further near-infrared imaging techniques were used to analyze early changes in vascular permeability after serum injection, as well as neutrophil–endothelial cell interactions. Neutrophil functions were assessed using an oxidative burst assay as well as a degranulation assay. Results SAV prevented ankle swelling in mice with serum-transfer arthritis in a dose-dependent manner. It also markedly reduced the extent of other features of arthritis, such as protease activity and histology scores for inflammation and joint erosion. Moreover, SAV was an effective therapeutic agent. The underlying mechanisms for the antiinflammatory activity were manifold. Endothelial permeability after serum injection was reduced, as was firm neutrophil attachment to endothelial cells. Endothelial cell activation by tumor necrosis factor α was impeded by SAV, as measured by the expression of vascular cell adhesion molecule. Crucial neutrophil functions, such as generation of reactive oxygen species and degranulation of protease-laden vesicles, were decreased by SAV administration. Conclusion A novel SAV prodrug proved strongly antiinflammatory in a murine model of antibody-induced inflammatory arthritis. Its activity could be attributed, at least in part, to the inhibition of neutrophil and endothelial cell functions. PMID:19644878

  7. Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling.

    Science.gov (United States)

    Fetterman, Jessica L; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Duess, Mai-Ann; Farb, Melissa G; Gokce, Noyan; Shirihai, Orian S; Hamburg, Naomi M; Vita, Joseph A

    2016-04-01

    Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for the removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n = 45) and non-diabetic controls (n = 41). p62 levels were higher in cells from diabetics (34.2 ± 3.6 vs. 20.0 ± 1.6, P = 0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (64.7 ± 22% to -47.8 ± 8%, P = 0.04) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P = 0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P = 0.01) in cells from diabetics to a lesser extent than in cells from controls (P = 0.04), suggesting ongoing, but inadequate autophagic clearance. Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Circulating endothelial cells are increased in chronic myeloid leukemia blast crisis

    Directory of Open Access Journals (Sweden)

    C.R.T. Godoy

    2015-06-01

    Full Text Available We measured circulating endothelial precursor cells (EPCs, activated circulating endothelial cells (aCECs, and mature circulating endothelial cells (mCECs using four-color multiparametric flow cytometry in the peripheral blood of 84 chronic myeloid leukemia (CML patients and 65 healthy controls; and vascular endothelial growth factor (VEGF by quantitative real-time PCR in 50 CML patients and 32 healthy controls. Because of an increase in mCECs, the median percentage of CECs in CML blast crisis (0.0146% was significantly higher than in healthy subjects (0.0059%, P0.05. In addition, VEGF gene expression was significantly higher in all phases of CML: 0.245 in blast crisis, 0.320 in the active phase, and 0.330 in chronic phase patients than it was in healthy subjects (0.145. In conclusion, CML in blast crisis had increased levels of CECs and VEGF gene expression, which may serve as markers of disease progression and may become targets for the management of CML.

  9. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    Science.gov (United States)

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  10. Evidence of endothelial inflammation, T cell activation, and T cell reallocation in uncomplicated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Elhassan, I M; Hviid, L; Satti, G

    1994-01-01

    endothelium. We measured plasma levels of soluble markers of endothelial inflammation and T cell activation in 32 patients suffering from acute, uncomplication P. falciparum malaria, as well as in 10 healthy, aparasitemic control donors. All donors were residents of a malaria-endemic area of Eastern State...... Sudan. In addition, we measured the T cell surface expression of the interleukin-2 receptor (CD25) and the lymphocyte function-associated antigen (LFA-1; CD11a/CD18). We found that the plasma levels of all inflammation and activation markers were significantly increased in the malaria patients compared...... with the control donors. In addition, we found a disease-induced depletion of T cells with high expression of the LFA-1 antigen, particularly in the CD4+ subset. The results obtained provide further support for the hypothesis of T cell reallocation to inflamed endothelium in acute P. falciparum malaria....

  11. Verocytotoxin-induced apoptosis of human microvascular endothelial cells.

    Science.gov (United States)

    Pijpers, A H; van Setten, P A; van den Heuvel, L P; Assmann, K J; Dijkman, H B; Pennings, A H; Monnens, L A; van Hinsbergh, V W

    2001-04-01

    The pathogenesis of the epidemic form of hemolytic uremic syndrome is characterized by endothelial cell damage. In this study, the role of apoptosis in verocytotoxin (VT)-mediated endothelial cell death in human glomerular microvascular endothelial cells (GMVEC), human umbilical vein endothelial cells, and foreskin microvascular endothelial cells (FMVEC) was investigated. VT induced apoptosis in GMVEC and human umbilical vein endothelial cells when the cells were prestimulated with the inflammatory mediator tumor necrosis factor-alpha (TNF-alpha). FMVEC displayed strong binding of VT and high susceptibility to VT under basal conditions, which made them suitable for the study of VT-induced apoptosis without TNF-alpha interference. On the basis of functional (flow cytometry and immunofluorescence microscopy using FITC-conjugated annexin V and propidium iodide), morphologic (transmission electron microscopy), and molecular (agarose gel electrophoresis of cellular DNA fragments) criteria, it was documented that VT induced programmed cell death in microvascular endothelial cells in a dose- and time-dependent manner. Furthermore, whereas partial inhibition of protein synthesis by VT was associated with a considerable number of apoptotic cells, comparable inhibition of protein synthesis by cycloheximide was not. This suggests that additional pathways, independent of protein synthesis inhibition, may be involved in VT-mediated apoptosis in microvascular endothelial cells. Specific inhibition of caspases by Ac-Asp-Glu-Val-Asp-CHO, but not by Ac-Tyr-Val-Ala-Asp-CHO, was accompanied by inhibition of VT-induced apoptosis in FMVEC and TNF-alpha-treated GMVEC. These data indicate that VT can induce apoptosis in human microvascular endothelial cells.

  12. The role of shear stress and altered tissue properties on endothelial to mesenchymal transformation and tumor-endothelial cell interaction.

    Science.gov (United States)

    Mina, Sara G; Huang, Peter; Murray, Bruce T; Mahler, Gretchen J

    2017-07-01

    Tumor development is influenced by stromal cells in aspects including invasion, growth, angiogenesis, and metastasis. Activated fibroblasts are one group of stromal cells involved in cancer metastasis, and one source of activated fibroblasts is endothelial to mesenchymal transformation (EndMT). EndMT begins when the endothelial cells delaminate from the cell monolayer, lose cell-cell contacts, lose endothelial markers such as vascular endothelial-cadherin (VE-cadherin), gain mesenchymal markers like alpha-smooth muscle actin (α-SMA), and acquire mesenchymal cell-like properties. A three-dimensional (3D) culture microfluidic device was developed for investigating the role of steady low shear stress (1 dyne/cm 2 ) and altered extracellular matrix (ECM) composition and stiffness on EndMT. Shear stresses resulting from fluid flow within tumor tissue are relevant to both cancer metastasis and treatment effectiveness. Low and oscillatory shear stress rates have been shown to enhance the invasion of metastatic cancer cells through specific changes in actin and tubulin remodeling. The 3D ECM within the device was composed of type I collagen and glycosaminoglycans (GAGs), hyaluronic acid and chondroitin sulfate. An increase in collagen and GAGs has been observed in the solid tumor microenvironment and has been correlated with poor prognosis in many different cancer types. In this study, it was found that ECM composition and low shear stress upregulated EndMT, including upregulation of mesenchymal-like markers (α-SMA and Snail) and downregulated endothelial marker protein and gene expression (VE-cadherin). Furthermore, this novel model was utilized to investigate the role of EndMT in breast cancer cell proliferation and migration. Cancer cell spheroids were embedded within the 3D ECM of the microfluidic device. The results using this device show for the first time that the breast cancer spheroid size is dependent on shear stress and that the cancer cell migration rate

  13. Kaempferol Inhibits Angiogenesis by Suppressing HIF-1α and VEGFR2 Activation via ERK/p38 MAPK and PI3K/Akt/mTOR Signaling Pathways in Endothelial Cells.

    Science.gov (United States)

    Kim, Gi Dae

    2017-12-01

    Kaempferol has been shown to inhibit vascular formation in endothelial cells. However, the underlying mechanisms are not fully understood. In the present study, we evaluated whether kaempferol exerts antiangiogenic effects by targeting extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathways in endothelial cells. Endothelial cells were treated with various concentrations of kaempferol for 24 h. Cell viability was determined by the 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay; vascular formation was analyzed by tube formation, wound healing, and mouse aortic ring assays. Activation of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor receptor 2 (VEGFR2), ERK/p38 MAPK, and PI3K/Akt/mTOR was analyzed by Western blotting. Kaempferol significantly inhibited cell migration and tube formation in endothelial cells, and suppressed microvessel sprouting in the mouse aortic ring assay. Moreover, kaempferol suppressed the activation of HIF-1α, VEGFR2, and other markers of ERK/p38 MAPK and PI3K/Akt/mTOR signaling pathways in endothelial cells. These results suggest that kaempferol inhibits angiogenesis by suppressing HIF-1α and VEGFR2 activation via ERK/p38 MAPK and PI3K/Akt/mTOR signaling in endothelial cells.

  14. The coffee diterpene kahweol inhibits tumor necrosis factor-α-induced expression of cell adhesion molecules in human endothelial cells

    International Nuclear Information System (INIS)

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang

    2006-01-01

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNFα-induced monocytes to endothelial cells and suppressed the TNFα-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNFα-induced JAK2-PI3K/Akt-NF-κB activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells

  15. The effect of nicotine on aortic endothelial cell turnover

    International Nuclear Information System (INIS)

    Zimmerman, Matthew; McGeachie, John

    1985-01-01

    Endothelial injury and increased mitotic activity are early features in the pathogenesis of intimal thickening in arteries. This study examines the effect of systemic nicotine on mitotic activity in endothelial cells. Nine adult mice were given nicotine in their drinking water for 5 weeks. The dose (5 mg/kg body wt/day) was equivalent to a human smoking 50-100 cigarettes/day. A group of 8 similar mice, not exposed to nicotine, was the control. At the end of the exposure period all mice were injected with ( 3 H)thymidine (1uCi/g body wt) and were killed 24 h later. After perfusion fixation, en-face preparations of aortic endothelium were processed for autoradiography. In nicotine-affected endothelium 0.46.+-0.11% (SEM) of cells were labeled, which was significantly higher (P<0.01) than in controls (0.14+-0.06). However, there was no difference in cell density between the groups. On this evidence it was concluded that the rate of cell loss, or cell turnover, was greater in nicotine-affected endothelium. Because other studies have shown that increased mitotic acitivity and cell loss are established features of endothelial injury, the present findings provide evidence in support of the hypothesis that nicotine contributes to the pathogenesis of arterial disease in smokers. (author)

  16. The chemotactic activity of beta-carotene in endothelial cell progenitors and human umbilical vein endothelial cells: A microarray analysis

    NARCIS (Netherlands)

    Polus, A.; Kiec-wilk, B.; Hartwich, J.; Balwierz, A.; Stachura, J.; Dyduch, G.; Laidler, P.; Zagajewski, J.; Langman, T.; Schmitz, G.; Goralcsky, R.; Wertz, K.; Riss, G.; Keijer, J.; Dembinska-Kiec, A.

    2006-01-01

    Objectives: Endothelial cells and their progenitors play an important role in angiogenesis that is essential for organogenesis and tissue remodelling, as well as for inflammatory responses and carcinogenesis in all periods of life. In the present study, the authors concentrated on the direct effect

  17. DEPTOR regulates vascular endothelial cell activation and proinflammatory and angiogenic responses.

    Science.gov (United States)

    Bruneau, Sarah; Nakayama, Hironao; Woda, Craig B; Flynn, Evelyn A; Briscoe, David M

    2013-09-05

    The maintenance of normal tissue homeostasis and the prevention of chronic inflammatory disease are dependent on the active process of inflammation resolution. In endothelial cells (ECs), proinflammation results from the activation of intracellular signaling responses and/or the inhibition of endogenous regulatory/pro-resolution signaling networks that, to date, are poorly defined. In this study, we find that DEP domain containing mTOR interacting protein (DEPTOR) is expressed in different microvascular ECs in vitro and in vivo, and using a small interfering RNA (siRNA) knockdown approach, we find that it regulates mammalian target of rapamycin complex 1 (mTORC1), extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 1 activation in part through independent mechanisms. Moreover, using limited gene arrays, we observed that DEPTOR regulates EC activation including mRNA expression of the T-cell chemoattractant chemokines CXCL9, CXCL10, CXCL11, CX3CL1, CCL5, and CCL20 and the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (P < .05). DEPTOR siRNA-transfected ECs also bound increased numbers of peripheral blood mononuclear cells (P < .005) and CD3+ T cells (P < .005) in adhesion assays in vitro and had increased migration and angiogenic responses in spheroid sprouting (P < .01) and wound healing (P < .01) assays. Collectively, these findings define DEPTOR as a critical upstream regulator of EC activation responses and suggest that it plays an important role in endogenous mechanisms of anti-inflammation and pro-resolution.

  18. Strategies to reverse endothelial progenitor cell dysfunction in diabetes.

    Science.gov (United States)

    Petrelli, Alessandra; Di Fenza, Raffaele; Carvello, Michele; Gatti, Francesca; Secchi, Antonio; Fiorina, Paolo

    2012-01-01

    Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial), their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs). Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  19. Strategies to Reverse Endothelial Progenitor Cell Dysfunction in Diabetes

    Directory of Open Access Journals (Sweden)

    Alessandra Petrelli

    2012-01-01

    Full Text Available Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial, their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs. Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  20. Endothelial induced EMT in breast epithelial cells with stem cell properties

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla

    2011-01-01

    endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression...... of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D......492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close...

  1. Sphingosine kinase inhibition alleviates endothelial permeability induced by thrombin and activated neutrophils.

    Science.gov (United States)

    Itagaki, Kiyoshi; Zhang, Qin; Hauser, Carl J

    2010-04-01

    Inflammation and microvascular thrombosis are interrelated causes of acute lung injury in the systemic inflammatory response syndrome. Neutrophils (polymorphonuclear neutrophil [PMN]) and endothelial cells (EC) activated by systemic inflammatory response syndrome interact to increase pulmonary vascular permeability, but the interactions between PMN and EC are difficult to study. Recently, we reported that sphingosine 1-phosphate is a second messenger eliciting store-operated calcium entry (SOCE) in response to inflammatory agonists in both PMN and EC. Store-operated calcium entry is therefore a target mechanism for the therapeutic modulation of inflammatory PMN-EC interactions. Here, we isolated, modeled, and studied the effects of pharmacologic SOCE inhibition using real-time systems to monitor EC permeability after exposure to activated PMN. We created systems to continuously assess permeability of human pulmonary artery endothelial cells and human microvascular endothelial cells from lung. Endothelial cells show increased permeability after challenge by activated PMN. Such permeability increases can be attenuated by exposure of the cocultures to sphingosine kinase (SK) inhibitors (SKI-2, N,N-dimethylsphingosine [DMS]) or Ca2+ entry inhibitors (Gd3+, MRS-1845). Human microvascular endothelial cells from lung pretreated with SKI-2 or DMS showed decreased permeability when later exposed to activated PMN. Likewise, when PMNs were activated with thapsigargin (TG) in the presence of SKI-2, DMS, Gd, or MRS-1845, their ability to cause EC permeability subsequently was reduced. SKI-2 also inhibited the activation of human pulmonary artery ECs by thrombin. These studies will provide a firm mechanistic foundation for understanding how systemic SOCE inhibition may be used to prevent acute lung injury in vivo.

  2. Nuclear IL-33 is a transcriptional regulator of NF-{kappa}B p65 and induces endothelial cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeon-Sook; Park, Jeong Ae; Kim, Jihye; Rho, Seung-Sik; Park, Hyojin [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Young-Myeong [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of); Kwon, Young-Guen, E-mail: ygkwon@yonsei.ac.kr [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer IL-33 as nuclear factor regulated expression of ICAM-1 and VCAM-1. Black-Right-Pointing-Pointer Nuclear IL-33 increased the transcription of NF-{kappa}B p65 by binding to the p65 promoter. Black-Right-Pointing-Pointer Nuclear IL-33 controls NF-{kappa}B-dependent inflammatory responses. -- Abstract: Interleukin (IL)-33, an IL-1 family member, acts as an extracellular cytokine by binding its cognate receptor, ST2. IL-33 is also a chromatin-binding transcriptional regulator highly expressed in the nuclei of endothelial cells. However, the function of IL-33 as a nuclear factor is poorly defined. Here, we show that IL-33 is a novel transcriptional regulator of the p65 subunit of the NF-{kappa}B complex and is involved in endothelial cell activation. Quantitative reverse transcriptase PCR and Western blot analyses indicated that IL-33 mediates the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in endothelial cells basally and in response to tumor necrosis factor-{alpha}-treatment. IL-33-induced ICAM-1/VCAM-1 expression was dependent on the regulatory effect of IL-33 on the nuclear factor (NF)-{kappa}B pathway; NF-{kappa}B p65 expression was enhanced by IL-33 overexpression and, conversely, reduced by IL-33 knockdown. Moreover, NF-{kappa}B p65 promoter activity and chromatin immunoprecipitation analysis revealed that IL-33 binds to the p65 promoter region in the nucleus. Our data provide the first evidence that IL-33 in the nucleus of endothelial cells participates in inflammatory reactions as a transcriptional regulator of NF-{kappa}B p65.

  3. 7-ketocholesterol inhibits Na,K-ATPase activity by decreasing expression of its α1-subunit and membrane fluidity in human endothelial cells.

    Science.gov (United States)

    Duran, M J; Pierre, S V; Lesnik, P; Pieroni, G; Bourdeaux, M; Dignat-Georges, F; Sampol, J; Maixent, J M

    2010-11-09

    As cholesterol, oxysterols, can insert the cell membrane and thereby modify the functions of membrane-bound proteins. The Na,K-ATPase is very sensitive to its lipid environment, seems to be involved in important endothelial functions as the regulation of nitric oxide (NO) release. The effects of 7-ketocholesterol , an oxysterol present in oxidized LDL, was investigated on Na,K-ATPase in isolated human endothelial cells. Cells were incubated 24h with lecithin-, cholesterol- or 7-ketocholesterol liposomes (6 μg/ml). K+-stimulated paranitrophenyl phosphatase activity, reflecting Na,K-ATPase activity, was evaluated as well as cell viability and lipoperoxidation. The expression of Na,K-ATPase subunits mRNAs and membrane fluidity were also investigated. As Na,K-ATPase and nitric oxide seem to be related, we determined the production of NO and the expression of endothelial NO synthase mRNAs. Na,K-ATPase activity was strongly decreased by 7-ketocholesterol. This decrease, not related to lipoperoxidation, was correlated with a decreased expression of the Na,K-ATPase α1-subunit messengers and with rigidity of plasma membranes. Cholesterol induced similar effects but was less potent than 7-ketocholesterol. Basal NO production and expression of endothelial NO synthase mRNAs were not modified by 7-ketocholesterol. Our new findings demonstrate that 7-ketocholesterol, used at non toxic doses, was very potent to disrupt the transport of ions by Na,K-ATPase and perturb membrane structure. These data demonstrate that 7-ketocholesterol induces endothelial dysfunction without cell death that may contribute to early events in atherosclerosis.

  4. Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor.

    Science.gov (United States)

    Han, Jingyan; Shuvaev, Vladimir V; Muzykantov, Vladimir R

    2011-07-01

    Reactive oxygen species (ROS) superoxide anion (O(2)()) and hydrogen peroxide (H(2)O(2)) produced by activated leukocytes and endothelial cells in sites of inflammation or ischemia cause endothelial barrier dysfunction that may lead to tissue edema. Antioxidant enzymes (AOEs) catalase and superoxide dismutase (SOD) conjugated with antibodies to platelet-endothelial cell adhesion molecule-1 (PECAM-1) specifically bind to endothelium, quench the corresponding ROS, and alleviate vascular oxidative stress and inflammation. In the present work, we studied the effects of anti-PECAM/catalase and anti-PECAM/SOD conjugates on the abnormal permeability manifested by transendothelial electrical resistance decline, increased fluorescein isothiocyanate-dextran influx, and redistribution of vascular endothelial-cadherin in human umbilical vein endothelial cell (HUVEC) monolayers. Anti-PECAM/catalase protected HUVEC monolayers against H(2)O(2)-induced endothelial barrier dysfunction. Polyethylene glycol-conjugated catalase exerted orders of magnitude lower endothelial uptake and no protective effect, similarly to IgG/catalase. Anti-PECAM/catalase, but not anti-PECAM/SOD, alleviated endothelial hyperpermeability caused by exposure to hypoxanthine/xanthine oxidase, implicating primarily H(2)O(2) in the disruption of the endothelial barrier in this model. Thrombin-induced endothelial permeability was not affected by treatment with anti-PECAM/AOEs or the NADPH oxidase inhibitor apocynin or overexpression of AOEs, indicating that the endogenous ROS play no key role in thrombin-mediated endothelial barrier dysfunction. In contrast, anti-PECAM/SOD, but not anti-PECAM/catalase, inhibited a vascular endothelial growth factor (VEGF)-induced increase in endothelial permeability, identifying a key role of endogenous O(2)() in the VEGF-mediated regulation of endothelial barrier function. Therefore, AOEs targeted to endothelial cells provide versatile molecular tools for testing the roles of

  5. Magnetizable stent-grafts enable endothelial cell capture

    Energy Technology Data Exchange (ETDEWEB)

    Tefft, Brandon J. [Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (United States); Uthamaraj, Susheil [Division of Engineering, Mayo Clinic, Rochester, MN (United States); Harburn, J. Jonathan [School of Medicine, Pharmacy and Health, Durham University, Stockton-on-Tees (United Kingdom); Hlinomaz, Ota [Department of Cardioangiology, St. Anne' s University Hospital, Brno (Czech Republic); Lerman, Amir [Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (United States); Dragomir-Daescu, Dan [Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN (United States); Sandhu, Gurpreet S., E-mail: sandhu.gurpreet@mayo.edu [Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (United States)

    2017-04-01

    Emerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coated these stents with electrospun polyurethane nanofibers to fabricate prototype stent-grafts. Facilitated endothelialization may help improve the healing of arteries treated with stent-grafts, reduce the risk of thrombosis and restenosis, and enable small-caliber applications. When placed in a SPION-labeled endothelial cell suspension in the presence of an external magnetic field, magnetized stent-grafts successfully captured cells to the surface regions adjacent to the stent struts. Implantation within the coronary circulation of pigs (n=13) followed immediately by SPION-labeled autologous endothelial cell delivery resulted in widely patent devices with a thin, uniform neointima and no signs of thrombosis or inflammation at 7 days. Furthermore, the magnetized stent-grafts successfully captured and retained SPION-labeled endothelial cells to select regions adjacent to stent struts and between stent struts, whereas the non-magnetized control stent-grafts did not. Early results with these prototype devices are encouraging and further refinements will be necessary in order to achieve more uniform cell capture and complete endothelialization. Once optimized, this approach may lead to more rapid and complete healing of vascular stent-grafts with a concomitant improvement in long-term device performance. - Highlights: • Magnetic stent-grafts were made from 2205 steel stents and polyurethane nanofibers. • Stent-grafts remained patent and formed a thin and uniform neointima when implanted. • Stent-grafts captured endothelial cells labeled with magnetic nanoparticles.

  6. Cell-type specific DNA-protein interactions at the tissue-type plasminogen activator promoter in human endothelial and HeLa cells in vivo and in vitro

    NARCIS (Netherlands)

    Arts, J.; Herr, I.; Lansink, M.; Angel, P.; Kooistra, T.

    1997-01-01

    Tissue-type plasminogen activator (t-PA) gene expression in human endothelial cells and HeLa cells is stimulated by the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) at the level of transcription. To study the mechanism of transcriptional regulation, we have characterized a

  7. Nitric oxide synthesis-promoting effects of valsartan in human umbilical vein endothelial cells via the Akt/adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway

    Directory of Open Access Journals (Sweden)

    Yingshuai Zhao

    2017-05-01

    Full Text Available Valsartan (VAL, an antagonist of angiotensin II receptor type 1, has antihypertensive and multiple cardiovascular protective effects. The pleiotropic functions of VAL are related to the increased synthesis and biological activity of intravascular nitric oxide (NO. In this study, the role and mechanisms of VAL in the synthesis of NO were examined in human umbilical vein endothelial cells (HUVECs. Ten µmol/L of VAL was used to treat EA.hy926 cells for 30 minutes, 1, 3, 6, 12, and 24 hours, and three concentrations of VAL (i.e., 10, 1, and 0.1 µmol/L were used to treat EA.hy926 cells for 24 hours. The cells were divided into five groups: control, VAL, VAL + Compound C (adenosine monophosphate-activated protein kinase [AMPK] inhibitor, 1 µmol/L, VAL + LY294002 (Akt [protein kinase B] inhibitor, 10 µmol/L, and VAL + L-nitro-arginine methyl ester (L-NAME, endothelial NO synthase [eNOS] inhibitor, 500 µmol/L groups. The NO content in the VAL-treated HUVEC line (EA.hy926 was detected using the nitrate reductase method, and western blot was used to detect the phosphorylation of Akt, AMPK, and eNOS, as well as the changes in total protein levels. VAL increased NO synthesis in EA.hy926 cells in time- and dose-dependent manners (p < 0.05 and the intracellular phosphorylation levels of Akt, AMPK, and eNOS at the corresponding time points. LY294002, Compound C, and L-NAME could inhibit the VAL-promoted NO synthesis. VAL activated Akt, AMPK, and eNOS, thus promoting NO synthesis and playing a protective role in endothelial cells. These results partially explained the mechanisms underlying the cardiovascular protective effects of VAL.

  8. Endothelial progenitor cells physiology and metabolic plasticity in brain angiogenesis and blood-brain barrier modeling

    Directory of Open Access Journals (Sweden)

    Natalia Malinovskaya

    2016-12-01

    Full Text Available Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons. Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.

  9. Polymerisation of fibrin αC-domains promotes endothelial cell migration and proliferation.

    Science.gov (United States)

    Yakovlev, S; Mikhailenko, I; Tsurupa, G; Belkin, A M; Medved, L

    2014-12-01

    Upon conversion of fibrinogen into fibrin, fibrinogen αC-domains containing the RGD recognition motif form ordered αC polymers. Our previous study revealed that polymerisation of these domains promotes integrin-dependent adhesion and spreading of endothelial cells, as well as integrin-mediated activation of the FAK and ERK1/2 signalling pathways. The major goal of this study was to test the impact of αC-domain polymerisation on endothelial cell migration and proliferation during wound healing, and to clarify the mechanism underlying superior activity of αC polymers toward endothelial cells. In an in vitro wound healing assay, confluent endothelial cell monolayers on tissue culture plates coated with the αC monomer or αC polymers were wounded by scratching and wound closure was monitored by time-lapse videomicroscopy. Although the plates were coated with equal amounts of αC species, as confirmed by ELISA, wound closure by the cells occurred much faster on αC polymers, indicating that αC-domain polymerisation promotes cell migration and proliferation. In agreement, endothelial cell proliferation was also more efficient on αC polymers, as revealed by cell proliferation assay. Wound closure on both types of substrates was equally inhibited by the integrin-blocking GRGDSP peptide and a specific antagonist of the ERK1/2 signalling pathway. In contrast, blocking the FAK signaling pathway by a specific antagonist decreased wound closure only on αC polymers. These results indicate that polymerisation of the αC-domains enhances integrin-dependent endothelial cell migration and proliferation mainly through the FAK signalling pathway. Furthermore, clustering of integrin-binding RGD motifs in αC polymers is the major mechanism triggering these events.

  10. Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury

    International Nuclear Information System (INIS)

    Hernandez-Montes, Eva; Pollard, Susan E.; Vauzour, David; Jofre-Montseny, Laia; Rota, Cristina; Rimbach, Gerald; Weinberg, Peter D.; Spencer, Jeremy P.E.

    2006-01-01

    Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of γ-glutamylcysteine synthetase-heavy subunit (γ-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis

  11. Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines.

    Science.gov (United States)

    Rops, Angelique L; van der Vlag, Johan; Jacobs, Cor W; Dijkman, Henry B; Lensen, Joost F; Wijnhoven, Tessa J; van den Heuvel, Lambert P; van Kuppevelt, Toin H; Berden, Jo H

    2004-12-01

    The culture and establishment of glomerular cell lines has proven to be an important tool for the understanding of glomerular cell functions in glomerular physiology and pathology. Especially, the recent establishment of a conditionally immortalized visceral epithelial cell line has greatly boosted the research on podocyte biology. Glomeruli were isolated from H-2Kb-tsA58 transgenic mice that contain a gene encoding a temperature-sensitive variant of the SV40 large tumor antigen, facilitating proliferative growth at 33 degrees C and differentiation at 37 degrees C. Glomerular endothelial cells were isolated from glomerular outgrowth by magnetic beads loaded with CD31, CD105, GSL I-B4, and ULEX. Clonal cell lines were characterized by immunofluorescence staining with antibodies/lectins specific for markers of endothelial cells, podocytes, and mesangial cells. Putative glomerular endothelial cell lines were analyzed for (1) cytokine-induced expression of adhesion molecules; (2) tube formation on Matrigel coating; and (3) the presence of fenestrae. As judged by immunostaining for Wilms tumor-1, smooth muscle actin (SMA), podocalyxin, and von Willebrand factor (vWF), we obtained putative endothelial, podocyte and mesangial cell lines. The mouse glomerular endothelial cell clone #1 (mGEnC-1) was positive for vWF, podocalyxin, CD31, CD105, VE-cadherin, GSL I-B4, and ULEX, internalized acetylated-low-density lipoprotein (LDL), and showed increased expression of adhesion molecules after activation with proinflammatory cytokines. Furthermore, mGEnC-1 formed tubes and contained nondiaphragmed fenestrae. The mGEnC-1 represents a conditionally immortalized cell line with various characteristics of differentiated glomerular endothelial cells when cultured at 37 degrees C. Most important, mGEnC-1 contains nondiaphragmed fenestrae, which is a unique feature of glomerular endothelial cells.

  12. Endogenous Vascular Endothelial Growth Factor-A (VEGF-A) Maintains Endothelial Cell Homeostasis by Regulating VEGF Receptor-2 Transcription*

    Science.gov (United States)

    E, Guangqi; Cao, Ying; Bhattacharya, Santanu; Dutta, Shamit; Wang, Enfeng; Mukhopadhyay, Debabrata

    2012-01-01

    Vascular endothelial growth factor A (VEGF-A) is one of the most important factors controlling angiogenesis. Although the functions of exogenous VEGF-A have been widely studied, the roles of endogenous VEGF-A remain unclear. Here we focused on the mechanistic functions of endogenous VEGF-A in endothelial cells. We found that it is complexed with VEGF receptor 2 (VEGFR-2) and maintains a basal expression level for VEGFR-2 and its downstream signaling activation. Endogenous VEGF-A also controls expression of key endothelial specific genes including VEGFR-2, Tie-2, and vascular endothelial cadherin. Of importance, endogenous VEGF-A differs from exogenous VEGF-A by regulating VEGFR-2 transcription through mediation of FoxC2 binding to the FOX:ETS motif, and the complex formed by endogenous VEGF-A with VEGFR-2 is localized within the EEA1 (early endosome antigen 1) endosomal compartment. Taken together, our results emphasize the importance of endogenous VEGF-A in endothelial cells by regulating key vascular proteins and maintaining the endothelial homeostasis. PMID:22167188

  13. The apelin receptor influences biomechanical and morphological properties of endothelial cells.

    Science.gov (United States)

    Strohbach, Anne; Pennewitz, Malte; Glaubitz, Michael; Palankar, Raghavendra; Groß, Stefan; Lorenz, Florian; Materzok, Ilka; Rong, Alena; Busch, Mathias C; Felix, Stephan B; Delcea, Mihaela; Busch, Raila

    2018-08-01

    The adaption of endothelial cells to local flow conditions is a multifunctional process which leads to distinct alterations in cell shape, the subcellular distribution of structural proteins, and cellular function. G-protein-coupled receptors (GPCRs) have been identified to be fundamentally involved in such processes. Recently, we and others have shown that the expression of the endothelial GPCR apelin receptor (APJ) is regulated by fluid flow and that activation of APJ participates in signaling pathways which are related to processes of mechanotransduction. The present study aims to illuminate these findings by further visualization of APJ function. We show that APJ is located to the cellular junctions and might thus be associated with platelet endothelial cell adhesion molecule-1 (PECAM-1) in human umbilical vein endothelial cells (HUVEC). Furthermore, siRNA-mediated silencing of APJ expression influences the shear-induced adaption of HUVEC in terms of cytoskeletal remodeling, cellular elasticity, cellular motility, attachment, and distribution of adhesion complexes. Taken together, our results demonstrate that APJ is crucial for complemented endothelial adaption to local flow conditions. © 2018 Wiley Periodicals, Inc.

  14. Nipah virus infection and glycoprotein targeting in endothelial cells

    Directory of Open Access Journals (Sweden)

    Maisner Andrea

    2010-11-01

    Full Text Available Abstract Background The highly pathogenic Nipah virus (NiV causes fatal respiratory and brain infections in animals and humans. The major hallmark of the infection is a systemic endothelial infection, predominantly in the CNS. Infection of brain endothelial cells allows the virus to overcome the blood-brain-barrier (BBB and to subsequently infect the brain parenchyma. However, the mechanisms of NiV replication in endothelial cells are poorly elucidated. We have shown recently that the bipolar or basolateral expression of the NiV surface glycoproteins F and G in polarized epithelial cell layers is involved in lateral virus spread via cell-to-cell fusion and that correct sorting depends on tyrosine-dependent targeting signals in the cytoplasmic tails of the glycoproteins. Since endothelial cells share many characteristics with epithelial cells in terms of polarization and protein sorting, we wanted to elucidate the role of the NiV glycoprotein targeting signals in endothelial cells. Results As observed in vivo, NiV infection of endothelial cells induced syncytia formation. The further finding that infection increased the transendothelial permeability supports the idea of spread of infection via cell-to-cell fusion and endothelial cell damage as a mechanism to overcome the BBB. We then revealed that both glycoproteins are expressed at lateral cell junctions (bipolar, not only in NiV-infected primary endothelial cells but also upon stable expression in immortalized endothelial cells. Interestingly, mutation of tyrosines 525 and 542/543 in the cytoplasmic tail of the F protein led to an apical redistribution of the protein in endothelial cells whereas tyrosine mutations in the G protein had no effect at all. This fully contrasts the previous results in epithelial cells where tyrosine 525 in the F, and tyrosines 28/29 in the G protein were required for correct targeting. Conclusion We conclude that the NiV glycoprotein distribution is responsible for

  15. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    International Nuclear Information System (INIS)

    Rousseau, Matthieu; Gaugler, Marie-Hélène; Rodallec, Audrey; Bonnaud, Stéphanie; Paris, François; Corre, Isabelle

    2011-01-01

    Highlights: ► We explore the role of RhoA in endothelial cell response to ionizing radiation. ► RhoA is rapidly activated by single high-dose of radiation. ► Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. ► Radiation-induced apoptosis does not require the RhoA/ROCK pathway. ► Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.

  16. Biocompatibility of Poly-ε-caprolactone-hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells

    Directory of Open Access Journals (Sweden)

    Wooley Paul H

    2009-02-01

    Full Text Available Abstract Background Tissue-engineered bone may be developed by seeding the cells capable of both osteogenesis and vascularization on biocompatible composite scaffolds. The current study investigated the performance of mice bone marrow-derived osteogenic cells and endothelial cells as seeded on hydroxyapatite (HA and poly-ε-caprolactone (PCL composite scaffolds. Methods Mononuclear cells were induced to osteoblasts and endothelial cells respectively, which were defined by the expression of osteocalcin, alkaline phosphatase (ALP, and deposits of calcium-containing crystal for osteoblasts, or by the expression of vascular endothelial growth factor receptor-2 (VEGFR-2 and von Willebrand factor (vWF, and the formation of a capillary network in Matrigel™ for endothelial cells. Both types of cell were seeded respectively on PCL-HA scaffolds at HA to PCL weight ratio of 1:1, 1:4, or 0:1 and were evaluated using scanning electron microscopy, ALP activity (of osteoblasts and nitric oxide production (of endothelial cells plus the assessment of cell viability. Results The results indicated that HA led to a positive stimulation of osteoblasts viability and ALP activity, while HA showed less influence on endothelial cells viability. An elevated nitric oxide production of endothelial cells was observed in HA-containing group. Conclusion Supplement of HA into PCL improved biocompatible for bone marrow-derived osteoblasts and endothelial cells. The PCL-HA composite integrating with two types of cells may provide a useful system for tissue-engineered bone grafts with vascularization.

  17. Radioprotection of mouse CNS endothelial cells in vivo

    International Nuclear Information System (INIS)

    Lyubimova, N.; Coultas, P.; Martin, R.

    1996-01-01

    Full text: Radioprotection using the minor groove binding DNA ligand Hoechst 33342 has been demonstrated in vitro, and more recently in vivo, in mouse lung. Intravenous administration was used for the lung studies, and both endothelial and alveolar epithelial cells-showed good up-take. Radiation damage to the endothelial cell population has also been postulated as important in late developing radionecrosis of spinal cord and brain. Endothelial cell density in brain can be readily determined by a fluorescent-histochemical technique. Treatment with a monoamine oxidase inhibitor and subsequent injection with L-DOPA results in an accumulation of dopamine (DA) in CNS endothelial cells. DA is converted to a fluorophore by exposure to paraformaldehyde, and cell numbers assayed by fluorescence microscopy. Earlier studies used this technique to monitor post-irradiation changes in endothelial cell density in rodent brain and showed the loss, within 24 hours, of a sensitive subpopulation comprising about 15% of the endothelial cells. Ten minutes after intravenous injection of Hoechst 33342 (80mg/kg) the ligand is confined by its limited penetration to the endothelial cells in mouse brain. When we irradiated at this time, there was protection against early endothelial cell loss. Ablation of the sensitive subpopulation in unprotected mice takes place over a dose range of 1 to 3 Gy γ-rays, but doses between 12 to 20 Gy are required in the presence of ligand. This protection equates to a very high dose modification factor of about 7 and possibly reflects a suppression of apoptosis in the sensitive endothelial subpopulation. The extent to which there is enhanced survival in the endothelial population as a whole and how the observed protection affects late CNS necrosis development has yet to be determined. However present results clearly show potential for the use of DNA-binding radioprotectors with limited penetration for investigations into the relative significance of

  18. Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea

    Science.gov (United States)

    Lopes, Flavia C. M.; Traina, Fabiola; Almeida, Camila B.; Leonardo, Flavia C.; Franco-Penteado, Carla F.; Garrido, Vanessa T.; Colella, Marina P.; Soares, Raquel; Olalla-Saad, Sara T.; Costa, Fernando F.; Conran, Nicola

    2015-01-01

    As hypoxia-induced inflammatory angiogenesis may contribute to the manifestations of sickle cell disease, we compared the angiogenic molecular profiles of plasma from sickle cell disease individuals and correlated these with in vitro endothelial cell-mediated angiogenesis-stimulating activity and in vivo neovascularization. Bioplex demonstrated that plasma from patients with steady-state sickle cell anemia contained elevated concentrations of pro-angiogenic factors (angiopoietin-1, basic fibroblast growth factor, vascular endothelial growth factor, vascular endothelial growth factor-D and placental growth factor) and displayed potent pro-angiogenic activity, significantly increasing endothelial cell proliferation, migration and capillary-like structure formation. In vivo neovascularization of Matrigel plugs was significantly greater in sickle cell disease mice than in non-sickle cell disease mice, consistent with an up-regulation of angiogenesis in the disease. In plasma from patients with hemoglobin SC disease without proliferative retinopathy, anti-angiogenic endostatin and thrombospondin-2 were significantly elevated. In contrast, plasma from hemoglobin SC individuals with proliferative retinopathy had a pro-angiogenic profile and more significant effects on endothelial cell proliferation and capillary formation than plasma from patients without retinopathy. Hydroxyurea therapy was associated with significant reductions in plasma angiogenic factors and inhibition of endothelial cell-mediated angiogenic mechanisms and neovascularization. Thus, individuals with sickle cell anemia or hemoglobin SC disease with retinopathy present a highly angiogenic circulating milieu, capable of stimulating key endothelial cell-mediated angiogenic mechanisms. Combination anti-angiogenic therapy to prevent the progression of unregulated neovascularization and associated manifestations in sickle cell disease, such as pulmonary hypertension, may be indicated; furthermore, the

  19. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    International Nuclear Information System (INIS)

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun

    2006-01-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), Δp85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways

  20. Endothelial cells: From innocent bystanders to active participants in immune responses.

    Science.gov (United States)

    Al-Soudi, A; Kaaij, M H; Tas, S W

    2017-09-01

    The endothelium is crucially important for the delivery of oxygen and nutrients throughout the body under homeostatic conditions. However, it also contributes to pathology, including the initiation and perpetuation of inflammation. Understanding the function of endothelial cells (ECs) in inflammatory diseases and molecular mechanisms involved may lead to novel approaches to dampen inflammation and restore homeostasis. In this article, we discuss the various functions of ECs in inflammation with a focus on pathological angiogenesis, attraction of immune cells, antigen presentation, immunoregulatory properties and endothelial-to-mesenchymal transition (EndMT). We also review the current literature on approaches to target these processes in ECs to modulate immune responses and advance anti-inflammatory therapies. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  1. Adhesion and endothelialization of endothelial cells on the surface of endovascular stents by the novel rotational culture of cells

    International Nuclear Information System (INIS)

    Tang Chaojun; Wang Guixue; Cao Yi; Wu Xue; Xie Xiang; Xiao Li

    2008-01-01

    Recent researches indicate that the initial event in the implantation of endovascular stents involves mechanical injury to the vessel wall. Confluent endothelialization of vascular grafts in vitro before implantation has been suggested as a way to reduce injury of the blood vessel. The purpose of this study is to establish a useful way to improve the adhesion of endothelial cells and accelerate endothelialization on the surface of endovascular stents by a novel rotational culture device. Numerical simulation was used to predict the shear stress on the surface of stents. The number of cellular adhesion was calculated by cell counting, the cell growth was observed by scanning electron microscope and fluorescence microscope. Numerical simulation results showed that the stents was exposed to shear stress of 2.66 x 10 -3 to 8.88 x 10 -2 Pa. Rotational culture of human umbilical vein endothelial cells could enhance the adhesion of cells and accelerate endothelialization on the surface of stents when the culture conditions for EC adhesion were intermediate rotation speed, higher dynamic incubation times, lower cell densities

  2. Differentiation state determines neural effects on microvascular endothelial cells

    International Nuclear Information System (INIS)

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-01-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. ► Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. ► Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell production of nitric oxide. ► Neural progenitor cells and dorsal root

  3. Tumor and Endothelial Cell Hybrids Participate in Glioblastoma Vasculature

    Directory of Open Access Journals (Sweden)

    Soufiane El Hallani

    2014-01-01

    Full Text Available Background. Recently antiangiogenic therapy with bevacizumab has shown a high but transient efficacy in glioblastoma (GBM. Indeed, GBM is one of the most angiogenic human tumors and endothelial proliferation is a hallmark of the disease. We therefore hypothesized that tumor cells may participate in endothelial proliferation of GBM. Materials and Methods. We used EGFR FISH Probe to detect EGFR amplification and anti-CD31, CD105, VE-cadherin, and vWF to identify endothelial cells. Endothelial and GBM cells were grown separately, labeled with GFP and DsRed lentiviruses, and then cocultured with or without contact. Results. In a subset of GBM tissues, we found that several tumor endothelial cells carry EGFR amplification, characteristic of GBM tumor cells. This observation was reproduced in vitro: when tumor stem cells derived from GBM were grown in the presence of human endothelial cells, a fraction of them acquired endothelial markers (CD31, CD105, VE-cadherin, and vWF. By transduction with GFP and DsRed expressing lentiviral vectors, we demonstrate that this phenomenon is due to cell fusion and not transdifferentiation. Conclusion. A fraction of GBM stem cells thus has the capacity to fuse with endothelial cells and the resulting hybrids may participate in tumor microvascular proliferation and in treatment resistance.

  4. Mechanotransduction in Endothelial Cells Studied with Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chien Shu [Departments of Bioengineering and Medicine and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0427 (United States)

    2011-01-01

    Mechanotransduction involves the conversion of mechanical stimuli to intracellular signaling to modulate gene and protein expressions and hence cellular functions in endothelial cells, thus playing importance roles in the regulation of homeostasis in health and disease. The aim of this paper is to investigate the dynamics of mechanotransduction in endothelial cells by the use of fluorescent resonance energy transfer (FRET) to study the temporal and spatial activation of Src kinase and focal adhesion kinase, both of which play critical roles in many cellular processes. The results have contributed to the elucidation of the roles of these two important signaling molecules and their interactions in mediating mechanotransduction.

  5. Syncytin is involved in breast cancer-endothelial cell fusions

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Holck, S.; Christensen, I.J.

    2006-01-01

    Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer...... specimens express syncytin, an endogenous retroviral envelope protein, previously implicated in fusions between placental trophoblast cells. Additionally, endothelial and cancer cells are shown to express ASCT-2, a receptor for syncytin. Syncytin antisense treatment decreases syncytin expression...... and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions....

  6. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    Directory of Open Access Journals (Sweden)

    Valgardur Sigurdsson

    Full Text Available Epithelial to mesenchymal transition (EMT is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad to N-Cadherin (N-Cad and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high/CD24(low ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  7. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    Science.gov (United States)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J R; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A; Petersen, Ole William; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  8. ITE inhibits growth of human pulmonary artery endothelial cells.

    Science.gov (United States)

    Pang, Ling-Pin; Li, Yan; Zou, Qing-Yun; Zhou, Chi; Lei, Wei; Zheng, Jing; Huang, Shi-An

    2017-10-01

    Pulmonary arterial hypertension (PAH), a deadly disorder is associated with excessive growth of human pulmonary artery endothelial (HPAECs) and smooth muscle (HPASMCs) cells. Current therapies primarily aim at promoting vasodilation, which only ameliorates clinical symptoms without a cure. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an endogenous aryl hydrocarbon receptor (AhR) ligand, and mediates many cellular function including cell growth. However, the roles of ITE in human lung endothelial cells remain elusive. Herein, we tested a hypothesis that ITE inhibits growth of human pulmonary artery endothelial cells via AhR. Immunohistochemistry was performed to localize AhR expression in human lung tissues. The crystal violet method and MTT assay were used to determine ITE's effects on growth of HPAECs. The AhR activation in HPAECs was confirmed using Western blotting and RT-qPCR. The role of AhR in ITE-affected proliferation of HPAECs was assessed using siRNA knockdown method followed by the crystal violet method. Immunohistochemistry revealed that AhR was present in human lung tissues, primarily in endothelial and smooth muscle cells of pulmonary veins and arteries, as well as in bronchial and alveolar sac epithelia. We also found that ITE dose- and time-dependently inhibited proliferation of HPAECs with a maximum inhibition of 83% at 20 µM after 6 days of treatment. ITE rapidly decreased AhR protein levels, while it increased mRNA levels of cytochrome P450 (CYP), family 1, member A1 (CYP1A1) and B1 (CYP1B1), indicating activation of the AhR/CYP1A1 and AhR/CYP1B1 pathways in HPAECs. The AhR siRNA significantly suppressed AhR protein expression, whereas it did not significantly alter ITE-inhibited growth of HPAECs. ITE suppresses growth of HPAECs independent of AhR, suggesting that ITE may play an important role in preventing excessive growth of lung endothelial cells.

  9. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells

    OpenAIRE

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M.; Eguchi, Satoru; Brown, Michael D.; Park, Joon-Young

    2015-01-01

    This study assesses effects of aerobic exercise training on the release of microparticles from endothelial cells and corroborates these findings using an in vitro experimental exercise stimulant, laminar shear stress. Furthermore, this study demonstrated that shear stress-induced mitochondrial biogenesis mediates these effects against endothelial cell activation and injury.

  10. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  11. Suppression of endothelial cell adhesion by XJP-1, a new phenolic compound derived from banana peel.

    Science.gov (United States)

    Fu, Rong; Yan, Tianhua; Wang, Qiujuan; Guo, Qinglong; Yao, Hequan; Wu, Xiaoming; Li, Yang

    2012-01-01

    The adhesion of monocytes to activated vascular endothelial cells is a critical event in the initiation of atherosclerosis. Adhesion is mediated by oxidized low-density lipoprotein (ox-LDL) which up-regulates inflammatory markers on endothelial cells. Here we report that (±) 7, 8-dihydroxy-3-methyl-isochromanone-4 (XJP-1), an inhibitor of ox-LDL-induced adhesion of monocytes to endothelial cells blocks cellular functions which are associated with adhesion. We show that XJP-1 down-regulates ox-LDL-induced over-expression of adhesion molecules (ICAM-1 and VCAM-1) in a dose-dependent manner in human umbilical vein endothelial cells (HUVECs), attenuates ox-LDL-induced up-regulation of low-density lipoprotein receptor (LOX)-1, decreases generation of reactive oxygen species (ROS), blocks translocation of nuclear factor-kappa B (NF-κB) activity, and prevents activation of c-Jun N-terminal kinase (JNK)/p38 pathways in endothelial cells. These findings suggest that XJP-1 may attenuate ox-LDL-induced endothelial adhesion of monocytes by blocking expression of adhesion molecules through suppressing ROS/NF-κB, JNK and p38 pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release

    International Nuclear Information System (INIS)

    Li Aihua; Cheng Guangli; Zhu Genghui; Tarnawski, Andrzej S.

    2007-01-01

    Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increased in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is First demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling

  13. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis

    International Nuclear Information System (INIS)

    Zhou Yijun; Wang Jiahe; Zhang Jin

    2006-01-01

    Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-κB, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-κB, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease

  14. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier.

    Science.gov (United States)

    Shenoy, Anitha K; Lu, Jianrong

    2016-10-01

    Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Magnetizable stent-grafts enable endothelial cell capture

    Science.gov (United States)

    Tefft, Brandon J.; Uthamaraj, Susheil; Harburn, J. Jonathan; Hlinomaz, Ota; Lerman, Amir; Dragomir-Daescu, Dan; Sandhu, Gurpreet S.

    2017-04-01

    Emerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coated these stents with electrospun polyurethane nanofibers to fabricate prototype stent-grafts. Facilitated endothelialization may help improve the healing of arteries treated with stent-grafts, reduce the risk of thrombosis and restenosis, and enable small-caliber applications. When placed in a SPION-labeled endothelial cell suspension in the presence of an external magnetic field, magnetized stent-grafts successfully captured cells to the surface regions adjacent to the stent struts. Implantation within the coronary circulation of pigs (n=13) followed immediately by SPION-labeled autologous endothelial cell delivery resulted in widely patent devices with a thin, uniform neointima and no signs of thrombosis or inflammation at 7 days. Furthermore, the magnetized stent-grafts successfully captured and retained SPION-labeled endothelial cells to select regions adjacent to stent struts and between stent struts, whereas the non-magnetized control stent-grafts did not. Early results with these prototype devices are encouraging and further refinements will be necessary in order to achieve more uniform cell capture and complete endothelialization. Once optimized, this approach may lead to more rapid and complete healing of vascular stent-grafts with a concomitant improvement in long-term device performance.

  16. Endothelial cells activate the cancer stem cell-associated NANOGP8 pathway in colorectal cancer cells in a paracrine fashion.

    Science.gov (United States)

    Wang, Rui; Bhattacharya, Rajat; Ye, Xiangcang; Fan, Fan; Boulbes, Delphine R; Xia, Ling; Ellis, Lee M

    2017-08-01

    In colorectal cancer (CRC), cancer stem cells (CSCs) have been hypothesized to mediate cell survival and chemoresistance. Previous studies from our laboratory described a role for liver parenchymal endothelial cells (LPECs) in mediating the CSC phenotype in CRC cells in a paracrine/angiocrine fashion. The objectives of this study were to determine whether endothelial cells (ECs) from different organs can induce the CSC phenotype in CRC cells and to elucidate the signaling pathways involved. We treated a newly developed CRC cell line (HCP-1) and established CRC cell lines (HT29 and SW480) with conditioned medium (CM) from primary ECs isolated from nonmalignant liver, lung, colon mucosa, and kidney. Our results showed that CM from ECs from all organs increased the number of CSCs, as determined by sphere formation, and protein levels of NANOG and OCT4 in CRC cells. With the focus of further elucidating the role of the liver vascular network in mediating the CSC phenotype, we demonstrated that CM from LPECs increased resistance to 5-fluorouracil in CRC cells. Moreover, we showed that LPEC CM specifically induced NANOGP8 expression in CRC cells by specific enzyme digestion and a luciferase reporter assay using a vector containing the NANOGP8 promoter. Lastly, we found that LPEC CM-induced NANOGP8 expression and sphere formation were mediated by AKT activation. Our studies demonstrated a paracrine role for ECs in regulating the CSC phenotype and chemoresistance in CRC cells by AKT-mediated induction of NANOGP8. These studies suggest a more specific approach to target CSCs by blocking the expression of NANOGP8 in cancer cells. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  17. Protective effect of atorvastatin on radiation-induced endothelial cell injury

    Energy Technology Data Exchange (ETDEWEB)

    Xinze, Ran; Huaien, Zheng; Fengchao, Wang; Xi, Ran; Aiping, Wang; Jing, Han; Yanqi, Zhang; Jun, Chen [Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing (China)

    2009-04-15

    Objective: To explore the protective effect of atorvastatin on irradiated endothelium and the thrombomodulin (TM) expression. Methods: Cultured human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC) were treated by atorvastatin at the final concentration of 10 {mu}mol/ml for 10 min, and then irradiated with 2 and 25 Gy. Cell cycles status and TM expression were quantitatively measured by flow cytometry 24 hours after irradiation. Protein C activation in endothelial cells was also assessod. Results: After administration with atorvastatin for 24 h, the TM expression increased by 77%, 59% and 61% in normal control group, 2 Gy group and 25 Gy group, respectively (t=27.395, 26.420, 58.065; P=0.000). The protein C levels decreased by 23% and 34% compared with the normal group post-irradiation to 2 and 25 Gy, but increased by 79% and 76% compared with the irradiated control group after administration with atorvastatin. The rates of cell apoptosis decreased by 6% and 16% in 2 Gy and 25 Gy groups, respectively after administration with atorvastatin for 24 h (t=4.178, 17.863; P=0.000). Conclusions: Atorva statin can protect endothelia cell from irradiation-induced apeptosis by increasing TM expression and protein C activation. (authors)

  18. Protective effect of atorvastatin on radiation-induced endothelial cell injury

    International Nuclear Information System (INIS)

    Ran Xinze; Zheng Huaien; Wang Fengchao; Ran Xi; Wang Aiping; Han Jing; Zhang Yanqi; Chen Jun

    2009-01-01

    Objective: To explore the protective effect of atorvastatin on irradiated endothelium and the thrombomodulin (TM) expression. Methods: Cultured human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC) were treated by atorvastatin at the final concentration of 10 μmol/ml for 10 min, and then irradiated with 2 and 25 Gy. Cell cycles status and TM expression were quantitatively measured by flow cytometry 24 hours after irradiation. Protein C activation in endothelial cells was also assessod. Results: After administration with atorvastatin for 24 h, the TM expression increased by 77%, 59% and 61% in normal control group, 2 Gy group and 25 Gy group, respectively (t=27.395, 26.420, 58.065; P=0.000). The protein C levels decreased by 23% and 34% compared with the normal group post-irradiation to 2 and 25 Gy, but increased by 79% and 76% compared with the irradiated control group after administration with atorvastatin. The rates of cell apoptosis decreased by 6% and 16% in 2 Gy and 25 Gy groups, respectively after administration with atorvastatin for 24 h (t=4.178, 17.863; P=0.000). Conclusions: Atorva statin can protect endothelia cell from irradiation-induced apeptosis by increasing TM expression and protein C activation. (authors)

  19. Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution.

    Science.gov (United States)

    Xia, Min; Ling, Wenhua; Zhu, Huilian; Wang, Qing; Ma, Jing; Hou, Mengjun; Tang, Zhihong; Li, Lan; Ye, Qinyuan

    2007-03-01

    Intracellular tumor necrosis factor receptor-associated factors (TRAFs) translocation to lipid rafts is a key element in CD40-induced signaling. The purpose of this study was to investigate the influence of anthocyanin on CD40-mediated proinflammatory events in human endothelial cells and the underlying possible molecular mechanism. Treatment of endothelial cells with anthocyanin prevented from CD40-induced proinflammatory status, measured by production of IL-6, IL-8, and monocyte chemoattractant protein-1 through inhibiting CD40-induced nuclear factor-kappaB (NF-kappaB) activation. TRAF-2 played pivotal role in CD40-NF-kappaB pathway as TRAF-2 small interference RNA (siRNA) diminished CD40-induced NF-kappaB activation and inflammation. TRAF-2 overexpression increased CD40-mediated NF-kappaB activation. Moreover, TRAF-2 almost totally recruited to lipid rafts after stimulation by CD40 ligand and depletion of cholesterol diminished CD40-mediated NF-kappaB activation. Exposure to anthocyanin not only interrupted TRAF-2 recruitment to lipid rafts but also decreased cholesterol content in Triton X-100 insoluble lipid rafts. However, anthocyanin did not influence the interaction between CD40 ligand and CD40 receptor. Our findings suggest that anthocyanin protects from CD40-induced proinflammatory signaling by preventing TRAF-2 translocation to lipid rafts through regulation of cholesterol distribution, which thereby may represent a mechanism that would explain the anti-inflammatory response of anthocyanin.

  20. Modulation of cGMP by human HO-1 retrovirus gene transfer in pulmonary microvessel endothelial cells.

    Science.gov (United States)

    Abraham, Nader G; Quan, Shuo; Mieyal, Paul A; Yang, Liming; Burke-Wolin, Theresa; Mingone, Christopher J; Goodman, Alvin I; Nasjletti, Alberto; Wolin, Michael S

    2002-11-01

    Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production. Heme elicited significant increases in CO production and intracellular cGMP levels in both pulmonary endothelial and pulmonary hHO-1-expressing cells. N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, significantly decreased cGMP levels in heme-treated pulmonary endothelial cells but not heme-treated hHO-1-expressing cells. In the presence of exogenous heme, CO and cGMP levels in hHO-1-expressing cells exceeded the corresponding levels in pulmonary endothelial cells. Acute exposure of endothelial cells to SnCl2, which is an inducer of HO-1, increased cGMP levels, whereas chronic exposure decreased heme and cGMP levels. These results indicate that prolonged overexpression of HO-1 ultimately decreases sGC activity by limiting the availability of cellular heme. Heme activates sGC and enhances cGMP levels via a mechanism that is largely insensitive to NOS inhibition.

  1. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro--a quantitative study.

    Science.gov (United States)

    Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje

    2010-01-25

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    International Nuclear Information System (INIS)

    Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch; Zahavi, David; Melillo, Giovanni; Libutti, Steven K.

    2009-01-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface α5β1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1α) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1α mediated transcriptional activity as well as HIF-1α mediated angiogenic sprouting of ECs. HIF-1α plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1α activities.

  3. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Tandle, Anita T. [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Calvani, Maura; Uranchimeg, Badarch [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Zahavi, David [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Melillo, Giovanni [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Libutti, Steven K., E-mail: slibutti@montefiore.org [Department of Surgery, Montefiore-Einstein Center for Cancer Care, Albert Einstein College of Medicine, Greene Medical Arts Pavilion, 4th Floor 3400, Bainbridge Avenue, Bronx, New York 10467 (United States)

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  4. IL-20 activates human lymphatic endothelial cells causing cell signalling and tube formation

    DEFF Research Database (Denmark)

    Hammer, Troels; Tritsaris, Katerina; Hübschmann, Martin V

    2009-01-01

    IL-20 is an arteriogenic cytokine that remodels collateral networks in vivo, and plays a role in cellular organization. Here, we investigate its role in lymphangiogenesis using a lymphatic endothelial cell line, hTERT-HDLEC, which expresses the lymphatic markers LYVE-1 and podoplanin. Upon stimul...

  5. Qidantongmai Protects Endothelial Cells Against Hypoxia-Induced ...

    African Journals Online (AJOL)

    induced damage. The ability of QDTM to modulate the serum VEGF-A level may play an important role in its effects on endothelial cells. Key words: Traditional Chinese Medicine, human umbilical vein endothelial cells, hypoxia, VEGF ...

  6. Hyaluronan protection of corneal endothelial cells against extracellular histones after phacoemulsification.

    Science.gov (United States)

    Kawano, Hiroki; Sakamoto, Taiji; Ito, Takashi; Miyata, Kazunori; Hashiguchi, Teruto; Maruyama, Ikuro

    2014-11-01

    To determine the effect of histones on corneal endothelial cells generated during cataract surgery. Kagoshima University Hospital, Kagoshima, Japan. Experimental study. Standard phacoemulsification was performed on enucleated pig eyes. Histones in the anterior segment of the eye were determined by immunohistochemistry. Cultured human corneal endothelial cells were exposed to histones for 18 hours, and cell viability was determined by 2-(2-methoxy-4-nitrophenyl)-3-(4-nitro-phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt assay. The concentration of interleukin-6 (IL-6) in the culture medium of human corneal endothelial cells was measured using enzyme-linked immunosorbent assay. The effects of signal inhibitors U0126, SB203580, and SP600125 were evaluated. The protective effect of hyaluronan against histones was evaluated in human corneal endothelial cells with and without hyaluronan. Cellular debris containing histones was observed in the anterior chamber of pig eyes after phacoemulsification. Exposure of human corneal endothelial cells to 50 μg/mL of histones or more led to cytotoxic effects. The IL-6 concentration was significantly increased dose dependently after exposure of human corneal endothelial cells to histones (Phistone-induced IL-6 production was significantly decreased by extracellular signal-regulated kinases 1/2 and p-38 mitogen-activated protein kinase inhibitors (Phistones caused formation of histone aggregates, decreased the cytotoxic effects of the histones, and blocked the increase in IL-6 (PHistones were released extracellularly during phacoemulsification and exposure of human corneal endothelial cells to histones increased the IL-6 secretion. The intraoperative use of hyaluronan may decrease the cytotoxic effects of histones released during cataract surgery. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Sensor to detect endothelialization on an active coronary stent

    Directory of Open Access Journals (Sweden)

    Coffey Arthur C

    2010-11-01

    Full Text Available Abstract Background A serious complication with drug-eluting coronary stents is late thrombosis, caused by exposed stent struts not covered by endothelial cells in the healing process. Real-time detection of this healing process could guide physicians for more individualized anti-platelet therapy. Here we present work towards developing a sensor to detect this healing process. Sensors on several stent struts could give information about the heterogeneity of healing across the stent. Methods A piezoelectric microcantilever was insulated with parylene and demonstrated as an endothelialization detector for incorporation within an active coronary stent. After initial characterization, endothelial cells were plated onto the cantilever surface. After they attached to the surface, they caused an increase in mass, and thus a decrease in the resonant frequencies of the cantilever. This shift was then detected electrically with an LCR meter. The self-sensing, self-actuating cantilever does not require an external, optical detection system, thus allowing for implanted applications. Results A cell density of 1300 cells/mm2 on the cantilever surface is detected. Conclusions We have developed a self-actuating, self-sensing device for detecting the presence of endothelial cells on a surface. The device is biocompatible and functions reliably in ionic liquids, making it appropriate for implantable applications. This sensor can be placed along the struts of a coronary stent to detect when the struts have been covered with a layer of endothelial cells and are no longer available surfaces for clot formation. Anti-platelet therapy can be adjusted in real-time with respect to a patient's level of healing and hemorrhaging risks.

  8. Leukemia Mediated Endothelial Cell Activation Modulates Leukemia Cell Susceptibility to Chemotherapy through a Positive Feedback Loop Mechanism.

    Directory of Open Access Journals (Sweden)

    Bahareh Pezeshkian

    Full Text Available In acute myeloid leukemia (AML, the chances of achieving disease-free survival are low. Studies have demonstrated a supportive role of endothelial cells (ECs in normal hematopoiesis. Here we show that similar intercellular relationships exist in leukemia. We demonstrate that leukemia cells themselves initiate these interactions by directly modulating the behavior of resting ECs through the induction of EC activation. In this inflammatory state, activated ECs induce the adhesion of a sub-set of leukemia cells through the cell adhesion molecule E-selectin. These adherent leukemia cells are sequestered in a quiescent state and are unaffected by chemotherapy. The ability of adherent cells to later detach and again become proliferative following exposure to chemotherapy suggests a role of this process in relapse. Interestingly, differing leukemia subtypes modulate this process to varying degrees, which may explain the varied response of AML patients to chemotherapy and relapse rates. Finally, because leukemia cells themselves induce EC activation, we postulate a positive-feedback loop in leukemia that exists to support the growth and relapse of the disease. Together, the data defines a new mechanism describing how ECs and leukemia cells interact during leukemogenesis, which could be used to develop novel treatments for those with AML.

  9. Infection of endothelial cells by common human viruses.

    Science.gov (United States)

    Friedman, H M

    1989-01-01

    Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.

  10. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    International Nuclear Information System (INIS)

    Lin, Ming-Chung; Chen, Chia-Ling; Yang, Tsan-Tzu; Choi, Pui-Ching; Hsing, Chung-Hsi; Lin, Chiou-Feng

    2012-01-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  11. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ming-Chung [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan (China); Chen, Chia-Ling [Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Yang, Tsan-Tzu; Choi, Pui-Ching [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Hsing, Chung-Hsi [Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan (China); Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lin, Chiou-Feng, E-mail: cflin@mail.ncku.edu.tw [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  12. N-Isopropylacrylamide-co-glycidylmethacrylate as a Thermoresponsive Substrate for Corneal Endothelial Cell Sheet Engineering

    Directory of Open Access Journals (Sweden)

    Bernadette K. Madathil

    2014-01-01

    Full Text Available Endothelial keratoplasty is a recent shift in the surgical treatment of corneal endothelial dystrophies, where the dysfunctional endothelium is replaced whilst retaining the unaffected corneal layers. To overcome the limitation of donor corneal shortage, alternative use of tissue engineered constructs is being researched. Tissue constructs with intact extracellular matrix are generated using stimuli responsive polymers. In this study we evaluated the feasibility of using the thermoresponsive poly(N-isopropylacrylamide-co-glycidylmethacrylate polymer as a culture surface to harvest viable corneal endothelial cell sheets. Incubation below the lower critical solution temperature of the polymer allowed the detachment of the intact endothelial cell sheet. Phase contrast and scanning electron microscopy revealed the intact architecture, cobble stone morphology, and cell-to-cell contact in the retrieved cell sheet. Strong extracellular matrix deposition was also observed. The RT-PCR analysis confirmed functionally active endothelial cells in the cell sheet as evidenced by the positive expression of aquaporin 1, collagen IV, Na+-K+ ATPase, and FLK-1. Na+-K+ ATPase protein expression was also visualized by immunofluorescence staining. These results suggest that the in-house developed thermoresponsive culture dish is a suitable substrate for the generation of intact corneal endothelial cell sheet towards transplantation for endothelial keratoplasty.

  13. Sphingosine kinase-2 maintains viral latency and survival for KSHV-infected endothelial cells.

    Directory of Open Access Journals (Sweden)

    Lu Dai

    Full Text Available Phosphorylation of sphingosine by sphingosine kinases (SphK1 and SphK2 generates sphingosine-1-phosphate (S1P, a bioactive sphingolipid which promotes cancer cell survival and tumor progression in vivo. We have recently reported that targeting SphK2 induces apoptosis for human primary effusion lymphoma (PEL cell lines infected by the Kaposi's sarcoma-associated herpesvirus (KSHV, and this occurs in part through inhibition of canonical NF-κB activation. In contrast, pharmacologic inhibition of SphK2 has minimal impact for uninfected B-cell lines or circulating human B cells from healthy donors. Therefore, we designed additional studies employing primary human endothelial cells to explore mechanisms responsible for the selective death observed for KSHV-infected cells during SphK2 targeting. Using RNA interference and a clinically relevant pharmacologic approach, we have found that targeting SphK2 induces apoptosis selectively for KSHV-infected endothelial cells through induction of viral lytic gene expression. Moreover, this effect occurs through repression of KSHV-microRNAs regulating viral latency and signal transduction, including miR-K12-1 which targets IκBα to facilitate activation of NF-κB, and ectopic expression of miR-K12-1 restores NF-κB activation and viability for KSHV-infected endothelial cells during SphK2 inhibition. These data illuminate a novel survival mechanism and potential therapeutic target for KSHV-infected endothelial cells: SphK2-associated maintenance of viral latency.

  14. Organizational behavior of human umbilical vein endothelial cells

    Science.gov (United States)

    1982-01-01

    Culture conditions that favor rapid multiplication of human umbilical vein endothelial cells (HUV-EC) also support long-term serial propagation of the cells. This is routinely achieved when HUV-EC are grown in Medium 199 (M-199) supplemented with fetal bovine serum (FBS) and endothelial cell growth factor (ECGF), on a human fibronectin (HFN) matrix. The HUV-EC can shift from a proliferative to an organized state when the in vitro conditions are changed from those favoring low density proliferation to those supporting high density survival. When ECGF and HFN are omitted, cultures fail to achieve confluence beyond the first or second passage: the preconfluent cultures organize into tubular structures after 4-6 wk. Some tubes become grossly visible and float in the culture medium, remaining tethered to the plastic dish at either end of the tube. On an ultrastructural level, the tubes consist of cells, held together by junctional complexes, arranged so as to form a lumen. The smallest lumens are formed by one cell folding over to form a junction with itself. The cells contain Weibel-Palade bodies and factor VIII-related antigen. The lumens contain granular, fibrillar and amorphous debris. Predigesting the HFN matrix with trypsin (10 min, 37 degrees C) or plasmin significantly accelerates tube formation. Thrombin and plasminogen activator had no apparent effect. Disruption of the largest tubes with trypsin/EDTA permits the cells to revert to a proliferative state if plated on HFN, in M-199, FBS, and ECGF. These observations indicate that culture conditions that do not favor proliferation permit attainment of a state of nonterminal differentiation (organization) by the endothelial cell. Furthermore, proteolytic modification of the HFN matrix may play an important role in endothelial organization. PMID:6813338

  15. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Caroline; Squadrito, Mario Leonardo [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Iruela-Arispe, M. Luisa, E-mail: arispe@mcdb.ucla.edu [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles 90095, CA (United States); De Palma, Michele, E-mail: michele.depalma@epfl.ch [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2013-07-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.

  16. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    International Nuclear Information System (INIS)

    Baer, Caroline; Squadrito, Mario Leonardo; Iruela-Arispe, M. Luisa; De Palma, Michele

    2013-01-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches

  17. Impact of diabetic serum on endothelial cells: An in-vitro-analysis of endothelial dysfunction in diabetes mellitus type 2

    International Nuclear Information System (INIS)

    Muenzel, Daniela; Lehle, Karla; Haubner, Frank; Schmid, Christof; Birnbaum, Dietrich E.; Preuner, Juergen G.

    2007-01-01

    Diabetic endothelial dysfunction was characterized by altered levels of adhesion molecules and cytokines. Aim of our study was to evaluate the effects of diabetic serum on cell-growth and proinflammatory markers in human saphenous vein endothelial cells (HSVEC) from diabetic and non-diabetic patients. Diabetic serum showed (1) complementary proliferative activity for non-diabetic and diabetic HSVEC, (2) unchanged surface expression of adhesion molecules, and (3) elevated levels of sICAM-1 in HSVEC of all donors. The concentration of sVCAM-1 was increased only in diabetic cells. The proinflammatory state of diabetic HSVEC characterized by increased levels of cytokines was compensated. We concluded that even under normoglycemic conditions the serum itself contains critical factors leading to abnormal regulation of inflammation in diabetics. We introduced an in vitro model of diabetes representing the endothelial situation at the beginning of diabetes (non-diabetic cells/diabetic serum) as well as the diabetic chronic state (diabetic cells/diabetic serum)

  18. Histones Induce the Procoagulant Phenotype of Endothelial Cells through Tissue Factor Up-Regulation and Thrombomodulin Down-Regulation.

    Science.gov (United States)

    Kim, Ji Eun; Yoo, Hyun Ju; Gu, Ja Yoon; Kim, Hyun Kyung

    2016-01-01

    The high circulating levels of histones found in various thrombotic diseases may compromise the anticoagulant barrier of endothelial cells. We determined how histones affect endothelial procoagulant tissue factor (TF) and anticoagulant thrombomodulin (TM). Surface antigens, soluble forms, and mRNA levels of TF and TM were measured by flow cytometry, ELISA, and real-time RT-PCR, respectively. TF and TM activity were measured using procoagulant activity, thrombin generation, or chromogenic assays. Involvement of the toll-like receptor (TLR) was assessed using the neutralizing antibodies. Histones dose-dependently induced surface antigens, activity and mRNA levels of endothelial TF. Histone-treated endothelial cells significantly shortened the lag time and enhanced the endogenous thrombin potential of normal plasma, which was normalized by a TF neutralizing antibody. Histones induced phosphatidylserine and protein-disulfide isomerase expression in endothelial cells. Histones also reduced the surface antigen, activity, and mRNA levels of endothelial TM. Polysialic acid and heparin reversed the histone-induced TF up-regulation and TM down-regulation. Activated protein C did not affect the TF up-regulation, but interrupted TM down-regulation. TLR2, and TLR4 inhibitors partially blocked the TF up-regulation. Histones induced the endothelial procoagulant phenotype through TF up-regulation and TM down-regulation. The effects of histones were partly mediated by TLR2, TLR4. Strategies to inhibit the harmful effects of histones in endothelial cells may be required in order to prevent a thrombotic environment.

  19. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases

    Science.gov (United States)

    Lesslie, D P; Summy, J M; Parikh, N U; Fan, F; Trevino, J G; Sawyer, T K; Metcalf, C A; Shakespeare, W C; Hicklin, D J; Ellis, L M; Gallick, G E

    2006-01-01

    Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase. Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-dependent pathway linked to activation of focal adhesion components that regulate this process. PMID:16685275

  20. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neovascularization.

    Science.gov (United States)

    Dubrac, Alexandre; Genet, Gael; Ola, Roxana; Zhang, Feng; Pibouin-Fragner, Laurence; Han, Jinah; Zhang, Jiasheng; Thomas, Jean-Léon; Chedotal, Alain; Schwartz, Martin A; Eichmann, Anne

    2016-01-26

    Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here, we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2- and VEGF-induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, and pathological ocular neovascularization and wound healing, as well. These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2, and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis. © 2015 American Heart Association, Inc.

  1. Thrombin-specific inactivation of endothelial cell derived plasminogen activator

    International Nuclear Information System (INIS)

    Highsmith, R.F.; Gallaher, M.J.

    1986-01-01

    Although thrombin (T) has diverse functions in the overall hemostatic mechanism, relatively little is known about its direct effect on components of the fibrinolytic enzyme system. The authors have investigated the interaction of T with plasminogen activators (PA) derived from bovine aortic endothelial cells (EC) in culture (2-5th passage, preconfluent monolayers). Varying concentrations of purified bovine or human thrombin were added to EC-conditioned media (CM). CM + T mixtures were assayed at various times for PA activity using purified plasminogen and a sensitive 125 I-fibrinogenolytic or caseinolytic assay. T (5 nM), but not plasmin or trypsin at equivalent concentrations, resulted in a time-dependent inhibition of the PA activity in CM. T had no effect on the PA activity of urokinase, streptokinase or preformed plasmin. The ability of T to inactivate the EC-derived PA was abolished by prior treatment of T with active site-directed reagents. SDS-PAGE and zymography with copolymerized fibrinogen and plasminogen revealed further specificity in that only one of the multiple-molecular weight forms of PA present in EC-CM was inactivated by T. The authors conclude that in a highly specific fashion, T inactivates the predominant PA present in EC-CM by limited proteolysis. Thus, another potentially important function of T is suggested which may have particular significance in the temporal regulation of coagulation and fibrinolysis at the blood-endothelium interface

  2. Collective cell motion in endothelial monolayers

    International Nuclear Information System (INIS)

    Szabó, A; Ünnep, R; Méhes, E; Czirók, A; Twal, W O; Argraves, W S; Cao, Y

    2010-01-01

    Collective cell motility is an important aspect of several developmental and pathophysiological processes. Despite its importance, the mechanisms that allow cells to be both motile and adhere to one another are poorly understood. In this study we establish statistical properties of the random streaming behavior of endothelial monolayer cultures. To understand the reported empirical findings, we expand the widely used cellular Potts model to include active cell motility. For spontaneous directed motility we assume a positive feedback between cell displacements and cell polarity. The resulting model is studied with computer simulations and is shown to exhibit behavior compatible with experimental findings. In particular, in monolayer cultures both the speed and persistence of cell motion decreases, transient cell chains move together as groups and velocity correlations extend over several cell diameters. As active cell motility is ubiquitous both in vitro and in vivo, our model is expected to be a generally applicable representation of cellular behavior

  3. Requirement of phosphorylatable endothelial nitric oxide synthase at Ser-1177 for vasoinhibin-mediated inhibition of endothelial cell migration and proliferation in vitro.

    Science.gov (United States)

    García, Celina; Nuñez-Anita, Rosa Elvira; Thebault, Stéphanie; Arredondo Zamarripa, David; Jeziorsky, Michael C; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2014-03-01

    Endothelial nitric oxide synthase (eNOS)-derived nitric oxide is a major vasorelaxing factor and a mediator of vasopermeability and angiogenesis. Vasoinhibins, a family of antiangiogenic prolactin fragments that include 16 K prolactin, block most eNOS-mediated vascular effects. Vasoinhibins activate protein phosphatase 2A, causing eNOS inactivation through dephosphorylation of eNOS at serine residue 1179 in bovine endothelial cells and thereby blocking vascular permeability. In this study, we examined whether human eNOS phosphorylation at S1177 (analogous to bovine S1179) influences other actions of vasoinhibins. Bovine umbilical vein endothelial cells were stably transfected with human wild-type eNOS (WT) or with phospho-mimetic (S1177D) or non-phosphorylatable (S1177A) eNOS mutants. Vasoinhibins inhibited the increases in eNOS activity, migration, and proliferation following the overexpression of WT eNOS but did not affect these responses in cells expressing S1177D and S1177A eNOS mutants. We conclude that eNOS inhibition by dephosphorylation of S1177 is fundamental for the inhibition of endothelial cell migration and proliferation by vasoinhibins.

  4. Regulation of Ecto-5´-Nucleotidase by Docosahexaenoic Acid in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Vu Thi Thom

    2013-08-01

    Full Text Available Background/Aims: Modulation of extracellular adenine nucleotide and adenosine concentrations is one potential mechanism by which docosahexaenoic acid (DHA may exert beneficial effects in critically ill patients. This study assessed DHA effects on extracellular adenine purines. Methods: Experiments used human pulmonary endothelial cells (HPMEC and umbilical vein endothelial cells (HUVEC treated with DHA (48 h. mRNA level (real-time PCR, expression (western blot, flow cytometry and activities (hydrolysis of etheno(ε-purines and fluorescence HPLC of CD73 (ecto-5´-nucleotidase and CD39 (ecto-NTPDase-1 were quantified. Results: DHA elevated total CD73 membrane protein expression concentration-dependently but CD73 mRNA level did not change. Increased expression was paralleled by increased enzyme activity. Effects observed on membrane level were reversed in intact cells, in which ε-AMP hydrolysis decreased after DHA. In intact endothelial cells ATP release was enhanced and CD39 activity blunted following DHA treatment. Hence, extracellular ATP and ADP concentrations increased and this inhibited ε-AMP hydrolysis. Conclusion: In human endothelial cells DHA caused 1 up-regulation of CD73 protein content and increased AMP hydrolysis at the cell membrane level, 2 increased cellular ATP release, and 3 decreased extracellular ATP/ADP hydrolysis. Thus, reorganization of the extracellular adenine-nucleotide-adenosine axis in response to DHA resulted in an increased extracellular ATP/adenosine ratio.

  5. Endothelial cells: From innocent bystanders to active participants in immune responses

    NARCIS (Netherlands)

    Al-Soudi, A.; Kaaij, M. H.; Tas, S. W.

    2017-01-01

    The endothelium is crucially important for the delivery of oxygen and nutrients throughout the body under homeostatic conditions. However, it also contributes to pathology, including the initiation and perpetuation of inflammation. Understanding the function of endothelial cells (ECs) in

  6. Leonurine protects against tumor necrosis factor-α-mediated inflammation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Liu, Xinhua; Pan, Lilong; Wang, Xianli; Gong, Qihai; Zhu, Yi Zhun

    2012-05-01

    Leonurine, a bioactive alkaloid compound in Herba leonuri, has various pharmacological activities, including antioxidant and anti-apoptotic capacities. This study was conducted to test the hypothesis that leonurine was able to attenuate tumor necrosis factor (TNF)-α-induced human umbilical vein endothelial cells (HUVEC) activation and the underlying molecular mechanisms. Mitogen-activated protein kinases (MAPK) activation, nuclear factor-κB (NF-κB) activation, and inflammatory mediators expression were detected by Western blot or enzyme-liked immunosorbent assay, intracellular reactive oxygen species (ROS) and NF-κB p65 translocation were measured by immunofluorescence, endothelial cell-monocyte interaction was detected by microscope. Leonurine inhibited U937 cells adhesion to TNF-α-activated HUVEC in a concentration dependent manner. Treatment with leonurine blocked TNF-α-induced mRNA and protein expression of adhesion molecules (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), cyclooxygenase-2, and monocyte chemoattractant protein-1 in endothelial cells. In addition, leonurine attenuated TNF-α-induced intracellular ROS production in HUVEC. Furthermore, leonurine also suppressed the TNF-α-activated p38 phosphorylation and IκBα degradation. Subsequently, reduced NF-κB p65 phosphorylation, nuclear translocation, and DNA-binding activity were also observed. Our results demonstrated for the first time that the anti-inflammatory properties of leonurine in endothelial cells, at least in part, through suppression of NF-κB activation, which may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Signaling hierarchy regulating human endothelial cell development

    Science.gov (United States)

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  8. Role of PD 0332991 on the Proliferation and Apoptosis of Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Chenlong ZHAO

    2018-05-01

    Full Text Available Background and objective Angiogenesis is an important process in the development of tumor. PD 0332991, a cell cycle inhibitor, can specifically inhibit CD4/6 phosphorylation and cell cycle progression. In xeongraft mice models, PD 0332991 treated mice had significantly decreased angiogenesis and vascular density compared with the control group, but the mechanism remains unknown. The purpose of this study is to investigate the role and molecular mechanism of PD 0332991 on vascular endothelial cells. Methods EA.hy926 cells, a kind of vascular endothelial cell, were used as the research model. The effects of PD 0332991 on the activity and proliferation of EA.hy926 cells were detected by the MTT, EdU assays. Wound-healing assays and transwell assays were used to determine the effects of PD 0332991 on the mobility of EA.hy926. The influence of PD 0332991 on cell cycle and apoptosis of endothelial cells was tested by flow cytometry, and the Western blot was applied to observe the expression of cell cycle related proteins in EA.hy926 cells treated by PD 0332991. Results PD 0332991 significantly inhibited the proliferation and mobility of EA.hy926 cells, caused cell cycle arrest and apoptosis. At the same time, PD 0332991 inhibited the expression of CDK4/6 and phosphorylation of Rb, and thus inhibited the cell cycle progression of EA.hy926 cells. Conclusion PD 0332991 can inhibit the proliferation and activity of endothelial cells and induces apoptosis.

  9. Pulmonary endothelial activation caused by extracellular histones contributes to neutrophil activation in acute respiratory distress syndrome.

    Science.gov (United States)

    Zhang, Yanlin; Guan, Li; Yu, Jie; Zhao, Zanmei; Mao, Lijun; Li, Shuqiang; Zhao, Jinyuan

    2016-11-21

    During the acute respiratory distress syndrome (ARDS), neutrophils play a central role in the pathogenesis, and their activation requires interaction with the endothelium. Extracellular histones have been recognized as pivotal inflammatory mediators. This study was to investigate the role of pulmonary endothelial activation during the extracellular histone-induced inflammatory response in ARDS. ARDS was induced in male C57BL/6 mice by intravenous injection with lipopolysaccharide (LPS) or exogenous histones. Concurrent with LPS administration, anti-histone H4 antibody (anti-H4) or non-specific IgG was administered to study the role of extracellular histones. The circulating von Willebrand factor (vWF) and soluble thrombomodulin (sTM) were measured with ELISA kits at the preset time points. Myeloperoxidase (MPO) activity in lung tissue was measured with a MPO detection kit. The translocation of P-selectin and neutrophil infiltration were measured by immunohistochemical detection. For in vitro studies, histone H4 in the supernatant of mouse lung vascular endothelial cells (MLVECs) was measured by Western blot. The binding of extracellular histones with endothelial membrane was examined by confocal laser microscopy. Endothelial P-selectin translocation was measured by cell surface ELISA. Adhesion of neutrophils to MLVECs was assessed with a color video digital camera. The results showed that during LPS-induced ARDS extracellular histones caused endothelial and neutrophil activation, as seen by P-selectin translocation, release of vWF, an increase of circulating sTM, lung neutrophil infiltration and increased MPO activity. Extracellular histones directly bound and activated MLVECs in a dose-dependent manner. On the contrary, the direct stimulatory effect of exogenous histones on neutrophils was very limited, as measured by neutrophil adhesion and MPO activity. With the contribution of activated endothelium, extracellular histones could effectively activating

  10. Animal study on transplantation of human umbilical vein endothelial cells for corneal endothelial decompensation

    Directory of Open Access Journals (Sweden)

    Li Cui

    2014-06-01

    Full Text Available AIM: To explore the feasibility of culturing human umbilical vein endothelial cells(HUVECon acellular corneal stroma and performing the posterior lamellar endothelial keratoplasty(PLEKtreating corneal endothelial decompensation.METHODS: Thirty New-Zealand rabbits were divided into three groups randomly, 10 rabbits for experimental group, 10 for stroma group and 10 for control group. Corneal endothelial cells were removed to establish animal model of corneal endothelial failure. PLEK was performed on the rabbits of experimental group and stroma group, and nothing was transplantated onto the rabbits of control group with the deep layer excised only. Postoperative observation was taken for 3mo. The degree of corneal edema and central corneal thickness were recorded for statistical analysis.RESULTS: Corneas in experimental group were relieved in edema obviously compared with that in stroma group and the control group, and showed increased transparency 7d after the operation. The average density of endothelial cells was 2 026.4±129.3cells/mm2, and average central corneal thickness was 505.2±25.4μm in experimental group, while 1 535.6±114.5μm in stroma group and 1 493.5±70.2μm in control group 3mo after operation.CONCLUSION:We achieved preliminary success in our study that culturing HUVEC on acellular corneal stroma and performing PLEK for corneal endothelial decompensation. HUVEC transplanted could survive in vivo, and have normal biological function of keeping cornea transparent. This study provides a new idea and a new way clinically for the treatment of corneal endothelial diseases.

  11. The hemostatic agent ethamsylate enhances P-selectin membrane expression in human platelets and cultured endothelial cells.

    Science.gov (United States)

    Alvarez-Guerra, Miriam; Hernandez, Maria Rosa; Escolar, Ginés; Chiavaroli, Carlo; Garay, Ricardo P; Hannaert, Patrick

    2002-09-15

    Ethamsylate possesses antihemorrhagic properties, but whether or not it directly activates blood platelets is unclear. Here we investigated the platelet activation potential of ethamsylate, by measuring membrane P-selectin expression with flow cytometry in human whole blood and also by immunofluorescence imaging of isolated human platelets. Moreover, we measured membrane P-selectin expression in the SV40-transformed aortic rat endothelial cell line (SVAREC) and 14C-ethamsylate membrane binding and/or uptake in platelets and endothelial cells. Whole blood flow cytometry showed a modest, but statistically significant increase by ethamsylate in the percentage of platelets expressing P-selectin (from 2% to 4-5%, p ethamsylate tested (1 microM), with maximal enhancement of P-selectin expression (75-90%) at 10 microM ethamsylate. Similar results were obtained in SVAREC endothelial cells. 14C-ethamsylate specifically bound to platelets and endothelial cell membranes, without significant uptake into the cell interior. In conclusion, ethamsylate enhances membrane P-selectin expression in human platelets and in cultured endothelial cells. Ethamsylate specifically binds to some protein receptor in platelet and endothelial cell membranes, receptor which can signal for membrane P-selectin expression. These results support the view that ethamsylate acts on the first step of hemostasis, by improving platelet adhesiveness and restoring capillary resistance. Copyright 2002 Elsevier Science Ltd.

  12. Stimulation of proteoglycans by IGF I and II in microvessel and large vessel endothelial cells

    International Nuclear Information System (INIS)

    Bar, R.S.; Dake, B.L.; Stueck, S.

    1987-01-01

    Endothelial cells were cultured from bovine capillaries and pulmonary arteries, and the effect of insulinlike growth factor (IGF) I and II (multiplication-stimulating activity) and insulin on the synthesis of proteoglycans was determined. IGF I and II stimulated 35 SO 4 incorporation into proteoglycans in a dose-dependent manner in both microvessel and pulmonary artery endothelial cells with maximum threefold increases. In pulmonary artery cells, the IGFs caused a general stimulation of all classes of glycosaminoglycan-containing proteoglycans. In microvessel endothelial cells, the IGFs appeared to preferentially increase heparan sulfate-containing proteoglycans. Insulin, at concentrations up to 10 -6 M, had no effect on the synthesis of proteoglycans in either microvessel or pulmonary arterial endothelial cells. Thus, the IGFs stimulate the synthesis of proteoglycans in both microvessel and large vessel endothelial cells, a property that is not mimicked by insulin. Because vascular endothelial cells are bathed by IGFs in vivo, such IGF-mediated functions are likely to be significant in both the normal physiology of vascular endothelium and in disease states such as diabetes mellitus

  13. Targeting Tumor Necrosis Factor-α with Adalimumab: Effects on Endothelial Activation and Monocyte Adhesion.

    Directory of Open Access Journals (Sweden)

    Raghav Oberoi

    Full Text Available It is well known that atherosclerotic inflammatory vascular disease is critically driven by oxidized lipids and cytokines. In this regard, tumor necrosis factor (TNF-α is known as a crucial mediator of early pro-atherosclerotic events. Epidemiologic data suggest that blockade of TNF-α has beneficial effects on vascular outcomes in patients with rheumatoid arthritis, however, detailed mechanistic studies are still lacking. This study aims to elucidate effects of TNF-α blockade by adalimumab-which is approved for several inflammatory disorders-on endothelial activation and monocyte adhesion under pro-atherosclerotic conditions.Phorbol myristate acetate (PMA differentiated THP-1 macrophages were stimulated with oxidized low density lipoprotein and subsequent analysis of this conditioned media (oxLDL CM revealed a strong release of TNF-α. The TNF-α rich supernatant led to activation of human umbilical vein endothelial cells (HUVEC as shown by enhanced expression of major adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1, intercellular adhesion molecule-1 (ICAM-1 and E-selectin which was suppressed by the TNF-α inhibitor adalimumab. Accordingly, adalimumab effectively prevented THP-1 monocyte adhesion to endothelial cells under static as well as under flow conditions. Furthermore, adalimumab suppressed endothelial leakage as shown by Evan's blue diffusion across a confluent endothelial monolayer. Of note, after intraperitoneal injection we detected abundant deposition of fluorophore-labelled adalimumab in atherosclerotic plaques of hypercholesterolemic mice.Our results show that adalimumab prevents major inflammatory effects of TNF-α on endothelial activation, endothelial monocyte adhesion, endothelial leakage and therefore extends the therapeutic options of adalimumab to limit vascular inflammation.

  14. Buddleja officinalis inhibits high glucose-induced matrix metalloproteinase activity in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Kang, Dae Gill; Kim, Jin Sook; Lee, Ho Sub

    2008-12-01

    The aim of the present investigation was to investigate whether an aqueous extract of Buddleja officinalis (ABO), a traditional Korean herbal medicine, suppresses the endothelial extracellular matrix degradation under high glucose condition. The incubation with high concentration of glucose (25 mM) increased significantly matrix metalloproteinase (MMP)-2/-9 expressions and activities in primary cultured human umbilical vein endothelial cells (HUVEC). Pretreatment with ABO decreased high glucose-induced increase of MMP-2/-9 activities in a dose-dependent manner. Real time qRT-PCR revealed that high glucose-induced MMP-2/-9 mRNA expression levels were attenuated by pretreatment with ABO. High glucose-induced MCP-1 and IL-8 mRNA expression levels also decreased by ABO. ABO decreased high glucose-induced hydrogen peroxide production, oxidative stress marker. These results provide new insights into the pathophysiological mechanisms for anti-inflammatory properties of ABO in vascular diseases associated with diabetes mellitus. (c) 2008 John Wiley & Sons, Ltd.

  15. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo.

    Science.gov (United States)

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg H W

    2009-10-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc.

  16. Obesity-induced vascular dysfunction and arterial stiffening requires endothelial cell arginase 1.

    Science.gov (United States)

    Bhatta, Anil; Yao, Lin; Xu, Zhimin; Toque, Haroldo A; Chen, Jijun; Atawia, Reem T; Fouda, Abdelrahman Y; Bagi, Zsolt; Lucas, Rudolf; Caldwell, Ruth B; Caldwell, Robert W

    2017-11-01

    Elevation of arginase activity has been linked to vascular dysfunction in diabetes and hypertension by a mechanism involving decreased nitric oxide (NO) bioavailability due to L-arginine depletion. Excessive arginase activity also can drive L-arginine metabolism towards the production of ornithine, polyamines, and proline, promoting proliferation of vascular smooth muscle cells and collagen formation, leading to perivascular fibrosis. We hypothesized that there is a specific involvement of arginase 1 expression within the vascular endothelial cells in this pathology. To test this proposition, we used models of type 2 diabetes and metabolic syndrome. Studies were performed using wild type (WT), endothelial-specific arginase 1 knockout (EC-A1-/-) and littermate controls(A1con) mice fed high fat-high sucrose (HFHS) or normal diet (ND) for 6 months and isolated vessels exposed to palmitate-high glucose (PA/HG) media. Some WT mice or isolated vessels were treated with an arginase inhibitor, ABH [2-(S)-amino-6-boronohexanoic acid. In WT mice, the HFHS diet promoted increases in body weight, fasting blood glucose, and post-prandial insulin levels along with arterial stiffening and fibrosis, elevated blood pressure, decreased plasma levels of L-arginine, and elevated L-ornithine. The HFHS diet or PA/HG treatment also induced increases in vascular arginase activity along with oxidative stress, reduced vascular NO levels, and impaired endothelial-dependent vasorelaxation. All of these effects except obesity and hypercholesterolemia were prevented or significantly reduced by endothelial-specific deletion of arginase 1 or ABH treatment. Vascular dysfunctions in diet-induced obesity are prevented by deletion of arginase 1 in vascular endothelial cells or arginase inhibition. These findings indicate that upregulation of arginase 1 expression/activity in vascular endothelial cells has an integral role in diet-induced cardiovascular dysfunction and metabolic syndrome. Published

  17. Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells

    Science.gov (United States)

    Tóth, Andrea E.; Walter, Fruzsina R.; Bocsik, Alexandra; Sántha, Petra; Veszelka, Szilvia; Nagy, Lajos; Puskás, László G.; Couraud, Pierre-Olivier; Takata, Fuyuko; Dohgu, Shinya; Kataoka, Yasufumi; Deli, Mária A.

    2014-01-01

    Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases. PMID:25033388

  18. Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea E Tóth

    Full Text Available Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line treated with methylglyoxal.Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging.Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound.These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases.

  19. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function.

    Science.gov (United States)

    Rossman, Matthew J; Kaplon, Rachelle E; Hill, Sierra D; McNamara, Molly N; Santos-Parker, Jessica R; Pierce, Gary L; Seals, Douglas R; Donato, Anthony J

    2017-11-01

    Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P age-related differences were not present (all P > 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 ( r  = -0.49, P = 0.003), p21 ( r  = -0.38, P = 0.03), and p16 ( r  = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P healthy older sedentary (63 ± 1 yr, n = 18) versus young sedentary (25 ± 1 yr, n = 9) adults; age-related changes in arterial EC p53 and p21 expression were not observed ( P > 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age. NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated with impaired vascular endothelial function. Furthermore, our data suggest an absence of age-related increases in endothelial cell senescence in older exercising adults, which is linked with preserved vascular endothelial function

  20. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow

    International Nuclear Information System (INIS)

    Semino, Carlos E.; Kamm, Roger D.; Lauffenburger, Douglas A.

    2006-01-01

    We show here that autocrine ligand activation of epidermal growth factor (EGF) receptor in combination with interstitial flow is critically involved in the morphogenetic response of endothelial cells to VEGF stimulation. Human umbilical vein endothelial cell (HUVEC) monolayers cultured on a collagen gel and exposed to low interstitial flow in the absence of EGF and VEGF remained viable and mitotic but exhibited little evidence of vascular morphogenesis. Addition of VEGF produced a flow-dependent morphogenetic response within 48 to 72 h, characterized by branched capillary-like structures. The response was substantially abolished by inhibitors related to the autocrine EGF receptor pathway including Galardin, AG1478, PD98059, and an EGF receptor-blocking antibody, indicating that regulation of the morphogenetic process operates via autocrine EGF receptor activation. Moreover, we observed that in our system the EGF receptor was always activated independently of the interstitial flow, and, in addition, the EGF receptor inhibitors used above reduced the phosphorylation state of the receptor, correlating with inhibition of capillary morphogenesis. Finally, 5'bromo-2'-deoxyuridine (BrdU) labeling identified dividing cells at the monolayer but not in the extending capillary-like structures. EGF pathway inhibitors Galardin and AG1478 did not reduce BrdU incorporation in the monolayer, indicating that the EGF-receptor-mediated morphogenetic behavior is mainly due to cell migration rather than proliferation. Based on these results, we propose a two-step model for in vitro capillary morphogenesis in response to VEGF stimulation with interstitial fluid flow: monolayer maintenance by mitotic activity independent of EGF receptors and a migratory response mediated by autocrine EGF receptor activation wherein cells establish capillary-like structures

  1. In vivo bio-distribution and homing of endothelial outgrowth cells in a tumour model

    International Nuclear Information System (INIS)

    Bertelsen, Lotte B.; Hagensen, Mette; Busk, Morten; Zhang, Rui; Knudsen, Anne S.; Nielsen, Nathalie; Falborg, Lise; Møller, Bjarne K.; Horsman, Michael R.; Stødkilde-Jørgensen, Hans

    2014-01-01

    Introduction: Endothelial progenitor cells (EPCs) has been reported to have the potential for advancing revascularization of ischemic tissue. However, the heterogeneous nature of these cells calls for specification of the angiogenic potential of each subtype. The purpose of this study was to gain additional insight on the homing capacity of the EPC subtype, endothelial outgrowth cells (EOCs) in tumours using a well-established tumour model. Methods: 111 Indium ( 111 In) – and 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE) labelled EOCs derived from human umbilical cord blood were injected into mice with a C3H mammary carcinoma foot tumour. The subsequent capture of the EOCs was traced by estimation of activity in individual organs, autoradiography and fluorescence microscopy. Results: 111 In activity was found in tumour and other organs. However, varying parts of the activity originated from free 111 In lost from EOCs. Autoradiography demonstrated accumulation of 111 In activity in the tumour rim. Microscopy proved that a least part of this radioactivity originated from the presence of human derived EOCs and that those EOCs were not located in the endothelial lining of vessels, in the tumour. Conclusion: The results demonstrated the presence of xenotransplanted EOCs in the rim of a C3H mammary carcinoma. They were, however, not located in the endothelial lining of the vessels, thus indicating that their effect in vasculogenesis might be mediated via paracrine mechanisms rather than differentiating into endothelial cells (ECs) in tumour vessels

  2. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  3. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  4. The proangiogenic phenotype of tumor-derived endothelial cells is reverted by the overexpression of platelet-activating factor acetylhydrolase.

    Science.gov (United States)

    Doublier, Sophie; Ceretto, Monica; Lupia, Enrico; Bravo, Stefania; Bussolati, Benedetta; Camussi, Giovanni

    2007-10-01

    We previously reported that human tumor-derived endothelial cells (TEC) have an angiogenic phenotype related to the autocrine production of several angiogenic factors. The purpose of the present study was to evaluate whether an enhanced synthesis of platelet-activating factor (PAF) might contribute to the proangiogenic characteristics of TEC and whether its inactivation might inhibit angiogenesis. To address the potential role of PAF in the proangiogenic characteristics of TEC, we engineered TEC to stably overexpress human plasma PAF-acetylhydrolase (PAF-AH), the major PAF-inactivating enzyme, and we evaluated in vitro and in vivo angiogenesis. TECs were able to synthesize a significantly enhanced amount of PAF compared with normal human microvascular endothelial cells when stimulated with thrombin, vascular endothelial growth factor, or soluble CD154. Transfection of TEC with PAF-AH (TEC-PAF-AH) significantly inhibited apoptosis resistance and spontaneous motility of TEC. In addition, PAF and vascular endothelial growth factor stimulation enhanced the motility and adhesion of TEC but not of TEC-PAF-AH. In vitro, TEC-PAF-AH lost the characteristic ability of TEC to form vessel-like structures when plated on Matrigel. Finally, when cells were injected s.c. within Matrigel in severe combined immunodeficiency mice or coimplanted with a renal carcinoma cell line, the overexpression of PAF-AH induced a significant reduction of functional vessel formation. These results suggest that inactivation of PAF, produced by TEC, by the overexpression of plasma PAF-AH affects survival, migration, and the angiogenic response of TEC both in vitro and in vivo.

  5. Circulating endothelial cells and procoagulant microparticles in patients with glioblastoma: prognostic value.

    Directory of Open Access Journals (Sweden)

    Gaspar Reynés

    Full Text Available AIM: Circulating endothelial cells and microparticles are prognostic factors in cancer. However, their prognostic and predictive value in patients with glioblastoma is unclear. The objective of this study was to investigate the potential prognostic value of circulating endothelial cells and microparticles in patients with newly diagnosed glioblastoma treated with standard radiotherapy and concomitant temozolomide. In addition, we have analyzed the methylation status of the MGMT promoter. METHODS: Peripheral blood samples were obtained before and at the end of the concomitant treatment. Blood samples from healthy volunteers were also obtained as controls. Endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Microparticles were quantified by flow cytometry. Microparticle-mediated procoagulant activity was measured by endogen thrombin generation and by phospholipid-dependent clotting time. Methylation status of MGMT promoter was determined by multiplex ligation-dependent probe amplification. RESULTS: Pretreatment levels of circulating endothelial cells and microparticles were higher in patients than in controls (p<0.001. After treatment, levels of microparticles and thrombin generation decreased, and phospholipid-dependent clotting time increased significantly. A high pretreatment endothelial cell count, corresponding to the 99(th percentile in controls, was associated with poor overall survival. MGMT promoter methylation was present in 27% of tumor samples and was associated to a higher overall survival (66 weeks vs 30 weeks, p<0.004. CONCLUSION: Levels of circulating endothelial cells may have prognostic value in patients with glioblastoma.

  6. Tumor endothelial markers define novel subsets of cancer-specific circulating endothelial cells associated with antitumor efficacy

    Science.gov (United States)

    Mehran, Reza; Nilsson, Monique; Khajavi, Mehrdad; Du, Zhiqiang; Cascone, Tina; Wu, Hua Kang; Cortes, Andrea; Xu, Li; Zurita, Amado; Schier, Robert; Riedel, Bernhard; El-Zein, Randa; Heymach, John V.

    2014-01-01

    Circulating endothelial cells (CEC) are derived from multiple sources including bone marrow (circulating endothelial progenitors [CEP]) and established vasculature (mature CEC). Although CEC have shown promise as a biomarker for cancer patients, their utility has been limited in part by the lack of specificity for tumor vasculature and the different non-malignant causes that can impact CEC. Tumor endothelial markers (TEM) are antigens enriched in tumor vs non-malignant endothelia. We hypothesized that TEMs may be detectable on CEC and that these circulating TEM+ endothelial cells (CTEC) may be a more specific marker for cancer and tumor response than standard CEC. We found that tumor-bearing mice had a relative increase in numbers of circulating CTEC, specifically with increased levels of TEM7 and TEM8 expression. Following treatment with various vascular targeting agents, we observed a decrease in CTEC that correlated with the reductions in tumor growth. We extended these findings to human clinical samples and observed that CTEC were present in esophageal cancer and non-small cell lung cancer (NSCLC) patients (N=40) and their levels decreased after surgical resection. These results demonstrate that CTEC are detectable in preclinical cancer models and cancer patients. Further, they suggest that CTEC offer a novel cancer-associated marker that may be useful as a blood-based surrogate for assessing the presence of tumor vasculature and antiangiogenic drug activity. PMID:24626092

  7. Endothelial Cell Migration and Vascular Endothelial Growth Factor Expression Are the Result of Loss of Breast Tissue Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Amy; Cuevas, Ileana; Kenny, Paraic A; Miyake, Hiroshi; Mace, Kimberley; Ghajar, Cyrus; Boudreau, Aaron; Bissell, Mina; Boudreau, Nancy

    2009-05-26

    Recruiting a new blood supply is a rate-limiting step in tumor progression. In a three-dimensional model of breast carcinogenesis, disorganized, proliferative transformed breast epithelial cells express significantly higher expression of angiogenic genes compared with their polarized, growth-arrested nonmalignant counterparts. Elevated vascular endothelial growth factor (VEGF) secretion by malignant cells enhanced recruitment of endothelial cells (EC) in heterotypic cocultures. Significantly, phenotypic reversion of malignant cells via reexpression of HoxD10, which is lost in malignant progression, significantly attenuated VEGF expression in a hypoxia-inducible factor 1{alpha}-independent fashion and reduced EC migration. This was due primarily to restoring polarity: forced proliferation of polarized, nonmalignant cells did not induce VEGF expression and EC recruitment, whereas disrupting the architecture of growth-arrested, reverted cells did. These data show that disrupting cytostructure activates the angiogenic switch even in the absence of proliferation and/or hypoxia and restoring organization of malignant clusters reduces VEGF expression and EC activation to levels found in quiescent nonmalignant epithelium. These data confirm the importance of tissue architecture and polarity in malignant progression.

  8. Identification and functional analysis of endothelial tip cell-enriched genes.

    Science.gov (United States)

    del Toro, Raquel; Prahst, Claudia; Mathivet, Thomas; Siegfried, Geraldine; Kaminker, Joshua S; Larrivee, Bruno; Breant, Christiane; Duarte, Antonio; Takakura, Nobuyuki; Fukamizu, Akiyoshi; Penninger, Josef; Eichmann, Anne

    2010-11-11

    Sprouting of developing blood vessels is mediated by specialized motile endothelial cells localized at the tips of growing capillaries. Following behind the tip cells, endothelial stalk cells form the capillary lumen and proliferate. Expression of the Notch ligand Delta-like-4 (Dll4) in tip cells suppresses tip cell fate in neighboring stalk cells via Notch signaling. In DLL4(+/-) mouse mutants, most retinal endothelial cells display morphologic features of tip cells. We hypothesized that these mouse mutants could be used to isolate tip cells and so to determine their genetic repertoire. Using transcriptome analysis of retinal endothelial cells isolated from DLL4(+/-) and wild-type mice, we identified 3 clusters of tip cell-enriched genes, encoding extracellular matrix degrading enzymes, basement membrane components, and secreted molecules. Secreted molecules endothelial-specific molecule 1, angiopoietin 2, and apelin bind to cognate receptors on endothelial stalk cells. Knockout mice and zebrafish morpholino knockdown of apelin showed delayed angiogenesis and reduced proliferation of stalk cells expressing the apelin receptor APJ. Thus, tip cells may regulate angiogenesis via matrix remodeling, production of basement membrane, and release of secreted molecules, some of which regulate stalk cell behavior.

  9. Flow-induced endothelial cell alignment requires the RhoGEF Trio as a scaffold protein to polarize active Rac1 distribution

    NARCIS (Netherlands)

    Kroon, Jeffrey; Heemskerk, Niels; Kalsbeek, Martin J. T.; de Waard, Vivian; van Rijssel, Jos; van Buul, Jaap D.

    2017-01-01

    Endothelial cells line the lumen of the vessel wall and are exposed to flow. In linear parts of the vessel, the endothelial cells experience laminar flow, resulting in endothelial cell alignment in the direction of flow, thereby protecting the vessel wall from inflammation and permeability. In order

  10. Impact of simulated microgravity on the secretory and adhesive activity of cultured human vascular endothelial cells.

    Science.gov (United States)

    Rudimov, Evgeny; Buravkova, Ludmila; Pogodina, Margarita; Andrianova, Irina

    The layer of vascular endothelial cells (ECs) is a dynamic,disseminated organ that perform the function of an interface between the blood and vascular wall. The endothelial monolayer is able to quickly respond to changes in the microenvironment due to its synthesis of vasoactive substances, chemokines, adhesion molecules expression, etc. ECs are highly sensitive to gravitational changes and capable of short-term and long-term responses (Sangha et al., 2001; Buravkova et al., 2005; Infanger et al., 2006, 2007. However, the question remains how to reflect the impact of microgravity on endothelium under the inflammatory process. Therefore, the aim of this study was to investigate secretory and adhesive activity of human umbilical vein endothelial cells (HUVECs) during simulated microgravity and TNF-a activation. HUVECs were isolated according to Gimbrone et al. (1978) in modification A. Antonov (1981) and used for experiments at 2-4 passages. HUVECs were activated by low level of TNF-a (2 ng/ml). Microgravity was generated by Random Positioning Machine (RPM, Dutch Space, Leiden) placed into the thermostat at 37°C. After 24 hours of clinorotation we measured adhesion molecules expression on the cell surface (ICAM-1, VCAM-1, PECAM-1, E-selectin, CD144, endoglin (CD105)) and cell viability using a flow cytometry. To evaluate the level of target gene expression was used the real time RT-PCR. IL-6 and IL-8 concentration was measured in the conditioned medium of HUVECs by using the ELISA test. We found that simulated microgravity within 24 hours caused a decrease of ICAM-1, CD144, and E-selectin expression, at the same time not affect the cell viability, endoglin and PECAM-1 expression on the surface HUVEC. Furthermore, there were no changes of the level of IL-6 and IL-8 gene expression and their products in the culture medium. TNF-activated HUVECs showed an increase in gene expression of interleukins and molecules involved in the adhesion process, which also was confirmed

  11. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells.

    Science.gov (United States)

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M; Eguchi, Satoru; Brown, Michael D; Park, Joon-Young

    2015-08-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting

  12. Interleukin 2 secretion by lectin-activated human blood lymphocytes is markedly augmented by vascular endothelial cells

    International Nuclear Information System (INIS)

    Guinan, E.C.; Pober, J.S.

    1986-01-01

    Since the initial interaction (and possible activation) of a blood borne T lymphocyte involves contact with the endothelial lining of the vasculature at the site of an immune response, the authors have examined the effect of cultured human endothelial cells (HEC) upon polyclonal T cell activation. Addition of 10 4 HEC to 10 4 -10 5 peripheral blood lymphocytes (PBL) stimulated with phytohemagglutinin (PHA, 0.3-10 μg/ml) leads to marked augmentation of interleukin 2 (IL-2) production. The relative increase in IL-2 (mean of 3 expts. +/- SEM) is present at 24 h (5.8 fold +/- 1.5) and become more marked at 48 h (12.6 fold +/- 3.5) and 72 h (18.5 fold +/- 3.7). This relative enhancement is greater for HEC added to 10 4 than 10 5 PBL and is also greater when 10 4 rather than 2 x 10 3 HEC are added to a given number of PBL. This increased IL-2 concentration has two biological consequences. First, at suboptimal PHA doses or at low PBL number, PBL proliferation as measured by 3 H-thymidine incorporation is increased up to two fold. Second, the phenotype of the proliferating cells appears altered, including a decrease in mean density of IL-2 receptor. The authors hypothesize that such modulation of the concentration of locally produced IL-2 may play a key role in the nature of an immune response, influencing both its magnitude and the functional profile of the activated and amplified effector cells

  13. Thrombin-specific inactivation of endothelial cell derived plasminogen activator

    Energy Technology Data Exchange (ETDEWEB)

    Highsmith, R.F.; Gallaher, M.J.

    1986-03-05

    Although thrombin (T) has diverse functions in the overall hemostatic mechanism, relatively little is known about its direct effect on components of the fibrinolytic enzyme system. The authors have investigated the interaction of T with plasminogen activators (PA) derived from bovine aortic endothelial cells (EC) in culture (2-5th passage, preconfluent monolayers). Varying concentrations of purified bovine or human thrombin were added to EC-conditioned media (CM). CM + T mixtures were assayed at various times for PA activity using purified plasminogen and a sensitive /sup 125/I-fibrinogenolytic or caseinolytic assay. T (5 nM), but not plasmin or trypsin at equivalent concentrations, resulted in a time-dependent inhibition of the PA activity in CM. T had no effect on the PA activity of urokinase, streptokinase or preformed plasmin. The ability of T to inactivate the EC-derived PA was abolished by prior treatment of T with active site-directed reagents. SDS-PAGE and zymography with copolymerized fibrinogen and plasminogen revealed further specificity in that only one of the multiple-molecular weight forms of PA present in EC-CM was inactivated by T. The authors conclude that in a highly specific fashion, T inactivates the predominant PA present in EC-CM by limited proteolysis. Thus, another potentially important function of T is suggested which may have particular significance in the temporal regulation of coagulation and fibrinolysis at the blood-endothelium interface.

  14. Tumor necrosis factor increases the production of plasminogen activator inhibitor in human endothelial cells in vitro and in rats in vivo

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Kooistra, T.; Berg, E.A. van den; Princen, H.M.G.; Fiers, W.; Emeis, J.J.

    1988-01-01

    The vascular endothelium plays an important role in fibrinolysis by producing tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI). The monokine tumor necrosis factor (human recombinant TNF) increased the production of PAI by cultured human endothelial cells from

  15. Sodium valproate, a histone deacetylase inhibitor, modulates the vascular endothelial growth inhibitor-mediated cell death in human osteosarcoma and vascular endothelial cells.

    Science.gov (United States)

    Yamanegi, Koji; Kawabe, Mutsuki; Futani, Hiroyuki; Nishiura, Hiroshi; Yamada, Naoko; Kato-Kogoe, Nahoko; Kishimoto, Hiromitsu; Yoshiya, Shinichi; Nakasho, Keiji

    2015-05-01

    The level of vascular endothelial growth inhibitor (VEGI) has been reported to be negatively associated with neovascularization in malignant tumors. The soluble form of VEGI is a potent anti-angiogenic factor due to its effects in inhibiting endothelial cell proliferation. This inhibition is mediated by death receptor 3 (DR3), which contains a death domain in its cytoplasmic tail capable of inducing apoptosis that can be subsequently blocked by decoy receptor 3 (DcR3). We investigated the effects of sodium valproate (VPA) and trichostatin A (TSA), histone deacetylase inhibitors, on the expression of VEGI and its related receptors in human osteosarcoma (OS) cell lines and human microvascular endothelial (HMVE) cells. Consequently, treatment with VPA and TSA increased the VEGI and DR3 expression levels without inducing DcR3 production in the OS cell lines. In contrast, the effect on the HMVE cells was limited, with no evidence of growth inhibition or an increase in the DR3 and DcR3 expression. However, VPA-induced soluble VEGI in the OS cell culture medium markedly inhibited the vascular tube formation of HMVE cells, while VEGI overexpression resulted in enhanced OS cell death. Taken together, the HDAC inhibitor has anti-angiogenesis and antitumor activities that mediate soluble VEGI/DR3-induced apoptosis via both autocrine and paracrine pathways. This study indicates that the HDAC inhibitor may be exploited as a therapeutic strategy modulating the soluble VEGI/DR3 pathway in osteosarcoma patients.

  16. Insulin resistance in vascular endothelial cells promotes intestinal tumour formation

    DEFF Research Database (Denmark)

    Wang, X; Häring, M-F; Rathjen, Thomas

    2017-01-01

    in vascular endothelial cells. Strikingly, these mice had 42% more intestinal tumours than controls, no change in tumour angiogenesis, but increased expression of vascular cell adhesion molecule-1 (VCAM-1) in primary culture of tumour endothelial cells. Insulin decreased VCAM-1 expression and leukocyte...... adhesion in quiescent tumour endothelial cells with intact insulin receptors and partly prevented increases in VCAM-1 and leukocyte adhesion after treatment with tumour necrosis factor-α. Knockout of insulin receptors in endothelial cells also increased leukocyte adhesion in mesenteric venules...

  17. Endothelial Cells Control Pancreatic Cell Fate at Defined Stages through EGFL7 Signaling

    Directory of Open Access Journals (Sweden)

    Der-I Kao

    2015-02-01

    Full Text Available Although endothelial cells have been shown to affect mouse pancreatic development, their precise function in human development remains unclear. Using a coculture system containing human embryonic stem cell (hESC-derived progenitors and endothelial cells, we found that endothelial cells play a stage-dependent role in pancreatic development, in which they maintain pancreatic progenitor (PP self-renewal and impair further differentiation into hormone-expressing cells. The mechanistic studies suggest that the endothelial cells act through the secretion of EGFL7. Consistently, endothelial overexpression of EGFL7 in vivo using a transgenic mouse model resulted in an increase of PP proliferation rate and a decrease of differentiation toward endocrine cells. These studies not only identified the role of EGFL7 as the molecular handle involved in the crosstalk between endothelium and pancreatic epithelium, but also provide a paradigm for using hESC stepwise differentiation to dissect the stage-dependent roles of signals controlling organogenesis.

  18. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits

    International Nuclear Information System (INIS)

    Ge, Gang-Feng; Shi, Wei-Wen; Yu, Chen-Huan; Jin, Xiao-Yin; Zhang, Huan-Huan; Zhang, Wen-You; Wang, Lu-Chen; Yu, Bing

    2017-01-01

    Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Further tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. - Highlights: • Baicalein attenuated vinorelbine-induced vascular endothelial cell apoptosis. • Baicalein inhibited vinorelbine-induced oxidative stress in HUVECs. • Baicalein inhibited activation of p38/NF-κB signaling. • Baicalein attenuated vinorelbine-induced phlebitis and inflammation in rabbits.

  19. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Gang-Feng [Zhejiang Chinese Medical University, Hangzhou 310053 (China); Shi, Wei-Wen [Zhejiang Medical Science and Education Development Center, Hangzhou 310006 (China); Yu, Chen-Huan; Jin, Xiao-Yin; Zhang, Huan-Huan; Zhang, Wen-You [Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013 (China); Wang, Lu-Chen [Zhejiang Chinese Medical University, Hangzhou 310053 (China); Yu, Bing, E-mail: Jellycook2002@163.com [Zhejiang Chinese Medical University, Hangzhou 310053 (China)

    2017-03-01

    Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Further tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. - Highlights: • Baicalein attenuated vinorelbine-induced vascular endothelial cell apoptosis. • Baicalein inhibited vinorelbine-induced oxidative stress in HUVECs. • Baicalein inhibited activation of p38/NF-κB signaling. • Baicalein attenuated vinorelbine-induced phlebitis and inflammation in rabbits.

  20. Extraembryonic origin of circulating endothelial cells.

    Directory of Open Access Journals (Sweden)

    Luc Pardanaud

    Full Text Available Circulating endothelial cells (CEC are contained in the bone marrow and peripheral blood of adult humans and participate to the revascularization of ischemic tissues. These cells represent attractive targets for cell or gene therapy aimed at improving ischemic revascularization or inhibition of tumor angiogenesis. The embryonic origin of CEC has not been addressed previously. Here we use quail-chick chimeras to study CEC origin and participation to the developing vasculature. CEC are traced with different markers, in particular the QH1 antibody recognizing only quail endothelial cells. Using yolk-sac chimeras, where quail embryos are grafted onto chick yolk sacs and vice-versa, we show that CEC are generated in the yolk sac. These cells are mobilized during wound healing, demonstrating their participation to angiogenic repair processes. Furthermore, we found that the allantois is also able to give rise to CEC in situ. In contrast to the yolk sac and allantois, the embryo proper does not produce CEC. Our results show that CEC exclusively originate from extra-embryonic territories made with splanchnopleural mesoderm and endoderm, while definitive hematopoietic stem cells and endothelial cells are of intra-embryonic origin.

  1. Extraembryonic origin of circulating endothelial cells.

    Science.gov (United States)

    Pardanaud, Luc; Eichmann, Anne

    2011-01-01

    Circulating endothelial cells (CEC) are contained in the bone marrow and peripheral blood of adult humans and participate to the revascularization of ischemic tissues. These cells represent attractive targets for cell or gene therapy aimed at improving ischemic revascularization or inhibition of tumor angiogenesis. The embryonic origin of CEC has not been addressed previously. Here we use quail-chick chimeras to study CEC origin and participation to the developing vasculature. CEC are traced with different markers, in particular the QH1 antibody recognizing only quail endothelial cells. Using yolk-sac chimeras, where quail embryos are grafted onto chick yolk sacs and vice-versa, we show that CEC are generated in the yolk sac. These cells are mobilized during wound healing, demonstrating their participation to angiogenic repair processes. Furthermore, we found that the allantois is also able to give rise to CEC in situ. In contrast to the yolk sac and allantois, the embryo proper does not produce CEC. Our results show that CEC exclusively originate from extra-embryonic territories made with splanchnopleural mesoderm and endoderm, while definitive hematopoietic stem cells and endothelial cells are of intra-embryonic origin.

  2. Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis.

    Science.gov (United States)

    Chillà, Anastasia; Margheri, Francesca; Biagioni, Alessio; Del Rosso, Mario; Fibbi, Gabriella; Laurenzana, Anna

    2018-04-03

    Controlling vascular growth is a challenging aim for the inhibition of tumor growth and metastasis. The amoeboid and mesenchymal types of invasiveness are two modes of migration interchangeable in cancer cells: the Rac-dependent mesenchymal migration requires the activity of proteases; the Rho-ROCK-dependent amoeboid motility is protease-independent and has never been described in endothelial cells. A cocktail of physiologic inhibitors (Ph-C) of serine-proteases, metallo-proteases and cysteine-proteases, mimicking the physiological environment that cells encounter during their migration within the angiogenesis sites was used to induce amoeboid style migration of Endothelial colony forming cells (ECFCs) and mature endothelial cells (ECs). To evaluate the mesenchymal-ameboid transition RhoA and Rac1 activation assays were performed along with immunofluorescence analysis of proteins involved in cytoskeleton organization. Cell invasion was studied in Boyden chambers and Matrigel plug assay for the in vivo angiogenesis. In the present study we showed in both ECFCs and ECs, a decrease of activated Rac1 and an increase of activated RhoA upon shifting of cells to the amoeboid conditions. In presence of Ph-C inhibitors both cell lines acquired a round morphology and Matrigel invasion was greatly enhanced with respect to that observed in the absence of protease inhibition. We also observed that the urokinase-plasminogen-activator (uPAR) receptor silencing and uPAR-integrin uncoupling with the M25 peptide abolished both mesenchymal and amoeboid angiogenesis of ECFCs and ECs in vitro and in vivo, indicating a role of the uPAR-integrin-actin axis in the regulation of amoeboid angiogenesis. Furthermore, under amoeboid conditions endothelial cells seem to be indifferent to VEGF stimulation, which induces an amoeboid signaling pattern also in mesenchymal conditions. Here we first provide a data set disclosing that endothelial cells can move and differentiate into vascular

  3. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Science.gov (United States)

    Cortese-Krott, Miriam M.; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D.; Suschek, Christoph V.

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation. PMID:25180171

  4. Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling.

    Science.gov (United States)

    Marchetti, Valentina; Menghini, Rossella; Rizza, Stefano; Vivanti, Alessia; Feccia, Tiziana; Lauro, Davide; Fukamizu, Akiyoshi; Lauro, Renato; Federici, Massimo

    2006-08-01

    Dysfunction of mature endothelial cells is thought to play a major role in both micro- and macrovascular complications of diabetes. However, recent advances in biology of endothelial progenitor cells (EPCs) have highlighted their involvement in diabetes complications. To determine the effect of glucotoxicity on EPCs, human EPCs have been isolated from peripheral blood mononuclear cells of healthy donors and cultured in the presence or absence of high glucose (33 mmol/l) or high glucose plus benfotiamine to scavenge glucotoxicity. Morphological analysis revealed that high glucose significantly affected the number of endothelial cell colony forming units, uptake and binding of acLDL and Lectin-1, and the ability to differentiate into CD31- and vascular endothelial growth factor receptor 2-positive cells. Functional analysis outlined a reduced EPC involvement in de novo tube formation, when cocultured with mature endothelial cells (human umbilical vein endothelial cells) on matrigel. To explain the observed phenotypes, we have investigated the signal transduction pathways known to be involved in EPC growth and differentiation. Our results indicate that hyperglycemia impairs EPC differentiation and that the process can be restored by benfotiamine administration, via the modulation of Akt/FoxO1 activity.

  5. Polystyrene-Divinylbenzene-Based Adsorbents Reduce Endothelial Activation and Monocyte Adhesion Under Septic Conditions in a Pore Size-Dependent Manner

    OpenAIRE

    Eichhorn, Tanja; Rauscher, Sabine; Hammer, Caroline; Gr?ger, Marion; Fischer, Michael B.; Weber, Viktoria

    2016-01-01

    Endothelial activation with excessive recruitment and adhesion of immune cells plays a central role in the progression of sepsis. We established a microfluidic system to study the activation of human umbilical vein endothelial cells by conditioned medium containing plasma from lipopolysaccharide-stimulated whole blood or from septic blood and to investigate the effect of adsorption of inflammatory mediators on endothelial activation. Treatment of stimulated whole blood with polystyrene-diviny...

  6. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neo-Vascularization

    Science.gov (United States)

    Dubrac, Alexandre; Genet, Gael; Ola, Roxana; Zhang, Feng; Pibouin-Fragner, Laurence; Han, Jinah; Zhang, Jiasheng; Thomas, Jean-Léon; Chedotal, Alain; Schwartz, Martin A.; Eichmann, Anne

    2015-01-01

    Background Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. Methods and Results Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2 and VEGF induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, as well as pathological ocular neovascularization and wound healing. Conclusions These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2 and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis. PMID:26659946

  7. Bevacizumab inhibits proliferation of choroidal endothelial cells by regulation of the cell cycle.

    Science.gov (United States)

    Rusovici, Raluca; Patel, Chirag J; Chalam, Kakarla V

    2013-01-01

    The purpose of this study was to evaluate cell cycle changes in choroidal endothelial cells treated with varying doses of bevacizumab in the presence of a range of concentrations of vascular endothelial growth factor (VEGF). Bevacizumab, a drug widely used in the treatment of neovascular age-related macular degeneration, choroidal neovascularization, and proliferative diabetic retinopathy, neutralizes all isoforms of VEGF. However, the effect of intravitreal administration of bevacizumab on the choroidal endothelial cell cycle has not been established. Monkey choroidal endothelial (RF/6A) cells were treated with VEGF 50 ng/mL and escalating doses of bevacizumab 0.1-2 mg/mL for 72 hours. Cell cycle changes in response to bevacizumab were analyzed by flow cytometry and propidium iodide staining. Cell proliferation was measured using the WST-1 assay. Morphological changes were recorded by bright field cell microscopy. Bevacizumab inhibited proliferation of choroidal endothelial cells by stabilization of the cell cycle in G0/G1 phase. Cell cycle analysis of VEGF-enriched choroidal endothelial cells revealed a predominant increase in the G2/M population (21.84%, P, 0.01) and a decrease in the G0/G1 phase population (55.08%, P, 0.01). Addition of escalating doses of bevacizumab stabilized VEGF-enriched cells in the G0/G1 phase (55.08%, 54.49%, 56.3%, and 64% [P, 0.01]) and arrested proliferation by inhibiting the G2/M phase (21.84%, 21.46%, 20.59%, 20.94%, and 16.1% [P, 0.01]). The increase in G0/G1 subpopulation in VEGF-enriched and bevacizumab-treated cells compared with VEGF-enriched cells alone was dose-dependent. Bevacizumab arrests proliferation of VEGF-enriched choroidal endothelial cells by stabilizing the cell cycle in the G0/G1 phase and inhibiting the G2/M phase in a dose-dependent fashion.

  8. Lycopene inhibits NF-κB activation and adhesion molecule expression through Nrf2-mediated heme oxygenase-1 in endothelial cells.

    Science.gov (United States)

    Yang, Po-Min; Chen, Huang-Zhi; Huang, Yu-Ting; Hsieh, Chia-Wen; Wung, Being-Sun

    2017-06-01

    The endothelial expression of cell adhesion molecules plays a leading role in atherosclerosis. Lycopene, a carotenoid with 11 conjugated double bonds, has been shown to have anti-inflammatory properties. In the present study, we demonstrate a putative mechanism for the anti-inflammatory effects of lycopene. We demonstrate that lycopene inhibits the adhesion of tumor necrosis factor α (TNFα)-stimulated monocytes to endothelial cells and suppresses the expression of intercellular cell adhesion molecule-1 (ICAM-1) at the transcriptional level. Moreover, lycopene was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein, IκBα, following 6 h of pre-treatment. In TNFα-stimulated endothelial cells, nuclear factor-κB (NF-κB) nuclear translocation and transcriptional activity were abolished by up to 12 h of lycopene pre-treatment. We also found that lycopene increased the intracellular glutathione (GSH) level and glutamate-cysteine ligase expression. Subsequently, lycopene induced nuclear factor-erythroid 2 related factor 2 (Nrf2) activation, leading to the increased expression of downstream of heme oxygenase-1 (HO-1). The use of siRNA targeting HO-1 blocked the inhibitory effects of lycopene on IκB degradation and ICAM-1 expression. The inhibitory effects of lycopene thus appear to be mediated through its induction of Nrf2-mediated HO-1 expression. Therefore, the findings of the present study indicate that lycopene suppresses the activation of TNFα-induced signaling pathways through the upregulation of Nrf2-mediated HO-1 expression.

  9. Functional and gene expression analysis of hTERT overexpressed endothelial cells

    Directory of Open Access Journals (Sweden)

    Haruna Takano

    2008-09-01

    Full Text Available Haruna Takano1, Satoshi Murasawa1,2, Takayuki Asahara1,2,31Institute of Biomedical Research and Innovation, Kobe, Japan; 2RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; 3Tokai University of School of Medicine, Tokai, JapanAbstract: Telomerase dysfunction contributes to cellular senescence. Recent advances indicate the importance of senescence in maintaining vascular cell function in vitro. Human telomerase reverse transcriptase (hTERT overexpression is thought to lead to resistance to apoptosis and oxidative stress. However, the mechanism in endothelial lineage cells is unclear. We tried to generate an immortal endothelial cell line from human umbilical vein endothelial cells using a no-virus system and examine the functional mechanisms of hTERT overexpressed endothelial cell senescence in vitro. High levels of hTERT genes and endothelial cell-specific markers were expressed during long-term culture. Also, angiogenic responses were observed in hTERT overexpressed endothelial cell. These cells showed a delay in senescence and appeared more resistant to stressed conditions. PI3K/Akt-related gene levels were enhanced in hTERT overexpressed endothelial cells. An up-regulated PI3K/Akt pathway caused by hTERT overexpression might contribute to anti-apoptosis and survival effects in endothelial lineage cells.Keywords: endothelial, telomerase, senescence, oxidative stress, anti-apoptosis, PI3K/Akt pathway

  10. Vascular endothelial growth factor modified macrophages transdifferentiate into endothelial-like cells and decrease foam cell formation.

    Science.gov (United States)

    Yan, Dan; He, Yujuan; Dai, Jun; Yang, Lili; Wang, Xiaoyan; Ruan, Qiurong

    2017-06-30

    Macrophages are largely involved in the whole process of atherosclerosis from an initiation lesion to an advanced lesion. Endothelial disruption is the initial step and macrophage-derived foam cells are the hallmark of atherosclerosis. Promotion of vascular integrity and inhibition of foam cell formation are two important strategies for preventing atherosclerosis. How can we inhibit even the reverse negative role of macrophages in atherosclerosis? The present study was performed to investigate if overexpressing endogenous human vascular endothelial growth factor (VEGF) could facilitate transdifferentiation of macrophages into endothelial-like cells (ELCs) and inhibit foam cell formation. We demonstrated that VEGF-modified macrophages which stably overexpressed human VEGF (hVEGF 165 ) displayed a high capability to alter their phenotype and function into ELCs in vitro Exogenous VEGF could not replace endogenous VEGF to induce the transdifferentiation of macrophages into ELCs in vitro We further showed that VEGF-modified macrophages significantly decreased cytoplasmic lipid accumulation after treatment with oxidized LDL (ox-LDL). Moreover, down-regulation of CD36 expression in these cells was probably one of the mechanisms of reduction in foam cell formation. Our results provided the in vitro proof of VEGF-modified macrophages as atheroprotective therapeutic cells by both promotion of vascular repair and inhibition of foam cell formation. © 2017 The Author(s).

  11. A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan); Kameshima, Satoshi; Usui, Tatsuya; Okada, Muneyoshi; Hara, Yukio [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Chemerin is a novel adipocytokine with almost unknown function in vasculature. Black-Right-Pointing-Pointer Chemerin activates Akt/eNOS/NO pathways in endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-{alpha}-induced monocyte adhesion to endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-induced VCAM-1 via suppressing NF-{kappa}B and p38 signal. Black-Right-Pointing-Pointer Chemerin is anti-inflammatory through producing NO in vascular endothelium. -- Abstract: Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-{kappa}B p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-{alpha} (5 ng/ml, 20 min-6 h). Inhibitor of NF-{kappa}B or p38 significantly inhibited the TNF-{alpha}-induced VCAM-1 expression. Chemerin also inhibited TNF-{alpha}-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-{alpha}-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-{alpha}-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-{alpha}-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-{alpha}-induced VCAM-1 expression and monocytes adhesion in vascular

  12. PGC-1-related coactivator (PRC) negatively regulates endothelial adhesion of monocytes via inhibition of NF κB activity

    Energy Technology Data Exchange (ETDEWEB)

    Chengye, Zhan; Daixing, Zhou, E-mail: dxzhou7246@hotmail.com; Qiang, Zhong; Shusheng, Li

    2013-09-13

    Highlights: •First time to display that LPS downregulate the expression of PRC. •First time to show that PRC inhibits the induction of VCAM-1 and E-selectin. •First time to show that PRC inhibit monocytes attachment to endothelial cells. •First time to display that PRC inhibits transcriptional activity of NF-κB. •PRC protects the respiration rate and suppresses the glycolysis rate against LPS. -- Abstract: PGC-1-related coactivator (PRC) is a growth-regulated transcriptional cofactor known to activate many of the nuclear genes specifying mitochondrial respiratory function. Endothelial dysfunction is a prominent feature found in many inflammatory diseases. Adhesion molecules, such as VCAM-1, mediate the attachment of monocytes to endothelial cells, thereby playing an important role in endothelial inflammation. The effects of PRC in regards to endothelial inflammation remain unknown. In this study, our findings show that PRC can be inhibited by the inflammatory cytokine LPS in cultured human umbilical vein endothelial cells (HUVECs). In the presence of LPS, the expression of endothelial cell adhesion molecular, such as VCAM1 and E-selectin, is found to be increased. These effects can be negated by overexpression of PRC. Importantly, monocyte adhesion to endothelial cells caused by LPS is significantly attenuated by PRC. In addition, overexpression of PRC protects mitochondrial metabolic function and suppresses the rate of glycolysis against LPS. It is also found that overexpression of PRC decreases the transcriptional activity of NF-κB. These findings suggest that PRC is a negative regulator of endothelial inflammation.

  13. A proton-activated, outwardly rectifying chloride channel in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Ma Zhiyong; Zhang Wei; Chen Liang; Wang Rong; Kan Xiaohong; Sun Guizhen; Liu Chunxi; Li Li; Zhang Yun

    2008-01-01

    Extracellular acidic pH-activated chloride channel I Cl,acid , has been characterized in HEK 293 cells and mammalian cardiac myocytes. This study was designed to characterize I Cl,acid in human umbilical vein endothelial cells(HUVECs). The activation and deactivation of the current rapidly and repeatedly follows the change of the extracellular solution at pH 4.3, with the threshold pH 5.3. In addition, at very positive potentials, the current displays a time-dependent facilitation. pH-response relationship for I Cl,acid revealed that EC 50 is pH 4.764 with a threshold pH value of pH 5.3 and nH of 14.545. The current can be blocked by the Cl - channel inhibitor DIDS (100 μM). In summary, for the first time we report the presence of proton-activated, outwardly rectifying chloride channel in HUVECs. Because an acidic environment can develop in local myocardium under pathological conditions such as myocardial ischemia, I Cl,acid would play a role in regulation of EC function under these pathological conditions

  14. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Directory of Open Access Journals (Sweden)

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  15. Efficient Generation of Human Embryonic Stem Cell-Derived Corneal Endothelial Cells by Directed Differentiation.

    Directory of Open Access Journals (Sweden)

    Kathryn L McCabe

    Full Text Available To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs for transplantation in patients with corneal endothelial dystrophies.Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology, expression of corneal endothelial markers, and microarray analysis of gene expression.hESC-CECs were nearly identical morphologically to primary human corneal endothelial cells, expressed Zona Occludens 1 (ZO-1 and Na+/K+ATPaseα1 (ATPA1 on the apical surface in monolayer culture, and produced the key proteins of Descemet's membrane, Collagen VIIIα1 and VIIIα2 (COL8A1 and 8A2. Quantitative PCR analysis revealed expression of all corneal endothelial pump transcripts. hESC-CECs were 96% similar to primary human adult CECs by microarray analysis.hESC-CECs are morphologically similar, express corneal endothelial cell markers and express a nearly identical complement of genes compared to human adult corneal endothelial cells. hESC-CECs may be a suitable alternative to donor-derived corneal endothelium.

  16. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    Science.gov (United States)

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  17. The regulatory mechanism of Hsp90α secretion from endothelial cells and its role in angiogenesis during wound healing

    International Nuclear Information System (INIS)

    Song, Xiaomin; Luo, Yongzhang

    2010-01-01

    Research highlights: → Growth factors such as bFGF, VEGF, PDGF and SDF-1 stimulate Hsp90α secretion from endothelial cells. → Secreted Hsp90α localizes on the leading edge of activated endothelial cells. → Secreted Hsp90α promotes angiogenesis in wound healing. -- Abstract: Heat shock protein 90α (Hsp90α) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90α can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90α from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90α in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90α but not Hsp90β is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90α localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90α neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90α localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90α can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90α as a stimulator for wound repair.

  18. The regulatory mechanism of Hsp90{alpha} secretion from endothelial cells and its role in angiogenesis during wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaomin [National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Luo, Yongzhang, E-mail: yluo@tsinghua.edu.cn [National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084 (China)

    2010-07-16

    Research highlights: {yields} Growth factors such as bFGF, VEGF, PDGF and SDF-1 stimulate Hsp90{alpha} secretion from endothelial cells. {yields} Secreted Hsp90{alpha} localizes on the leading edge of activated endothelial cells. {yields} Secreted Hsp90{alpha} promotes angiogenesis in wound healing. -- Abstract: Heat shock protein 90{alpha} (Hsp90{alpha}) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90{alpha} can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90{alpha} from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90{alpha} in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90{alpha} but not Hsp90{beta} is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90{alpha} localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90{alpha} neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90{alpha} localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90{alpha} can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90{alpha} as a stimulator for wound repair.

  19. Culture and Characterization of Circulating Endothelial Progenitor Cells in Patients with Renal Cell Carcinoma.

    Science.gov (United States)

    Gu, Wenyu; Sun, Wei; Guo, Changcheng; Yan, Yang; Liu, Min; Yao, Xudong; Yang, Bin; Zheng, Junhua

    2015-07-01

    Although emerging evidence demonstrates increased circulating endothelial progenitor cells in patients with solid tumors, to our knowledge it is still unknown whether such cells can be cultured from patients with highly angiogenic renal cell carcinoma. We cultured and characterized circulating endothelial progenitor cells from patients with renal cell carcinoma. The circulating endothelial progenitor cell level (percent of CD45(-)CD34(+) VEGF-R2(+) cells in total peripheral blood mononuclear cells) was quantified in 47 patients with renal cell carcinoma and 40 healthy controls. Peripheral blood mononuclear cells were then isolated from 33 patients with renal cell carcinoma and 30 healthy controls to culture and characterize circulating endothelial progenitor cells. The circulating endothelial progenitor cell level was significantly higher in patients with renal cell carcinoma than in healthy controls (0.276% vs 0.086%, p cells first emerged significantly earlier in patient than in control preparations (6.72 vs 14.67 days, p culture success rate (87.8% vs 40.0% of participants) and the number of colonies (10.06 vs 1.83) were significantly greater for patients than for controls (each p cell level correlated positively with the number of patient colonies (r = 0.762, p Cells cultured from patients and controls showed a similar growth pattern, immunophenotype, ability to uptake Ac-LDL and bind lectin, and form capillary tubes in vitro. However, significantly more VEGF-R2(+) circulating endothelial progenitor cells were found in preparations from patients with renal cell carcinoma than from healthy controls (21.1% vs 13.4%, p cell colonies, a higher cell culture success rate and more colonies were found for patients with renal cell carcinoma than for healthy controls. Results indicate the important significance of VEGF-R2(+) circulating endothelial progenitors in patients with renal cell carcinoma. Copyright © 2015 American Urological Association Education and Research

  20. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles.

    Science.gov (United States)

    Jansen, Felix; Yang, Xiaoyan; Hoelscher, Marion; Cattelan, Arianna; Schmitz, Theresa; Proebsting, Sebastian; Wenzel, Daniela; Vosen, Sarah; Franklin, Bernardo S; Fleischmann, Bernd K; Nickenig, Georg; Werner, Nikos

    2013-10-29

    Repair of the endothelium after vascular injury is crucial for preserving endothelial integrity and preventing the development of vascular disease. The underlying mechanisms of endothelial cell repair are largely unknown. We sought to investigate whether endothelial microparticles (EMPs), released from apoptotic endothelial cells (ECs), influence EC repair. Systemic treatment of mice with EMPs after electric denudation of the endothelium accelerated reendothelialization in vivo. In vitro experiments revealed that EMP uptake in ECs promotes EC migration and proliferation, both critical steps in endothelial repair. To dissect the underlying mechanisms, Taqman microRNA array was performed, and microRNA (miR)-126 was identified as the predominantly expressed miR in EMPs. The following experiments demonstrated that miR-126 was transported into recipient human coronary artery endothelial cells by EMPs and functionally regulated the target protein sprouty-related, EVH1 domain-containing protein 1 (SPRED1). Knockdown of miR-126 in EMPs abrogated EMP-mediated effects on human coronary artery endothelial cell migration and proliferation in vitro and reendothelialization in vivo. Interestingly, after simulating diabetic conditions, EMPs derived from glucose-treated ECs contained significantly lower amounts of miR-126 and showed reduced endothelial repair capacity in vitro and in vivo. Finally, expression analysis of miR-126 in circulating microparticles from 176 patients with stable coronary artery disease with and without diabetes mellitus revealed a significantly reduced miR-126 expression in circulating microparticles from diabetic patients. Endothelial microparticles promote vascular endothelial repair by delivering functional miR-126 into recipient cells. In pathological hyperglycemic conditions, EMP-mediated miR-126-induced EC repair is altered.

  1. Endothelial Induced EMT in Breast Epithelial Cells with Stem Cell Properties

    OpenAIRE

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J. R.; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A.; Petersen, Ole William; Magnusson, Magnus K.; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell proper...

  2. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor; Kong, Say Li; Sengupta, Debarka; Tan, Iain B; Phyo, Wai Min; Lee, Daniel; Hu, Min; Iliescu, Ciprian; Alexander, Irina; Goh, Wei Lin; Rahmani, Mehran; Suhaimi, Nur-Afidah Mohamed; Vo, Jess H; Tai, Joyce A; Tan, Joanna H; Chua, Clarinda; Ten, Rachel; Lim, Wan Jun; Chew, Min Hoe; Hauser, Charlotte; van Dam, Rob M; Lim, Wei-Yen; Prabhakar, Shyam; Lim, Bing; Koh, Poh Koon; Robson, Paul; Ying, Jackie Y; Hillmer, Axel M; Tan, Min-Han

    2016-01-01

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  3. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  4. Analysis of Active Components in Salvia Miltiorrhiza Injection Based on Vascular Endothelial Cell Protection

    Directory of Open Access Journals (Sweden)

    Shen Jie

    2014-09-01

    Full Text Available Correlation analysis based on chromatograms and pharmacological activities is essential for understanding the effective components in complex herbal medicines. In this report, HPLC and measurement of antioxidant properties were used to describe the active ingredients of Salvia miltiorrhiza injection (SMI. HPLC results showed that tanshinol, protocatechuic aldehyde, rosmarinic acid, salvianolic acid B, protocatechuic acid and their metabolites in rat serum may contribute to the efficacy of SMI. Assessment of antioxidant properties indicated that differences in the composition of serum powder of SMI caused differences in vascular endothelial cell protection. When bivariate correlation was carried out it was found that salvianolic acid B, tanshinol and protocatechuic aldehyde were active components of SMI because they were correlated to antioxidant properties.

  5. Polystyrene-Divinylbenzene-Based Adsorbents Reduce Endothelial Activation and Monocyte Adhesion Under Septic Conditions in a Pore Size-Dependent Manner.

    Science.gov (United States)

    Eichhorn, Tanja; Rauscher, Sabine; Hammer, Caroline; Gröger, Marion; Fischer, Michael B; Weber, Viktoria

    2016-10-01

    Endothelial activation with excessive recruitment and adhesion of immune cells plays a central role in the progression of sepsis. We established a microfluidic system to study the activation of human umbilical vein endothelial cells by conditioned medium containing plasma from lipopolysaccharide-stimulated whole blood or from septic blood and to investigate the effect of adsorption of inflammatory mediators on endothelial activation. Treatment of stimulated whole blood with polystyrene-divinylbenzene-based cytokine adsorbents (average pore sizes 15 or 30 nm) prior to passage over the endothelial layer resulted in significantly reduced endothelial cytokine and chemokine release, plasminogen activator inhibitor-1 secretion, adhesion molecule expression, and in diminished monocyte adhesion. Plasma samples from sepsis patients differed substantially in their potential to induce endothelial activation and monocyte adhesion despite their almost identical interleukin-6 and tumor necrosis factor-alpha levels. Pre-incubation of the plasma samples with a polystyrene-divinylbenzene-based adsorbent (30 nm average pore size) reduced endothelial intercellular adhesion molecule-1 expression to baseline levels, resulting in significantly diminished monocyte adhesion. Our data support the potential of porous polystyrene-divinylbenzene-based adsorbents to reduce endothelial activation under septic conditions by depletion of a broad range of inflammatory mediators.

  6. HOIP Deficiency Causes Embryonic Lethality by Aberrant TNFR1-Mediated Endothelial Cell Death

    Directory of Open Access Journals (Sweden)

    Nieves Peltzer

    2014-10-01

    Full Text Available Summary: Linear ubiquitination is crucial for innate and adaptive immunity. The linear ubiquitin chain assembly complex (LUBAC, consisting of HOIL-1, HOIP, and SHARPIN, is the only known ubiquitin ligase that generates linear ubiquitin linkages. HOIP is the catalytically active LUBAC component. Here, we show that both constitutive and Tie2-Cre-driven HOIP deletion lead to aberrant endothelial cell death, resulting in defective vascularization and embryonic lethality at midgestation. Ablation of tumor necrosis factor receptor 1 (TNFR1 prevents cell death, vascularization defects, and death at midgestation. HOIP-deficient cells are more sensitive to death induction by both tumor necrosis factor (TNF and lymphotoxin-α (LT-α, and aberrant complex-II formation is responsible for sensitization to TNFR1-mediated cell death in the absence of HOIP. Finally, we show that HOIP’s catalytic activity is necessary for preventing TNF-induced cell death. Hence, LUBAC and its linear-ubiquitin-forming activity are required for maintaining vascular integrity during embryogenesis by preventing TNFR1-mediated endothelial cell death. : HOIP is the main catalytic subunit of the linear ubiquitin chain assembly complex (LUBAC, a crucial regulator of TNF and other immune signaling pathways. Peltzer et al. find that HOIP deficiency results in embryonic lethality at midgestation due to endothelial cell death mediated by TNFR1. Aberrant formation of a TNF-mediated cell-death-inducing complex in HOIP-deficient (but not -proficient cells underlies the phenotype, with the catalytic activity of HOIP required for the control of cell death in response to TNF.

  7. Hypoxia upregulates Bcl-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    BACKGROUND: Hypoxia in solid tumors potentially stimulates angiogenesis by promoting vascular endothelial growth factor (VEGF) production and upregulating VEGF receptor expression. However, it is unknown whether hypoxia can modulate the effect of anti-angiogenic treatment on tumor-derived endothelium. METHODS: Human tumor-derived endothelial cells (HTDEC) were freshly isolated from surgically removed human colorectal tumors by collagenase\\/DNase digestion and Percol gradient sedimentation. Cell proliferation was assessed by measuring BrdU incorporation, and capillary tube formation was measured using Matrigel. Cell apoptosis was assessed by flow cytometry and ELISA, and Bcl-2 expression was detected by Western blot analysis. RESULTS: Under aerobic culture conditions (5% CO2 plus 21% O2) HTDEC expressed less Bcl-2 and were more susceptible to IFN-gamma-induced apoptosis with significant reductions in both cell proliferation and capillary tube formation, when compared with normal human macrovascular and microvascular EC. Following exposure of HTDEC to hypoxia (5% CO2 plus 2% O2), IFN-gamma-induced cell apoptosis, and antiangiogenic activity (i.e. an inhibition in cell proliferation and capillary tube formation) in HTDEC were markedly attenuated. This finding correlated with hypoxia-induced upregulation of Bcl-2 expression in HTDEC. CONCLUSIONS: These results indicate that hypoxia can protect HTDEC against IFN-gamma-mediated cell death and antiangiogenic activity, and suggest that improvement of tumor oxygenation may potentiate the efficacy of anti-cancer therapies specifically targeting the inhibition of tumor angiogenesis.

  8. Mechanisms of Diabetes-Induced Endothelial Cell Senescence: Role of Arginase 1

    Directory of Open Access Journals (Sweden)

    Esraa Shosha

    2018-04-01

    Full Text Available We have recently found that diabetes-induced premature senescence of retinal endothelial cells is accompanied by NOX2-NADPH oxidase-induced increases in the ureohydrolase enzyme arginase 1 (A1. Here, we used genetic strategies to determine the specific involvement of A1 in diabetes-induced endothelial cell senescence. We used A1 knockout mice and wild type mice that were rendered diabetic with streptozotocin and retinal endothelial cells (ECs exposed to high glucose or transduced with adenovirus to overexpress A1 for these experiments. ABH [2(S-Amino-6-boronohexanoic acid] was used to inhibit arginase activity. We used Western blotting, immunolabeling, quantitative PCR, and senescence associated β-galactosidase (SA β-Gal activity to evaluate senescence. Analyses of retinal tissue extracts from diabetic mice showed significant increases in mRNA expression of the senescence-related proteins p16INK4a, p21, and p53 when compared with non-diabetic mice. SA β-Gal activity and p16INK4a immunoreactivity were also increased in retinal vessels from diabetic mice. A1 gene deletion or pharmacological inhibition protected against the induction of premature senescence. A1 overexpression or high glucose treatment increased SA β-Gal activity in cultured ECs. These results demonstrate that A1 is critically involved in diabetes-induced senescence of retinal ECs. Inhibition of arginase activity may therefore be an effective therapeutic strategy to alleviate diabetic retinopathy by preventing premature senescence.

  9. Acidic pH reduces VEGF-mediated endothelial cell responses by downregulation of VEGFR-2; relevance for anti-angiogenic therapies.

    Science.gov (United States)

    Faes, Seraina; Uldry, Emilie; Planche, Anne; Santoro, Tania; Pythoud, Catherine; Demartines, Nicolas; Dormond, Olivier

    2016-12-27

    Anti-angiogenic treatments targeting the vascular endothelial growth factor or its receptors have shown clinical benefits. However, impact on long-term survival remains limited. Solid tumors display an acidic microenvironment that profoundly influences their biology. Consequences of acidity on endothelial cells and anti-angiogenic therapies remain poorly characterized and hence are the focus of this study. We found that exposing endothelial cells to acidic extracellular pH resulted in reduced cell proliferation and migration. Also, whereas VEGF increased endothelial cell proliferation and survival at pH 7.4, it had no effect at pH 6.4. Furthermore, in acidic conditions, stimulation of endothelial cells with VEGF did not result in activation of downstream signaling pathways such as AKT. At a molecular level, acidity significantly decreased the expression of VEGFR-2 by endothelial cells. Consequently, anti-angiogenic therapies that target VEGFR-2 such as sunitinib and sorafenib failed to block endothelial cell proliferation in acidic conditions. In vivo, neutralizing tumor acidity with sodium bicarbonate increased the percentage of endothelial cells expressing VEGFR-2 in tumor xenografts. Furthermore, combining sodium bicarbonate with sunitinib provided stronger anti-cancer activity than either treatment alone. Histological analysis showed that sunitinib had a stronger anti-angiogenic effect when combined with sodium bicarbonate. Overall, our results show that endothelial cells prosper independently of VEGF in acidic conditions partly as a consequence of decreased VEGFR-2 expression. They further suggest that strategies aiming to raise intratumoral pH can improve the efficacy of anti-VEGF treatments.

  10. Effect of bFGF on radiation-induced apoptosis of vascular endothelial cells

    International Nuclear Information System (INIS)

    Gu Qingyang; Wang Dewen; Li Yuejuan; Peng Ruiyun; Dong Bo; Wang Zhaohai; Liu Jie; Deng Hua; Jiang Tao

    2003-01-01

    Objective: To study the effect of bFGF on radiation-induced apoptosis vascular endothelial cells. Methods: A cell line PAE (porcine aortic endothelial cells) and primary cultured HUVEC (human umbilical vein endothelial cells) were irradiated with 60 Co γ-rays to establish cell apoptosis models. Flow cytometry with annexin-V-FITC + PI labeling was used to evaluate cell apoptosis. Different amounts of bFGF were used to study their effects on radiation-induced endothelial cell apoptosis. Results and Conclusions: It is found that bFGF could inhibit radiation-induced endothelial cell apoptosis in a considerable degree

  11. Endothelial Activation: The Ang/Tie Axis in Sepsis

    Directory of Open Access Journals (Sweden)

    Aleksandra Leligdowicz

    2018-04-01

    Full Text Available Sepsis, a dysregulated host response to infection that causes life-threatening organ dysfunction, is a highly heterogeneous syndrome with no specific treatment. Although sepsis can be caused by a wide variety of pathogenic organisms, endothelial dysfunction leading to vascular leak is a common mechanism of injury that contributes to the morbidity and mortality associated with the syndrome. Perturbations to the angiopoietin (Ang/Tie2 axis cause endothelial cell activation and contribute to the pathogenesis of sepsis. In this review, we summarize how the Ang/Tie2 pathway is implicated in sepsis and describe its prognostic as well as therapeutic utility in life-threatening infections.

  12. Radiation-induced inhibition of human endothelial cells replicating in culture

    International Nuclear Information System (INIS)

    DeGowin, R.L.; Lewis, L.J.; Mason, R.E.; Borke, M.K.; Hoak, J.C.

    1976-01-01

    The radiosensitivity of some tumors may depend upon the sensitivity of their microvasculature to radiation. Heretofore, the dose-response of human endothelial cells replicating in tissue culture has not been published. In studies reported here, we exposed flasks containing 4 to 7 x 10 4 genetically identical human endothelial cells to doses of x irradiation from 125 to 1000 rad. During the phase of logarithmic growth, cell counts were compared to those of an unirradiated control to construct a dose--response curve. Similar studies were performed with normal fibroblasts. We found that 160 rad suppressed endothelial cell replication by 37 percent. Although recovery was evident with doses of 500 rad, no net increase in cell number occurred in 3 weeks in flasks of endothelial cells that received 750 or 1000 rad. Fibroblasts were slightly less sensitive under these conditions. To our knowledge, this is the first report of a radiation dose--response curve for human endothelial cells replicating in culture

  13. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Directory of Open Access Journals (Sweden)

    Miriam M. Cortese-Krott

    2014-01-01

    Full Text Available Aberrant production of nitric oxide (NO by inducible NO synthase (iNOS has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  14. The influence of biomaterials on endothelial cell thrombogenicity

    Science.gov (United States)

    McGuigan, Alison P.; Sefton, Michael V.

    2007-01-01

    Driven by tissue engineering and regenerative medicine, endothelial cells are being used in combination with biomaterials in a number of applications for the purpose of improving blood compatibility and host integration. Endothelialized vascular grafts are beginning to be used clinically with some success in some centers, while endothelial seeding is being explored as a means of creating a vasculature within engineered tissues. The underlying assumption of this strategy is that when cultured on artificial biomaterials, a confluent layer of endothelial cells maintain their non-thrombogenic phenotype. In this review the existing knowledge base of endothelial cell thrombogenicity cultured on a number of different biomaterials is summarized. The importance of selecting appropriate endpoint measures that are most reflective of overall surface thrombogenicity is the focus of this review. Endothelial cells inhibit thrombosis through three interconnected regulatory systems (1) the coagulation cascade (2) the cellular components of the blood such as leukocytes and platelets and (3) the complement cascade, and also through effects on fibrinolysis and vascular tone, the latter which influences blood flow. Thus, in order to demonstrate the thromobgenic benefit of seeding a biomaterial with EC, the conditions under which EC surfaces are more likely to exhibit lower thrombogenicity than unseeded biomaterial surfaces need to be consistent with the experimental context. The endpoints selected should be appropriate for the dominant thrombotic process that occurs under the given experimental conditions. PMID:17316788

  15. Endothelial cell proliferation in swine experimental aneurysm after coil embolization.

    Directory of Open Access Journals (Sweden)

    Yumiko Mitome-Mishima

    Full Text Available After coil embolization, recanalization in cerebral aneurysms adversely influences long-term prognosis. Proliferation of endothelial cells on the coil surface may reduce the incidence of recanalization and further improve outcomes after coil embolization. We aimed to map the expression of proliferating tissue over the aneurysmal orifice and define the temporal profile of tissue growth in a swine experimental aneurysm model. We compared the outcomes after spontaneous thrombosis with those of coil embolization using histological and morphological techniques. In aneurysms that we not coiled, spontaneous thrombosis was observed, and weak, easily detachable proliferating tissue was evident in the aneurysmal neck. In contrast, in the coil embolization group, histological analysis showed endothelial-like cells lining the aneurysmal opening. Moreover, immunohistochemical and morphological analysis suggested that these cells were immature endothelial cells. Our results indicated the existence of endothelial cell proliferation 1 week after coil embolization and showed immature endothelial cells in septal tissue between the systemic circulation and the aneurysm. These findings suggest that endothelial cells are lead to and proliferate in the former aneurysmal orifice. This is the first examination to evaluate the temporal change of proliferating tissue in a swine experimental aneurysm model.

  16. Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro

    NARCIS (Netherlands)

    Nieuw Amerongen, G.P. van; Koolwijk, P.; Versteilen, A.; Hinsbergh, V.W.M. van

    2003-01-01

    Objective - Growth factor-induced angiogenesis involves migration of endothelial cells (ECs) into perivascular areas and requires active remodeling of the endothelial F-actin cytoskeleton. The small GTPase RhoA previously has been implicated in vascular endothelial growth factor (VEGF)-induced

  17. CORNEAL ENDOTHELIAL CELL DENSITY IN ACUTE ANGLE CLOSURE GLAUCOMA

    Directory of Open Access Journals (Sweden)

    Nishat Sultana K

    2016-09-01

    Full Text Available BACKGROUND Angle closure is characterised by apposition of the peripheral iris against the trabecular meshwork resulting in obstruction of aqueous outflow. Acute angle-closure glaucoma is characterised by pain, redness and blurred vision. The pain is typically a severe deep ache that follows the trigeminal distribution and maybe associated with nausea, vomiting, bradycardia and profuse sweating. The blurred vision, which is typically marked maybe caused by stretching of the corneal lamellae initially and later oedema of the cornea as well as a direct effect of the IOP on the optic nerve head. The modifications in corneal endothelial cell density after a crisis of angle-closure glaucoma is being evaluated. AIMS AND OBJECTIVES The objective of the study is to assess the corneal endothelial cell count (density by specular microscopy in patients presenting with acute angle-closure glaucoma. METHODS Corneal endothelial cell counts of 20 eyes of patients with PACG with an earlier documented symptomatic acute attack unilaterally were compared with 20 fellow eyes. Evaluation of patient included visual acuity, intraocular pressure, gonioscopy, disc findings and specular microscopy. RESULTS The mean endothelial cell density was 2104 cells/mm2 in the eye with acute attack and 2615 cells/mm2 in the fellow eye. The average endothelial cell count when the duration of attack lasted more than 72 hours was 1861 cells/mm2 . CONCLUSION Corneal endothelial cell density was found to be significantly reduced in eyes following an acute attack of primary angle closure glaucoma.

  18. Salt-induced Na+/K+-ATPase-α/β expression involves soluble adenylyl cyclase in endothelial cells.

    Science.gov (United States)

    Mewes, Mirja; Nedele, Johanna; Schelleckes, Katrin; Bondareva, Olga; Lenders, Malte; Kusche-Vihrog, Kristina; Schnittler, Hans-Joachim; Brand, Stefan-Martin; Schmitz, Boris; Brand, Eva

    2017-10-01

    High dietary salt intake may lead to vascular stiffness, which predicts cardiovascular diseases such as heart failure, and myocardial and cerebral infarctions as well as renal impairment. The vascular endothelium is a primary target for deleterious salt effects leading to dysfunction and endothelial stiffness. We hypothesize that the Ca 2+ - and bicarbonate-activated soluble adenylyl cyclase (sAC) contributes to Na + /K + -ATPase expression regulation in vascular endothelial cells and is an important regulator of endothelial stiffness. In vitro stimulation of vascular endothelial cells with high sodium (150 mM Na + )-induced Na + /K + -ATPase-α and Na + /K + -ATPase-β protein expression determined by western blot. Promoter analyses revealed increased cAMP response element (CRE)-mediated Na + /K + -ATPase-α transcriptional activity under high sodium concentrations. Inhibition of sAC by the specific inhibitor KH7 or siRNA reduced the sodium effects. Flame photometry revealed increased intracellular sodium concentrations in response to high sodium stimulations, which were paralleled by elevated ATP levels. Using atomic force microscopy, a nano-technique that measures cellular stiffness and deformability, we detected significant endothelial stiffening under increased sodium concentrations, which was prevented by inhibition of sAC using KH7 and Na + /K + -ATPase using ouabain. Furthermore, analysis of primary aortic endothelial cells in an in vitro aging model revealed an impaired Na + /K + -ATPase-α sodium response and elevated intracellular sodium levels with cellular aging. We conclude that sAC mediates sodium-induced Na + /K + -ATPase expression in vascular endothelium and is an important regulator of endothelial stiffness. The reactivity of Na + /K + -ATPase-α expression regulation in response to high sodium seems to be impaired in aging endothelial cells and might be a component of endothelial dysfunction.

  19. Prenylated Polyphenols from Clusiaceae and Calophyllaceae with Immunomodulatory Activity on Endothelial Cells.

    Science.gov (United States)

    Rouger, Caroline; Pagie, Sylvain; Derbré, Séverine; Le Ray, Anne-Marie; Richomme, Pascal; Charreau, Béatrice

    2016-01-01

    Endothelial cells (ECs) are key players in inflammation and immune responses involved in numerous pathologies. Although attempts were experimentally undertaken to prevent and control EC activation, drug leads and probes still remain necessary. Natural products (NPs) from Clusiaceous and Calophyllaceous plants were previously reported as potential candidates to prevent endothelial dysfunction. The present study aimed to identify more precisely the molecular scaffolds that could limit EC activation. Here, 13 polyphenols belonging to 5 different chemical types of secondary metabolites (i.e., mammea coumarins, a biflavonoid, a pyranochromanone acid, a polyprenylated polycyclic acylphloroglucinol (PPAP) and two xanthones) were tested on resting and cytokine-activated EC cultures. Quantitative and qualitative changes in the expression of both adhesion molecules (VCAM-1, ICAM-1, E-selectin) and major histocompatibility complex (MHC) molecules have been used to measure their pharmaceutical potential. As a result, we identified 3 mammea coumarins that efficiently reduce (up to >90% at 10 μM) both basal and cytokine-regulated levels of MHC class I, class II, MICA and HLA-E on EC surface. They also prevented VCAM-1 induction upon inflammation. From a structural point of view, our results associate the loss of the free prenyl group substituting mammea coumarins with a reduced cellular cytotoxicity but also an abrogation of their anti-inflammatory potential and a reduction of their immunosuppressive effects. A PPAP, guttiferone J, also triggers a strong immunomodulation but restricted to HLA-E and MHC class II molecules. In conclusion, mammea coumarins with a free prenyl group and the PPAP guttiferone J emerge as NPs able to drastically decrease both VCAM-1 and a set of MHC molecules and to potentially reduce the immunogenicity of the endothelium.

  20. Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment.

    Science.gov (United States)

    Perlin, Julie R; Sporrij, Audrey; Zon, Leonard I

    2017-08-01

    Cells of the hematopoietic system undergo rapid turnover. Each day, humans require the production of about one hundred billion new blood cells for proper function. Hematopoietic stem cells (HSCs) are rare cells that reside in specialized niches and are required throughout life to produce specific progenitor cells that will replenish all blood lineages. There is, however, an incomplete understanding of the molecular and physical properties that regulate HSC migration, homing, engraftment, and maintenance in the niche. Endothelial cells (ECs) are intimately associated with HSCs throughout the life of the stem cell, from the specialized endothelial cells that give rise to HSCs, to the perivascular niche endothelial cells that regulate HSC homeostasis. Recent studies have dissected the unique molecular and physical properties of the endothelial cells in the HSC vascular niche and their role in HSC biology, which may be manipulated to enhance hematopoietic stem cell transplantation therapies.

  1. A C-terminal fragment of fibulin-7 interacts with endothelial cells and inhibits their tube formation in culture.

    Science.gov (United States)

    de Vega, Susana; Suzuki, Nobuharu; Nonaka, Risa; Sasaki, Takako; Forcinito, Patricia; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko

    2014-03-01

    We have previously demonstrated that fibulin-7 (Fbln7) is expressed in teeth by pre-odontoblast and odontoblast cells, localized in the basement membrane and dentin matrices, and is an adhesion molecule for dental mesenchyme cells and odontoblasts. Fbln7 is also expressed in blood vessels by endothelial cells. In this report, we show that a recombinant C-terminal Fbln7 fragment (Fbln7-C) bound to Human Umbilical Vein Endothelial Cells (HUVECs) but did not promote cell spreading and actin stress fiber formation. Fbln7-C binding to HUVECs induced integrin clustering at cell adhesion sites with other focal adhesion molecules, and sustained activation of FAK, p130Cas, and Rac1. In addition, RhoA activation was inhibited, thereby preventing HUVEC spreading. As endothelial cell spreading is an important step for angiogenesis, we examined the effect of Fbln7-C on angiogenesis using in vitro assays for endothelial cell tube formation and vessel sprouting from aortic rings. We found that Fbln7-C inhibited the HUVEC tube formation and the vessel sprouting in aortic ring assays. Our findings suggest potential anti-angiogenic activity of the Fbln7 C-terminal region. Published by Elsevier Inc.

  2. Synthesis of an endothelial cell mimicking surface containing thrombomodulin and endothelial protein C receptor

    Science.gov (United States)

    Kador, Karl Erich

    Synthetic materials for use in blood contacting applications have been studied for many years with limited success. One of the main areas of need for these materials is the design of synthetic vascular grafts for use in the hundreds of thousands of patients who have coronary artery bypass grafting, many without suitable veins for autologous grafts. The design of these grafts is constrained by two common modes of failure, the formation of intimal hyperplasia (IH) and thrombosis. IH formation has been previously linked to a mismatching of the mechanical properties of the graft and has been overcome by creating grafts using materials whose compliance mimics that of the native artery. Several techniques and surface modification have been designed to limit thrombosis on the surface of synthetic materials. One which has shown the greatest promise is the immobilization of Thrombomodulin (TM), a protein found on the endothelial cell membrane lining native blood vessels involved in the activation of the anticoagulant Protein C (PC). While TM immobilization has been shown to arrest thrombin formation and limit fibrous formations in in-vitro and in-vivo experiments, it has shown to be transport limiting under arterial flow. On the endothelial cell surface, TM is co-localized with Endothelial Protein C Receptor (EPCR), which increases PC transport onto the cell surface and increases PC activation via TM between 20-100 fold. This dissertation will describe the chemical modification of medical grade polyurethane (PU), whose compliance has been shown to match that of native arteries. This modification will enable the immobilization of two proteins on an enzymatically relevant scale estimated at less than 10 nm. This dissertation will further describe the immobilization of the proteins TM and EPCR, and analyze the ability of a surface co-immobilized with these proteins to activate the anticoagulant PC. Finally, it will compare the ability of this co-immobilized surface to delay

  3. Circulating endothelial cells as marker of endothelial damage in male hypogonadism.

    Science.gov (United States)

    Milardi, Domenico; Grande, Giuseppe; Giampietro, Antonella; Vendittelli, Francesca; Palumbo, Sara; Tartaglione, Linda; Marana, Riccardo; Pontecorvi, Alfredo; de Marinis, Laura; Zuppi, Cecilia; Capoluongo, Ettore

    2012-01-01

    Testosterone deficiency has become a frequently diagnosed condition in today's society affected by epidemic obesity, and is associated with cardiovascular risk. Recent studies have established the importance of altered vascular endothelium function in cardiovascular disease. The damage to the endothelium might also cause endothelial cell detachment, resulting in increased numbers of circulating endothelial cells (CEC) within the bloodstream. To evaluate whether hypogonadism could modify CEC count in peripheral bloodstream, we investigated peripheral blood CEC count using the CellSearch System, a semiautomatic method to accurately and reliably enumerate CECs, which are sorted based on a CD146(+), CD105(+), DAPI(+), CD45(-) phenotype, in a population of 20 patients with hypogonadism. The control group comprised 10 age- and sex-matched healthy participants. CEC count per milliliter was significantly increased in patients with hypogonadism vs the control group. In the group with hypogonadism, an inverse exponential correlation was present between testosterone levels and CEC count per milliliter. A direct linear correlation was present between waist circumference and CECs and between body mass index and CECs. The regression analysis showed that testosterone was the significant independent determinant of CECs. Our results underline that male hypogonadism is associated with endothelial dysfunction. The correlation between CEC and waist circumference underlines that visceral obesity may be synergically implicated in this regulation. Future studies are required to unveil the mechanisms involved in the pathogenesis of testosterone-induced endothelial disfunction, which may provide novel therapeutic targets to be incorporated in the management of hypogonadism.

  4. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice

    DEFF Research Database (Denmark)

    Gustafsson, E; Brakebusch, C; Hietanen, K

    2001-01-01

    Tissue-specific gene inactivation using the Cre-loxP system has become an important tool to unravel functions of genes when the conventional null mutation is lethal. We report here the generation of a transgenic mouse line expressing Cre recombinase in endothelial cells. In order to avoid...... the production and screening of multiple transgenic lines we used embryonic stem cell and embryoid body technology to identify recombinant embryonic stem cell clones with high, endothelial-specific Cre activity. One embryonic stem cell clone that showed high Cre activity in endothelial cells was used to generate...... germline chimeras. The in vivo efficiency and specificity of the transgenic Cre was analysed by intercrossing the tie-1-Cre line with the ROSA26R reporter mice. At initial stages of vascular formation (E8-9), LacZ staining was detected in almost all cells of the forming vasculature. Between E10 and birth...

  5. A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology.

    Science.gov (United States)

    Al-Fahdawi, Shumoos; Qahwaji, Rami; Al-Waisy, Alaa S; Ipson, Stanley; Ferdousi, Maryam; Malik, Rayaz A; Brahma, Arun

    2018-07-01

    Corneal endothelial cell abnormalities may be associated with a number of corneal and systemic diseases. Damage to the endothelial cells can significantly affect corneal transparency by altering hydration of the corneal stroma, which can lead to irreversible endothelial cell pathology requiring corneal transplantation. To date, quantitative analysis of endothelial cell abnormalities has been manually performed by ophthalmologists using time consuming and highly subjective semi-automatic tools, which require an operator interaction. We developed and applied a fully-automated and real-time system, termed the Corneal Endothelium Analysis System (CEAS) for the segmentation and computation of endothelial cells in images of the human cornea obtained by in vivo corneal confocal microscopy. First, a Fast Fourier Transform (FFT) Band-pass filter is applied to reduce noise and enhance the image quality to make the cells more visible. Secondly, endothelial cell boundaries are detected using watershed transformations and Voronoi tessellations to accurately quantify the morphological parameters of the human corneal endothelial cells. The performance of the automated segmentation system was tested against manually traced ground-truth images based on a database consisting of 40 corneal confocal endothelial cell images in terms of segmentation accuracy and obtained clinical features. In addition, the robustness and efficiency of the proposed CEAS system were compared with manually obtained cell densities using a separate database of 40 images from controls (n = 11), obese subjects (n = 16) and patients with diabetes (n = 13). The Pearson correlation coefficient between automated and manual endothelial cell densities is 0.9 (p system, and the possibility of utilizing it in a real world clinical setting to enable rapid diagnosis and for patient follow-up, with an execution time of only 6 seconds per image. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Caffeic acid, a phenol found in white wine, modulates endothelial nitric oxide production and protects from oxidative stress-associated endothelial cell injury.

    Directory of Open Access Journals (Sweden)

    Massimiliano Migliori

    Full Text Available Several studies demonstrated that endothelium dependent vasodilatation is impaired in cardiovascular and chronic kidney diseases because of oxidant stress-induced nitric oxide availability reduction. The Mediterranean diet, which is characterized by food containing phenols, was correlated with a reduced incidence of cardiovascular diseases and delayed progression toward end stage chronic renal failure. Previous studies demonstrated that both red and white wine exert cardioprotective effects. In particular, wine contains Caffeic acid (CAF, an active component with known antioxidant activities.The aim of the present study was to investigate the protective effect of low doses of CAF on oxidative stress-induced endothelial injury.CAF increased basal as well as acetylcholine-induced NO release by a mechanism independent from eNOS expression and phosphorylation. In addition, low doses of CAF (100 nM and 1 μM increased proliferation and angiogenesis and inhibited leukocyte adhesion and endothelial cell apoptosis induced by hypoxia or by the uremic toxins ADMA, p-cresyl sulfate and indoxyl sulfate. The biological effects exerted by CAF on endothelial cells may be at least in part ascribed to modulation of NO release and by decreased ROS production. In an experimental model of kidney ischemia-reperfusion injury in mice, CAF significantly decreased tubular cell apoptosis, intraluminal cast deposition and leukocyte infiltration.The results of the present study suggest that CAF, at very low dosages similar to those observed after moderate white wine consumption, may exert a protective effect on endothelial cell function by modulating NO release independently from eNOS expression and phosphorylation. CAF-induced NO modulation may limit cardiovascular and kidney disease progression associated with oxidative stress-mediated endothelial injury.

  7. Endothelial Protein C–Targeting Liposomes Show Enhanced Uptake and Improved Therapeutic Efficacy in Human Retinal Endothelial Cells

    DEFF Research Database (Denmark)

    Arta, Anthoula; Eriksen, Anne Z.; Melander, Fredrik

    2018-01-01

    PURPOSE. To determine whether human retinal endothelial cells (HRECs) express the endothelial cell protein C receptor (EPCR) and to realize its potential as a targeting moiety by developing novel single and dual corticosteroid–loaded functionalized liposomes that exhibit both enhanced uptake by H...... of cell tube formations in contrast to nontargeting liposomes. CONCLUSIONS. We show that HRECs express EPCR and this receptor could be a promising nanomedicine target in ocular diseases where the endothelial barrier of the retina is compromised....

  8. PTP1B inhibitor promotes endothelial cell motility by activating the DOCK180/Rac1 pathway.

    Science.gov (United States)

    Wang, Yuan; Yan, Feng; Ye, Qing; Wu, Xiao; Jiang, Fan

    2016-04-07

    Promoting endothelial cell (EC) migration is important not only for therapeutic angiogenesis, but also for accelerating re-endothelialization after vessel injury. Several recent studies have shown that inhibition of protein tyrosine phosphatase 1B (PTP1B) may promote EC migration and angiogenesis by enhancing the vascular endothelial growth factor receptor-2 (VEGFR2) signalling. In the present study, we demonstrated that PTP1B inhibitor could promote EC adhesion, spreading and migration, which were abolished by the inhibitor of Rac1 but not RhoA GTPase. PTP1B inhibitor significantly increased phosphorylation of p130Cas, and the interactions among p130Cas, Crk and DOCK180; whereas the phosphorylation levels of focal adhesion kinase, Src, paxillin, or Vav2 were unchanged. Gene silencing of DOCK180, but not Vav2, abrogated the effects of PTP1B inhibitor on EC motility. The effects of PTP1B inhibitor on EC motility and p130Cas/DOCK180 activation persisted in the presence of the VEGFR2 antagonist. In conclusion, we suggest that stimulation of the DOCK180 pathway represents an alternative mechanism of PTP1B inhibitor-stimulated EC motility, which does not require concomitant VEGFR2 activation as a prerequisite. Therefore, PTP1B inhibitor may be a useful therapeutic strategy for promoting EC migration in cardiovascular patients in which the VEGF/VEGFR functions are compromised.

  9. Defibrotide Stimulates Angiogenesis and Protects Endothelial Cells from Calcineurin Inhibitor-Induced Apoptosis via Upregulation of AKT/Bcl-xL.

    Science.gov (United States)

    Wang, Xiangmin; Pan, Bin; Hashimoto, Yuko; Ohkawara, Hiroshi; Xu, Kailin; Zeng, Lingyu; Ikezoe, Takayuki

    2018-01-01

    Sinusoidal obstruction syndrome is a life-threatening complication that can occur after haematopoietic stem cell transplantation. Defibrotide (DF) has been approved for the treatment of individuals with severe sinusoidal obstruction syndrome following haematopoietic stem cell transplantation in the European Union and the United States. However, the precise mechanisms by which DF protects endothelial cells remain to be elucidated. In this study, we found that DF stimulated angiogenesis in vitro and in vivo as assessed by vascular tube formation, scratch-wound repair and Matrigel plug assays. These effects were associated with an activation of pro-survival signalling pathways, including AKT (protein kinase B), ERK (extracellular signal-regulated kinases) and p38. More importantly, DF alleviated calcineurin inhibitor-induced growth inhibition and apoptosis of human umbilical vein endothelial cells and human hepatic sinusoidal endothelial cells in parallel with upregulation of anti-apoptotic protein B-cell lymphoma-extra-large (Bcl-xL), which was mediated by AKT (protein kinase B). Notably, these effects were abrogated when Bcl-xL was depleted by small interfering RNA (ribonucleic acid). In addition, DF counteracted calcineurin inhibitor-induced activation of nuclear factor-κB and Janus kinase 2 (JAK2)/Signal Transducer and Activator of Transcription 3 (STAT3) signalling and production of cytokines in vascular endothelial cell-derived EA.hy926 cells. Taken together, DF has pro-angiogenic, anti-apoptotic and anti-inflammatory effects on endothelial cells. DF is a potentially useful agent to prevent the development of, and treat individuals with, endothelial cell injury-related complications after haematopoietic stem cell transplantation. Schattauer GmbH Stuttgart.

  10. Angiocrine functions of organ-specific endothelial cells

    Science.gov (United States)

    Rafii, Shahin; Butler, Jason M; Ding, Bi-Sen

    2016-01-01

    Preface Endothelial cells lining blood vessel capillaries are not just passive conduits for delivering blood. Tissue-specific endothelium establish specialized vascular niches that deploy specific sets of growth factors, known as angiocrine factors, which actively participate in inducing, specifying, patterning, and guiding organ regeneration and maintaining homeostasis and metabolism. Angiocrine factors upregulated in response to injury orchestrates self-renewal and differentiation of tissue-specific repopulating resident stem and progenitor cells into functional organs. Uncovering the precise mechanisms whereby physiological-levels of angiocrine factors are spatially and temporally produced, and distributed by organotypic endothelium to repopulating cells, will lay the foundation for driving organ repair without scarring. PMID:26791722

  11. Preconditioning with endoplasmic reticulum stress ameliorates endothelial cell inflammation.

    Science.gov (United States)

    Leonard, Antony; Paton, Adrienne W; El-Quadi, Monaliza; Paton, James C; Fazal, Fabeha

    2014-01-01

    Endoplasmic Reticulum (ER) stress, caused by disturbance in ER homeostasis, has been implicated in several pathological conditions such as ischemic injury, neurodegenerative disorders, metabolic diseases and more recently in inflammatory conditions. Our present study aims at understanding the role of ER stress in endothelial cell (EC) inflammation, a critical event in the pathogenesis of acute lung injury (ALI). We found that preconditioning human pulmonary artery endothelial cells (HPAEC) to ER stress either by depleting ER chaperone and signaling regulator BiP using siRNA, or specifically cleaving (inactivating) BiP using subtilase cytotoxin (SubAB), alleviates EC inflammation. The two approaches adopted to abrogate BiP function induced ATF4 protein expression and the phosphorylation of eIF2α, both markers of ER stress, which in turn resulted in blunting the activation of NF-κB, and restoring endothelial barrier integrity. Pretreatment of HPAEC with BiP siRNA inhibited thrombin-induced IκBα degradation and its resulting downstream signaling pathway involving NF-κB nuclear translocation, DNA binding, phosphorylation at serine536, transcriptional activation and subsequent expression of adhesion molecules. However, TNFα-mediated NF-κB signaling was unaffected upon BiP knockdown. In an alternative approach, SubAB-mediated inactivation of NF-κB was independent of IκBα degradation. Mechanistic analysis revealed that pretreatment of EC with SubAB interfered with the binding of the liberated NF-κB to the DNA, thereby resulting in reduced expression of adhesion molecules, cytokines and chemokines. In addition, both knockdown and inactivation of BiP stimulated actin cytoskeletal reorganization resulting in restoration of endothelial permeability. Together our studies indicate that BiP plays a central role in EC inflammation and injury via its action on NF-κB activation and regulation of vascular permeability.

  12. DC8 and DC13 var genes associated with severe malaria bind avidly to diverse endothelial cells.

    Directory of Open Access Journals (Sweden)

    Marion Avril

    Full Text Available During blood stage infection, Plasmodium falciparum infected erythrocytes (IE bind to host blood vessels. This virulence determinant enables parasites to evade spleen-dependent killing mechanisms, but paradoxically in some cases may reduce parasite fitness by killing the host. Adhesion of infected erythrocytes is mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1, a family of polymorphic adhesion proteins encoded by var genes. Whereas cerebral binding and severe malaria are associated with parasites expressing DC8 and DC13 var genes, relatively little is known about the non-brain endothelial selection on severe malaria adhesive types. In this study, we selected P. falciparum-IEs on diverse endothelial cell types and demonstrate that DC8 and DC13 var genes were consistently among the major var transcripts selected on non-brain endothelial cells (lung, heart, bone marrow. To investigate the molecular basis for this avid endothelial binding activity, recombinant proteins were expressed from the predominant upregulated DC8 transcript, IT4var19. In-depth binding comparisons revealed that multiple extracellular domains from this protein bound brain and non-brain endothelial cells, and individual domains largely did not discriminate between different endothelial cell types. Additionally, we found that recombinant DC8 and DC13 CIDR1 domains exhibited a widespread endothelial binding activity and could compete for DC8-IE binding to brain endothelial cells, suggesting they may bind the same host receptor. Our findings provide new insights into the interaction of severe malaria adhesive types and host blood vessels and support the hypothesis that parasites causing severe malaria express PfEMP1 variants with a superior ability to adhere to diverse endothelial cell types, and may therefore endow these parasites with a growth and transmission advantage.

  13. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    Science.gov (United States)

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  14. Arecoline inhibits endothelial cell growth and migration and the attachment to mononuclear cells

    Directory of Open Access Journals (Sweden)

    Shuei-Kuen Tseng

    2014-09-01

    Conclusion: Arecoline impaired vascular endothelial cells by inhibiting their growth and migration and their adhesion to U937 mononuclear cells. These results reveal that arecoline may contribute to the pathogenesis of oral submucous fibrosis and cardiovascular diseases by affecting endothelial cell function in BQ chewers.

  15. Cell cycle progression in irradiated endothelial cells cultured from bovine aorta

    International Nuclear Information System (INIS)

    Rubin, D.B.; Drab, E.A.; Ward, W.F.; Bauer, K.D.

    1988-01-01

    Logarithmically growing endothelial cells from bovine aortas were exposed to single doses of 0-10 Gy of 60Co gamma rays, and cell cycle phase distribution and progression were examined by flow cytometry and autoradiography. In some experiments, cells were synchronized in the cell cycle with hydroxyurea (1 mM). Cell number in sham-irradiated control cultures doubled in approximately 24 h. Estimated cycle stage times for control cells were 14.4 h for G1 phase, 7.2 h for S phase, and 2.4 h for G2 + M phase. Irradiated cells demonstrated a reduced distribution at the G1/S phase border at 4 h, and an increased distribution in G2 + M phase at 24 h postirradiation. Autoradiographs of irradiated cells after continuous [3H]thymidine labeling indicated a block in G1 phase or at the G1/S-phase border. The duration of the block was dose dependent (2-3 min/cGy). Progression of the endothelial cells through S phase after removal of the hydroxyurea block also was retarded by irradiation, as demonstrated by increased distribution in early S phase and decreased distribution in late S phase. These results indicate that progression of asynchronous cultured bovine aortic endothelial cells through the DNA synthetic cycle is susceptible to radiation inhibition at specific sites in the cycle, resulting in redistribution and partial synchronization of the population. Thus aortic endothelial cells, diploid cells from a normal tissue, resemble many immortal cell types that have been examined in this regard in vitro

  16. Shape Memory Polymers Containing Higher Acrylate Content Display Increased Endothelial Cell Attachment

    Science.gov (United States)

    Govindarajan, Tina; Shandas, Robin

    2018-01-01

    Shape Memory Polymers (SMPs) are smart materials that can recall their shape upon the application of a stimulus, which makes them appealing materials for a variety of applications, especially in biomedical devices. Most prior SMP research has focused on tuning bulk properties; studying surface effects of SMPs may extend the use of these materials to blood-contacting applications, such as cardiovascular stents, where surfaces that support rapid endothelialization have been correlated to stent success. Here, we evaluate endothelial attachment onto the surfaces of a family of SMPs previously developed in our group that have shown promise for biomedical devices. Nine SMP formulations containing varying amounts of tert-Butyl acrylate (tBA) and Poly(ethylene glycol) dimethacrylate (PEGDMA) were analyzed for endothelial cell attachment. Dynamic mechanical analysis (DMA), contact angle studies, and atomic force microscopy (AFM) were used to verify bulk and surface properties of the SMPs. Human umbilical vein endothelial cell (HUVEC) attachment and viability was verified using fluorescent methods. Endothelial cells preferentially attached to SMPs with higher tBA content, which have rougher, more hydrophobic surfaces. HUVECs also displayed an increased metabolic activity on these high tBA SMPs over the course of the study. This class of SMPs may be promising candidates for next generation blood-contacting devices. PMID:29707382

  17. Shape Memory Polymers Containing Higher Acrylate Content Display Increased Endothelial Cell Attachment

    Directory of Open Access Journals (Sweden)

    Tina Govindarajan

    2017-11-01

    Full Text Available Shape Memory Polymers (SMPs are smart materials that can recall their shape upon the application of a stimulus, which makes them appealing materials for a variety of applications, especially in biomedical devices. Most prior SMP research has focused on tuning bulk properties; studying surface effects of SMPs may extend the use of these materials to blood-contacting applications, such as cardiovascular stents, where surfaces that support rapid endothelialization have been correlated to stent success. Here, we evaluate endothelial attachment onto the surfaces of a family of SMPs previously developed in our group that have shown promise for biomedical devices. Nine SMP formulations containing varying amounts of tert-Butyl acrylate (tBA and Poly(ethylene glycol dimethacrylate (PEGDMA were analyzed for endothelial cell attachment. Dynamic mechanical analysis (DMA, contact angle studies, and atomic force microscopy (AFM were used to verify bulk and surface properties of the SMPs. Human umbilical vein endothelial cell (HUVEC attachment and viability was verified using fluorescent methods. Endothelial cells preferentially attached to SMPs with higher tBA content, which have rougher, more hydrophobic surfaces. HUVECs also displayed an increased metabolic activity on these high tBA SMPs over the course of the study. This class of SMPs may be promising candidates for next generation blood-contacting devices.

  18. MicroRNAs in Hyperglycemia Induced Endothelial Cell Dysfunction

    Directory of Open Access Journals (Sweden)

    Maskomani Silambarasan

    2016-04-01

    Full Text Available Hyperglycemia is closely associated with prediabetes and Type 2 Diabetes Mellitus. Hyperglycemia increases the risk of vascular complications such as diabetic retinopathy, diabetic nephropathy, peripheral vascular disease and cerebro/cardiovascular diseases. Under hyperglycemic conditions, the endothelial cells become dysfunctional. In this study, we investigated the miRNA expression changes in human umbilical vein endothelial cells exposed to different glucose concentrations (5, 10, 25 and 40 mM glucose and at various time intervals (6, 12, 24 and 48 h. miRNA microarray analyses showed that there is a correlation between hyperglycemia induced endothelial dysfunction and miRNA expression. In silico pathways analyses on the altered miRNA expression showed that the majority of the affected biological pathways appeared to be associated to endothelial cell dysfunction and apoptosis. We found the expression of ten miRNAs (miR-26a-5p, -26b-5p, 29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a to increase gradually with increasing concentration of glucose. These miRNAs were also found to be involved in endothelial dysfunction. At least seven of them, miR-29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -221-3p, -320a and -192-5p, can be correlated to endothelial cell apoptosis.

  19. Time-series observation of the spreading out of microvessel endothelial cells with atomic force microscopy

    International Nuclear Information System (INIS)

    Han Dong; Ma Wanyun; Liao Fulong; Yeh Meiling; Ouyang Zhigang; Sun Yunxu

    2003-01-01

    The spreading out of microvessel endothelial cells plays a key role in angiogenesis and the post-injury healing of endothelial cells. In our study, a physical force applied with an atomic force microscopic (AFM) cantilever tip in contact mode partly broke the peripheral adhesion that just-confluent cultured rat cerebral microvessel endothelial cells had formed with basal structures and resulted in the cells actively withdrawing from the stimulated area. Time-series changes in cell extension were imaged using tapping mode AFM, in conjunction with total internal reflection fluorescence microscopy, intensified charge-coupled device and field emission scanning electron microscopy. We also interpreted phase images of living endothelial cells. The results showed that formation of a fibronectin molecule monolayer is key to the spreading out of the cells. Lamellipods as well as filopods would spread out in temporal and spatial distribution following the formation of fibronectin layer. In addition, a lattice-like meshwork of filopods formed in the regions leading lamellipods, which would possibly provide a fulcrum for the filaments of the cytoskeleton within the leading cell body periphery

  20. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment

    NARCIS (Netherlands)

    Abid Hussein, Mohammed N.; Böing, Anita N.; Sturk, Augueste; Hau, Chi M.; Nieuwland, Rienk

    2007-01-01

    Endothelial cell cultures contain caspase 3-containing microparticles (EMP), which are reported to form during or after cell detachment. We hypothesize that also adherent endothelial cells release EMP, thus protecting these cells from caspase 3 accumulation, detachment and apoptosis. Human umbilical

  1. Glucagon-Like Peptide 1 Prevents Reactive Oxygen Species-Induced Endothelial Cell Senescence Through the Activation of Protein Kinase A

    NARCIS (Netherlands)

    Oeseburg, Hisko; de Boer, Rudolf A.; Buikema, Hendrik; van der Harst, Pim; van Gilst, Wiek H.; Sillje, Herman H. W.

    Objective-Endothelial cell senescence is an important contributor to vascular aging and is increased under diabetic conditions. Here we investigated whether the antidiabetic hormone glucagon-like peptide 1 (GLP-1) could prevent oxidative stress-induced cellular senescence in endothelial cells.

  2. Matrin 3 as a key regulator of endothelial cell survival

    International Nuclear Information System (INIS)

    Przygodzka, Patrycja; Boncela, Joanna; Cierniewski, Czeslaw S.

    2011-01-01

    Matrin 3 is an integral component of nuclear matrix architecture that has been implicated in interacting with other nuclear proteins and thus modulating the activity of proximal promoters. In this study, we evaluated the contribution of this protein to proliferation of endothelial cells. To selectively modulate matrin 3 expression, we used siRNA oligonucleotides and transfection of cells with a pEGFP-N1-Mtr3. Our data indicate that downregulation of matrin 3 is responsible for reduced proliferation and leads to necrosis of endothelial cells. This conclusion is supported by observations that reducing matrin 3 expression results in (a) producing signs of necrosis detected by PI staining, LDH release, and scatter parameters in flow cytometry, (b) affecting cell cycle progression. It does not cause (c) membrane asymmetry of cells as indicated by lack of Annexin V binding as well as (d) activation of caspase 3 and cleavage of PARP. We conclude that matrin 3 plays a significant role in controlling cell growth and proliferation, probably via formation of complexes with nuclear proteins that modulate pro- and antiapoptotic signaling pathways. Thus, degradation of matrin 3 may be a switching event that induces a shift from apoptotic to necrotic death of cells.

  3. Inhibition of tumor necrosis factor-α-induced expression of adhesion molecules in human endothelial cells by the saponins derived from roots of Platycodon grandiflorum

    International Nuclear Information System (INIS)

    Kim, Ji Young; Kim, Dong Hee; Kim, Hyung Gyun; Song, Gyu-Yong; Chung, Young Chul; Roh, Seong Hwan; Jeong, Hye Gwang

    2006-01-01

    Adhesion molecules play an important role in the development of atherogenesis and are produced by endothelial cells after being stimulated with various inflammatory cytokines. This study examined the effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. CKS significantly inhibited the TNFα-induced increase in monocyte adhesion to endothelial cells as well as decreased the protein and mRNA expression levels of vascular adhesion molecule-1 and intercellular cell adhesion molecule-1 on endothelial cells. Furthermore, CKS significantly inhibited the TNFα-induced production of intracellular reactive oxygen species (ROS) and activation of NF-κB by preventing IκB degradation and inhibiting IκB kinase activity. Overall, CKS has anti-atherosclerotic and anti-inflammatory activity, which is least in part the result of it reducing the cytokine-induced endothelial adhesion to monocytes by inhibiting intracellular ROS production, NF-κB activation, and cell adhesion molecule expression in endothelial cells

  4. Human trophoblast-derived hydrogen sulfide stimulates placental artery endothelial cell angiogenesis.

    Science.gov (United States)

    Chen, Dong-Bao; Feng, Lin; Hodges, Jennifer K; Lechuga, Thomas J; Zhang, Honghai

    2017-09-01

    Endogenous hydrogen sulfide (H2S), mainly synthesized by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), has been implicated in regulating placental angiogenesis; however, the underlying mechanisms are unknown. This study was to test a hypothesis that trophoblasts synthesize H2S to promote placental angiogenesis. Human choriocarcinoma-derived BeWo cells expressed both CBS and CTH proteins, while the first trimester villous trophoblast-originated HTR-8/SVneo cells expressed CTH protein only. The H2S producing ability of BeWo cells was significantly inhibited by either inhibitors of CBS (carboxymethyl hydroxylamine hemihydrochloride, CHH) or CTH (β-cyano-L-alanine, BCA) and that in HTR-8/SVneo cells was inhibited by CHH only. H2S donors stimulated cell proliferation, migration, and tube formation in ovine placental artery endothelial cells (oFPAECs) as effectively as vascular endothelial growth factor. Co-culture with BeWo and HTR-8/SVneo cells stimulated oFPAEC migration, which was inhibited by CHH or BCA in BeWo but CHH only in HTR-8/SVneo cells. Primary human villous trophoblasts (HVT) were more potent than trophoblast cell lines in stimulating oFPAEC migration that was inhibited by CHH and CHH/BCA combination in accordance with its H2S synthesizing activity linked to CBS and CTH expression patterns. H2S donors activated endothelial nitric oxide synthase (NOS3), v-AKT murine thymoma viral oncogene homolog 1 (AKT1), and extracellular signal-activated kinase 1/2 (mitogen-activated protein kinase 3/1, MAPK3/1) in oFPAECs. H2S donor-induced NOS3 activation was blocked by AKT1 but not MAPK3/1 inhibition. In keeping with our previous studies showing a crucial role of AKT1, MAPK3/1, and NOS3/NO in placental angiogenesis, these data show that trophoblast-derived endogenous H2S stimulates placental angiogenesis, involving activation of AKT1, NOS3/NO, and MAPK3/1. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study

  5. Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome.

    Science.gov (United States)

    Carcamo-Orive, Ivan; Huang, Ngan F; Quertermous, Thomas; Knowles, Joshua W

    2017-11-01

    Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations. © 2017 American Heart Association, Inc.

  6. Acidosis Activates Endoplasmic Reticulum Stress Pathways through GPR4 in Human Vascular Endothelial Cells.

    Science.gov (United States)

    Dong, Lixue; Krewson, Elizabeth A; Yang, Li V

    2017-01-27

    Acidosis commonly exists in the tissue microenvironment of various pathophysiological conditions such as tumors, inflammation, ischemia, metabolic disease, and respiratory disease. For instance, the tumor microenvironment is characterized by acidosis and hypoxia due to tumor heterogeneity, aerobic glycolysis (the "Warburg effect"), and the defective vasculature that cannot efficiently deliver oxygen and nutrients or remove metabolic acid byproduct. How the acidic microenvironment affects the function of blood vessels, however, is not well defined. GPR4 (G protein-coupled receptor 4) is a member of the proton-sensing G protein-coupled receptors and it has high expression in endothelial cells (ECs). We have previously reported that acidosis induces a broad inflammatory response in ECs. Acidosis also increases the expression of several endoplasmic reticulum (ER) stress response genes such as CHOP (C/EBP homologous protein) and ATF3 (activating transcription factor 3). In the current study, we have examined acidosis/GPR4- induced ER stress pathways in human umbilical vein endothelial cells (HUVEC) and other types of ECs. All three arms of the ER stress/unfolded protein response (UPR) pathways were activated by acidosis in ECs as an increased expression of phosphorylated eIF2α (eukaryotic initiation factor 2α), phosphorylated IRE1α (inositol-requiring enzyme 1α), and cleaved ATF6 upon acidic pH treatment was observed. The expression of other downstream mediators of the UPR, such as ATF4, ATF3, and spliced XBP-1 (X box-binding protein 1), was also induced by acidosis. Through genetic and pharmacological approaches to modulate the expression level or activity of GPR4 in HUVEC, we found that GPR4 plays an important role in mediating the ER stress response induced by acidosis. As ER stress/UPR can cause inflammation and cell apoptosis, acidosis/GPR4-induced ER stress pathways in ECs may regulate vascular growth and inflammatory response in the acidic microenvironment.

  7. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement.

    Science.gov (United States)

    Zhang, Xun E; Adderley, Shaquria P; Breslin, Jerome W

    2016-01-01

    Compromised endothelial barrier function is a hallmark of inflammation. Rho family GTPases are critical in regulating endothelial barrier function, yet their precise roles, particularly in sphingosine-1-phosphate (S1P)-induced endothelial barrier enhancement, remain elusive. Confluent cultures of human umbilical vein endothelial cells (HUVEC) or human dermal microvascular endothelial cells (HDMEC) were used to model the endothelial barrier. Barrier function was assessed by determining the transendothelial electrical resistance (TER) using an electrical cell-substrate impedance sensor (ECIS). The roles of Rac1 and RhoA were tested in S1P-induced barrier enhancement. The results show that pharmacologic inhibition of Rac1 with Z62954982 failed to block S1P-induced barrier enhancement. Likewise, expression of a dominant negative form of Rac1, or knockdown of native Rac1 with siRNA, failed to block S1P-induced elevations in TER. In contrast, blockade of RhoA with the combination of the inhibitors Rhosin and Y16 significantly reduced S1P-induced increases in TER. Assessment of RhoA activation in real time using a fluorescence resonance energy transfer (FRET) biosensor showed that S1P increased RhoA activation primarily at the edges of cells, near junctions. This was complemented by myosin light chain-2 phosphorylation at cell edges, and increased F-actin and vinculin near intercellular junctions, which could all be blocked with pharmacologic inhibition of RhoA. The results suggest that S1P causes activation of RhoA at the cell periphery, stimulating local activation of the actin cytoskeleton and focal adhesions, and resulting in endothelial barrier enhancement. S1P-induced Rac1 activation, however, does not appear to have a significant role in this process.

  8. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement.

    Directory of Open Access Journals (Sweden)

    Xun E Zhang

    Full Text Available Compromised endothelial barrier function is a hallmark of inflammation. Rho family GTPases are critical in regulating endothelial barrier function, yet their precise roles, particularly in sphingosine-1-phosphate (S1P-induced endothelial barrier enhancement, remain elusive. Confluent cultures of human umbilical vein endothelial cells (HUVEC or human dermal microvascular endothelial cells (HDMEC were used to model the endothelial barrier. Barrier function was assessed by determining the transendothelial electrical resistance (TER using an electrical cell-substrate impedance sensor (ECIS. The roles of Rac1 and RhoA were tested in S1P-induced barrier enhancement. The results show that pharmacologic inhibition of Rac1 with Z62954982 failed to block S1P-induced barrier enhancement. Likewise, expression of a dominant negative form of Rac1, or knockdown of native Rac1 with siRNA, failed to block S1P-induced elevations in TER. In contrast, blockade of RhoA with the combination of the inhibitors Rhosin and Y16 significantly reduced S1P-induced increases in TER. Assessment of RhoA activation in real time using a fluorescence resonance energy transfer (FRET biosensor showed that S1P increased RhoA activation primarily at the edges of cells, near junctions. This was complemented by myosin light chain-2 phosphorylation at cell edges, and increased F-actin and vinculin near intercellular junctions, which could all be blocked with pharmacologic inhibition of RhoA. The results suggest that S1P causes activation of RhoA at the cell periphery, stimulating local activation of the actin cytoskeleton and focal adhesions, and resulting in endothelial barrier enhancement. S1P-induced Rac1 activation, however, does not appear to have a significant role in this process.

  9. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    International Nuclear Information System (INIS)

    Hwang, Yong Pil; Kim, Hyung Gyun; Hien, Tran Thi; Jeong, Myung Ho; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-01-01

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-α-stimulated monocytes to endothelial cells and suppressed the TNF-α induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-α-induced nuclear factor-κB activation, which was attenuated by pretreatment with N G -nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: ► Puerarin induced the phosphorylation of eNOS and the production of NO. ► Puerarin activated eNOS through ER-dependent PI3-kinase and Ca 2+ -dependent AMPK. ► Puerarin-induced NO was involved in the inhibition of NF-kB activation. ► Puerarin may help for prevention of vascular dysfunction and diabetes.

  10. LFA-1 and ICAM-1 expression induced during melanoma-endothelial cell co-culture favors the transendothelial migration of melanoma cell lines in vitro

    International Nuclear Information System (INIS)

    Ghislin, Stephanie; Obino, Dorian; Middendorp, Sandrine; Boggetto, Nicole; Alcaide-Loridan, Catherine; Deshayes, Frederique

    2012-01-01

    Patients with metastatic melanoma have a poor median rate of survival. It is therefore necessary to increase our knowledge about melanoma cell dissemination which includes extravasation, where cancer cells cross the endothelial barrier. Extravasation is well understood during travelling of white blood cells, and involves integrins such as LFA-1 (composed of two chains, CD11a and CD18) expressed by T cells, while ICAM-1 is induced during inflammation by endothelial cells. Although melanoma cell lines cross endothelial cell barriers, they do not express LFA-1. We therefore hypothesized that melanoma-endothelial cell co-culture might induce the LFA-1/ICAM ligand/receptor couple during melanoma transmigration. A transwell approach has been used as well as blocking antibodies against CD11a, CD18 and ICAM-1. Data were analyzed with an epifluorescence microscope. Fluorescence intensity was quantified with the ImageJ software. We show here that HUVEC-conditioned medium induce cell-surface expression of LFA-1 on melanoma cell lines. Similarly melanoma-conditioned medium activates ICAM-1 expression in endothelial cells. Accordingly blocking antibodies of ICAM-1, CD11a or CD18 strongly decrease melanoma transmigration. We therefore demonstrate that melanoma cells can cross endothelial monolayers in vitro due to the induction of ICAM-1 and LFA-1 occurring during the co-culture of melanoma and endothelial cells. Our data further suggest a role of LFA-1 and ICAM-1 in the formation of melanoma cell clumps enhancing tumor cell transmigration. Melanoma-endothelial cell co-culture induces LFA-1 and ICAM-1 expression, thereby favoring in vitro melanoma trans-migration

  11. LFA-1 and ICAM-1 expression induced during melanoma-endothelial cell co-culture favors the transendothelial migration of melanoma cell lines in vitro

    Directory of Open Access Journals (Sweden)

    Ghislin Stephanie

    2012-10-01

    Full Text Available Abstract Background Patients with metastatic melanoma have a poor median rate of survival. It is therefore necessary to increase our knowledge about melanoma cell dissemination which includes extravasation, where cancer cells cross the endothelial barrier. Extravasation is well understood during travelling of white blood cells, and involves integrins such as LFA-1 (composed of two chains, CD11a and CD18 expressed by T cells, while ICAM-1 is induced during inflammation by endothelial cells. Although melanoma cell lines cross endothelial cell barriers, they do not express LFA-1. We therefore hypothesized that melanoma-endothelial cell co-culture might induce the LFA-1/ICAM ligand/receptor couple during melanoma transmigration. Methods A transwell approach has been used as well as blocking antibodies against CD11a, CD18 and ICAM-1. Data were analyzed with an epifluorescence microscope. Fluorescence intensity was quantified with the ImageJ software. Results We show here that HUVEC-conditioned medium induce cell-surface expression of LFA-1 on melanoma cell lines. Similarly melanoma-conditioned medium activates ICAM-1 expression in endothelial cells. Accordingly blocking antibodies of ICAM-1, CD11a or CD18 strongly decrease melanoma transmigration. We therefore demonstrate that melanoma cells can cross endothelial monolayers in vitro due to the induction of ICAM-1 and LFA-1 occurring during the co-culture of melanoma and endothelial cells. Our data further suggest a role of LFA-1 and ICAM-1 in the formation of melanoma cell clumps enhancing tumor cell transmigration. Conclusion Melanoma-endothelial cell co-culture induces LFA-1 and ICAM-1 expression, thereby favoring in vitro melanoma trans-migration.

  12. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Vallon, Mario, E-mail: m.vallon@arcor.de [Nuklearmedizinische Klinik und Poliklinik, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Rohde, Franziska; Janssen, Klaus-Peter [Chirurgische Klinik und Poliklinik, Technische Universitaet Muenchen, Munich (Germany); Essler, Markus [Nuklearmedizinische Klinik und Poliklinik, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany)

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.

  13. Transcellular transport of cobalamin in aortic endothelial cells.

    Science.gov (United States)

    Hannibal, Luciana; Bolisetty, Keerthana; Axhemi, Armend; DiBello, Patricia M; Quadros, Edward V; Fedosov, Sergey; Jacobsen, Donald W

    2018-05-09

    Cobalamin [Cbl (or B 12 )] deficiency causes megaloblastic anemia and a variety of neuropathies. However, homeostatic mechanisms of cyanocobalamin (CNCbl) and other Cbls by vascular endothelial cells are poorly understood. Herein, we describe our investigation into whether cultured bovine aortic endothelial cells (BAECs) perform transcytosis of B 12 , namely, the complex formed between serum transcobalamin and B 12 , designated as holo-transcobalamin (holo-TC). We show that cultured BAECs endocytose [ 57 Co]-CNCbl-TC (source material) via the CD320 receptor. The bound Cbl is transported across the cell both via exocytosis in its free form, [ 57 Co]-CNCbl, and via transcytosis as [ 57 Co]-CNCbl-TC. Transcellular mobilization of Cbl occurred in a bidirectional manner. A portion of the endocytosed [ 57 Co]-CNCbl was enzymatically processed by methylmalonic aciduria combined with homocystinuria type C (cblC) with subsequent formation of hydroxocobalamin, methylcobalamin, and adenosylcobalamin, which were also transported across the cell in a bidirectional manner. This demonstrates that transport mechanisms for Cbl in vascular endothelial cells do not discriminate between various β-axial ligands of the vitamin. Competition studies with apoprotein- and holo-TC and holo-intrinsic factor showed that only holo-TC was effective at inhibiting transcellular transport of Cbl. Incubation of BAECs with a blocking antibody against the extracellular domain of the CD320 receptor inhibited uptake and transcytosis by ∼40%. This study reveals that endothelial cells recycle uncommitted intracellular Cbl for downstream usage by other cell types and suggests that the endothelium is self-sufficient for the specific acquisition and subsequent distribution of circulating B 12 via the CD320 receptor. We posit that the endothelial lining of the vasculature is an essential component for the maintenance of serum-tissue homeostasis of B 12 .-Hannibal, L., Bolisetty, K., Axhemi, A., DiBello, P

  14. Thioredoxin reductase 1 upregulates MCP-1 release in human endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen-Bo [Institute of Biophysics, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Beijing (China); Shen, Xun, E-mail: shenxun@sun5.ibp.ac.cn [Institute of Biophysics, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Beijing (China)

    2009-09-04

    To know if thioredoxin reductase 1 (TrxR1) plays a role in antioxidant defense mechanisms against atherosclerosis, effect of TrxR1 on expression/release of monocyte chemoattractant protein (MCP-1) was investigated in activated human endothelial-like EAhy926 cells. The MCP-1 release and expression, cellular generation of reactive oxygen species (ROS), nuclear translocation and DNA-binding activity of NF-{kappa}B subunit p65 were assayed in cells either overexpressing recombinant TrxR1 or having their endogenous TrxR1 knocked down. It was found that overexpression of TrxR1 enhanced, while knockdown of TrxR1 reduced MCP-1 release and expression. Upregulation of MCP-1 by TrxR1 was associated with increasing generation of intracellular ROS generation, enhanced nuclear translocation and DNA-binding activity of NF-{kappa}B. Assay using NF-{kappa}B reporter revealed that TrxR1 upregulated transcriptional activity of NF-{kappa}B. This study suggests that TrxR1 enhances ROS generation, NF-{kappa}B activity and subsequent MCP-1 expression in endothelial cells, and may promote rather than prevent vascular endothelium from forming atherosclerotic plaque.

  15. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    Science.gov (United States)

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  16. Establishment of functioning human corneal endothelial cell line with high growth potential.

    Directory of Open Access Journals (Sweden)

    Tadashi Yokoi

    Full Text Available Hexagonal-shaped human corneal endothelial cells (HCEC form a monolayer by adhering tightly through their intercellular adhesion molecules. Located at the posterior corneal surface, they maintain corneal translucency by dehydrating the corneal stroma, mainly through the Na(+- and K(+-dependent ATPase (Na(+/K(+-ATPase. Because HCEC proliferative activity is low in vivo, once HCEC are damaged and their numbers decrease, the cornea begins to show opacity due to overhydration, resulting in loss of vision. HCEC cell cycle arrest occurs at the G1 phase and is partly regulated by cyclin-dependent kinase inhibitors (CKIs in the Rb pathway (p16-CDK4/CyclinD1-pRb. In this study, we tried to activate proliferation of HCEC by inhibiting CKIs. Retroviral transduction was used to generate two new HCEC lines: transduced human corneal endothelial cell by human papillomavirus type E6/E7 (THCEC (E6/E7 and transduced human corneal endothelial cell by Cdk4R24C/CyclinD1 (THCEH (Cyclin. Reverse transcriptase polymerase chain reaction analysis of gene expression revealed little difference between THCEC (E6/E7, THCEH (Cyclin and non-transduced HCEC, but cell cycle-related genes were up-regulated in THCEC (E6/E7 and THCEH (Cyclin. THCEH (Cyclin expressed intercellular molecules including ZO-1 and N-cadherin and showed similar Na(+/K(+-ATPase pump function to HCEC, which was not demonstrated in THCEC (E6/E7. This study shows that HCEC cell cycle activation can be achieved by inhibiting CKIs even while maintaining critical pump function and morphology.

  17. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.

    Science.gov (United States)

    Yan, Meiping; Zhang, Xinhua; Chen, Ao; Gu, Wei; Liu, Jie; Ren, Xiaojiao; Zhang, Jianping; Wu, Xiaoxiong; Place, Aaron T; Minshall, Richard D; Liu, Guoquan

    2017-11-01

    Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2- via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. © FASEB.

  18. Interleukin-6 and intercellular cell adhesion molecule-1 expression remains elevated in revived live endothelial cells following spaceflight.

    Science.gov (United States)

    Muid, S; Froemming, G R A; Ali, A M; Nawawi, H

    2013-12-01

    The effects of spaceflight on cardiovascular health are not necessarily seen immediately after astronauts have returned but can be delayed. It is important to investigate the long term effects of spaceflight on protein and gene expression of inflammation and endothelial activation as a predictor for the development of atherosclerosis and potential cardiovascular problems. The objectives of this study were to investigate the (a) protein and gene expression of inflammation and endothelial activation, (b) expression of nuclear factor kappa B (NFκB), signal transducer and activator of transcription-3 (STAT-3) and endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVEC) 3 months post-space flight travel compared to ground controls. HUVEC cultured on microcarriers in fluid processing apparatus were flown to the International Space Station (ISS) by the Soyuz TMA-11 rocket. After landing, the cells were detached from microcarriers and recultured in T-25 cm(2) culture flasks (Revived HUVEC). Soluble protein expression of IL-6, TNF-α, ICAM-1, VCAM-1 and e-selectin were measured by ELISA. Gene expression of these markers and in addition NFκB, STAT-3 and eNOS were measured. Spaceflight induced IL-6 and ICAM-1 remain elevated even after 3 months post spaceflight travel and this is mediated via STAT-3 pathway. The downregulation of eNOS expression in revived HUVEC cells suggests a reduced protection of the cells and the surrounding vessels against future insults that may lead to atherosclerosis. It would be crucial to explore preventive measures, in relation to atherosclerosis and its related complications.

  19. Extracellular histones reduce survival and angiogenic responses of late outgrowth progenitor and mature endothelial cells.

    Science.gov (United States)

    Mena, H A; Carestia, A; Scotti, L; Parborell, F; Schattner, M; Negrotto, S

    2016-02-01

    ESSENTIALS: Extracellular histones are highly augmented in sites of neovessel formation, such as regeneration tissues. We studied histone effect on survival and angiogenic activity of mature and progenitor endothelial cells. Extracellular histones trigger apoptosis and pyroptosis and reduce angiogenesis in vivo and in vitro. Histone blockade can be useful as a therapeutic strategy to improve angiogenesis and tissue regeneration. Extracellular histones are highly augmented in sites of neovessel formation, like regeneration tissues. Their cytotoxic effect has been studied in endothelial cells, although the mechanism involved and their action on endothelial colony-forming cells (ECFCs) remain unknown. To study the effect of histones on ECFC survival and angiogenic functions and compare it with mature endothelial cells. Nuclear morphology analysis showed that each human recombinant histone triggered both apoptotic-like and necrotic-like cell deaths in both mature and progenitor endothelial cells. While H1 and H2A exerted a weak toxicity, H2B, H3 and H4 were the most powerful. The percentage of apoptosis correlated with the percentage of ECFCs exhibiting caspase-3 activation and was zeroed by the pan-caspase inhibitor Z-VAD-FMK. Necrotic-like cell death was also suppressed by this compound and the caspase-1 inhibitor Ac-YVAD-CMK, indicating that histones triggered ECFC pyroptosis. All histones, at non-cytotoxic concentrations, reduced migration and H2B, H3 and H4 induced cell cycle arrest and impaired tubulogenesis via p38 activation. Neutrophil-derived histones exerted similar effects. In vivo blood vessel formation in the quail chorioallantoic membrane was also reduced by H2B, H3 and H4. Their cytotoxic and antiangiogenic effects were suppressed by unfractioned and low-molecular-weight heparins and the combination of TLR2 and TLR4 blocking antibodies. Histones trigger both apoptosis and pyroptosis of ECFCs and inhibit their angiogenic functions. Their cytotoxic and

  20. Endothelial microparticles released by activated protein C protect beta cells through EPCR/PAR1 and annexin A1/FPR2 pathways in islets.

    Science.gov (United States)

    Kreutter, Guillaume; Kassem, Mohamad; El Habhab, Ali; Baltzinger, Philippe; Abbas, Malak; Boisrame-Helms, Julie; Amoura, Lamia; Peluso, Jean; Yver, Blandine; Fatiha, Zobairi; Ubeaud-Sequier, Geneviève; Kessler, Laurence; Toti, Florence

    2017-11-01

    Islet transplantation is associated with early ischaemia/reperfusion, localized coagulation and redox-sensitive endothelial dysfunction. In animal models, islet cytoprotection by activated protein C (aPC) restores islet vascularization and protects graft function, suggesting that aPC triggers various lineages. aPC also prompts the release of endothelial MP that bear EPCR, its specific receptor. Microparticles (MP) are plasma membrane procoagulant vesicles, surrogate markers of stress and cellular effectors. We measured the cytoprotective effects of aPC on endothelial and insulin-secreting Rin-m5f β-cells and its role in autocrine and paracrine MP-mediated cell crosstalk under conditions of oxidative stress. MP from aPC-treated primary endothelial (EC) or β-cells were applied to H 2 O 2 -treated Rin-m5f. aPC activity was measured by enzymatic assay and ROS species by dihydroethidium. The capture of PKH26-stained MP and the expression of EPCR were probed by fluorescence microscopy and apoptosis by flow cytometry. aPC treatment enhanced both annexin A1 (ANXA1) and PAR-1 expression in EC and to a lesser extent in β-cells. MP from aPC-treated EC (eM aPC ) exhibited high EPCR and annexin A1 content, protected β-cells, restored insulin secretion and were captured by 80% of β cells in a phosphatidylserine and ANXA1-dependent mechanism. eMP activated EPCR/PAR-1 and ANXA1/FPR2-dependent pathways and up-regulated the expression of EPCR, and of FPR2/ALX, the ANXA1 receptor. Cytoprotection was confirmed in H 2 O 2 -treated rat islets with increased viability (62% versus 48% H 2 O 2 ), reduced apoptosis and preserved insulin secretion in response to glucose elevation (16 versus 5 ng/ml insulin per 10 islets). MP may prove a promising therapeutic tool in the protection of transplanted islets. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Effect of tributyltin on mammalian endothelial cell integrity.

    Science.gov (United States)

    Botelho, G; Bernardini, C; Zannoni, A; Ventrella, V; Bacci, M L; Forni, M

    2015-01-01

    Tributyltin (TBT), is a man-made pollutants, known to accumulate along the food chain, acting as an endocrine disruptor in marine organisms, with toxic and adverse effects in many tissues including vascular system. Based on the absence of specific studies of TBT effects on endothelial cells, we aimed to evaluate the toxicity of TBT on primary culture of porcine aortic endothelial cells (pAECs), pig being an excellent model to study human cardiovascular disease. pAECs were exposed for 24h to TBT (100, 250, 500, 750 and 1000nM) showing a dose dependent decrease in cell viability through both apoptosis and necrosis. Moreover the ability of TBT (100 and 500nM) to influence endothelial gene expression was investigated at 1, 7 and 15h of treatment. Gene expression of tight junction molecules, occludin (OCLN) and tight junction protein-1 (ZO-1) was reduced while monocyte adhesion and adhesion molecules ICAM-1 and VCAM-1 (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) levels increased significantly at 1h. IL-6 and estrogen receptors 1 and 2 (ESR-1 and ESR-2) mRNAs, after a transient decrease, reached the maximum levels after 15h of exposure. Finally, we demonstrated that TBT altered endothelial functionality greatly increasing monocyte adhesion. These findings indicate that TBT deeply alters endothelial profile, disrupting their structure and interfering with their ability to interact with molecules and other cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. PX-18 Protects Human Saphenous Vein Endothelial Cells under Arterial Blood Pressure.

    Science.gov (United States)

    Kupreishvili, Koba; Stooker, Wim; Emmens, Reindert W; Vonk, Alexander B A; Sipkens, Jessica A; van Dijk, Annemieke; Eijsman, Leon; Quax, Paul H; van Hinsbergh, Victor W M; Krijnen, Paul A J; Niessen, Hans W M

    2017-07-01

    Arterial blood pressure-induced shear stress causes endothelial cell apoptosis and inflammation in vein grafts after coronary artery bypass grafting. As the inflammatory protein type IIA secretory phospholipase A 2 (sPLA 2 -IIA) has been shown to progress atherosclerosis, we hypothesized a role for sPLA 2 -IIA herein. The effects of PX-18, an inhibitor of both sPLA 2 -IIA and apoptosis, on residual endothelium and the presence of sPLA 2 -IIA were studied in human saphenous vein segments (n = 6) perfused at arterial blood pressure with autologous blood for 6 hrs. The presence of PX-18 in the perfusion blood induced a significant 20% reduction in endothelial cell loss compared to veins perfused without PX18, coinciding with significantly reduced sPLA 2 -IIA levels in the media of the vein graft wall. In addition, PX-18 significantly attenuated caspase-3 activation in human umbilical vein endothelial cells subjected to shear stress via mechanical stretch independent of sPLA 2 -IIA. In conclusion, PX-18 protects saphenous vein endothelial cells from arterial blood pressure-induced death, possibly also independent of sPLA 2 -IIA inhibition. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Prenylated Polyphenols from Clusiaceae and Calophyllaceae with Immunomodulatory Activity on Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Caroline Rouger

    Full Text Available Endothelial cells (ECs are key players in inflammation and immune responses involved in numerous pathologies. Although attempts were experimentally undertaken to prevent and control EC activation, drug leads and probes still remain necessary. Natural products (NPs from Clusiaceous and Calophyllaceous plants were previously reported as potential candidates to prevent endothelial dysfunction. The present study aimed to identify more precisely the molecular scaffolds that could limit EC activation. Here, 13 polyphenols belonging to 5 different chemical types of secondary metabolites (i.e., mammea coumarins, a biflavonoid, a pyranochromanone acid, a polyprenylated polycyclic acylphloroglucinol (PPAP and two xanthones were tested on resting and cytokine-activated EC cultures. Quantitative and qualitative changes in the expression of both adhesion molecules (VCAM-1, ICAM-1, E-selectin and major histocompatibility complex (MHC molecules have been used to measure their pharmaceutical potential. As a result, we identified 3 mammea coumarins that efficiently reduce (up to >90% at 10 μM both basal and cytokine-regulated levels of MHC class I, class II, MICA and HLA-E on EC surface. They also prevented VCAM-1 induction upon inflammation. From a structural point of view, our results associate the loss of the free prenyl group substituting mammea coumarins with a reduced cellular cytotoxicity but also an abrogation of their anti-inflammatory potential and a reduction of their immunosuppressive effects. A PPAP, guttiferone J, also triggers a strong immunomodulation but restricted to HLA-E and MHC class II molecules. In conclusion, mammea coumarins with a free prenyl group and the PPAP guttiferone J emerge as NPs able to drastically decrease both VCAM-1 and a set of MHC molecules and to potentially reduce the immunogenicity of the endothelium.

  4. Thioredoxin is involved in endothelial cell extracellular transglutaminase 2 activation mediated by celiac disease patient IgA.

    Directory of Open Access Journals (Sweden)

    Cristina Antonella Nadalutti

    Full Text Available PURPOSE: To investigate the role of thioredoxin (TRX, a novel regulator of extracellular transglutaminase 2 (TG2, in celiac patients IgA (CD IgA mediated TG2 enzymatic activation. METHODS: TG2 enzymatic activity was evaluated in endothelial cells (HUVECs under different experimental conditions by ELISA and Western blotting. Extracellular TG2 expression was studied by ELISA and immunofluorescence. TRX was analysed by Western blotting and ELISA. Serum immunoglobulins class A from healthy subjects (H IgA were used as controls. Extracellular TG2 enzymatic activity was inhibited by R281. PX12, a TRX inhibitor, was also employed in the present study. RESULTS: We have found that in HUVECs CD IgA is able to induce the activation of extracellular TG2 in a dose-dependent manner. Particularly, we noted that the extracellular modulation of TG2 activity mediated by CD IgA occurred only under reducing conditions, also needed to maintain antibody binding. Furthermore, CD IgA-treated HUVECs were characterized by a slightly augmented TG2 surface expression which was independent from extracellular TG2 activation. We also observed that HUVECs cultured in the presence of CD IgA evinced decreased TRX surface expression, coupled with increased secretion of the protein into the culture medium. Intriguingly, inhibition of TRX after CD IgA treatment was able to overcome most of the CD IgA-mediated effects including the TG2 extracellular transamidase activity. CONCLUSIONS: Altogether our findings suggest that in endothelial cells CD IgA mediate the constitutive activation of extracellular TG2 by a mechanism involving the redox sensor protein TRX.

  5. COPD as an endothelial disorder: endothelial injury linking lesions in the lungs and other organs? (2017 Grover Conference Series)

    Science.gov (United States)

    Polverino, Francesca; Celli, Bartolome R.

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by chronic expiratory airflow obstruction that is not fully reversible. COPD patients develop varying degrees of emphysema, small and large airway disease, and various co-morbidities. It has not been clear whether these co-morbidities share common underlying pathogenic processes with the pulmonary lesions. Early research into the pathogenesis of COPD focused on the contributions of injury to the extracellular matrix and pulmonary epithelial cells. More recently, cigarette smoke-induced endothelial dysfunction/injury have been linked to the pulmonary lesions in COPD (especially emphysema) and systemic co-morbidities including atherosclerosis, pulmonary hypertension, and chronic renal injury. Herein, we review the evidence linking endothelial injury to COPD, and the pathways underlying endothelial injury and the “vascular COPD phenotype” including: (1) direct toxic effects of cigarette smoke on endothelial cells; (2) generation of auto-antibodies directed against endothelial cells; (3) vascular inflammation; (4) increased oxidative stress levels in vessels inducing increases in lipid peroxidation and increased activation of the receptor for advanced glycation end-products (RAGE); (5) reduced activation of the anti-oxidant pathways in endothelial cells; (6) increased endothelial cell release of mediators with vasoconstrictor, pro-inflammatory, and remodeling activities (endothelin-1) and reduced endothelial cell expression of mediators that promote vasodilation and homeostasis of endothelial cells (nitric oxide synthase and prostacyclin); and (7) increased endoplasmic reticular stress and the unfolded protein response in endothelial cells. We also review the literature on studies of drugs that inhibit RAGE signaling in other diseases (angiotensin-converting enzyme inhibitors and angiotensin receptor blockers), or vasodilators developed for idiopathic pulmonary arterial hypertension that have been tested

  6. M3 receptor is involved in the effect of penehyclidine hydrochloride reduced endothelial injury in LPS-stimulated human pulmonary microvascular endothelial cell.

    Science.gov (United States)

    Yuan, Qinghong; Xiao, Fei; Liu, Qiangsheng; Zheng, Fei; Shen, Shiwen; He, Qianwen; Chen, Kai; Wang, Yanlin; Zhang, Zongze; Zhan, Jia

    2018-02-01

    LPS has been recently shown to induce muscarinic acetylcholine 3 receptor (M 3 receptor) expression and penehyclidine hydrochloride (PHC) is an anticholinergic drug which could block the expression of M 3 receptor. PHC has been demonstrated to perform protective effect on cell injury. This study is to investigate whether the effect of PHC on microvascular endothelial injury is related to its inhibition of M 3 receptor or not. HPMVECs were treated with specific M 3 receptor shRNA or PBS, and randomly divided into LPS group (A group), LPS+PHC group (B group), LPS + M 3 shRNA group (C group) and LPS + PHC + M 3 shRNA group (D group). Cells were collected at 60 min after LPS treatment to measure levels of LDH, endothelial permeability, TNF-α and IL-6 levels, NF-κB p65 activation, I-κB protein expression, p38MAPK, and ERK1/2 activations as well as M 3 mRNA expression. PHC could decrease LDH levels, cell permeability, TNF-α and IL-6 levels, p38 MAPK, ERK1/2, NF-κB p65 activations and M 3 mRNA expressions compared with LPS group. When M 3 receptor was silence, the changes of these indices were much more obvious. These findings suggest that M 3 receptor plays an important role in LPS-induced pulmonary microvascular endothelial injury, which is regulated through NF-κB p65 and MAPK activation. And knockout of M 3 receptor could attenuate LPS-induced pulmonary microvascular endothelial injury. Regulative effects of PHC on pulmonary microvascular permeability and NF-κB p65 as well as MAPK activations are including but not limited to inhibition of M 3 receptor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. ALTERED EXPRESSION OF SURFACE RECEPTORS AT EA.HY926 ENDOTHELIAL CELL LINE INDUCED WITH PLACENTAL SECRETORY FACTORS

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2012-01-01

    Full Text Available Abstract. Placental cell populations produce a great variety of angiogenic factors and cytokines than control angiogenesis in placenta. Functional regulation of endothelial cells proceeds via modulation of endothelial cell receptors for endogenous angiogenic and apoptotic signals. Endothelial phenotype alteration during normal pregnancy and in cases of preclampsia is not well understood. The goal of this investigation was to evaluate altered expression of angiogenic and cytokine receptors at EA.hy926 endothelial cells under the influence of placental tissue supernatants. Normal placental tissue supernatants from 1st and 3rd trimesters, and pre-eclamptic placental tissue supernatants (3rd trimester stimulated angiogenic and cytokine receptors expression by the cultured endothelial cells, as compared with their background expression. Tissue supernatants from placental samples of 3rd trimester caused a decreased expression of angiogenic and cytokine receptors by endothelial cells, thus reflecting maturation of placental vascular system at these terms. Supernatants from preeclamptic placental tissue induced an increase of CD119 expression, in comparison with normal placental supernatants from the 3rd trimester. This finding suggests that IFNγ may be a factor of endothelial activation in pre-eclampsia. The study was supported by grants ГК №02.740.11.0711, НШ-3594.2010.7., and МД-150.2011.7.

  8. The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells.

    Science.gov (United States)

    Ahwach, Salma Makhoul; Thomas, Melanie; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J

    2015-08-01

    Reactive oxygen species are associated with cardiovascular disease, diabetes, and atherosclerosis, yet the use of antioxidants in clinical trials has been ineffective at improving outcomes. In endothelial cells, high-dextrose-induced oxidative stress and endoplasmic reticulum stress promote endothelial dysfunction leading to the recruitment and activation of peripheral blood lymphocytes and the breakdown of barrier function. Ebselen, a glutathione peroxidase 1 (GPX1) mimic, has been shown to improve β-cell function in diabetes and prevent atherosclerosis. To determine if ebselen inhibits both oxidative stress and endoplasmic reticulum (ER) stress in endothelial cells, we examined its effects in human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC) with and without high-dextrose. Oxidative stress and ER stress were measured by 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence and ER stress alkaline phosphatase assays, respectively. GPX1 over-expression and knockdown were performed by transfecting cells with a GPX1 expression construct or a GPX1-specific siRNA, respectively. Ebselen inhibited dextrose-induced oxidative stress but not ER stress in both HUVEC and HCAEC. Ebselen also had no effect on tunicamycin-induced ER stress in HCAEC. Furthermore, augmentation of GPX1 activity directly by sodium selenite supplementation or transfection of a GPX1 expression plasmid decreased dextrose-induced oxidative stress but not ER stress, while GPX1 knockout enhanced oxidative stress but had no effect on ER stress. These results suggest that ebselen targets only oxidative stress but not ER stress. Copyright © 2015. Published by Elsevier Inc.

  9. Endothelial cell cultures as a tool in biomaterial research

    NARCIS (Netherlands)

    Kirkpatrick, CJ; Otto, M; van Kooten, T; Krump, [No Value; Kriegsmann, J; Bittinger, F

    1999-01-01

    Progress in biocompatibility and tissue engineering would today be inconceivable without the aid of in vitro techniques. Endothelial cell cultures represent a valuable tool not just in haemocompatibility testing, but also in the concept of designing hybrid organs. In the past endothelial cells (EC)

  10. Endothelial network formed with human dermal microvascular endothelial cells in autologous multicellular skin substitutes.

    Science.gov (United States)

    Ponec, Maria; El Ghalbzouri, Abdoelwaheb; Dijkman, Remco; Kempenaar, Johanna; van der Pluijm, Gabri; Koolwijk, Pieter

    2004-01-01

    A human skin equivalent from a single skin biopsy harboring keratinocytes and melanocytes in the epidermal compartment, and fibroblasts and microvascular dermal endothelial cells in the dermal compartment was developed. The results of the study revealed that the nature of the extracellular matrix of the dermal compartments plays an important role in establishment of endothelial network in vitro. With rat-tail type I collagen matrices only lateral but not vertical expansion of endothelial networks was observed. In contrast, the presence of extracellular matrix of entirely human origin facilitated proper spatial organization of the endothelial network. Namely, when human dermal fibroblasts and microvascular endothelial cells were seeded on the bottom of an inert filter and subsequently epidermal cells were seeded on top of it, fibroblasts produced extracellular matrix throughout which numerous branched tubes were spreading three-dimensionally. Fibroblasts also facilitated the formation of basement membrane at the epidermal/matrix interface. Under all culture conditions, fully differentiated epidermis was formed with numerous melanocytes present in the basal epidermal cell layer. The results of the competitive RT-PCR revealed that both keratinocytes and fibroblasts expressed VEGF-A, -B, -C, aFGF and bFGF mRNA, whereas fibroblasts also expressed VEGF-D mRNA. At protein level, keratinocytes produced 10 times higher amounts of VEGF-A than fibroblasts did. The generation of multicellular skin equivalent from a single human skin biopsy will stimulate further developments for its application in the treatment of full-thickness skin defects. The potential development of biodegradable, biocompatible material suitable for these purposes is a great challenge for future research.

  11. Changes of junctions of endothelial cells in coronary sclerosis: A review

    Directory of Open Access Journals (Sweden)

    Li-Zi Zhang

    2016-03-01

    Full Text Available Atherosclerosis, the major cause of cardiovascular diseases, has been a leading contributor to morbidity and mortality in the United States and it has been on the rise globally. Endothelial cell–cell junctions are critical for vascular integrity and maintenance of vascular function. Endothelial cell junctions dysfunction is the onset step of future coronary events and coronary artery disease. Keywords: Coronary atherosclerosis, Junctions, Endothelial cells

  12. Young endothelial cells revive aging blood.

    Science.gov (United States)

    Chang, Vivian Y; Termini, Christina M; Chute, John P

    2017-11-01

    The hematopoietic system declines with age, resulting in decreased hematopoietic stem cell (HSC) self-renewal capacity, myeloid skewing, and immune cell depletion. Aging of the hematopoietic system is associated with an increased incidence of myeloid malignancies and a decline in adaptive immunity. Therefore, strategies to rejuvenate the hematopoietic system have important clinical implications. In this issue of the JCI, Poulos and colleagues demonstrate that infusions of bone marrow (BM) endothelial cells (ECs) from young mice promoted HSC self-renewal and restored immune cell content in aged mice. Additionally, delivery of young BM ECs along with HSCs following total body irradiation improved HSC engraftment and enhanced survival. These results suggest an important role for BM endothelial cells (ECs) in regulating hematopoietic aging and support further research to identify the rejuvenating factors elaborated by BM ECs that restore HSC function and the immune repertoire in aged mice.

  13. Apheresis platelet concentrates contain platelet-derived and endothelial cell-derived microparticles

    NARCIS (Netherlands)

    Rank, A.; Nieuwland, R.; Liebhardt, S.; Iberer, M.; Grützner, S.; Toth, B.; Pihusch, R.

    2011-01-01

    Background and Objectives Microparticles (MP) are membrane vesicles with thrombogenic and immunomodulatory properties. We determined MP subgroups from resting platelets, activated platelets and endothelial cells in donors and apheresis platelet concentrates (PC). Material and Methods MP were double

  14. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Pil; Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Hien, Tran Thi [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Jeong, Myung Ho [Heart Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyungsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  15. Characterization of vascular endothelial progenitor cells from chicken bone marrow

    Directory of Open Access Journals (Sweden)

    Bai Chunyu

    2012-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPC are a type of stem cell used in the treatment of atherosclerosis, vascular injury and regeneration. At present, most of the EPCs studied are from human and mouse, whereas the study of poultry-derived EPCs has rarely been reported. In the present study, chicken bone marrow-derived EPCs were isolated and studied at the cellular level using immunofluorescence and RT-PCR. Results We found that the majority of chicken EPCs were spindle shaped. The growth-curves of chicken EPCs at passages (P 1, -5 and -9 were typically “S”-shaped. The viability of chicken EPCs, before and after cryopreservation was 92.2% and 81.1%, respectively. Thus, cryopreservation had no obvious effects on the viability of chicken EPCs. Dil-ac-LDL and FITC-UAE-1 uptake assays and immunofluorescent detection of the cell surface markers CD34, CD133, VEGFR-2 confirmed that the cells obtained in vitro were EPCs. Observation of endothelial-specific Weibel-Palade bodies using transmission electron microscopy further confirmed that the cells were of endothelial lineage. In addition, chicken EPCs differentiated into endothelial cells and smooth muscle cells upon induction with VEGF and PDGF-BB, respectively, suggesting that the chicken EPCs retained multipotency in vitro. Conclusions These results suggest that chicken EPCs not only have strong self-renewal capacity, but also the potential to differentiate into endothelial and smooth muscle cells. This research provides theoretical basis and experimental evidence for potential therapeutic application of endothelial progenitor cells in the treatment of atherosclerosis, vascular injury and diabetic complications.

  16. Endothelial cells provide a notch-dependent pro-tumoral niche for enhancing breast cancer survival, stemness and pro-metastatic properties.

    Directory of Open Access Journals (Sweden)

    Pegah Ghiabi

    Full Text Available Treating metastasis has been challenging due to tumors complexity and heterogeneity. This complexity is partly related to the crosstalk between tumor and its microenvironment. Endothelial cells -the building blocks of tumor vasculature- have been shown to have additional roles in cancer progression than angiogenesis and supplying oxygen and nutrients. Here, we show an alternative role for endothelial cells in supporting breast cancer growth and spreading independent of their vascular functions. Using endothelial cells and breast cancer cell lines MDA-MB231 and MCF-7, we developed co-culture systems to study the influence of tumor endothelium on breast tumor development by both in vitro and in vivo approaches. Our results demonstrated that endothelial cells conferred survival advantage to tumor cells under complete starvation and enriched the CD44HighCD24Low/- stem cell population in tumor cells. Moreover, endothelial cells enhanced the pro-metastatic potential of breast cancer cells. The in vitro and in vivo results concordantly confirmed a role for endothelial Jagged1 to promote breast tumor through notch activation. Here, we propose a role for endothelial cells in enhancing breast cancer progression, stemness, and pro-metastatic traits through a perfusion-independent manner. Our findings may be beneficial in developing novel therapeutic approaches.

  17. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    International Nuclear Information System (INIS)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin; Liu, Ke; Shang, Zheng-jun

    2014-01-01

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo

  18. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai [Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong Province (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Song, Yong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Department of Stomatology, Liu Zhou People' s Hospital, Guangxi (China); Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Liu, Ke, E-mail: liuke.1999@aliyun.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China)

    2014-10-15

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.

  19. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells.

    Science.gov (United States)

    McCarthy, Ryan C; Kosman, Daniel J

    2014-01-01

    We have used an in vitro model system to probe the iron transport pathway across the brain microvascular endothelial cells (BMVEC) of the blood-brain barrier (BBB). This model consists of human BMVEC (hBMVEC) and C6 glioma cells (as an astrocytic cell line) grown in a transwell, a cell culture system commonly used to quantify metabolite flux across a cell-derived barrier. We found that iron efflux from hBMVEC through the ferrous iron permease ferroportin (Fpn) was stimulated by secretion of the soluble form of the multi-copper ferroxidase, ceruloplasmin (sCp) from the co-cultured C6 cells. Reciprocally, expression of sCp mRNA in the C6 cells was increased by neighboring hBMVEC. In addition, data indicate that C6 cell-secreted hepcidin stimulates internalization of hBMVEC Fpn but only when the end-feet projections characteristic of this glia-derived cell line are proximal to the endothelial cells. This hepcidin-dependent loss of Fpn correlated with knock-down of iron efflux from the hBMVEC; this result was consistent with the mechanism by which hepcidin regulates iron efflux in mammalian cells. In summary, the data support a model of iron trafficking across the BBB in which the capillary endothelium induce the underlying astrocytes to produce the ferroxidase activity needed to support Fpn-mediated iron efflux. Reciprocally, astrocyte proximity modulates the effective concentration of hepcidin at the endothelial cell membrane and thus the surface expression of hBMVEC Fpn. These results are independent of the source of hBMVEC iron (transferrin or non-transferrin bound) indicating that the model developed here is broadly applicable to brain iron homeostasis.

  20. Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins

    International Nuclear Information System (INIS)

    Nakayama, Hironao; Huang, Lan; Kelly, Ryan P.; Oudenaarden, Clara R.L.; Dagher, Adelle; Hofmann, Nicole A.; Moses, Marsha A.; Bischoff, Joyce; Klagsbrun, Michael

    2015-01-01

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1 + ) endothelial cells (designated as GLUT1 sel cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1 sel -to-EC differentiation

  1. Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Hironao [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295 (Japan); Huang, Lan [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Kelly, Ryan P.; Oudenaarden, Clara R.L. [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Dagher, Adelle; Hofmann, Nicole A.; Moses, Marsha A. [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Bischoff, Joyce, E-mail: joyce.bischoff@childrens.harvard.edu [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Klagsbrun, Michael, E-mail: michael.klagsbrun@childrens.harvard.edu [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Pathology, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States)

    2015-08-14

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1{sup +}) endothelial cells (designated as GLUT1{sup sel} cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1{sup sel}-to-EC differentiation.

  2. Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity

    Science.gov (United States)

    Guarnieri, Daniela; Malvindi, Maria Ada; Belli, Valentina; Pompa, Pier Paolo; Netti, Paolo

    2014-02-01

    Silica nanoparticles could be promising delivery vehicles for drug targeting or gene therapy. However, few studies have been undertaken to determine the biological behavior effects of silica nanoparticles on primary endothelial cells. Here we investigated uptake, cytotoxicity and angiogenic properties of silica nanoparticle with positive and negative surface charge and sizes ranging from 25 to 115 nm in primary human umbilical vein endothelial cells. Dynamic light scattering measurements and nanoparticle tracking analysis were used to estimate the dispersion status of nanoparticles in cell culture media, which was a key aspect to understand the results of the in vitro cellular uptake experiments. Nanoparticles were taken up by primary endothelial cells in a size-dependent manner according to their degree of agglomeration occurring after transfer in cell culture media. Functionalization of the particle surface with positively charged groups enhanced the in vitro cellular uptake, compared to negatively charged nanoparticles. However, this effect was contrasted by the tendency of particles to form agglomerates, leading to lower internalization efficiency. Silica nanoparticle uptake did not affect cell viability and cell membrane integrity. More interestingly, positively and negatively charged 25 nm nanoparticles did not influence capillary-like tube formation and angiogenic sprouting, compared to controls. Considering the increasing interest in nanomaterials for several biomedical applications, a careful study of nanoparticle-endothelial cells interactions is of high relevance to assess possible risks associated to silica nanoparticle exposure and their possible applications in nanomedicine as safe and effective nanocarriers for vascular transport of therapeutic agents.

  3. The Bony Side of Endothelial Cells in Prostate Cancer.

    Science.gov (United States)

    Peng, Jia; Kang, Yibin

    2017-06-05

    Prostate cancer bone metastases are primarily osteoblastic, but the source of bone-forming cells in these lesions remains poorly defined. In this issue of Developmental Cell, Lin et al. (2017) demonstrate that tumor-associated endothelial cells can give rise to osteoblasts in prostate cancer through endothelial-to-osteoblast (EC-to-OSB) conversion. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Extracellular histones induce tissue factor expression in vascular endothelial cells via TLR and activation of NF-κB and AP-1.

    Science.gov (United States)

    Yang, Xinyu; Li, Lin; Liu, Jin; Lv, Ben; Chen, Fangping

    2016-01-01

    Extracellular histones have been recognized recently as proinflammatory mediators; they are released from dying cells in response to inflammatory challenge, contributing to endothelial cell dysfunction, thrombin formation, organ failure, and death during sepsis. Clinical studies suggest that the plasma concentration of the histone-DNA complex is correlated with the severity of DIC and is a poor independent prognostic marker in sepsis. In addition, platelet activation stimulates thrombus formation. Whether histones contribute to procoagulant activity in other ways remains elusive. In this study, we confirmed that histones induce tissue factor (TF) expression in a concentration- and time-dependent manner in vascular endothelial cells (ECs) and macrophages. However, histones did not affect TF pathway inhibitor expression. Moreover, blocking the cell surface receptors TLR4 and TLR2 with specific neutralizing antibodies significantly reduced histone-induced TF expression. Furthermore, histones enhanced the nuclear translocation of NF-κB (c-Rel/p65) and AP-1 expression in a time-dependent manner in ECs. Mutating NF-κB and AP-1 significantly reduced histone-induced TF expression. Altogether, our experiments suggest that histone induces TF expression in ECs via cell surface receptors TLR4 and TLR2, simultaneously depending on the activation of the transcription factors NF-κB and AP-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells

    International Nuclear Information System (INIS)

    Pecorelli, Alessandra; Bocci, Velio; Acquaviva, Alessandra; Belmonte, Giuseppe; Gardi, Concetta; Virgili, Fabio; Ciccoli, Lucia; Valacchi, Giuseppe

    2013-01-01

    During the last decade, it has been shown that the activation of NRF2 and the binding to electrophile-responsive element (EpREs), stimulates the expression of a great number of genes responsible for the synthesis of phase I and phase II proteins, including antioxidants enzymes and heme oxygenase-1 (HO-1). This critical cell response occurs in cardiovascular, degenerative and chronic infective diseases aggravated by a chronic oxidative stress. In our previous reports we have shown that ozonated plasma is able to up-regulate HO-1 expression in endothelial cells. In the present work we investigated a candidate mechanism involved in this process. After treatment with increasing doses of ozonated serum (20, 40 and 80 μg/mL O 3 per mL of serum), a clear dose dependent activation of NRF2 and the subsequent induction of HO-1 and NAD(P)H quinone oxidoreductase 1(NQO1) was observed. This effect was also present when cells were treated with serum and hydrogen peroxide (H 2 O 2 ) or serum and 4-hydroxynonenal (4HNE). Moreover, the treatment with ozonated serum was associated with a dose-dependent activation of extracellular-signal-regulated kinases (ERK1/2) and p38 MAP kinases (p38), not directly involved in NRF2 activation. These data, provide a new insight on the mechanism responsible for the induction of HO-1 expression by ozonated serum in the endothelium, and have a practical importance as an expedient approach to the treatment of patients with both effective orthodox drugs and ozonated autohemotherapy, targeted to the restoration of redox homeostasis. - Highlights: ► Endothelial HO1 is upregulated by ozonated plasma ► This activation is induced by NRF2 and it is ERK independent. ► 4HNE and H 2 O 2 are the main molecules involved in this process. ► Ozonated plasma induced a hormetic effect ► Combination of orthodox medicine and ozonated plasma can be a useful treatment

  6. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pecorelli, Alessandra [Department of Molecular and Developmental Medicine, University of Siena (Italy); Child Neuropsychiatry Unit, University Hospital, AOUS, Siena (Italy); Bocci, Velio [Department of Physiology, University of Siena (Italy); Acquaviva, Alessandra [Department of Molecular and Developmental Medicine, University of Siena (Italy); Belmonte, Giuseppe [Department of Biomedical Sciences, University of Siena (Italy); Gardi, Concetta [Department of Molecular and Developmental Medicine, University of Siena (Italy); Virgili, Fabio [INRAN, Rome (Italy); Ciccoli, Lucia [Department of Molecular and Developmental Medicine, University of Siena (Italy); Valacchi, Giuseppe, E-mail: giuseppe.valacchi@unife.it [Department of Life Sciences and Biotechnology, University of Ferrara (Italy); Department of Food and Nutrition, Kyung Hee University, Seoul (Korea, Republic of)

    2013-02-15

    During the last decade, it has been shown that the activation of NRF2 and the binding to electrophile-responsive element (EpREs), stimulates the expression of a great number of genes responsible for the synthesis of phase I and phase II proteins, including antioxidants enzymes and heme oxygenase-1 (HO-1). This critical cell response occurs in cardiovascular, degenerative and chronic infective diseases aggravated by a chronic oxidative stress. In our previous reports we have shown that ozonated plasma is able to up-regulate HO-1 expression in endothelial cells. In the present work we investigated a candidate mechanism involved in this process. After treatment with increasing doses of ozonated serum (20, 40 and 80 μg/mL O{sub 3} per mL of serum), a clear dose dependent activation of NRF2 and the subsequent induction of HO-1 and NAD(P)H quinone oxidoreductase 1(NQO1) was observed. This effect was also present when cells were treated with serum and hydrogen peroxide (H{sub 2}O{sub 2}) or serum and 4-hydroxynonenal (4HNE). Moreover, the treatment with ozonated serum was associated with a dose-dependent activation of extracellular-signal-regulated kinases (ERK1/2) and p38 MAP kinases (p38), not directly involved in NRF2 activation. These data, provide a new insight on the mechanism responsible for the induction of HO-1 expression by ozonated serum in the endothelium, and have a practical importance as an expedient approach to the treatment of patients with both effective orthodox drugs and ozonated autohemotherapy, targeted to the restoration of redox homeostasis. - Highlights: ► Endothelial HO1 is upregulated by ozonated plasma ► This activation is induced by NRF2 and it is ERK independent. ► 4HNE and H{sub 2}O{sub 2} are the main molecules involved in this process. ► Ozonated plasma induced a hormetic effect ► Combination of orthodox medicine and ozonated plasma can be a useful treatment.

  7. Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner.

    Science.gov (United States)

    Orlando, Antonina; Cazzaniga, Emanuela; Tringali, Maria; Gullo, Francesca; Becchetti, Andrea; Minniti, Stefania; Taraballi, Francesca; Tasciotti, Ennio; Re, Francesca

    2017-01-01

    Mesoporous silica nanoparticles (MSNPs) are excellent candidates for biomedical applications and drug delivery to different human body areas, the brain included. Although toxicity at cellular level has been investigated, we are still far from using MSNPs in the clinic, because the mechanisms involved in the cellular responses activated by MSNPs have not yet been elucidated. This study used an in vitro multiparametric approach to clarify relationships among size, dose, and time of exposure of MSNPs (0.05-1 mg/mL dose range), and cellular responses by analyzing the morphology, viability, and functionality of human vascular endothelial cells and neurons. The results showed that 24 hours of exposure of endothelial cells to 250 nm MSNPs exerted higher toxicity in terms of mitochondrial activity and membrane integrity than 30 nm MSN at the same dose. This was due to induced cell autophagy (in particular mitophagy), probably consequent to MSNP cellular uptake (>20%). Interestingly, after 24 hours of treatment with 30 nm MSNPs, very low MSNP uptake (rational design of NPs intended for biomedical uses, demonstrating that careful toxicity evaluation is necessary before using MSNPs in patients.

  8. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Directory of Open Access Journals (Sweden)

    Courtney M Tate

    Full Text Available Bone morphogenetic proteins (BMPs, members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  9. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Science.gov (United States)

    Tate, Courtney M; Mc Entire, Jacquelyn; Pallini, Roberto; Vakana, Eliza; Wyss, Lisa; Blosser, Wayne; Ricci-Vitiani, Lucia; D'Alessandris, Quintino Giorgio; Morgante, Liliana; Giannetti, Stefano; Larocca, Luigi Maria; Todaro, Matilde; Benfante, Antonina; Colorito, Maria Luisa; Stassi, Giorgio; De Maria, Ruggero; Rowlinson, Scott; Stancato, Louis

    2015-01-01

    Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  10. Apelin is a novel angiogenic factor in retinal endothelial cells

    International Nuclear Information System (INIS)

    Kasai, Atsushi; Shintani, Norihito; Oda, Maki; Kakuda, Michiya; Hashimoto, Hitoshi; Matsuda, Toshio; Hinuma, Shuji; Baba, Akemichi

    2004-01-01

    There has been much focus recently on the possible functions of apelin, an endogenous ligand for the orphan G-protein-coupled receptor APJ, in cardiovascular and central nervous systems. We report a new function of apelin as a novel angiogenic factor in retinal endothelial cells. The retinal endothelial cell line RF/6A highly expressed both apelin and APJ transcripts, while human umbilical venous endothelial cells (HUVECs) only expressed apelin mRNA. In accordance with these observations, apelin at concentrations of 1 pM-1 μM significantly enhanced migration, proliferation, and capillary-like tube formation of RF/6A cells, but not those of HUVECs, whereas VEGF stimulates those parameters of both cell types. In vivo Matrigel plug assay for angiogenesis, the inclusion of 1 nM apelin in the Matrigel resulted in clear capillary-like formations with an increase of hemoglobin content in the plug. This is the first report showing that apelin is an angiogenic factor in retinal endothelial cells

  11. High-intensity Interval training enhances mobilization/functionality of endothelial progenitor cells and depressed shedding of vascular endothelial cells undergoing hypoxia.

    Science.gov (United States)

    Tsai, Hsing-Hua; Lin, Chin-Pu; Lin, Yi-Hui; Hsu, Chih-Chin; Wang, Jong-Shyan

    2016-12-01

    Exercise training improves endothelium-dependent vasodilation, whereas hypoxic stress causes vascular endothelial dysfunction. Monocyte-derived endothelial progenitor cells (Mon-EPCs) contribute to vascular repair process by differentiating into endothelial cells. This study investigates how high-intensity interval (HIT) and moderate-intensity continuous (MCT) exercise training affect circulating Mon-EPC levels and EPC functionality under hypoxic condition. Sixty healthy sedentary males were randomized to engage in either HIT (3-min intervals at 40 and 80 % VO 2max for five repetitions, n = 20) or MCT (sustained 60 % VO 2max , n = 20) for 30 min/day, 5 days/week for 6 weeks, or to a control group (CTL) that did not received exercise intervention (n = 20). Mon-EPC characteristics and EPC functionality under hypoxic exercise (HE, 100 W under 12 % O 2 ) were determined before and after HIT, MCT, and CTL. The results demonstrated that after the intervention, the HIT group exhibited larger improvements in VO 2peak , estimated peak cardiac output (Q C ), and estimated peak perfusions of frontal cerebral lobe (Q FC ) and vastus lateralis (Q VL ) than the MCT group. Furthermore, HIT (a) increased circulating CD14 ++ /CD16 - /CD34 + /KDR + (Mon-1 EPC) and CD14 ++ /CD16 + /CD34 + /KDR + (Mon-2 EPC) cell counts, (b) promoted the migration and tube formation of EPCs, (c) diminished the shedding of endothelial (CD34 - /KDR + /phosphatidylserine + ) cells, and (d) elevated plasma nitrite plus nitrate, stromal cell-derived factor-1, matrix metalloproteinase-9, and vascular endothelial growth factor-A concentrations at rest or following HE, compared to those of MCT. In addition, Mon-1 and -2 EPC counts were directly related to VO 2peak and estimated peak Q C , Q FC , and Q VL . HIT is superior to MCT for improving hemodynamic adaptation and Mon-EPC production. Moreover, HIT effectively enhances EPC functionality and suppresses endothelial injury undergoing hypoxia.

  12. Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Shen Junhui

    2012-07-01

    Full Text Available Abstract Background Diabetic retinopathy is a major complication of dysregulated hyperglycemia. Retinal vascular endothelial cell dysfunction is an early event in the pathogenesis of diabetic retinopathy. Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by docosahexaenoic acid (DHA, 22:6 ω-3 and eicosapentaenoic acid (EPA, 20:5 ω-3. The influence of dietary omega-3 PUFA on brain zinc metabolism has been previously implied. Zn2+ is essential for the activity of Δ6 desaturase as a co-factor that, in turn, converts essential fatty acids to their respective long chain metabolites. Whether essential fatty acids (EFAs α-linolenic acid and linoleic acid have similar beneficial effect remains poorly understood. Methods RF/6A cells were treated with different concentrations of high glucose, α-linolenic acid and linoleic acid and Zn2+. The alterations in mitochondrial succinate dehydrogenase enzyme activity, cell membrane fluidity, reactive oxygen species generation, SOD enzyme and vascular endothelial growth factor (VEGF secretion were evaluated. Results Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by both linoleic acid (LA and α-linolenic acid (ALA, while the saturated fatty acid, palmitic acid was ineffective. A dose–response study with ALA showed that the activity of the mitochondrial succinate dehydrogenase enzyme was suppressed at all concentrations of glucose tested to a significant degree. High glucose enhanced fluorescence polarization and microviscocity reverted to normal by treatment with Zn2+ and ALA. ALA was more potent that Zn2+. Increased level of high glucose caused slightly increased ROS generation that correlated with corresponding decrease in SOD activity. ALA suppressed ROS generation to a significant degree in a dose dependent fashion and raised SOD activity significantly. ALA suppressed

  13. JNK2 promotes endothelial cell alignment under flow.

    Directory of Open Access Journals (Sweden)

    Cornelia Hahn

    Full Text Available Endothelial cells in straight, unbranched segments of arteries elongate and align in the direction of flow, a feature which is highly correlated with reduced atherosclerosis in these regions. The mitogen-activated protein kinase c-Jun N-terminal kinase (JNK is activated by flow and is linked to inflammatory gene expression and apoptosis. We previously showed that JNK activation by flow is mediated by integrins and is observed in cells plated on fibronectin but not on collagen or basement membrane proteins. We now show thatJNK2 activation in response to laminar shear stress is biphasic, with an early peak and a later peak. Activated JNK localizes to focal adhesions at the ends of actin stress fibers, correlates with integrin activation and requires integrin binding to the extracellular matrix. Reducing JNK2 activation by siRNA inhibits alignment in response to shear stress. Cells on collagen, where JNK activity is low, align slowly. These data show that an inflammatory pathway facilitates adaptation to laminar flow, thereby revealing an unexpected connection between adaptation and inflammatory pathways.

  14. Cyanidin-3-O-Glucoside Modulates the In Vitro Inflammatory Crosstalk between Intestinal Epithelial and Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Daniela Ferrari

    2017-01-01

    Full Text Available Intestinal epithelium represents a protective physical barrier and actively contributes to the mucosal immune system. Polarized basolateral intestinal secretion of inflammatory mediators, followed by activation of NF-κB signaling and inflammatory pathways in endothelial cells, efficiently triggers extravasation of neutrophils from the vasculature, therefore contributing to the development and maintenance of intestinal inflammation. Proper regulation of NF-κB activation at the epithelial interface is crucial for the maintenance of physiological tissue homeostasis. Many papers reported that anthocyanins, a group of compounds belonging to flavonoids, possess anti-inflammatory effects and modulate NF-κB activity. In this study, by using a coculture in vitro system, we aimed to evaluate the effects of TNF-α-stimulated intestinal cells on endothelial cells activation, as well as the protective effects of cyanidin-3-glucoside (C3G. In this model, TNF-α induced nuclear translocation of NF-κB and TNF-α and IL-8 gene expression in Caco-2 cells, whereas C3G pretreatment dose-dependently reduced these effects. Furthermore, TNF-α-stimulated Caco-2 cells induced endothelial cells activation with increased E-selectin and VCAM-1 mRNA, leukocyte adhesion, and NF-κB levels in HUVECs, which were inhibited by C3G. We demonstrated that selective inhibition of the NF-κB pathway in epithelial cells represents the main mechanism by which C3G exerts these protective effects. Thus, anthocyanins could contribute to the management of chronic gut inflammatory diseases.

  15. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement

    OpenAIRE

    Yongliang Yang; Nima Jamilpour; Baoyin Yao; Zachary S. Dean; Reza Riahi; Pak Kin Wong

    2016-01-01

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via pe...

  16. Procoagulant Activity of Blood and Endothelial Cells via Phosphatidylserine Exposure and Microparticle Delivery in Patients with Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Ying Su

    2018-03-01

    Full Text Available Background/Aims: The mechanisms for thrombosis in diabetic retinopathy (DR are complex and need to be further elucidated. The purpose of this study was to test phosphatidylserine (PS exposure on microparticles (MPs and MP-origin cells from the circulation and to analyze cell-/MP-associated procoagulant activity (PCA in DR patients. Methods: PS-positive MPs and cells from healthy controls (n = 20 and diabetic patients (n = 60 were analyzed by flow cytometry and confocal microscopy. Clotting time and purified coagulation complex assays were used to measure PCA. Results: PS exposure on platelets and monocytes was higher in proliferative DR (PDR patients than in non-PDR patients or controls. The highest levels of MPs (derived from platelets [30%], erythrocytes [13%], leukocytes [28%], and endothelial cells [10%] were found in patients with PDR. In addition, PS exposure on blood cells and shed MPs in DR patients led to significantly increased FXa and FIIa generation, fibrin formation, and markedly shortened coagulation time. Moreover, lactadherin reduced 70% of PCA by blocking PS, while an anti-tissue factor antibody had a smaller effect. Conclusion: Our results confirmed that PCA in DR patients may be partly ascribed to PS exposure and MP release from blood and endothelial cells. Lactadherin may act as an efficient anticoagulant factor in this process.

  17. Vascular endothelial growth factor A-stimulated signaling from endosomes in primary endothelial cells.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Odell, Adam F; Latham, Antony M; Wheatcroft, Stephen B; Harrison, Michael A; Tomlinson, Darren C; Ponnambalam, Sreenivasan

    2014-01-01

    The vascular endothelial growth factor A (VEGF-A) is a multifunctional cytokine that stimulates blood vessel sprouting, vascular repair, and regeneration. VEGF-A binds to VEGF receptor tyrosine kinases (VEGFRs) and stimulates intracellular signaling leading to changes in vascular physiology. An important aspect of this phenomenon is the spatiotemporal coordination of VEGFR trafficking and intracellular signaling to ensure that VEGFR residence in different organelles is linked to downstream cellular outputs. Here, we describe a series of assays to evaluate the effects of VEGF-A-stimulated intracellular signaling from intracellular compartments such as the endosome-lysosome system. These assays include the initial isolation and characterization of primary human endothelial cells, performing reverse genetics for analyzing protein function; methods used to study receptor trafficking, signaling, and proteolysis; and assays used to measure changes in cell migration, proliferation, and tubulogenesis. Each of these assays has been exemplified with studies performed in our laboratories. In conclusion, we describe necessary techniques for studying the role of VEGF-A in endothelial cell function. © 2014 Elsevier Inc. All rights reserved.

  18. Cellular adhesion molecules on endothelial cells participate in radiation-mediated inflammation

    International Nuclear Information System (INIS)

    Hallahan, Dennis; Clark, Elizabeth T.; Kuchibhotla, Jaya; Gewertz, Bruce L.

    1995-01-01

    Purpose: The acute and subacute clinical manifestations of ionizing radiation mimic the inflammatory response to a number of stimuli. During the early stages of the inflammatory response, endothelial cells rapidly and transiently express a number of glycoproteins such as E-selectin, P-selectin, ICAM-1 and VCAM-1 which influence leucocyte adhesion. We quantified the expression of these cellular adhesion molecules (CAMs) in irradiated endothelial cells in order to determine whether these glycoproteins participate in radiation-mediated inflammation. Methods: Primary cultures of human umbilical vein endothelial cells (HUVEC) and HMEC cells were grown to 90% confluence and irradiated with a GE Maxitron x-ray generator. The cells were incubated with primary IgG1 antibody (mouse anti-human ICAM-1, VCAM-1, P-selectin and E-selectin and incubated with FITC-conjugated secondary antibody (goat anti-mouse IgG1). Fluorescence-activated cell sorting (FACS) analysis was utilized for quantitation of receptor expression of each CAM on irradiated endothelial cells. Electrophoretic mobility gel shift assays of nuclear protein extracts from irradiated HUVEC cells were performed using the E-selectin NFkB binding sequence (5'AGCTTAGAGGGGATTTCCGAGAGGA-3'). The E-selectin promoter was ligated to the growth hormone reporter. Plasmids pE-sel(-587 +35)GH or pE-sel(-587 +35)GH Δ NFκB (5 μg) was transfected into HMEC or HUVEC cells by use of lipofection. Transfectants were incubated for 16 h after transfection followed by treatment with 10 Gy (1 Gy/min, GE Maxitron) of ionizing radiation, and or with TNF or IL-1. Leukocyte adhesion to irradiated endothelial cells was quantified by HL-60 binding. Results: The log fluorescence of cells incubated with the antibody to E-selectin shifted by 32% at 4 h after irradiation. In comparison, a shift of 35% occurred 20 h after irradiation for cells incubated with the antibody to ICAM. However, there was no significant increase in P-selectin or VCAM

  19. The anti-apoptotic effect of fluid mechanics preconditioning by cells membrane and mitochondria in rats brain microvascular endothelial cells.

    Science.gov (United States)

    Tian, Shan; Zhu, Fengping; Hu, Ruiping; Tian, Song; Chen, Xingxing; Lou, Dan; Cao, Bing; Chen, Qiulei; Li, Bai; Li, Fang; Bai, Yulong; Wu, Yi; Zhu, Yulian

    2018-01-01

    Exercise preconditioning is a simple and effective way to prevent ischemia. This paper further provided the mechanism in hemodynamic aspects at the cellular level. To study the anti-apoptotic effects of fluid mechanics preconditioning, Cultured rats brain microvascular endothelial cells were given fluid intervention in a parallel plate flow chamber before oxygen glucose deprivation. It showed that fluid mechanics preconditioning could inhibit the apoptosis of endothelial cells, and this process might be mediated by the shear stress activation of Tie-2 on cells membrane surface and Bcl-2 on the mitochondria surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Endothelial cell chimerism associated with graft rejection after human lung transplantation.

    OpenAIRE

    Ratajczak , Philippe; Murata , Hideyuki; Meignin , Véronique; Groussard , Odile; Fournier , Michel; Socié , Gérard; Mal , Hervé; Janin , Anne

    2008-01-01

    International audience; Endotheliitis is a major sign of graft rejection. Recipient-derived endothelial cells found in two series of liver and kidney transplants were related to graft rejection. Here, we assessed the presence and the number of chimeric endothelial cells in lung transplants, and their relation with graft rejection. In six males grafted with female lungs out of 193 lung transplantations, endothelial chimerism was studied by combined XY-fluorescent in situ hybridization with CD3...

  1. Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture

    Directory of Open Access Journals (Sweden)

    Ruth Olmer

    2018-05-01

    Full Text Available Summary: Endothelial cells (ECs are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability. : In this article, U. Martin and colleagues show the generation of hiPSC endothelial cells in scalable cultures in up to 100 mL culture volume. The generated ECs show in vitro proliferation capacity and a high degree of chromosomal stability after in vitro expansion. The established protocol allows to generate hiPSC-derived ECs in relevant numbers for regenerative approaches. Keywords: hiPSC differentiation, endothelial cells, scalable culture

  2. Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner

    Directory of Open Access Journals (Sweden)

    Orlando A

    2017-05-01

    Full Text Available Antonina Orlando,1 Emanuela Cazzaniga,1 Maria Tringali,2 Francesca Gullo,3 Andrea Becchetti,3 Stefania Minniti,1 Francesca Taraballi,4,5 Ennio Tasciotti,4,5 Francesca Re1 1Nanomedicine Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, 2Department of Environmental Sciences, 3Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy; 4Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI, 5Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA Purpose: Mesoporous silica nanoparticles (MSNPs are excellent candidates for biomedical applications and drug delivery to different human body areas, the brain included. Although toxicity at cellular level has been investigated, we are still far from using MSNPs in the clinic, because the mechanisms involved in the cellular responses activated by MSNPs have not yet been elucidated.Materials and methods: This study used an in vitro multiparametric approach to clarify relationships among size, dose, and time of exposure of MSNPs (0.05–1 mg/mL dose range, and cellular responses by analyzing the morphology, viability, and functionality of human vascular endothelial cells and neurons.Results: The results showed that 24 hours of exposure of endothelial cells to 250 nm MSNPs exerted higher toxicity in terms of mitochondrial activity and membrane integrity than 30 nm MSN at the same dose. This was due to induced cell autophagy (in particular mitophagy, probably consequent to MSNP cellular uptake (>20%. Interestingly, after 24 hours of treatment with 30 nm MSNPs, very low MSNP uptake (<1% and an increase in nitric oxide production (30%, P<0.01 were measured. This suggests that MSNPs were able to affect endothelial functionality from outside the cells. These differences could be attributed to the different protein-corona composition of the MSNPs used, as suggested by sodium dodecyl sulfate

  3. Nanofiber density determines endothelial cell behavior on hydrogel matrix

    Energy Technology Data Exchange (ETDEWEB)

    Berti, Fernanda V., E-mail: fernanda@intelab.ufsc.br [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Rambo, Carlos R. [Department of Electrical Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dias, Paulo F. [Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Porto, Luismar M. [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil)

    2013-12-01

    When cultured under static conditions, bacterial cellulose pellicles, by the nature of the polymer synthesis that involves molecular oxygen, are characterized by two distinct surface sides. The upper surface is denser in fibers (entangled) than the lower surface that shows greater surface porosity. Human umbilical vein endothelial cells (HUVECs) were used to exploit how the microarchitecture (i.e., surface porosity, fiber network structure, surface topology, and fiber density) of bacterial cellulose pellicle surfaces influence cell–biomaterial interaction and therefore cell behavior. Adhesion, cell ingrowth, proliferation, viability and cell death mechanisms were evaluated on the two pellicle surface sides. Cell behavior, including secondary necrosis, is influenced only by the microarchitecture of the surface, since the biomaterial is extremely pure (constituted of cellulose and water only). Cell–cellulose fiber interaction is the determinant signal in the cell–biomaterial responses, isolated from other frequently present interferences such as protein and other chemical traces usually present in cell culture matrices. Our results suggest that microarchitecture of hydrogel materials might determine the performance of biomedical products, such as bacterial cellulose tissue engineering constructs (BCTECs). - Highlights: • Topography of BC pellicle is relevant to determine endothelial cells' fate. • Cell–biomaterial response is affected by the topography of BC-pellicle surface. • Endothelial cells exhibit different behavior depending on the BC topography. • Apoptosis and necrosis of endothelial cells were affected by the BC topography.

  4. Nanofiber density determines endothelial cell behavior on hydrogel matrix

    International Nuclear Information System (INIS)

    Berti, Fernanda V.; Rambo, Carlos R.; Dias, Paulo F.; Porto, Luismar M.

    2013-01-01

    When cultured under static conditions, bacterial cellulose pellicles, by the nature of the polymer synthesis that involves molecular oxygen, are characterized by two distinct surface sides. The upper surface is denser in fibers (entangled) than the lower surface that shows greater surface porosity. Human umbilical vein endothelial cells (HUVECs) were used to exploit how the microarchitecture (i.e., surface porosity, fiber network structure, surface topology, and fiber density) of bacterial cellulose pellicle surfaces influence cell–biomaterial interaction and therefore cell behavior. Adhesion, cell ingrowth, proliferation, viability and cell death mechanisms were evaluated on the two pellicle surface sides. Cell behavior, including secondary necrosis, is influenced only by the microarchitecture of the surface, since the biomaterial is extremely pure (constituted of cellulose and water only). Cell–cellulose fiber interaction is the determinant signal in the cell–biomaterial responses, isolated from other frequently present interferences such as protein and other chemical traces usually present in cell culture matrices. Our results suggest that microarchitecture of hydrogel materials might determine the performance of biomedical products, such as bacterial cellulose tissue engineering constructs (BCTECs). - Highlights: • Topography of BC pellicle is relevant to determine endothelial cells' fate. • Cell–biomaterial response is affected by the topography of BC-pellicle surface. • Endothelial cells exhibit different behavior depending on the BC topography. • Apoptosis and necrosis of endothelial cells were affected by the BC topography

  5. Activation of protein kinase C and disruption of endothelial monolayer integrity by sodium arsenite-Potential mechanism in the development of atherosclerosis

    International Nuclear Information System (INIS)

    Pereira, Flavia E.; Coffin, J. Douglas; Beall, Howard D.

    2007-01-01

    Arsenic exposure has been shown to exacerbate atherosclerosis, beginning with activation of the endothelium that lines the vessel wall. Endothelial barrier integrity is maintained by proteins of the adherens junction (AJ) such as vascular endothelial cadherin (VE-cadherin) and β-catenin and their association with the actin cytoskeleton. In the present study, human aortic endothelial cells (HAECs) were exposed to 1, 5 and 10 μM sodium arsenite [As(III)] for 1, 6, 12 and 24 h, and the effects on endothelial barrier integrity were determined. Immunofluorescence studies revealed formation of actin stress fibers and non-uniform VE-cadherin and β-catenin staining at cell-cell junctions that were concentration- and time-dependent. Intercellular gaps were observed with a measured increase in endothelial permeability. In addition, concentration-dependent increases in tyrosine phosphorylation (PY) of β-catenin and activation of protein kinase Cα (PKCα) were observed. Inhibition of PKCα restored VE-cadherin and β-catenin staining at cell-cell junctions and abolished the As(III)-induced formation of actin stress fibers and intercellular gaps. Endothelial permeability and PY of β-catenin were also reduced to basal levels. These results demonstrate that As(III) induces activation of PKCα, which leads to increased PY of β-catenin downstream of PKCα activation. Phosphorylation of β-catenin plausibly severs the association of VE-cadherin and β-catenin, which along with formation of actin stress fibers, results in intercellular gap formation and increased endothelial permeability. To the best of our knowledge, this is the first report demonstrating that As(III) causes a loss of endothelial monolayer integrity, which potentially could contribute to the development of atherosclerosis

  6. Chorein Sensitivity of Actin Polymerization, Cell Shape and Mechanical Stiffness of Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ioana Alesutan

    2013-09-01

    Full Text Available Background/Aims: Endothelial cell stiffness plays a key role in endothelium-dependent control of vascular tone and arterial blood pressure. Actin polymerization and distribution of microfilaments is essential for mechanical cell stiffness. Chorein, a protein encoded by the VPS13A gene, defective in chorea-acanthocytosis (ChAc, is involved in neuronal cell survival as well as cortical actin polymerization of erythrocytes and blood platelets. Chorein is expressed in a wide variety of further cells, yet nothing is known about the impact of chorein on cells other than neurons, erythrocytes and platelets. The present study explored whether chorein is expressed in human umbilical vein endothelial cells (HUVECs and addressed the putative role of chorein in the regulation of cytoskeletal architecture, stiffness and survival of those cells. Methods: In HUVECs with or without silencing of the VPS13A gene, VPS13A mRNA expression was determined utilizing quantitative RT-PCR, cytoskeletal organization visualized by confocal microscopy, G/F actin ratio and phosphorylation status of focal adhesion kinase quantified by western blotting, cell death determined by flow cytometry, mechanical properties studied by atomic force microscopy (AFM and cell morphology analysed by scanning ion conductance microscopy (SICM. Results: VPS13A mRNA expression was detectable in HUVECs. Silencing of the VPS13A gene attenuated the filamentous actin network, decreased the ratio of soluble G-actin over filamentous F-actin, reduced cell stiffness and changed cell morphology as compared to HUVECs silenced with negative control siRNA. These effects were paralleled by a significant decrease in FAK phosphorylation following VPS13A silencing. Moreover, silencing of the VPS13A gene increased caspase 3 activity and induced necrosis in HUVECs. Conclusions: Chorein is a novel regulator of cytoskeletal architecture, cell shape, mechanical stiffness and survival of vascular endothelial cells.

  7. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity

    International Nuclear Information System (INIS)

    Weber, Martina; Baker, Meredith B.; Moore, Jeffrey P.; Searles, Charles D.

    2010-01-01

    Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes in EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24 h, 15 dynes/cm 2 ) identified 13 miRNAs whose expression was significantly upregulated (p · ) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO · pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.

  8. Lymphatic endothelial cell line (CH3) from a recurrent retroperitoneal lymphangioma.

    Science.gov (United States)

    Way, D; Hendrix, M; Witte, M; Witte, C; Nagle, R; Davis, J

    1987-09-01

    An endothelial cell line derived from a massive recurrent chyle-containing retroperitoneal lymphangioma was isolated in monolayer culture. Scanning and transmission electron microscopy and immunohistochemistry confirmed a close resemblance to blood vascular endothelium with typical cobblestone morphology, positive immunofluorescence staining for endothelial marker Factor VIII-associated antigen and fibronectin, and prominent Weibel-Palade bodies. The endothelial cells also exhibited other ultrastructural features characteristic of lymphatic endothelium, including sparse microvillous surface projections, overlapping intercellular junctions, and abundant intermediate filaments. This endothelial cell line represents a new source of proliferating lymphatic endothelium for future study, including structural and functional comparison to blood vascular endothelium.

  9. Astrocytes Can Adopt Endothelial Cell Fates in a p53-Dependent Manner.

    Science.gov (United States)

    Brumm, Andrew J; Nunez, Stefanie; Doroudchi, Mehdi M; Kawaguchi, Riki; Duan, Jinhzu; Pellegrini, Matteo; Lam, Larry; Carmichael, S Thomas; Deb, Arjun; Hinman, Jason D

    2017-08-01

    Astrocytes respond to a variety of CNS injuries by cellular enlargement, process outgrowth, and upregulation of extracellular matrix proteins that function to prevent expansion of the injured region. This astrocytic response, though critical to the acute injury response, results in the formation of a glial scar that inhibits neural repair. Scar-forming cells (fibroblasts) in the heart can undergo mesenchymal-endothelial transition into endothelial cell fates following cardiac injury in a process dependent on p53 that can be modulated to augment cardiac repair. Here, we sought to determine whether astrocytes, as the primary scar-forming cell of the CNS, are able to undergo a similar cellular phenotypic transition and adopt endothelial cell fates. Serum deprivation of differentiated astrocytes resulted in a change in cellular morphology and upregulation of endothelial cell marker genes. In a tube formation assay, serum-deprived astrocytes showed a substantial increase in vessel-like morphology that was comparable to human umbilical vein endothelial cells and dependent on p53. RNA sequencing of serum-deprived astrocytes demonstrated an expression profile that mimicked an endothelial rather than astrocyte transcriptome and identified p53 and angiogenic pathways as specifically upregulated. Inhibition of p53 with genetic or pharmacologic strategies inhibited astrocyte-endothelial transition. Astrocyte-endothelial cell transition could also be modulated by miR-194, a microRNA downstream of p53 that affects expression of genes regulating angiogenesis. Together, these studies demonstrate that differentiated astrocytes retain a stimulus-dependent mechanism for cellular transition into an endothelial phenotype that may modulate formation of the glial scar and promote injury-induced angiogenesis.

  10. Robust Identification of Developmentally Active Endothelial Enhancers in Zebrafish Using FANS-Assisted ATAC-Seq.

    Science.gov (United States)

    Quillien, Aurelie; Abdalla, Mary; Yu, Jun; Ou, Jianhong; Zhu, Lihua Julie; Lawson, Nathan D

    2017-07-18

    Identification of tissue-specific and developmentally active enhancers provides insights into mechanisms that control gene expression during embryogenesis. However, robust detection of these regulatory elements remains challenging, especially in vertebrate genomes. Here, we apply fluorescent-activated nuclei sorting (FANS) followed by Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) to identify developmentally active endothelial enhancers in the zebrafish genome. ATAC-seq of nuclei from Tg(fli1a:egfp) y1 transgenic embryos revealed expected patterns of nucleosomal positioning at transcriptional start sites throughout the genome and association with active histone modifications. Comparison of ATAC-seq from GFP-positive and -negative nuclei identified more than 5,000 open elements specific to endothelial cells. These elements flanked genes functionally important for vascular development and that displayed endothelial-specific gene expression. Importantly, a majority of tested elements drove endothelial gene expression in zebrafish embryos. Thus, FANS-assisted ATAC-seq using transgenic zebrafish embryos provides a robust approach for genome-wide identification of active tissue-specific enhancer elements. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. The Effect of a p38 Mitogen-Activated Protein Kinase Inhibitor on Cellular Senescence of Cultivated Human Corneal Endothelial Cells.

    Science.gov (United States)

    Hongo, Akane; Okumura, Naoki; Nakahara, Makiko; Kay, EunDuck P; Koizumi, Noriko

    2017-07-01

    We have begun a clinical trial of a cell-based therapy for corneal endothelial dysfunction in Japan. The purpose of this study was to investigate the usefulness of a p38 MAPK inhibitor for prevention cellular senescence in cultivated human corneal endothelial cells (HCECs). HCECs of 10 donor corneas were divided and cultured with or without SB203580 (a p38 MAPK inhibitor). Cell density and morphology were evaluated by phase-contrast microscopy. Expression of function-related proteins was examined by immunofluorescent staining. Cellular senescence was evaluated by SA-β-gal staining and Western blotting for p16 and p21. Senescence-associated factors were evaluated by membrane blotting array, quantitative PCR, and ELISA. Phase-contrast microscopy showed a significantly higher cell density for HCECs cultured with SB203580 than without SB203580 (2623 ± 657 cells/mm2 and 1752 ± 628 cells/mm2, respectively). The HCECs cultured with SB203580 maintained a hexagonal morphology and expressed ZO-1, N-cadherin, and Na+/K+-ATPase in the plasma membrane, whereas the control HCECs showed an altered staining pattern for these marker proteins. HCECs cultured without SB203580 showed high positive SA-β-gal staining, a low nuclear/cytoplasm ratio, and expression of p16 and p21. IL-6, IL-8, CCL2, and CXCL1 were observed at high levels in low cell density HCECs cultured without SB203580. Activation of p38 MAPK signaling due to culture stress might be a causative factor that induces cellular senescence; therefore, the use of p38 MAPK inhibitor to counteract senescence may achieve sufficient numbers of HCECs for tissue engineering therapy for corneal endothelial dysfunction.

  12. File list: Unc.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 Unclassified Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  13. File list: Unc.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 Unclassified Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  14. File list: His.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 Histone Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  15. File list: His.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 Histone Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  16. File list: His.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 Histone Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  17. File list: Unc.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 Unclassified Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  18. File list: His.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 Histone Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  19. File list: Unc.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 Unclassified Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  20. Regulation of brain capillary endothelial cells by P2Y receptors coupled to Ca2+, phospholipase C and mitogen-activated protein kinase.

    Science.gov (United States)

    Albert, J L; Boyle, J P; Roberts, J A; Challiss, R A; Gubby, S E; Boarder, M R

    1997-11-01

    1. The blood-brain barrier is formed by capillary endothelial cells and is regulated by cell-surface receptors, such as the G protein-coupled P2Y receptors for nucleotides. Here we investigated some of the characteristics of control of brain endothelial cells by these receptors, characterizing the phospholipase C and Ca2+ response and investigating the possible involvement of mitogen-activated protein kinases (MAPK). 2. Using an unpassaged primary culture of rat brain capillary endothelial cells we showed that ATP, UTP and 2-methylthio ATP (2MeSATP) give similar and substantial increases in cytosolic Ca2+, with a rapid rise to peak followed by a slower decline towards basal or to a sustained plateau. Removal of extracellular Ca2+ had little effect on the peak Ca2+-response, but resulted in a more rapid decline to basal. There was no response to alpha,beta-MethylATP (alpha,beta MeATP) in these unpassaged cells, but a response to this P2X agonist was seen after a single passage. 3. ATP (log EC50 -5.1+/-0.2) also caused an increase in the total [3H]-inositol (poly)phosphates ([3H]-InsPx) in the presence of lithium with a rank order of agonist potency of ATP=UTP=UDP>ADP, with 2MeSATP and alpha,beta MeATP giving no detectable response. 4. Stimulating the cells with ATP or UTP gave a rapid rise in the level of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), with a peak at 10 s followed by a decline to a sustained plateau phase. 2MeSATP gave no detectable increase in the level of Ins(1,4,5)P3. 5. None of the nucleotides tested affected basal cyclic AMP, while ATP and ATPgammaS, but not 2MeSATP, stimulated cyclic AMP levels in the presence of 5 microM forskolin. 6. Both UTP and ATP stimulated tyrosine phosphorylation of p42 and p44 mitogen-activated protein kinase (MAPK), while 2MeSATP gave a smaller increase in this index of MAPK activation. By use of a peptide kinase assay, UTP gave a substantial increase in MAPK activity with a concentration-dependency consistent with

  1. Interleukin 1 is an autocrine regulator of human endothelial cell growth

    International Nuclear Information System (INIS)

    Cozzolino, F.; Torcia, M.; Aldinucci, D.; Ziche, M.; Bani, D.; Almerigogna, F.; Stern, D.M.

    1990-01-01

    Proliferation of endothelial cells is regulated through the autocrine production of growth factors and the expression of cognate surface receptors. In this study, the authors demonstrate that interleukin 1 (IL-1) is an inhibitor of endothelial growth in vitro and in vivo. IL-1 arrested growing, cultured endothelial cells in G 1 phase; inhibition of proliferation was dose dependent and occurred in parallel with occupancy of endothelial surface IL-1 receptors. In an angiogenesis model, IL-1 could inhibit fibroblast growth factor-induced vessel formation. The autocrine nature of the IL-1 effect on endothelial proliferation was demonstrated by the observation that occupancy of cell-surface receptors by endogenous IL-1 depressed cell growth. The potential significance of this finding was emphasized by the detection of IL-1 in the native endothelium of human umbilical veins. A mechanism by which IL-1 may exert its inhibitory effect on endothelial cell growth was suggested by studies showing that IL-1 decreased the expression of high-affinity fibroblast growth factor binding sites on endothelium. These results point to a potentially important role of IL-1 in regulating blood vessel growth the suggest that autocrine production of inhibitory factors may be a mechanism controlling proliferation of normal cells

  2. File list: Pol.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 RNA polymerase Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  3. File list: DNS.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 DNase-seq Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  4. File list: DNS.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 DNase-seq Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  5. File list: Pol.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 RNA polymerase Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  6. File list: Pol.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 RNA polymerase Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  7. File list: DNS.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 DNase-seq Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  8. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits.

    Science.gov (United States)

    Ge, Gang-Feng; Shi, Wei-Wen; Yu, Chen-Huan; Jin, Xiao-Yin; Zhang, Huan-Huan; Zhang, Wen-You; Wang, Lu-Chen; Yu, Bing

    2017-03-01

    Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Further tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Enhancement of proinflammatory and procoagulant responses to silica particles by monocyte-endothelial cell interactions

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2012-09-01

    Full Text Available Abstract Background Inorganic particles, such as drug carriers or contrast agents, are often introduced into the vascular system. Many key components of the in vivo vascular environment include monocyte-endothelial cell interactions, which are important in the initiation of cardiovascular disease. To better understand the effect of particles on vascular function, the present study explored the direct biological effects of particles on human umbilical vein endothelial cells (HUVECs and monocytes (THP-1 cells. In addition, the integrated effects and possible mechanism of particle-mediated monocyte-endothelial cell interactions were investigated using a coculture model of HUVECs and THP-1 cells. Fe3O4 and SiO2 particles were chosen as the test materials in the present study. Results The cell viability data from an MTS assay showed that exposure to Fe3O4 or SiO2 particles at concentrations of 200 μg/mL and above significantly decreased the cell viability of HUVECs, but no significant loss in viability was observed in the THP-1 cells. TEM images indicated that with the accumulation of SiO2 particles in the cells, the size, structure and morphology of the lysosomes significantly changed in HUVECs, whereas the lysosomes of THP-1 cells were not altered. Our results showed that reactive oxygen species (ROS generation; the production of interleukin (IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1, tumor necrosis factor (TNF-α and IL-1β; and the expression of CD106, CD62E and tissue factor in HUVECs and monocytes were significantly enhanced to a greater degree in the SiO2-particle-activated cocultures compared with the individual cell types alone. In contrast, exposure to Fe3O4 particles had no impact on the activation of monocytes or endothelial cells in monoculture or coculture. Moreover, using treatment with the supernatants of SiO2-particle-stimulated monocytes or HUVECs, we found that the enhancement of proinflammatory response by SiO2

  10. Human recombinant interleukin-1 beta- and tumor necrosis factor alpha-mediated suppression of heparin-like compounds on cultured porcine aortic endothelial cells

    International Nuclear Information System (INIS)

    Kobayashi, M.; Shimada, K.; Ozawa, T.

    1990-01-01

    Cytokines are known to tip the balance of the coagulant-anticoagulant molecules on the endothelial cell surface toward intravascular coagulation. Their effects on endothelial cell surface-associated heparin-like compounds have not been examined yet. Incorporation of [35S]sulfate into heparan sulfate on cultured porcine aortic endothelial cells was suppressed by human recombinant interleukin-1 beta (rIL-1 beta) or tumor necrosis factor alpha (rTNF alpha) in a dose- and time-dependent manner with little effect on cell number, protein content, and [3H]leucine incorporation of cells. Maximal inhibition was achieved by incubation of cells with 100 ng/ml of rIL-1 beta or 5 ng/ml of rTNF alpha for 12-24 hours, resulting in a reduction of the synthesis of heparan sulfate on the cell surface by approximately 50%. The dose dependency was consistent with that seen in the stimulation of endothelial cell procoagulant activity by each cytokine. The suppression of heparan sulfate synthesis was sustained for at least 48 hours after pretreatment of cells with cytokines and was unchanged after the addition of indomethacin or polymyxin B. The rate of degradation of prelabeled 35S-heparan sulfate on the cell surface was not altered by cytokine treatments. Neither the size, the net negative charge, nor the proportion of the molecule with high affinity for antithrombin III of endothelial cell heparan sulfate was changed by cytokines. Furthermore, specific binding of 125I-labeled antithrombin III to the endothelial cell surface was reduced to 40-60% of control by cytokines. In parallel with reduction in binding, antithrombin III cofactor activity was partially diminished in cytokine-treated endothelial cells. Thus, cytokine-mediated suppression of heparin-like substance on endothelial cells appears to be another cytokine-inducible endothelial effects affecting coagulation

  11. Human Endothelial Cells: Use of Heparin in Cloning and Long-Term Serial Cultivation

    Science.gov (United States)

    Thornton, Susan C.; Mueller, Stephen N.; Levine, Elliot M.

    1983-11-01

    Endothelial cells from human blood vessels were cultured in vitro, with doubling times of 17 to 21 hours for 42 to 79 population doublings. Cloned human endothelial cell strains were established for the first time and had similar proliferative capacities. This vigorous cell growth was achieved by addition of heparin to culture medium containing reduced concentrations of endothelial cell growth factor. The routine cloning and long-term culture of human endothelial cells will facilitate studying the human endothelium in vitro.

  12. Biochemical and microscopic evidence for the internalization and degradation of heparin-containing mast cell granules by bovine endothelial cells

    International Nuclear Information System (INIS)

    Atkins, F.M.; Friedman, M.M.; Metcalfe, D.D.

    1985-01-01

    Incubation of [ 35 S]heparin-containing mast cell granules with cultured bovine endothelial cells was followed by the appearance of 35 S-granule-associated radioactivity within the endothelial cells and a decrease in radioactivity in the extracellular fluid. These changes occurred during the first 24 hours of incubation and suggested ingestion of the mast cell granules by the endothelial cells. Periodic electron microscopic examination of the monolayers confirmed this hypothesis by demonstrating apposition of the granules to the plasmalemma of endothelial cells, which was followed by the engulfment of the granules by cytoplasmic projections. Under light microscopic examination, mast cell granules within endothelial cells then appeared to undergo degradation. The degradation of [ 35 S]heparin in mast cell granules was demonstrated by a decrease in the amount of intracellular [ 35 S]heparin proteoglycan after 24 hours and the appearance of free [ 35 S]sulfate in the extracellular compartment. Intact endothelial cells were more efficient at degrading [ 35 S]heparin than were cell lysates or cell supernatants. These data provide evidence of the ability of endothelial cells to ingest mast cell granules and degrade native heparin that is presented as a part of the mast cell granule

  13. Peroxisome Proliferator-Activated Receptor γ Regulates the Expression of Lipid Phosphate Phosphohydrolase 1 in Human Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Yazi Huang

    2014-01-01

    Full Text Available Lipid phosphate phosphohydrolase 1 (LPP1, a membrane ectophosphohydrolase regulating the availability of bioactive lipid phosphates, plays important roles in cellular signaling and physiological processes such as angiogenesis and endothelial migration. However, the regulated expression of LPP1 remains largely unknown. Here, we aimed to examine a role of peroxisome proliferator-activated receptor γ (PPARγ in the transcriptional control of LPP1 gene expression. In human umbilical vein endothelial cells (HUVECs, quantitative reverse transcriptase polymerase chain reaction (qRT-PCR demonstrated that activation of PPARγ increased the mRNA level of LPP1. Chromatin immunoprecipitation assay showed that PPARγ binds to the putative PPAR-responsive elements (PPREs within the 5′-flanking region of the human LPP1 gene. Genomic fragment containing 1.7-kilobase of the promoter region was cloned by using PCR. The luciferase reporter assays demonstrated that overexpression of PPARγ and rosiglitazone, a specific ligand for PPARγ, could significantly upregulate the reporter activity. However, site-directed mutagenesis of the PPRE motif abolished the induction. In conclusion, our results demonstrated that PPARγ transcriptionally activated the expression of LPP1 gene in ECs, suggesting a potential role of PPARγ in the metabolism of phospholipids.

  14. CD13 is a novel mediator of monocytic/endothelial cell adhesion

    DEFF Research Database (Denmark)

    Mina-Osorio, Paola; Winnicka, Beata; O'Conor, Catherine

    2008-01-01

    During inflammation, cell surface adhesion molecules guide the adhesion and migration of circulating leukocytes across the endothelial cells lining the blood vessels to access the site of injury. The transmembrane molecule CD13 is expressed on monocytes and endothelial cells and has been shown...... to mediate homotypic cell adhesion, which may imply a role for CD13 in inflammatory monocyte trafficking. Here, we show that ligation and clustering of CD13 by mAb or viral ligands potently induce myeloid cell/endothelial adhesion in a signal transduction-dependent manner involving monocytic cytoskeletal...... rearrangement and filopodia formation. Treatment with soluble recombinant (r)CD13 blocks this CD13-dependent adhesion, and CD13 molecules from monocytic and endothelial cells are present in the same immunocomplex, suggesting a direct participation of CD13 in the adhesive interaction. This concept...

  15. Recovery of Corneal Endothelial Cells from Periphery after Injury.

    Directory of Open Access Journals (Sweden)

    Sang Ouk Choi

    Full Text Available Wound healing of the endothelium occurs through cell enlargement and migration. However, the peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium in endothelial injury.To investigate the recovery process of corneal endothelial cells (CECs from corneal endothelial injury.Three patients with unilateral chemical eye injuries, and 15 rabbit eyes with corneal endothelial chemical injuries were studied. Slit lamp examination, specular microscopy, and ultrasound pachymetry were performed immediately after chemical injury and 1, 3, 6, and 9 months later. The anterior chambers of eyes from New Zealand white rabbits were injected with 0.1 mL of 0.05 N NaOH for 10 min (NaOH group. Corneal edema was evaluated at day 1, 7, and 14. Vital staining was performed using alizarin red and trypan blue.Specular microscopy did not reveal any corneal endothelial cells immediately after injury. Corneal edema subsided from the periphery to the center, CEC density increased, and central corneal thickness decreased over time. In the animal study, corneal edema was greater in the NaOH group compared to the control at both day 1 and day 7. At day 1, no CECs were detected at the center and periphery of the corneas in the NaOH group. Two weeks after injury, small, hexagonal CECs were detected in peripheral cornea, while CECs in mid-periphery were large and non-hexagonal.CECs migrated from the periphery to the center of the cornea after endothelial injury. The peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium.

  16. File list: Oth.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 TFs and others Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  17. File list: Oth.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 TFs and others Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  18. Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes.

    Science.gov (United States)

    Zapolska-Downar, Danuta; Zapolski-Downar, Andrzej; Naruszewicz, Marek; Siennicka, Aldona; Krasnodebska, Barbara; Kołdziej, Blanka

    2002-11-01

    It is currently believed that oxidative stress and inflammation play a significant role in atherogenesis. Artichoke extract exhibits hypolipemic properties and contains numerous active substances with antioxidant properties in vitro. We have studied the influence of aqueous and ethanolic extracts from artichoke on intracellular oxidative stress stimulated by inflammatory mediators (TNFalpha and LPS) and ox-LDL in endothelial cells and monocytes. Oxidative stress which reflects the intracellular production of reactive oxygen species (ROS) was followed by measuring the oxidation of 2', 7'-dichlorofluorescin (DCFH) to 2', 7'-dichlorofluorescein (DCF). Agueous and ethanolic extracts from artichoke were found to inhibit basal and stimulated ROS production in endothelial cells and monocytes in dose dependent manner. In endothelial cells, the ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production by 60% (partichoke extracts have marked protective properties against oxidative stress induced by inflammatory mediators and ox-LDL in cultured endothelial cells and monocytes.

  19. The Use of Endothelial Progenitor Cells for the Regeneration of Musculoskeletal and Neural Tissues

    Directory of Open Access Journals (Sweden)

    Naosuke Kamei

    2017-01-01

    Full Text Available Endothelial progenitor cells (EPCs derived from bone marrow and blood can differentiate into endothelial cells and promote neovascularization. In addition, EPCs are a promising cell source for the repair of various types of vascularized tissues and have been used in animal experiments and clinical trials for tissue repair. In this review, we focused on the kinetics of endogenous EPCs during tissue repair and the application of EPCs or stem cell populations containing EPCs for tissue regeneration in musculoskeletal and neural tissues including the bone, skeletal muscle, ligaments, spinal cord, and peripheral nerves. EPCs can be mobilized from bone marrow and recruited to injured tissue to contribute to neovascularization and tissue repair. In addition, EPCs or stem cell populations containing EPCs promote neovascularization and tissue repair through their differentiation to endothelial cells or tissue-specific cells, the upregulation of growth factors, and the induction and activation of endogenous stem cells. Human peripheral blood CD34(+ cells containing EPCs have been used in clinical trials of bone repair. Thus, EPCs are a promising cell source for the treatment of musculoskeletal and neural tissue injury.

  20. Intratracheal transplantation of endothelial progenitor cells attenuates smoking-induced COPD in mice

    Directory of Open Access Journals (Sweden)

    Shi Z

    2017-03-01

    Full Text Available Zhihui Shi,1 Yan Chen,1 Jun Cao,2 Huihui Zeng,1 Yue Yang,1 Ping Chen,1 Hong Luo,1 Hong Peng,1 Shan Cai,1 Chaxiang Guan3 1Department of Internal Medicine, Division of Respiratory Disease, The Second Xiangya Hospital, Central-South University, 2Department of Internal Medicine, Division of Respiratory Disease, The People’s Hospital of Hunan Province, 3Department of Physiology, Xiangya Medical School, Central-South University, Changsha, Hunan, People’s Republic of China Background: Endothelial progenitor cells (EPCs might play a protective role in COPD. The aim of this study was to investigate whether intratracheal allogeneic transplantation of bone-marrow-derived EPCs would attenuate the development of smoking-induced COPD in mice.Methods: Isolated mononuclear cells from the bone marrow of C57BL/6J mice were cultured in endothelial cell growth medium-2 for 10 days, yielding EPCs. A murine model of COPD was established by passive 90-day exposure of cigarette smoke. On day 30, EPCs or phosphate-buffered saline alone was administered into the trachea. On day 90, EPCs or 30 µL phosphate-buffered saline alone was administered into the trachea, and on day 120, inflammatory cells, antioxidant activity, apoptosis, matrix metalloproteinase (MMP-2, and MMP-9 were measured.Results: After EPC treatment, the lung function of the mice had improved compared with the untreated mice. Mean linear intercept and destructive index were reduced in the EPCs-treated group compared with the untreated group. In addition, the EPCs-treated mice exhibited less antioxidant activity in bronchoalveolar lavage fluid compared with the untreated mice. Moreover, decreased activities of MMP-2, MMP-9, and TUNEL-positive cells in lung tissues were detected in EPCs-treated mice.Conclusion: Intratracheal transplantation of EPCs attenuated the development of pulmonary emphysema and lung function disorder probably by alleviating inflammatory infiltration, decelerating apoptosis

  1. Artesunate Exerts a Direct Effect on Endothelial Cell Activation and NF-κB Translocation in a Mechanism Independent of Plasmodium Killing

    Directory of Open Access Journals (Sweden)

    Mariana C. Souza

    2012-01-01

    Full Text Available Artemisinin and its derivates are an important class of antimalarial drug and are described to possess immunomodulatory activities. Few studies have addressed the effect of artesunate in the murine malaria model or its effect on host immune response during malaria infection. Herein, we study the effect of artesunate treatment and describe an auxiliary mechanism of artesunate in modulating the inflammatory response during experimental malaria infection in mice. Treatment with artesunate did not reduce significantly the parasitemia within 12 h, however, reduced BBB breakdown and TNF-α mRNA expression in the brain tissue of artesunate-treated mice. Conversely, mefloquine treatment was not able to alter clinical features. Notably, artesunate pretreatment failed to modulate the expression of LFA-1 in splenocytes stimulated with parasitized red blood cells (pRBCs in vitro; however, it abrogated the expression of ICAM-1 in pRBC-stimulated endothelial cells. Accordingly, a cytoadherence in vitro assay demonstrated that pRBCs did not adhere to artesunate-treated vascular endothelial cells. In addition, NF-κB nuclear translocation in endothelial cells stimulated with pRBCs was impaired by artesunate treatment. Our results suggest that artesunate is able to exert a protective effect against the P. berghei-induced inflammatory response by inhibiting NF-κB nuclear translocation and the subsequent expression of ICAM-1.

  2. Effects of carbon dioxide level (PCO2) on the fibrinolytic activity (FA) of pulmonary artery endothelial cells (PAEC)

    International Nuclear Information System (INIS)

    Langleben, D.; Moroz, L.A.; Danes, D.

    1990-01-01

    Recovery from pulmonary thromboembolism depends on the rapidity and completeness of clot lysis. This involves endogenous fibrinolytic mechanisms, particularly the balance between plasminogen activators and inhibitors produced by endothelial cells. Hypocapnia is common in pulmonary embolism, however it is not known if endothelial fibrinolytic function is affected by PCO 2 . The authors therefore measured the FA in medium (MCDB-131, 0.5% albumin) conditioned for 20 hours in-vitro by exposure to confluent cultures of bovine proximal PAEC. During conditioning, cells were exposed to 5% CO 2 in air (PCO 2 - 36-40mm Hg, CONTROL), or various PCO 2 levels (30-55 mmHg, in air). FA of conditioned medium was determined by 125 I-fibrin solid phase assay, with addition of plasminogen (10 ug/ml). With PCO 2 levels ≤ 35 mmHg, FA in the conditioned medium was 5 to 18% higher than CONTROL FA. When PCO 2 was ≥ 45 mmHg, FA decreased 5 to 60% as compared to CONTROL FA. There was a significant negative linear relationship between PCO 2 and FA. Thus, PCO 2 level can affect PAEC mediated plasminogen activation. This finding may be relevant to in-vivo clearance of clots from pulmonary arteries

  3. File list: ALL.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 All antigens Cardiovascular Brachiocephal...ic endothelial cells DRX014747 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  4. File list: ALL.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 All antigens Cardiovascular Brachiocephal...ic endothelial cells DRX014747 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  5. Cathepsin L is required for endothelial progenitor cell-induced neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra; Sasaki, Ken-ichiro; Bruhl, Thomas; Hofmann, Wolf K.; Peters, Christoph; Reinheckel, Thomas; Pennacchio, Len A.; Abolmaali, Nasreddin D.; Chavakis, Emmanouil; Zeiher, Andreas M.; Dimmeler, Stefanie

    2004-01-15

    Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sites of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.

  6. Targeting of phage particles towards endothelial cells by antibodies selected through a multi-parameter selection strategy.

    Science.gov (United States)

    Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter

    2017-02-10

    One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.

  7. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential.

    Science.gov (United States)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-Lin; Liu, Ke; Shang, Zheng-Jun

    2014-10-15

    Most previous studies have linked cancer-macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Quantitative evaluation of endothelial cell attachment to vascular graft materials using In-111 Oxine label

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.M.; Kesler, K.A.; Stinson, J.; Mock, B.; Arnold, M.

    1985-05-01

    Human umbilical vein endothelial cells were harvested, cultured and labeled with In-111 oxine using a modification of the technique described by Sharefkin et al. Average cell labeling efficiency was 42%. Two graft materials, polytetrafluoroethylene (Gortex) and polyester elastomer (Hytrel), with and without pretreatment with human fibronectin (FN) were incubated with the labeled cells. Quantitation of In-111 activity was done 3 times: at inoculation, after incubation (attachment) and after 1 hr of in vitro perfusion (retention). The average attachment ranged from 53% to 99.5%. The In-111 activity attached ranged from 10 to 20 ..mu..Ci per graft. A gamma camera with medium energy collimator and two pulse height analyzers for 173 and 247 keV photons with 20% window and an on-line computer was used. Images were obtained in 1.5 zoom mode. The count rate response to a In-111 point source up to 150 ..mu..Ci was linear. The results indicate Hytrel permits better endothelial cell attachment than Gortex and FN coating enhances the strength of attachment to both graft materials. The authors conclude that In-111 Oxine labeling is a reliable method for quantitatively evaluating endothelial cell attachment to vascular graft materials.

  9. Coordinated Molecular Cross-Talk between Staphylococcus aureus, Endothelial Cells and Platelets in Bloodstream Infection

    Directory of Open Access Journals (Sweden)

    Carolina D. Garciarena

    2015-12-01

    Full Text Available Staphylococcus aureus is an opportunistic pathogen often carried asymptomatically on the human body. Upon entry to the otherwise sterile environment of the cardiovascular system, S. aureus can lead to serious complications resulting in organ failure and death. The success of S. aureus as a pathogen in the bloodstream is due to its ability to express a wide array of cell wall proteins on its surface that recognise host receptors, extracellular matrix proteins and plasma proteins. Endothelial cells and platelets are important cells in the cardiovascular system and are a major target of bloodstream infection. Endothelial cells form the inner lining of a blood vessel and provide an antithrombotic barrier between the vessel wall and blood. Platelets on the other hand travel throughout the cardiovascular system and respond by aggregating around the site of injury and initiating clot formation. Activation of either of these cells leads to functional dysregulation in the cardiovascular system. In this review, we will illustrate how S. aureus establish intimate interactions with both endothelial cells and platelets leading to cardiovascular dysregulation.

  10. Disturbance of copper homeostasis is a mechanism for homocysteine-induced vascular endothelial cell injury.

    Directory of Open Access Journals (Sweden)

    Daoyin Dong

    Full Text Available Elevation of serum homocysteine (Hcy levels is a risk factor for cardiovascular diseases. Previous studies suggested that Hcy interferes with copper (Cu metabolism in vascular endothelial cells. The present study was undertaken to test the hypothesis that Hcy-induced disturbance of Cu homeostasis leads to endothelial cell injury. Exposure of human umbilical vein endothelial cells (HUVECs to concentrations of Hcy at 0.01, 0.1 or 1 mM resulted in a concentration-dependent decrease in cell viability and an increase in necrotic cell death. Pretreatment of the cells with a final concentration of 5 µM Cu in cultures prevented the effects of Hcy. Hcy decreased intracellular Cu concentrations. HPLC-ICP-MS analysis revealed that Hcy caused alterations in the distribution of intracellular Cu; more Cu was redistributed to low molecular weight fractions. ESI-Q-TOF detected the formation of Cu-Hcy complexes. Hcy also decreased the protein levels of Cu chaperone COX17, which was accompanied by a decrease in the activity of cytochrome c oxidase (CCO and a collapse of mitochondrial membrane potential. These effects of Hcy were all preventable by Cu pretreatment. The study thus demonstrated that Hcy disturbs Cu homeostasis and limits the availability of Cu to critical molecules such as COX17 and CCO, leading to mitochondrial dysfunction and endothelial cell injury.

  11. Endothelial and circulating progenitor cells in hematological diseases and allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Ruggeri, Annalisa; Paviglianiti, Annalisa; Volt, Fernanda; Kenzey, Chantal; Rafii, Hanadi; Rocha, Vanderson; Gluckman, Eliane

    2017-10-12

    Circulating endothelial cells (CECs), originated form endothelial progenitors (EPCs) are mature cells which are not associated with vessel walls, and that are detached from the endothelium. Normally, they are present in insignificant amounts in the peripheral blood of healthy individuals. On the other hand, elevated CECs and EPCs levels have been reported in the peripheral blood of patients with different types of cancers and some other diseases. Consequently, CECs and EPCs represent a potential biomarker in several clinical conditions involving endothelial turnover and remodeling, such as hematological diseases. These cells may be involved in disease progression and the neoplastic angiogenesis process. Moreover, CESs and EPCs are probably involved in endothelial damage that is a marker of several complications following allogeneic hematopoietic stem cell transplantation. This review aims to provide an overview on the characterization of CECs and EPCs, describe isolation methods and to identify the potential role of these cells in hematological diseases and hematopoietic stem cell transplantation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Tumor necrosis factor-α enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    International Nuclear Information System (INIS)

    Song, Kai; Zhu, Fei; Zhang, Han-zhong; Shang, Zheng-jun

    2012-01-01

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-α (TNF-α) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-α-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer–endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-α could enhance cancer–endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer–endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: ► Spontaneous oral cancer–endothelial cell fusion. ► TNF-α enhanced cell fusions. ► VCAM-1/VLA-4 expressed in oral cancer. ► TNF-α increased expression of VCAM-1 on endothelial cells. ► VCAM-1/VLA-4 mediated TNF-α-enhanced cell fusions.

  13. Tumor necrosis factor-{alpha} enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai; Zhu, Fei; Zhang, Han-zhong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); First Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan (China)

    2012-08-15

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-{alpha} (TNF-{alpha}) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-{alpha}-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer-endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-{alpha} could enhance cancer-endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer-endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: Black-Right-Pointing-Pointer Spontaneous oral cancer-endothelial cell fusion. Black-Right-Pointing-Pointer TNF-{alpha} enhanced cell fusions. Black-Right-Pointing-Pointer VCAM-1/VLA-4 expressed in oral cancer. Black-Right-Pointing-Pointer TNF-{alpha} increased expression of VCAM-1 on endothelial cells. Black

  14. Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity

    DEFF Research Database (Denmark)

    Schmidt-Hansen, Birgitte; Ornås, Dorte; Grigorian, Mariam

    2004-01-01

    with the transcriptional modulation of genes involved in the proteolytic degradation of extracellular matrix (ECM). Treatment of SVEC 4-10 with the S100A4 protein leads to the transcriptional activation of collagenase 3 (MMP-13) mRNA followed by subsequent release of the protein from the cells. Beta-casein zymography...... demonstrates enhancement of proteolytic activity associated with MMP-13. This observation indicates that extracellular S100A4 stimulates the production of ECM degrading enzymes from endothelial cells, thereby stimulating the remodeling of ECM. This could explain the angiogenic and metastasis...

  15. Exosomes from metastatic cancer cells transfer amoeboid phenotype to non-metastatic cells and increase endothelial permeability: their emerging role in tumor heterogeneity.

    Science.gov (United States)

    Schillaci, Odessa; Fontana, Simona; Monteleone, Francesca; Taverna, Simona; Di Bella, Maria Antonietta; Di Vizio, Dolores; Alessandro, Riccardo

    2017-07-05

    The goal of this study was to understand if exosomes derived from high-metastatic cells may influence the behavior of less aggressive cancer cells and the properties of the endothelium. We found that metastatic colon cancer cells are able to transfer their amoeboid phenotype to isogenic primary cancer cells through exosomes, and that this morphological transition is associated with the acquisition of a more aggressive behavior. Moreover, exosomes from the metastatic line (SW620Exos) exhibited higher ability to cause endothelial hyperpermeability than exosomes from the non metastatic line (SW480Exos). SWATH-based quantitative proteomic analysis highlighted that SW620Exos are significantly enriched in cytoskeletal-associated proteins including proteins activating the RhoA/ROCK pathway, known to induce amoeboid properties and destabilization of endothelial junctions. In particular, thrombin was identified as a key mediator of the effects induced by SW620Exos in target cells, in which we also found a significant increase of RhoA activity. Overall, our results demonstrate that in a heterogeneous context exosomes released by aggressive sub-clones can contribute to accelerate tumor progression by spreading malignant properties that affect both the tumor cell plasticity and the endothelial cell behavior.

  16. Phthalimide neovascular factor 1 (PNF1) modulates MT1-MMP activity in human microvascular endothelial cells.

    Science.gov (United States)

    Wieghaus, Kristen A; Gianchandani, Erwin P; Neal, Rebekah A; Paige, Mikell A; Brown, Milton L; Papin, Jason A; Botchwey, Edward A

    2009-07-01

    We are creating synthetic pharmaceuticals with angiogenic activity and potential to promote vascular invasion. We previously demonstrated that one of these molecules, phthalimide neovascular factor 1 (PNF1), significantly expands microvascular networks in vivo following sustained release from poly(lactic-co-glycolic acid) (PLAGA) films. In addition, to probe PNF1 mode of action, we recently applied a novel pathway-based compendium analysis to a multi-timepoint, controlled microarray data set of PNF1-treated (vs. control) human microvascular endothelial cells (HMVECs), and we identified induction of tumor necrosis factor-alpha (TNF-alpha) and, subsequently, transforming growth factor-beta (TGF-beta) signaling networks by PNF1. Here we validate this microarray data set with quantitative real-time polymerase chain reaction (RT-PCR) analysis. Subsequently, we probe this data set and identify three specific TGF-beta-induced genes with regulation by PNF1 conserved over multiple timepoints-amyloid beta (A4) precursor protein (APP), early growth response 1 (EGR-1), and matrix metalloproteinase 14 (MMP14 or MT1-MMP)-that are also implicated in angiogenesis. We further focus on MMP14 given its unique role in angiogenesis, and we validate MT1-MMP modulation by PNF1 with an in vitro fluorescence assay that demonstrates the direct effects that PNF1 exerts on functional metalloproteinase activity. We also utilize endothelial cord formation in collagen gels to show that PNF1-induced stimulation of endothelial cord network formation in vitro is in some way MT1-MMP-dependent. Ultimately, this new network analysis of our transcriptional footprint characterizing PNF1 activity 1-48 h post-supplementation in HMVECs coupled with corresponding validating experiments suggests a key set of a few specific targets that are involved in PNF1 mode of action and important for successful promotion of the neovascularization that we have observed by the drug in vivo.

  17. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals

    International Nuclear Information System (INIS)

    Lawal, Akeem O.; Zhang, Min; Dittmar, Michael; Lulla, Aaron; Araujo, Jesus A.

    2015-01-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. - Highlights: • We examined the role of HO-1 expression on diesel exhaust particle (DEP) in endothelial cells. • DEPs exert cytotoxic and inflammatory effects on human microvascular endothelial cells (HMECs). • DEPs induce HO-1 expression in HMECs. • HO-1 protects against the oxidative stress induced by DEps. • HO-1 attenuates the proinflammatory effects

  18. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Akeem O.; Zhang, Min; Dittmar, Michael [Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 (United States); Lulla, Aaron [Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 (United States); Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (United States); Araujo, Jesus A., E-mail: JAraujo@mednet.ucla.edu [Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 (United States); Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (United States); Molecular Biology Institute, University of California, Los Angeles (United States)

    2015-05-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. - Highlights: • We examined the role of HO-1 expression on diesel exhaust particle (DEP) in endothelial cells. • DEPs exert cytotoxic and inflammatory effects on human microvascular endothelial cells (HMECs). • DEPs induce HO-1 expression in HMECs. • HO-1 protects against the oxidative stress induced by DEps. • HO-1 attenuates the proinflammatory effects

  19. Monomeric adiponectin increases cell viability in porcine aortic endothelial cells cultured in normal and high glucose conditions: Data on kinases activation

    Directory of Open Access Journals (Sweden)

    Elena Grossini

    2016-09-01

    Full Text Available We found that monomeric adiponectin was able to increase cell viability in porcine aortic endothelial cells (PAE cultured both in normal and high glucose condition. Moreover, in normal glucose condition monomeric adiponectin increased p38MAPK, Akt, ERK1/2 and eNOS phosphorylation in a dose- and time-dependent way. Also in high glucose condition monomeric adiponectin increased eNOS and above kinases phosphorylation with similar patterns but at lower extent. For interpretation of the data presented in this article, please see the research article “Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions” (Grossini et al., in press [1].

  20. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    International Nuclear Information System (INIS)

    Li, Zhijuan; Cheng, Jianxin; Wang, Liping

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.

  1. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells

    Directory of Open Access Journals (Sweden)

    Kaori Yama

    2015-04-01

    Full Text Available Epalrestat (EPS is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH in rat Schwann cells. GSH plays a crucial role in protecting endothelial cells from oxidative stress, thereby preventing vascular diseases. Here we show that EPS increases GSH levels in not only Schwann cells but also endothelial cells. Treatment of bovine aortic endothelial cells (BAECs, an in vitro model of the vascular endothelium, with EPS caused a dramatic increase in intracellular GSH levels. This was concomitant with the up-regulation of glutamate cysteine ligase, an enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Moreover, EPS stimulated the expression of thioredoxin and heme oxygenase-1, which have important redox regulatory functions in endothelial cells. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that regulates the expression of antioxidant genes. EPS increased nuclear Nrf2 levels in BAECs. Nrf2 knockdown by siRNA suppressed the EPS-induced glutamate cysteine ligase, thioredoxin-1, and heme oxygenase-1 expression. Interestingly, LY294002, an inhibitor of phosphatidylinositol 3-kinase, abolished the EPS-stimulated GSH synthesis, suggesting that the kinase is associated with Nrf2 activation induced by EPS. Furthermore, EPS reduced the cytotoxicity induced by H2O2 and tert-butylhydroperoxide, indicating that EPS plays a role in protecting cells from oxidative stress. Taken together, the results provide evidence that EPS exerts new beneficial effects on endothelial cells by increasing GSH, thioredoxin, and heme oxygenase-1 levels through the activation of Nrf2. We suggest that EPS has the potential to prevent several vascular diseases caused by oxidative stress.

  2. Cyclic adenosine monophosphate levels and the function of skin microvascular endothelial cells.

    Science.gov (United States)

    Tuder, R M; Karasek, M A; Bensch, K G

    1990-02-01

    The maintenance of the normal epithelioid morphology of human dermal microvascular endothelial cells (MEC) grown in vitro depends strongly on the presence of factors that increase intracellular levels of cyclic AMP. Complete removal of dibutyryl cAMP and isobutylmethylxanthine (IMX) from the growth medium results in a progressive transition from an epithelioid to a spindle-shaped cell line. This transition cannot be reversed by the readdition of dibutyryl cAMP and IMX to the growth medium or by addition of agonists that increase cAMP levels. Spindle-shaped MEC lose the ability to express Factor VIII rAG and DR antigens and to bind peripheral blood mononuclear leukocyte (PBML). Ultrastructural analyses of transitional cells and spindle-shaped cells show decreased numbers of Weibel-Palade bodies in transitional cells and their complete absence in spindle-shaped cells. Interferon-gamma alters several functional properties of both epithelioid and spindle-shaped cells. In the absence of dibutyryl cAMP it accelerates the transition from epithelial to spindle-shaped cells, whereas in the presence of cyclic AMP interferon-gamma increases the binding of PBMLs to both epithelioid and spindle-shaped MEC and the endocytic activity of the endothelial cells. These results suggest that cyclic AMP is an important second messenger in the maintenance of several key functions of microvascular endothelial cells. Factors that influence the levels of this messenger in vivo can be expected to influence the angiogenic and immunologic functions of the microvasculature.

  3. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles.

    Science.gov (United States)

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel; Hilfiker, Andres

    2016-01-01

    Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle-cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN.

  4. Radiosensitization of human endothelial cells by IL-24

    International Nuclear Information System (INIS)

    Meyn, R.E.

    2003-01-01

    Radiation therapy remains an important cancer treatment modality but despite improvements in dose delivery many patients still fail at their primary tumor site. Therefore, new strategies designed to improve local control are needed. Protocols combining radiation with anti-angiogenic agents might be of particular advantage based on their documented low toxicity. In this regard, we have been conducting preclinical investigations of a novel cytokine, mda7/IL-24. Our collaborators have shown that mda7/IL-24 protein targets the endothelial cells of the tumor microvascular system and has potent anti-angiogenic properties in both in vitro and in vivo assays. Recently, we have demonstrated that recombinant mda7/IL-24 protein radiosensitizes human endothelial cells in vitro. Specifically, 10 ng/ml of recombinant human IL-24 protein for 12 hrs reduced the survival at 2 Gy for human umbilical vein endothelial cells (HUVECs) from 0.33 to 0.12. We are also working on understanding the molecular basis for this radiosensitizing effect. Preliminary data suggest a model whereby mda7/IL-24 engages a specific receptor on the surface of endothelial cells and initiates a signal transduction pathway that modulates the cell's propensity for radiation-induced apoptosis and capacity for repairing radiation-induced DNA double strand breaks. Mechanistic insight gained from these studies may have implications for the actions of other anti-angiogenic agents and may generally explain the regulation of radiosensitivity imparted by growth factors and cytokines

  5. Endothelial Cells and Astrocytes: A Concerto en Duo in Ischemic Pathophysiology

    Directory of Open Access Journals (Sweden)

    Vincent Berezowski

    2012-01-01

    Full Text Available The neurovascular/gliovascular unit has recently gained increased attention in cerebral ischemic research, especially regarding the cellular and molecular changes that occur in astrocytes and endothelial cells. In this paper we summarize the recent knowledge of these changes in association with edema formation, interactions with the basal lamina, and blood-brain barrier dysfunctions. We also review the involvement of astrocytes and endothelial cells with recombinant tissue plasminogen activator, which is the only FDA-approved thrombolytic drug after stroke. However, it has a narrow therapeutic time window and serious clinical side effects. Lastly, we provide alternative therapeutic targets for future ischemia drug developments such as peroxisome proliferator- activated receptors and inhibitors of the c-Jun N-terminal kinase pathway. Targeting the neurovascular unit to protect the blood-brain barrier instead of a classical neuron-centric approach in the development of neuroprotective drugs may result in improved clinical outcomes after stroke.

  6. Progesterone increases nitric oxide synthesis in human vascular endothelial cells through activation of membrane progesterone receptor-α.

    Science.gov (United States)

    Pang, Yefei; Dong, Jing; Thomas, Peter

    2015-05-15

    Progesterone exerts beneficial effects on the human cardiovascular system by inducing rapid increases in nitric oxide (NO) production in vascular endothelial cells, but the receptors mediating these nongenomic progesterone actions remain unclear. Using human umbilical vein endothelial cells (HUVECs) as a model, we show that progesterone binds to plasma membranes of HUVECs with the characteristics of membrane progesterone receptors (mPRs). The selective mPR agonist Org OD 02-0 had high binding affinity for the progesterone receptor on HUVEC membranes, whereas nuclear PR (nPR) agonists R5020 and medroxyprogesterone acetate displayed low binding affinities. Immunocytochemical and Western blot analyses confirmed that mPRs are expressed in HUVECs and are localized on their plasma membranes. NO levels increased rapidly after treatment with 20 nM progesterone, Org OD 02-0, and a progesterone-BSA conjugate but not with R5020, suggesting that this progesterone action is at the cell surface and initiated through mPRs. Progesterone and Org OD 02-0 (20 nM) also significantly increased endothelial nitric oxide synthase (eNOS) activity and eNOS phosphorylation. Knockdown of mPRα expression by treatment with small-interfering RNA (siRNA) blocked the stimulatory effects of 20 nM progesterone on NO production and eNOS phosphorylation, whereas knockdown of nPR was ineffective. Treatment with PI3K/Akt and MAP kinase inhibitors blocked the stimulatory effects of progesterone, Org OD 02-0, and progesterone-BSA on NO production and eNOS phosphorylation and also prevented progesterone- and Org OD 02-0-induced increases in Akt and ERK phosphorylation. The results suggest that progesterone stimulation of NO production in HUVECs is mediated by mPRα and involves signaling through PI3K/Akt and MAP kinase pathways. Copyright © 2015 the American Physiological Society.

  7. α-Klotho expression determines nitric oxide synthesis in response to FGF-23 in human aortic endothelial cells.

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chung

    Full Text Available Endothelial cells (ECs express fibroblast growth factor (FGF receptors and are metabolically active after treatment with FGF-23. It is not known if this effect is α-Klotho independent or mediated by humoral or endogenous endothelial α-Klotho. In the present study, we aimed to characterize EC α-Klotho expression within the human vascular tree and to investigate the potential role of α-Klotho in determining FGF-23 mediated EC regulation. Human tissue and ECs from various organs were used for immunohistochemistry and Western blot. Primary cultures of human aortic endothelial cells (HAECs and human brain microvascular endothelial cells (HBMECs were used to generate in vitro cell models. We found endogenous α-Klotho expression in ECs from various organs except in microvascular ECs from human brain. Furthermore, FGF-23 stimulated endothelial nitric oxide synthase (eNOS expression, nitric oxide (NO production, and cell proliferation in HAECs. Interestingly, these effects were not observed in our HBMEC model in vitro. High phosphate treatment and endothelial α-Klotho knockdown mitigated FGF-23 mediated eNOS induction, NO production, and cell proliferation in HAECs. Rescue treatment with soluble α-Klotho did not reverse endothelial FGF-23 resistance caused by reduced or absent α-Klotho expression in HAECs. These novel observations provide evidence for differential α-Klotho functional expression in the human endothelium and its presence may play a role in determining the response to FGF-23 in the vascular tree. α-Klotho was not detected in cerebral microvascular ECs and its absence may render these cells nonresponsive to FGF-23.

  8. Mitochondria and Endothelial Function

    Science.gov (United States)

    Kluge, Matthew A.; Fetterman, Jessica L.; Vita, Joseph A.

    2013-01-01

    In contrast to their role in other cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, ROS production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review studies showing the importance of that mechanism to endothelial control of vasomotor tone, angiogenesis, and inflammatory activation. We particularly highlight the small number of clinical and translational studies that have investigated each mechanism in human subjects. Finally, we review interventions that target different aspects of mitochondrial function and their effects on endothelial function. The ultimate goal of such research is the identification of new approaches for therapy. The reviewed studies make it clear that mitochondria are important in endothelial physiology and pathophysiology. A great deal of work will be needed, however, before mitochondria-directed therapies are available for the prevention and treatment of cardiovascular disease. PMID:23580773

  9. Vildagliptin Stimulates Endothelial Cell Network Formation and Ischemia-induced Revascularization via an Endothelial Nitric-oxide Synthase-dependent Mechanism*

    Science.gov (United States)

    Ishii, Masakazu; Shibata, Rei; Kondo, Kazuhisa; Kambara, Takahiro; Shimizu, Yuuki; Tanigawa, Tohru; Bando, Yasuko K.; Nishimura, Masahiro; Ouchi, Noriyuki; Murohara, Toyoaki

    2014-01-01

    Dipeptidyl peptidase-4 inhibitors are known to lower glucose levels and are also beneficial in the management of cardiovascular disease. Here, we investigated whether a dipeptidyl peptidase-4 inhibitor, vildagliptin, modulates endothelial cell network formation and revascularization processes in vitro and in vivo. Treatment with vildagliptin enhanced blood flow recovery and capillary density in the ischemic limbs of wild-type mice, with accompanying increases in phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). In contrast to wild-type mice, treatment with vildagliptin did not improve blood flow in ischemic muscles of eNOS-deficient mice. Treatment with vildagliptin increased the levels of glucagon-like peptide-1 (GLP-1) and adiponectin, which have protective effects on the vasculature. Both vildagliptin and GLP-1 increased the differentiation of cultured human umbilical vein endothelial cells (HUVECs) into vascular-like structures, although vildagliptin was less effective than GLP-1. GLP-1 and vildagliptin also stimulated the phosphorylation of Akt and eNOS in HUVECs. Pretreatment with a PI3 kinase or NOS inhibitor blocked the stimulatory effects of both vildagliptin and GLP-1 on HUVEC differentiation. Furthermore, treatment with vildagliptin only partially increased the limb flow of ischemic muscle in adiponectin-deficient mice in vivo. GLP-1, but not vildagliptin, significantly increased adiponectin expression in differentiated 3T3-L1 adipocytes in vitro. These data indicate that vildagliptin promotes endothelial cell function via eNOS signaling, an effect that may be mediated by both GLP-1-dependent and GLP-1-independent mechanisms. The beneficial activity of GLP-1 for revascularization may also be partially mediated by its ability to increase adiponectin production. PMID:25100725

  10. VEGF signaling inside vascular endothelial cells and beyond.

    Science.gov (United States)

    Eichmann, Anne; Simons, Michael

    2012-04-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Upcyte® Microvascular Endothelial Cells Repopulate Decellularized Scaffold

    Science.gov (United States)

    Dally, Iris; Hartmann, Nadja; Münst, Bernhard; Braspenning, Joris; Walles, Heike

    2013-01-01

    A general problem in tissue engineering is the poor and insufficient blood supply to guarantee tissue cell survival as well as physiological tissue function. To address this limitation, we have developed an in vitro vascularization model in which a decellularized porcine small bowl segment, representing a capillary network within a collagen matrix (biological vascularized scaffold [BioVaSc]), is reseeded with microvascular endothelial cells (mvECs). However, since the supply of mvECs is limited, in general, and as these cells rapidly dedifferentiate, we have applied a novel technology, which allows the generation of large batches of quasi-primary cells with the ability to proliferate, whilst maintaining their differentiated functionality. These so called upcyte mvECs grew for an additional 15 population doublings (PDs) compared to primary cells. Upcyte mvECs retained endothelial characteristics, such as von Willebrandt Factor (vWF), CD31 and endothelial nitric oxide synthase (eNOS) expression, as well as positive Ulex europaeus agglutinin I staining. Upcyte mvECs also retained biological functionality such as tube formation, cell migration, and low density lipoprotein (LDL) uptake, which were still evident after PD27. Initial experiments using MTT and Live/Dead staining indicate that upcyte mvECs repopulate the BioVaSc Scaffold. As with conventional cultures, these cells also express key endothelial molecules (vWF, CD31, and eNOS) in a custom-made bioreactor system even after a prolonged period of 14 days. The combination of upcyte mvECs and the BioVaSc represents a novel and promising approach toward vascularizing bioreactor models which can better reflect organs, such as the liver. PMID:22799502

  12. The targeting expression of the vascular endothelial growth factor gene in endothelial cells regulated by HRE.ppET-1.

    Science.gov (United States)

    Zheng, Xiangrong; Zhang, Shangshang; Yang, Yujia; Wang, Xia; Zhong, Le; Yu, Xiaohe

    2008-11-01

    The success of gene therapy depends largely on the efficacy of gene delivery vector systems that can deliver genes to target organs or cells selectively and efficiently with minimal toxicity. Here, we show that by using the HRE.ppET-1 regulatory element, we were able to restrict expression of the transgene of vascular endothelial growth factor (VEGF) to endothelial cells exclusively in hypoxic conditions. Eukaryotic expression vectors such as pEGFP-HRE.ppET-1, pcDNA3.1-VEGF+Pa, pcDNA3.1-ppET-1+ EGF+Pa, and pcDNA3.1-HRE.ppET-1+VEGF+Pa were constructed by using a series of nuclear molecule handling methods like PCR, enzyme digestion. The recombinant vectors were transfected into HUVEC cells and HL7702 cells by the lipofectin method. GFP expression was observed with a fluorescence microscope to validate the specificity of expression in endothelial cells under the regulation of HRE.ppET-1 element. Cobalt chloride (final concentration 100 mumol/L) was added to the medium to mimic hypoxia in vitro. After transfection of vectors, the expression of VEGF mRNA was detected by RT-PCR, and the expression of VEGF was detected by Western blotting and ELISA methods under normoxia and hypoxia, respectively. The cell proliferation rate was detected by the MTT test. The expression of GFP revealed that the exterior gene was transcripted effectively in endothelial cells regulated by the HRE.ppET-1 element, while the expression of GFP was very weak in nonendothelial cells. The results of RT-PCR, Western blotting and ELISA showed that VEGF gene expression in the pcDNA3.1-HRE.ppET-1+VEGF+Pa group and in the pcDNA3.1-ppET-1+VEGF+Pa group was higher in hypoxia than it was in normoxia (PHRE.ppET-1 element was expressed specifically in endothelial cells, and can increase the expression of VEGF in hypoxia and stimulate proliferation of endothelial cells. Taking advantage of these facts could greatly improve the efficiency of gene therapy. The vector would be valuable for various gene transfer

  13. Towards a Biohybrid Lung: Endothelial Cells Promote Oxygen Transfer through Gas Permeable Membranes.

    Science.gov (United States)

    Menzel, Sarah; Finocchiaro, Nicole; Donay, Christine; Thiebes, Anja Lena; Hesselmann, Felix; Arens, Jutta; Djeljadini, Suzana; Wessling, Matthias; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Cornelissen, Christian Gabriel

    2017-01-01

    In patients with respiratory failure, extracorporeal lung support can ensure the vital gas exchange via gas permeable membranes but its application is restricted by limited long-term stability and hemocompatibility of the gas permeable membranes, which are in contact with the blood. Endothelial cells lining these membranes promise physiological hemocompatibility and should enable prolonged application. However, the endothelial cells increase the diffusion barrier of the blood-gas interface and thus affect gas transfer. In this study, we evaluated how the endothelial cells affect the gas exchange to optimize performance while maintaining an integral cell layer. Human umbilical vein endothelial cells were seeded on gas permeable cell culture membranes and cultivated in a custom-made bioreactor. Oxygen transfer rates of blank and endothelialized membranes in endothelial culture medium were determined. Cell morphology was assessed by microscopy and immunohistochemistry. Both setups provided oxygenation of the test fluid featuring small standard deviations of the measurements. Throughout the measuring range, the endothelial cells seem to promote gas transfer to a certain extent exceeding the blank membranes gas transfer performance by up to 120%. Although the underlying principles hereof still need to be clarified, the results represent a significant step towards the development of a biohybrid lung.

  14. Cytomegalovirus-Induced Effector T Cells Cause Endothelial Cell Damage

    NARCIS (Netherlands)

    van de Berg, Pablo J. E. J.; Yong, Si-La; Remmerswaal, Ester B. M.; van Lier, René A. W.; ten Berge, Ineke J. M.

    2012-01-01

    Human cytomegalovirus (CMV) infection has been linked to inflammatory diseases that involve vascular endothelial cell damage, but definitive proof for a direct cytopathic effect of CMV in these diseases is lacking. CMV infection is associated with a strong increase in both CD4(+) and CD8(+) T cells

  15. Endothelial Progenitor Cell Fraction Contained in Bone Marrow-Derived Mesenchymal Stem Cell Populations Impairs Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Fabian Duttenhoefer

    2015-01-01

    Full Text Available In bone tissue engineering (TE endothelial cell-osteoblast cocultures are known to induce synergies of cell differentiation and activity. Bone marrow mononucleated cells (BMCs are a rich source of mesenchymal stem cells (MSCs able to develop an osteogenic phenotype. Endothelial progenitor cells (EPCs are also present within BMC. In this study we investigate the effect of EPCs present in the BMC population on MSCs osteogenic differentiation. Human BMCs were isolated and separated into two populations. The MSC population was selected through plastic adhesion capacity. EPCs (CD34+ and CD133+ were removed from the BMC population and the resulting population was named depleted MSCs. Both populations were cultured over 28 days in osteogenic medium (Dex+ or medium containing platelet lysate (PL. MSC population grew faster than depleted MSCs in both media, and PL containing medium accelerated the proliferation for both populations. Cell differentiation was much higher in Dex+ medium in both cases. Real-time RT-PCR revealed upregulation of osteogenic marker genes in depleted MSCs. Higher values of ALP activity and matrix mineralization analyses confirmed these results. Our study advocates that absence of EPCs in the MSC population enables higher osteogenic gene expression and matrix mineralization and therefore may lead to advanced bone neoformation necessary for TE constructs.

  16. Infection of human monocyte-derived dendritic cells by ANDES Hantavirus enhances pro-inflammatory state, the secretion of active MMP-9 and indirectly enhances endothelial permeability

    Directory of Open Access Journals (Sweden)

    Lopez-Lastra Marcelo

    2011-05-01

    Full Text Available Abstract Background Andes virus (ANDV, a rodent-borne Hantavirus, is the major etiological agent of Hantavirus cardiopulmonary syndrome (HCPS in South America, which is mainly characterized by a vascular leakage with high rate of fatal outcomes for infected patients. Currently, neither specific therapy nor vaccines are available against this pathogen. ANDV infects both dendritic and epithelial cells, but in despite that the severity of the disease directly correlates with the viral RNA load, considerable evidence suggests that immune mechanisms rather than direct viral cytopathology are responsible for plasma leakage in HCPS. Here, we assessed the possible effect of soluble factors, induced in viral-activated DCs, on endothelial permeability. Activated immune cells, including DC, secrete gelatinolytic matrix metalloproteases (gMMP-2 and -9 that modulate the vascular permeability for their trafficking. Methods A clinical ANDES isolate was used to infect DC derived from primary PBMC. Maturation and pro-inflammatory phenotypes of ANDES-infected DC were assessed by studying the expression of receptors, cytokines and active gMMP-9, as well as some of their functional status. The ANDES-infected DC supernatants were assessed for their capacity to enhance a monolayer endothelial permeability using primary human vascular endothelial cells (HUVEC. Results Here, we show that in vitro primary DCs infected by a clinical isolate of ANDV shed virus RNA and proteins, suggesting a competent viral replication in these cells. Moreover, this infection induces an enhanced expression of soluble pro-inflammatory factors, including TNF-α and the active gMMP-9, as well as a decreased expression of anti-inflammatory cytokines, such as IL-10 and TGF-β. These viral activated cells are less sensitive to apoptosis. Moreover, supernatants from ANDV-infected DCs were able to indirectly enhance the permeability of a monolayer of primary HUVEC. Conclusions Primary human DCs

  17. Endothelial microparticles: Pathogenic or passive players in endothelial dysfunction in autoimmune rheumatic diseases?

    Science.gov (United States)

    McCarthy, E M; Wilkinson, F L; Parker, B; Alexander, M Y

    2016-11-01

    Autoimmune rheumatic diseases are characterised by systemic inflammation and complex immunopathology, with an increased risk of cardiovascular disease, initiated by endothelial dysfunction in a chronic inflammatory environment. Endothelial microparticles (EMPs) are released into the circulation from activated endothelial cells and may therefore, reflect disease severity, vascular and endothelial dysfunction, that could influence disease pathogenesis via autocrine/paracrine signalling. The exact function of EMPs in rheumatic disease remains unknown, and this has initiated research to elucidate EMP composition and function, which may be determined by the mode of endothelial activation and the micro environment. To date, EMPs are thought to play a role in angiogenesis, thrombosis and inflammation by transferring specific proteins and microRNAs (miRs) to target cells. Here, we review the mechanisms underlying the generation and composition of EMPs and the clinical and experimental studies describing the involvement of EMPs in rheumatic diseases, since we have previously shown endothelial dysfunction and an elevated risk of cardiovascular disease are characteristics in systemic lupus erythematosus. We will also discuss the potential of EMPs as future biomarkers of cardiovascular risk in these diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells

    International Nuclear Information System (INIS)

    Schwalm, Stephanie; Doell, Frauke; Roemer, Isolde; Bubnova, Svetlana; Pfeilschifter, Josef; Huwiler, Andrea

    2008-01-01

    Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1α and HIF-2α, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1α or HIF-2α by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression

  19. Endothelial cell adhesion to ion implanted polymers

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y; Kusakabe, M [SONY Corp., Tokyo (Japan); Lee, J S; Kaibara, M; Iwaki, M; Sasabe, H [RIKEN (Inst. of Physical and Chemical Research), Saitama (Japan)

    1992-03-01

    The biocompatibility of ion implanted polymers has been studied by means of adhesion measurements of bovine aorta endothelial cells in vitro. The specimens used were polystyrene (PS) and segmented polyurethane (SPU). Na{sup +}, N{sub 2}{sup +}, O{sub 2}{sup +} and Kr{sup +} ion implantations were performed at an energy of 150 keV with fluences ranging from 1x10{sup 15} to 3x10{sup 17} ions/cm{sup 2} at room temperature. The chemical and physical structures of ion-implanted polymers have been investigated in order to analyze their tissue compatibility such as improvement of endothelial cell adhesion. The ion implanted SPU have been found to exhibit remarkably higher adhesion and spreading of endothelial cells than unimplanted specimens. By contrast, ion implanted PS demonstrated a little improvement of adhesion of cells in this assay. Results of FT-IR-ATR showed that ion implantation broke the original chemical bond to form new radicals such as OH, ....C=O, SiH and condensed rings. The results of Raman spectroscopy showed that ion implantation always produced a peak near 1500 cm{sup -1}, which indicated that these ion implanted PS and SPU had the same carbon structure. This structure is considered to bring the dramatic increase in the extent of cell adhesion and spreading to these ion implanted PS and SPU. (orig.).

  20. Sodium-dependent vitamin C transporter 2 (SVCT2 expression and activity in brain capillary endothelial cells after transient ischemia in mice.

    Directory of Open Access Journals (Sweden)

    Burkhard Gess

    Full Text Available Expression and transport activity of Sodium-dependent Vitamin C Transporter 2 (SVCT2 was shown in various tissues and organs. Vitamin C was shown to be cerebroprotective in several animal models of stroke. Data on expression, localization and transport activity of SVCT2 after cerebral ischemia, however, has been scarce so far. Thus, we studied the expression of SVCT2 after middle cerebral artery occlusion (MCAO in mice by immunohistochemistry. We found an upregulation of SVCT2 after stroke. Co-stainings with Occludin, Von-Willebrand Factor and CD34 demonstrated localization of SVCT2 in brain capillary endothelial cells in the ischemic area after stroke. Time-course analyses of SVCT2 expression by immunohistochemistry and western blots showed upregulation in the subacute phase of 2-5 days. Radioactive uptake assays using (14C-labelled ascorbic acid showed a significant increase of ascorbic acid uptake into the brain after stroke. Taken together, these results provide evidence for the expression and transport activity of SVCT2 in brain capillary endothelial cells after transient ischemia in mice. These results may lead to the development of novel neuroprotective strategies in stroke therapy.

  1. Endothelial glycocalyx on brain endothelial cells is lost in experimental cerebral malaria

    DEFF Research Database (Denmark)

    Hempel, Casper; Hyttel, Poul; Kurtzhals, Jørgen Al

    2014-01-01

    We hypothesized that the glycocalyx, which is important for endothelial integrity, is lost in severe malaria. C57BL/6 mice were infected with Plasmodium berghei ANKA, resulting in cerebral malaria, or P. chabaudi AS, resulting in uncomplicated malaria. We visualized the glycocalyx with transmission...... electron microscopy and measured circulating glycosaminoglycans by dot blot and ELISA. The glycocalyx was degraded in brain vasculature in cerebral and to a lesser degree uncomplicated malaria. It was affected on both intact and apoptotic endothelial cells. Circulating glycosaminoglycan levels suggested...

  2. Endothelium-Derived 5-Methoxytryptophan Protects Endothelial Barrier Function by Blocking p38 MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Ling-Yun Chu

    Full Text Available The endothelial junction is tightly controlled to restrict the passage of blood cells and solutes. Disruption of endothelial barrier function by bacterial endotoxins, cytokines or growth factors results in inflammation and vascular damage leading to vascular diseases. We have identified 5-methoxytryptophan (5-MTP as an anti-inflammatory factor by metabolomic analysis of conditioned medium of human fibroblasts. Here we postulated that endothelial cells release 5-MTP to protect the barrier function. Conditioned medium of human umbilical vein endothelial cells (HUVECs prevented endothelial hyperpermeability and VE-cadherin downregulation induced by VEGF, LPS and cytokines. We analyzed the metabolomic profile of HUVEC conditioned medium and detected 5-MTP but not melatonin, serotonin or their catabolites, which was confirmed by enzyme-linked immunosorbent assay. Addition of synthetic pure 5-MTP preserved VE-cadherin and maintained barrier function despite challenge with pro-inflammatory mediators. Tryptophan hydroxylase-1, an enzyme required for 5-MTP biosynthesis, was downregulated in HUVECs by pro-inflammatory mediators and it was accompanied by reduction of 5-MTP. 5-MTP protected VE-cadherin and prevented endothelial hyperpermeability by blocking p38 MAPK activation. A chemical inhibitor of p38 MAPK, SB202190, exhibited a similar protective effect as 5-MTP. To determine whether 5-MTP prevents vascular hyperpermeability in vivo, we evaluated the effect of 5-MTP administration on LPS-induced murine microvascular permeability with Evans blue. 5-MTP significantly prevented Evans blue dye leakage. Our findings indicate that 5-MTP is a new class of endothelium-derived molecules which protects endothelial barrier function by blocking p38 MAPK.

  3. Tumor cell adhesion to endothelial cells is increased by endotoxin via an upregulation of beta-1 integrin expression.

    LENUS (Irish Health Repository)

    Andrews, E J

    2012-02-03

    BACKGROUND: Recent studies have demonstrated that metastatic disease develops from tumor cells that adhere to endothelial cells and proliferate intravascularly. The beta-1 integrin family and its ligand laminin have been shown to be important in tumor-to-endothelial cell adhesion. Lipopolysaccharide (LPS) has been implicated in the increased metastatic tumor growth that is seen postoperatively. We postulated that LPS increases tumor cell expression of beta-1 integrins and that this leads to increased adhesion. METHODS: The human metastatic colon cancer cell line LS174T was labeled with an enhanced green fluorescent protein (eGFP) using retroviral transfection. Cell cultures were treated with LPS for 1, 2, and 4 h (n = 6 each) and were subsequently cocultured for 30 or 120 min with confluent human umbilical vein endothelial cells (HUVECs), to allow adherence. Adherent tumor cells were counted using fluorescence microscopy. These experiments were carried out in the presence or absence of a functional blocking beta-1 integrin monoclonal antibody (4B4). Expression of beta-1 integrin and laminin on tumor and HUVECs was assessed using flow cytometric analysis. Tumor cell NF-kappaB activation after incubation with LPS was measured. RESULTS: Tumor cell and HUVEC beta-1 integrin expression and HUVEC expression of laminin were significantly (P < 0.05) enhanced after incubation with LPS. Tumor cell adhesion to HUVECs was significantly increased. Addition of the beta-1 integrin blocking antibody reduced tumor cell adhesion to control levels. LPS increased tumor cell NF-kappaB activation. CONCLUSIONS: Exposure to LPS increases tumor cell adhesion to the endothelium through a beta-1 integrin-mediated pathway that is NF-kappaB dependent. This may provide a target for immunotherapy directed at reducing postoperative metastatic tumor growth.

  4. A small population of liver endothelial cells undergoes endothelial-to-mesenchymal transition in response to chronic liver injury.

    Science.gov (United States)

    Ribera, Jordi; Pauta, Montse; Melgar-Lesmes, Pedro; Córdoba, Bernat; Bosch, Anna; Calvo, Maria; Rodrigo-Torres, Daniel; Sancho-Bru, Pau; Mira, Aurea; Jiménez, Wladimiro; Morales-Ruiz, Manuel

    2017-11-01

    Rising evidence points to endothelial-to-mesenchymal transition (EndMT) as a significant source of the mesenchymal cell population in fibrotic diseases. In this context, we hypothesized that liver endothelial cells undergo EndMT during fibrosis progression. Cirrhosis in mice was induced by CCl 4 A transgenic mouse expressing a red fluorescent protein reporter under the control of Tie2 promoter (Tie2-tdTomato) was used to trace the acquisition of EndMT. Sinusoidal vascular connectivity was evaluated by intravital microscopy and high-resolution three-dimensional confocal microscopy. A modest but significant fraction of liver endothelial cells from both cirrhotic patients and CCl 4 -treated Tie2-tdTomato mice acquired an EndMT phenotype characterized by the coexpression of CD31 and α-smooth muscle actin, compared with noncirrhotic livers. Bone morphogenetic protein-7 (BMP-7) inhibited the acquisition of EndMT induced by transforming growth factor-β1 (TGF-β1) treatment in cultured primary mouse liver endothelial cells from control mice. EndMT was also reduced significantly in vivo in cirrhotic Tie2-tdTomato mice treated intraperitoneally with BMP-7 compared with untreated mice (1.9 ± 0.2 vs. 3.8 ± 0.3%, respectively; P livers correlated with a significant decrease in liver fibrosis ( P livers in both animal models and patients. BMP-7 treatment decreases the occurrence of the EndMT phenotype and has a positive impact on the severity of disease by reducing fibrosis and sinusoidal vascular disorganization. NEW & NOTEWORTHY A subpopulation of liver endothelial cells from cirrhotic patients and mice with liver fibrosis undergoes endothelial-to-mesenchymal transition. Liver endothelial cells from healthy mice could transition into a mesenchymal phenotype in culture in response to TGF-β1 treatment. Fibrotic livers treated chronically with BMP-7 showed lower EndMT acquisition, reduced fibrosis, and improved vascular organization. Copyright © 2017 the American

  5. Tolerogenic properties of lymphatic endothelial cells are controlled by the lymph node microenvironment.

    Directory of Open Access Journals (Sweden)

    Jarish N Cohen

    Full Text Available Peripheral self-tolerance eliminates lymphocytes specific for tissue-specific antigens not encountered in the thymus. Recently, we demonstrated that lymphatic endothelial cells in mice directly express peripheral tissue antigens, including tyrosinase, and induce deletion of specific CD8 T cells via Programmed Death Ligand-1 (PD-L1. Here, we demonstrate that high-level expression of peripheral tissue antigens and PD-L1 is confined to lymphatic endothelial cells in lymph nodes, as opposed to tissue (diaphragm and colon lymphatics. Lymphatic endothelial cells in the lymph node medullary sinus express the highest levels of peripheral tissue antigens and PD-L1, and are the only subpopulation that expresses tyrosinase epitope. The representation of lymphatic endothelial cells in the medullary sinus expressing high-level PD-L1, which is necessary for normal CD8 T cell deletion kinetics, is controlled by lymphotoxin-β receptor signaling and B cells. Lymphatic endothelial cells from neonatal mice do not express high-level PD-L1 or present tyrosinase epitope. This work uncovers a critical role for the lymph node microenvironment in endowing lymphatic endothelial cells with potent tolerogenic properties.

  6. Regulatory T Cells Protect Fine Particulate Matter-Induced Inflammatory Responses in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wen-cai Zhang

    2014-01-01

    Full Text Available Objective. To investigate the role of CD4+CD25+ T cells (Tregs in protecting fine particulate matter (PM- induced inflammatory responses, and its potential mechanisms. Methods. Human umbilical vein endothelial cells (HUVECs were treated with graded concentrations (2, 5, 10, 20, and 40 µg/cm2 of suspension of fine particles for 24h. For coculture experiment, HUVECs were incubated alone, with CD4+CD25− T cells (Teff, or with Tregs in the presence of anti-CD3 monoclonal antibodies for 48 hours, and then were stimulated with or without suspension of fine particles for 24 hours. The expression of adhesion molecules and inflammatory cytokines was examined. Results. Adhesion molecules, including vascular cell adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1, and inflammatory cytokines, such as interleukin (IL- 6 and IL-8, were increased in a concentration-dependent manner. Moreover, the adhesion of human acute monocytic leukemia cells (THP-1 to endothelial cells was increased and NF-κB activity was upregulated in HUVECs after treatment with fine particles. However, after Tregs treatment, fine particles-induced inflammatory responses and NF-κB activation were significantly alleviated. Transwell experiments showed that Treg-mediated suppression of HUVECs inflammatory responses impaired by fine particles required cell contact and soluble factors. Conclusions. Tregs could attenuate fine particles-induced inflammatory responses and NF-κB activation in HUVECs.

  7. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Science.gov (United States)

    Jeong, Ye-Ji; Jung, Myung Gu; Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  8. Indirubin inhibits cell proliferation, migration, invasion and angiogenesis in tumor-derived endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Z

    2018-05-01

    Full Text Available Zhuohong Li, Chaofu Zhu, Baiping An, Yu Chen, Xiuyun He, Lin Qian, Lan Lan, Shijie Li Department of Oncology, The Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China Purpose: Hepatocellular carcinoma is one of the most predominant malignancies with high fatality rate and its incidence is rising at an alarming rate because of its resistance to radio- and chemotherapy. Indirubin is the major active anti-tumor ingredient of a traditional Chinese herbal medicine. The present study aimed to analyze the effects of indirubin on cell proliferation, migration, invasion, and angiogenesis of tumor-derived endothelial cells (Td-EC. Methods: Td-EC were derived from human umbilical vein endothelial cells (HUVEC by treating HUVEC with the conditioned medium of human liver cancer cell line HepG2. Cell proliferation, migration, invasion, and angiogenesis were assessed by MTT, wound healing, in vitro cell invasion, and in vitro tube formation assay. Results: Td-EC were successfully obtained from HUVEC cultured with 50% culture supernatant from serum-starved HepG2 cells. Indirubin significantly inhibited Td-EC proliferation in a dose- and time-dependent manner. Indirubin also inhibited Td-EC migration, invasion, and angiogenesis. However, indirubin’s effects were weaker on HUVEC than Td-EC. Conclusion: Indirubin significantly inhibited Td-EC proliferation, migration, invasion, and angiogenesis. Keywords: indirubin, Td-EC, proliferation, migration, invasion, angiogenesis

  9. Glycocalyx Degradation Induces a Proinflammatory Phenotype and Increased Leukocyte Adhesion in Cultured Endothelial Cells under Flow.

    Directory of Open Access Journals (Sweden)

    Karli K McDonald

    Full Text Available Leukocyte adhesion to the endothelium is an early step in the pathogenesis of atherosclerosis. Effective adhesion requires the binding of leukocytes to their cognate receptors on the surface of endothelial cells. The glycocalyx covers the surface of endothelial cells and is important in the mechanotransduction of shear stress. This study aimed to identify the molecular mechanisms underlying the role of the glycocalyx in leukocyte adhesion under flow. We performed experiments using 3-D cell culture models, exposing human abdominal aortic endothelial cells to steady laminar shear stress (10 dynes/cm2 for 24 hours. We found that with the enzymatic degradation of the glycocalyx, endothelial cells developed a proinflammatory phenotype when exposed to uniform steady shear stress leading to an increase in leukocyte adhesion. Our results show an up-regulation of ICAM-1 with degradation compared to non-degraded controls (3-fold increase, p<0.05 and we attribute this effect to a de-regulation in NF-κB activity in response to flow. These results suggest that the glycocalyx is not solely a physical barrier to adhesion but rather plays an important role in governing the phenotype of endothelial cells, a key determinant in leukocyte adhesion. We provide evidence for how the destabilization of this structure may be an early and defining feature in the initiation of atherosclerosis.

  10. Interaction of Leptospira interrogans with Human Proteolytic Systems Enhances Dissemination through Endothelial Cells and Protease Levels

    Science.gov (United States)

    Vieira, Monica L.; Alvarez-Flores, Miryam P.; Kirchgatter, Karin; Romero, Eliete C.; Alves, Ivy J.; de Morais, Zenaide M.; Vasconcellos, Silvio A.; Chudzinski-Tavassi, Ana M.

    2013-01-01

    We have recently reported the ability of Leptospira to capture plasminogen (PLG) and generate plasmin (PLA) bound on the microbial surface in the presence of exogenous activators. In this work, we examined the effects of leptospiral PLG binding for active penetration through the endothelial cell barrier and activation. The results indicate that leptospires with PLG association or PLA activation have enhanced migration activity through human umbilical vein endothelial cell (HUVEC) monolayers compared with untreated bacteria. Leptospira cells coated with PLG were capable of stimulating the expression of PLG activators by HUVECs. Moreover, leptospires endowed with PLG or PLA promoted transcriptional upregulation matrix metalloprotease 9 (MMP-9). Serum samples from patients with confirmed leptospirosis showed higher levels of PLG activators and total MMP-9 than serum samples from normal (healthy) subjects. The highest level of PLG activators and total MMP-9 was detected with microscopic agglutination test (MAT)-negative serum samples, suggesting that this proteolytic activity stimulation occurs at the early stage of the disease. Furthermore, a gelatin zymography profile obtained for MMPs with serum samples from patients with leptospirosis appears to be specific to leptospiral infection because serum samples from patients with unrelated infectious diseases produced no similar degradation bands. Altogether, the data suggest that the Leptospira-associated PLG or PLA might represent a mechanism that contributes to bacterial penetration of endothelial cells through an activation cascade of events that enhances the proteolytic capability of the organism. To our knowledge, this is the first proteolytic activity associated with leptospiral pathogenesis described to date. PMID:23478319

  11. Improved endothelial cell seeding with cultured cells and fibronectin-coated grafts

    International Nuclear Information System (INIS)

    Seeger, J.M.; Klingman, N.

    1985-01-01

    A possible approach to the low seeding efficiency of endothelial cells into prosthetic grafts is to increase the number of cells to be seeded in cell culture and improve seeding efficiency by graft precoating with fibronectin. The effect of cell culture on cell adhesion is unknown, however, and fibronectin also binds fibrin, which may increase the thrombogenicity of the graft luminal surface. To investigate these questions, freshly harvested canine jugular vein endothelial cells from six animals and similar cells harvested from six primary and eight secondary cell cultures were labeled with 111 Indium and seeded into 5 cm, 4 mm PTFE grafts coated with fibronectin, using similar uncoated PTFE grafts as controls. Platelet accumulation and distribution on six similar coated and uncoated grafts placed in canine carotid, external jugular arterial venous shunts for 2 hr were also determined using autogenous 111 Indium-labeled platelets. Significant differences between group means were determined using the paired Student's t test. Results reveal that seeding efficiency is significantly better in all groups of coated grafts compared to uncoated grafts (P less than 0.01). Cells derived from cell culture also had significantly higher seeding efficiencies than freshly harvested cells when seeded into coated grafts (P less than 0.05) and tended to have higher seeding efficiencies than harvested cells when seeded into uncoated grafts (P = 0.53). Fibronectin coating increased mean platelet accumulation on the entire graft luminal surface, but not to a statistically significant degree (P greater than 0.1). Whether this increased seeding efficiency will improve graft endothelialization remains to be investigated

  12. Selective Deletion of Leptin Signaling in Endothelial Cells Enhances Neointima Formation and Phenocopies the Vascular Effects of Diet-Induced Obesity in Mice.

    Science.gov (United States)

    Hubert, Astrid; Bochenek, Magdalena L; Schütz, Eva; Gogiraju, Rajinikanth; Münzel, Thomas; Schäfer, Katrin

    2017-09-01

    Obesity is associated with elevated circulating leptin levels and hypothalamic leptin resistance. Leptin receptors (LepRs) are expressed on endothelial cells, and leptin promotes neointima formation in a receptor-dependent manner. Our aim was to examine the importance of endothelial LepR (End.LepR) signaling during vascular remodeling and to determine whether the cardiovascular consequences of obesity are because of hyperleptinemia or endothelial leptin resistance. Mice with loxP-flanked LepR alleles were mated with mice expressing Cre recombinase controlled by the inducible endothelial receptor tyrosine kinase promoter. Obesity was induced with high-fat diet. Neointima formation was examined after chemical carotid artery injury. Morphometric quantification revealed significantly greater intimal hyperplasia, neointimal cellularity, and proliferation in End.LepR knockout mice, and similar findings were obtained in obese, hyperleptinemic End.LepR wild-type animals. Analysis of primary endothelial cells confirmed abrogated signal transducer and activator of transcription-3 phosphorylation in response to leptin in LepR knockout and obese LepR wild-type mice. Quantitative PCR, ELISA, and immunofluorescence analyses revealed increased expression and release of endothelin-1 in End.LepR-deficient and LepR-resistant cells, and ET receptor A/B antagonists abrogated their paracrine effects on murine aortic smooth muscle cell proliferation. Reduced expression of peroxisome proliferator-activated receptor-γ and increased nuclear activator protein-1 staining was observed in End.LepR-deficient and LepR-resistant cells, and peroxisome proliferator-activated receptor-γ antagonization increased endothelial endothelin-1 expression. Our findings suggest that intact endothelial leptin signaling limits neointima formation and that obesity represents a state of endothelial leptin resistance. These observations and the identification of endothelin-1 as soluble mediator of the

  13. Entamoeba lysyl-tRNA synthetase contains a cytokine-like domain with chemokine activity towards human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Manuel Castro de Moura

    2011-11-01

    Full Text Available Immunological pressure encountered by protozoan parasites drives the selection of strategies to modulate or avoid the immune responses of their hosts. Here we show that the parasite Entamoeba histolytica has evolved a chemokine that mimics the sequence, structure, and function of the human cytokine HsEMAPII (Homo sapiens endothelial monocyte activating polypeptide II. This Entamoeba EMAPII-like polypeptide (EELP is translated as a domain attached to two different aminoacyl-tRNA synthetases (aaRS that are overexpressed when parasites are exposed to inflammatory signals. EELP is dispensable for the tRNA aminoacylation activity of the enzymes that harbor it, and it is cleaved from them by Entamoeba proteases to generate a standalone cytokine. Isolated EELP acts as a chemoattractant for human cells, but its cell specificity is different from that of HsEMAPII. We show that cell specificity differences between HsEMAPII and EELP can be swapped by site directed mutagenesis of only two residues in the cytokines' signal sequence. Thus, Entamoeba has evolved a functional mimic of an aaRS-associated human cytokine with modified cell specificity.

  14. A novel role for inhibitor of apoptosis (IAP) proteins as regulators of endothelial barrier function by mediating RhoA activation.

    Science.gov (United States)

    Hornburger, Michael C; Mayer, Bettina A; Leonhardt, Stefanie; Willer, Elisabeth A; Zahler, Stefan; Beyerle, Andrea; Rajalingam, Krishnaraj; Vollmar, Angelika M; Fürst, Robert

    2014-04-01

    Inhibitor of apoptosis (IAP) proteins, such as XIAP or cIAP1/2, are important regulators of apoptosis in cancer cells, and IAP antagonists are currently evaluated as antitumor agents. Beyond their function in cancer cells, this study demonstrates a novel role of IAPs as regulators of vascular endothelial permeability. Two structurally different IAP antagonists, ABT and Smac085, as well as silencing of IAPs, reduced the thrombin receptor-activating peptide (TRAP)-induced barrier dysfunction in human endothelial cells as assessed by measuring macromolecular permeability or transendothelial electrical resistance. ABT diminished thrombin-evoked stress fiber formation, activation of myosin light chain 2, and disassembly of adherens junctions independent of calcium signaling, protein kinase C, and mitogen-activated protein kinases. Interestingly, ABT and silencing of IAPs, in particular XIAP, reduced the TRAP-evoked RhoA activation, whereas Rac1 was not affected. XIAP and, to a lesser extent, cIAP1 were found to directly interact with RhoA independently of the RhoA activation status. Under cell-free conditions, XIAP did not induce an ubiquitination of RhoA. In summary, our work discloses IAPs as crucial regulators of endothelial permeability and suggests IAP inhibition as interesting approach for the prevention of endothelial barrier dysfunction.

  15. Ganoderma atrum polysaccharide ameliorates anoxia/reoxygenation-mediated oxidative stress and apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Zhang, Yan-Song; Li, Wen-Juan; Zhang, Xian-Yi; Yan, Yu-Xin; Nie, Shao-Ping; Gong, De-Ming; Tang, Xiao-Fang; He, Ming; Xie, Ming-Yong

    2017-05-01

    Ganoderma atrum polysaccharide (PSG-1), a main polysaccharide from Ganoderma atrum, possesses potent antioxidant capacity and cardiovascular benefits. The aim of this study was to investigate the role of PSG-1 in oxidative stress and apoptosis in human umbilical vein endothelial cells (HUVECs) under anoxia/reoxygenation (A/R) injury conditions. The results showed that exposure of HUVECs to A/R triggered cell death and apoptosis. Administration of PSG-1 significantly inhibited A/R-induced cell death and apoptosis in HUVECs. PSG-1-reduced A/R injury was mediated via mitochondrial apoptotic pathway, as evidenced by elevation of mitochondrial Bcl-2 protein and mitochondrial membrane potential, and attenuation of Bax translocation, cytochrome c release and caspases activation. Furthermore, PSG-1 enhanced the activities of superoxide dismutase, catalase and glutathione peroxidase and glutathione content, and concomitantly attenuated reactive oxygen species generation, lipid peroxidation and glutathione disulfide content. The antioxidant, N-acetyl-l-cysteine, significantly ameliorated all of these endothelial injuries caused by A/R, suggesting that antioxidant activities might play a key role in PSG-1-induced endothelial protection. Taken together, these findings suggested that PSG-1 could be as a promising adjuvant against endothelial dysfunction through ameliorating oxidative stress and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae

    International Nuclear Information System (INIS)

    Edwards, J.E. Jr.; Rotrosen, D.; Fontaine, J.W.; Haudenschild, C.C.; Diamond, R.D.

    1987-01-01

    Interactions were studied between human neutrophils and cultured human umbilical vein endothelial cells invaded by Candida albicans. In the absence of neutrophils, progressive Candida germination and hyphal growth extensively damaged endothelial cell monolayers over a period of 4 to 6 hours, as determined both by morphological changes and release of 51 Cr from radiolabeled endothelial cells. Monolayers were completely destroyed and replaced by hyphae after 18 hours of incubation. In contrast, when added 2 hours after the monolayers had been infected with Candida, neutrophils selectively migrated toward and attached to hyphae at points of hyphal penetration into individual endothelial cells (observed by time-lapse video-microscopy). Attached neutrophils spread over hyphal surfaces both within and beneath the endothelial cells; neutrophil recruitment to initial sites of leukocyte-Candida-endothelial cell interactions continued throughout the first 60 minutes of observation. Neutrophil spreading and stasis were observed only along Candida hyphae and at sites of Candida-endothelial cell interactions. These events resulted in 58.0% killing of Candida at 2 hours and subsequent clearance of Candida from endothelial cell monolayers, as determined by microcolony counts and morphological observation. On introduction of additional neutrophils to yield higher ratios of neutrophils to endothelial cells (10 neutrophils:1 endothelial cell), neutrophil migration toward hyphal elements continued. Despite retraction or displacement of occasional endothelial cells by invading Candida and neutrophils, most endothelial cells remained intact, viable, and motile as verified both by morphological observations and measurement of 51 Cr release from radiolabeled monolayers

  17. Birth weight and characteristics of endothelial and smooth muscle cell cultures from human umbilical cord vessels

    Directory of Open Access Journals (Sweden)

    Lurbe Empar

    2009-04-01

    Full Text Available Abstract Background Low birth weight has been related to an increased risk for developing high blood pressure in adult life. The molecular and cellular analysis of umbilical cord artery and vein may provide information about the early vascular characteristics of an individual. We have assessed several phenotype characteristics of the four vascular cell types derived from human umbilical cords of newborns with different birth weight. Further follow-up studies could show the association of those vascular properties with infancy and adulthood blood pressure. Methods Endothelial and smooth muscle cell cultures were obtained from umbilical cords from two groups of newborns of birth weight less than 2.8 kg or higher than 3.5 kg. The expression of specific endothelial cell markers (von Willebrand factor, CD31, and the binding and internalization of acetylated low-density lipoprotein and the smooth muscle cell specific α-actin have been evaluated. Cell culture viability, proliferation kinetic, growth fraction (expression of Ki67 and percentage of senescent cells (detection of β-galactosidase activity at pH 6.0 have been determined. Endothelial cell projection area was determined by morphometric analysis of cell cultures after CD31 immunodetection. Results The highest variation was found in cell density at the confluence of endothelial cell cultures derived from umbilical cord arteries (66,789 ± 5,093 cells/cm2 vs. 45,630 ± 11,927 cells/cm2, p 2, p Conclusion The analysis of umbilical cord artery endothelial cells, which demonstrated differences in cell size related to birth weight, can provide hints about the cellular and molecular links between lower birth weight and increased adult high blood pressure risk.

  18. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement.

    Science.gov (United States)

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S; Riahi, Reza; Wong, Pak Kin

    2016-03-03

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.

  19. Endothelial cell subpopulations in vitro: cell volume, cell cycle, and radiosensitivity

    International Nuclear Information System (INIS)

    Rubin, D.B.; Drab, E.A.; Bauer, K.D.

    1989-01-01

    Vascular endothelial cells (EC) are important clinical targets of radiation and other forms of free radical/oxidant stresses. In this study, we found that the extent of endothelial damage may be determined by the different cytotoxic responses of EC subpopulations. The following characteristics of EC subpopulations were examined: (1) cell volume; (2) cell cycle position; and (3) cytotoxic indexes for both acute cell survival and proliferative capacity after irradiation (137Cs, gamma, 0-10 Gy). EC cultured from bovine aortas were separated by centrifugal elutriation into subpopulations of different cell volumes. Through flow cytometry, we found that cell volume was related to the cell cycle phase distribution. The smallest EC were distributed in G1 phase and the larger cells were distributed in either early S, middle S, or late S + G2M phases. Cell cycle phase at the time of irradiation was not associated with acute cell loss. However, distribution in the cell cycle did relate to cell survival based on proliferative capacity (P less than 0.01). The order of increasing radioresistance was cells in G1 (D0 = 110 cGy), early S (135 cGy), middle S (145 cGy), and late S + G2M phases (180 cGy). These findings (1) suggest an age-related response to radiation in a nonmalignant differentiated cell type and (2) demonstrate EC subpopulations in culture

  20. Sun Ginseng Protects Endothelial Progenitor Cells From Senescence Associated Apoptosis

    Science.gov (United States)

    Im, Wooseok; Chung, Jin-Young; Bhan, Jaejun; Lim, Jiyeon; Lee, Soon-Tae; Chu, Kon; Kim, Manho

    2012-01-01

    Endothelial progenitor cells (EPC) are a population of cells that circulate in the blood stream. They play a role in angiogenesis and, therefore, can be prognostic markers of vascular repair. Ginsenoside Rg3 prevents endothelial cell apoptosis through the inhibition of the mitochondrial caspase pathway. It also affects estrogen activity, which reduces EPC senescence. Sun ginseng (SG), which is heat-processed ginseng, has a high content of ginsenosides. The purpose of this study was to investigate the protective effects of SG on senescence-associated apoptosis in EPCs. In order to isolate EPCs, mononuclear cells of human blood buffy coats were cultured and characterized by their uptake of acetylated low-density lipoprotein (acLDL) and their binding of Ulex europaeus agglutinin I (ulex-lectin). Flow cytometry with annexin-V staining was performed in order to assess early and late apoptosis. Senescence was determined by β-galactosidase (β-gal) staining. Staining with 4′-6-Diamidino-2-phenylindole verified that most adherent cells (93±2.7%) were acLDL-positive and ulex-lectin-positive. The percentage of β-gal-positive EPCs was decreased from 93.8±2.0% to 62.5±3.6% by SG treatment. A fluorescence-activated cell sorter (FACS) analysis showed that 4.9% of EPCs were late apoptotic in controls. Sun ginseng decreased the apoptotic cell population by 39% in the late stage of apoptosis from control baseline levels. In conclusion, these results show antisenescent and antiapoptotic effects of SG in human-derived EPCs, indicating that SG can enhance EPC-mediated repair mechanisms. PMID:23717107

  1. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein.

    Science.gov (United States)

    Li, Zhijuan; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. Copyright © 2015. Published by Elsevier Inc.

  2. Endothelial cell seeding on crosslinked collagen : Effects of crosslinking on endothelial cell proliferation and functional parameters

    NARCIS (Netherlands)

    Wissink, MJB; van Luyn, MJA; Dijk, F; Poot, AA; Engbers, GHM; Beugeling, T; van Aken, WG; Feijen, J

    Endothelial cell seeding, a promising method to improve the performance of small-diameter vascular grafts, requires a suitable substrate, such as crosslinked collagen. Commonly used crosslinking agents such as glutaraldehyde and formaldehyde cause, however, cytotoxic reactions and thereby hamper

  3. Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Chung, Byung-Hee; Kim, Jong-Dai; Kim, Chun-Ki; Kim, Jung Huan; Won, Moo-Ho; Lee, Han-Soo; Dong, Mi-Sook; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2008-01-01

    We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy

  4. Post-transcriptional regulation of osteoblastic platelet-derived growth factor receptor-alpha expression by co-cultured primary endothelial cells

    DEFF Research Database (Denmark)

    Finkenzeller, Günter; Mehlhorn, Alexander T; Schmal, Hagen

    2010-01-01

    -alpha downregulation is dependent on time and cell number. This effect was specific to endothelial cells and was not observed when hOBs were co-cultured with human primary chondrocytes or fibroblasts. Likewise, HUVEC-mediated suppression of PDGFR-alpha expression was only seen in hOBs and mesenchymal stem cells......Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in osteoblast function. Inhibition of PDGFR activity leads to a suppression of osteoblast proliferation, whereas mineralized matrix production is enhanced. In previous experiments, we showed that co......-cultivation of human primary endothelial cells and human primary osteoblasts (hOBs) leads to a cell contact-dependent downregulation of PDGFR-alpha expression in the osteoblasts. In this study, we investigated this effect in more detail, revealing that human umbilical vein endothelial cell (HUVEC)-mediated PDGFR...

  5. File list: InP.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 Input control Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  6. File list: InP.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 Input control Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  7. File list: InP.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 Input control Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  8. File list: InP.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 Input control Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  9. Jagged gives endothelial tip cells an edge.

    Science.gov (United States)

    Suchting, Steven; Eichmann, Anne

    2009-06-12

    Sprouting blood vessels have tip cells that lead and stalk cells that follow. Benedito et al. (2009) now show that competition between endothelial cells for the tip position is regulated by glycosylation of Notch receptors and by the opposing actions of the Notch ligands Jagged1 and Delta-like 4.

  10. Effects of vitrectomy combined with cataract surgery on the corneal endothelial cells in diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Lei Zhan

    2017-08-01

    Full Text Available AIM: To investigate the effects of vitrectomy combined with cataract surgery on the corneal endothelial cells in diabetic retinopathy. METHODS: A retrospective study was designed. 160 patients(160 eyeswith diabetic retinopathy from Jan 2015 to Feb 2017 were divided into two groups according to cataract. 74 patients(74 eyeswere operated on vitrectomy, and 86 patients(86 eyeson vitrectomy combined with phacoemulsification cataract surgery and capsular bag implantation of foldable intraocular lens. To record the change of corneal endothelial cells density, average cellular area, coefficient of variation and percentage of hexagonal endothelial cell before and after treatment with Topcon corneal specular microscope. RESULTS: Before and after surgery, the results of corneal endothelial cells density, average cellular area, coefficient of variation and percentage of hexagonal endothelial cell in simple vitrectomy group were no significant difference(P>0.05; After treatment corneal endothelial cells density and percentage of hexagonal endothelial cell were changed with statistical difference as the same as average cellular area and coefficient of variation(PPCONCLUSION: It has certain influence on the corned endothelial cells when using vitrectomy combined with cataract surgery in diabetic retinopathy. For patients with indications, it should be paid attention to protecting the corneal endothelial cells.

  11. The redox mechanism for vascular barrier dysfunction associated with metabolic disorders: Glutathionylation of Rac1 in endothelial cells.

    Science.gov (United States)

    Han, Jingyan; Weisbrod, Robert M; Shao, Di; Watanabe, Yosuke; Yin, Xiaoyan; Bachschmid, Markus M; Seta, Francesca; Janssen-Heininger, Yvonne M W; Matsui, Reiko; Zang, Mengwei; Hamburg, Naomi M; Cohen, Richard A

    2016-10-01

    Oxidative stress is implicated in increased vascular permeability associated with metabolic disorders, but the underlying redox mechanism is poorly defined. S-glutathionylation, a stable adduct of glutathione with protein sulfhydryl, is a reversible oxidative modification of protein and is emerging as an important redox signaling paradigm in cardiovascular physiopathology. The present study determines the role of protein S-glutathionylation in metabolic stress-induced endothelial cell permeability. In endothelial cells isolated from patients with type-2 diabetes mellitus, protein S-glutathionylation level was increased. This change was also observed in aortic endothelium in ApoE deficient (ApoE -/- ) mice fed on Western diet. Metabolic stress-induced protein S-glutathionylation in human aortic endothelial cells (HAEC) was positively correlated with elevated endothelial cell permeability, as reflected by disassembly of cell-cell adherens junctions and cortical actin structures. These impairments were reversed by adenoviral overexpression of a specific de-glutathionylation enzyme, glutaredoxin-1 in cultured HAECs. Consistently, transgenic overexpression of human Glrx-1 in ApoE -/- mice fed the Western diet attenuated endothelial protein S-glutathionylation, actin cytoskeletal disorganization, and vascular permeability in the aorta. Mechanistically, glutathionylation and inactivation of Rac1, a small RhoGPase, were associated with endothelial hyperpermeability caused by metabolic stress. Glutathionylation of Rac1 on cysteine 81 and 157 located adjacent to guanine nucleotide binding site was required for the metabolic stress to inhibit Rac1 activity and promote endothelial hyperpermeability. Glutathionylation and inactivation of Rac1 in endothelial cells represent a novel redox mechanism of vascular barrier dysfunction associated with metabolic disorders. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Expression of inducible nitric oxide synthase, caspase-3 and production of reactive oxygen intermediate on endothelial cells culture (HUVECs treated with P. falciparum infected erythrocytes and tumour necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Loeki E. Fitri

    2006-09-01

    Full Text Available Cytoadherence of P. falciparum infected erythrocytes on endothelial cells is a key factor in development of severe malaria. This process may associated with the activation of local immune that was enhanced by tumour necrosis factor-α (TNF-α. This study was conducted to see the influence of P.falciparum infected erythrocytes cytoadherence and TNF-α treatment in inducing endothelial cells activation in vitro. inducible nitric oxide synthase (iNOS and caspase-3 expression, also reactive oxygen intermediate (ROI production were used as parameters. An Experimental laboratory study had been done to observe endothelial cells activation (HUVECs after treatment with TNF-α for 20 hours or P. falciparum infected erythrocytes for 1 hour or both of them. Normal endothelial cells culture had been used as a control. Using immunocytochemistry local immune activation of endothelial cells was determined by iNOS and caspase-3 expression. Nitro Blue Tetrazolium reduction-assay was conducted to see the ROI production semi quantitatively. inducible nitric oxide synthase expression only found on endothelial cells culture treated with P. falciparum infected erythrocytes or both P. falciparum infected erythrocytes and TNF-α. Caspase-3 expression found slightly on normal endothelial cells culture. This expression increased significantly on endothelial cells culture treated with both P.falciparum infected erythrocytes and TNF-α (p=0.000. The normal endothelial cells release low level of ROI in the presence of non-specific trigger, PMA. In the presence of P. falciparum infected erythrocytes or TNF-α or both of them, some cells showed medium to high levels of ROI. Cytoadherence of P. falciparum infected erythrocytes and TNF α treatment on endothelial cells can induce activation of local immune marked by increase inducible nitric oxide synthase and release of free radicals that cause cell damage. (Med J Indones 2006; 15:151-6 Keywords: P.falciparum ,HUVECs, TNF-α, i

  13. Endothelial adhesion molecules and leukocyte integrins in preeclamptic patients.

    Science.gov (United States)

    Haller, H; Ziegler, E M; Homuth, V; Drab, M; Eichhorn, J; Nagy, Z; Busjahn, A; Vetter, K; Luft, F C

    1997-01-01

    Endothelial cell activation is important in the pathogenesis of preeclampsia; however, the nature of the activation is unknown. We investigated 22 patients with preeclampsia. 29 normotensive pregnancies, and 18 nonpregnant women to test the hypothesis that serum from preeclamptic patients induces expression of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) and stimulates intracellular free calcium concentrations [Ca2+]i in cultured endothelial cells. We then asked whether the corresponding integrin adhesive counter receptors lymphocyte function-associated antigen-1 (CD11a/CD18), macrophage-1 antigen (CD11b/CD18), p150,95 (CD11c/CD18), and very late activation antigen-4 (CD49/CD29) are increased in patients with preeclampsia. In the pregnant women, the measurements were conducted both before and after delivery. Integrin expression was measured by fluorescent antibody cell sorting analysis using monoclonal antibodies. ICAM-1 and VCAM-1 were analyzed on endothelial cells by enzyme-linked immunosorbent assay. [Ca2+]i was measured with fura 2. Serum from preeclamptic patients increased endothelial cell ICAM-1 expression but not VCAM-1 expression. Preeclamptic patients' serum also increased [Ca2+]i in endothelial cells compared with serum from normal nonpregnant or normal pregnant women. Endothelial cell [Ca2+]i concentrations were correlated with the ICAM-1 expression in preeclamptic patients (r = .80, P preclampsia and normal pregnancy compared with the nonpregnant state. The expression decreased significantly after delivery in both groups. Our results demonstrate that serum from preeclamptic women induces increased ICAM-1 surface expression on endothelial cells, while the expression of the integrin counterreceptors was not different. The effect on endothelial cells may be related to an increase in [Ca2+]i. The effect on cultured endothelial cells and the rapid decrease after delivery suggests the presence of a circulating serum

  14. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    International Nuclear Information System (INIS)

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-01-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  15. Radiation-induced VEGF-C expression and endothelial cell proliferation in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Hsuan [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Pan, Shiow-Lin; Wang, Jing-Chi; Teng, Che-Ming [National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Kuo, Sung-Hsin [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Department of Internal Medicine, Taipei (China); Cheng, Jason Chia-Hsien [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Graduate Institute of Clinical Medicine, Taipei (China)

    2014-12-15

    The present study was undertaken to investigate whether radiation induces the expression of vascular endothelial growth factor C (VEGF-C) through activation of the PI3K/Akt/mTOR pathway,subsequently affecting endothelial cells. Radiotherapy-induced tumor micro-lymphatic vessel density (MLVD) was determined in a lung cancer xenograft model established in SCID mice. The protein expression and phosphorylation of members of the PI3K/Akt/mTOR pathway and VEGF-C secretion and mRNA expression in irradiated lung cancer cells were assessed by Western blot analysis, enzyme-linked immunosorbent assays (ELISAs), and reverse transcriptase-polymerase chain reaction (RT-PCR). Moreover, specific chemical inhibitors were used to evaluate the role of the PI3K/Akt/mTOR signaling pathway. Conditioned medium (CM) from irradiated control-siRNA or VEGF-C-siRNA-expressing A549 cells was used to evaluate the proliferation of endothelial cells by the MTT assay. Radiation increased VEGF-C expression in a dose-dependent manner over time at the protein but not at the mRNA level. Radiation also up-regulated the phosphorylation of Akt, mTOR, 4EBP, and eIF4E, but not of p70S6K. Radiation-induced VEGF-C expression was down-regulated by LY294002 and rapamycin (both p < 0.05). Furthermore, CM from irradiated A549 cells enhanced human umbilical vein endothelial cell (HUVEC) and lymphatic endothelial cell (LEC) proliferation, which was not observed with CM from irradiated VEGF-C-siRNA-expressing A549 cells. Radiation-induced activation of the PI3K/Akt/mTOR signaling pathway increases VEGF-C expression in lung cancer cells, thereby promoting endothelial cell proliferation. (orig.) [German] Die vorliegende Studie untersucht, ob die Strahlung die Expression von VEGF-C (vascular endothelial growth factor C) mittels Aktivierung des PI3K/Akt/mTOR-Signalwegs induziert und anschliessend die endothelialen Zellen beeinflusst. Die durch Strahlentherapie induzierte Mikrolymphgefaessdichte (MLVD) im Tumor wurde in

  16. File list: NoD.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 No description Cardiovascular Brachiocephal...ic endothelial cells DRX014747 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  17. File list: NoD.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 No description Cardiovascular Brachiocephal...ic endothelial cells DRX014747 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  18. Surface determinants of low density lipoprotein uptake by endothelial cells

    International Nuclear Information System (INIS)

    Goeroeg, P.; Pearson, J.D.

    1984-01-01

    The surface sialic acid content of aortic endothelial cells in vitro was substantially lower in sparse cultures than at confluence. Binding of LDL to endothelial cells did not change at different culture densities and was unaffected by brief pretreatment with neuraminidase to partially remove surface sialic acid residues. In contrast, internalisation of LDL declined by a factor of 3 between low density cell cultures and confluent monolayers; neuraminidase pretreatment increased LDL uptake and the effect was most marked (>10-fold) at confluence. Pretreatment with cationised ferritin, which removed most of the surface sialic acid residues as well as glycosaminoglycans, increased LDL internalisation by up to 20-fold, again with most effect on confluent monolayers. Thus LDL uptake is inversely correlated with sialic acid content. We conclude that changes in the surface density of sialic acid (and possibly other charged) residues significantly modulate endothelial LDL uptake, and suggest that focal increases in LDL accumulation during atherogenesis may be related to alterations in endothelial endocytic properties at sites of increased cell turnover or damage. (author)

  19. Oral Mucosa Harbors a High Frequency of Endothelial Cells: A Novel Postnatal Cell Source for Angiogenic Regeneration.

    Science.gov (United States)

    Zhou, Jian; Rogers, Jason H; Lee, Scott H; Sun, DongMing; Yao, Hai; Mao, Jeremy J; Kong, Kimi Y

    2017-01-15

    Endothelial progenitor cells/endothelial cells (EPCs/ECs) have great potential to treat pathological conditions such as cardiac infarction, muscle ischemia, and bone fractures, but isolation of EPC/ECs from existing cell sources is challenging due to their low EC frequency. We have isolated endothelial progenitor (EP)-like cells from rat oral mucosa and characterized their yield, immunophenotype, growth, and in vivo angiogenic potential. The frequency of EP-like cells derived from oral mucosa is thousands of folds higher than EPCs derived from donor-match bone marrow samples. EP-like cells from oral mucosa were positive for EC markers CD31, VE-Cadherin, and VEGFR2. Oral mucosa-derived EP-like cells displayed robust uptake of acetylated low-density lipoprotein and formed stable capillary networks in Matrigel. Subcutaneously implanted oral mucosa-derived EP-like cells anastomosed with host blood vessels, implicating their ability to elicit angiogenesis. Similar to endothelial colony-forming cells, EP-like cells from oral mucosa have a significantly higher proliferative rate than human umbilical vein endothelial cells. These findings identify a putative EPC source that is easily accessible in the oral cavity, potentially from discarded tissue specimens, and yet with robust yield and potency for angiogenesis in tissue and organ regeneration.

  20. Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells

    International Nuclear Information System (INIS)

    Wu Hualin; Lin ChiIou; Huang Yuanli; Chen, Pin-Shern; Kuo, Cheng-Hsiang; Chen, Mei-Shing; Wu, G.C.-C.; Shi, G.-Y.; Yang, H.-Y.; Lee Hsinyu

    2008-01-01

    Thrombomodulin (TM) is an anticoagulant glycoprotein highly expressed on endothelial cell surfaces. Increased levels of soluble TM in circulation have been widely accepted as an indicator of endothelial damage or dysfunction. Previous studies indicated that various proinflammatory factors stimulate TM shedding in various cell types such as smooth muscle cells and epithelial cells. Lysophosphatidic acid (LPA) is a bioactive lipid mediator present in biological fluids during endothelial damage or injury. In the present study, we first observed that LPA triggered TM shedding in human umbilical vein endothelial cells (HUVECs). By Cyflow analysis, we showed that the LPA-induced accessibility of antibodies to the endothelial growth factor (EGF)-like domain of TM is independent of matrix metalloproteinases (MMPs), while LPA-induced TM lectin-like domain shedding is MMP-dependent. Furthermore, a stable cell line expressing TM without its lectin-like domain exhibited a higher cell proliferation rate than a stable cell line expressing full-length TM. These results imply that LPA induces TM lectin-like domain shedding, which might contribute to the exposure of its EGF-like domain for EGF receptor (EGFR) binding, thereby stimulating subsequent cell proliferation. Based on our findings, we propose a novel mechanism for the exposure of TM EGF-like domain, which possibly mediates LPA-induced EGFR transactivation

  1. Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system.

    Science.gov (United States)

    Ohtani-Kaneko, Rsituko; Sato, Kenjiro; Tsutiya, Atsuhiro; Nakagawa, Yuka; Hashizume, Kazutoshi; Tazawa, Hidekatsu

    2017-10-09

    Induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) can contribute to elucidating the pathogenesis of heart and vascular diseases and developing their treatments. Their precise characteristics in fluid flow however remain unclear. Therefore, the aim of the present study is to characterise these features. We cultured three types of ECs in a microfluidic culture system: commercially available human iPS-ECs, human umbilical vein endothelial cells (HUVECs) and human umbilical artery endothelial cells (HUAECs). We then examined the mRNA expression levels of endothelial marker gene cluster of differentiation 31 (CD31), fit-related receptor tyrosine kinase (Flk-1), and the smooth muscle marker gene smooth muscle alpha-actin, and investigated changes in plasminogen activator inhibitor-1 (PAI-1) secretion and intracellular F-actin arrangement following heat stress. We also compared expressions of the arterial and venous marker genes ephrinB2 and EphB4, and the endothelial gap junction genes connexin (Cx) 37, 40, and 43 under fluidic shear stress to determine their arterial or venous characteristics. We found that iPS-ECs had similar endothelial marker gene expressions and exhibited similar increases in PAI-1 secretion under heat stress as HUVECs and HUAECs. In addition, F-actin arrangement in iPSC-ECs also responded to heat stress, as previously reported. However, they had different expression patterns of arterial and venous marker genes and Cx genes under different fluidic shear stress levels, showing that iPSC-ECs exhibit different characteristics from arterial and venous ECs. This microfluidic culture system equipped with variable shear stress control will provide an easy-to-use assay tool to examine characteristics of iPS-ECs generated by different protocols in various laboratories and contribute to basic and applied biomedical researches on iPS-ECs.

  2. Vildagliptin stimulates endothelial cell network formation and ischemia-induced revascularization via an endothelial nitric-oxide synthase-dependent mechanism.

    Science.gov (United States)

    Ishii, Masakazu; Shibata, Rei; Kondo, Kazuhisa; Kambara, Takahiro; Shimizu, Yuuki; Tanigawa, Tohru; Bando, Yasuko K; Nishimura, Masahiro; Ouchi, Noriyuki; Murohara, Toyoaki

    2014-09-26

    Dipeptidyl peptidase-4 inhibitors are known to lower glucose levels and are also beneficial in the management of cardiovascular disease. Here, we investigated whether a dipeptidyl peptidase-4 inhibitor, vildagliptin, modulates endothelial cell network formation and revascularization processes in vitro and in vivo. Treatment with vildagliptin enhanced blood flow recovery and capillary density in the ischemic limbs of wild-type mice, with accompanying increases in phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). In contrast to wild-type mice, treatment with vildagliptin did not improve blood flow in ischemic muscles of eNOS-deficient mice. Treatment with vildagliptin increased the levels of glucagon-like peptide-1 (GLP-1) and adiponectin, which have protective effects on the vasculature. Both vildagliptin and GLP-1 increased the differentiation of cultured human umbilical vein endothelial cells (HUVECs) into vascular-like structures, although vildagliptin was less effective than GLP-1. GLP-1 and vildagliptin also stimulated the phosphorylation of Akt and eNOS in HUVECs. Pretreatment with a PI3 kinase or NOS inhibitor blocked the stimulatory effects of both vildagliptin and GLP-1 on HUVEC differentiation. Furthermore, treatment with vildagliptin only partially increased the limb flow of ischemic muscle in adiponectin-deficient mice in vivo. GLP-1, but not vildagliptin, significantly increased adiponectin expression in differentiated 3T3-L1 adipocytes in vitro. These data indicate that vildagliptin promotes endothelial cell function via eNOS signaling, an effect that may be mediated by both GLP-1-dependent and GLP-1-independent mechanisms. The beneficial activity of GLP-1 for revascularization may also be partially mediated by its ability to increase adiponectin production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction.

    Science.gov (United States)

    Chen, Wei; Yang, Jie; Chen, Shuhua; Xiang, Hong; Liu, Hengdao; Lin, Dan; Zhao, Shaoli; Peng, Hui; Chen, Pan; Chen, Alex F; Lu, Hongwei

    2017-11-01

    Mitochondrial Ca 2+ overload is implicated in hyperglycaemia-induced endothelial cell dysfunction, but the key molecular events responsible remain unclear. We examined the involvement of mitochondrial calcium uniporter, which mediates mitochondrial Ca 2+ uptake, in endothelial cell dysfunction resulting from high-glucose treatment. Human umbilical vein endothelial cells were exposed to various glucose concentrations and to high glucose (30 mM) following mitochondrial calcium uniporter inhibition or activation with ruthenium red and spermine, respectively. Subsequently, mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA and protein expression was measured by real-time polymerase chain reaction and western blotting. Ca 2+ concentrations were analysed by laser confocal microscopy, and cytoplasmic and mitochondrial oxidative stress was detected using 2',7'-dichlorofluorescein diacetate and MitoSOX Red, respectively. Apoptosis was assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and a wound-healing assay was performed using an in vitro model. High glucose markedly upregulated mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA expression, as well as protein production, in a dose- and time-dependent manner with a maximum effect demonstrated at 72 h and 30 mM glucose concentration. Moreover, high-glucose treatment significantly raised both mitochondrial and cytoplasmic Ca 2+ and reactive oxygen species levels, increased apoptosis and compromised wound healing (all p calcium uniporter, respectively. Mitochondrial calcium uniporter plays an important role in hyperglycaemia-induced endothelial cell dysfunction and may constitute a therapeutic target to reduce vascular complications in diabetes.

  4. The role of corneal endothelial morphology in graft assessment and prediction of endothelial cell loss during organ culture of human donor corneas.

    Science.gov (United States)

    Hermel, Martin; Salla, Sabine; Fuest, Matthias; Walter, Peter

    2017-03-01

    Endothelial assessment is crucial in the release of corneas for grafting. We retrospectively analysed the role of endothelial morphology parameters in predicting endothelial cell loss during organ culture. Human donor corneas were cultured in minimal essential medium with 2% fetal calf serum and antibiotics. Initial endothelial morphology was assessed microscopically using score parameters polymegethism (POL), pleomorphism (PLE), granulation (GRA), vacuolization (VAC), segmentation of cell membranes (SEG), Descemet's folds (DF), trypan blue-positive cells (TBPC) and endothelial cell-free areas (ECFA). Some corneas were primarily rejected based on endothelial assessment. Endothelial cell density (ECD) was assessed at the beginning (I-ECD) and end of culture. Corneas were then placed in dehydration medium (as above + 5% dextran 500). In a subgroup, ECD was reassessed after dehydration. Endothelial cell loss during culture (ECL@Culture) and culture+dehydration (ECL-Culture&Dehydration) were calculated. Data were given as mean ± SD and analysed using multiple linear and logistic regression. Odds ratios (OR) and 95% confidence intervals (CI) were calculated. I-ECD was 2812 ± 360/mm 2 (n = 2356). The decision to reject a cornea due to endothelial assessment was associated negatively with I-ECD (OR = 0.77/100 cells, CI 0.7-0.82) and positively with ECFA (OR = 2.7, CI 1.69-4.35), SEG (OR =1.3, CI 1.01-1.68) and donor age (OR = 1.26/decade, CI 1.33-1.41). ECL@Culture was 153 ± 201/mm 2 (n = 1277), ECL@Culture&Dehydration was 169 ± 183/mm 2 (n = 918). ECL@Culture was associated positively with donor age, I-ECD, GRA and TBPC, and negatively with PLE, and DF. ECL@Culture&Dehydration was associated positively with age, sex, initial ECD, POL, PLE, VAC and TBPC. Morphological parameters displayed associations with the exclusion of corneas from culture and with endothelial cell loss. Appropriate parameter selection for screening purposes may help improve

  5. Effects of amelogenins on angiogenesis-associated processes of endothelial cells

    DEFF Research Database (Denmark)

    Almqvist, S; Kleinman, H K; Werthén, M

    2011-01-01

    To study the effects of an amelogenin mixture on integrin-dependent adhesion, DNA synthesis and apoptosis of cultured human dermal microvascular endothelial cells and angiogenesis in an organotypic assay.......To study the effects of an amelogenin mixture on integrin-dependent adhesion, DNA synthesis and apoptosis of cultured human dermal microvascular endothelial cells and angiogenesis in an organotypic assay....

  6. Downregulation of Lysyl Oxidase Protects Retinal Endothelial Cells From High Glucose-Induced Apoptosis.

    Science.gov (United States)

    Kim, Dongjoon; Mecham, Robert P; Trackman, Philip C; Roy, Sayon

    2017-05-01

    To investigate the effect of reducing high glucose (HG)-induced lysyl oxidase (LOX) overexpression and increased activity on retinal endothelial cell apoptosis. Rat retinal endothelial cells (RRECs) were grown in normal (N) or HG (30 mM glucose) medium for 7 days. In parallel, RRECs were grown in HG medium and transfected with LOX small interfering RNA (siRNA), scrambled siRNA as control, or exposed to β-aminopropionitrile (BAPN), a LOX inhibitor. LOX expression, AKT activation, and caspase-3 activity were determined by Western blot (WB) analysis and apoptosis by differential dye staining assay. Moreover, to determine whether diabetes-induced LOX overexpression alters AKT activation and promotes apoptosis, changes in LOX expression, AKT phosphorylation, caspase-3 activation, and Bax expression were assessed in retinas of streptozotocin (STZ)-induced diabetic mice and LOX heterozygous knockout (LOX+/-) mice. WB analysis indicated significant LOX overexpression and reduced AKT activation under HG condition in RRECs. Interestingly, when cells grown in HG were transfected with LOX siRNA or exposed to BAPN, the number of apoptotic cells was significantly decreased concomitant with increased AKT phosphorylation. Diabetic mouse retinas exhibited LOX overexpression, decreased AKT phosphorylation, and increased Bax and caspase-3 activation compared to values in nondiabetic mice. In LOX+/- mice, reduced LOX levels were observed with increased AKT activity, and reduced Bax and caspase-3 activity. Furthermore, decreased levels of LOX in the LOX+/- mice was protective against diabetes-induced apoptosis. Findings from this study indicate that preventing LOX overexpression may be protective against HG-induced apoptosis in retinal vascular cells associated with diabetic retinopathy.

  7. Downregulation of B-myb promotes senescence via the ROS-mediated p53/p21 pathway, in vascular endothelial cells.

    Science.gov (United States)

    Zhou, Zhihui; Yin, Yanlin; Chang, Qun; Sun, Guanqun; Lin, Jiahui; Dai, Yalei

    2017-04-01

    To reveal whether B-myb is involved in preventing senescence of vascular endothelial cells, and if so, to identify possible mechanisms for it. C57/BL6 male mice and primary human aortic endothelial cells (HAECs) were used. Bleomycin was applied to induce stress-related premature senescence. B-myb knockdown was achieved using an siRNA technique and cell senescence was assessed using the senescence-associated β-galactosidase (SA-β-gal) assay. Intracellular reactive oxygen species (ROS) production was analysed using an ROS assay kit and cell proliferation was evaluated using KFluor488 EdU kit. Capillary tube network formation was determined by Matrigel assay. Expressions of mRNA and protein levels were detected by real-time PCR and western blotting. B-myb expression significantly decreased, while p53 and p21 expressions increased in the aortas of aged mice. This expression pattern was also found in replicative senescent HAECs and senescent HAECs induced by bleomycin. B-myb knockdown resulted in upregulation of p22 phox , ROS accumulation and cell senescence of HAECs. Downregulation of B-myb significantly inhibited cell proliferation and capillary tube network formation and activated the p53/p21 signalling pathway. Blocking ROS production or inhibiting p53 activation remarkably attenuated SA-β-gal activity and delayed cell senescence induced by B-myb-silencing. Downregulation of B-myb induced senescence by upregulation of p22 phox and activation of the ROS/p53/p21 pathway, in our vascular endothelial cells, suggesting that B-myb may be a novel candidate for regulating cell senescence to protect against endothelial senescence-related cardiovascular diseases. © 2016 John Wiley & Sons Ltd.

  8. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijuan, E-mail: zjlee038@163.com; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.

  9. A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function

    Science.gov (United States)

    Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.

    2018-01-01

    Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488

  10. Adenine nucleotide depletion from endothelial cells exposed to xanthine oxidase

    International Nuclear Information System (INIS)

    Aalto, T.K.; Raivio, K.O.

    1990-01-01

    Hypoxia causes breakdown of cellular nucleotides, accumulation of hypoxanthine (HX), and conversion of xanthine dehydrogenase into xanthine oxidase (XO). Upon reoxygenation, the HX-XO reaction generates free radicals, one potential mechanism of tissue damage. Because endothelial cells contain XO and are exposed to circulating HX, they are a likely target for damage. We studied the effect of XO and/or HX at physiologically relevant concentrations on nucleotide metabolism of cultured endothelial cells from human umbilical veins. Cells were labeled with [14C]adenine and incubated for up to 6 h with HX, XO, or both, in the absence or presence of serum. Adenine nucleotides from cell extracts and nucleotide breakdown products (HX, xanthine, and urate) from the medium were separated and counted. HX alone had no effect. XO (80 mU/ml) alone caused a 70% (no serum) or 40% (with serum) fall in adenine nucleotides and an equivalent increase of xanthine and urate. The combination of HX and XO caused a 90% (no serum) or 70% (with serum) decrease in nucleotides, decrease in energy charge, and detachment of cells from the culture plate. Nucleotide depletion was not accounted for by proteolytic activity in the XO preparation. Albumin was only half as effective as serum in preventing nucleotide loss. Thus exogenous XO, in the presence of endogenous HX, triggers adenine nucleotide catabolism, but endogenous XO activity is too low to influence nucleotide levels even at high exogenous HX concentrations. Serum limits the catabolic effect of XO and thus protects cells from free radical damage

  11. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.

    Science.gov (United States)

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M

    2016-03-01

    Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart

  12. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-01-01

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6ω-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-κB (NF-κB). A 4 /J 4 -neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH 4 ), which concurrently abrogated A 4 /J 4 -NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A 4 /J 4 NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5ω-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A 4 /J 4 -NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs.

  13. Adhesion behavior of endothelial progenitor cells to endothelial cells in simple shear flow

    Science.gov (United States)

    Gong, Xiao-Bo; Li, Yu-Qing; Gao, Quan-Chao; Cheng, Bin-Bin; Shen, Bao-Rong; Yan, Zhi-Qiang; Jiang, Zong-Lai

    2011-12-01

    The adhesion of endothelial progenitor cells (EPCs) on endothelial cells (ECs) is one of the critical physiological processes for the regenesis of vascular vessels and the prevention of serious cardiovascular diseases. Here, the rolling and adhesion behavior of EPCs on ECs was studied numerically. A two-dimensional numerical model was developed based on the immersed boundary method for simulating the rolling and adhesion of cells in a channel flow. The binding force arising from the catch bond of a receptor and ligand pair was modeled with stochastic Monte Carlo method and Hookean spring model. The effect of tumor necrosis factor alpha (TNF- α) on the expression of the number of adhesion molecules in ECs was analyzed experimentally. A flow chamber system with CCD camera was set up to observe the top view of the rolling of EPCs on the substrate cultivated with ECs. Numerical results prove that the adhesion of EPC on ECs is closely related to membrane stiffness of the cell and shear rate of the flow. It also suggests that the adhesion force between EPC and EC by P-selectin glycoprotein ligand-1 only is not strong enough to bond the cell onto vessel walls unless contributions of other catch bond are considered. Experimental results demonstrate that TNF- α enhanced the expressions of VCAM, ICAM, P-selectin and E-selectin in ECs, which supports the numerical results that the rolling velocity of EPC on TNF- α treated EC substrate decreases obviously compared with its velocity on the untreated one. It is found that because the adhesion is affected by both the rolling velocity and the deformability of the cell, an optimal stiffness of EPC may exist at a given shear rate of flow for achieving maximum adhesion rates.

  14. Effect of apple extracts on NF-kappaB activation in human umbilical vein endothelial cells

    Czech Academy of Sciences Publication Activity Database

    Davis, P.A.; Polagruto, J.A.; Valacchi, G.; Phung, A.; Souček, Karel; Keen, C.L.; Gershwin, M.E.

    2006-01-01

    Roč. 231, č. 5 (2006), s. 594-598 ISSN 1535-3702 Institutional research plan: CEZ:AV0Z50040507 Keywords : human umbilical vascular endothelial cells * NF-kappaB * antioxidants Subject RIV: BO - Biophysics Impact factor: 2.845, year: 2006

  15. Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents

    Directory of Open Access Journals (Sweden)

    Eli Fine

    2009-04-01

    Full Text Available Eli Fine1, Lijie Zhang1, Hicham Fenniri2, Thomas J Webster1 1Department of Engineering, Brown University, Providence, RI, USA; 2National Institute for Nanotechnology and Department of Chemistry, University of Alberta, Edmonton, AB, CanadaAbstract: One of the main problems with current vascular stents is a lack of endothelial cell interactions, which if sufficient, would create a uniform healthy endothelium masking the underlying foreign metal from inflammatory cell interference. Moreover, if endothelial cells from the arterial wall do not adhere to the stent, the stent can become loose and dislodge. Therefore, the objective of this in vitro study was to design a novel biomimetic nanostructured coating (that does not contain drugs on conventional vascular stent materials (specifically, titanium for improving vascular stent applications. Rosette nanotubes (RNTs are a new class of biomimetic nanotubes that self-assemble from DNA base analogs and have been shown in previous studies to sufficiently coat titanium and enhance osteoblast cell functions. RNTs have many desirable properties for use as vascular stent coatings including spontaneous self-assembly in body fluids, tailorable surface chemistry for specific implant applications, and nanoscale dimensions similar to those of the natural vascular extracellular matrix. Importantly, the results of this study provided the first evidence that RNTs functionalized with lysine (RNT–K, even at low concentrations, significantly increase endothelial cell density over uncoated titanium. Specifically, 0.01 mg/mL RNT–K coated titanium increased endothelial cell density by 37% and 52% compared to uncoated titanium after 4 h and three days, respectively. The excellent cytocompatibility properties of RNTs (as demonstrated here for the first time for endothelial cells suggest the need for the further exploration of these novel nanostructured materials for vascular stent applications.Keywords: stents

  16. Polychlorinated biphenyl-induced VCAM-1 expression is attenuated in aortic endothelial cells isolated from caveolin-1 deficient mice

    International Nuclear Information System (INIS)

    Han, Sung Gu; Eum, Sung Yong; Toborek, Michal; Smart, Eric; Hennig, Bernhard

    2010-01-01

    Exposure to environmental contaminants, such as polychlorinated biphenyls (PCBs), is a risk factor for the development of cardiovascular diseases such as atherosclerosis. Vascular cell adhesion molecule-1 (VCAM-1) is a critical mediator for adhesion and uptake of monocytes across the endothelium in the early stages of atherosclerosis development. The upregulation of VCAM-1 by PCBs may be dependent on functional membrane domains called caveolae. Caveolae are particularly abundant in endothelial cell membranes and involved in trafficking and signal transduction. The objective of this study was to investigate the role of caveolae in PCB-induced endothelial cell dysfunction. Primary mouse aortic endothelial cells (MAECs) isolated from caveolin-1-deficient mice and background C57BL/6 mice were treated with coplanar PCBs, such as PCB77 and PCB126. In addition, siRNA gene silencing technique was used to knockdown caveolin-1 in porcine vascular endothelial cells. In MAECs with functional caveolae, VCAM-1 protein levels were increased after exposure to both coplanar PCBs, whereas expression levels of VCAM-1 were not significantly altered in cells deficient of caveolin-1. Furthermore, PCB-induced monocyte adhesion was attenuated in caveolin-1-deficient MAECs. Similarly, siRNA silencing of caveolin-1 in porcine endothelial cells confirmed the caveolin-1-dependent VCAM-1 expression. Treatment of cells with PCB77 and PCB126 resulted in phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2), and pharmacological inhibition of ERK1/2 diminished the observed PCB-induced increase in monocyte adhesion. These findings suggest that coplanar PCBs induce adhesion molecule expression, such as VCAM-1, in endothelial cells, and that this response is regulated by caveolin-1 and functional caveolae. Our data demonstrate a critical role of functional caveolae in the activation and dysfunction of endothelial cells by coplanar PCBs.

  17. Regional heterogeneity of endothelial cells in the porcine vortex vein system.

    Science.gov (United States)

    Tan, Priscilla Ern Zhi; Yu, Paula K; Cringle, Stephen J; Morgan, William H; Yu, Dao-Yi

    2013-09-01

    The aim of this study was to investigate whether region-dependent endothelial heterogeneity is present within the porcine vortex vein system. The superior temporal vortex vein in young adult pig eyes were dissected out and cannulated. The intact vortex vein system down to the choroidal veins was then perfused with labels for f-actin and nucleic acid. The endothelial cells within the choroidal veins, pre-ampulla, anterior portion of the ampulla, mid-ampulla, posterior portion of the ampulla, post-ampulla, intra-scleral canal and the extra-ocular vortex vein regions were studied in detail using a confocal microscopy technique. The endothelial cell and nuclei length, width, area and perimeter were measured and compared between the different regions. Significant regional differences in the endothelial cell and nuclei length, width, area and perimeter were observed throughout the porcine vortex vein system. Most notably, very narrow and elongated endothelia were found in the post-ampulla region. A lack of smooth muscle cells was noted in the ampulla region compared to other regions. Heterogeneity in endothelial cell morphology is present throughout the porcine vortex vein system and there is a lack of smooth muscle cells in the ampulla region. This likely reflects the highly varied haemodynamic conditions and potential blood flow control mechanisms in different regions of the vortex vein system. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Docosahexaenoic Acid Inhibits Tumor Promoter-Induced Urokinase-Type Plasminogen Activator Receptor by Suppressing PKCδ- and MAPKs-Mediated Pathways in ECV304 Human Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Sen Lian

    Full Text Available The overexpression of urokinase-type plasminogen activator receptor (uPAR is associated with inflammation and virtually all human cancers. Despite the fact that docosahexaenoic acid (DHA has been reported to possess anti-inflammatory and anti-tumor properties, the negative regulation of uPAR by DHA is still undefined. Here, we investigated the effect of DHA on 12-O-tetradecanoylphorbol-13-acetate (TPA-induced uPAR expression and the underlying molecular mechanisms in ECV304 human endothelial cells. DHA concentration-dependently inhibited TPA-induced uPAR. Specific inhibitors and mutagenesis studies showed that PKCδ, JNK1/2, Erk1/2, NF-κB, and AP-1 were critical for TPA-induced uPAR expression. Application of DHA suppressed TPA-induced translocation of PKCδ, activation of the JNK1/2 and Erk1/2 signaling pathways, and subsequent AP-1 and NF-κB transactivation. In conclusion, these observations suggest a novel role for DHA in reducing uPAR expression and cell invasion by inhibition of PKCδ, JNK1/2, and Erk1/2, and the reduction of AP-1 and NF-κB activation in ECV304 human endothelial cells.

  19. Targeted adenovirus mediated inhibition of NF-κB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo.

    Science.gov (United States)

    Kułdo, J M; Ásgeirsdóttir, S A; Zwiers, P J; Bellu, A R; Rots, M G; Schalk, J A C; Ogawara, K I; Trautwein, C; Banas, B; Haisma, H J; Molema, G; Kamps, J A A M

    2013-02-28

    In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor κB signal transduction could silence the proinflammatory activation status of endothelial cells. For this, an adenovirus encoding dominant-negative IκB (dnIκB) as a therapeutic transgene was employed. Selectivity for the endothelial cells was achieved by introduction of antibodies specific for inflammatory endothelial adhesion molecules E-selectin or VCAM-1 chemically linked to the virus via polyethylene glycol. In vitro, the retargeted adenoviruses selectively infected cytokine-activated endothelial cells to express functional transgene. The comparison of transductional capacity of both retargeted viruses revealed that E-selectin based transgene delivery exerted superior pharmacological effects. Targeted delivery mediated dnIκB transgene expression in endothelial cells inhibited the induced expression of several inflammatory genes, including adhesion molecules, cytokines, and chemokines. In vivo, in mice suffering from glomerulonephritis, E-selectin-retargeted adenovirus selectively homed in the kidney to microvascular glomerular endothelium. Subsequent downregulation of endothelial adhesion molecule expression 2 days after induction of inflammation demonstrated the pharmacological potential of this gene therapy approach. The data justify further studies towards therapeutic virus design and optimization of treatment schedules to investigate their capacity to interfere with inflammatory disease progression. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways

    International Nuclear Information System (INIS)

    Laxmanan, Sreenivas; Robertson, Stuart W.; Wang Enfeng; Lau, Julie S.; Briscoe, David M.; Mukhopadhyay, Debabrata

    2005-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic cytokine that plays an important role in tumor growth and progression. Recent evidence suggests an alternate, albeit indirect, role of VEGF on host immune response to tumors. VEGF appears to diminish host immunity by altering the function of major antigen-presenting cells such as dendritic cells (DCs) [D.I. Gabrilovich, T. Ishida, S. Nadaf, J.E. Ohm, D.P. Carbone, Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function, Clin. Cancer Res. 5 (1999) 2963-2970, D. Gabrilovich, T. Ishida, T. Oyama, S. Ran, V. Kravtsov, S. Nadaf, D.P. Carbone, Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo, Blood 92 (1998) 4150-4166, T. Oyama, S. Ran, T. Ishida, S. Nadaf, L. Kerr, D.P. Carbone, D.I. Gabrilovich, Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells, J. Immunol. 160 (1998) 1224-1232.]. DCs are prime initiators of host immunity as they are known to activate both primary as well as secondary immune responses [J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.J. Liu, B. Pulendran, K. Palucka, Immunobiology of dendritic cells, Ann. Rev. Immunol. 18 (2000) 767-811.]. However, the exact nature of how VEGF suppresses DC function is not fully clear. In this report, we show that DCs cultured in the presence of VEGF are less potent in stimulating antigen-specific T-cells. Furthermore, by using DCs derived from Id1 -/- mice that are defective in Flt-1 signaling, we demonstrated that the inhibitory function of VEGF on DC function is most likely mediated by Flt-1. Thus, the role of VEGF in downregulating host immunity may highlight a unique role of VEGF in the pathogenesis of cancer