WorldWideScience

Sample records for activated carbon manufacture

  1. The history of the peat manufacturing industry in The Netherlands: Peat moss litter and active carbon

    Directory of Open Access Journals (Sweden)

    M.A.W. Gerding

    2015-11-01

    Full Text Available This article describes the development of three major forms of peat processing by the manufacturing industry in The Netherlands since the last quarter of the 19th century. At a time when peat as a fuel was gradually being replaced by coal, the first form was the peat moss litter industry. Peat moss litter was made from white peat that was ground and sieved in factories which were located mainly in bog areas in the south-east of the province of Drenthe. It served as excellent bedding for horses and cattle. The second form of industrial peat processing was the manufacture, from 1921 onwards, of active carbon made from black peat. The Purit (Norit factory, now part of the Cabot Corporation, is still the only active carbon factory using peat as a raw material. The third form of peat processing was the production of garden peat and potting soil. This is still a widespread activity in peat areas all over the world. The peat moss litter industry thrived from the 1880s until shortly after the First World War. The arrival of the horse-drawn tram in all of the major cities of Europe created a great demand for animal bedding to be used in the vast stables of the tramway companies. Peat moss litter was cleaner, healthier and easier to handle than straw. There was similar demand from the armies, which used millions of horses during the First World War. Owing to the development of motorised vehicles, the peat market collapsed after the war and this plunged the industry into a prolonged crisis which was not overcome until peat was found to be a suitable growing medium for horticulture in the 1950s. Living and working conditions in peatlands were harsh, earnings irregular and labourers’ rights limited. The peat manufacturing industry was the first to introduce collective labour agreements, medical benefits and pension plans. Nonetheless massive unemployment, poverty and the necessity to migrate to other parts of the country were clear signs that the era of

  2. Reaction mechanism of active carbon manufactured by chemicals activation method using potassium carbonate from a raw material of tofu refuse; Okara wo genryo toshi tansankariumu wo mochiita yakuhinfukatsuho niyoru kasseitan seizo niokeru hannokiko

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Jun' ichi; Muroyama, Katsuhiko; Furukawa, Akira; Takemoto, Shin [Kasai University, Osaka (Japan)

    1999-02-05

    The authors attempted to manufacture active carbon using potassium carbonate as an activator from a raw material of tofu refuse. As the results, the active carbon having a large specific surface area of 2,656 m{sup 2}/g at a carbide and an activation temperature of 800 degrees C could be manufactured. It was clarified as follows after investigating the activation mechanism: potassium carbonate changed to potassium peroxide and potassium sulfate in the reaction of tofu refuse and potassium carbonate in the impregnation and dry process. The tofu refuse was changed into a low molecular weight component and a water soluble organic constituent increased. As the results, the weight loss behavior of he tofu refuse changed up to the carbonization - activation temperature of 500 degrees C and then the carbide having a large specific surface area which had a different pore structure of carbide made independently from the tofu refuse was generated. With further increasing the temperature up to 700 degrees C, it was considered that carbon consumed due to a reduction of potassium carbonate by carbon of carbide, the specific surface area was greatly increased, and active carbon having a high specific surface area was manufactured. (translated by NEDO)

  3. STUDY ON USING WASTE ORGANIC SILK TO MANUFACTURE ACTIVATED CARBON FIBER%废旧有机丝制备活性炭纤维的研究

    Institute of Scientific and Technical Information of China (English)

    杨建利; 杜美利; 黄婕; 王健

    2012-01-01

    活性炭纤维是以高聚物为原料,经高温炭化和活化而制成的一种纤维状高效吸附分离材料.利用废旧有机丝为原料,探索在不同工艺条件下制取活性炭纤维的可行性.经扫描电镜、X射线衍射、红外分光光度计及亚甲基蓝吸附实验分析得出优化的工艺条件为:炭化温度,650℃;用CO2活化,活化温度为950℃,活化时间为60 min,制得吸附性能优良的活性炭纤维.%The activated carbon fiber is a kind of highly effective separation and adsorption material, which takes polymer as raw material while carbonization and activation in high temperature. In this study, we use waste organic silk as raw material, seek feasibility to manufacture activated carbon fiber in different condition. In the end, through the SEM, XRD, IR and adsorption of methylene blue trihydrate, we has preparated excellent performance activated carbon fiber and concluded optimal conditions: carbonization temperature is 650 ℃ , activation is in CO2 atmosphere, activation temperature is 950 ℃, activation time is 60 min.

  4. Improved technology for manufacture of carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Platon, A.; Dumbrava, A.; Petrescu, N.I.; Simionescu, L.

    2000-07-01

    The paper presents investigations to improve some physico-chemical characteristics of carbon electrodes (such as coefficient of thermal expansion, mechanical strengths, density, pore volume, porosity etc.) obtained in different manufacture steps by addition of varieties of coal tar pitch. These include attempts to improve the chemical compatibility of the coke-pitch system in the mixture and establish the method and the point of introduction of additive, the concentration required and appropriate analytical control during the entire manufacture. Methods of analysis used include thermogravimetry and porosimetry. The microstructure of the electrodes is investigated through a wide range and the data obtained include pore size and pore volume distribution, surface area, porosity, particle size distribution and type of pores. The overall results clearly indicate better characteristics and performance for electrodes with additives as against electrodes without them, such as lower porosity, lower thermal expansion coefficients and greater mechanical strength. These data are analyzed with respect to the process step and electrode type.

  5. Improved technology for manufacture of carbon electrodes

    Indian Academy of Sciences (India)

    A Platon; A Dumbrava; N Iutes-Petrescu; Luzia Simionescu

    2000-02-01

    Current industrial carbon electrodes are typically manufactured by blending petroleum coke particles (the filler) with molten coal tar pitch (the binder) and extruding the resultant mix to form the `green electrode’. This is then baked under controlled conditions. In case of usage as anodes in steel electric furnaces (or as other carbon and graphite products), the electrodes could undergo further processing like pitch impregnation or graphitization. During heat treatment, some of the organics are destructively distilled, vaporized or decomposed, resulting in carbon deposition in the electrode. As the vaporized materials exit the body of the electrode they cause porosity in the walls, which results in reduction in density, current carrying capacity and flexural strength. The paper presents investigations to improve some physico-chemical characteristics of these electrodes (such as coefficient of thermal expansion, mechanical strengths, density, pore volume, porosity etc.), obtained in different manufacture steps, by addition of varieties of coal tar pitch. These include attempts to improve the chemical compatibility of the coke-pitch system in the mixture and establish the method and the point of introduction of additive, the concentration required and appropriate analytical control during the entire manufacture. Methods of analysis used include thermogravimetry and porosimetry. The microstructure of the electrodes is investigated through a wide range and the data obtained include pore size and pore volume distribution, surface area, porosity, particle size distribution and type of pores. The overall results clearly indicate better characteristics and performance for electrodes with additives as against electrodes without them, such as lower porosity, lower thermal expansion coefficients and greater mechanical strength. These data are analyzed with respect to the process step and electrode type.

  6. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    Science.gov (United States)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  7. Varied morphology carbon nanotubes and method for their manufacture

    Science.gov (United States)

    Li, Wenzhi; Wen, Jian Guo; Ren, Zhi Feng

    2007-01-02

    The present invention describes the preparation of carbon nanotubes of varied morphology, catalyst materials for their synthesis. The present invention also describes reactor apparatus and methods of optimizing and controlling process parameters for the manufacture carbon nanotubes with pre-determined morphologies in relatively high purity and in high yields. In particular, the present invention provides methods for the preparation of non-aligned carbon nanotubes with controllable morphologies, catalyst materials and methods for their manufacture.

  8. The Role of Anode Manufacturing Processes in Net Carbon Consumption

    Directory of Open Access Journals (Sweden)

    Khalil Khaji

    2016-05-01

    Full Text Available Carbon anodes are consumed in electrolysis cells during aluminum production. Carbon consumption in pre-bake anode cells is 400–450 kg C/t Al, considerably higher than the theoretical consumption of 334 kg C/t Al. This excess carbon consumption is partly due to the anode manufacturing processes. Net carbon consumption over the last three years at Emirates Aluminium (EMAL, also known as Emirates Global Aluminium (EGA Al Taweelah was analyzed with respect to anode manufacturing processes/parameters. The analysis indicates a relationship between net carbon consumption and many manufacturing processes, including anode desulfurization during anode baking. Anode desulfurization appears to increase the reaction surface area, thereby helping the Boudouard reaction between carbon and carbon dioxide in the electrolysis zone, as well as reducing the presence of sulfur which could inhibit this reaction. This paper presents correlations noted between anode manufacturing parameters and baked anode properties, and their impact on the net carbon consumption in electrolytic pots. Anode reactivities affect the carbon consumption in the pots during the electrolysis of alumina. Pitch content in anodes, impurities in anodes, and anode desulfurization during baking were studied to find their influence on anode reactivities. The understanding gained through this analysis helped reduce net carbon consumption by adjusting manufacturing processes. For an aluminum smelter producing one million tonnes of aluminum per year, the annual savings could be as much as US $0.45 million for every kg reduction in net carbon consumption.

  9. Carbon Fiber Manufacturing Facility Siting and Policy Considerations: International Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booth, Samuel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-21

    Carbon fiber is increasingly used in a wide variety of applications due largely to its superior material properties such as high strength-to-weight ratio. The current global carbon fiber manufacturing industry is predominately located in China, Europe, Japan, and the United States. The carbon fiber market is expected to expand significantly through 2024 and to require additional manufacturing capacity to meet demand. Carbon fiber manufacturing facilities can offer significant economic development and employment opportunities as exemplified by the $1 billion investment and 500 jobs expected at a new Toray plant in Moore, South Carolina. Though the market is expected to expand, it is unclear where new manufacturing facilities will locate to meet demand. This uncertainty stems from the lack of research evaluating how different nations with significant carbon fiber manufacturing capacity compare as it relates to certain manufacturing facility siting factors such as costs of labor and energy as well as policy directed at supporting carbon fiber development, domestic deployment, and exports. This report fills these gaps by evaluating the top carbon fiber manufacturing countries, including China, European Union countries, Japan, Mexico, South Korea, Taiwan, and the United States. The report documents how the United States compares to these countries based on a range of manufacturing siting considerations and existing policies related to carbon fiber. It concludes with a discussion of various policy options the United States could adopt to both (1) increase the competitiveness of the United States as it relates to attracting new carbon fiber manufacturing and (2) foster broader end-use markets for deployment.

  10. Clean Energy Manufacturing Analysis Center. 2015 Research Highlights -- Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber.

  11. Design and manufacturing of active microsystems

    CERN Document Server

    Büttgenbach, Stephanus; Hesselbach, Jürgen

    2011-01-01

    This book presents the design and manufacturing of microsystems as well as necessary key technologies developed within the Collaborative Research Center 516 where the focus is on active micro systems based on the electromagnetic actuator principle.

  12. Solar collector manufacturing activity, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  13. Studies of activated carbon and carbon black for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  14. In-line manufacture of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, Nicol Michele; Signorelli, Riccardo; Martini, Fabrizio; Corripio Luna, Oscar Enrique

    2015-04-28

    Mass production of carbon nanotubes (CNT) are facilitated by methods and apparatus disclosed herein. Advantageously, the methods and apparatus make use of a single production unit, and therefore provide for uninterrupted progress in a fabrication process. Embodiments of control systems for a variety of CNT production apparatus are included.

  15. 生物活性炭法处理ABS树脂生产废水%Treatment of ABS resin manufacturing wastewater by biological activated carbon(BAC)

    Institute of Scientific and Technical Information of China (English)

    赖波; 周岳溪; 杨平

    2012-01-01

    采用负载经驯化后微生物的活性炭与未负载微生物的空白活性炭处理ABS凝聚干燥工段废水,研究生物活性炭系统中存在的生物再生作用.结果表明,生物活性炭能够高效分解转化ABS废水中的有机腈类及芳香类污染物,其处理出水的COD、TOC及Org-N的去除率均达到80%以上,并且废水中的有机氮主要分解转化为NH3-N,其NH3-N转化率高达65%.生物活性炭表面繁殖了大量的长杆菌、钟形虫及少量的球菌,活性炭能够为微生物生长提供适宜的环境,并保护微生物避免受有毒难降解污染物的抑制作用同时活性炭表面生长的微生物能够对活性炭进行生物再生,使其长期保持高效的吸附能力.%Wastewater from ABS condensation drying section was treated by biological activated carbon (BAC) and activated carbon without bacteria. The bioregeneration occurring during simultaneous adsorption-biodegradation processes was studied seriously. The organic nitrites and aromatic compouds could be decomposed and transformed, and the removal efficiencies of COD, TOC and Org-N were all more than 80%. The organic nitrogen of ABS wastewater could be transformed into NH3-N, and its transformation efficency was more than 65%. There were a large number of microorganisms on the surface of activated carbon in the BAC, such as long-stem bacteria, vorticella and coccises. The activated carbon provided an attachment surface for microorganisms and protected them from shock loadings of toxic and inhibitory materials, whereas microorganisms bioregenerated the activated carbon.

  16. Material and heat balance calculations for manufacturing of phosphoric acid activated carbon used in sugar refining%磷酸活化法制备糖用活性炭的物料和热量衡算

    Institute of Scientific and Technical Information of China (English)

    朱芸; 左宋林; 孙康; 许玉; 邓先伦

    2013-01-01

    按照目前磷酸活化杉木屑生产活性炭的常规工艺,分析并计算了年产1 500t糖用粉状活性炭生产的各个工序的物料和热量平衡.分析计算结果可以为磷酸活化法生产活性炭的工厂工艺设计、设备选型、能量消耗和成本核算提供基本依据,并可以为磷酸活化法工艺的改进和优化提供参考.%This paper calculated the material and heat balance of manufacturing phosphoric acid activated carbon used in sugar refining. The calculation was based on a conventional production line with Chinese fir sawdust as raw material and an annual capacity of 1 500 t. The results provided the fundamental data for process design, equipment selection, energy consumption evaluation and cost accounting of activated carbon manufacturing and helped optimizing the phosphoric acid activation process.

  17. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  18. Carbon nanotube-polymer composites manufacture, properties, and applications

    CERN Document Server

    Grady, Brian P

    2011-01-01

    The accessible compendium of polymers in carbon nanotubes (CNTs) Carbon nanotubes (CNTs)-extremely thin tubes only a few nanometers in diameter but able to attain lengths thousands of times greater-are prime candidates for use in the development of polymer composite materials. Bringing together thousands of disparate research works, Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications covers CNT-polymers from synthesis to potential applications, presenting the basic science and engineering of this dynamic and complex area in an accessible, readable way. Desi

  19. Carbon footprint as environmental performance indicator for the manufacturing industry

    DEFF Research Database (Denmark)

    Laurent, Alexis; Olsen, Stig Irving; Hauschild, Michael Zwicky

    2010-01-01

    With the current focus on our climate change impacts, the embodied CO2 emission or "Carbon footprint" is often used as an environmental performance indicator for our products or production activities. The ability of carbon footprint to represent other types of impact like human toxicity, and hence......, and the appropriateness of carbon footprint as an overall indicator of the environmental performance is discussed....

  20. Global Sourcing of Services Versus Manufacturing Activities

    DEFF Research Database (Denmark)

    Ørberg Jensen, Peter D.; Petersen, Bent

    2012-01-01

    International sourcing strategies and operations are usually described distinctively for manufacturing and services. In this paper, the theoretical and strategic relevance of this distinction is questioned. As an alternative, an activity-based theoretical framework for exploring the linkages...... between the attributes of the globally sourced activities and the international sourcing operations of firms is presented. This paper discusses the implications for global sourcing research and the strategic and organizational implications for managers, and it argues that finding the right match between...... strategy, activity and organization is a key determinant of the success of the sourcing process and outcome....

  1. Outsourcing of Logistics Activities in Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Anton Ogorelc

    2012-10-01

    Full Text Available The external supply of logistics se1vices is part of a trend towardoutsourcing non-core logistics activities. The scope ofthird-party logistics may range from a relatively limited combinationof activities (e.g. transportation and warehousing to acomprehensive set of logistics se1vices.The authors first discuss the characteristics of business logisticsin manufacturing indusfly, to be taken into account inlogistics outsourcing. They particularly point out the motimtionsfor logistics outsourcing, the possibilities of outsourcing,as well as supplier selection. Finally they analyze the outsourcingin the reverse logistics.

  2. Petrographic evaluation of xylite activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Predeanu, G. [Metallurgical Research Institute, Department of Raw Materials, Mehadia St. 39, Sector 6, 060543 Bucharest (Romania); Panaitescu, C. [University POLITEHNICA Bucharest, Faculty of Industrial Chemistry, Fuel Laboratory, Polizu St. 1, Sector 1, 011061, Bucharest (Romania)

    2007-08-01

    Xylites are promising materials for activated carbon manufacturing due to their low rank, low inorganic content, and structural characteristics similar to the strong consistence of wood. These are similar to the classical adsorbents used for waste water purification, and available and profitable in the long term. This study has been undertaken to provide by means of petrographic data, new information on the porous structure development in chars during direct heating carbonization and physical activation. The xylite petrographic composition is very important, mainly due to the existence of structured wooden material - textinite with round and elongated cells - that influences the development of the structure and texture during carbonization and activation. The charcoal microstructure reveals some interesting aspects about the carbonization process with regard to evolution, efficiency and pore development. In the xylite activated carbon, the adsorption surface development by means of the highly porous system depends on the type of petrographical components, raw material grain size, and carbonization parameters. (author)

  3. Development of an Evaluating Method for Carbon Emissions of Manufacturing Process Plans

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2015-01-01

    Full Text Available Carbon intensity reduction and energy utilization enhancement in manufacturing industry are becoming a timely topic. In a manufacturing system, the process planning is the combination of all production factors which influences the entail carbon emissions during manufacturing. In order to meet the current low carbon manufacturing requirements, a carbon emission evaluation method for the manufacturing process planning is highly desirable to be developed. This work presents a method to evaluate the carbon emissions of a process plan by aggregating the unit process to form a combined model for evaluating carbon emissions. The evaluating results can be used to decrease the resource and energy consumption and pinpoint detailed breakdown of the influences between manufacturing process plan and carbon emissions. Finally, the carbon emission analysis method is applied to a process plan of an axis to examine its feasibility and validity.

  4. 15 CFR Supplement No. 2 to Part 783 - Manufacturing Activities

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Manufacturing Activities No. Supplement No. 2 to Part 783 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 783—Manufacturing Activities The following constitute manufacturing activities that require...

  5. Carbon Nanotube Chopped Fiber for Enhanced Properties in Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Menchhofer, Paul A [ORNL; Lindahl, John M [ORNL; JohnsonPhD, DR Joseph E. [Nanocomp Technologies, Inc.

    2016-06-06

    Nanocomp Technologies, Inc. is working with Oak Ridge National Laboratory to develop carbon nanotube (CNT) composite materials and evaluate their use in additive manufacturing (3D printing). The first phase demonstrated feasibility and improvements for carbon nanotube (CNT)- acrylonitrile butadiene styrene (ABS) composite filaments use in additive manufacturing, with potential future work centering on further improvements. By focusing the initial phase on standard processing methods (developed mainly for the incorporation of carbon fibers in ABS) and characterization techniques, a basis of knowledge for the incorporation of CNTs in ABS was learned. The ability to understand the various processing variables is critical to the successful development of these composites. From the degradation effects on ABS (caused by excessive temperatures), to the length of time the ABS is in the melt state, to the order of addition of constituents, and also to the many possible mixing approaches, a workable flow sequence that addresses each processing step is critical to the final material properties. Although this initial phase could not deal with each of these variables in-depth, a future study is recommended that will build on the lessons learned for this effort.

  6. 27 CFR 40.526 - Minimum manufacturing and activity requirements.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Minimum manufacturing and activity requirements. 40.526 Section 40.526 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... Manufacturers of Processed Tobacco § 40.526 Minimum manufacturing and activity requirements. A permit...

  7. 27 CFR 40.256 - Minimum manufacturing and activity requirements.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Minimum manufacturing and... Provisions Relating to Operations § 40.256 Minimum manufacturing and activity requirements. The minimum manufacturing and activity requirement prescribed in § 40.61(b) of this part is a continuing condition of...

  8. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    Science.gov (United States)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  9. Manufacturing High-Quality Carbon Nanotubes at Lower Cost

    Science.gov (United States)

    Benavides, Jeanette M.; Lidecker, Henning

    2004-01-01

    A modified electric-arc welding process has been developed for manufacturing high-quality batches of carbon nanotubes at relatively low cost. Unlike in some other processes for making carbon nanotubes, metal catalysts are not used and, consequently, it is not necessary to perform extensive cleaning and purification. Also, unlike some other processes, this process is carried out at atmospheric pressure under a hood instead of in a closed, pressurized chamber; as a result, the present process can be implemented more easily. Although the present welding-based process includes an electric arc, it differs from a prior electric-arc nanotube-production process. The welding equipment used in this process includes an AC/DC welding power source with an integral helium-gas delivery system and circulating water for cooling an assembly that holds one of the welding electrodes (in this case, the anode). The cathode is a hollow carbon (optionally, graphite) rod having an outside diameter of 2 in. (approximately equal to 5.1 cm) and an inside diameter of 5/8 in. (approximately equal to 1.6 cm). The cathode is partly immersed in a water bath, such that it protrudes about 2 in. (about 5.1 cm) above the surface of the water. The bottom end of the cathode is held underwater by a clamp, to which is connected the grounding cable of the welding power source. The anode is a carbon rod 1/8 in. (approximately equal to 0.3 cm) in diameter. The assembly that holds the anode includes a thumbknob- driven mechanism for controlling the height of the anode. A small hood is placed over the anode to direct a flow of helium downward from the anode to the cathode during the welding process. A bell-shaped exhaust hood collects the helium and other gases from the process. During the process, as the anode is consumed, the height of the anode is adjusted to maintain an anode-to-cathode gap of 1 mm. The arc-welding process is continued until the upper end of the anode has been lowered to a specified height

  10. Adsorption of Carbon Dioxide on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  11. Preparation and application of active gangue's carbon black

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang-lin; ZHANG Yi-dong

    2007-01-01

    After three-stage pulverization, dry-distillated activation and coupling agent surface modification, the kaolinite-typed gangue of Sichuan Hongni Coal Mine(SHCM) can be manufactured into activated gangue's carbon black. Its surface area is >25 m2/g, and possesses carbon black's carbon framework and structure. It can be used as strengthening agent of high polymer material such as rubber.

  12. Stochastic Lot-Sizing under Carbon Emission Control for Profit Optimisation in MTO Manufacturing

    Directory of Open Access Journals (Sweden)

    Qiao A.

    2017-01-01

    Full Text Available Aggravating global warming has heightened the imminent need by the world to step up forceful efforts on curbing emission of greenhouse gases. Although manufacturing is a major resource of carbon emission, few research works have studied the impacts of carbon constraints on manufacturing, leading to environmentally unsustainable production strategies and operations. This paper incorporates carbon emission management into production planning for make-to-order (MTO manufacturing. This paper proposes a model that solves lot-sizing problems to maximise profits under carbon emission caps. The model adopts stochastic interarrival times for customer orders to enhance the practicality of the results for real-world manufacturing. Numerical experiments show that reducing carbon emission undercuts short-term profits of a company. However, it is conducive to the company’s market image as being socially responsible which would attract more customers who concern about environmental protection. Hence, reducing carbon emission in manufacturing is beneficial to long-term profitability and sustainability. The results provide managerial insights into manufacture operations for balancing profitability and carbon control.

  13. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires

    National Research Council Canada - National Science Library

    Marcello Gelfi; Luigi Solazzi; Sandro Poli

    2017-01-01

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process...

  14. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments

    NARCIS (Netherlands)

    Koelmans, A.A.; Nowack, B.; Wiesner, M.

    2009-01-01

    In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to

  15. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  16. Technological review of the HRP manufacturing process R and D activity

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Pizzuto, A. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Gavila, P.; Riccardi, B. [Fusion For Energy, C. Josep Pla 2, ES-08019 Barcelona (Spain); Roccella, S. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Candura, D.; Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16121 Genova (Italy)

    2013-10-15

    Highlights: • R and D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • Successful manufacturing by HRP (hot radial pressing) and PBC (pre-brazed casting) of both W and CFC armoured small and medium scale mockups. • ENEA-ANSALDO participate to the European programme for the qualification of the manufacturing technology for the ITER divertor IVT. • A qualification divertor inner vertical target prototype successfully tested at ITER relevant thermal heat fluxes. -- Abstract: ENEA and Ansaldo Nucleare S.p.A. have been deeply involved in the European International Thermonuclear Experimental Reactor (ITER) R and D activities for the manufacturing of high heat flux plasma-facing components (HHFC), and in particular for the inner vertical target (IVT) of the ITER divertor. This component has to be manufactured by using both armour and structural materials whose properties are defined by ITER. Their physical properties prevent the use of standard joining techniques. The reference armour materials are tungsten and carbon/carbon fibre composite (CFC). The cooling pipe is made of copper alloy (CuCrZr-IG). During the last years ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components of different length, geometry and materials, by using innovative processes: HRP (hot radial pressing) and PBC (pre-brazed casting). The history of the technical issues solved during the R and D phase and the improvements implemented to the assembling tools and equipments are reviewed in the paper together with the testing results. The optimization of the processes started from the successful manufacturing of both W and CFC armoured small scale mockups thermal fatigue tested in the worst ITER operating condition (20 MW/m{sup 2}) through the achievement of record

  17. Solar-collector manufacturing activity, July through December, 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  18. Mechanical Properties of Cold-Drawn Low Carbon Steel for Nail Manufacture: Experimental Observation

    OpenAIRE

    N.A. Raji; Oluwole, O.O.

    2013-01-01

    The objective of this study is to investigate the influence of service situation on the mechanical properties of plain nails manufactured from low carbon steel. The influence of the degree of cold drawing on the mechanical properties and strain hardening of the material is investigated by tensile test experimentation. The stress-strain relationships of the cold-drawn low carbon steel were investigated over the 20, 25, 40 and 55% degree of drawn deformation for the manufacture of 4, 3, 2½ and ...

  19. Mechanical strength of additive manufactured carbon fiber reinforced polyetheretherketone

    Science.gov (United States)

    Chumaevskii, A. V.; Tarasov, S. Yu.; Filippov, A. V.; Kolubaev, E. A.; Rubtsov, V. E.; Eliseev, A. A.

    2016-11-01

    Mechanical properties of both pure and chopped carbon fiber reinforced polyetheretherketone samples have been carried out. It was shown that the reinforcement resulted in increasing the elasticity modulus, compression and tensile ultimate strength by a factor of 3.5, 2.9 and 2.8, respectively. The fracture surfaces have been examined using both optical and scanning electron microscopy.

  20. International Assessment of Carbon Nanotube Manufacturing and Applications

    Science.gov (United States)

    2007-06-01

    on its mass-produced, CVD-grown MWCNTs in PET ( polyethylene terephthalate ), PET fibers, and PEEK (polyetheretherketone) polymers loaded with 0.1-1.6...membrane fuel cell PET Polyethylene terephthalate PLV Pulsed laser vaporization PP Polypropylene, a plastic polymer Pt Platinum PVP...electron microscope (SEM) image of cross section of 5% MWCNTs in polycarbonate matrix, Nano Carbon Technologies Co, Ltd, Japan

  1. 15 CFR 400.33 - Restrictions on manufacturing and processing activity.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Restrictions on manufacturing and...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a...

  2. Carbon dioxide capture from a cement manufacturing process

    Science.gov (United States)

    Blount, Gerald C.; Falta, Ronald W.; Siddall, Alvin A.

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  3. Adsorption characteristics of activated carbon hollow fibers

    OpenAIRE

    2009-01-01

    Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  4. Monitoring of occupational exposure to polycyclic aromatic hydrocarbons in a carbon-electrode manufacturing plant

    NARCIS (Netherlands)

    Delft, J.H.M. van; Steenwinkel, M-J.S.T.; Asten, J.G. van; Es, J. van; Kraak, A.; Baan, R.A.

    1998-01-01

    An investigation is presented of occupational exposure to polycyclic aromatic hydrocarbons (PAH) in a carbon-electrode manufacturing plant, as assessed by three monitoring methods, viz, environmental monitoring of the external dose by analysis of personal air samples, biological monitoring of the

  5. Size Classification of Chopped Carbon Fibers in the Composite Materials Manufacturing

    OpenAIRE

    А.S. Dovbysh; А.F. Budnik; N.І. Andriienko

    2010-01-01

    Information synthesis of the learning decision support system for automation of the chopped carbon fibers size control used for the matrix filling within the manufacturing of composite materials based on polytetrafluoroethylene is considered. To improve the reliability of recognition learning algorithm with the optimization of the precision control is proposed.

  6. Size Classification of Chopped Carbon Fibers in the Composite Materials Manufacturing

    Directory of Open Access Journals (Sweden)

    А.S. Dovbysh

    2010-01-01

    Full Text Available Information synthesis of the learning decision support system for automation of the chopped carbon fibers size control used for the matrix filling within the manufacturing of composite materials based on polytetrafluoroethylene is considered. To improve the reliability of recognition learning algorithm with the optimization of the precision control is proposed.

  7. A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors.

    Science.gov (United States)

    Xing, Zizhuo; Lewis, Amanda M; Borys, Michael C; Li, Zheng Jian

    2017-06-01

    Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can present themselves when cell culture processes are scaled up, because carbon dioxide accumulation is a common feature due to longer gas-residence time of mammalian cell culture in large scale bioreactors. A carbon dioxide stripping model can be used to better understand and optimize parameters that are critical to cell culture processes at the manufacturing scale. The prevailing carbon dioxide stripping models in literature depend on mass transfer coefficients and were applicable to cell culture processes with low cell density or at stationary/cell death phase. However, it was reported that gas bubbles are saturated with carbon dioxide before leaving the culture, which makes carbon dioxide stripping no longer depend on a mass transfer coefficient in the new generation cell culture processes characterized by longer exponential growth phase, higher peak viable cell densities, and higher specific production rate. Here, we present a new carbon dioxide stripping model for manufacturing scale bioreactors, which is independent of carbon dioxide mass transfer coefficient, but takes into account the gas-residence time and gas CO2 saturation time. The model was verified by CHO cell culture processes with different peak viable cell densities (7 to 12 × 10(6)  cells mL(-1) ) for two products in 5,000-L and 25,000-L bioreactors. The model was also applied to a next generation cell culture process to optimize cell culture conditions and reduce carbon dioxide levels at manufacturing scale. The model provides a useful tool to understand and better control cell culture carbon dioxide

  8. ACTIVATED CARBON (CHARCOAL OBTAINING . APPLICATION

    Directory of Open Access Journals (Sweden)

    Florin CIOFU

    2015-05-01

    Full Text Available The activated carbon is a microporous sorbent with a very large adsorption area that can reach in some cases even 1500sqm / gram. Activated carbon is produced from any organic material with high carbon content: coal, wood, peat or moor coal, coconut shells. The granular activated charcoal is most commonly produced by grinding the raw material, adding a suitable binder to provide the desired hardness and shape. Enabling coal is a complete process through which the raw material is fully exposed to temperatures between 600-900 degrees C, in the absence of oxygen, usually in a domestic atmosphere as gases such as nitrogen or argon; as material that results from this process is exposed in an atmosphere of oxygen and steam at a temperature in the interval from 600 - 1200 degrees C.

  9. PROGRESS ON ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  10. Performance and modeling of active metal-matrix composites manufactured by ultrasonic additive manufacturing

    Science.gov (United States)

    Hahnlen, Ryan; Dapino, Marcelo J.

    2011-04-01

    This paper presents the development and characterization of active aluminum-matrix composites manufactured by Ultrasonic Additive Manufacturing (UAM), an emerging rapid prototyping process based on ultrasonic metal welding. The primary benefit of UAM over other metal-matrix fabrication processes is the low process temperatures, as low as 25 °C. UAM thus provides unprecedented opportunities to develop adaptive structures with seamlessly embedded smart materials and electronic components without degrading the properties that make these materials and components attractive. The objective of this research is to develop UAM composites with aluminum matrices and embedded shape memory NiTi, magnetostrictive Galfenol (FeGa), and polyvinylidene fluoride (PVDF) phases. The paper is focused on the thermally induced strain response and stiffness behavior of NiTi-Al composites, the actuation properties of FeGa-Al composites, and the embedded sensing capabilities of PVDF-Al composites. We observe up to a 10% increase over room temperature stiffness for NiTi-Al composites and a magnetomechanical response in the FeGa-Al composite up to 52.4 μɛ. The response of the PVDF-Al composite to harmonic loads is observed over a frequency range of 10 to 1000 Hz.

  11. Carbon dioxide-based supercritical fluids as IC manufacturing solvents

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Davenhall, L.B.; Taylor, C.M.V.; Sivils, L.D.; Pierce, T.; Tiefert, K.

    1999-05-11

    The production of integrated circuits (IC's) involves a number of discrete steps which utilize hazardous or regulated solvents and generate large waste streams. ES&H considerations associated with these chemicals have prompted a search for alternative, more environmentally benign solvent systems. An emerging technology for conventional solvent replacement is the use of supercritical fluids based on carbon dioxide (CO{sub 2}). Research work, conducted at Los Alamos in conjunction with the Hewlett-Packard Company, has lead to the development of a CO{sub 2}-based supercritical fluid treatment system for the stripping of hard-baked photoresists. This treatment system, known as Supercritical CO{sub 2} Resist Remover, or CORR, uses a two-component solvent composed of a nonhazardous, non-regulated compound, dissolved in supercritical CO{sub 2}. The solvent/treatment system has been successfully tested on metallized Si wafers coated with negative and positive photoresist, the latter both before and after ion-implantation. A description of the experimental data will be presented. Based on the initial laboratory results, the project has progressed to the design and construction of prototype, single-wafer photoresist-stripping equipment. The integrated system involves a closed-loop, recirculating cycle which continuously cleans and regenerates the CO{sub 2}, recycles the dissolved solvent, and separates and concentrates the spent resist. The status of the current design and implementation strategy of a treatment system to existing IC fabrication facilities will be discussed. Additional remarks will be made on the use of a SCORR-type system for the cleaning of wafers prior to processing.

  12. Modal analysis of additive manufactured carbon fiber reinforced polymer composite framework: Experiment and modeling

    Science.gov (United States)

    Dryginin, N. V.; Krasnoveikin, V. A.; Filippov, A. V.; Tarasov, S. Yu.; Rubtsov, V. E.

    2016-11-01

    Additive manufacturing by 3D printing is the most advanced and promising trend for making the multicomponent composites. Polymer-based carbon fiber reinforced composites demonstrate high mechanical properties combined with low weight characteristics of the component. This paper shows the results of 3D modeling and experimental modal analysis on a polymer composite framework obtained using additive manufacturing. By the example of three oscillation modes it was shown the agreement between the results of modeling and experimental modal analysis with the use of laser Doppler vibrometry.

  13. ACTIVATION ENERGY OF DESORPTION OF DIBENZOFURAN ON ACTIVATED CARBONS

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; LI Zhong; XI Hongxia; LUO Lingai

    2004-01-01

    Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.

  14. Improved Manufacturing Performance of Screen Printed Carbon Electrodes through Material Formulation.

    Science.gov (United States)

    Jewell, Eifion; Philip, Bruce; Greenwood, Peter

    2016-06-27

    Printed carbon graphite materials are the primary common component in the majority of screen printed sensors. Screen printing allows a scalable manufacturing solution, accelerating the means by which novel sensing materials can make the transition from laboratory material to commercial product. A common bottleneck in any thick film printing process is the controlled drying of the carbon paste material. A study has been undertaken which examines the interaction between material solvent, printed film conductivity and process consistency. The study illustrates that it is possible to reduce the solvent boiling point to significantly increase process productivity while maintaining process consistency. The lower boiling point solvent also has a beneficial effect on the conductivity of the film, reducing the sheet resistance. It is proposed that this is a result of greater film stressing increasing charge percolation through greater inter particle contact. Simulations of material performance and drying illustrate that a multi layered printing provides a more time efficient manufacturing method. The findings have implications for the volume manufacturing of the carbon sensor electrodes but also have implications for other applications where conductive carbon is used, such as electrical circuits and photovoltaic devices.

  15. Improved Manufacturing Performance of Screen Printed Carbon Electrodes through Material Formulation

    Directory of Open Access Journals (Sweden)

    Eifion Jewell

    2016-06-01

    Full Text Available Printed carbon graphite materials are the primary common component in the majority of screen printed sensors. Screen printing allows a scalable manufacturing solution, accelerating the means by which novel sensing materials can make the transition from laboratory material to commercial product. A common bottleneck in any thick film printing process is the controlled drying of the carbon paste material. A study has been undertaken which examines the interaction between material solvent, printed film conductivity and process consistency. The study illustrates that it is possible to reduce the solvent boiling point to significantly increase process productivity while maintaining process consistency. The lower boiling point solvent also has a beneficial effect on the conductivity of the film, reducing the sheet resistance. It is proposed that this is a result of greater film stressing increasing charge percolation through greater inter particle contact. Simulations of material performance and drying illustrate that a multi layered printing provides a more time efficient manufacturing method. The findings have implications for the volume manufacturing of the carbon sensor electrodes but also have implications for other applications where conductive carbon is used, such as electrical circuits and photovoltaic devices.

  16. Strategic research on the sustainable development cost of manufacturing industry under the background of carbon allowance and trade policy

    Science.gov (United States)

    Ma, Zhongmin; Cheng, Mengting; Wang, Mei

    2017-08-01

    The important subjects of energy consumption and carbon emission are manufacturing enterprises, with the deepening of international cooperation, and the implementation of carbon limit and trade policy, costs of manufacturing industry will rise sharply. How can the manufacturing industry survive in this reform, and it has to be a problem that the managers of the manufacturing industry need to solve. This paper analyses sustainable development cost connotation and value basis on the basis of sustainable development concept, discusses the influence of carbon allowance and trade policy for cost strategy of manufacturing industry, thinks that manufacturing industry should highlight social responsibility and realize maximization of social value, implement cost strategy the sustainable development, and pointed out the implementation way.

  17. Demand Activated Manufacturing Architecture (DAMA) model for supply chain collaboration

    Energy Technology Data Exchange (ETDEWEB)

    CHAPMAN,LEON D.; PETERSEN,MARJORIE B.

    2000-03-13

    The Demand Activated Manufacturing Architecture (DAMA) project during the last five years of work with the U.S. Integrated Textile Complex (retail, apparel, textile, and fiber sectors) has developed an inter-enterprise architecture and collaborative model for supply chains. This model will enable improved collaborative business across any supply chain. The DAMA Model for Supply Chain Collaboration is a high-level model for collaboration to achieve Demand Activated Manufacturing. The five major elements of the architecture to support collaboration are (1) activity or process, (2) information, (3) application, (4) data, and (5) infrastructure. These five elements are tied to the application of the DAMA architecture to three phases of collaboration - prepare, pilot, and scale. There are six collaborative activities that may be employed in this model: (1) Develop Business Planning Agreements, (2) Define Products, (3) Forecast and Plan Capacity Commitments, (4) Schedule Product and Product Delivery, (5) Expedite Production and Delivery Exceptions, and (6) Populate Supply Chain Utility. The Supply Chain Utility is a set of applications implemented to support collaborative product definition, forecast visibility, planning, scheduling, and execution. The DAMA architecture and model will be presented along with the process for implementing this DAMA model.

  18. Carbon black dispersion pre-plating technology for printed wire board manufacturing. Final technology evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Folsom, D.W.; Gavaskar, A.R.; Jones, J.A.; Olfenbuttel, R.F.

    1993-10-01

    The project compared chemical use, waste generation, cost, and product quality between electroless copper and carbon-black-based preplating technologies at the printed wire board (PWB) manufacturing facility of McCurdy Circuits in Orange, CA. The carbon-black based preplating technology evaluated is used as an alternative process for electroless copper (EC) plating of through-holes before electrolytic copper plating. The specific process used at McCurdy is the BlackHole (BH) technology process, which uses a dispersion of carbon black in an aqueous solution to provide a conductive surface for subsequent electrolytic copper plating. The carbon-black dispersion technology provided effective waste reduction and long-term cost savings. The economic analysis determined that the new process was cost efficient because chemical use was reduced and the process proved more efficient; the payback period was less than 4 yrs.

  19. Photoconductivity of Activated Carbon Fibers

    Science.gov (United States)

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  20. Activated Biochars with Iron for In-Situ Sequestration of Organics, Metals and Carbon

    Science.gov (United States)

    2012-04-30

    biochar. o Investigate mechanism of Hg adsorption in poultry litter activated biochar o Collaborate with USDA and a carbon manufacturer (Calgon pilot...23 Table 5. Kds for Hg and MeHg sorption isotherms ...................................................................... 32 Table...Trichloroethylene (TCE) Mercury ( Hg ) Methylmercury (MeHg) Keywords Biochar, Activated Carbon, PCBs, PAHs, Mercury, Methylmercury, contaminant

  1. Activated Carbon Fibers For Gas Storage

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D [ORNL; Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL

    2017-01-01

    The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability of NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.

  2. Methane adsorption on activated carbon

    OpenAIRE

    Perl, Andras; Koopman, Folkert; Jansen, Peter; Rooij, Marietta de; Gemert, Wim van

    2014-01-01

    Methane storage in adsorbed form is a promising way to effectively and safely store fuel for vehicular transportation or for any other potential application. In a solid adsorbent, nanometer wide pores can trap methane by van der Waals forces as high density fluid at low pressure and room temperature. This provides the suitable technology to replace bulky and expensive cylindrical compressed natural gas tanks. Activated carbons with large surface area and high porosity are particularly suitabl...

  3. Minimizing activated carbons production cost

    Energy Technology Data Exchange (ETDEWEB)

    Stavropoulos, G.G.; Zabaniotou, A.A. [Department of Chemical Engineering, Aristotle University of Thessaloniki, Univ. P. O. Box 1520, 54006, Thessaloniki (Greece)

    2009-07-15

    A detailed economic evaluation of activated carbons production process from various raw materials is undertaken using the conventional economic indices (ROI, POT, and NPV). The fundamental factors that affect production cost were taken into account. It is concluded that for an attractive investment in activated carbons production one should select the raw material with the highest product yield, adopt a chemical activation production scheme and should base product price on product-surface area (or more generally on product adsorption capacity for the adsorbate in consideration). A raw material that well meets the above-mentioned criteria is petroleum coke but others are also promising (charcoals, and carbon black). Production cost then can be optimized by determining its minimum value of cost that results from the intercept between the curves of plant capacity and raw material cost - if any. Taking into account the complexity of such a techno-economic analysis, a useful suggestion could be to start the evaluations from a plant capacity corresponding to the break-even point, i. e. the capacity at which income equals production cost. (author)

  4. Risk analysis and protection measures in a carbon nanofiber manufacturing enterprise: an exploratory investigation.

    Science.gov (United States)

    Genaidy, Ash; Sequeira, Reynold; Rinder, Magda; A-Rehim, Amal

    2009-11-01

    The emerging US carbon nano-manufacturing sector accounts for 40% of nanotechnology product marketplace, thus, there is a significant potential for increased risks arising from workers' exposure to carbon nanofibers (CNF). This research aims at developing a low-cost/evidence-based tool, thereby, increasing the sustainability of CNF manufacturing firms. The following specific aims achieve the study objective: Aim 1 - To present a technical discussion of the proposed concept for risk analysis and protection measures; Aim 2 - To describe the manufacturing process utilized for the CNF production; Aim 3 - To describe the hazards typically encountered in a CNF manufacturing facility; and, Aim 4 - To document the application of the proposed tool for risk analysis and intervention strategy development. In this study, a four-step methodology was developed to protect worker health in the nano-manufacturing enterprise through the generation of improvement actions (i.e., suggested changes in the hazard/work environment characteristics and individual capabilities without specifying how changes are made) followed by interventions (i.e., workplace solutions which specify how changes are being implemented). The methodology was implemented in a CNF manufacturing enterprise in the Midwest of the US. The data collected were based on detailed observations and interviews with worker and management personnel. A detailed flow process analysis was conducted for the nano-manufacturing operation. Eleven hazards were identified at the facility. Analysis indicated that the computed risk scores ranged from moderate (i.e., requiring one to start with incremental changes, then, explore substantial changes, if needed) to very high (i.e., substantial changes should be planned in the short term, followed by incremental changes). A detailed intervention plan was presented for the identified hazards on the basis of criteria of applicability, cost, benefit and feasibility. Management personnel were in

  5. Quality of poultry litter-derived granular activated carbon.

    Science.gov (United States)

    Qiu, Guannan; Guo, Mingxin

    2010-01-01

    Utilization of poultry litter as a source material for generating activated carbon is a value-added and environmentally beneficial approach to recycling organic waste. In this study, the overall quality of poultry litter-derived granular activated carbon was systematically evaluated based on its various physical and chemical properties. Granular activated carbon generated from pelletized poultry litter following a typical steam-activation procedure possessed numerous micropores in the matrix. The product exhibited a mean particle diameter of 2.59 mm, an apparent density of 0.45 g cm(-3), a ball-pan hardness of 91.0, an iodine number of 454 mg g(-1), and a BET surface area of 403 m(2) g(-1). It contained high ash, nitrogen, phosphorus contents and the trace elements Cu, Zn, and As. Most of the nutrients and toxic elements were solidified and solution-unextractable. In general, poultry litter-based activated carbon demonstrated overall quality comparable to that of low-grade commercial activated carbon derived from coconut shell and bituminous coal. It is promising to use poultry litter as a feedstock to manufacture activated carbon for wastewater treatment.

  6. Electrospray as a suitable technique for manufacturing carbon-based devices

    Science.gov (United States)

    Varea, Aïda; Monereo, Oriol; Xuriguera, Elena; Prades, J. Daniel; Cirera, Albert

    2017-08-01

    We demonstrate here that electrospray is a technique suitable for deposition carbon-based materials. It is versatile enough to be used with graphene oxide (GO), reduced graphene oxide (rGO) and carbon nanofibers (CNF), obtained by chemical methods. A detailed analysis of the effects of the dispersion properties and the main process parameters (voltage and flow rate) on the deposits quality is presented. Rigid and flexible substrates have been coated with good geometry control under ambient conditions. Thickness of GO films onto silicon substrates, optical transmittance of rGO onto fluoride doped tin oxide (FTO) coated glass substrate and electrical resistance of both, rGO and CNF films onto flexible polyamide have been correlated with deposition time. As an example of application, the manufacture of carbon nanofibers gas sensing devices deposited onto a ceramic platform and flexible polyimide by means of electrospray technique are shown.

  7. Simulations of phenol adsorption on activated carbon and carbon black

    OpenAIRE

    Prosenjak, Claudia; Valente Nabais, Joao; Laginhas, Carlos; Carrott, Peter; Carrott, Manuela

    2010-01-01

    We use grand canonical Monte Carlo and molecular dynamics simulations to study the adsorption of phenol on carbon materials. Activated carbon is modelled by pore size distributions based on DFT methods; carbon black is represented by a single carbon slab with varying percentages of surface atoms removed. GCMC results for the adsorption from the corresponding gas phase gave reasonable agreement with experimental adsorption results. MD simulations, that studied the influence of the presence of ...

  8. Activated, coal-based carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  9. Activated, coal-based carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Darren Kenneth [Wheeling, WV; Plucinski, Janusz Wladyslaw [Glen Dale, WV

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  10. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  11. Design and Manufacturing of a Composite Lattice Structure Reinforced by Continuous Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    FAN Hualin; YANG Wei; WANG Bin; YAN Yong; FU Qiang; FANG Daining; ZHUANG Zhuo

    2006-01-01

    New techniques have been developed to make materials with a periodic three-dimensional lattice structure. The high stiffness per unit weight and multifunction of such lattice structures make them attractive for use in aeronautic and astronautic structures. In this paper, epoxy-soaked continuous carbon fibres were first introduced to make lattice composite structures, which maximize the specific load carrying capacity. A micromechanical analysis of several designs, each corresponding to a different manufacturing route, was carried out, in order to find the optimized lattice structure with maximum specific stiffness. An intertwining method was chosen and developed as the best route to make lattice composite materials reinforced by carbon fibers. A sandwich-weaved sample with a three-dimensional intertwined lattice structure core was found to be best. The manufacturing of such a composite lattice material was outlined. In addition to a high shear strength of the core and the integral manufacturing method, the lattice sandwich structure is expected to possess better mechanical capability.

  12. Advanced manufacturing technologies of large martensitic stainless steel castings with ultra low carbon and high cleanliness

    Directory of Open Access Journals (Sweden)

    Lou Yanchun

    2010-11-01

    Full Text Available The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfied the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities.

  13. Design of activated carbon/activated carbon asymmetric capacitors

    Directory of Open Access Journals (Sweden)

    Isabel ePiñeiro-Prado

    2016-03-01

    Full Text Available Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed.In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  14. Design of activated carbon/activated carbon asymmetric capacitors

    Science.gov (United States)

    Piñeiro-Prado, Isabel; Salinas-Torres, David; Ruiz Rosas, Ramiro; Morallon, Emilia; Cazorla-Amoros, Diego

    2016-03-01

    Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed. In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  15. Carbon doped PDMS: conductance stability over time and implications for additive manufacturing of stretchable electronics

    Science.gov (United States)

    Tavakoli, Mahmoud; Rocha, Rui; Osorio, Luis; Almeida, Miguel; de Almeida, Anibal; Ramachandran, Vivek; Tabatabai, Arya; Lu, Tong; Majidi, Carmel

    2017-03-01

    Carbon doped PDMS (cPDMS), has been used as a conductive polymer for stretchable electronics. Compared to liquid metals, cPDMS is low cost and is easier to process or to print with an additive manufacturing process. However, changes on the conductance of the carbon based conductive PDMS (cPDMS) were observed over time, in particular after integration of cPDMS and the insulating polymer. In this article we investigate the process parameters that lead to improved stability over conductance of the cPDMS over time. Slight modifications to the fabrication process parameters were conducted and changes on the conductance of the samples for each method were monitored. Results suggested that change of the conductance happens mostly after integration of a pre-polymer over a cured cPDMS, and not after integration of the cPDMS over a cured insulating polymer. We show that such changes can be eliminated by adjusting the integration priority between the conductive and insulating polymers, by selecting the right curing temperature, changing the concentration of the carbon particles and the thickness of the conductive traces, and when possible by changing the insulating polymer material. In this way, we obtained important conclusions regarding the effect of these parameters on the change of the conductance over time, that should be considered for additive manufacturing of soft electronics. Also, we show that these changes can be possibly due to the diffusion from PDMS into cPDMS.

  16. Cryogenic Adsorption of Nitrogen and Carbon Dioxide in Activated Carbon

    Science.gov (United States)

    Shen, Fuzhi; Liu, Huiming; Xu, Dong; Zhang, Hengcheng; Lu, Junfeng; Li, Laifeng

    2017-09-01

    Activated carbon have been used for a long time at low temperature for cryogenic applications. The knowledge of adsorption characteristics of activated carbon at cryogenic temperature is essential for some specific applications. However, such experimental data are very scare in the literature. In order to measure the adsorption characteristics of activated carbon under variable cryogenic temperatures, an adsorption measurement device was presented. The experiment system is based on the commercially available PCT-pro adsorption analyzer coupled to a two-stage Gifford McMahon refrigerator, which allows the sample to be cooled to 4.2K. Cryogenic environment can be maintained steadily without the cryogenic liquid through the cryocooler and temperature can be controlled precisely between 5K and 300K by the temperature controller. Adsorption measurements were performed in activated carbon for carbon dioxide and nitrogen and the adsorption isotherm were obtained.

  17. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thibaud-Erkey, Catherine [United Technologies Research Center (UTRC), East Hartford, CT (United States); Karra, Reddy [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  18. Resource Efficiency and Carbon Footprint Minimization in Manufacture of Plastic Products

    Directory of Open Access Journals (Sweden)

    K. Sabaliauskaitė

    2014-03-01

    Full Text Available Efficient resource management, waste prevention, as well as renewable resource consumption promote sustainable production and lower greenhouse gas emissions to the environment when manufacturing plastic products.The paper presents the analysis of the efficiency of resources and the potential of carbon footprint minimization in manufacture of plastic products by means of implementation of wood-plastic composite (WPC production. The analysis was performed using life cycle assessment and material flow analysis methodology. To devise the solution for better management of resources and minimization of carbon footprint, the environmental impacts of polyvinyl chloride (PVC and WPC wall panels through their life cycle were assessed, as well as the detailed material flow analyses of the PVC and WPC in production stages were carried out.The life cycle assessment has revealed that carbon footprints throughout life cycle of 1 kg of WPC wall panel are 37 % lower than those of the same weight of PVC wall panel product. Both products have a major impact on the environment during their production phase, while during this phase WPC wall panel has 35 % smaller carbon footprint and even 47 % smaller during disposal stages than those of the PVC wall panel.The results of material flow analysis have shown that recycling and reuse of production spoilage reduce the need of PVC secondary resources for PVC panels and primary WPC resources for WPC panel production.For better resource efficiency, the conceptual model of material flow management has been proposed. As WPC products are made of primary WPC granules, which are imported from abroad, the model suggests to produce the WPC granules at the company using collected PVC secondary materials (PVC stocks. It would lower environmental costs and environmental impact, increase the efficiency of resources, and diminish dependence on suppliers.DOI: http://dx.doi.org/10.5755/j01.erem.67.1.6587

  19. Resource Efficiency and Carbon Footprint Minimization in Manufacture of Plastic Products

    Directory of Open Access Journals (Sweden)

    Kamilė Sabaliauskaitė

    2014-04-01

    Full Text Available Efficient resource management, waste prevention, as well as renewable resource consumption promote sustainable production and lower greenhouse gas emissions to the environment when manufacturing plastic products. The paper presents the analysis of the efficiency of resources and the potential of carbon footprint minimization in manufacture of plastic products by means of implementation of wood-plastic composite (WPC production. The analysis was performed using life cycle assessment and material flow analysis methodology. To devise the solution for better management of resources and minimization of carbon footprint, the environmental impacts of polyvinyl chloride (PVC and WPC wall panels through their life cycle were assessed, as well as the detailed material flow analyses of the PVC and WPC in production stages were carried out. The life cycle assessment has revealed that carbon footprint throughout life cycle of 1 kg of WPC wall panel is 37 % lower than those of the same weight of PVC wall panel product. Both products have a major impact on the environment during their production phase, while during this phase WPC wall panel has 35 % smaller carbon footprint and even 47 % smaller during disposal stages than those of the PVC wall panel. The results of material flow analysis have shown that recycling and reuse of production spoilage reduce the need of PVC secondary resources for PVC panels and primary WPC resources for WPC panel production. For better resource efficiency, the conceptual model of material flow management has been proposed. As WPC products are made of primary WPC granules, which are imported from abroad, the model suggests to produce the WPC granules at the company using collected PVC secondary materials (PVC stocks. It would lower environmental costs and environmental impact, increase the efficiency of resources, and diminish dependence on suppliers.

  20. COLLABORATION BETWEEN MANUFACTURERS AND RETAIL STORES THROUGH TRADE MARKETING AND SALES PROMOTION ACTIVITIES

    OpenAIRE

    Mirjana Nedovic Cabarkapa; Darija Ivankovic; Vlasta Sibalic

    2012-01-01

    This article examines mutual relationship, namely cooperation between manufacturers and trade enterprises when the following issues are discussed: retail price recommended by manufacturer, in-store product positioning, support in activities related to the product improvement, as well as activities related to the trade marketing offered by manufacturer to retail store as its business partner. Fairness in implementation of agreed activities between those enterprises would improve their relation...

  1. Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments

    Science.gov (United States)

    Gardner, John M.; Sauti, Godfrey; Kim, Jae-Woo; Cano, Roberto J.; Wincheski, Russell A.; Stelter, Christopher J.; Grimsley, Brian W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way.

  2. Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace

    Science.gov (United States)

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Bae, Gwi-Nam

    2015-02-01

    As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2-12 μg/m3. The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10-420 nm were 10,000-40,000 particles/cm3 during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1-10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace.

  3. Demand Activated Manufacturing Architecture (DAMA) supply chain collaboration development methodology

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN,MARJORIE B.; CHAPMAN,LEON D.

    2000-03-15

    The Demand Activated Manufacturing Architecture (DAMA) project during the last five years of work with the U.S. Integrated Textile Complex (retail, apparel, textile, and fiber sectors) has developed an inter-enterprise supply chain collaboration development methodology. The goal of this methodology is to enable a supply chain to work more efficiently and competitively. The outcomes of this methodology include: (1) A definitive description and evaluation of the role of business cultures and supporting business organizational structures in either inhibiting or fostering change to a more competitive supply chain; (2) ``As-Is'' and proposed ``To-Be'' supply chain business process models focusing on information flows and decision-making; and (3) Software tools that enable and support a transition to a more competitive supply chain, which results form a business driven rather than technologically driven approach to software design. This methodology development will continue in FY00 as DAMA engages companies in the soft goods industry in supply chain research and implementation of supply chain collaboration.

  4. Overview of additive manufacturing activities at MTU aero engines

    Science.gov (United States)

    Bamberg, Joachim; Dusel, Karl-Heinz; Satzger, Wilhelm

    2015-03-01

    Additive Manufacturing (AM) is a promising technology to produce parts easily and effectively, just by using metallic powder or wire as starting material and a sophisticated melting process. In contrast to milling or turning technologies complex shaped and hollow parts can be built up in one step. That reduces the production costs and allows the implementation of complete new 3D designs. Therefore AM is also of great interest for aerospace and aero engine industry. MTU Aero Engines has focused its AM activities to the selective laser melting technique (SLM). This technique uses metallic powder and a laser for melting and building up the part layer by layer. It is shown which lead part was selected for AM and how the first production line was established. A special focus is set on the quality assurance of the selective laser melting process. In addition to standard non-destructive inspection techniques a new online monitoring tool was developed and integrated into the SLM machines. The basics of this technique is presented.

  5. Demand Activated Manufacturing Architecture (DAMA) supply chain collaboration development methodology

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN,MARJORIE B.; CHAPMAN,LEON D.

    2000-03-15

    The Demand Activated Manufacturing Architecture (DAMA) project during the last five years of work with the U.S. Integrated Textile Complex (retail, apparel, textile, and fiber sectors) has developed an inter-enterprise supply chain collaboration development methodology. The goal of this methodology is to enable a supply chain to work more efficiently and competitively. The outcomes of this methodology include: (1) A definitive description and evaluation of the role of business cultures and supporting business organizational structures in either inhibiting or fostering change to a more competitive supply chain; (2) ``As-Is'' and proposed ``To-Be'' supply chain business process models focusing on information flows and decision-making; and (3) Software tools that enable and support a transition to a more competitive supply chain, which results form a business driven rather than technologically driven approach to software design. This methodology development will continue in FY00 as DAMA engages companies in the soft goods industry in supply chain research and implementation of supply chain collaboration.

  6. Preparation of Activated Carbon from Palm Shells Using KOH and ZnCl2 as the Activating Agent

    Science.gov (United States)

    Yuliusman; Nasruddin; Afdhol, M. K.; Amiliana, R. A.; Hanafi, A.

    2017-07-01

    Palm shell is a potential source of raw materials for the produce of activated carbon as biosorbent for quite large numbers. The purpose of this study is to produce activated carbon qualified Indonesian Industrial Standard (SNI), which will be used as biosorbent to purify the impurities in the off gas petroleum refinery products. Stages of manufacture of activated carbon include carbonization, activation of chemistry and physics. Carbonization of activated carbon is done at a temperature of 400°C followed by chemical activation with active agent KOH and ZnCl2. Then the physical activation is done by flowing N2 gas for 1 hour at 850°C and followed by gas flow through the CO2 for 1 hour at 850°C. Research results indicate that activation of the active agent KOH produce activated carbon is better than using the active agent ZnCl2. The use of KOH as an active agent to produce activated carbon with a water content of 13.6%, ash content of 9.4%, iodine number of 884 mg/g and a surface area of 1115 m2/g. While the use of ZnCl2 as the active agent to produce activated carbon with a water content of 14.5%, total ash content of 9.0%, iodine number 648 mg/g and a surface area of 743 m2/g.

  7. Development of textile-reinforced carbon fibre aluminium composites manufactured with gas pressure infiltration methods

    Directory of Open Access Journals (Sweden)

    W. Hufenbach

    2009-08-01

    Full Text Available Purpose: The aim of his paper is to show potential of textile-reinforced carbon fibre aluminium composite with advantage of the lightweight construction of structural components subjected to thermo-mechanical stress.Design/methodology/approach: The manufacture of specimens of the carbon fibre-reinforced aluminium was realised with the aid of an advanced differential gas pressure infiltration technique, which was developed at ILK, TU Dresden.Findings: The gas pressure infiltration technology enables to fabricate complex carbon aluminium composites with fibre or textile reinforcement using moulds of graphite, but in future development the optimization of infiltration process is required. The load-adapted combination of 3D reinforced semi-finished fibre products (textile preforms made from carbon fibres (CF with aluminium light metal alloys (Al offers a considerable lightweight construction potential, which up to now has not been exploited.Research limitations/implications: Gas pressure infiltration technology enables to fabricate complex carbon aluminium composites with fibre or textile reinforcement using precision moulds of graphite, but in future development the optimization of infiltration process is required.Practical implications: Load-adapted CF/Al-MMC, due to the relatively high stiffness and strength of the metal matrix, allow the introduction of extremely high forces, thereby enabling a much better exploitation of the existing lightweight construction potential of this material in comparison to other composite materials.Originality/value: Constantly rising demands on extremely stressed lightweight structures, particularly in traffic engineering as well as in machine building and plant engineering, increasingly require the use of endless fibre-reinforced composite materials which, due to their selectively adaptable characteristics profiles, are clearly superior to conventional monolithic materials.

  8. E3 Sustainable Manufacturing Curriculum

    Science.gov (United States)

    A short E3 course containing three modules on Environmental Sustainability; Lean Manufacturing and Pollution Prevention; and Energy and Carbon. Each module includes slides, a facilitator's guide with handouts, activities, quizzes, and facilitator's notes.

  9. Controversy of International Carbon-motivated Border Tax Adjustment and Its Impact on China's Manufacturing Industries%Controversy of International Carbon-motivated Border Tax Adjustment and Its Impact on China's Manufacturing Industries

    Institute of Scientific and Technical Information of China (English)

    Shen Keting

    2011-01-01

    Carbon-motivated border tax adjustment (BTA) aims to compensate for the loss of competitiveness of carbon intensive products due to carbon dioxide abatement actions. Based on the analysis of the international background of carbon-motivated BTAs, this paper discusses the fundamental motivation leading to US policy transformation, the potential impacts of the policy on China's manufacturing industries, and the compatibility of the policy to WTO rules. Carbon-motivated BTAs violate the fundamental principle of the UNFCCC, and potentially conflict with the core WTO principle of non-discrimination reflected in the GATT Articles 1 and III. However, Article XX of the GATT may be applicable. Thus, the author suggests several measures to alleviate the impacts of carbon-motivated BTAs, and puts forward countermeasures based on carbon consumption per capita.

  10. Functionalization of carbon nanotubes: manufacturing techniques and properties of customized nanocomponents for molecular-level technology.

    Science.gov (United States)

    Akbar, Sohaib; Taimoor, Aqeel A

    2009-01-01

    Carbon nanotubes (CNTs) since their discovery have been the focus of research on account of exceptional chemical, mechanical and electrical properties. However, manipulation and processing of CNTs have been limited by their compatibility with other materials. Considerable efforts have therefore been devoted to the surface modification of CNTs to pave the way to many useful applications and to realize the potential applications in successful products, especially composite manufacturing. The chemical modification, dispersion and solubilization of CNTs represent an emerging area in the research on nanotubes-based materials. Several research groups have reported successful and doable functionalization techniques for single-walled (SWCNT) and multi-wall (MWCNT) carbon nanotubes. This paper presents an overview of the functionalization of the carbon nanotubes covering both covalent and non-covalent techniques at tips and walls of SWCNTs and MWCNTs, and summarizes recent patents possessing significant commercial value and large-scale practicality. The principal aim is to review main approaches to chemical functionalization of CNTs and to account for the advances that have been made so far.

  11. The Analysis of Activated Carbon Regeneration Technologies

    Institute of Scientific and Technical Information of China (English)

    姚芳

    2014-01-01

    A series of methods for activated carbon regeneration were briefly introduced.Such as thermal regeneration,chemical regeneration,biochemical regeneration,and newly supercritical fluid regeneration, electrochemical regeneration,light-catalyzed regeneration,and microwave radiation method,and the developing trend of activated carbon regeneration was predicted.

  12. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.

    2012-12-21

    Carbon molecular sieve (CMS) membranes offer advantages over traditional polymeric membrane materials, but scale-up of manufacturing systems has not received much attention. In the recent decade, there has been a dramatic increase in fundamental research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system show similar performance compared to membranes produced using a smaller bench-scale system. After optimizing the system design, a 93% recovery of the precursor fibers for use in membrane module preparation were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jun Ho [EcoPictures Co., Ltd (Korea, Republic of); Kim, Jong Bum; Lee, Gwangjae; Bae, Gwi-Nam, E-mail: gnbae@kist.re.kr [Korea Institute of Science and Technology, Center for Environment, Health and Welfare Research (Korea, Republic of)

    2015-02-15

    As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2–12 μg/m{sup 3}. The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10–420 nm were 10,000–40,000 particles/cm{sup 3} during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1–10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace.

  14. Making Activated Carbon by Wet Pressurized Pyrolysis

    Science.gov (United States)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  15. Utilization of spent activated carbon to enhance the combustion efficiency of organic sludge derived fuel.

    Science.gov (United States)

    Chen, Wei-Sheng; Lin, Chang-Wen; Chang, Fang-Chih; Lee, Wen-Jhy; Wu, Jhong-Lin

    2012-06-01

    This study examines the heating value and combustion efficiency of organic sludge derived fuel, spent activated carbon derived fuel, and derived fuel from a mixture of organic sludge and spent activated carbon. Spent activated carbon was sampled from an air pollution control device of an incinerator and characterized by XRD, XRF, TG/DTA, and SEM. The spent activated carbon was washed with deionized water and solvent (1N sulfuric acid) and then processed by the organic sludge derived fuel manufacturing process. After washing, the salt (chloride) and sulfide content could be reduced to 99% and 97%, respectively; in addition the carbon content and heating value were increased. Different ratios of spent activated carbon have been applied to the organic sludge derived fuel to reduce the NO(x) emission of the combustion.

  16. Hydrogen isotherms in palladium loaded carbon nanotubes and activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M. T.; Anson, A.; Lafuente, E.; Urriolabeitia, E.; Navarro, R.; Benito, A. M.; Maser, W. K.

    2005-07-01

    Session 5a In order to increase the hydrogen sorption capacity of carbon materials, a sample of single-wall carbon nanotubes (SWNTs) and the activated carbon MAXSORB have been loaded with palladium nanoparticles. While carbon materials adsorb hydrogen due to physical interactions, palladium can capture hydrogen into the bulk structure or chemically react to form hydrides. Experiental SWNTs have been synthesized in an electric arc reactor, using Ni and Y as catalysts in a 660 mbar He atmosphere. MAXSORB is a commercial activated carbon obtained from petroleum coke through a chemical treatment with KOH. Palladium has been deposited over the carbon support by means of a reflux method in a solution of an organometallic complex. Different samples have been prepared depending on the weight ratio (Carbon material / Pd) in the original reactants. The effectiveness of the deposition method has been examined by means of X-ray diffraction (XRD), induction coupled plasma spectrometry (ICPS) and transmission electron microscopy (TEM). The volumetric system Autosorb-1 from Quantachrome Instruments has been used to obtain the nitrogen adsorption isotherms at 77 K for all the materials. The hydrogen isotherms at 77 K and room temperature and up to 800 torr have also been obtained in the Autosorb-1. The BET specific surface area and the micropore volume have been calculated from the nitrogen adsorption data. High pressure hydrogen isotherms up to 90 bar have been carried out at room temperature in a VTI system provided with a Rubotherm microbalance. (Author)

  17. SOME IMPORTANT FACTORS AFFECTING EVOLUTION OF ACTIVITY BASED COSTING (ABC SYSTEM IN EGYPTIAN MANUFACTURING FIRMS

    Directory of Open Access Journals (Sweden)

    Karim MAMDOUH ABBAS

    2014-04-01

    Full Text Available The present investigation aims to determine the factors affecting evolution of Activity Based Costing (ABC system in Egyptian case. The study used the survey method to describe and analyze these factors in some Egyptian firms. The population of the study is Egyptian manufacturing firms. Accordingly, the number of received questionnaires was 392 (23 Egyptian manufacturing firms in the first half of 2013. Finally, the study stated some influencing factors for evolution this system (ABC in Egyptian manufacturing firms.

  18. Preparation and characterization of activated carbon from demineralized tyre char

    Science.gov (United States)

    Manocha, S.; Prasad, Guddu R.; Joshi, Parth.; Zala, Ranjitsingh S.; Gokhale, Siddharth S.; Manocha, L. M.

    2013-06-01

    Activated carbon is the most adsorbing material for industrial waste water treatment. For wider applications, the main consideration is to manufacture activated carbon from low cost precursors, which are easily available and cost effective. One such source is scrap tyres. Recently much effort has been devoted to the thermal degradation of tyres into gaseous and liquid hydrocarbons and solid char residue, all of which have the potential to be processed into valuable products. As for solid residue, char can be used either as low-grade reinforcing filler or as activated carbon. The product recovered by a typical pyrolysis of tyres are usually, 33-38 wt% pyrolytic char, 38-55 wt% oil and 10-30 wt% solid fractions. In the present work activated carbon was prepared from pyrolyzed tyre char (PC). Demineralization involves the dissolution of metal into acids i.e. HCl, HNO3 and H2SO4 and in base i.e. NaOH. Different concentration of acid and base were used. Sodium hydroxide showed maximum amount of metal oxide removal. Further the concentration of sodium hydroxide was varied from 1N to 6N. As the concentration of acid are increased demineralization increases. 6N Sodium hydroxide is found to be more effective demineralising agent of tyre char.

  19. Methodologies for Active Aging in the Manufacturing Sector

    Science.gov (United States)

    Fornasiero, Rosanna; Berdicchia, Domenica; Zambelli, Mario; Masino, Giovanni

    The research project named “Flexibly Beyond” studied and experimented innovative models for the enhancement of the role of senior workers and prolongation of their working life. The research was based on the application of innovative methods and tools to the ageing society and in particular to the European manufacturing companies represented in the project by apparel and footwear sectors. The project was funded under the Innovative Measures of the art.6 of the European Social Fund (VS/2006/0353) and coordinated by Politecnico Calzaturiero. The real strength of the project was the large network including all the actors of the value chain which allows transferring the theoretical findings to practical level in SMEs manufacturing context.

  20. Adsorption of Hydantoins on Activated Carbon,

    Science.gov (United States)

    1985-05-01

    covery, Garten and Weiss (1965) proposed the existence of chromene (benzpyran) groups on the surface of H-carbons. The acid reaction with the chromene ...presence of the chromene groups on the surface of H-carbons is responsible for the acid-adsorbing characteristics. Activation temperatures and

  1. The Transport Properties of Activated Carbon Fibers

    Science.gov (United States)

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  2. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  3. Activation of Carbon Dioxide and Synthesis of Propylene Carbonate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cycloaddition of carbon dioxide and propylene oxide to propylene carbonate catalyzed by tetra-tert-butyl metal phthalocyanine in the presence of tributylamine (TBA) shows higher yield than catalyzed by unsubstituted metal phthalocyanine. Comparing different catalysts of diverse metals, (t-Bu)4PcMg is more active than (t-Bu)4PcFe. But (t-Bu)4PcCo and (t-Bu)4PcNi only have low catalytic activities towards the reaction. Moreover, the yield will increase as the temperature increases.

  4. Carbon dioxide adsorption in chemically activated carbon from sewage sludge.

    Science.gov (United States)

    de Andrés, Juan Manuel; Orjales, Luis; Narros, Adolfo; de la Fuente, María del Mar; Encarnación Rodríguez, María

    2013-05-01

    In this work, sewage sludge was used as precursor in the production of activated carbon by means of chemical activation with KOH and NaOH. The sludge-based activated carbons were investigated for their gaseous adsorption characteristics using CO2 as adsorbate. Although both chemicals were effective in the development of the adsorption capacity, the best results were obtained with solid NaOH (SBA(T16)). Adsorption results were modeled according to the Langmuir and Freundlich models, with resulting CO2 adsorption capacities about 56 mg/g. The SBA(T16) was characterized for its surface and pore characteristics using continuous volumetric nitrogen gas adsorption and mercury porosimetry. The results informed about the mesoporous character of the SBA(T16) (average pore diameter of 56.5 angstroms). The Brunauer-Emmett-Teller (BET) surface area of the SBA(T16) was low (179 m2/g) in comparison with a commercial activated carbon (Airpel 10; 1020 m2/g) and was mainly composed of mesopores and macropores. On the other hand, the SBA(T16) adsorption capacity was higher than that of Airpel 10, which can be explained by the formation of basic surface sites in the SBA(T16) where CO2 experienced chemisorption. According to these results, it can be concluded that the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2. Adsorption methods are one of the current ways to reduce CO2 emissions. Taking this into account, sewage-sludge-based activated carbons were produced to study their CO2 adsorption capacity. Specifically, chemical activation with KOH and NaOH of previously pyrolyzed sewage sludge was carried out. The results obtained show that even with a low BET surface area, the adsorption capacity of these materials was comparable to that of a commercial activated carbon. As a consequence, the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2 and an interesting application for this waste.

  5. ACTIVATED CARBON/REFRIGERANT COMBINATIONS FOR ...

    African Journals Online (AJOL)

    ES Obe

    2001-03-01

    Mar 1, 2001 ... Nigerian Journal of Technology Vol. 20. No. ... Federal university of Technology ... Activated carbon is the adsorbent while ammonia, ethanol and methanol are the adsorbate. The ... production is not a new phenomenon.

  6. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    Institute of Scientific and Technical Information of China (English)

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  7. Granular Activated Carbon Performance Capability and Availability.

    Science.gov (United States)

    1983-06-01

    Kinetics of Activated Carbon Adsorption Journal of Water Polution 47(4) Aoril 1975 Control Federation 4-t9 Wnitna) G Aoalied Polarography for...proposed models for kinetics of adsorption of pink water organics by activated carbon. Both models are basically similar in nature and propose that...include formulation of a complete model of the pink water system based upon existing data. This model would then serve to reduce the amount of

  8. New Product Development for Green and Low-Carbon Products—A Case Study of Taiwan's TFT-LCD Manufacturer

    Science.gov (United States)

    Lin, Chun-Yu; Lee, Amy H. I.

    2011-11-01

    Green supply chain has become an important topic these days due to pollution, global warming, extreme climatic events, etc. A green product is manufactured with the goal of reducing the damage to the environment and limiting the use of energy and other resources at any stage of its life, including raw materials, manufacture, use, and disposal. Carbon footprint is a good measure of the impact that a product has on the environment, especially in climate change, in the entire lifetime of the product. Carbon footprint is directly linked to CO2 emission; thus, the reduction of CO2 emission must be considered in the product life cycle. Although more and more researchers are working on the green supply chain management in the past few years, few have incorporated CO2 emission or carbon footprint into the green supply chain system. Therefore, this research aims to propose an integrated model for facilitating the new product development (NPD) for green and low-carbon products. In this research, a systematic model based on quality function deployment (QFD) is constructed for developing green and low-carbon products in a TFT-LCD manufacturer. Literature review and interviews with experts are done first to collect the factors for developing and manufacturing green and low-carbon products. Fuzzy Delphi method (FDM) is applied next to extract the important factors, and fuzzy interpretive structural modeling (FISM) is used subsequently to understand the relationships among factors. A house of quality (HOQ) for product planning is built last. The results shall provide important information for a TFT-LCD firm in designing a new product.

  9. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    Science.gov (United States)

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  10. Nanospace engineering of KOH activated carbon.

    Science.gov (United States)

    Romanos, J; Beckner, M; Rash, T; Firlej, L; Kuchta, B; Yu, P; Suppes, G; Wexler, C; Pfeifer, P

    2012-01-13

    This paper demonstrates that nanospace engineering of KOH activated carbon is possible by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process. High specific surface areas, porosities, sub-nanometer (activation temperature. The process typically leads to a bimodal pore size distribution, with a large, approximately constant number of sub-nanometer pores and a variable number of supra-nanometer pores. We show how to control the number of supra-nanometer pores in a manner not achieved previously by chemical activation. The chemical mechanism underlying this control is studied by following the evolution of elemental composition, specific surface area, porosity, and pore size distribution during KOH activation and preceding H(3)PO(4) activation. The oxygen, nitrogen, and hydrogen contents decrease during successive activation steps, creating a nanoporous carbon network with a porosity and surface area controllable for various applications, including gas storage. The formation of tunable sub-nanometer and supra-nanometer pores is validated by sub-critical nitrogen adsorption. Surface functional groups of KOH activated carbon are studied by microscopic infrared spectroscopy.

  11. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n—HEXANE ON ACTIVATED CARBONS BY PTD TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIZhong; WANGHongjuan; 等

    2001-01-01

    In this paper,six kinds of activated carbons such as Ag+-activated carbon,Cu2+activated carbon,Fe3+-activated carbon,activated carbon,Ba2+-activated carbon and Ca2+activated carbon were prepared.The model for estimating activated energy of desorption was established.Temperature-programmed desorption(TPD)experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons.Results showed that the activation energy for the desorption of n-hexanol on the Ag+-activated carbon,the Cu2+-activated carbon and the Fe3+-activated carbon were higher than those of n-hexanol on the activated carbon,the Ca2+-activated carbon and the Ba2+-activated carbon.

  12. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n-HEXANE ON ACTIVATED CARBONS BY TPD TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+-activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+-activated carbon were prepared. The model for estimating activated energy of desorption was established. Temperature-programmed desorption (TPD) experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons. Results showed that the activation energy for the desorption of n-hexanol on the Ag+- activated carbon, the Cu2+- activated carbon and the Fe3+- activated carbon were higher than those of n-hexanol on the activated carbon, the Ca2+- activated carbon and the Ba2+- activated carbon.

  13. Antimicrobial Activity of Carbon-Based Nanoparticles

    Directory of Open Access Journals (Sweden)

    Solmaz Maleki Dizaj

    2015-03-01

    Full Text Available Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs (especially single-walled carbon nanotubes (SWCNTs and graphene oxide (GO nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery.

  14. International Conference on Harmonisation; guidance on good manufacturing practice for active pharmaceutical ingredients; availability. Notice.

    Science.gov (United States)

    2001-09-25

    The Food and Drug Administration (FDA) is announcing the availability of a guidance entitled "Q7A Good Manufacturing Practice Guidance for Active Pharmaceutical Ingredients." The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The guidance describes current good manufacturing practice (CGMP) for manufacturing of active pharmaceutical ingredients (APIs). The guidance is intended to help ensure that all APIs meet the standards for quality and purity they purport or are represented to possess.

  15. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires

    Directory of Open Access Journals (Sweden)

    Marcello Gelfi

    2017-03-01

    Full Text Available This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  16. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires.

    Science.gov (United States)

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-03-06

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  17. Effect of Activated Carbon as a Support on Metal Dispersion and Activity of Ruthenium Catalyst for Ammonia Synthesis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10.0 MPa and 10 000 h-1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13.17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1.37% over 4%Ru-BaO/AC10 catalyst.

  18. A method of manufacturing process modeling based on activity network for large-sized and complex products

    Institute of Scientific and Technical Information of China (English)

    LV Min; TONG Zhen-bo; WANG Gang

    2008-01-01

    Simulation technique is an efficient approach to realize the planning and scheduling of manufacturing process of products. An appropriate and efficient manufacturing process model is the basis and key of manufac-turing process simulation. By analyzing the features of large-sized and complex products, a method of manufac-turing process modeling based on activity network is presented and a mapping algorithm of translating BOM/ BOP into the manufacturing process model is designed in detail.

  19. Production and characterization of granular activated carbon from activated sludge

    Directory of Open Access Journals (Sweden)

    Z. Al-Qodah

    2009-03-01

    Full Text Available In this study, activated sludge was used as a precursor to prepare activated carbon using sulfuric acid as a chemical activation agent. The effect of preparation conditions on the produced activated carbon characteristics as an adsorbent was investigated. The results indicate that the produced activated carbon has a highly porous structure and a specific surface area of 580 m²/g. The FT-IR analysis depicts the presence of a variety of functional groups which explain its improved adsorption behavior against pesticides. The XRD analysis reveals that the produced activated carbon has low content of inorganic constituents compared with the precursor. The adsorption isotherm data were fitted to three adsorption isotherm models and found to closely fit the BET model with R² equal 0.948 at pH 3, indicating a multilayer of pesticide adsorption. The maximum loading capacity of the produced activated carbon was 110 mg pesticides/g adsorbent and was obtained at this pH value. This maximum loading was found experimentally to steeply decrease as the solution pH increases. The obtained results show that activated sludge is a promising low cost precursor for the production of activated carbon.

  20. Activated coconut shell charcoal carbon using chemical-physical activation

    Science.gov (United States)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  1. Preparation and characterization of activated carbons from rice ...

    African Journals Online (AJOL)

    atmosphere followed by activation using CO2 gas at various temperatures and ... available carbons, such as coal and coconut shells (Anon 1992). The ash ... extraction of the chemical from the carbonized char an activated carbon is obtained.

  2. Bimodal micropore size distribution in active carbons

    Energy Technology Data Exchange (ETDEWEB)

    Vartapetyan, R.S.; Voloshchuk, A.M.; Limonov, N.A.; Romanov, Y.A. (Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry)

    1993-03-01

    The porous structure of active carbon was compared with that of the original mineral coal and its carbonization products. The parameters of the porous structure were calculated from the adsorption isotherms of CO[sub 2] (298 K) and H[sub 2]O (293 K). It was shown that carbonization of the original coal at 1120 K causes changes in the chemical composition, consolidation of the part which is amorphous to X-rays, generation of an ordered defect-containing structure on its basis, an increase in the volume of the micropores, and a decrease in the mean diameter. Activation of the carbonized coal affords a microporous structure with a bimodal size distribution.

  3. Converting Poultry Litter into Activated Carbon

    Science.gov (United States)

    Disposal of animal manure is one of the biggest problems facing agriculture today. Now new technology has been designed to covert manure into environmentally friendly and highly valued activated carbon. When pelletized and activated under specific conditions, the litter becomes a highly porous mat...

  4. Manufacture of and environmental effects on carbon fiber-reinforced phenylethynyl-terminated poly(etherimide)

    Science.gov (United States)

    Bullions, Todd Aaron

    The initial objective of this research project was to determine the feasibility of manufacturing carbon fiber-reinforced (CFR) composites with a matrix consisting of a phenylethynyl-terminated version of a thermoplastic poly(etherimide) termed PETU. Successful composite manufacture with 3,000 g/mol (3k) PETU led to a survey of CFR 3kPETU mechanical properties for comparison with other high-performance composites. Encouraging results led to a study of moisture sorption effects on CFR 3kPETU properties. The success of these initial studies spawned the large scale production of 2,500 g/mol (2.5k) PETU. Thermal characterization of neat and CFR 2.5kPETU via differential scanning calorimetry, dynamic mechanical thermal analysis, and parallel plate rheometry resulted in an understanding of the influence of cure time and temperature on reaction progress via both reaction kinetics and monitoring of the glass transition temperature. From the rheological characterization, a two-stage, dual-Arrhenius model was developed to successfully model isothermal complex viscosity over the range of processing temperatures. Neat 2.5kPETU and CFR 2.5kPETU specimens were exposed separately to elevated temperature environments of different moisture and different oxygen concentrations to evaluate the effects of moisture absorption, moisture desorption, and thermal oxidation on material properties. Moisture absorption took place in a 90°C/85% relative humidity environment followed by moisture desorption in a 90°C/10% relative humidity environment. Thermal-oxidative aging for up to 5000 hours took place at 204°C in environments of four different oxygen partial pressures: 0.0 kPa, 2.84 kPa, 20.2 kPa, and 40.4 kPa. Following exposure to the different aging environments, the specimens were tested for retention of mechanical properties. In addition, moisture sorption properties were measured. Results from the moisture sorption studies on CFR 3kPETU and CFR 2.5kPETU suggest that fully cured

  5. The Relationship between Manufacturing Integration and Performance from an Activity-Oriented Perspective

    Directory of Open Access Journals (Sweden)

    Ely Laureano Paiva

    2011-10-01

    Full Text Available Manufacturing integration with other functional areas and suppliers is a key aspect for achieving sustainable competitive advantage. The objective of this study is to analyze manufacturing integration from an activity-based perspective. We hypothesize that manufacturing integration with suppliers, marketing, and R&D is positively related to profit and sales growth when it occurs simultaneously in key internal activities. We surveyed 366 companies located in the southern region of Brazil, chosen from the SEBRAE(1 database. We used structural equations modeling to address validity and reliability issues. We evaluated common method variance (CMV with the MTMM model and used path analysis to test the structural relations. We found that all manufacturing integration aspects are positively related to sales growth, but only manufacturing-R&D integration is positively related to profitability. Therefore, managers interested in improving the performance of their plants should favor the integration between manufacturing and R&D teams, at all hierarchical levels. We did not find any evidence, however, that direct interaction between manufacturing and marketing improves performance.

  6. A novel activated carbon for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Haijie [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Liu, Enhui, E-mail: liuenhui99@sina.com.cn [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Xiang, Xiaoxia; Huang, Zhengzheng; Tian, Yingying; Wu, Yuhu; Wu, Zhilian; Xie, Hui [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer A novel activated carbon was prepared from phenol-melamine-formaldehyde resin. Black-Right-Pointing-Pointer The carbon has large surface area with microporous, and high heteroatom content. Black-Right-Pointing-Pointer Heteroatom-containing functional groups can improve the pseudo-capacitance. Black-Right-Pointing-Pointer Physical and chemical properties lead to the good electrochemical properties. -- Abstract: A novel activated carbon has been prepared by simple carbonization and activation of phenol-melamine-formaldehyde resin which is synthesized by the condensation polymerization method. The morphology, thermal stability, surface area, elemental composition and surface chemical composition of samples have been investigated by scanning electron microscope, thermogravimetry and differential thermal analysis, Brunauer-Emmett-Teller measurement, elemental analysis and X-ray photoelectron spectroscopy, respectively. Electrochemical properties have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol L{sup -1} potassium hydroxide. The activated carbon shows good capacitive behavior and the specific capacitance is up to 210 F g{sup -1}, which indicates that it may be a promising candidate for supercapacitors.

  7. Mechanical, thermal and morphological characterization of polycarbonate/oxidized carbon nanofiber composites produced with a lean 2-step manufacturing process.

    Science.gov (United States)

    Lively, Brooks; Kumar, Sandeep; Tian, Liu; Li, Bin; Zhong, Wei-Hong

    2011-05-01

    In this study we report the advantages of a 2-step method that incorporates an additional process pre-conditioning step for rapid and precise blending of the constituents prior to the commonly used melt compounding method for preparing polycarbonate/oxidized carbon nanofiber composites. This additional step (equivalent to a manufacturing cell) involves the formation of a highly concentrated solid nano-nectar of polycarbonate/carbon nanofiber composite using a solution mixing process followed by melt mixing with pure polycarbonate. This combined method yields excellent dispersion and improved mechanical and thermal properties as compared to the 1-step melt mixing method. The test results indicated that inclusion of carbon nanofibers into composites via the 2-step method resulted in dramatically reduced ( 48% lower) coefficient of thermal expansion compared to that of pure polycarbonate and 30% lower than that from the 1-step processing, at the same loading of 1.0 wt%. Improvements were also found in dynamic mechanical analysis and flexural mechanical properties. The 2-step approach is more precise and leads to better dispersion, higher quality, consistency, and improved performance in critical application areas. It is also consistent with Lean Manufacturing principles in which manufacturing cells are linked together using less of the key resources and creates a smoother production flow. Therefore, this 2-step process can be more attractive for industry.

  8. Carbon Foam Self-Heated Tooling for Out-of-Autoclave Composites Manufacturing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Touchstone Research Laboratory, Ltd. (Touchstone) has developed a novel and innovative Out-of-Autoclave (OOA) composites manufacturing process with an electrically...

  9. Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation.

    Science.gov (United States)

    Foo, K Y; Hameed, B H

    2012-05-01

    The feasibility of preparing activated carbon (JPAC) from jackfruit peel, an industrial residue abundantly available from food manufacturing plants via microwave-assisted NaOH activation was explored. The influences of chemical impregnation ratio, microwave power and radiation time on the properties of activated carbon were investigated. JPAC was examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherm, elemental analysis, surface acidity/basicity and zeta potential measurements. The adsorptive behavior of JPAC was quantified using methylene blue as model dye compound. The best conditions resulted in JPAC with a monolayer adsorption capacity of 400.06 mg/g and carbon yield of 80.82%. The adsorption data was best fitted to the pseudo-second-order equation, while the adsorption mechanism was well described by the intraparticle diffusion model. The findings revealed the versatility of jackfruit peels as good precursor for preparation of high quality activated carbon.

  10. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    OpenAIRE

    Lin J. Q.; Yang S. E.; Duan J. M.; Wu J.J.; Jin L. Y.; Lin J. M.; Deng Q. L.

    2016-01-01

    Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and ki...

  11. Micro- to Macroroughness of Additively Manufactured Titanium Implants in Terms of Coagulation and Contact Activation.

    Science.gov (United States)

    Klingvall Ek, Rebecca; Hong, Jaan; Thor, Andreas; Bäckström, Mikael; Rännar, Lars-Erik

    This study aimed to evaluate how as-built electron beam melting (EBM) surface properties affect the onset of blood coagulation. The properties of EBM-manufactured implant surfaces for placement have, until now, remained largely unexplored in literature. Implants with conventional designs and custom-made implants have been manufactured using EBM technology and later placed into the human body. Many of the conventional implants used today, such as dental implants, display modified surfaces to optimize bone ingrowth, whereas custom-made implants, by and large, have machined surfaces. However, titanium in itself demonstrates good material properties for the purpose of bone ingrowth. Specimens manufactured using EBM were selected according to their surface roughness and process parameters. EBM-produced specimens, conventional machined titanium surfaces, as well as PVC surfaces for control were evaluated using the slide chamber model. A significant increase in activation was found, in all factors evaluated, between the machined samples and EBM-manufactured samples. The results show that EBM-manufactured implants with as-built surfaces augment the thrombogenic properties. EBM that uses Ti6Al4V powder appears to be a good manufacturing solution for load-bearing implants with bone anchorage. The as-built surfaces can be used "as is" for direct bone contact, although any surface treatment available for conventional implants can be performed on EBM-manufactured implants with a conventional design.

  12. Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Directory of Open Access Journals (Sweden)

    Eduardo Santillan-Jimenez

    2015-03-01

    Full Text Available Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased.

  13. Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing

    OpenAIRE

    Adam Sanders; Chola Elangeswaran; Jens Wulfsberg

    2016-01-01

    Purpose: Lean Manufacturing is widely regarded as a potential methodology to improve productivity and decrease costs in manufacturing organisations. The success of lean manufacturing demands consistent and conscious efforts from the organisation, and has to overcome several hindrances. Industry 4.0 makes a factory smart by applying advanced information and communication systems and future-oriented technologies. This paper analyses the incompletely perceived link between Industr...

  14. Industry 4.0 implies lean manufacturing: research activities in industry 4.0 function as enablers for lean manufacturing

    OpenAIRE

    Adam Sanders; Chola Elangeswaran; Jens Wulfsberg

    2016-01-01

    Purpose: Lean Manufacturing is widely regarded as a potential methodology to improve productivity and decrease costs in manufacturing organisations. The success of lean manufacturing demands consistent and conscious efforts from the organisation, and has to overcome several hindrances. Industry 4.0 makes a factory smart by applying advanced information and communication systems and future-oriented technologies. This paper analyses the incompletely perceived link between Industr...

  15. KNOWLEDGE MANAGEMENT FOR MAINTENANCE ACTIVITIES IN THE MANUFACTURING SECTOR

    Directory of Open Access Journals (Sweden)

    M.A. Mansor

    2012-06-01

    Full Text Available Maintenance is an indispensable part of the business process and plays an important role in an organisation’s success and survival. The main purpose of maintenance is to ensure equipment functions at its original optimal level. Thus, the knowledge and skills of operators are crucial and in demand. This paper presents a knowledge management of maintenance activities transfer method. Knowledge management is a process that a company cannot avoid, because it is a step in providing the necessary information for business performance measurements. Based on the example of a knowledge management system for a consultant company, we propose a knowledge repository or warehouse for maintenance activities that consists of four elements: best practice, databases, discussion forums and assessment tools. Each element has its own role and contribution towards better maintenance activities. Therefore, knowledge management has a deep relationship with performance evaluation or measurement.

  16. Low accessibility and chemical activity of PAHs restrict bioremediation and risk of exposure in a manufactured gas plant soil

    Energy Technology Data Exchange (ETDEWEB)

    Reichenberg, Fredrik; Karlson, Ulrich Gosewinkel [Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, Aarhus University, P.O. Box 358, 4000 Roskilde (Denmark); Gustafsson, Orjan [Stockholm University, Department of Applied Environmental Science (ITM), 10691 Stockholm (Sweden); Long, Sara M. [Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Pritchard, Parmely H. [Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, Aarhus University, P.O. Box 358, 4000 Roskilde (Denmark); Department of Biology, Portland State University, PO Box 751, Portland, OR 97207 (United States); Mayer, Philipp, E-mail: phm@dmu.d [Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, Aarhus University, P.O. Box 358, 4000 Roskilde (Denmark)

    2010-05-15

    Composting of manufactured gas plant soil by a commercial enterprise had removed most of its polycyclic aromatic hydrocarbons (PAHs), but concentrations remained above regulatory threshold levels. Several amendments and treatments were first tested to restart the PAH degradation, albeit with little success. The working hypothesis was then that PAHs were 'stuck' due to strong sorption to black carbon. Accessibility was measured with cyclodextrin extractions and on average only 4% of the PAHs were accessible. Chemical activity of the PAHs was measured by equilibrium sampling, which confirmed a low exposure level. These results are consistent with strong sorption to black carbon (BC), which constituted 59% of the total organic carbon. Composting failed to remove the PAHs, but it succeeded to minimize PAH accessibility and chemical activity. This adds to accumulating evidence that current regulatory thresholds based on bulk concentrations are questionable and alternative approaches probing actual risk should be considered. - Bioremediation of MGP soil failed to eliminate PAHs but it succeeded to limit their accessibility, chemical activity and the remaining risk of biological exposure.

  17. Characteristics of Nonafluorobutyl Methyl Ether (NFE) Adsorption onto Activated Carbon Fibers and Different-Size-Activated Carbon Particles.

    Science.gov (United States)

    Tanada; Kawasaki; Nakamura; Araki; Tachibana

    2000-08-15

    The characteristics of adsorption of 1,1,1,2,2,3,3,4,4-nonafluorobutyl methyl ether (NFE), a chlorofluorocarbon (CFC) replacement, onto six different activated carbon; preparations (three activated carbon fibers and three different-sized activated carbon particles) were investigated to evaluate the interaction between activated carbon surfaces and NFE. The amount of NFE adsorbed onto the three activated carbon fibers increased with increasing specific surface area and pore volume. The amount of NFE adsorbed onto the three different-sized-activated carbon particles increased with an increase in the particle diameter of the granular activated carbon. The differential heat of the NFE adsorption onto three activated carbon fibers depended on the porosity structure of the activated carbon fibers. The adsorption rate of NFE was also investigated in order to evaluate the efficiency of NFE recovery by the activated carbon surface. The Sameshima equation was used to obtain the isotherms of NFE adsorption onto the activated carbon fibers and different-sized-activated carbon particles. The rate constant k for NFE adsorption onto activated carbon fibers was larger for increased specific surface area and pore volume. The rate of NFE adsorption on activated carbons of three different particle sizes decreased with increasing particle diameter at a low initial pressure. The adsorption isotherms of NFE for the six activated carbons conformed to the Dubinin-Radushkevich equation; the constants BE(0) (the affinity between adsorbate and adsorbent) and W(0) (the adsorption capacity) were calculated. These results indicated that the interaction between the activated carbon and NFE was larger with the smaller specific surface area of the activated carbon fibers and with the smaller particle diameter of the different-sized-activated carbon particles. The degree of packing of NFE in the pores of the activated carbon fibers was greater than that in the pores of the granular activated

  18. Space Industrialization: Manufacturing and Construction Activities. Part 2.

    Science.gov (United States)

    Story, Charles H.

    1983-01-01

    Discusses how space industrialization will provide direct benefits for our nation and will transfer technology to the many diverse areas of human activity. Examples are the development of the Space Shuttle, the Space Studies Institute, and the LS Society (advocates for colonizing space). (NRJ)

  19. Catalytic activity of carbons for methane decomposition reaction

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922 (United States)

    2005-05-15

    Catalytic decomposition of methane is an environmentally attractive approach to CO{sub 2}-free production of hydrogen. The objective of this work is to evaluate catalytic activity of a wide range of carbon materials for methane decomposition reaction and determine major factors governing their activity. It was demonstrated that the catalytic activity of carbon materials for methane decomposition is mostly determined by their structural and surface properties. Kinetics of methane decomposition reaction over disordered (amorphous) carbons such as carbon black and activated carbon were determined. The mechanism of carbon-catalyzed methane decomposition reaction and the nature of active sites on the carbon surface are discussed in this paper.

  20. High activity carbon sorbents for mercury capture

    Energy Technology Data Exchange (ETDEWEB)

    George G. Stavropoulos; Irene S. Diamantopoulou; George E. Skodras; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory

    2006-07-01

    High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N{sub 2} adsorption at 77K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior. 10 refs., 3 figs., 1 tab.

  1. Methane Adsorption Study Using Activated Carbon Fiber and Coal Based Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Guo Deyong; Li Fei; Liu Wenge

    2013-01-01

    Inlfuence of ammonium salt treatment and alkali treatment of the coal based activated carbon (AC) and activated carbon ifber (ACF) adsorbents on methane adsorption capacity was studied via high-pressure adsorption experiment. Sur-face functional groups and pore structure of two types of adsorbents were characterized by the application of infrared ab-sorption spectroscopy (IR) and low temperature liquid nitrogen adsorption method. The results show that both ammonium salt treatment and alkali treatment have obvious effect on changing BET, pore volume as well as pore size distribution of adsorbents; and methane adsorption capacity of the activated carbon ifber is the maximum after the ammonium salt treatment.

  2. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  3. Carbon Foam Self-Heated Tooling for Out-of-Autoclave Composites Manufacturing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses NASA's need for non-autoclave composites manufacture. The Constellation program, including the Ares V launch vehicle, will require very...

  4. Carbon sink activity of managed grasslands

    Science.gov (United States)

    Klumpp, Katja; Chabbi, Abad; Gastal, Francois; Senapati, Nimai; Charrier, Xavier; Darsonville, Olivier; Creme, Alexandra

    2017-04-01

    In agriculture, a large proportion of GHG emission saving potential may be achieved by means of soil C sequestration. Recent demonstrations of carbon sink activities however, often questioned the existence of C storing grasslands, as uncertainty surrounding estimates are often larger than the sink itself. Besides climate, key components of the carbon sink activity in grasslands are type and intensity of management practices. Here, we analysed long term data on C flux and soil organic carbon stocks for two long term (>13yrs) national observation sites in France (SOERE-ACBB). These sites comprise a number of grassland fields and managements options (i.e. permanent, sowing, grazing, mowing, and fertilization) offering an opportunity to study carbon offsets (i.e. compensation of CH4 and N2O emissions), climatic-management interactions and trade-offs concerning ecosystem services (e.g. production). Furthermore, for some grassland fields, the carbon sink activity was compared using two methods; repeated soil inventory and estimation of the ecosystem C budget by continuous measurement of CO2 exchange (i.e. eddy covariance) in combination with quantification of other C imports and exports, necessary to estimate net C storage. In general grasslands, were a potential sink of C (i.e. net ecosystem exchange, NEE), where grazed sites had lower NEE compared the cut site. However, when it comes to net C storage (NCS), mowing reduced markedly potential sink leading to very low NCS compared to grazed sites. Including non-CO2 fluxes (CH4 and N2O emission) in the budget, revealed that GHG emissions were offset by C sink activity.

  5. Cooperative redox activation for carbon dioxide conversion

    Science.gov (United States)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-12-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing `waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

  6. Milk catalase activity as an indicator of thermization treatments used in the manufacture of cheddar cheese.

    Science.gov (United States)

    Hirvi, Y; Griffiths, M W

    1998-02-01

    Pilot-scale studies were carried out to determine the effect of different heat treatments on catalase activity during the manufacture and maturation of Cheddar cheese. Three trials were conducted to monitor catalase activity using disk flotation and polarographic methods. Cheese was manufactured from raw milk and from milk that had been treated at 60, 65 and 72 degrees C for 16 s using a high temperature, short time heat exchanger. Catalase activity was also determined in samples of commercial milk and in samples of mild, medium, sharp, and extra sharp Cheddar cheeses obtained from different manufacturers in order to verify that the enzyme could be used as an indicator of the type of heat treatment applied to cheese milk. Catalase activity was present in cheese made from raw milk but was only present at low concentrations in cheese manufactured from thermized milk. However, high catalase activity was observed in commercial samples of sharp and extra sharp Cheddar cheese that was apparently due to the growth of catalase-producing yeasts in the cheese during maturation.

  7. [Determination of the biological activity of aminoglycoside antibiotics on a dry nutrient medium of Soviet manufacture].

    Science.gov (United States)

    Grigor'eva, V M; Andreeva, Z M; Astanina, L N; Shiriaeva, V L; Gridneva, N I

    1981-06-01

    Possible use of the dry nutrient medium manufactured in the USSR for the assay of aminoglycoside antibiotic activity with the agar diffusion method was studied. The optimal conditions for the antibiotic activity assay on this medium were developed. The dry nutrient medium may be used for the activity assay of the aminoglycoside antibiotics, i. e. streptomycin sulfate, dihydrostreptomycin sulfate, neomycin sulfate, monomycin and gentamicin sulfate.

  8. Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing

    Directory of Open Access Journals (Sweden)

    Adam Sanders

    2016-09-01

    Full Text Available Purpose: Lean Manufacturing is widely regarded as a potential methodology to improve productivity and decrease costs in manufacturing organisations. The success of lean manufacturing demands consistent and conscious efforts from the organisation, and has to overcome several hindrances. Industry 4.0 makes a factory smart by applying advanced information and communication systems and future-oriented technologies. This paper analyses the incompletely perceived link between Industry 4.0 and lean manufacturing, and investigates whether Industry 4.0 is capable of implementing lean. Executing Industry 4.0 is a cost-intensive operation, and is met with reluctance from several manufacturers. This research also provides an important insight into manufacturers’ dilemma as to whether they can commit into Industry 4.0, considering the investment required and unperceived benefits. Design/methodology/approach: Lean manufacturing is first defined and different dimensions of lean are presented. Then Industry 4.0 is defined followed by representing its current status in Germany. The barriers for implementation of lean are analysed from the perspective of integration of resources. Literatures associated with Industry 4.0 are studied and suitable solution principles are identified to solve the abovementioned barriers of implementing lean. Findings: It is identified that researches and publications in the field of Industry 4.0 held answers to overcome the barriers of implementation of lean manufacturing. These potential solution principles prove the hypothesis that Industry 4.0 is indeed capable of implementing lean. It uncovers the fact that committing into Industry 4.0 makes a factory lean besides being smart. Originality/value: Individual researches have been done in various technologies allied with Industry 4.0, but the potential to execute lean manufacturing was not completely perceived. This paper bridges the gap between these two realms, and identifies

  9. Carbon nanomaterials: Biologically active fullerene derivatives

    Directory of Open Access Journals (Sweden)

    Bogdanović Gordana

    2016-01-01

    Full Text Available Since their discovery, fullerenes, carbon nanotubes, and graphene attract significant attention of researches in various scientific fields including biomedicine. Nano-scale size and a possibility for diverse surface modifications allow carbon nanoallotropes to become an indispensable nanostructured material in nanotechnologies, including nanomedicine. Manipulation of surface chemistry has created diverse populations of water-soluble derivatives of fullerenes, which exhibit different behaviors. Both non-derivatized and derivatized fullerenes show various biological activities. Cellular processes that underline their toxicity are oxidative, genotoxic, and cytotoxic responses. The antioxidant/cytoprotective properties of fullerenes and derivatives have been considered in the prevention of organ oxidative damage and treatment. The same unique physiochemical properties of nanomaterials may also be associated with potential health hazards. Non-biodegradability and toxicity of carbon nanoparticles still remain a great concern in the area of biomedical application. In this review, we report on basic physical and chemical properties of carbon nano-clusters - fullerenes, nanotubes, and graphene - their specificities, activities, and potential application in biological systems. Special emphasis is given to our most important results obtained in vitro and in vivo using polyhydroxylated fullerene derivative C60(OH24. [Projekat Ministarstva nauke Republike Srbije, br. III45005

  10. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    Science.gov (United States)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  11. Proximate analysis for determination of micropores in granulated activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Ya. G.; Nikolaev, V.B.; Shepelev, A.N.

    1987-02-01

    A method is discussed for determining the specific micropore volume of granulated activated carbon used for water treatment in Soviet coking plants. Toluene molecules with a diameter of 0.67 nm are sorbed by activated carbon with micropore diameter ranging from 0.7 to 1.4 nm. Therefore, sorptive properties of activated carbon in relation to toluene supply information on micropore volume in carbon. A formula which describes this relation is derived. The method for determining micropore volume on the basis of toluene adsorption was tested using 8 types of activated carbon produced from coal and petroleum. Types of activated carbon characterized by the highest adsorption were selected. 1 ref.

  12. In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nabais, J.M. Valente; Mouquinho, A.; Galacho, C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Centro de Quimica de Evora e Departamento de Quimica da Universidade de Evora, Rua Romao Ramalho no. 59, 7000-671 Evora (Portugal)

    2008-05-15

    We study the in vitro adsorption of fluoxetine hydrochloride by different adsorbents in simulated gastric and intestinal fluid, pH 1.2 and 7.5, respectively. The tested materials were two commercial activated carbons, carbomix and maxsorb MSC30, one activated carbon fibre produced in our laboratory and also three MCM-41 samples, also produced by us. Selected samples were modified by liquid phase oxidation and thermal treatment in order to change the surface chemistry without significant modifications to the porous characteristics. The fluoxetine adsorption follows the Langmuir model. The calculated Q{sub 0} values range from 54 to 1112 mg/g. A different adsorption mechanism was found for the adsorption of fluoxetine in activated carbon fibres and activated carbons. In the first case the most relevant factors are the molecular sieving effect and the dispersive interactions whereas in the activated carbons the mechanism seams to be based on the electrostatic interactions between the fluoxetine molecules and the charged carbon surface. Despite the different behaviours most of the materials tested have potential for treating potential fluoxetine intoxications. (author)

  13. Preparation and characterization of activated carbon from waste biomass.

    Science.gov (United States)

    Tay, Turgay; Ucar, Suat; Karagöz, Selhan

    2009-06-15

    Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the pyrolysis of soybean oil cake at 600 and 800 degrees C by chemical activation with K(2)CO(3) and KOH. The influence of temperature and type of chemical reagents on the porosity development was investigated and discussed. K(2)CO(3) was found more effective than KOH as a chemical reagent under identical conditions in terms of both porosity development and yields of the activated carbons. The maximum surface area (1352.86 m(2)g(-1)) was obtained at 800 degrees C with K(2)CO(3) activation which lies in the range of commercial activated carbons. Elemental analyses of the activated carbons indicate insignificant sulphur content for all activated carbons. The ash and sulphur contents of the activated carbons obtained with chemical activation by K(2)CO(3) were lower than those by chemical activation with KOH.

  14. Utilisation of Sand from Kaolin Washing for the Manufacture of Alkali-activated Artificial Sandstone

    Science.gov (United States)

    Vavro, Martin; Vavro, Leona; Mec, Pavel; Soucek, Kamil; Pticen, Frantisek; Reiterman, Pavel

    2017-04-01

    Sandstones represent a traditional natural stones which are widely used in Czech architecture and sculpture over a long time. Thanks to their relatively easy workability, sandstones provide a wide range of stone products and also represent a popular material for architectural and sculptural purposes. In the field of restoration of artworks, they are therefore often used for manufacturing stone statue copies originally made from the same or similar type of stone. Despite a relatively common and varied occurrence of natural sandstones, the method of the artificial stone facsimiles creation in the form of various cast elements is also often applied in restoration practice. The history of application of artificial stones in civil engineering and architecture goes back to the ancient times, i.e. to Roman antiquity and possibly up to the time of ancient Egypt. The lack of appropriate natural rock, suitable in the view of colour, grain size or texture is the main reason of manufacturing copies based on synthetic mixtures. The other reason is high financial costs to create a sculpture copy from natural materials. Mixtures made from white and/or grey cements, sands, carefully selected crushed stone or well graded natural gravels, and mineral coloring pigments or mixtures with acrylate, polyester, and epoxy resins binder are the most frequently used artificial materials for cast stone manufacturing. This paper aims to bring information about composition and properties of artificial sandstones made from alkali-activated binder mixtures based on metakaolin and granulated blast furnace slag. The filler of this artificial stone is represented by fine-grained sand generated during kaolin wet processing. Used sand is mainly formed by quartz, feldspars, micas (muscovite > biotite), residual kaolin, and to a lesser extent also by Fe oxyhydroxides ("limonite"), titanium dioxide mineral (probably anatase), and carbonate mineral unidentified in detail. Annual Czech production of this

  15. Preparation of activated carbon from a renewable agricultural ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-10

    May 10, 2010 ... Preparation of activated carbon from a renewable agricultural ... fuel-wood because household energy requirements are met with multiple ..... for activated carbon production - A review. Renewable & Sustainable. Energy ...

  16. Aqueous mercury adsorption by activated carbons.

    Science.gov (United States)

    Hadi, Pejman; To, Ming-Ho; Hui, Chi-Wai; Lin, Carol Sze Ki; McKay, Gordon

    2015-04-15

    Due to serious public health threats resulting from mercury pollution and its rapid distribution in our food chain through the contamination of water bodies, stringent regulations have been enacted on mercury-laden wastewater discharge. Activated carbons have been widely used in the removal of mercuric ions from aqueous effluents. The surface and textural characteristics of activated carbons are the two decisive factors in their efficiency in mercury removal from wastewater. Herein, the structural properties and binding affinity of mercuric ions from effluents have been presented. Also, specific attention has been directed to the effect of sulfur-containing functional moieties on enhancing the mercury adsorption. It has been demonstrated that surface area, pore size, pore size distribution and surface functional groups should collectively be taken into consideration in designing the optimal mercury removal process. Moreover, the mercury adsorption mechanism has been addressed using equilibrium adsorption isotherm, thermodynamic and kinetic studies. Further recommendations have been proposed with the aim of increasing the mercury removal efficiency using carbon activation processes with lower energy input, while achieving similar or even higher efficiencies.

  17. [Use of domestically produced corn starch in the manufacture of calcium carbonate tablets].

    Science.gov (United States)

    Gazikalović, E; Obrenović, D; Nidzović, Z; Toskić-Radojicić, M

    1998-01-01

    The results of the testing of calcium carbonate tablets, compounded with starch as the binding and decay substance are presented. The content of calcium carbonate in the tablets, as well as the mass varying, solidity, prodigality and aptness to decay were determined. The best properties were observed in the tablets with 15% starch mucilage, added suddenly, in the whole amount, to the prepared mixture of calcium carbonate and lactose. This procedure is fast and simple, and compound tablets of calcium carbonate are of regulated quality.

  18. Activated Carbon Preparation and Modification for Adsorption

    Science.gov (United States)

    Cao, Yuhe

    Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon

  19. Composite supercapacitor electrodes made of activated carbon/PEDOT:PSS and activated carbon/doped PEDOT

    Indian Academy of Sciences (India)

    T S Sonia; P A Mini; R Nandhini; Kalluri Sujith; Balakrishnan Avinash; S V Nair; K R V Subramanian

    2013-08-01

    In this paper, we report on the high electrical storage capacity of composite electrodes made from nanoscale activated carbon combined with either poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) or PEDOT doped with multiple dopants such as ammonium persulfate (APS) and dimethyl sulfoxide (DMSO). The composites were fabricated by electropolymerization of the conducting polymers (PEDOT:PSS, doped PEDOT) onto the nanoscale activated carbon backbone, wherein the nanoscale activated carbon was produced by ball-milling followed by chemical and thermal treatments. Activated carbon/PEDOT:PSS yielded capacitance values of 640 F g-1 and 26mF cm-2, while activated carbon/doped PEDOT yielded capacitances of 1183 F g-1 and 42 mF cm-2 at 10 mV s-1. This is more than five times the storage capacity previously reported for activated carbon–PEDOT composites. Further, use of multiple dopants in PEDOT improved the storage performance of the composite electrode well over that of PEDOT:PSS. The composite electrodes were characterized for their electrochemical behaviour, structural and morphological details and electronic conductivity and showed promise as high-performance energy storage systems.

  20. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Byamba-Ochir, Narandalai [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of); Shim, Wang Geun [Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-Ro, Suncheon, Jeollanam-Do 57922 (Korea, Republic of); Balathanigaimani, M.S., E-mail: msbala@rgipt.ac.in [Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Ratapur Chowk, Rae Bareli, 229316 Uttar Pradesh (India); Moon, Hee, E-mail: hmoon@jnu.ac.kr [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of)

    2016-08-30

    Highlights: • Highly porous carbon materials from Mongolian anthracite by chemical activation. • Cheaper and eco-friendly activation process has been employed. • Activated carbons with graphitic structure and energetically heterogeneous surface. • Surface hydrophobicity and porosity of the activated carbons can be controlled. - Abstract: Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816–2063 m{sup 2}/g and of 0.55–1.61 cm{sup 3}/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  1. 78 FR 13894 - Certain Activated Carbon From China

    Science.gov (United States)

    2013-03-01

    ... COMMISSION Certain Activated Carbon From China Determination On the basis of the record \\1\\ developed in the... antidumping duty order on certain activated carbon from China would be likely to lead to continuation or... USITC Publication 4381 (February 2013), entitled Certain Activated Carbon from China: Investigation...

  2. Ananlysis of Carbon Emission Reduction and Power Dominance between Single Manufacturer and Single Retailer in Regulatory Cap and Trade System

    Directory of Open Access Journals (Sweden)

    Liang-jie Xia

    2014-01-01

    Full Text Available In the cap and trade system, the paper analyses the Stackelberg game between the power asymmetrical retailer and manufacturer and designs a side-payment self-enforcing contract to resolve some arguments that the existing research overemphasizes spontaneity of participation in side-payment contracts design based on supply chain coordination and does not consider rationality and fairness of allocation of profit increment. Also, the numerical analysis was given. The research shows some important conclusions: in the supply chain, the dominant manufacturer is not able to encourage the retailer to improve its promotion level by increasing its carbon cutting level, but the optimal emission reduction level increases with the dominant retailer’s promotion level; the optimal promotion level, emission reduction, and product demand in a retailer leading supply chain are higher than those in a supply chain dominated by manufacturer; with the new side-payment self-enforcing contract, decentralized decision according to individual rationality incurs a collective reason effect in the centralized setting.

  3. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties.

    Science.gov (United States)

    Bae, Wookeun; Kim, Jongho; Chung, Jinwook

    2014-08-01

    Commercial activated carbon is a highly effective absorbent that can be used to remove micropollutants from water. As a result, the demand for activated carbon is increasing. In this study, we investigated the optimum manufacturing conditions for producing activated carbon from ligneous wastes generated from food processing. Jujube seeds and walnut shells were selected as raw materials. Carbonization and steam activation were performed in a fixed-bed laboratory electric furnace. To obtain the highest iodine number, the optimum conditions for producing activated carbon from jujube seeds and walnut shells were 2 hr and 1.5 hr (carbonization at 700 degrees C) followed by 1 hr and 0.5 hr (activation at 1000 degrees C), respectively. The surface area and iodine number of activated carbon made from jujube seeds and walnut shells were 1,477 and 1,184 m2/g and 1,450 and 1,200 mg/g, respectively. A pore-distribution analysis revealed that most pores had a pore diameter within or around 30-40 angstroms, and adsorption capacity for surfactants was about 2 times larger than the commercial activated carbon, indicating that waste-based activated carbon can be used as alternative. Implications: Wastes discharged from agricultural and food industries results in a serious environmental problem. A method is proposed to convert food-processing wastes such as jujube seeds and walnut shells into high-grade granular activated carbon. Especially, the performance of jujube seeds as activated carbon is worthy of close attention. There is little research about the application ofjujube seeds. Also, when compared to two commercial carbons (Samchully and Calgon samples), the results show that it is possible to produce high-quality carbon, particularly from jujube seed, using a one-stage, 1,000 degrees C, steam pyrolysis. The preparation of activated carbon from food-processing wastes could increase economic return and reduce pollution.

  4. Manufacture of magnetically active fiber-reinforced composites for use in power generation

    Science.gov (United States)

    Etches, Julie; Bond, Ian; Mellor, Phil

    2004-07-01

    A major issue yet to be resolved for embedding sensors, actuators and microelectromechanical systems (MEMS) in 'smart' structures is that of providing power. Work is ongoing in the field with examples of micro battery technology, use of solar power and micro fuel cells. The work presented here considers a technology to enable the development of integrated power generation and actuation. Magnetic fibre reinforced composite material has been developed which utilises hollow glass fibres filled with active magnetic material. The resulting material maintains structural integrity as well as providing a possible means of electrical power generation from a dynamically loaded structure. The hollow glass fibres were manufactured in-house using a bespoke fibre drawing facility. Hard magnetic powder materials were introduced into the hollow fibre cores to provide an active electromagnetic function. This paper will discuss the manufacture, characterization and optimisation of active magnetic fibre reinforced composite materials.

  5. ACTIVITY-BASED COSTING DAN SIMULATED ANNEALING UNTUK PENCARIAN RUTE PADA FLEXIBLE MANUFACTURING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Gregorius Satia Budhi

    2003-01-01

    Full Text Available Flexible Manufacturing System (FMS is a manufacturing system that is formed from several Numerical Controlled Machines combine with material handling system, so that different jobs can be worked by different machines sequences. FMS combine the high productivity and flexibility of Transfer Line and Job Shop manufacturing system. In this reasearch, Activity-Based Costing(ABC approach was used as the weight to search the operation route in the proper machine, so that the total production cost can be optimized. The search method that was used in this experiment is Simulated Annealling, a variant form Hill Climbing Search method. An ideal operation time to proses a part was used as the annealling schedule. From the empirical test, it could be proved that the use of ABC approach and Simulated Annealing to search the route (routing process can optimize the Total Production Cost. In the other hand, the use of ideal operation time to process a part as annealing schedule can control the processing time well. Abstract in Bahasa Indonesia : Flexible Manufacturing System (FMS adalah sistem manufaktur yang tersusun dari mesin-mesin Numerical Control (NC yang dikombinasi dengan Sistem Penanganan Material, sehingga job-job berbeda dikerjakan oleh mesin-mesin dengan alur yang berlainan. FMS menggabungkan produktifitas dan fleksibilitas yang tinggi dari Sistem Manufaktur Transfer Line dan Job Shop. Pada riset ini pendekatan Activity-Based Costing (ABC digunakan sebagai bobot / weight dalam pencarian rute operasi pada mesin yang tepat, untuk lebih mengoptimasi biaya produksi secara keseluruhan. Adapun metode Searching yang digunakan adalah Simulated Annealing yang merupakan varian dari metode searching Hill Climbing. Waktu operasi ideal untuk memproses sebuah part digunakan sebagai Annealing Schedulenya. Dari hasil pengujian empiris dapat dibuktikan bahwa penggunaan pendekatan ABC dan Simulated Annealing untuk proses pencarian rute (routing dapat lebih

  6. Analysis of energy consumption and carbon dioxide emissions in ceramic tile manufacture; Analisis de consumos energeticos y emisiones de dioxido de carbono en la fabricacion de baldosas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, E.; Mezquita, A.; Granel, R.; Vaquer, E.; Escrig, A.; Miralles, A.; Zaera, V.

    2010-07-01

    The ceramic tile manufacturing process is energy intensive since it contains several stages in which the product is subject to thermal treatment. The thermal energy used in the process is usually obtained by combustion of natural gas, which is a fossil fuel whose oxidation produces emissions of carbon dioxide, a greenhouse gas. Energy costs account for 15% of the average direct manufacturing costs, and are strongly influenced by the price of natural gas, which has increased significantly in the last few years. Carbon dioxide emissions are internationally monitored and controlled in the frame of the Kyoto Protocol. Applicable Spanish law is based on the European Directive on emissions trading, and the assignment of emissions rights is based on historical values in the sectors involved. Legislation is scheduled to change in 2013, and the resulting changes will directly affect the Spanish ceramic tile manufacturing industry, since many facilities will become part of the emissions trading system. The purpose of this study is to determine current thermal energy consumption and carbon dioxide emissions in the ceramic tile manufacturing process. A comprehensive sectoral study has been carried out for this purpose on several levels: the first analyses energy consumption and carbon dioxide emissions in the entire industry; the second determines energy consumption and carbon dioxide emissions in industrial facilities over a long period of time (several months); while the third level breaks down these values, determining energy consumption and emissions in terms of the product made and the manufacturing stage. (Author) 8 refs.

  7. Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites.

    Science.gov (United States)

    Thompson, Drew; Chen, Sheng-Chieh; Wang, Jing; Pui, David Y H

    2015-11-01

    Recent animal studies have shown that carbon nanotubes (CNTs) may pose a significant health risk to those exposed in the workplace. To further understand this potential risk, effort must be taken to measure the occupational exposure to CNTs. Results from an assessment of potential exposure to multi-walled carbon nanotubes (MWCNTs) conducted at an industrial facility where polymer nanocomposites were manufactured by an extrusion process are presented. Exposure to MWCNTs was quantified by the thermal-optical analysis for elemental carbon (EC) of respirable dust collected by personal sampling. All personal respirable samples collected (n = 8) had estimated 8-h time weighted average (TWA) EC concentrations below the limit of detection for the analysis which was about one-half of the recommended exposure limit for CNTs, 1 µg EC/m(3) as an 8-h TWA respirable mass concentration. Potential exposure sources were identified and characterized by direct-reading instruments and area sampling. Area samples analyzed for EC yielded quantifiable mass concentrations inside an enclosure where unbound MWCNTs were handled and near a pelletizer where nanocomposite was cut, while those analyzed by electron microscopy detected the presence of MWCNTs at six locations throughout the facility. Through size selective area sampling it was identified that the airborne MWCNTs present in the workplace were in the form of large agglomerates. This was confirmed by electron microscopy where most of the MWCNT structures observed were in the form of micrometer-sized ropey agglomerates. However, a small fraction of single, free MWCNTs was also observed. It was found that the high number concentrations of nanoparticles, ~200000 particles/cm(3), present in the manufacturing facility were likely attributable to polymer fumes produced in the extrusion process. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  8. Activated Carbon Fiber Monoliths as Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Gelines Moreno-Fernandez

    2017-01-01

    Full Text Available Activated carbon fibers (ACF are interesting candidates for electrodes in electrochemical energy storage devices; however, one major drawback for practical application is their low density. In the present work, monoliths were synthesized from two different ACFs, reaching 3 times higher densities than the original ACFs’ apparent densities. The porosity of the monoliths was only slightly decreased with respect to the pristine ACFs, the employed PVDC binder developing additional porosity upon carbonization. The ACF monoliths are essentially microporous and reach BET surface areas of up to 1838 m2 g−1. SEM analysis reveals that the ACFs are well embedded into the monolith structure and that their length was significantly reduced due to the monolith preparation process. The carbonized monoliths were studied as supercapacitor electrodes in two- and three-electrode cells having 2 M H2SO4 as electrolyte. Maximum capacitances of around 200 F g−1 were reached. The results confirm that the capacitance of the bisulfate anions essentially originates from the double layer, while hydronium cations contribute with a mixture of both, double layer capacitance and pseudocapacitance.

  9. Improvement of the Mechanism for the Management of Innovation Activity in the Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Vitalii Nikolaevich Makoveev

    2015-09-01

    Full Text Available The transition of Russia’s economy from raw materials exporting model of development to the innovation model is a national priority, since it contributes to intensive and sustainable economic growth and reduces economic dependence on external markets. GDP growth rate of 75–90% in the developed countries such as the USA, Japan, Germany, the UK, France, and also in the newly industrialized countries of Southeast Asia and China, is achieved due to the “progress of knowledge” – the intellectualization of the main production factors. Due to this fact, the increase in the standard of living in Russia, as well as overcoming its technological and economic lagging behind the more developed countries is possible only on the basis of the increase in productivity, enhancement of Russia’s competitiveness in international markets of innovative products, modernization and sustainable development of industrial enterprises through the creation of new innovation capabilities and the extensive utilization of that which have already been accumulated. The manufacturing industry is a powerful driving force of innovation economic development, since this sector concentrates the main production of the most technologically sophisticated and knowledgeintensive products with high added value. However, in the process of market transformations the products of domestic manufacturing enterprises have become much less competitive on international markets. There is a steady tendency toward the growth of imports and decrease of exports of enterprises of this sector. In this regard, the article identifies the factors that have the greatest influence on the development of innovation activities in the manufacturing industry. The author builds a multivariate regression model that determines the degree of influence of various socio-economic factors on the level of development of innovation activity in manufacturing. The paper proposes an organizational-economic mechanism

  10. Charcoal and activated carbon at elevated pressure

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Dai, Xiangfeng; Norberg, N. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)] [and others

    1995-12-01

    High quality charcoal has been produced with very high yields of 50% to 60% from macadamia nut and kukui nut shells and of 44% to 47% from Eucalyptus and Leucaena wood in a bench scale unit at elevated pressure on a 2 to 3 hour cycle, compared to commercial practice of 25% to 30% yield on a 7 to 12 day operating cycle. Neither air pollution nor tar is produced by the process. The effects of feedstock pretreatments with metal additives on charcoal yield are evaluated in this paper. Also, the influences of steam and air partial pressure and total pressure on yields of activated carbon from high yield charcoal are presented.

  11. Study on the preparation of straw activated carbon and its phenol adsorption properties

    Science.gov (United States)

    Chen, Liping

    2017-01-01

    Using sunflower straw as raw materials to manufacture straw activated carbon-modified by phosphoric acidand adsorption isotherm of phenol on straw activated carbon was studied in a batch reactor. The physical properties of the prepared straw activated carbons were characterized by scanning electron microscopy. The effect of various parameters, adsorbent dose, pH and temperature, were studied on optimum conditions. The results have shown that the absorbent was efficient, the removal ratio of phenol up to 99.36% with an adsorbent dosage of 16 g·L-1, a pH of 6.0-8.0, at 25 °C. The experimental adsorption data fitted reasonably well to the Langmuir isotherm, the maximum adsorption capacity was 109.89 mg/g. The process of adsorption is a exothermic process.

  12. Production of activated carbon from TCR char

    Science.gov (United States)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  13. ENTRAINED-FLOW ADSORPTION OF MERCURY USING ACTIVATED CARBON

    Science.gov (United States)

    Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg) by activated carbon. Adsorption of Hg by several commercial activated carbons was examined at different carbon-to-mercury (C:Hg) ratios (by weight) (600:1 - 29000...

  14. Eco-efficient based logistics network design in hybrid manufacturing/ remanufacturing system in low-carbon economy

    Directory of Open Access Journals (Sweden)

    Yacan Wang

    2013-03-01

    Full Text Available Purpose: Low-carbon economy requires the pursuit of eco-efficiency, which is a win-win situation between economic and environmental efficiency. In this paper the question of trading off the economic and environmental effects embodied in eco-efficiency in the hybrid manufacturing/remanufacturing logistics network design in the context of low-carbon economy is examined.Design/methodology/approach: A multi-objective mixed integer linear programming model to find the optimal facility locations and materials flow allocation is established. In the objective function, three minimum targets are set: economic cost, CO2 emission and waste generation. Through an iterative algorithm, the Pareto Boundary of the problem is obtained.Findings: The results of numeric study show that in order to achieve a Pareto improvement over an original system, three of the critical rates (i.e. return rate, recovery rate, and cost substitute rate should be increased.Practical implications: To meet the need of low-carbon dioxide, an iso- CO2 emission curve in which decision makers have a series of optimal choices with the same CO2 emission but different cost and waste generation is plotted. Each choice may have different network design but all of these are Pareto optimal solutions, which provide a comprehensive evaluation of both economics and ecology for the decision making.Originality/value: This research chooses carbon emission as one of the three objective functions and uses Pareto sets to analyze how to balance profitability and environmental impacts in designing remanufacturing closed-loop supply chain in the context of low-carbon economy.

  15. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    Science.gov (United States)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  16. Volumetric and superficial characterization of carbon activated; Caracterizacion volumetrica y superficial de carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T. [Departamento de Quimica, Gerencia de Ciencias Basicas, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  17. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  18. Study of CO2 adsorption capacity of mesoporous carbon and activated carbon modified by triethylenetetramine (TETA)

    Science.gov (United States)

    Sulistianti, I.; Krisnandi, Y. K.; Moenandar, I.

    2017-04-01

    Mesoporous carbon was synthesized by soft template method using phloroglucinol and formaldehyde as a carbon source; and Pluronic F-127 as a mesoporous template. The synthesized mesoporous carbon and commercial activated carbon were modified with triethylenetetramine (TETA) to increase CO2 adsorption capacity. Based on FTIR characterization, the synthesized mesoporous carbon and the activated carbon without modification process has similarity pattern. After the modification, both of them showed absorption peaks in the area around 1580 to 1650 cm-1 which is known as N-H bending vibration and absorption peaks in the area around 3150 to 3380 cm-1 which is known as N-H stretching vibration. The XRD results showed two peaks at 2θ = 24.21° and 2θ = 43.85°, according to JCPDS index No. 75-1621 those peak are the typical peaks for hexagonal graphite carbon. In BET analysis, the synthesized mesoporous carbon and activated carbon modified TETA have surface area, pore volume and pore diameter lower than without modification process. In carbon dioxide adsorption testing, the synthesized mesoporous carbon showed better performance than the commercial activated carbon for CO2 adsorption both without modification and by modification. The synthesized mesoporous carbon obtained CO2 adsorption of 9.916 mmol/g and the activated carbon of 3.84 mmol/g for on 3.5 hours of adsorption. It is three times better than activated carbon for adsorption of carbon dioxide. The modified mesoporous carbon has the best performance for adsorption of gas CO2 if compared by unmodified.

  19. Superhydrophobic activated carbon-coated sponges for separation and absorption.

    Science.gov (United States)

    Sun, Hanxue; Li, An; Zhu, Zhaoqi; Liang, Weidong; Zhao, Xinhong; La, Peiqing; Deng, Weiqiao

    2013-06-01

    Highly porous activated carbon with a large surface area and pore volume was synthesized by KOH activation using commercially available activated carbon as a precursor. By modification with polydimethylsiloxane (PDMS), highly porous activated carbon showed superhydrophobicity with a water contact angle of 163.6°. The changes in wettability of PDMS- treated highly porous activated carbon were attributed to the deposition of a low-surface-energy silicon coating onto activated carbon (confirmed by X-ray photoelectron spectroscopy), which had microporous characteristics (confirmed by XRD, SEM, and TEM analyses). Using an easy dip-coating method, superhydrophobic activated carbon-coated sponges were also fabricated; those exhibited excellent absorption selectivity for the removal of a wide range of organics and oils from water, and also recyclability, thus showing great potential as efficient absorbents for the large-scale removal of organic contaminants or oil spills from water.

  20. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P. [A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninskiy Prospekt 29, 119991 Moscow Russia (Russian Federation)

    2016-05-18

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  1. The effect of manufacturing conditions on discontinuity population and fatigue fracture behavior in carbon/epoxy composites

    Science.gov (United States)

    Hakim, Issa; Laquai, Rene; Walter, David; Mueller, Bernd; Graja, Paul; Meyendorf, Norbert; Donaldson, Steven

    2017-02-01

    Carbon fiber composites have been increasingly used in aerospace, military, sports, automotive and other fields due to their excellent properties, including high specific strength, high specific modulus, corrosion resistance, fatigue resistance, and low thermal expansion coefficient. Interlaminar fracture is a serious failure mode leading to a loss in composite stiffness and strength. Discontinuities formed during manufacturing process degrade the fatigue life and interlaminar fracture resistance of the composite. In his study, three approaches were implemented and their results were correlated to quantify discontinuities effecting static and fatigue interlaminar fracture behavior of carbon fiber composites. Samples were fabricated by hand layup vacuum bagging manufacturing process under three different vacuum levels, indicated High (-686 mmHg), Moderate (-330 mmHg) and Poor (0 mmHg). Discontinuity content was quantified through-thickness by destructive and nondestructive techniques. Eight different NDE methods were conducted including imaging NDE methods: X-Ray laminography, ultrasonic, high frequency eddy current, pulse thermography, pulse phase thermography and lock-in-thermography, and averaging NDE techniques: X-Ray refraction and thermal conductivity measurements. Samples were subsequently destructively serial sectioned through-thickness into several layers. Both static and fatigue interlaminar fracture behavior under Mode I were conducted. The results of several imaging NDE methods revealed the trend in percentages of discontinuity. However, the results of averaging NDE methods showed a clear correlation since they gave specific values of discontinuity through-thickness. Serial sectioning exposed the composite's internal structure and provided a very clear idea about the type, shape, size, distribution and location of most discontinuities included. The results of mechanical testing showed that discontinuities lead to a decrease in Mode I static interlaminar

  2. Energy-consumption and carbon-emission analysis of vehicle and component manufacturing.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L.; Burnham, A.; Wang, M.; Energy Systems

    2010-10-12

    A model is presented for calculating the environmental burdens of the part manufacturing and vehicle assembly (VMA) stage of the vehicle life cycle. The approach is bottom-up, with a special focus on energy consumption and CO{sub 2} emissions. The model is applied to both conventional and advanced vehicles, the latter of which include aluminum-intensive, hybrid electric, plug-in hybrid electric and all-electric vehicles. An important component of the model, a weight-based distribution function of materials and associated transformation processes (casting, stamping, etc.), is developed from the United States Council for Automotive Research Generic Vehicle Life Cycle Inventory Study. As the approach is bottom-up, numerous transformation process data and plant operational data were extracted from the literature for use in representing the many operations included in the model. When the model was applied to conventional vehicles, reliable estimates of cumulative energy consumption (34 GJ/vehicle) and CO{sub 2} emission (2 tonnes/vehicle) were computed for the VMA life-cycle stage. The numerous data sets taken from the literature permitted the development of some statistics on model results. Because the model explicitly includes a greater coverage of relevant manufacturing processes than many earlier studies, our energy estimates are on the higher end of previously published values. Limitations of the model are also discussed. Because the material compositions of conventional vehicles within specific classes (cars, light duty trucks, etc.) are sensibly constant on a percent-by-weight basis, the model can be reduced to a simple linear form for each class dependent only on vehicle weight. For advanced vehicles, the material/transformation process distribution developed above needs to be adjusted for different materials and components. This is particularly so for aluminum-intensive and electric-drive vehicles. In fact, because of their comparatively high manufacturing

  3. Ozonation of benzothiazole saturated-activated carbons: Influence of carbon chemical surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, H. [Facultad de Ingenieria, Universidad Catolica de la Santisima Concepcion, Caupolican 491, Concepcion (Chile)]. E-mail: hvaldes@ucsc.cl; Zaror, C.A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Correo 3, Casilla 160-C, Concepcion (Chile)

    2006-09-21

    The combined or sequential use of ozone and activated carbon to treat toxic effluents has increased in recent years. However, little is known about the influence of carbon surface active sites on ozonation of organic adsorbed pollutants. This paper presents experimental results on the effect of metal oxides and oxygenated surface groups on gaseous ozonation of spent activated carbons. Benzothiazole (BT) was selected as a target organic compound in this study due to its environmental concern. Activated carbons with different chemical surface composition were prepared from a Filtrasorb-400 activated carbon. Pre-treatment included: ozonation, demineralisation, and deoxygenation of activated carbon. Ozonation experiments of BT saturated-activated carbons were conducted in a fixed bed reactor loaded with 2 g of carbon samples. The reactor was fed with an O{sub 2}/O{sub 3} gas mixture (2 dm{sup 3}/min, 5 g O{sub 3}/h), for a given exposure time, in the range 10-120 min, at 298 K and 1 atm. Results show that extended gaseous ozonation of activated carbon saturated with BT led to the effective destruction of the adsorbate by oxidation reactions. Oxidation of BT adsorbed on activated carbon seemed to occur via both direct reaction with ozone molecules, and by oxygen radical species generated by catalytic ozone decomposition on metallic surface sites.

  4. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    Science.gov (United States)

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids.

  5. Sustainable Energy Solutions Task 4.1 Intelligent Manufacturing of Hybrid Carbon-Glass Fiber-Reinforced Composite Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, Janet M. [Wichita State Univ., KS (United States)

    2010-04-30

    In this subtask, the manufacturability of hybrid carbon-glass fiber-reinforced composite wind turbine blades using Vacuum-Assisted Resin Transfer Molding (VARTM) was investigated. The objective of this investigation was to study the VARTM process and its parameters to manufacture cost-effective wind turbine blades with no defects (mainly eliminate dry spots and reduce manufacturing time). A 2.5-dimensional model and a 3-dimensional model were developed to simulate mold filling and part curing under different conditions. These conditions included isothermal and non-isothermal filling, curing of the part during and after filling, and placement of injection gates at different locations. Results from this investigation reveal that the process can be simulated and also that manufacturing parameters can be optimized to eliminate dry spot formation and reduce the manufacturing time. Using computer-based models is a cost-effective way to simulate manufacturing of wind turbine blades. The approach taken herein allows the design of the wind blade manufacturing processes without physically running trial-and-error experiments that are expensive and time-consuming; especially for larger blades needed for more demanding environmental conditions. This will benefit the wind energy industry by reducing initial design and manufacturing costs which can later be passed down to consumers and consequently make the wind energy industry more competitive.

  6. Polyurethane foams obtained from residues of PET manufacturing and modified with carbon nanotubes

    Science.gov (United States)

    Stiebra, L.; Cabulis, U.; Knite, M.

    2016-04-01

    In this work we report the preparation of rigid microcellular polyurethane/carbon nanotube nanocomposites with different CNT loadings (0.09-0.46%) and various isocyanate indexes (110-260). Water was used as a blowing agent for samples. Density of all obtained samples - 200 ± 10 kg/m3. Electrical properties, as well as heat conductivity, cellular structure and mechanical properties of these nanocomposites were investigated.

  7. Activated Carbon Composites for Air Separation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Frederick S [ORNL; Contescu, Cristian I [ORNL; Tsouris, Costas [ORNL; Burchell, Timothy D [ORNL

    2011-09-01

    Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

  8. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    Science.gov (United States)

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  9. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Science.gov (United States)

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  10. Characterization of Activated Carbons from Oil-Palm Shell by CO2 Activation with No Holding Carbonization Temperature

    Directory of Open Access Journals (Sweden)

    S. G. Herawan

    2013-01-01

    Full Text Available Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied. The BET surface area of the activated carbon is investigated using N2 adsorption at 77 K with selected temperatures of 500, 600, and 700°C. These pyrolysis conditions for preparing the activated carbons are found to yield higher BET surface area at a pyrolysis temperature of 700°C compared to selected commercial activated carbon. The activated carbons thus result in well-developed porosities and predominantly microporosities. By using this activation method, significant improvement can be obtained in the surface characteristics of the activated carbons. Thus this study shows that the preparation time can be shortened while better results of activated carbon can be produced.

  11. THE ROLE OF ACTIVATED CARBON IN SOLVING ECOLOGICAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    V. M. Mukhin

    2008-06-01

    Full Text Available The authors present a brief analysis of the current global situation concerning the utilization of activated carbon in various fields. The article presents data concerning the synthesis and adsorption and structure properties of new activated carbons, used for solving ecological problems. The authors investigated the newly obtained activated carbons in comparison with several AC marks known in the world. It has been shown that currently synthesized AC are competitive with foreign marks.

  12. HYDROGEN SULFIDE ADSORPTION BY ALKALINE IMPREGNATED COCONUT SHELL ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    HUI SUN CHOO

    2013-12-01

    Full Text Available Biogas is one type of renewable energy which can be burnt to produce heat and electricity. However, it cannot be burnt directly due to the presence of hydrogen sulfide (H2S which is highly corrosive to gas engine. In this study, coconut shell activated carbon (CSAC was applied as a porous adsorbent for H2S removal. The effect of amount of activated carbon and flow rate of gas stream toward adsorption capacity were investigated. Then, the activated carbons were impregnated by three types of alkaline (NaOH, KOH and K2CO3 with various ratios. The effects of various types of alkaline and their impregnation ratio towards adsorption capacity were analysed. In addition, H2S influent concentration and the reaction temperature on H2S adsorption were also investigated. The result indicated that adsorption capacity increases with the amount of activated carbon and decreases with flow rate of gas stream. Alkaline impregnated activated carbons had better performance than unimpregnated activated carbon. Among all impregnated activated carbons, activated carbon impregnated by K2CO3 with ratio 2.0 gave the highest adsorption capacity. Its adsorption capacity was 25 times higher than unimpregnated activated carbon. The result also indicated that the adsorption capacity of impregnated activated carbon decreased with the increment of H2S influent concentration. Optimum temperature for H2S adsorption was found to be 50˚C. In this study, the adsorption of H2S on K2CO3 impregnated activated carbon was fitted to the Langmuir isotherm. The fresh and spent K2CO3 impregnated activated carbon were characterized to study the adsorption process.

  13. Preparation of a MFI zeolite coating on activated carbon

    NARCIS (Netherlands)

    Vaart, van der R.; Bosch, H.; Keizer, K.; Reith, T.

    1997-01-01

    A new and simple method for the preparation of MFI zeolite coated activated carbon is presented. Suitable nucleation sites for the growth of zeolites were introduced to the carbon by adding hydrophilic montmorillonite clay to the carbon substrate. A gas tight MFI zeolite coating was obtained on this

  14. Single and Mixed Gas Adsorption Equilibria of Carbon Dioxide/Methane on Activated Carbon

    NARCIS (Netherlands)

    van der Vaart, R.; van der Vaart, Rick; Huiskes, Cindy; Bosch, H.; Reith, T.

    2000-01-01

    Single gas adsorption isotherms of methane and carbon dioxide on micro-porous Norit RB1 activated carbon were determined in a gravimetric analyser in the temperature range of 292 to 349 K and pressures to 0.8 Mpa. Furthermore binary isotherms of carbon dioxide and methane mixtures were determined at

  15. A study on optimal pore development of modified commercial activated carbons for electrode materials of supercapacitors

    Science.gov (United States)

    Bang, Joon Hyuk; Lee, Hye-Min; An, Kay-Hyeok; Kim, Byung-Joo

    2017-09-01

    This study aimed to understand the impact of CO2 activation of commercial activated carbons (AC) on the changes in pore characteristics and the electrochemical property. The surface structure of manufactured AC was observed with a X-ray diffraction (XRD); the pore characteristics were analyzed at N2/77 K isothermal absorption using the Brunauer-Emmett-Teller (BET) and Dubinin-Radushkevich (DR) equations. In addition, the electrochemical characteristics were analyzed by means of an electrolyte of 1 M (C2H5)4NBF4/propylene carbonate, using a charge/discharge test, cyclic voltammetry (CV), and impedance. The N2/77 K isothermal absorption curve of the manufactured AC falls under Type I in the classification of the International Union of Pure and Applied Chemistry (IUPAC) and was found to largely comprise micropores. The specific surface area increased from 1690 m2/g to 2290 m2/g, and the pore volume grew from 0.80 cm3/g to 1.10 cm3/g. The analysis of electrochemical characteristics also found that the specific capacity increased from 17 F/g to 20 F/g (in a full cell condition). Based on these results, we were able to determine the pore characteristics of commercial AC through an additional activation process, which consequently allowed us to manufacture the AC with an advanced electrochemical property.

  16. The ergonomics body posture on repetitive and heavy lifting activities of workers in aerospace manufacturing warehouse

    Science.gov (United States)

    Kamat, S. R.; Zula, N. E. N. Md; Rayme, N. S.; Shamsuddin, S.; Husain, K.

    2017-06-01

    Warehouse is an important entity in manufacturing organizations. It usually involves working activities that relate ergonomics risk factors including repetitive and heavy lifting activities. Aerospace manufacturing workers are prone of having musculoskeletal disorder (MSD) problems because of the manual handling activities. From the questionnaires is states that the workers may have experience discomforts experience during manual handling work. Thus, the objectives of this study are; to investigate the body posture and analyze the level of discomfort for body posture of the workers while performing the repetitive and heavy lifting activities that cause MSD problems and to suggest proper body posture and alternatives to reduce the MSD related problems. Methodology of this study involves interviews, questionnaires distribution, anthropometry measurements, RULA (Right Upper Limb Assessment) assessment sheet and CATIA V5 RULA analysis, NIOSH lifting index (LI) and recommended weight limit (RWL). Ten workers are selected for pilot study and as for anthropometry measurement all workers in the warehouse department were involved. From the first pilot study, the RULA assessment score in CATIA V5 shows the highest score which is 7 for all postures and results after improvement of working posture is very low hence, detecting weight of the material handling is not in recommendation. To reduce the risk of MSD through the improvisation of working posture, the weight limit is also calculated in order to have a RWL for each worker. Therefore, proposing a guideline for the aerospace workers involved with repetitive movement and excessive lifting will help in reducing the risk of getting MSD.

  17. Production of activated carbon from a new precursor: Molasses

    Science.gov (United States)

    Legrouri, K.; Ezzine, M.; Ichcho, S.; Hannache, H.; Denoyel, R.; Pailler, R.; Naslain, R.

    2005-03-01

    Activated carbon has been prepared from molasses, a natural precursor of vegetable origin resulting from the sugar industry in Morocco. The preparation of the activated carbon from the molasses has been carried out by impregnation of the precursor with sulfuric acid, followed by carbonization. The adsorption capacity, the BET surface area, and the pore volume of the activated carbon were determined. The micropore volume was assessed by Dubinin- Radushkevich (DR) equation. The activated materials are mainly microporous and show the type I isotherm of the Brunauer classification for nitrogen adsorption. The activation in steam yielded a carbon that contains both micropores and supermicropores. Analysis of the nitrogen isotherm by BET and DR methods established that most of obtained carbons are highly microporous, with high surface areas (≥ 1200 m2/g) and very low mesoporosity.

  18. Acoustical evaluation of carbonized and activated cotton nonwovens.

    Science.gov (United States)

    Jiang, N; Chen, J Y; Parikh, D V

    2009-12-01

    An activated carbon fiber nonwoven (ACF) was manufactured from a cotton nonwoven fabric. For the ACF acoustic application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glassfiber nonwoven, and the cotton nonwoven base layer with a layer of cotton fiber nonwoven. Their noise absorption coefficients and sound transmission loss were measured using the Brüel and Kjaer impedance tube instrument. Statistical significance of the differences between the composites was tested using the method of Duncan's grouping. The study concluded that the ACF composite exhibited a greater ability to absorb normal incidence sound waves than the composites with either glassfiber or cotton fiber. The analysis of sound transmission loss revealed that the three composites still obeyed the mass law of transmission loss. The composite with the surface layer of cotton fiber nonwoven possessed a higher fabric density and therefore showed a better sound insulation than the composites with glassfiber and ACF.

  19. [Effects of different fertilizer application on soil active organic carbon].

    Science.gov (United States)

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  20. Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors

    Indian Academy of Sciences (India)

    KASINATH OJHA; BHARAT KUMAR; ASHOK K GANGULI

    2017-03-01

    Graphene-like activated and non-activated carbon nanostructures were synthesized from various natural sources like sugar, rice husk and jute. These carbon nanostructures were characterized using SEM, FTIR and Raman spectroscopy, surface area and thermogravimetric analysis. The electrochemical studies of these carbon materials confirm their promising characteristics for supercapacitor applications. Activated carbon nanostructures exhibit higher specific capacitance compared to that of non-activated carbons (non-Ac sugar).The activated carbon (Ac-jute) exhibits maximum specific capacitance of 476 F/g at an applied current density of 0.2 A/g which is much higher than that of graphene oxide (GO).

  1. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  2. Efficient L-lactic acid fermentation by the mold Rhizopus oryzae using activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Koide, M.; Hirata, M.; Gaw, M.; Takanashi, H.; Hano, T. [Oita Univ, Oita (Japan). Dept. of Applied Chemistry

    2004-11-01

    Batch fermentations of Rhizopus oryzae AHU 6537 in medium containing granular activated carbon from coal, powder activated carbon from coal or granular activated carbon from coconut were carried out in an airlift bioreactor. As a result, fermentation broths were decolorized by activated carbon, and clearer fermentation broths were obtained than in fermentation without activated carbon. With activated carbon from coal, the cells formed smaller pellets than in fermentation without activated carbon, and fermentation performance was improved. Productivity was further improved by increasing the amount of activated carbon from coal. Therefore, the productivity of lactic acid fermentation could be improved by selecting a suitable activated carbon and by controlling the amount of activated carbon.

  3. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    Science.gov (United States)

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  4. Carbon Dioxide Gas Sensors and Method of Manufacturing and Using Same

    Science.gov (United States)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor)

    2014-01-01

    A gas sensor comprises a substrate layer; a pair of interdigitated metal electrodes, said electrodes include upper surfaces, the electrodes selected from the group consisting of Pt, Pd, Au, Ir, Ag, Ru, Rh, In, Os, and their alloys. A first layer of solid electrolyte staying in between electrode fingers and partially on said upper surfaces of said electrodes, said first layer selected from NASICON, LISICON, KSICON and.beta.''-Alumina. A second layer of metal carbonate(s) as an auxiliary electrolyte engaging said upper surfaces of the electrodes and the first solid electrolyte. The metal carbonates selected from the group consisting of the following ions Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+, Ba.sup.2+, and any combination thereof. An extra layer of metal oxide selected from the group consisting of SnO.sub.2, In.sub.2O.sub.3, TiO.sub.2, WO.sub.3, ZnO, Fe.sub.2O.sub.3, ITO, CdO, U.sub.3O.sub.8, Ta.sub.2O.sub.5, BaO, MoO.sub.2, MoO.sub.3, V.sub.2O.sub.5, Nb.sub.2O.sub.5, CuO, Cr.sub.2O.sub.3, La.sub.2O.sub.3, RuO.sub.3, RuO.sub.2, ReO.sub.2, ReO.sub.3, Ag.sub.2O, CoO, Cu.sub.2O, SnO, NiO, Pr.sub.2O.sub.3, BaO, PdO.sub.2, HfO.sub.3, HfO.sub.3 or other metal oxide and their mixtures residing above and in engagement with the second electrolyte to improve sensor performance and/or to reduce sensor heating power consumption.

  5. ADSORPTION OF DYES ON ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    ChenShuixia; WuChangqing; 等

    1998-01-01

    The adsorption behavior of dyes on a variety of sisal based activated carbon fibers (SACF) has been studied in this paper. The results show that this kind of ACF has excellent adsorption capacities for some organic (dye) molecules.SACF can remove nearly all methylene blue,crystal violet,bromophenol blue and Eriochrome blue black R from water after static adsorption for 24h. at 30℃. The adsorption amounts can reach more than 400mg/g when adding 50 mg SACF into 50 ml dye solution.Under the same conditions,the adsorption amounts of xylenol orange fluorescein and Eriochrome black T wree lower.On the other hand,the adsorption amounts change along with the characteristics of adsorbents.The SACFs activated above 840℃,which have higher specific surface areas and wider pore radii,have higher adsorption amounts for the dyes.The researching results also show that the adsorption rates of dyes onto SACFs decrease by the order of methylene blue,Eriochrome blue black R and crystal violet.

  6. Antimicrobial activity of thin metallic silver flakes, waste products of a manufacturing process

    Institute of Scientific and Technical Information of China (English)

    Manuela Anzano; Alessandra Tosti; Marina Lasagni; Alfredo Campiglio; Demetrio Pitea; Elena Collina*

    2011-01-01

    The aim of the research was to develop new products and processes from a manufacturing waste from an Italian metallurgic company.The company produced thin silver metallic films and the production scraps were silver flakes.The possibility to use the silver flakes in water disinfection processes was studied.The antimicrobial activity of the flakes was investigated in batch using Escherichia coli as Gram-negative microorganism model.The flakes did not show any antimicrobial activity,so they were activated with two different processes:thermal activation in reducing atmosphere and chemical activation,obtaining,respectively,reduced flakes (RF) and chemical flakes (CF).The flakes,activated with either treatment,showed antimicrobial activity against E.coli.The kill rate was dependent on the type of activated flakes.The chemical flakes were more efficient than reduced flakes.The kill rate determined for 1 g of CF,1.0 ± 0.2min-1,was greater than the kill rate determined for 1 g of RF,0.069 + 0.004 min-1.This was confirmed also by the minimum inhibitory concentration values.It was demonstrated that the antimicrobial capability was dependent on flakes amount and on the type of aqueous medium.Furthermore,the flakes maintained their properties also when used a second time.Finally,the antimicrobial activities of flakes were tested in an effluent of a wastewater treatment plant where a variety of heterotrophic bacteria were present.

  7. JPL Activated Carbon Treatment System (ACTS) for sewage

    Science.gov (United States)

    1976-01-01

    An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.

  8. The Production, Value, and Reduction Responsibility of Carbon Emissions through Electricity Consumption of Manufacturing Industries in South Korea and Thailand

    Science.gov (United States)

    Kitikun, Medhawin

    , manufacturing industries take full responsibility for emissions reductions by curtailing their use of energy without any subsidies from the government. Revenue function estimates provide measures of the differential costs imposed on different industries by emissions reductions. In the second scenario, emissions reductions are achieved by changing the mix of electricity generation technologies used by the power generation sector within the country. For the international case, I focus on the fairness of emission reduction responsibility among countries. To be fair to countries at different levels of development and with different rate of carbon emissions, I propose a new method to adjust the timing and rates of emission reductions based on a lifetime cumulative emission per capita.

  9. What Carbon Sources Support Groundwater Microbial Activity in Riparian Forests?

    Science.gov (United States)

    Gurwick, N. P.; Groffman, P. M.; McCorkle, D. C.; Stolt, M. H.; Kellogg, D. Q.; Gold, A. J.

    2004-05-01

    A major question in riparian research is the source of energy to support subsurface microbial denitrification activity. The supply of microbially-available carbon frequently limits microbial activity in the subsurface. Therefore, identifying the relative importance of carbon sources in the riparian subsurface helps explain the sustainability and spatial heterogeneity of denitrification rates. We have investigated the importance of buried, carbon-rich soil horizons, deep roots and dissolved organic carbon as potential carbon sources to support groundwater denitrification in riparian forests in Rhode Island. We used field observations, laboratory incubations and in-situ experiments to evaluate these sources at four sites in different geomorphic settings. In particular, we measured the 14C-DIC signature and DIC concentration of ambient groundwater and groundwater that had been degassed, re-introduced into the well, and incubated in-situ. Buried horizons appear to be an important source of carbon in the subsurface, as shown by active respiration in laboratory incubations; greater microbial biomass in buried carbon-rich soils compared to surrounding carbon-poor soils; and the presence of very old carbon (>1,000 ybp) in DIC 225 cm beneath the surface. DIC collected from shallower wells showed no clear evidence of ancient carbon. Roots also appear to be important, creating hotspots of carbon availability and denitrification in the generally carbon poor subsurface matrix. Dissolved organic carbon did not stimulate denitrification in aquifer microcosms in the laboratory, suggesting that this was not an important carbon source for denitrification in our sites. Determining which carbon source is fueling denitrification has practical implications. Where buried horizons are the key source, surface management of the riparian zone will likely have little direct influence on groundwater denitrification. Where roots are the key source, changes in the plant community are likely to

  10. [Flue gas desulfurization by a novel biomass activated carbon].

    Science.gov (United States)

    Liu, Jie-Ling; Tang, Zheng-Guang; Chen, Jie; Jiang, Wen-Ju; Jiang, Xia

    2013-04-01

    A novel biomass columnar activated carbon was prepared from walnut shell and pyrolusite was added as a catalyst. The activated carbon prepared was used for flue gas desulphurization in a fixed-bed reactor with 16 g of activated carbon. The impact of operating parameters such as SO2 inlet concentration, space velocity, bed temperature, moisture content and O2 concentration on the desulfurization efficiency of activated carbon was investigated. The results showed that both the breakthrough sulfur capacity and breakthrough time of activated carbon decreased with the increase of SO2 inlet concentration within the range of 0.1% -0.3%. The breakthrough sulfur capacity deceased with the increase of space velocity, with optimal space velocity of 600 h(-1). The optimal bed temperature was 80 degrees C, and the desulfurization efficiency can be reduced if the temperature continue to increase. The presence of moisture and oxygen greatly promoted the adsorption of SO2 onto the activated carbon. The best moisture content was 10%. When the oxygen concentrations were between 10% and 13%, the desulfurization performance of activated carbon was the highest. Under the optimal operating conditions, the sulfur capacity of activated carbon was 252 mg x g(-1), and the breakthrough time was up to 26 h when the SO2 inlet concentration was 0.2%.

  11. APPLICATION OF IMPROVED PRODUCTION ACTIVITY CONTROL ARCHITECTURE FOR SHOP FLOOR INFORMATION SYSTEM IN DIGITAL MANUFACTURING

    Institute of Scientific and Technical Information of China (English)

    SHAHID Ikramullah Butt; SUN Houfang; GAO Zhengqing

    2006-01-01

    Shop floor control (SFC) is responsible for the coordination and control of the manufacturing physical and information flow within the shop floor in the manufacturing system. Weaknesses of the production activity control (PAC) architecture of the shop floor are addressed by the Maglica's new system architecture. This architecture gives rise to unlimited number of movers and producers thus evolving more complex but decentralized architecture. Beijing Institute of Technology - production activity control (BIT-PAC) architecture introduces an idea of sub-producers and sub-movers thus reducing the complexity of the architecture. All the equipments including sub-producers and sub-movers are considered to be passive in the proposed shop floor information system. The dissemination of information from sub-producers and sub-movers is done manually through a PC. Proposed BIT-PAC SFC architecture facilitates the information flow from shop floor to the other area of the organization. Effective use of internet information services (IIS) and SQL2000 is done along with the ASP. NET technology to implement the application logic. Applicability of the software based on BIT-PAC architecture is checked by running application software on a network PC that supports the dynamic flow of information from sub-producers and sub-movers to the other parts of the organization. Use of software is also shown at the end for BIT training workshop thus supporting the use of SFC architecture for similar kind of environments.

  12. ACTIVITY-BASED COSTING IN THE MANUFACTURING SECTOR: A MANAGERIAL INSTRUMENT FOR DECISION-MAKING

    Directory of Open Access Journals (Sweden)

    Ioana D. BUFAN

    2014-04-01

    Full Text Available The aim of this paper is to emphasize the importance of using the activity-based costing (management system in the manufacturing sector. The utility of the ABC (ABM system concerns decisions taken at a strategic and operational level. In our country, few managers understand the need for such a system and many Romanian companies use only a traditional costing system or don’t use one at all. The paper also includes a case study which is a small example of using the ABC method in a Romanian manufacturing company. The study shows that the ABC/ABM system helps managers to properly manage indirect costs (by activities and understand the profitability of products, distribution channels and customers. Therefore, it offers a powerful instrument for decision-making. Although ABC is a new system of cost calculation that is absolutely necessary, in most cases the ABC method must be implemented in addition to the traditional costing systems, which are essential for the purposes of management accounting.

  13. ACTIVITY-BASED COSTING IN THE MANUFACTURING SECTOR: A MANAGERIAL INSTRUMENT FOR DECISION-MAKING

    Directory of Open Access Journals (Sweden)

    Ioana D. BUFAN

    2014-04-01

    Full Text Available The aim of this paper is to emphasize the importance of using the activity-based costing (management system in the manufacturing sector. The utility of the ABC (ABM system concerns decisions taken at a strategic and operational level. In our country, few managers understand the need for such a system and many Romanian companies use only a traditional costing system or don’t use one at all. The paper also includes a case study which is a small example of using the ABC method in a Romanian manufacturing company. The study shows that the ABC/ABM system helps managers to properly manage indirect costs (by activities and understand the profitability of products, distribution channels and customers. Therefore, it offers a powerful instrument for decision-making. Although ABC is a new system of cost calculation that is absolutely necessary, in most cases the ABC method must be implemented in addition to the traditional costing systems, which are essential for the purposes of management accounting.

  14. Microbial diversity, dynamics and activity throughout manufacturing and ripening of Castelmagno PDO cheese.

    Science.gov (United States)

    Dolci, P; Alessandria, V; Rantsiou, K; Bertolino, M; Cocolin, L

    2010-09-30

    The diversity, dynamics and activity of Castelmagno PDO cheese microbiota were studied in three batches produced in a floor valley farm, in the Grana Valley (northwest Italy), during the wintertime. Samples of milk, curd and cheese (core and subsurface) at different ripening time were submitted to both culture-dependent and -independent analysis. In particular, DNA and RNA directly extracted from the matrices were studied by PCR-Denaturing gradient gel electrophoresis (DGGE) and reverse transcription (RT)-PCR-DGGE. Culture-dependent methods highlighted the initial dominance of a thermophilic streptococcal population with the species Streptococcus thermophilus and S. agalactiae. Then, mesophilic lactococci occurred among isolates during manufacturing, with Lactococcus lactis which was also well represented in the first month of Castelmagno PDO ripening. At this point and throughout the ripening, lactobacilli prevailed in cheese samples, represented from Lactobacillus plantarum and Lb. casei. Culture-independent analysis underlined the undoubted role of L. lactis, actively involved in both Castelmagno PDO manufacturing and ripening. Despite Lb. helveticus was never isolated on selective media, a DGGE band referred to this microorganism was detected, at RNA level, in samples from ripened cheeses. On the other hand, Lb. plantarum was widely isolated from the plates, among lactobacilli, but never detected by direct analysis. Due to the importance of microbiota in the sensory richness and properties of traditional cheeses, new information have been added, in this work, on microbial diversity of Castelmagno PDO cheese.

  15. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  16. [Survey of carbon fiber reinforced plastic orthoses and occupational and medical problems based on a questionnaire administered to companies involved in the manufacture of prosthetics and orthotics].

    Science.gov (United States)

    Kaneshiro, Yuko; Furuta, Nami; Makino, Kenichiro; Wada, Futoshi; Hachisuka, Kenji

    2011-09-01

    We surveyed carbon fiber reinforced plastic orthoses (carbon orthoses) and their associated occupational and medical problems based on a questionnaire sent to 310 companies which were members of the Japan Orthotics and Prosthetics Association. Of all the companies, 232 responded: 77 of the 232 companies dealt with ready-made carbon orthoses, 52 dealt with fabricated custom-made orthoses, and 155 did not dealt with carbon orthoses. Although the total number of custom-made carbon ortheses in Japan was 829/ 5 years, there was a difference by region, and one company fabricated only 12 (per 5 years) custom-made carbon orthoses on average. The advantages of the carbon orthosis were the fact that it was "light weight", "well-fitted", had a "good appearance", and "excellent durability", while the disadvantages were that it was "expensive", "high cost of production", of "black color", and required a "longer time for completion", and "higher fabrication techniques". From the standpoint of industrial medicine, "scattering of fine fragments of carbon fibers", "itching on the skin" and "health hazards" were indicated in companies that manufacture the orthosis. In order to make the carbon orthosis more popular, it is necessary to develop a new carbon material that is easier to fabricate at a lower cost, to improve the fabrication technique, and to resolve the occupational and medical problems.

  17. Fractal analysis of granular activated carbons using isotherm data

    Energy Technology Data Exchange (ETDEWEB)

    Khalili, N.R.; Pan, M. [Illinois Institute of Technology, Chicago, IL (United States). Dept. of Chemical and Environmental Engineering; Sandi, G. [Argonne National Lab., IL (United States)

    1997-08-01

    Utilization of adsorption on solid surfaces was exercised for the first time in 1785. Practical application of unactivated carbon filters, and powdered carbon were first demonstrated in the American water treatment plant, and a municipal treatment plant in New Jersey, in 1883 and 1930, respectively. The use of activated carbon became widespread in the next few decades. At present, adsorption on carbons has a wide spread application in water treatment and removal of taste, odor, removal of synthetic organic chemicals, color-forming organics, and desinfection by-products and their naturally occurring precursors. This paper presents an analysis of the surface fractal dimension and adsorption capacity of a group of carbons.

  18. A Magnesium-Activated Carbon Hybrid Capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, HD; Shterenberg, I; Gofer, Y; Doe, RE; Fischer, CC; Ceder, G; Aurbach, D

    2013-12-11

    Prototype cells of hybrid capacitor were developed, comprising activated carbon (AC) cloth and magnesium (Mg) foil as the positive and negative electrodes, respectively. The electrolyte solution included ether solvent (TBF) and a magnesium organo-halo-aluminate complex 0.25 M Mg2Cl3+-Ph2AlCl2-. In this solution Mg can be deposited/dissolved reversibly for thousands of cycles with high reversibility (100% cycling efficiency). The main barrier for integrating porous AC electrodes with this electrolyte solution was the saturation of the pores with the large ions in the AC prior to reaching the potential limit. This is due to the existence of bulky Mg and Al based ionic complexes consisting Cl, alkyl or aryl (R), and THF ligands. This problem was resolved by adding 0.5 M of lithium chloride (LiCl), thus introducing smaller ionic species to the solution. This Mg hybrid capacitor system demonstrated a stable cycle performance for many thousands of cycles with a specific capacitance of 90 Fg(-1) for the AC positive electrodes along a potential range of 2.4 V. (C) 2014 The Electrochemical Society. All rights reserved.

  19. Studies on adsorptive desulfurization by activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Rakesh Kumar, D.; Srivastava, Vimal Chandra [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand (India)

    2012-05-15

    Sulfur removal using adsorption requires a proper process parametric study to determine its optimal performance characteristics. In this study, response surface methodology was employed for sulfur removal from model oil (dibenzothiophene; DBT dissolved in iso-octane) using commercial activated carbon (CAC) as an adsorbent. Experiments were carried out as per central composite design with four input parameters such as initial concentration (C{sub 0}: 100-900 mg/L), adsorbent dosage (m: 2-22 g/L), time of adsorption (t: 15-735 min), and temperature (T: 10-50 C). Regression analysis showed good fit of the experimental data to the second-order polynomial model with coefficient of determination R{sup 2}-value of 0.9390 and Fisher F-value of 16.5. The highest removal of sulfur by CAC was obtained with m = 20 g/L, t = 6 h, and T = 30 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Adsorption of EDTA on activated carbon from aqueous solutions.

    Science.gov (United States)

    Zhu, Hai-song; Yang, Xiao-juan; Mao, Yan-peng; Chen, Yu; Long, Xiang-li; Yuan, Wei-kang

    2011-01-30

    In this study, the adsorption of EDTA on activated carbon from aqueous solutions has been investigated in a batch stirred cell. Experiments have been carried out to investigate the effects of temperature, EDTA concentration, pH, activated carbon mass and particle size on EDTA adsorption. The experimental results manifest that the EDTA adsorption rate increases with its concentration in the aqueous solutions. EDTA adsorption also increases with temperature. The EDTA removal from the solution increases as activated carbon mass increases. The Langmuir and Freundlich equilibrium isotherm models are found to provide a good fitting of the adsorption data, with R(2) = 0.9920 and 0.9982, respectively. The kinetic study shows that EDTA adsorption on the activated carbon is in good compliance with the pseudo-second-order kinetic model. The thermodynamic parameters (E(a), ΔG(0), ΔH(0), ΔS(0)) obtained indicate the endothermic nature of EDTA adsorption on activated carbon.

  1. Ozone Removal by Filters Containing Activated Carbon: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Spears, Mike; Sullivan, Douglas; Mendell, Mark

    2009-09-01

    This study evaluated the ozone removal performance of moderate-cost particle filters containing activated carbon when installed in a commercial building heating, ventilating, and air conditioning (HVAC) system. Filters containing 300 g of activated carbon per 0.09 m2 of filter face area were installed in two 'experimental' filter banks within an office building located in Sacramento, CA. The ozone removal performance of the filters was assessed through periodic measurements of ozone concentrations in the air upstream and downstream of the filters. Ozone concentrations were also measured upstream and downstream of a 'reference' filter bank containing filters without any activated carbon. The filter banks with prefilters containing activated carbon were removing 60percent to 70percent of the ozone 67 and 81 days after filter installation. In contrast, there was negligible ozone removal by the reference filter bank without activated carbon.

  2. [Study on adsorption properties of organic vapor on activated carbons].

    Science.gov (United States)

    Cai, Dao-Fei; Huang, Wei-Qiu; Wang, Dan-Li; Zhang, Lin; Yang, Guang

    2013-12-01

    Adsorption technology is widely used in oil vapor recovery, and adsorbents have decisive effect on separation. Three kinds of activated carbon (AC) were chosen to study their adsorption properties and adsorption energy, where n-hexane and n-heptane acted as adsorbate and adsorption experiments were conducted at 293.15 K. At the same time, regression formula of Logistic model was used to fit the throughout curves of active carbons. The results showed that: surface area and pore volume of activated carbon were the main factors affecting its adsorption properties; the adsorption behavior of n-hexane and n-heptane were corresponding to Langmuir adsorption isotherm model; adsorption energy of these three kinds of activated carbon became greater with increasing specific surface area. Fitting curve of Logistic model had high similarity with the experimental results, which could be used in the prediction of breakthrough curves of activated carbons.

  3. Science Letters: Nitrogen doping of activated carbon loading Fe2O3 and activity in carbon-nitric oxide reaction

    Institute of Scientific and Technical Information of China (English)

    WAN Xian-kai; ZOU Xue-quan; SHI Hui-xiang; WANG Da-hui

    2007-01-01

    Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form of pyridinic nitrogen. The modified carbon shows excellent activity for NO reduction in the low temperature regime (<500 ℃) because of the cooperative effect of Fe2O3 and the surface nitrogen species.

  4. Preparation of Microporous Activated Carbon from Raw Coconut Shell by Two-step Procedure%两步法制备椰壳基微孔活性炭

    Institute of Scientific and Technical Information of China (English)

    苏伟; 周理; 周亚平

    2006-01-01

    A novel two-step procedure was used to manufacture microporous activated carbon from raw coconut shell. In this process, the raw coconut shell was (1) heated in an inert environment to temperatures between 450℃ and 850℃, and reacted with oxygen ( po2 = 1.1 -5.3kPa) for some time, and (2) heated again in inert environment to activation temperature(850℃) to produce an activated carbon. Activated carbons with specific surface area greater than 700m2.g-1 were manufactured with a yield between 24% and 28%. It was shown that the carbon had a narrow distribution of pore size, possibly less than lnm, which was calculated by a simple method based on local density function theory.

  5. Robust synthesis and continuous manufacturing of carbon nanotube forests and graphene films

    Science.gov (United States)

    Polsen, Erik S.

    Successful translation of the outstanding properties of carbon nanotubes (CNTs) and graphene to commercial applications requires highly consistent methods of synthesis, using scalable and cost-effective machines. This thesis presents robust process conditions and a series of process operations that will enable integrated roll-to-roll (R2R) CNT and graphene growth on flexible substrates. First, a comprehensive study was undertaken to establish the sources of variation in laboratory CVD growth of CNT forests. Statistical analysis identified factors that contribute to variation in forest height and density including ambient humidity, sample position in the reactor, and barometric pressure. Implementation of system modifications and user procedures reduced the variation in height and density by 50% and 54% respectively. With improved growth, two new methods for continuous deposition and patterning of catalyst nanoparticles for CNT forest growth were developed, enabling the diameter, density and pattern geometry to be tailored through the control of process parameters. Convective assembly of catalyst nanoparticles in solution enables growth of CNT forests with density 3-fold higher than using sputtered catalyst films with the same growth parameters. Additionally, laser printing of magnetic ink character recognition toner provides a large scale patterning method, with digital control of the pattern density and tunable CNT density via laser intensity. A concentric tube CVD reactor was conceptualized, designed and built for R2R growth of CNT forests and graphene on flexible substrates helically fed through the annular gap. The design enables downstream injection of the hydrocarbon source, and gas consumption is reduced 90% compared to a standard tube furnace. Multi-wall CNT forests are grown continuously on metallic and ceramic fiber substrates at 33 mm/min. High quality, uniform bi- and multi-layer graphene is grown on Cu and Ni foils at 25 - 495 mm/min. A second machine

  6. Cellulosic carbon fibers with branching carbon nanotubes for enhanced electrochemical activities for bioprocessing applications.

    Science.gov (United States)

    Zhao, Xueyan; Lu, Xin; Tze, William Tai Yin; Kim, Jungbae; Wang, Ping

    2013-09-25

    Renewable biobased carbon fibers are promising materials for large-scale electrochemical applications including chemical processing, energy storage, and biofuel cells. Their performance is, however, often limited by low activity. Herein we report that branching carbon nanotubes can enhance the activity of carbonized cellulosic fibers, such that the oxidation potential of NAD(H) was reduced to 0.55 V from 0.9 V when applied for bioprocessing. Coordinating with enzyme catalysts, such hierarchical carbon materials effectively facilitated the biotransformation of glycerol, with the total turnover number of NAD(H) over 3500 within 5 h of reaction.

  7. Characterization of Thermoplastic Polyurethane (TPU and Ag-Carbon Black TPU Nanocomposite for Potential Application in Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Steven T. Patton

    2016-12-01

    Full Text Available Electromechanical, adhesion, and viscoelastic properties of polymers and polymer nanocomposites (PNCs are of interest for additive manufacturing (AM and flexible electronics. Development/optimization of inks for AM is complex, expensive, and substrate/interface dependent. This study investigates properties of free standing films of a thermoplastic polyurethane (TPU polymer and an Ag–carbon black (Ag-CB TPU PNC in a lightly loaded low strain compression contact as a rough measure of their suitability for AM. The TPU exhibited high hysteresis and a large viscoelastic response, and sufficient dwell time was needed for polymer chain relaxation and measurable adhesion. A new discovery is that large enough contact area is needed to allow longer time constant polymer ordering in the contact that led to higher adhesion and better performance/reliability. This has previously unknown implications for interface size relative to polymer chain length in AM design. The standard linear model was found to be a good fit for the viscoelastic behavior of the TPU. The PNC exhibited no adhesion (new result, low electrical resistance, and relatively small viscoelastic response. This implies potential for AM electrical trace as well as switch applications.

  8. Effect of Surfactants and Manufacturing Methods on the Electrical and Thermal Conductivity of Carbon Nanotube/Silicone Composites

    Directory of Open Access Journals (Sweden)

    Martina Hřibová

    2012-11-01

    Full Text Available The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA, the cationic surfactant cetyltrimethylammonium bromide (CTAB, and in a DBSA/CTAB surfactant mixture. Four types of CNT-based composites of various concentrations from 0 to 6 vol.% are prepared by simple mechanical mixing and sonication. The morphology, electrical and thermal conductivity of the CNT-based composites are analyzed. The incorporation of both neat and modified CNTs leads to an increase in electrical and thermal conductivity. The dependence of DC conductivity versus CNT concentration shows percolation behaviour with a percolation threshold of about 2 vol.% in composites with neat CNT. The modification of CNTs by DBSA increases the percolation threshold to 4 vol.% due to the isolation/separation of individual CNTs. This, in turn, results in a significant decrease in the complex permittivity of CNT–DBSA-based composites. In contrast to the percolation behaviour of DC conductivity, the concentration dependence of thermal conductivity exhibits a linear dependence, the thermal conductivity of composites with modified CNTs being lower than that of composites with neat CNTs. All these results provide evidence that the modification of CNTs by DBSA followed by sonication allows one to produce composites with high homogeneity.

  9. Release potential of single-wall carbon nanotubes produced by super-growth method during manufacturing and handling

    Science.gov (United States)

    Ogura, Isamu; Sakurai, Hiromu; Mizuno, Kohei; Gamo, Masashi

    2011-03-01

    We investigated the release potential of single-wall carbon nanotubes (CNTs) produced by the super-growth method during their manufacturing and handling processes at a research facility. We generally sampled air at points both outside and inside of protective enclosures such as a glove box and fume hood. Sampling the air outside of the enclosures was intended to evaluate the actual exposure of workers to CNTs, while sampling the air inside the enclosures was performed to quantify the release of CNTs to the air in order to estimate the potential exposure of workers without protection. The results revealed that airborne CNTs were generated when (1) CNTs were separated from the substrates using a spatula and placed in a container in a glove box; (2) an air gun was used to clean the air filters (containing dust that included CNTs) of a vacuum cleaner; (3) a vacuum cleaner was used to collect CNTs (emission with exhaust air from the cleaner); (4) the container of CNTs was opened; and (5) CNTs in the bin of the cleaner were transferred to a container. In these processes, airborne CNTs were only found inside the enclosures, except for a small amount of CNTs released from the glove box when it was opened. Electron microscopic observations of aerosol particles found CNT clusters, which were fragments of CNT forests, with sizes ranging from submicrometers to tens of micrometers.

  10. Enhanced Capacitive Characteristics of Activated Carbon by Secondary Activation

    Institute of Scientific and Technical Information of China (English)

    YANG Hui; LU Tian-hong; Yoshio Masaki

    2004-01-01

    The effect of the improvement of commercial activated carbon(AC) on its specific capacitance and high rate capability of double layer(dl) charging/discharging process has been studied. The improvement of AC was carried out via a secondary activation under steam in the presence of catalyst NiCl2, and the suitable condition was found to be a heat treatment at about 875 ℃ for 1 h. Under those conditions, the discharge specific capacitance of the improved AC increases up to 53.67 F/g, showing an increase of about 25% as compared with that of as-received AC. The good rectangular-shaped voltammograms and A.C. impedance spectra prove that the high rate capability of the capacitor made of the improved AC is enhanced significantly. The capacitance resistance(RC) time constant of the capacitor containing the improved AC is 1.74 s, which is much lower than that of the one containing as-received AC(an RC value of 4. 73 s). It is noted that both kinds of AC samples show a similar specific surface area and pore size distribution, but some changes have taken place in the carbon surface groups, especially a decrease in the concentration of surface carbonyl groups after the improvement, which have been verified by means of X-photoelectron spectroscopy. Accordingly, it is suggested that the decrease in the concentration of surface carbonyl groups for the improved AC is beneficial to the organic electrolyte ion penetrating into the pores, thus leading to the increase in both the specific capacitance and high rate capability of the supercapacitor.

  11. Studies relevant to the catalytic activation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Ford, P.C.

    1992-06-04

    Research activity during the 1991--1992 funding period has been concerned with the following topics relevant to carbon monoxide activation. (1) Exploratory studies of water gas shift catalysts heterogenized on polystyrene based polymers. (2) Mechanistic investigation of the nucleophilic activation of CO in metal carbonyl clusters. (3) Application of fast reaction techniques to prepare and to investigate reactive organometallic intermediates relevant to the activation of hydrocarbons toward carbonylation and to the formation of carbon-carbon bonds via the migratory insertion of CO into metal alkyl bonds.

  12. Analysis of Wooden Toy Manufacturing Costs Through the Application of a Time-Driven Activity-Based Costing System

    OpenAIRE

    PONGWASIT, Ramida; CHOMPU-INWAI, Rungchat

    2016-01-01

    The case study company, which manufactures wooden toys, encounters problems when fixing its product prices, since its experienced owners tend to dictate the prices of all the products, yet do not have available the appropriate product price and cost data. Currently, the company’s product costs are calculated using traditional accounting methods, but these are unable to accurately record the costs associated with the resources used and activities that occur during manufacture. Furthermore, whe...

  13. Impact of sulfur oxides on mercury capture by activated carbon.

    Science.gov (United States)

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  14. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    Science.gov (United States)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  15. CCN activation of pure and coated carbon black particles.

    Science.gov (United States)

    Dusek, U; Reischl, G P; Hitzenberger, R

    2006-02-15

    The CCN (cloud condensation nucleus) activation of pure and coated carbon black particles was investigated using the University of Vienna cloud condensation nuclei counter (Giebl, H.; Berner, A.; Reischl, G.; Puxbaum, H.; Kasper-Giebl, A.; Hitzenberger, R. J. Aerosol Sci. 2002, 33, 1623-1634). The particles were produced by nebulizing an aqueous suspension of carbon black in a Collison atomizer. The activation of pure carbon black particles was found to require higher supersaturations than predicted by calculations representing the particles as insoluble, wettable spheres with mobility equivalent diameter. To test whether this effect is an artifact due to heating of the light-absorbing carbon black particles in the laser beam, experiments at different laser powers were conducted. No systematic dependence of the activation of pure carbon black particles on laser power was observed. The observations could be modeled using spherical particles and an effective contact angle of 4-6 degrees of water at their surface. The addition of a small amount of NaCl to the carbon black particles (by adding 5% by mass NaCl to the carbon black suspension) greatly enhanced their CCN efficiency. The measured CCN efficiencies were consistent with Kohler theory for particles consisting of insoluble and hygroscopic material. However, coating the carbon black particles with hexadecanol (a typical film-forming compound with one hydrophobic and one hydrophilic end) efficiently suppressed the CCN activation of the carbon black particles.

  16. Preparation of activated carbons from Chinese coal and hydrolysis lignin

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Y.; Han, B.X. [Tuskegee University, Tuskegee, AL (USA). School of Engineering, Dept. of Chemical Engineering

    2001-07-01

    Activated carbons from Chinese coal and Chinese hydrolysis lignin have been prepared by chemical activation with potassium hydroxide. The following aspects of these activated materials have been analyzed: raw material; pre-treatment of raw material; activation agent, activation temperature and time, acid the activation agent/raw material ratio. Activated carbons with BET specific surface areas of the order of 2400-2600 m{sup 2}/g which exhibited substantial microporosity, a total pore volume of over 1.30 cm{sup 3}/g and a Methylene Blue adsorption capacity of over 440 mg/g were obtained.

  17. Characterization of activated carbon produced from urban organic waste

    Directory of Open Access Journals (Sweden)

    Abdul Gani Haji

    2013-10-01

    Full Text Available The difficulties to decompose organic waste can be handled naturally by pyrolisis so it can  decomposes quickly that produces charcoal as the product. This study aims to investigate the characteristics of activated carbon from urban organic waste. Charcoal results of pyrolysis of organic waste activated with KOH 1.0 M at a temperature of 700 and 800oC for 60 to 120 minutes. Characteristics of activated carbon were identified by Furrier Transform Infra Red (FTIR, Scanning Electron Microscopy (SEM, and X-Ray Diffraction (XRD. However, their quality is determined yield, moisture content, ash, fly substances, fixed carbon, and the power of adsorption of iodine and benzene. The identified functional groups on activated carbon, such as OH (3448,5-3436,9 cm-1, and C=O (1639,4 cm-1. In general, the degree and distance between the layers of active carbon crystallites produced activation in all treatments showed no significant difference. The pattern of activated carbon surface topography structure shows that the greater the pore formation in accordance with the temperature increase the more activation time needed. The yield of activated carbon obtained ranged from 72.04 to 82.75%. The results of characterization properties of activated carbon was obtained from 1.11 to 5.41% water, 13.68 to 17.27% substance fly, 20.36 to 26.59% ash, and 56.14 to 62.31% of fixed carbon . Absorption of activated carbon was good enough at 800oC and 120 minutes of activation time, that was equal to 409.52 mg/g of iodine and 14.03% of benzene. Activated carbon produced has less good quality, because only the water content and flying substances that meet the standards.Doi: 10.12777/ijse.5.2.89-94 [How to cite this article: Haji, A.G., Pari, G., Nazar, M., and Habibati.  (2013. Characterization of activated carbon produced from urban organic waste . International Journal of Science and Engineering, 5(2,89-94. Doi: 10.12777/ijse.5.2.89-94

  18. Grafting of activated carbon cloths for selective adsorption

    Science.gov (United States)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  19. Design and Manufacture of Low Carbon for Grain and Oil Machinery Products%粮油机械产品的低碳设计制造

    Institute of Scientific and Technical Information of China (English)

    池优阳; 阮竞兰

    2015-01-01

    分析了传统粮油机械产品在设计制造业和使用行业中对环境造成的影响,并对粮油机械产品低碳设计碳足迹计算、评估、低碳产品认证等方面进行了简要概述,提出了粮油机械产品采用低碳设计制造的方法途径。指出低碳设计制造是粮油机械制造业解决环境污染问题的有效方法,最后对粮油机械产品低碳设计的未来发展趋势进行构想和展望。%The root causes of environmental problems from traditional grain and oil machinery are ana-lyzed,and the following aspects of carbon footprint calculation,evaluation and low carbon product certification as the evaluation index for the low carbon design effects were summarized the way of Design and Manufacture of Low Carbon for Grain and Oil machinery products are put forward.Implementation of Low Carbon design and manufacturing is the way of the Grain and Oil machinery products manufacturing industry to solve the environ-mental problems.Finally the prospects and future development trend of grain and oil machinery products low carbon design were proposed.

  20. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest

  1. Tribological Characteristics of Chromium-active Carbon Electroplated Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    GUKa-fi; HUAMeng; Yi-min

    2004-01-01

    A process of chromium electroplating using a standard bath with additives and active carbon particles was reported, and the tribological behaviors of the composite coatings using the pin-on-disk tester and the table wear tester were i nvestig(aed. Experimental results indicate that the electroplated chromium-active carbon composite coatings exhibited the low friction coefficient anti excellent anti-wear properties whets coffered with the normal chromium electroplated ones. The formation of active carbon particles within the chromium matrices can be explained by SEM analysis and the mechanis of wear resistance of the composite coatings were studied.

  2. ADSORPTION OF STRONTIUM IONS FROM WATER ON MODIFIED ACTIVATED CARBONS

    Directory of Open Access Journals (Sweden)

    Mihai Ciobanu

    2016-12-01

    Full Text Available Adsorption of strontium ions from aqueous solutions on active carbons CAN-7 and oxidized CAN-8 has been studied. It has been found that allure of the adsorption isotherms for both studied active carbons are practically identical. Studies have shown that the adsorption isotherms for strontium ions from aqueous solutions are well described by the Langmuir and Dubinin-Radushkevich equations, respectively. The surface heterogeneity of activated carbons CAN-7 and oxidized CAN-8 has been assessed by using Freundlich equation.

  3. Adsorption of chromium ion (VI) by acid activated carbon

    OpenAIRE

    A. A. Attia; Khedr,S. A.; Elkholy,S. A.

    2010-01-01

    The activated carbon produced from olive stones was chemically activated using sulfuric acid, (OS-S), and utilized as an adsorbent for the removal of Cr(VI) from aqueous solution in the concentration range 4-50 mg/L. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial chromium ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon (OS-S...

  4. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process.

    Science.gov (United States)

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng

    2014-11-01

    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 μm) volume and the increase of mesopore and macropore (0.1 μm

  5. Carbon Dioxide (CO2) Adsorption by Activated Carbon Functionalized with Deep Eutectic Solvent (DES)

    Science.gov (United States)

    Zulkurnai, N. Z.; Ali, U. F. Md.; Ibrahim, N.; Manan, N. S. Abdul

    2017-06-01

    In recent years, carbon dioxide (CO2) emission has become a major concern as the amount of the emitted gas significantly increases annually. Consequently, this phenomenon contributes to global warming. Several CO2 capture methods, including chemical adsorption by activated carbon, have been proposed. In this study, activated carbon was prepared from sea mango (Cerbera odollam), which was functionalized with deep eutectic solvent (DES) composed of choline chloride and glycerol to increase the efficiency of CO2 capture. The samples underwent pre-carbonization and carbonization processes at 200 °C and 500 °C, respectively, with nitrogen gas and flowing several gases, namely, CO2 and steam, and then followed by impregnation with 50 phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratio. The prepared activated carbon was impregnated with DES at 1:2 precursor-to-activant ratio. The optimum CO2 adsorption capacity of the activated carbon was obtained by using CO2 gas treatment method (9.851 mgCO2/gsol), followed by the absence of gases (9.685 mgCO2/gsol), steam (9.636 mgCO2/gsol), and N2 (9.536 mgCO2/gsol).

  6. Interaction forces between waterborne bacteria and activated carbon particles

    NARCIS (Netherlands)

    Busscher, Henk J.; Dijkstra, Rene J. B.; Langworthy, Don E.; Collias, Dimitris I.; Bjorkquist, David W.; Mitchell, Michael D.; Van der Mei, Henny C.

    2008-01-01

    Activated carbons remove waterborne bacteria from potable water systems through attractive Lifshitz-van der Waals forces despite electrostatic repulsion between negatively charged cells and carbon surfaces. In this paper we quantify the interaction forces between bacteria with negatively and positiv

  7. ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON IN A FLOW REACTOR

    Science.gov (United States)

    The paper gives results of bench-scale experiments in a flow reactor to simulate the entrained-flow capture of elemental mercury (Hgo) using solid sorbents. Adsorption of Hgo by a lignite-based activated carbon (Calgon FGD) was examined at different carbon/mercury (C/Hg) rat...

  8. Mechanism of phenol adsorption onto electro-activated carbon granules.

    Science.gov (United States)

    Lounici, H; Aioueche, F; Belhocine, D; Drouiche, M; Pauss, A; Mameri, N

    2004-01-01

    The main purpose of this paper is to determine the mechanisms which govern the adsorption of the phenol onto electro-activated carbon granules. This new activation technique allowed an increase of the performance of the adsorbent. Two models were utilised to understand the improvement in the performance of electroactivated carbon granules. The first, a simple external resistance model based on film resistance, gave acceptable predictions, with an error of less than 15%, between the theoretical results and experimental data independent of the activation potential and phenol initial concentration. The second linear model, based on diffusion phenomena, was more representative in describing the experiment than the first model. It was observed that the electro-activation method did not change the mechanism which governs phenol adsorption onto granular carbon. Indeed, the same mathematical model based on diffusion phenomena made it possible to predict with a very low error (less than 5%) the experimental data obtained for the favourable activation potential, without activation potential and with an unfavourable activation potential. The electro-activation technique makes it possible to increase the number of active sites that improve the performance of the electro-activated granular carbon compared with conventional granular activated carbon.

  9. STUDIES ON THE PREPARATION OF ZINC-CONTAINING ACTIVATED CARBON FIBERS AND THEIR ANTIBACTERIAL ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several kinds of activated carbon fibers, using sisal fiber as precursors, were preparedwith steam activation or with ZnCl2 activation. Zinc or its compounds were dispersed in them. Theantibacterial activities of these activated carbon fibers were determined and compared. The researchresults showed that these sisal based activated carbon fibers supporting zinc have strongerantibacterial activity against Escherichia coli and S. aureus. The antibacterial activity is related tothe precursors, the pyrolysis temperature, and the zinc content. In addition, small quantity of silversupported on zinc-containing ACFs will greatly enhance the antibacterial activity of ACFs.

  10. Intact tropical forests, new evidence they uptake carbon actively

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available According to a paper recently published on Nature, tropical forests play as active carbon sink, absorbing 1.3·109 tons of carbon per year on a global scale. Functional interpretation is not clear yet, but a point is quite easy to realize: tropical forests accumulate and contain more carbon than any other vegetation cover and, if their disruption goes on at current rates, these ecosystems could revert to be a “carbon bomb”, releasing huge amount of CO2 to the atmosphere.

  11. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs

  12. Characterization of Potential Exposures to Nanoparticles and Fibers during Manufacturing and Recycling of Carbon Nanotube Reinforced Polypropylene Composites.

    Science.gov (United States)

    Boonruksa, Pongsit; Bello, Dhimiter; Zhang, Jinde; Isaacs, Jacqueline A; Mead, Joey L; Woskie, Susan R

    2016-01-01

    Carbon nanotube (CNT) polymer composites are widely used as raw materials in multiple industries because of their excellent properties. This expansion, however, is accompanied by realistic concerns over potential release of CNTs and associated nanoparticles during the manufacturing, recycling, use, and disposal of CNT composite products. Such data continue to be limited, especially with regards to post-processing of CNT-enabled products, recycling and handling of nanowaste, and end-of-life disposal. This study investigated for the first time airborne nanoparticle and fibers exposures during injection molding and recycling of CNT polypropylene composites (CNT-PP) relative to that of PP. Exposure characterization focused on source emissions during loading, melting, molding, grinding, and recycling of scrap material over 20 cycles and included real-time characterization of total particle number concentration and size distribution, nanoparticle and fiber morphology, and fiber concentrations near the operator. Total airborne nanoparticle concentration emitted during loading, melting, molding, and grinding of CNT-PP had geometric mean ranging from 1.2 × 10(3) to 4.3 × 10(5) particles cm(-3), with the highest exposures being up to 2.9 and 300.7 times above the background for injection molding and grinding, respectively. Most of these emissions were similar to PP synthesis. Melting and molding of CNT-PP and PP produced exclusively nanoparticles. Grinding of CNT-PP but not PP generated larger particles with encapsulated CNTs, particles with CNT extrusions, and respirable fiber (up to 0.2 fibers cm(-3)). No free CNTs were found in any of the processes. The number of recycling runs had no significant impact on exposures. Further research into the chemical composition of the emitted nanoparticles is warranted. In the meanwhile, exposure controls should be instituted during processing and recycling of CNT-PP.

  13. Status of the beryllium tile bonding qualification activities for the manufacturing of the ITER first wall

    Energy Technology Data Exchange (ETDEWEB)

    Mitteau, Raphaël, E-mail: Raphael.mitteau@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Eaton, R.; Perez, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Zacchia, F.; Banetta, S.; Bellin, B. [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Gervash, A.; Glazunov, D. [Efremov Research Institute, 189631 St. Petersburg (Russian Federation); Chen, J. [Southwestern Institute of Physics, Huangjing Road, Chengdu 610225 (China)

    2015-10-15

    The preparation of the manufacturing of the ITER first wall involves a qualification stage. The qualification aims at demonstrating that manufacturers can deliver the needed reliability and quality for the beryllium to copper bond, before the manufacturing can commence. The qualification is done on semi-prototype, containing relevant features relative to the beryllium armour (about 1/6 of the panel size). The qualification is done by the participating parties, firstly by a manufacturing semi-prototype and then by testing it under heat flux. One semi-prototype is manufactured and is being tested, and further from other manufacturers are still to come. The qualification programme is accompanied by bond defect investigations, which aim at defining defect acceptance criteria. Qualification and defect acceptance programme are supported by thermal and stress analyses, with good agreement regarding the thermal results, and some insights about the governing factors to bond damage.

  14. Manufacturing and testing a thin glass mirror shell with piezoelectric active control

    Science.gov (United States)

    Spiga, D.; Barbera, M.; Collura, A.; Basso, S.; Candia, R.; Civitani, M.; Di Bella, M.; Di Cicca, G.; Lo Cicero, U.; Lullo, G.; Pelliciari, C.; Riva, M.; Salmaso, B.; Sciortino, L.; Varisco, S.

    2015-09-01

    Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or silicon in order to keep the total mass within acceptable limits. Optical modules based on thin slumped glass foils are being developed at various institutes, aiming at improving the angular resolution to a few arcsec HEW. Thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. On the other hand, this offers the opportunity to actively correct the residual deformation: a viable possibility to improve the mirror figure is the application of piezoelectric actuators onto the non-optical side of the mirrors, and several groups are already at work on this approach. The concept we are developing consists of actively integrating thin glass foils with piezoelectric patches, fed by voltages driven by the feedback provided by X-rays. The actuators are commercial components, while the tension signals are carried by a printed circuit obtained by photolithography, and the driving electronic is a multi-channel low power consumption voltage supply developed inhouse. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array are determined in X-rays, in intra-focal setup at the XACT facility at INAF/OAPA. In this work, we describe the manufacturing steps to obtain a first active mirror prototype and the very first test performed in X-rays.

  15. Carbon-carbon bond cleavage in activation of the prodrug nabumetone.

    Science.gov (United States)

    Varfaj, Fatbardha; Zulkifli, Siti N A; Park, Hyoung-Goo; Challinor, Victoria L; De Voss, James J; Ortiz de Montellano, Paul R

    2014-05-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs.

  16. Functionalized Activated Carbon Derived from Biomass for Photocatalysis Applications Perspective

    Directory of Open Access Journals (Sweden)

    Samira Bagheri

    2015-01-01

    Full Text Available This review highlighted the developments of safe, effective, economic, and environmental friendly catalytic technologies to transform lignocellulosic biomass into the activated carbon (AC. In the photocatalysis applications, this AC can further be used as a support material. The limits of AC productions raised by energy assumption and product selectivity have been uplifted to develop sustainable carbon of the synthesis process, where catalytic conversion is accounted. The catalytic treatment corresponding to mild condition provided a bulk, mesoporous, and nanostructure AC materials. These characteristics of AC materials are necessary for the low energy and efficient photocatalytic system. Due to the excellent oxidizing characteristics, cheapness, and long-term stability, semiconductor materials have been used immensely in photocatalytic reactors. However, in practical, such conductors lead to problems with the separation steps and loss of photocatalytic activity. Therefore, proper attention has been given to develop supported semiconductor catalysts and certain matrixes of carbon materials such as carbon nanotubes, carbon microspheres, carbon nanofibers, carbon black, and activated carbons have been recently considered and reported. AC has been reported as a potential support in photocatalytic systems because it improves the transfer rate of the interface charge and lowers the recombination rate of holes and electrons.

  17. Activated Carbon Prepared in a Novel Gas Fired Static Bed ...

    African Journals Online (AJOL)

    Michael O. Mensah

    2015-12-02

    Dec 2, 2015 ... The reactor is fabricated using stainless steel plates of 4 mm ... is introduced into the reaction chamber. The ... reaction of carbon with the activating agent. A number ..... organic liquids, characterisation of the organic fraction of.

  18. OXIDATION AND CHARACTERIZATION OF ACTIVE CARBON AG-5

    Directory of Open Access Journals (Sweden)

    Tatiana Goreacioc

    2015-06-01

    Full Text Available The surface chemistry of the commercial active carbon AG-5 has been modified by oxidation with concentrated nitric acid. The structural changes caused by oxidative treatment were estimated on the basis of nitrogen adsorption-desorption isotherms and thermal analysis. Boehm titration method and infrared spectral analysis have been used in order to evaluate surface chemistry characteristics of active carbon samples. After oxidation process the amount of total acidic groups on oxidized active carbon surface (AG-5ox increases by about 6 times in comparison with unmodified sample (AG-5. The concentration of the acidic groups on the oxidized active carbon surface (AG-5ox was in the following order: strong acidic >>> weak acidic > phenolic.

  19. Application of Activated Carbon Mixed Matrix Membrane for Oxygen Purification

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2010-07-01

    Full Text Available This study is performed primarily to investigate the effect of activated carbon on oxygen separation performance of polyethersulfone mixed matrix membrane. In this study, polyethersulfone (PES-activated carbon (AC mixed matrix membranes were fabricated using dry/wet technique. This study investigates the effect of polyethersulfone concentration and activated carbon loading on the performance of mixed matrix membrane in terms of permeability and selectivity of O2/N2 gas separation. The fabricated flat sheet mixed matrix membranes were characterized using permeation test, Field Emission Scanning Electron Microscopy (FESEM analysis and Differential Scanning Calorimetry (DSC. It was found that the activated carbon loading affected the gas separation performance of mixed matrix membrane. PES- 1wt% AC membrane yielded 3.75 of O2/N2 selectivity, however 5 wt% of AC can produced 5 O2/N2 selectivity

  20. [Influence of biological activated carbon dosage on landfill leachate treatment].

    Science.gov (United States)

    Cui, Yan-Rui; Guo, Yan; Wu, Qing

    2014-08-01

    Effects of biological activated carbon (BAC) dosage on COD removal in landfill leachate treatment were compared. The COD removal efficiency of reactors with 0, 100 and 300 g activated carbon dosage per litre activated sludge was 12.9%, 19.6% and 27.7%, respectively. The results indicated that BAC improved the refractory organic matter removal efficiency and there was a positive correlation between COD removal efficiency and BAC dosage. The output of carbon dioxide after 8h of aeration in reactors was 109, 193 and 306 mg corresponding to the activated carbon dosages mentioned above, which indicated the amount of biodegradation and BAC dosage also had a positive correlation. The combination of adsorption and bioregeneration of BAC resulted in the positive correlation betweem organic matter removal efficiency and BAC dosage, and bioregeneration was the root cause for the microbial decomposition of refractory organics.

  1. (Hevea brasiliensis) SEED PERICARP-ACTIVATED CARBON IN ...

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... Biochemical Engineering and Biotechnology Laboratory, ... Keywords: abattoir waste water, activated carbon, adsorption isotherms, iron (III) chloride, lagergren equations, ... industrial wastes as well as natural agricultural bye-.

  2. Sustainable Regeneration of Nanoparticle Enhanced Activated Carbon in Water

    Science.gov (United States)

    The regeneration and reuse of exhausted granular activated carbon (GAC) is an appropriate method for lowering operational and environmental costs. Advanced oxidation is a promising environmental friendly technique for GAC regeneration. The main objective of this research was to ...

  3. Cooperative redox activation for carbon dioxide conversion

    DEFF Research Database (Denmark)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.

    2016-01-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches...

  4. Carbon dioxide capture by activated methyl diethanol amine impregnated mesoporous carbon

    Science.gov (United States)

    Ardhyarini, N.; Krisnandi, Y. K.

    2017-07-01

    Activated Methyl Diethanol Amine (aMDEA) were impregnated onto the surface of the mesoporous carbon to increase carbon dioxide (CO2) adsorption capacity. The mesoporous carbon was synthesized through soft template method with phloroglucinol as carbon precursor and triblock copolymer (Pluronic F127) as structure directing agent. These activated MDEA impregnated mesoporous carbon (aMDEA-MC) were characterized using various solid characterization techniques. CO2 adsorption was investigated using autoclaved-reactor in the batch system. The FTIR spectrum of aMDEA-MC had absorption peaks at 3395 cm-1 and 1031 cm-1 which are characteristic for O-H stretch and amine C-N stretch in MDEA. The elemental analyzer showed that nitrogen content on the mesoporous carbon increased after impregnation by 23 wt.%. The BET surface area and total pore volume of mesoporous carbon decreased after impregnation, 43 wt.% and 50 wt.%, respectively. The maximum CO2 adsorption capacity of aMDEA43-MC was 2.63 mmol/g (298 K, 5 psi and pure CO2). This is 64 % and 35 % higher compared to the CO2 adsorption capacity of the starting MC and also commercially available activated carbon with higher surface area. All the results suggest that MDEA-MC is a promising adsorbent for CO2 capture.

  5. Waste polyvinylchloride derived pitch as a precursor to develop carbon fibers and activated carbon fibers.

    Science.gov (United States)

    Qiao, W M; Yoon, S H; Mochida, I; Yang, J H

    2007-01-01

    Polyvinylchloride (PVC) was successfully recycled through the solvent extraction from waste pipe with an extraction yield of ca. 86%. The extracted PVC was pyrolyzed by a two-stage process (260 and 410 degrees C) to obtain free-chlorine PVC based pitch through an effective removal of chlorine from PVC during the heat-treatment. As-prepared pitch (softening point: 220 degrees C) was spun, stabilized, carbonized into carbon fibers (CFs), and further activated into activated carbon fibers (ACFs) in a flow of CO2. As-prepared CFs show comparable mechanical properties to commercial CFs, whose maximum tensile strength and modulus are 862 MPa and 62 GPa, respectively. The resultant ACFs exhibit a high surface area of 1200 m2/g, narrow pore size distribution and a low oxygen content of 3%. The study provides an effective insight to recycle PVC from waste PVC and develop a carbon precursor for high performance carbon materials such as CFs and ACFs.

  6. Microstructure and surface properties of lignocellulosic-based activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, P., E-mail: pegonzal@quim.ucm.es [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain); Centeno, T.A. [Instituto Nacional del Carbon-CSIC, Apartado 73, E-33080 Oviedo (Spain); Urones-Garrote, E. [Centro Nacional de Microscopia Electronica, Universidad Complutense, E-28040, Madrid (Spain); Avila-Brande, D.; Otero-Diaz, L.C. [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Activated carbons were produced by KOH activation at 700 Degree-Sign C. Black-Right-Pointing-Pointer The observed nanostructure consists of highly disordered graphene-like layers with sp{sup 2} bond content Almost-Equal-To 95%. Black-Right-Pointing-Pointer Textural parameters show high surface area ( Almost-Equal-To 1000 m{sup 2}/g) and pore width of 1.3-1.8 nm. Black-Right-Pointing-Pointer Specific capacitance reaches values as high as 161 F/g. - Abstract: Low cost activated carbons have been produced via chemical activation, by using KOH at 700 Degree-Sign C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp{sup 2} content Almost-Equal-To 95% and average mass density of 1.65 g/cm{sup 3} (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m{sup 2}/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm{sup 2}) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  7. Ultrafine microporous and mesoporous activated carbon fibers from alkali lignin

    OpenAIRE

    2013-01-01

    A facile and sustainable approach has been successfully devised to fabricate ultrafine (100-500 nm) highly porous activated carbon fibers (ACFs) by electrospinning of aqueous solutions of predominantly alkali lignin (low sulfonate content) followed by simultaneous carbonization and activation at 850 °C under N2. Incorporating a polyethylene oxide (PEO) carrier with only up to one ninth of lignin not only enabled efficient electrospinning into fibers but also retained fibrous structures during...

  8. Microwave absorbing properties of activated carbon fibre polymer composites

    Indian Academy of Sciences (India)

    Tianchun Zou; Naiqin Zhao; Chunsheng Shi; Jiajun Li

    2011-02-01

    Microwave absorption of composites containing activated carbon fibres (ACFs) was investigated. The results show that the absorptivity greatly depends on increasing ACF content in the absorbing layer, first increasing and then decreasing. When the content is 0.76 wt.%, the bandwidth below −10dB is 12.2 GHz. Comparing the absorption characteristics of the ACF composite with one containing unactivated fibres, it is found that carbon fibre activation increases the absorption of the composite.

  9. 碳纤维制造产业的专利分析%Analysis of patents on carbon fiber manufacturing technology

    Institute of Scientific and Technical Information of China (English)

    冀小强; 易方方

    2012-01-01

    对碳纤维制造技术专利文献进行了检索统计,分别从年度发展趋势、专利申请国分布、申请人状况和中美日欧四局共同申请的重点专利布局等方面对碳纤维制造产业的国内外技术专利进行了分析,揭示了国内外碳纤维专利申请的现状,分析了主要专利申请人专利的国际专利分类领域和技术重点,为我国科研院所和企业提出了专利申请布局的相关建议.提出了我国应利用已公开的专利技术,研发特种碳纤维的制造技术,强化碳纤维的应用技术,促进碳纤维的产业化和工程化.%The relevant patents of carbon fiber manufacturing technologies were retrieved. The China and international patents on carbon fiber manufacturing technologies were analyzed from the aspects of annual trend and geographical spread of patent applications, statistics of patent applicants, distribution of key patents filed in US, Japan, Europe and China patent offices. The status of carbon fiber patent application was explored is China and abroad. The international classification and focal points of patent technology were analyzed according to the dominant patent applicants. Some suggestion on the patent application strategy was put forward for China science research institutes and enterprises. It was pointed out that China should develop the manufacturing technology of special carbon fiber, strengthen the application technology and stimulate the industrialization and engineering technology of carbon fiber using the published patent technologies.

  10. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    DEFF Research Database (Denmark)

    Marcussen, Lis; Krøll, A.

    1999-01-01

    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems....

  11. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Baccar, R. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: rym.baccar@tunet.tn; Bouzid, J. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: jalel.bouzid@tunet.tn; Feki, M. [Unite de Recherche de Chimie Industrielle et Materiaux, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: mongi.feki@yahoo.fr; Montiel, A. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: montiel.antoine@free.fr

    2009-03-15

    The present work explored the use of Tunisian olive-waste cakes, a by-product of the manufacture process of olive oil in mills, as a potential feedstock for the preparation of activated carbon. Chemical activation of this precursor, using phosphoric acid as dehydrating agent, was adopted. To optimize the preparation method, the effect of the main process parameters (such as acid concentration, impregnation ratio, temperature of pyrolysis step) on the performances of the obtained activated carbons (expressed in terms of iodine and methylene blue numbers and specific surface area) was studied. The optimal activated carbon was fully characterized considering its adsorption properties as well as its chemical structure and morphology. To enhance the adsorption capacity of this carbon for heavy metals, a modification of the chemical characteristics of the sorbent surface was performed, using KMnO{sub 4} as oxidant. The efficiency of this treatment was evaluated considering the adsorption of Cu{sup 2+} ions as a model for metallic species. Column adsorption tests showed the high capacity of the activated carbon to reduce KMnO{sub 4} into insoluble manganese (IV) oxide (MnO{sub 2}) which impregnated the sorbent surface. The results indicated also that copper uptake capacity was enhanced by a factor of up to 3 for the permanganate-treated activated carbon.

  12. Production of activated carbon from rice husk Vietnam

    Science.gov (United States)

    Korobochkin, V. V.; Tu, N. V.; Hieu, N. M.

    2016-09-01

    This work is dedicated to the production of activated carbon from rice husk from Delta of the Red River in Viet Nam. At the first stage, carbonization of a rice husk was carried out to obtain material containing 43.1% carbon and 25 % silica with a specific surface area of 51.5 m2/g. After separating of silica (the second stage), the specific surface area of the product increased to 204 m2/g and the silica content decreased to 1.23% by weight as well. The most important stage in the formation of the porous structure of the material is the activation. The products with the high specific surface area in the range of 800-1345 m2/g were obtained by activation of carbonized product with water vapour or carbon dioxide at temperatures of 700 °C and 850 °C, with varying the flow rate of the activating agent and activation time. The best results were achieved by activation of carbon material with water vapour at the flow rate of 0.08 dm3/min per 500 g of material and the temperature of 850 °C.

  13. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).

    Science.gov (United States)

    Balanay, Jo Anne G; Crawford, Shaun A; Lungu, Claudiu T

    2011-10-01

    Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling, light weight, and decreasing cost. ACF may offer the potential for short-term respiratory protection for first responders and emergency personnel. This study compares the critical bed depths and adsorption capacities for toluene among GAC and ACF of different forms and surface areas. GAC and ACF in cloth (ACFC) and felt (ACFF) forms were challenged in stainless steel chambers with a constant concentration of 500 ppm toluene via conditioned air at 25°C, 50% RH, and constant airflow (7 L/min). Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. Surface areas of each adsorbent were determined using a physisorption analyzer. Results showed that the critical bed depth of GAC is 275% higher than the average of ACFC but is 55% lower than the average of ACFF. Adsorption capacity of GAC (with a nominal surface area of 1800 m(2)/g) at 50% breakthrough is 25% higher than the average of ACF with surface area of 1000 m(2)/g, while the rest of ACF with surface area of 1500 m(2)/g and higher have 40% higher adsorption capacities than GAC. ACFC with higher surface area has the smallest critical bed depth and highest adsorption capacity, which makes it a good adsorbent for thinner and lighter respirators. We concluded that ACF has great potential for application in respiratory protection considering its higher adsorption capacity and lower critical bed depth in addition to its advantages over GAC, particularly for ACF with higher surface area.

  14. Manufacturing an active X-ray mirror prototype in thin glass.

    Science.gov (United States)

    Spiga, D; Barbera, M; Collura, A; Basso, S; Candia, R; Civitani, M; Di Bella, M S; Di Cicca, G; Lo Cicero, U; Lullo, G; Pelliciari, C; Riva, M; Salmaso, B; Sciortino, L; Varisco, S

    2016-01-01

    Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free-electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X-ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported here relies on actively integrating thin glass foils with commercial piezoceramic patches, fed by voltages driven by the feedback provided by X-rays, while the tension signals are carried by electrodes on the back of the mirror, obtained by photolithography. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array will be determined by X-ray illumination in an intra-focal setup at the XACT facility. In this work, the manufacturing steps for obtaining a first active mirror prototype are described.

  15. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    Science.gov (United States)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  16. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    Science.gov (United States)

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  17. Production of activated carbon from peanut hill using phosphoric acid and microwave activation

    Directory of Open Access Journals (Sweden)

    Weerawat Clowutimon

    2015-06-01

    Full Text Available The optimum conditions for preparing activated carbon from peanut hulls by phosphoric acid and microwave activation were studied. Factors investigated in this study were temperature of carbonization at 300, 350, 400 and 450๐ C, and time of carbonization at 30, 60 and 90 minutes. The optimum yield was observed that carbonization temperature of 400๐ C and time at 60 minutes, respectively. The yield of charcoal was 39% and the f ix carbon was 69%. Then the charcoal was activated by phosphoric acid and microwave irradiation, respectively. The effect of the weight per volume ratios of charcoal to activating acid (1:1, 1:2 and 2:1(W/V, microwave power at (activated 300, 500 and 700 watts, and activated time (30, 60 and 90 seconds were studied. The results showed that the optimum conditions for activating peanut charcoal were 1:2 (W/V charcoal per activating acid, microwave power 700 watts for 90 seconds. The results yielding maximum surface area by BET method was 303.1 m2 /g and pore volume was 0.140 cm3 /g. An efficiency of maximum iodine adsorption was 418 mg iodine/g activated carbon. Comparing the adsorption efficiency of non- irradiated and irradiated activated carbon, the efficiency of irradiated activated carbon improved up to 31%, due to its larger surface area and pore volume.

  18. Influence of carbon and nitrogen sources on growth, nitrogenase activity, and carbon metabolism of Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Tejera, Noel A; Ortega, Eduardo; Rodés, Rosa; Lluch, Carmen

    2004-09-01

    The effects of different carbon and nitrogen sources on the growth, nitrogenase activity, and carbon metabolism of Gluconacetobacter diazotrophicus were investigated. The amino acids asparagine, aspartic acid, and glutamic acid affected microbial growth and nitrogenase activity. Several enzymatic activities involved in the tricarboxylic acid cycle were affected by the carbon source used. In addition, glucose and gluconate significantly increased the oxygen consumption (respiration rate) of whole cells of G. diazotrophicus grown under aerobic conditions. Enzymes responsible for direct oxidation of glucose and gluconate were especially active in cells grown with sucrose and gluconate. The presence of amino acids in the apoplastic and symplastic sap of sugarcane stems suggests that these compounds might be of importance in the regulation of growth and nitrogenase activity during the symbiotic association. The information obtained from the plant-bacterium association together with the results of other biochemical studies could contribute to the development of biotechnological applications of G. diazotrophicus.

  19. Effect of Hydraulic Activity on Crystallization of Precipitated Calcium Carbonate (PCC for Eco-Friendly Paper

    Directory of Open Access Journals (Sweden)

    Hwan Kim

    2009-11-01

    Full Text Available Wt% of aragonite, a CaCO3 polymorph, increased with higher hydraulic activity (°C of limestone in precipitated calcium carbonate (PCC from the lime-soda process (Ca(OH2-NaOH-Na2CO3. Only calcite, the most stable polymorph, was crystallized at hydraulic activity under 10 °C, whereas aragonite also started to crystallize over 10 °C. The crystallization of PCC is more dependent on the hydraulic activity of limestone than CaO content, a factor commonly used to classify limestone ores according to quality. The results could be effectively applied to the determination of polymorphs in synthetic PCC for eco-friendly paper manufacture.

  20. Radical carbon-carbon bond formations enabled by visible light active photocatalysts.

    Science.gov (United States)

    Wallentin, Carl-Johan; Nguyen, John D; Stephenson, Corey R J

    2012-01-01

    This mini-review highlights the Stephenson group's contribution to the field of photoredox catalysis with emphasis on carbon-carbon bond formation. The realization of photoredox mediated reductive dehalogenation initiated investigations toward both intra- and intermolecular coupling reactions. These reactions commenced via visible light-mediated reduction of activated halogens to give carbon-centered radicals that were subsequently involved in carbon-carbon bond forming transformations. The developed protocols using Ru and Ir based polypyridyl complexes as photoredox catalysts were further tuned to efficiently catalyze overall redox neutral atom transfer radical addition reactions. Most recently, a simplistic flow reactor technique has been utilized to affect a broad scope of photocatalytic transformations with significant enhancement in reaction efficiency.

  1. Neutron activation analysis and numerical taxonomy of thin orange ceramics from the manufacturing site of Rio Carnero, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rattray, E. (Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Investigaciones Antropologicas); Harbottle, G. (Brookhaven National Lab., Upton, NY (USA))

    1991-04-01

    Examples of different types of Thin Orange ceramics found at the recently-discovered manufacturing sites in the state of Puebla have been analyzed by neutron activation. A full multivariate numerical analysis indicates that this material is chemically identical with the well-known Thin Orange of Teotihuacan.'' 33 refs., 2 figs., 2 tabs.

  2. Exposure characteristics of ferric oxide nanoparticles released during activities for manufacturing ferric oxide nanomaterials.

    Science.gov (United States)

    Xing, Mingluan; Zhang, Yuanbao; Zou, Hua; Quan, Changjian; Chang, Bing; Tang, Shichuan; Zhang, Meibian

    2015-02-01

    The exposure characteristics of Fe2O3 nanoparticles (NPs) released in a factory were investigated, as exposure data on this type of NP is absent. The nature of the particles was identified in terms of their concentrations [i.e. number concentration (NC(20-1000 nm)), mass concentration (MC(100-1000 nm)), surface area concentration (SAC(10-1000 nm))], size distribution, morphology and elemental composition. The relationships between different exposure metrics were determined through analyses of exposure ranking (ER), concentration ratios (CR), correlation coefficients and shapes of the particle concentration curves. Work activities such as powder screening, material feeding and packaging generated higher levels of NPs as compared to those of background particles (p modal size of the Fe2O3 NPs remained relatively constant (ranging from 10 to 15 nm) during the working periods. The ER, CR values and the shapes of NC(20-1000 nm) and SAC(10-1000 nm) curves were similar; however, these were significantly different from those for MC(100-1000 nm). There was a high correlation between NC(20-1000 nm) and SAC(10-1000 nm), and relatively lower correlations between the two and MC(100-1000 nm). These findings suggest that the work activities during the manufacturing processes generated high levels of primary Fe2O3 NPs. The particle concentrations exhibited periodicity and were activity dependent. The number and SACs were found to be much more relevant metrics for characterizing NPs than was the mass concentration.

  3. Activated Carbon Composites for Air Separation

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL; Baker, Frederick S [ORNL; Tsouris, Costas [ORNL; McFarlane, Joanna [ORNL

    2008-03-01

    In continuation of the development of composite materials for air separation based on molecular sieving properties and magnetic fields effects, several molecular sieve materials were tested in a flow system, and the effects of temperature, flow conditions, and magnetic fields were investigated. New carbon materials adsorbents, with and without pre-loaded super-paramagnetic nanoparticles of Fe3O4 were synthesized; all materials were packed in chromatographic type columns which were placed between the poles of a high intensity, water-cooled, magnet (1.5 Tesla). In order to verify the existence of magnetodesorption effect, separation tests were conducted by injecting controlled volumes of air in a flow of inert gas, while the magnetic field was switched on and off. Gas composition downstream the column was analyzed by gas chromatography and by mass spectrometry. Under the conditions employed, the tests confirmed that N2 - O2 separation occurred at various degrees, depending on material's intrinsic properties, temperature and flow rate. The effect of magnetic fields, reported previously for static conditions, was not confirmed in the flow system. The best separation was obtained for zeolite 13X at sub-ambient temperatures. Future directions for the project include evaluation of a combined system, comprising carbon and zeolite molecular sieves, and testing the effect of stronger magnetic fields produced by cryogenic magnets.

  4. Active Vibration Isolation of Micro-Manufacturing Platform Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This paper develops a vibration isolation system of micro-manufacturing platform. The brains of many kinds of birds can isolate vibrations well, such as woodpecker's brain. When a woodpecker pecks the wood at the speed as 1.6 times as the velocity of sound, its brain will tolerate the wallop 1 500 time...

  5. Biofuel intercropping effects on soil carbon and microbial activity.

    Science.gov (United States)

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  6. In situ sorption of technetium using activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Holm, E. E-mail: elis.holm@radfys.lu.se; Gaefvert, T.; Lindahl, P.; Roos, P

    2000-07-15

    The sorption of technetium in pertechnetate form on carbon has been investigated. The sorption is pH dependent with maximal distribution coefficients, K{sub d}, in the order of 10{sup 6} at pH 2-4 for activated carbon with a grain size {<=}100 {mu}m. The equilibrium time to reach such distribution coefficient was about 5 h at room temperature. The exact mechanisms for the sorption are not fully understood but reduction of Tc by the carbon might be an important process. Technetium can effectively and rapidly (5 l min{sup -1}) be sorbed from very large volumes (several hundred liters) of environmental waters on commercial cartridge filters impregnated with activated carbon. After incineration, the filters can be analyzed for {sup 99}Tc by conventional methods.

  7. Proton catalysis with active carbons and partially pyrolyzed carbonaceous materials

    Institute of Scientific and Technical Information of China (English)

    V. V. Strelko; S. S. Stavitskaya; Yu. I. Gorlov

    2014-01-01

    The development of environmentally friendly solid acid catalysts is a priority task. Highly oxidized activated carbon and their ion-substituted (saline) forms are effective proton transfer catalysts in esterification, hydrolysis, and dehydration, and thus are promising candidates as solid acid cata-lysts. Computations by the ab initio method indicated the cause for the enchanced acidity of the carboxylic groups attached to the surface of highly oxidized carbon. The synthesis of phosphorilated carbon was considered, and the proton transfer reactions catalyzed by them in recent studies were analyzed. The development of an amorphous carbon acid catalyst comprising polycyclic carbonaceous (graphene) sheets with-SO3H,-COOH and phenolic type OH-groups was carried out. These new catalysts were synthesized by partial pyrolysis and subsequent sulfonation of carbohydrates, polymers, and other organic compounds. Their high catalytic activities in proton transfere reactions including the processing of bio-based raw materials was demonsrated.

  8. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  9. Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon

    OpenAIRE

    Khaled Okiel; Mona El-Sayed; Mohamed Y. El-Kady

    2011-01-01

    Emulsified oil in waste water constitutes is a severe problem in the different treatment stages before disposed off in a manner that does not violate environmental criteria. One commonly used technique for remediation of petroleum contaminated water is adsorption. The main objective of this study is to examine the removal of oil from oil–water emulsions by adsorption on bentonite, powdered activated carbon (PAC) and deposited carbon (DC). The results gave evidence of the ability of the adsorb...

  10. Production and characterization of activated carbon from a ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... activating it in high temperatures (800 - 1000°C) in an oxidizing environment. At this .... sample has displayed typical coal behavior. It has lost water content up ..... Adsorption of Copper and Cadmium Ions by Activated Carbon ...

  11. Pesticide Removal by Combined Ozonation and Granular Activated Carbon Filtration

    NARCIS (Netherlands)

    Orlandini, E.

    1999-01-01

    This research aimed to idendfy and understand mechanisms that underlie the beneficial effect of ozonation on removal of pesdcides and other micropoUutants by Granular Activated Carbon (GAC) filtradon. This allows optimization of the combination of these two processes, termed Biological Activated Car

  12. Pesticide Removal by Combined Ozonation and Granular Activated Carbon Filtration

    NARCIS (Netherlands)

    Orlandini, E.

    1999-01-01

    This research aimed to idendfy and understand mechanisms that underlie the beneficial effect of ozonation on removal of pesdcides and other micropoUutants by Granular Activated Carbon (GAC) filtradon. This allows optimization of the combination of these two processes, termed Biological Activated

  13. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Mingyu; Gao, Long; Li, Jun [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Fang, Jia [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China); Cai, Wenxuan [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Li, Xiaoxia [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China); Xu, Aihua, E-mail: xahspinel@sina.com [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073 (China)

    2016-10-05

    Highlights: • Supported g-C{sub 3}N{sub 4} on AC catalysts with different loadings were prepared. • The metal free catalysts exhibited high efficiency for dyes degradation with PMS. • The catalyst presented a long-term stability for multiple runs. • The C=O groups played a key role in the oxidation process. - Abstract: Graphitic carbon nitride supported on activated carbon (g-C{sub 3}N{sub 4}/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C{sub 3}N{sub 4} was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C{sub 3}N{sub 4} to C=O was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C{sub 3}N{sub 4}/AC catalyst within 20 min with PMS, while g-C{sub 3}N{sub 4}+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C{sub 3}N{sub 4} loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO· and SO{sub 4}·{sup −}) in AO7 oxidation was proposed in the system. The C=O groups play a key role in the process; while the exposure of more N-(C){sub 3} group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  14. ADSORPTION CHARACTERISTICS OF L-HISTIDINE ON ACTIVE CARBON

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Adsorption properties of L-histidine on active carbon were studied in the paper, which are affected by the main parameters, such as the quantity percent of active carbon, pH value of the solution, the time of adsorption equilibrium and adsorption temperature. The results indicate that adsorption equilibrium time of L-his on active carbon is about 80 minutes. With the increasing of the quantity percent of active carbon, the adsorbance of L-his decreases sharply, and increases lighter after that. When the quantity percent of active carbon is 10%, the adsorbance reaches the minimum.pH value of solution and extraction temperature have great affection on the adsorption. When the pH value is higher or lower than the pI of L-his, the adsorbance is small, even zero. It is proven that the experimental equilibrium data which are obtained under the conditions of 80 ℃and pH=1.0, are fitted with the Freundlich equation: q=2.5914c0.8097. The results can provide certain references in L-his adsorption process of industrial operation.

  15. Decolorization of Cheddar cheese whey by activated carbon.

    Science.gov (United States)

    Zhang, Yue; Campbell, Rachel; Drake, MaryAnne; Zhong, Qixin

    2015-05-01

    Colored Cheddar whey is a source for whey protein recovery and is decolorized conventionally by bleaching, which affects whey protein quality. Two activated carbons were studied in the present work as physical means of removing annatto (norbixin) in Cheddar cheese whey. The color and residual norbixin content of Cheddar whey were reduced by a higher level of activated carbon at a higher temperature between 25 and 55°C and a longer time. Activated carbon applied at 40g/L for 2h at 30°C was more effective than bleaching by 500mg/L of hydrogen peroxide at 68°C. The lowered temperature in activated-carbon treatments had less effect on protein structure as investigated for fluorescence spectroscopy and volatile compounds, particularly oxidation products, based on gas chromatography-mass spectrometry. Activated carbon was also reusable, removing more than 50% norbixin even after 10 times of regeneration, which showed great potential for decolorizing cheese whey.

  16. Adsorption of chromium ion (VI by acid activated carbon

    Directory of Open Access Journals (Sweden)

    A. A. Attia

    2010-03-01

    Full Text Available The activated carbon produced from olive stones was chemically activated using sulfuric acid, (OS-S, and utilized as an adsorbent for the removal of Cr(VI from aqueous solution in the concentration range 4-50 mg/L. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial chromium ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon (OS-S were compared with the acid-treated commercial activated carbon (CAC-S. The optimum efficiency shows that the Cr(VI uptake being attained at pH 1.5. The equilibrium adsorption data was better fitted to the Langmuir adsorption model. The results of kinetic models showed that the pseudo-first-order kinetic model was found to correlate the experimental data well. It was concluded that activated carbon produced from olive stones (OS-S has an efficient adsorption capacity compared to (CAC-S sample.

  17. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon.

    Science.gov (United States)

    Apul, Onur Guven; Wang, Qiliang; Zhou, Yang; Karanfil, Tanju

    2013-03-15

    Adsorption of two synthetic organic compounds (SOCs; phenanthrene and biphenyl) by two pristine graphene nanosheets (GNS) and one graphene oxide (GO) was examined and compared with those of a coal base activated carbon (HD4000), a single-walled carbon nanotube (SWCNT), and a multi-walled carbon nanotube (MWCNT) in distilled and deionized water and in the presence of natural organic matter (NOM). Graphenes exhibited comparable or better adsorption capacities than carbon nanotubes (CNTs) and granular activated carbon (GAC) in the presence of NOM. The presence of NOM reduced the SOC uptake of all adsorbents. However, the impact of NOM on the SOC adsorption was smaller on graphenes than CNTs and activated carbons. Furthermore, the SOC with its flexible molecular structure was less impacted from NOM preloading than the SOC with planar and rigid molecular structure. The results indicated that graphenes can serve as alternative adsorbents for removing SOCs from water. However, they will also, if released to environment, adsorb organic contaminants influencing their fate and impact in the environment.

  18. Modelling and active control of the Vacuum Infusion Process for composites manufacture

    OpenAIRE

    Modi, Dhiren

    2008-01-01

    Vacuum infusion technology, even though first reported more than 50 years ago, was not popular for mainstream fibre reinforced polymer composites manufacturing until recently. Its present-day popularity is due to the increasing emphasis on the manufacturing cost as well as environmental and health concerns. As a result, novel processes such as Vacuum Infusion (VI) and Seemans' Composite Resin Injection Moulding Process (SCRIMPTM), employing the same basic technology, have been developed. As l...

  19. Research report for fiscal 1998. Research into the trends of low-carbon automotive fuel manufacturing technologies; 1998 nendo jidoshayo teitanso nenryo no seizo gijutsu doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Studies are made of optimum materials and methods for manufacturing low-carbon fuels for reduction in greenhouse gas emissions. When their thermal dynamic limits and the technological maturity are considered, it is inferred that no extensive improvement will be achieved by merely improving on the efficiency of the existing fuels. The use of various high-efficiency driving power sources utterly different in mechanism from the conventional ones, such as those for fuel cell-powered automobiles, and the promotion of the use of low-carbon fuels such as methanol and methane for all kinds of driving power sources including those for the said fuel cell-powered automobiles, will become necessary. The use will also be necessary of recyclable materials. The biomass resources, in particular, since they absorb CO2 gas in their growing process by virtue of photosynthesis, may be said to be free of CO2 gas emissions. They have their own problems, however, which involve the economy of energy consumed for their production, harvesting, transportation, and conversion into fuels. It is therefore required that their whole life cycle be studied before their greenhouse gas reduction effect may be correctly assessed. The quantities of resources available for the production of automotive low-carbon fuels, manufacturing technologies, etc., are first of all put in order for easy perusal. An effective way is assessed for the whole including the life cycle. (NEDO)

  20. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Dinesh [Environmental Chemistry Division, Industrial Toxicology Research Centre, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India)]. E-mail: dm_1967@hotmail.com; Singh, Kunwar P. [Environmental Chemistry Division, Industrial Toxicology Research Centre, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India); Singh, Vinod K. [Environmental Chemistry Division, Industrial Toxicology Research Centre, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India)

    2006-07-31

    An efficient adsorption process is developed for the decontamination of trivalent chromium from tannery effluents. A low cost activated carbon (ATFAC) was prepared from coconut shell fibers (an agricultural waste), characterized and utilized for Cr(III) removal from water/wastewater. A commercially available activated carbon fabric cloth (ACF) was also studied for comparative evaluation. All the equilibrium and kinetic studies were conducted at different temperatures, particle size, pHs, and adsorbent doses in batch mode. The Langmuir and Freundlich isotherm models were applied. The Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacities of ATFAC and ACF at 25 deg. C are 12.2 and 39.56 mg/g, respectively. Cr(III) adsorption increased with an increase in temperature (10 deg. C: ATFAC-10.97 mg/g, ACF-36.05 mg/g; 40 deg. C: ATFAC-16.10 mg/g, ACF-40.29 mg/g). The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent, and solid to liquid ratio. The adsorption of Cr(III) follows the pseudo-second-order rate kinetics. From kinetic studies various rate and thermodynamic parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. The sorption capacity of activated carbon (ATFAC) and activated carbon fabric cloth is comparable to many other adsorbents/carbons/biosorbents utilized for the removal of trivalent chromium from water/wastewater.

  1. Strategic Roles of Manufacturing

    DEFF Research Database (Denmark)

    Yang, Cheng

    Addressing three development trends of manufacturing, this thesis aims to explore: (1) facing challenges on manufacturing (globalisation, knowledge-based manufacturing and servitisation of manufacturing), what kinds of roles does manufacturing play within industrial companies; (2) along...... with the trend of globalisation, how do industrial companies develop their global manufacturing networks? These two questions are actually interlinked. On the one hand, facing increasing offshoring and outsourcing of production activities, industrial companies have to understand how to develop their global...... manufacturing networks. On the other hand, ongoing globalisation also brings tremendous impacts to post-industrial economies (e.g. Denmark). A dilemma therefore arises, i.e. whether it is still necessary to keep manufacturing in these post-industrial economies; if yes, what kinds of roles manufacturing should...

  2. Breakthrough CO₂ adsorption in bio-based activated carbons.

    Science.gov (United States)

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration.

  3. Assessment of microbial respiratory activity of a manufactured gas plant soil after remediation using sunflower oil.

    Science.gov (United States)

    Gong, Zongqiang; Alef, Kassem; Wilke, Berndt-Michael; Mai, Maike; Li, Peijun

    2005-09-30

    Microbial activity of a manufactured gas plant (MGP) soil, as well as remaining oil degradability, before and after remediation using sunflower oil was assessed. A sandy soil contaminated with polycyclic aromatic hydrocarbons (PAHs) was collected from an MGP site in Berlin, Germany. Column solubilizations of PAHs from the field-moist soil and air-dried soil using sunflower oil as an extractant at an oil/soil ratio of 2:1 (v/m) were carried out to compare PAH removals from the soil under these two conditions. After column solubilizations, portions of untreated soil (UTS), solubilized field-moist soil (SFMS), and solubilized air-dried soil (SADS) were amended with nutrients. Both nutrient amended and unamended soil samples were subjected to soil respiratory measurement. Soil respiration parameters, such as basal respiration rate, nutrient-induced respiration rate, lag time, exponential growth rate, respiratory activation quotient, peak maximum time, and cumulative CO2 evolution were calculated from the soil respiration curves. The parameters were compared using analysis of variance (ANOVA) and least-significance difference (LSD). Results showed that the impact of soil moisture on the PAH removals was quite significant, with the SADS showing higher PAH removals and the SFMS showing lower ones. There were significant differences between the respiration parameters with respect to the UTS, SFMS, and SADS. Basal respiration rate, nutrient-induced respiration rate, and exponential growth rate were lower for the SFMS and SADS relative to the UTS. Lag time and peak maximum time were higher for the SFMS and SADS relative to the UTS. Exponential growth rate was higher for the SFMS relative to the SADS. These parameters demonstrated that soil microbial activity was reduced at the onset of the test, because a lot of bioavailable materials for microbial growth were removed by sunflower oil. On the other hand, cumulative CO2 evolutions in the SFMS and SADS were higher than that in

  4. High surface area activated carbon prepared from cassava peel by chemical activation.

    Science.gov (United States)

    Sudaryanto, Y; Hartono, S B; Irawaty, W; Hindarso, H; Ismadji, S

    2006-03-01

    Cassava is one of the most important commodities in Indonesia, an agricultural country. Cassava is one of the primary foods in our country and usually used for traditional food, cake, etc. Cassava peel is an agricultural waste from the food and starch processing industries. In this study, this solid waste was used as the precursor for activated carbon preparation. The preparation process consisted of potassium hydroxide impregnation at different impregnation ratio followed by carbonization at 450-750 degrees C for 1-3 h. The results revealed that activation time gives no significant effect on the pore structure of activated carbon produced, however, the pore characteristic of carbon changes significantly with impregnation ratio and carbonization temperature. The maximum surface area and pore volume were obtained at impregnation ratio 5:2 and carbonization temperature 750 degrees C.

  5. Polanyi Evaluation of Adsorptive Capacities of Commercial Activated Carbons

    Science.gov (United States)

    Monje, Oscar; Surma, Jan M.

    2017-01-01

    Commercial activated carbons from Calgon (207C and OVC) and Cabot Norit (RB2 and GCA 48) were evaluated for use in spacecraft trace contaminant control filters. The Polanyi potential plots of the activated carbons were compared using to those of Barnebey-Cheney Type BD, an untreated activated carbon with similar properties as the acid-treated Barnebey-Sutcliffe Type 3032 utilized in the TCCS. Their adsorptive capacities under dry conditions were measured in a closed loop system and the sorbents were ranked for their ability to remove common VOCs found in spacecraft cabin air. This comparison suggests that these sorbents can be ranked as GCA 48 207C, OVC RB2 for the compounds evaluated.

  6. Ferrous ion oxidation by Thiobacillus ferrooxidans immobilized on activated carbon

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ji-kui; QIN Wen-qing; NIU Yin-jian; LI Hua-xia

    2006-01-01

    The immobilization of Thiobacillus ferrooxidans on the activated carbon particles as support matrix was investigated. Cycling batch operation results in the complete oxidation of ferrous iron in 8 d when the modified 9 K medium is set to flow through the mini-bioreactor at a rate of 0.104 L/h at 25 ℃. The oxidation rate of ferrous iron with immobilized T. ferrooxidans is 9.38 g/(L·h). The results show that the immobilization of T. ferrooxidans on activated carbon can improve the rate of oxidation of ferrous iron. The SEM images show that a build-up of cells of T. ferrooxidans and iron precipitates is formed on the surface of activated carbon particles.

  7. Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests. 1. PAH release during water desorption and supercritical carbon dioxide extraction.

    Science.gov (United States)

    Hawthorne, Steven B; Poppendieck, Dustin G; Grabanski, Carol B; Loehr, Raymond C

    2002-11-15

    Soil and sediment samples from oil gas (OG) and coal gas (CG) manufactured gas plant (MGP) sites were selected to represent a range of PAH concentrations (150-40,000 mg/kg) and sample matrix compositions. Samples varied from vegetated soils to lampblack soot and had carbon contents from 3 to 87 wt %. SFE desorption (120 min) and water/XAD2 desorption (120 days) curves were determined and fit with a simple two-site model to determine the rapid-released fraction (F) for PAHs ranging from naphthalene to benzo[ghi]perylene. F values varied greatly among the samples, from ca. 10% to >90% for the two- and three-ring PAHs and from water desorption agreed well (linear correlation coefficient, r2 = 0.87, slope = 0.93), but SFE yielded higher F values for the OG samples. These behaviors were attributed to the stronger ability of carbon dioxide than water to desorb PAHs from the highly aromatic (hard) carbon of the OG matrixes, while carbon dioxide and water showed similar abilities to desorb PAHs from the more polar (soft) carbon of the CG samples. The combined SFE and water desorption approaches should improve the understanding of PAH sequestration and release from contaminated soils and sediments and provide the basis for subsequent studies using the same samples to compare PAH release with PAH availability to earthworms.

  8. Removal of benzocaine from water by filtration with activated carbon

    Science.gov (United States)

    Howe, G.E.; Bills, T.D.; Marking, L.L.

    1990-01-01

    Benzocaine is a promising candidate for registration with the U.S. Food and Drug Administration for use as an anesthetic in fish culture, management, and research. A method for the removal of benzocaine from hatchery effluents could speed registration of this drug by eliminating requirements for data on its residues, tolerances, detoxification, and environmental hazards. Carbon filtration effectively removes many organic compounds from water. This study tested the effectiveness of three types of activated carbon for removing benzocaine from water by column filtration under controlled laboratory conditions. An adsorptive capacity was calculated for each type of activated carbon. Filtrasorb 400 (12 x 40 mesh; U.S. standard sieve series) showed the greatest capacity for benzocaine adsorption (76.12 mg benzocaine/g carbon); Filtrasorb 300 (8 x 30 mesh) ranked next (31.93 mg/g); and Filtrasorb 816 (8 x 16 mesh) absorbed the least (1.0 mg/g). Increased adsorptive capacity was associated with smaller carbon particle size; however, smaller particle size also impeded column flow. Carbon filtration is a practical means for removing benzocaine from treated water.

  9. Urea adsorption by activated carbon prepared from palm kernel shell

    Science.gov (United States)

    Ooi, Chee-Heong; Sim, Yoke-Leng; Yeoh, Fei-Yee

    2017-07-01

    Dialysis treatment is crucial for patients suffer from renal failure. The dialysis system removes the uremic toxin to a safe level in a patient's body. One of the major limitations of the current hemodialysis system is the capability to efficiently remove uremic toxins from patient's body. Nanoporous materials can be applied to improve the treatment. Palm kernel shell (PKS) biomass generated from palm oil mills can be utilized to prepare high quality nanoporous activated carbon (AC) and applied for urea adsorption in the dialysis system. In this study, AC was prepared from PKS via different carbonization temperatures and followed by carbon dioxide gas activation processes. The physical and chemical properties of the samples were studied. The results show that the porous AC with BET surface areas ranging from 541 to 622 m2g-1 and with total pore volumes varying from 0.254 to 0.297 cm3g-1, are formed with different carbonization temperatures. The equilibrium constant for urea adsorption by AC samples carbonized at 400, 500 and 600 °C are 0.091, 0.287 and 0.334, respectively. The increase of carbonization temperatures from 400 to 600 °C resulted in the increase in urea adsorption by AC predominantly due to increase in surface area. The present study reveals the feasibility of preparing AC with good porosity from PKS and potentially applied in urea adsorption application.

  10. Synthesis of N-rich microporous carbon materials from chitosan by alkali activation using Na{sub 2}CO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ilnicka, Anna; Lukaszewicz, Jerzy P., E-mail: jerzy_lukaszewicz@o2.pl

    2015-11-15

    Highlights: • The novel manufacturing procedure of nitrogen-rich carbon materials. • The biopolymer chitosan can be activated by sodium carbonate. • The effect of the addition of activator and the temperature of carbonization was investigated. • The N-rich carbon materials exhibit high specific surface area and microporous structure. - Abstract: The paper presents the first systematic study on the synthesis of nitrogen-rich nanoporous activated carbons by chitosan carbonization in the presence of a hard template (activator), i.e. Na{sub 2}CO{sub 3}. Carbonization process was carried out in the range of 600–900 °C under a flow of nitrogen. The effect of the addition of different volumes of activator and the temperature of carbonization on the development of specific surface area and pore structure (pore volume and median pore diameter) of the activated carbons was investigated. Additionally, the nitrogen content and nitrogen-containing surface species were determined by means of XPS and combustion elemental analysis. The nitrogen content was placed in the range of 2.4–13.1 wt.%. On the grounds of the low-temperature adsorption of nitrogen, it was found that obtained adsorption isotherms were of type-I, based on the IUPAC classification, which is typical for microporous materials.

  11. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  12. Activated carbon use in treating diesel engine exhausts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G.; Babyak, R.A. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1996-10-01

    Several active carbon materials were observed to be particularly effective in processes for the removal of nitrogen oxides from exhaust gases. This paper describes the application of active carbon materials to two diesel engine exhaust gases at McClellan AFB in California. More specifically, one application involved a large diesel engine that supplies emergency power at the Base, and the second involved a mobile diesel-fueled generator that provides auxiliary power to aircraft. The designs of systems to control emissions for each application are discussed, and the results of tests on laboratory-scale, pilot-scale, and full-scale systems are presented.

  13. Adsorption of Remazol Black B dye on Activated Carbon Felt

    Directory of Open Access Journals (Sweden)

    Donnaperna Lucio

    2008-11-01

    Full Text Available The adsorption of Remazol Black B (anionic dye on a microporous activated carbon felt is investigated from its aqueous solution. The surface chemistry of activated carbon is studied using X-ray microanalysis, "Boehm" titrations and pH of PZC measurements which indicates that the surface oxygenated groups are mainly acidic in nature. The kinetics of Remazol Black B adsorption is observed to be pH dependent and governed by the diffusion of the dye molecules. The experimental data can be explained by "intra-particle diffusion model". For Remazol Black B, the Khan model is best suited to simulate the adsorption isotherms.

  14. ACTIVATED CARBONS FROM VEGETAL RAW MATERIALS TO SOLVE ENVIRONMENTAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    Viktor Mukhin

    2014-06-01

    Full Text Available Technologies for active carbons obtaining from vegetable byproducts such as straw, nut shells, fruit stones, sawdust, hydrolysis products of corn cobs and sunflower husks have been developed. The physico-chemical characteristics, structural parameters and sorption characteristics of obtained active carbons were determined. The ability of carbonaceous adsorbents for detoxification of soil against pesticides, purification of surface waters and for removal of organic pollutants from wastewaters has been evaluated. The obtained results reveal the effectiveness of their use in a number of environmental technologies.

  15. Manufacturing in Denmark

    DEFF Research Database (Denmark)

    Hansen, Johannes; Boer, Henrike Engele Elisabeth; Boer, Harry

    This report compares the manufacturing strategies, practices, performances and improvement activities of 39 companies that are representative for the Danish assembly industry with those of 804 companies from 19 other countries. The data supporting this report were collected in 2013 and concern......: • Manufacturing strategies pursued and implemented between 2010 and 2012. • Performance improvements achieved during that period. • Actual manufacturing practices and performances as well as competitive priorities in 2012. • Manufacturing strategies pursued for the years 2010-2012....

  16. Preparation and Characterization of Impregnated Commercial Rice Husks Activated Carbon with Piperazine for Carbon Dioxide (CO2) Capture

    Science.gov (United States)

    Masoum Raman, S. N.; Ismail, N. A.; Jamari, S. S.

    2017-06-01

    Development of effective materials for carbon dioxide (CO2) capture technology is a fundamental importance to reduce CO2 emissions. This work establishes the addition of amine functional group on the surface of activated carbon to further improve the adsorption capacity of CO2. Rice husks activated carbon were modified using wet impregnation method by introducing piperazine onto the activated carbon surfaces at different concentrations and mixture ratios. These modified activated carbons were characterized by using X-Ray Diffraction (XRD), Brunauer, Emmett and Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The results from XRD analysis show the presence of polyethylene butane at diffraction angles of 21.8° and 36.2° for modified activated carbon with increasing intensity corresponding to increase in piperazine concentration. BET results found the surface area and pore volume of non-impregnated activated carbon to be 126.69 m2/g and 0.081 cm3/g respectively, while the modified activated carbons with 4M of piperazine have lower surface area and pore volume which is 6.77 m2/g and 0.015 cm3/g respectively. At 10M concentration, the surface area and pore volume are the lowest which is 4.48 m2/g and 0.0065 cm3/g respectively. These results indicate the piperazine being filled inside the activated carbon pores thus, lowering the surface area and pore volume of the activated carbon. From the FTIR analysis, the presence of peaks at 3312 cm-1 and 1636 cm-1 proved the existence of reaction between carboxyl groups on the activated carbon surfaces with piperazine. The surface morphology of activated carbon can be clearly seen through FESEM analysis. The modified activated carbon contains fewer pores than non-modified activated carbon as the pores have been covered with piperazine.

  17. Adsorptive removal of sulfate from acid mine drainage by polypyrrole modified activated carbons: Effects of polypyrrole deposition protocols and activated carbon source.

    Science.gov (United States)

    Hong, Siqi; Cannon, Fred S; Hou, Pin; Byrne, Tim; Nieto-Delgado, Cesar

    2017-10-01

    Polypyrrole modified activated carbon was used to remove sulfate from acid mine drainage water. The polypyrrole modified activated carbon created positively charged functionality that offered elevated sorption capacity for sulfate. The effects of the activated carbon type, approach of polymerization, preparation temperature, solvent, and concentration of oxidant solution over the sulfate adsorption capacity were studied at an array of initial sulfate concentrations. A hardwood based activated carbon was the more favorable activated carbon template, and this offered better sulfate removal than when using bituminous based activated carbon or oak wood activated carbon as the template. The hardwood-based activated carbon modified with polypyrrole removed 44.7 mg/g sulfate, and this was five times higher than for the pristine hardwood-based activated carbon. Various protocols for depositing the polypyrrole onto the activated carbon were investigated. When ferric chloride was used as an oxidant, the deposition protocol that achieved the most N(+) atomic percent (3.35%) while also maintaining the least oxygen atomic percent (6.22%) offered the most favorable sulfate removal. For the rapid small scale column tests, when processing the AMD water, hardwood-based activated carbon modified with poly pyrrole exhibited 33 bed volume compared to the 5 bed volume of pristine activated carbons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Production Scale-Up or Activated Carbons for Ultracapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  19. Ammonia Activation of Carbonized Polysaccharides and their Application for the Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Han, Tae Youl; Park, Seo Kyoung; Lee, Je Seung [Kyung Hee University, Seoul (Korea, Republic of)

    2016-05-15

    Porous carbons derived from polysaccharides (cellulose, chitosan, and alginic acid) have been prepared by heat treatment under N{sub 2} atmosphere and activated at high temperature under ammonia gas atmosphere. The CO{sub 2} adsorption capacities of prepared porous carbon materials and their dependence on the surface area and pore volume were investigated. The surface area of pristine carbon from cellulose, chitosan, and alginic acid at 800 .deg. C was measured as 406.5, 206.8, and 258.2 m{sup 2}/g with the pore volume of 0.27, 0.14, and 0.15 cm{sup 3}/g, respectively. The surface area and pore volume of carbons derived from cellulose, chitosan, and alginic acid further increased up to 976.6, 883.4, and 1031.9 m{sup 2}/g and 0.54, 0.45, and 0.65 cm{sup 3}/g, respectively, after the activation at high temperature under ammonia gas environment. The CO{sub 2} adsorption capacities of pristine carbons were measured as high as 1.85 mmol/g and further increased up to 2.44 mmol/g by ammonia activation.

  20. Pore structure of the activated coconut shell charcoal carbon

    Science.gov (United States)

    Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S.

    2014-09-01

    The development of activated carbon from coconut shell charcoal has been investigated by using physical method to determine the influence of activation parameters in term of temperature, argon gas pressure and time period on the pore structure of the activated carbon. The coconut shell charcoal was produced by pyrolisis process at temperature of about 75 - 150 °C for 6 hours. The charcoal was activated at various temperature (532, 700 and 868 °C), argon gas pressure (6.59, 15 and 23.4 kgf/cm2) and time period of (10, 60 and 120 minutes). The results showed that the pores size were reduced and distributed uniformly as the activation parameters are increased.

  1. Preparation and Characterization of Activated Carbon from Palm Kernel Shell

    Science.gov (United States)

    Andas, J.; Rahman, M. L. A.; Yahya, M. S. M.

    2017-08-01

    In this study, a high quality of activated carbon (AC) was successfully synthesized from palm kernel shell (PKS) via single step KOH activation. Several optimal conditions such as impregnation ratio and activation temperature were investigated. The prepared activated carbon under the optimum condition of impregnation ratio (1:1.5 raw/KOH) and activation temperature (800 °C) was characterized using Na2S2O3 volumetric method, CHNS/O analysis and Scanning Electron Microscope (SEM). Na2S2O3 volumetric showed an iodine number of 994.83 mgg-1 with yield % of 8.931 %. CHNS/O analysis verified an increase in C content for KOH-AC (61.10 %) in comparison to the raw PKS (47.28 %). Well-formation of porous structure was evidenced through SEM for KOH-AC. From this study, it showed a successful conversion of agricultural waste into value added porous material under benign condition.

  2. Carbonized asphaltene-based carbon-carbon fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, George; Lula, James; Bowen, III, Daniel E.

    2016-12-27

    A method of making a carbon binder-reinforced carbon fiber composite is provided using carbonized asphaltenes as the carbon binder. Combinations of carbon fiber and asphaltenes are also provided, along with the resulting composites and articles of manufacture.

  3. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    Science.gov (United States)

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  4. Effects of organic carbon sequestration strategies on soil enzymatic activities

    Science.gov (United States)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  5. Carbon-carbon bond activation of cyclobutenones enabled by the addition of chiral organocatalyst to ketone.

    Science.gov (United States)

    Li, Bao-Sheng; Wang, Yuhuang; Jin, Zhichao; Zheng, Pengcheng; Ganguly, Rakesh; Chi, Yonggui Robin

    2015-02-05

    The activation of carbon-carbon (C-C) bonds is an effective strategy in building functional molecules. The C-C bond activation is typically accomplished via metal catalysis, with which high levels of enantioselectivity are difficult to achieve due to high reactivity of metal catalysts and the metal-bound intermediates. It remains largely unexplored to use organocatalysis for C-C bond activation. Here we describe an organocatalytic activation of C-C bonds through the addition of an NHC to a ketone moiety that initiates a C-C single bond cleavage as a key step to generate an NHC-bound intermediate for chemo- and stereo-selective reactions. This reaction constitutes an asymmetric functionalization of cyclobutenones using organocatalysts via a C-C bond activation process. Structurally diverse and multicyclic compounds could be obtained with high optical purities via an atom and redox economic process.

  6. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.

    Science.gov (United States)

    Zhang, Chengdong; Luo, Shuiming; Chen, Wei

    2013-09-15

    Nanomaterials have been studied widely as the supporting materials for enzyme immobilization. However, the interactions between enzymes and carbon nanotubes (CNT) with different morphologies and surface functionalities may vary, hence influencing activities of the immobilized enzyme. To date how the adsorption mechanisms affect the activities of immobilized enzyme is not well understood. In this study the adsorption of catalase (CAT) on pristine single-walled carbon nanotubes (SWNT), oxidized single-walled carbon nanotubes (O-SWNT), and multi-walled carbon nanotubes (MWNT) was investigated. The adsorbed enzyme activities decreased in the order of O-SWNT>SWNT>MWNT. Fourier transforms infrared spectroscopy (FTIR) and circular dichrois (CD) analyses reveal more significant loss of α-helix and β-sheet of MWNT-adsorbed than SWNT-adsorbed CAT. The difference in enzyme activities between MWNT-adsorbed and SWNT-adsorbed CAT indicates that the curvature of surface plays an important role in the activity of immobilized enzyme. Interestingly, an increase of β-sheet content was observed for CAT adsorbed to O-SWNT. This is likely because as opposed to SWNT and MWNT, O-SWNT binds CAT largely via hydrogen bonding and such interaction allows the CAT molecule to maintain the rigidity of enzyme structure and thus the biological function.

  7. Preparation of Paper Containing Activated Carbon.

    Science.gov (United States)

    1984-06-01

    development of charcoal paper. RESUME On a obtenu du papier contenant du charbon actif en dispersant du charbon r~duit en poudre et en versant des agents de...sa capaciti d’adsorption et de ritention du charbon . Ce papier pourrait servir d𔄀crans dans une salle de contr~le de contamination pour le balayage...contenant du charbon . "l-ii:: . ---:.-o * *** * *. .. t C Cd. .. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 S 2 INTRODUCTION . Activated

  8. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  9. Sulfurized activated carbon for high energy density supercapacitors

    Science.gov (United States)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  10. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Science.gov (United States)

    2010-07-01

    ... activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet three requirements: (a) Select a carbon injection system...

  11. Enhancing anaerobic digestion of poultry blood using activated carbon

    Directory of Open Access Journals (Sweden)

    Maria José Cuetos

    2017-05-01

    Full Text Available The potential of using anaerobic digestion for the treatment of poultry blood has been evaluated in batch assays at the laboratory scale and in a mesophilic semi-continuous reactor. The biodegradability test performed on residual poultry blood was carried out in spite of high inhibitory levels of acid intermediaries. The use of activated carbon as a way to prevent inhibitory conditions demonstrated the feasibility of attaining anaerobic digestion under extreme ammonium and acid conditions. Batch assays with higher carbon content presented higher methane production rates, although the difference in the final cumulative biogas production was not as sharp. The digestion of residual blood was also studied under semi-continuous operation using granular and powdered activated carbon. The average specific methane production was 216 ± 12 mL CH4/g VS. This result was obtained in spite of a strong volatile fatty acid (VFA accumulation, reaching values around 6 g/L, along with high ammonium concentrations (in the range of 6–8 g/L. The use of powdered activated carbon resulted in a better assimilation of C3-C5 acid forms, indicating that an enhancement in syntrophic metabolism may have taken place. Thermal analysis and scanning electron microscopy (SEM were applied as analytical tools for measuring the presence of organic material in the final digestate and evidencing modifications on the carbon surface. The addition of activated carbon for the digestion of residual blood highly improved the digestion process. The adsorption capacity of ammonium, the protection this carrier may offer by limiting mass transfer of toxic compounds, and its capacity to act as a conductive material may explain the successful digestion of residual blood as the sole substrate.

  12. Enhancing anaerobic digestion of poultry blood using activated carbon.

    Science.gov (United States)

    Cuetos, Maria José; Martinez, E Judith; Moreno, Rubén; Gonzalez, Rubén; Otero, Marta; Gomez, Xiomar

    2017-05-01

    The potential of using anaerobic digestion for the treatment of poultry blood has been evaluated in batch assays at the laboratory scale and in a mesophilic semi-continuous reactor. The biodegradability test performed on residual poultry blood was carried out in spite of high inhibitory levels of acid intermediaries. The use of activated carbon as a way to prevent inhibitory conditions demonstrated the feasibility of attaining anaerobic digestion under extreme ammonium and acid conditions. Batch assays with higher carbon content presented higher methane production rates, although the difference in the final cumulative biogas production was not as sharp. The digestion of residual blood was also studied under semi-continuous operation using granular and powdered activated carbon. The average specific methane production was 216 ± 12 mL CH4/g VS. This result was obtained in spite of a strong volatile fatty acid (VFA) accumulation, reaching values around 6 g/L, along with high ammonium concentrations (in the range of 6-8 g/L). The use of powdered activated carbon resulted in a better assimilation of C3-C5 acid forms, indicating that an enhancement in syntrophic metabolism may have taken place. Thermal analysis and scanning electron microscopy (SEM) were applied as analytical tools for measuring the presence of organic material in the final digestate and evidencing modifications on the carbon surface. The addition of activated carbon for the digestion of residual blood highly improved the digestion process. The adsorption capacity of ammonium, the protection this carrier may offer by limiting mass transfer of toxic compounds, and its capacity to act as a conductive material may explain the successful digestion of residual blood as the sole substrate.

  13. Effects of carbon fibres on the life cycle assessment of additively manufactured injection moulding inserts for rapid prototyping

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Bey, Niki; Mischkot, Michael

    2017-01-01

    properties and lifetime. The additively manufactured inserts are compared to the standard materials steel, aluminium and brass. The investigated part of the production and prototyping phase considers the insert itself, the moulded part, and resulting waste material of the injection moulding process....

  14. Authigenic carbonates from active methane seeps offshore southwest Africa

    Science.gov (United States)

    Pierre, Catherine; Blanc-Valleron, Marie-Madeleine; Demange, Jérôme; Boudouma, Omar; Foucher, Jean-Paul; Pape, Thomas; Himmler, Tobias; Fekete, Noemi; Spiess, Volkhard

    2012-12-01

    The southwest African continental margin is well known for occurrences of active methane-rich fluid seeps associated with seafloor pockmarks at water depths ranging broadly from the shelf to the deep basins, as well as with high gas flares in the water column, gas hydrate accumulations, diagenetic carbonate crusts and highly diverse benthic faunal communities. During the M76/3a expedition of R/V METEOR in 2008, gravity cores recovered abundant authigenic carbonate concretions from three known pockmark sites—Hydrate Hole, Worm Hole, the Regab pockmark—and two sites newly discovered during that cruise, the so-called Deep Hole and Baboon Cluster. The carbonate concretions were commonly associated with seep-benthic macrofauna and occurred within sediments bearing shallow gas hydrates. This study presents selected results from a comprehensive analysis of the mineralogy and isotope geochemistry of diagenetic carbonates sampled at these five pockmark sites. The oxygen isotope stratigraphy obtained from three cores of 2-5 m length indicates a maximum age of about 60,000-80,000 years for these sediments. The authigenic carbonates comprise mostly magnesian calcite and aragonite, associated occasionally with dolomite. Their very low carbon isotopic compositions (-61.0 Hole and Worm Hole pockmarks which were interpreted to reflect spatiotemporal variations in AOM related to subsurface gas hydrate formation-decomposition.

  15. Implementation of activity-based costing (ABC) to drive cost reduction efforts in a semiconductor manufacturing operation

    Science.gov (United States)

    Naguib, Hussein; Bol, Igor I.; Lora, J.; Chowdhry, R.

    1994-09-01

    This paper presents a case study on the implementation of ABC to calculate the cost per wafer and to drive cost reduction efforts for a new IC product line. The cost reduction activities were conducted through the efforts of 11 cross-functional teams which included members of the finance, purchasing, technology development, process engineering, equipment engineering, production control, and facility groups. The activities of these cross functional teams were coordinated by a cost council. It will be shown that these activities have resulted in a 57% reduction in the wafer manufacturing cost of the new product line. Factors contributed to successful implementation of an ABC management system are discussed.

  16. Use of Activated Carbon Derived from Maize Cob and Mahogany ...

    African Journals Online (AJOL)

    MBI

    2015-12-28

    Dec 28, 2015 ... Shell for the Removal of Colour from Textile Effluent. Gumel, S. M. ... In the present study natural adsorbents Maize Cob (MC) and Mahogany Shells (MS) were carbonized and activated ... remove even minute amount of dyes in wastewaters. (Yakubu et .... were prepared by putting 10, 20, 30, 40 and 50 ml.

  17. Tertiary activated carbon treatment of paper and board industry wastewater

    NARCIS (Netherlands)

    Temmink, B.G.; Grolle, K.C.F.

    2005-01-01

    The feasibility of activated carbon post-treatment of (biologically treated) wastewater from the paper and board industry was investigated, the goal being to remove refractory organic pollutants and produce water that can be re-used in the production process. Because closing water-circuits in the pa

  18. Modeling of hydrogen adsorption on activated carbon and SWNT nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Benard, P.; Chahine, R. [Quebec Univ., Hydrogen Research Institute, Trois Rivieres, PQ (Canada)

    1999-12-01

    The physical properties of hydrogen adsorption on activated carbon over a temperature range of 77 to 273 degrees K and pressure range 0 to 6 MPa are discussed. Results show that for the hydrogen/activated carbon system over a wide temperature and pressure range the Langmuir model is adequate, however, at low temperatures and high pressures a new approach is required, one that takes into account excess adsorption and adsorbate-adsorbate interactions. Under these conditions the Ono-Kondo approach is more appropriate. The adsorption properties of hydrogen on single-walled nanotubes (SWNT) were also studied using the Stan and Cole potential to account for the effect of the cylindrical geometry of the nanotubes on the adsorption properties. Comparison of the adsorption properties of activated carbon and SWNTs showed that the larger specific surfaces on activated carbon can lead to larger adsorption effects at higher pressures, even though the adsorption energy is smaller. SWNTs are effective only at low pressures. 5 refs., 3 figs.

  19. XPS of nitrogen-containing functional groups on activated carbon

    NARCIS (Netherlands)

    Jansen, R.J.J.; Bekkum, van H.

    1995-01-01

    XPS is used to study the binding energy of the Cls, Nls and Ols photoelectrons of surface groups on several nitrogen-containing activated carbons. Specific binding energies are assigned to amide (399.9 eV). lactam and imidc (399.7 eV). pyridine (398.7 eV), pyrrole (400.7 eV), alkylamine. secondary a

  20. Tertiary activated carbon treatment of paper and board industry wastewater

    NARCIS (Netherlands)

    Temmink, B.G.; Grolle, K.C.F.

    2005-01-01

    The feasibility of activated carbon post-treatment of (biologically treated) wastewater from the paper and board industry was investigated, the goal being to remove refractory organic pollutants and produce water that can be re-used in the production process. Because closing water-circuits in the pa

  1. Morphosynthesis of cubic silver cages on monolithic activated carbon.

    Science.gov (United States)

    Wang, Fei; Zhao, Hong; Lai, Yijian; Liu, Siyu; Zhao, Binyuan; Ning, Yuesheng; Hu, Xiaobin

    2013-11-14

    Cubic silver cages were prepared on monolithic activated carbon (MAC) pre-absorbed with Cl(-), SO4(2-), or PO4(3-) anions. Silver insoluble salts served as templates for the morphosynthesis of silver cages. The silver ions were reduced by reductive functional groups on MAC micropores through a galvanic cell reaction mechanism.

  2. Tertiary activated carbon treatment of paper and board industry wastewater

    NARCIS (Netherlands)

    Temmink, B.G.; Grolle, K.C.F.

    2005-01-01

    The feasibility of activated carbon post-treatment of (biologically treated) wastewater from the paper and board industry was investigated, the goal being to remove refractory organic pollutants and produce water that can be re-used in the production process. Because closing water-circuits in the

  3. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers.

    Science.gov (United States)

    Tsai, Jiun-Horng; Chiang, Hsiu-Mei; Huang, Guan-Yinag; Chiang, Hung-Lung

    2008-06-15

    The adsorption characteristics of chloroform, acetone, and acetonitrile on commercial activated carbon (C1), two types of activated carbon fibers (F1 and F2), and sludge adsorbent (S1) was investigated. The chloroform influent concentration ranged from 90 to 7800 ppm and the acetone concentration from 80 to 6900 ppm; the sequence of the adsorption capacity of chloroform and acetone on adsorbents was F2>F1 approximately C1 approximately S1. The adsorption capacity of acetonitrile ranged from 4 to 100 mg/g, corresponding to the influent range from 43 to 2700 ppm for C1, S1, and F1. The acetonitrile adsorption capacity of F2 was approximately 20% higher than that of the other adsorbents at temperaturescarbon fibers is higher than that of the other adsorbents due to their smaller fiber diameter and higher surface area. The micropore diffusion coefficient of VOC on activated carbon and sludge adsorbent was approximately 10(-4) cm2 s(-1). The diffusion coefficient of VOC on carbon fibers ranged from 10(-8) to 10(-7) cm2 s(-1). The small carbon fiber pore size corresponds to a smaller diffusion coefficient.

  4. Implementation of a Cellular Manufacturing Tool for Minimization of Non Value Added Activities

    Directory of Open Access Journals (Sweden)

    Amanparteek Singh

    2014-08-01

    Full Text Available The purpose of this study is to develop a plan for reducing lead-times and increasing profit of Centre bolt product by using value stream mapping. The Centre bolt product manufacturer is inefficient because it produces products in large batch quantities and has poor product flow as operations being departmentalized and departments are very far away from each other due to this increase in lead-times could cause a loss in the market share to its competitors. The Centre bolt product manufacturer must reduce its lead-times in order to remain competitive and continue its growth by providing quality products in a timely manner. A study will be carried out using value stream mapping to determine areas of potential improvement on the plant floor. A current state map will be developed and analyzed the areas that have potential for improvement. A future state map will then be created to suggest ways to reduce lead-times and increase profit. The map will include lean manufacturing methods to reduce wastes in the system; increasing profit and reducing lead-times. Current state and future state of manufacturing of a firm are compared and witnessed: 50 percent reduction in lead time, 4 percent reduction in processing time, 58.5 percent reduction in WIP and 22 percent reduction in manpower required to perform same amount of work.

  5. Molten carbonate fuel cell cathodes. Improvement of the electrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, M.J.; Daza, L. [Dpto. Energia, CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Rodrigo, T. [Instituto de Catalisis y Petroleoquimica, CSIC, Campus Cantoblanco, 28049 Madrid (Spain)

    2005-10-30

    The purpose of this work is to improve the electrocatalytic activity of Li-Ni mixed oxides by the addition of rare earth oxides (cerium or lanthanum). The influence of cerium and lanthanum on the electrocatalytic activity of these compounds was investigated by means of electrochemical impedance spectroscopy (EIS). The stability of these compounds was studied in a mixture of 62% lithium carbonate and 38% potassium carbonate at high temperature under an atmosphere rich in carbon dioxide to accelerate their dissolution. The morphology and the crystalline structure of the samples were not affected by the incorporation of cerium or lanthanum. The samples impregnated with CeO{sub 2} or La{sub 2}O{sub 3} showed lower resistance to charger-transfer processes than the sample without earth rare oxides. Both cerium and lanthanum improved the charger-transfer processes for oxygen reduction in an atmosphere rich in carbon dioxide. The reason may be due to cerium oxide acting as oxygen donor, and lanthanum oxide capturing CO{sub 2}, and the partial pressure of carbon dioxide on the surface of electrode.

  6. Research of Carbon Footprint Based on High Energy-efficient Manufacturing%碳足迹在高能效制造中的研究

    Institute of Scientific and Technical Information of China (English)

    唐笑达; 张为民; 孙群

    2012-01-01

    Based on high energy-efficient manufacturing, designated carbon footprint as one of the indicators of analysis of resources and environmental attributes, and introduced the definition, mathematic model and application case of carbon footprint. Finally, according to the research trends of high energy-efficient manufacturing, pointed out research prospect in order to promote the development of theory.%基于高能效制造过程的概念及理论研究,综合考虑资源消耗、经济效益的影响,选取碳足迹作为制造过程资源环境属性的分析研究对象,详细介绍了碳足迹定义以及碳足迹数学建模过程,并以实例对其进行分析验证.针对当前高能效制造的控制优化研究现状与趋势,提出了对制造过程中能效利用与环境属性系统建模、采集信息进行控制优化、建立相应数据库实现不同工况参数预测的研究展望,以期推动高能效制造控制模型的理论发展.

  7. Determining water content in activated carbon for double-layer capacitor electrodes

    Science.gov (United States)

    Egashira, Minato; Izumi, Takuma; Yoshimoto, Nobuko; Morita, Masayuki

    2016-09-01

    Karl-Fisher titration is used to estimate water contents in activated carbon and the distribution of impurity-level water in an activated carbon-solvent system. Normalization of the water content of activated carbon is attempted using vacuum drying after immersion in water was controlled. Although vacuum drying at 473 K and 24 h can remove large amounts of water, a substantial amount of water remains in the activated carbon. The water release to propylene carbonate is less than that to acetonitrile. The degradation of capacitor cell capacitance for activated carbon with some amount of water differs according to the electrolyte solvent type: acetonitrile promotes greater degradation than propylene carbonate does.

  8. PREPARATION AND CHARACTERIZATION OF POLYMER-BASED SPHERICAL ACTIVATED CARBONS

    Institute of Scientific and Technical Information of China (English)

    Zhao-lian Zhu; Ai-min Li; Ming-fang Xia; Jin-nan Wan; Quan-xing Zhang

    2008-01-01

    A series of spherical activated carbons(SACs)with different pore structures were prepared from chloromethylated polydivinylbenzene by ZnCl2 activation.The effects of activation temperature and retention time on the yield and textural properties of the resulting SACs were studied.All the SACs are generated with high yield of above 65% and exhibit relatively high mesopore fraction(me%) of 35.7%-43.6% compared with conventional activated carbons.The sample zlc28 prepared at 800℃ for 2 h has the largest BET surface area of 891m2g-1 and pore volume of 0.489 cm3g-1,SEM and XRD analyses of zlc28 verify the presence of developed porous structure composed of disordered micrographite stacking with large amounts of interspaces in the order of nanometers.

  9. Activation and micropore structure of carbon-fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-12-01

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The main focus of recent work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites to produce controlled pore structures. Processes have been developed using activation in steam and CO{sub 2}, and a less conventional method involving oxygen chemisorption and subsequent heat treatment. Another objective has been to explore applications for the activated composites in environmental applications related to fossil energy production.

  10. Highly active catalyst for vinyl acetate synthesis by modified activated carbon

    Institute of Scientific and Technical Information of China (English)

    Chun Yan Hou; Liang Rong Feng; Fa Li Qiu

    2009-01-01

    A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carriers by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 x 10-3e3.17m. Reaction mechanism was proposed.

  11. Low pressure storage of natural gas on activated carbon

    Science.gov (United States)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  12. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    Science.gov (United States)

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  13. Evaluation of the genetic activity of industrially produced carbon black.

    Science.gov (United States)

    Kirwin, C J; LeBlanc, J V; Thomas, W C; Haworth, S R; Kirby, P E; Thilagar, A; Bowman, J T; Brusick, D J

    1981-06-01

    Commercially produced oil furnace carbon black (Chemical Abstract Service Registry No. 1333-86-4) has been evaluated by five different assay for genetic activity. These were the Ames Salmonella typhimurium reverse mutation test, sister chromatid exchange test in CHO cells, mouse lymphoma test, cell transformation assay in C3H/10T1/2 cells, and assay for genetic effects in Drosophila melanogaster. Limited cellular toxicity was exhibited but no significant genetic activity was noted.

  14. Removal of amitriptyline from aqueous media using activated carbons

    OpenAIRE

    Valente Nabais, Joao; Ledesma, Beatriz; Laginhas, Carlos

    2012-01-01

    This paper reports the removal of amitriptyline, a widely used tricyclic anti-depressant, from aqueous solutions by six activated carbons produced from cork, coffee endocarp and eucalyptus pulp. The results of this study showed that samples from cork and eucalyptus pulp, activated at 800 °C, exhibited the highest adsorption capacity of 120 mg/g and 110 mg/g, respectively. Samples produced from coffee endocarp showed the lowest capacity. Amitriptyline adsorption was almost in...

  15. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅲ)-ADSORPTION ON MODIFIED ACTIVATED CARBON FIBER

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Structures of a series of activated carbon fibers were modified by impregnating them withorganic and inorganic materials such as Methylene blue(Mb)、 p-nitrophenol (PNP)、 NaCl or byoxidizing with KMnO4 or HNO3. The influence of pore filling or chemical treatment on their xenonadsorption properties was studied. The experimental results show that Mb and PNP filling ofactivated carbon fibers result in the decrease of xenon adsorption capacities of these treated ACFs,which is due to the decrease of their surface area and micro-pore volume. However, the adsorptioncapacity increases greatly with oxidizing treatment of activated carbon fibers by 7mol/L HNO3.

  16. Bioindication potential of carbonic anhydrase activity in anemones and corals.

    Science.gov (United States)

    Gilbert, A L; Guzmán, H M

    2001-09-01

    Activity levels of carbonic anhydrase (CA) were assessed in anemones Condylactis gigantea and Stichodactyla helianthus with laboratory exposures to copper, nickel, lead, and vanadium, and also in animals collected from polluted vs pristine field sites. CA activity was found to be decreased with increase in metal concentration and also in animals collected from the polluted field site. Preliminary assessments to adapt the CA assay for use in the widespread coral Montastraea cavernosa show decreased CA activity in specimens from the polluted field site and provide an avenue for future research aimed at more thoroughly describing coral CA activity for potential application in bioindication.

  17. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    Science.gov (United States)

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay.

  18. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Celzard, Alain [Institut Jean Lamour-UMR CNRS 7198, CNRS-Nancy-Universite-UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces. ENSTIB, 27 rue Philippe Seguin, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, Antonio, E-mail: Alain.Celzard@enstib.uhp-nancy.fr [ENSTIB-LERMAB, Nancy-Universite, 27 rue Philippe Seguin, BP1041, 88051 Epinal cedex 9 (France)

    2011-06-15

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 deg. C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 deg. C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l{sup -1}, and the acid-cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H{sub 3}PO{sub 4}, close to 2200 m{sup 2} g{sup -1} and 0.7 cm{sup 3} g{sup -1}, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l{sup -1} led to authentic bimodal activated carbons, having a surface area as high as 1780 m{sup 2} g{sup -1} and 0.6 cm{sup 3} g{sup -1} of microporous volume easily accessible through a widely developed macroporosity.

  19. DETOXIFICATION OF PESTICIDES POLLUTED SOIL BY ADSORBTION ON ACTIVATED CARBONS

    Directory of Open Access Journals (Sweden)

    V.M. Mukhin

    2009-06-01

    Full Text Available The paper emphasizes a very severe social-ecological problem, related to the contamination of soils by pesticides and fodder micotoxins. The authors suggest the utilization of a carbon adsorption based method of purification of soils contaminated with traces of pesticides. It is demonstrated that this method of soil rehabilitation leads to an 80% crop increase, allowing the production of environmentally clean plant products. The utilization of special activated carbons “Ptitsesorb” leads to a 30-40% decrease of necessary combined fodder in chickens breeding.

  20. Neutron activation study of gold-decorated singlewall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Rafael G.F.; Oliveira, Arno H. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Ladeira, Luiz O.; Lacerda, Rodrigo G.; Oliveira, Sergio de; Pinheiro, Mauricio V.B. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica; Ferreira, Andrea V. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2007-07-01

    Single-wall carbon nanotubes (SWNT) were synthesized by arc discharge technique of doped graphite electrodes and purified by burning the amorphous carbon and removing the metals with hydrochloric acid (HCl). The nanotubes were also functionalized with carboxyl groups (-COOH) by ultrasonification with nitric (HNO{sub 3}) and sulfuric (H{sub 2}SO{sub 4}) acids. The nanotubes were then decorated with gold by reducing chloroauric acid (HAuCl{sub 4}) with UV and hydrazine (N{sub 2}H{sub 4}). Atomic Force Microscope (AFM) images confirmed the decoration with the hydrazine route. The gold concentration in the samples was analyzed by neutron activation analysis. (author)

  1. An adsorption of carbon dioxide on activated carbon controlled by temperature swing adsorption

    Science.gov (United States)

    Tomas, Korinek; Karel, Frana

    2017-09-01

    This work deals with a method of capturing carbon dioxide (CO2) in indoor air. Temperature Swing Adsorption (TSA) on solid adsorbent was chosen for CO2 capture. Commercial activated carbon (AC) in form of extruded pellets was used as a solid adsorbent. There was constructed a simple device to testing effectiveness of CO2 capture in a fixed bed with AC. The TSA cycle was also simulated using the open-source software OpenFOAM. There was a good agreement between results obtained from numerical simulations and experimental data for adsorption process.

  2. Sorption of perfluorinated compounds from contaminated water to activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Mona C.; Boerresen, Marion H. [Norwegian Geotechnical Inst. (NGI), Oslo (Norway); Schlabach, Martin [Norwegian Inst. for Air Research, Kjeller (Norway); Cornelissen, Gerard [Norwegian Geotechnical Inst. (NGI), Oslo (Norway); Dept. of Applied Environmental Sciences (ITM), Stockholm Univ. (Sweden)

    2010-03-15

    Introduction: Perfluorinated compounds (PFC) are toxic and bioaccumulative compounds that are ubiquitous in the environment. It is important to develop effective techniques to remove PFC from water. This study is the first to investigate sorption of PFC to activated carbon (AC) at environmentally relevant nanogram per liter concentrations. Methods: Batch AC sorption isotherms were measured for water from a contaminated groundwater well, for three perfluorosulfonates and five perfluoroacetic acids. Results: For perfluorooctane sulfonate and perfluorooctanoic acid Freundlich sorption coefficients, log K{sub iF} for powdered activated carbon (PAC) were 4.0 and 3.8 (ng/g)(ng/L){sup -n}, respectively, and for granular activated carbon (GAC) were 2.7 and 2.3 (ng/g)(ng/L){sup -n}, respectively. Sorption was nonlinear, with Freundlich n coefficients generally around 0.5. The K{sub iF} on both GAC and PAC were PFC chain-length dependant, with increasing number of carbon yielding increasing K{sub iF}. This chain-length dependence appeared stronger for perfluorosulfonates than for perfluoroacetic acids. Tests with short (10 min) adsorption times still yielded substantial PFC removal (20-40% for GAC, 60-90% for PAC) and revealed that AC is probably suitable for PFC removal in flow-through systems. A perfluorinated polymer, Teflon, was also tested as a PFC removal agent but proved not to be effective for PFC-contaminated water purification. (orig.)

  3. Effect of activated carbon and electrolyte on properties of supercapacitor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effect of activated carbon and electrolyte on electrochemical properties of organic supercapacitor was investigated. The results show that specific surface area and mesoporosity of activated carbon influence specific capacitance. If specific surface area is larger and mesoporosity is higher, the specific capacitance will become bigger. Specific surface area influences resistance of carbon electrode and consequently influences power property and pore size distribution. If specific surface area is smaller and mesoporosity is higher, the power property will become better. Ash influences leakage current and electrochemical cycling stability. If ash content is lower, the performance will become better. The properties of supercapacitor highly depend on the electrolyte. The compatibility of electrolyte and activated carbon is a determining factor of supercapacitor's working voltage. LiPF6/(EC+EMC+DMC) is inappropriate for double layer capacitor. MeEt3NPF4/PC has higher specific capacitance than EtnNPFn/PC because methyl's electronegativity value is lower than ethyl and MeEt3N+ has more positive charges and stronger polarizability than Et4N+ when an ethyl is substituted by methyl.

  4. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.

    Science.gov (United States)

    Elmouwahidi, Abdelhakim; Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; Moreno-Castilla, Carlos

    2012-05-01

    Activated carbons were prepared by KOH-activation of argan seed shells (ASS). The activated carbon with the largest surface area and most developed porosity was superficially treated to introduce oxygen and nitrogen functionalities. Activated carbons with a surface area of around 2100 m(2)/g were obtained. Electrochemical measurements were carried out with a three-electrode cell using 1M H(2)SO(4) as electrolyte and Ag/AgCl as reference electrode. The O-rich activated carbon showed the lowest capacitance (259 F/g at 125 mA/g) and the lowest capacity retention (52% at 1A/g), due to surface carboxyl groups hindering electrolyte diffusion into the pores. Conversely, the N-rich activated carbon showed the highest capacitance (355 F/g at 125 mA/g) with the highest retention (93% at 1A/g), due to its well-developed micro-mesoporosity and the pseudocapacitance effects of N functionalities. This capacitance performance was among the highest reported for other activated carbons from a large variety of biomass precursors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A novel carbon fiber based porous carbon monolith

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.D.; Klett, J.W.; Weaver, C.E.

    1995-06-01

    A novel porous carbon material based on carbon fibers has been developed. The material, when activated, develops a significant micro- or mesopore volume dependent upon the carbon fiber type utilized (isotropic pitch or polyacrylonitrile). The materials will find applications in the field of fluid separations or as a catalyst support. Here, the manufacture and characterization of our porous carbon monoliths are described. A novel adsorbent carbon composite material has been developed comprising carbon fibers and a binder. The material, called carbon fiber composite molecular sieve (CFCMS), was developed through a joint research program between Oak Ridge National Laboratory (ORNL) and the University of Kentucky, Center for Applied Energy Research (UKCAER).

  6. Irreversible adsorption of phenolic compounds by activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  7. Nitric acid vapor removal by activated, impregnated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Wood, G.O.

    1996-12-31

    Laboratory and industrial workers can be exposed to vapors of nitric acid, especially in accidents, such as spills. Nitric acid can also be a product of incineration for energy production or waste (e.g., CW agent) disposal. Activated carbons containing impregnants for enhancing vapor and gas removal have been tested for effectiveness in removing vapors of nitric acid from air. The nitric acid vapor was generated from concentrated acid solutions and detected by trapping in a water bubbler for pH measurements. Both low and moderate relative humidity conditions were used. All carbons were effective at vapor contact times representative of air-purifying respirator use. One surprising observation was the desorption of low levels of ammonia from impregnated carbons. This was apparently due to residual ammonia from the impregnation processes.

  8. Synthesis of carbon molecular sieves by activation and coke deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, S.N.; Patwardhan, S.R.; Vijayalakshmi, S.; Gandadhar, B. (Indian Institute of Technology, Bombay (India). Dept. of Chemical Engineering)

    1993-04-01

    Carbon molecular sieves were synthesized from indigenous bituminous coal and coconut shell. After preliminary treatment, these materials were subjected to steam or carbon dioxide activation in the range 500-900[degree]C. In other experiments the raw materials were partly air-oxidized at [approximately] 200[degree]C, mixed with binder and extruded to cylindrical pellets, which were subjected to coke deposition by cracking of methane in the range 750-780[degree]C for 5-14 min. All the products were characterized by analysis of kinetic and equilibrium adsorption data. The molecular sieve performance was judged by the O[sub 2]/N[sub 2] uptake ratio. The best carbon molecular sieves, obtained by methane cracking at 780[degree]C at a flow of 100 ml min[sup -1] had an uptake ratio of 2.667. 11 refs., 7 figs., 5 tabs.

  9. Highly active, recyclable catalyst for the manufacture of viscous, low molecular weight, CO–ethene–propene-based polyketone, base component for a new class of resins

    NARCIS (Netherlands)

    Broekhuis, Antonius A.; Dirkzwager, Hendrik; Mul, Wilhelmus P.; Heeres, Hero J.; Linden, Adrianus J. van der; Orpen, A. Guy

    2002-01-01

    A highly active, recyclable homogeneous palladium(II) catalyst is described for the manufacture of viscous, low molecular weight CO–ethene–propene-based polyketone (Carilite Oligomer), used for the manufacture of a new class of resins (Carilite Resins). The catalyst is composed of palladium acetate,

  10. Performance of PbO2/activated carbon hybrid supercapacitor with carbon foam substrate

    Institute of Scientific and Technical Information of China (English)

    Wu Zhang; Yao Hui Qu; Li Jun Gao

    2012-01-01

    PbO2/activated carbon (AC) hybrid supercapacitor in H2SO4 with a carbon foam current collector is studied.The PbO2/AC hybrid is designed with electrodeposited PbO2 thin film as positive electrode to match with AC negative electrode.The discharge curve shows capacitive characteristics between 1.88 V and 0.65 V.The hybrid system exhibits excellent energy and powe performance,with specific energy of 43.6 Wh/kg at a power density of 654.2 W/kg.The use of carbon foam current collecto ensures stability of the PbO2 electrode in H2SO4 environment.After 2600 deep cycles at 15 C high rate of charge/discharge,the capacity remains nearly unchanged from its initial value.

  11. Ligninolytic Activity of Ganoderma strains on Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    TYPUK ARTININGSIH

    2006-10-01

    Full Text Available Lignin is a phenylpropanoid polymers with only few carbon bonds might be hydrolized. Due to its complexity, lignin is particularly difficult to decompose. Ganoderma is one of white rot fungi capable of lignin degradation. The ligninolytic of several species Ganoderma growing under different carbon sources was studied under controlled conditions which P. chrysosporium was used as standard comparison.Three types of ligninolytic, namely LiP, MnP, and laccase were assessed quantitatively and qualitatively. Ratio between clear zone and diameter of fungal colony was used for measuring specific activity qualitatively.Four sspecies of Ganoderma showed positive ligninolytic qualitatively that G. lucidum KT2-32 gave the highest ligninolytic. Activity of LiP and MnP in different carbon sources was consistently resulted by G. lucidum KT2-32, while the highest activity of laccase was shown by G. ochrolaccatum SA2-14. Medium of Indulin AT affected production of protein extracellular and induced ligninolytic. Glucose, BMC, and pine sawdust did not affect the activity of ligninolytic. The specific activity of Ganoderma species was found to be higher than the one of P. chrysosporium.

  12. A comparative study of carbon dioxide adsorption on multi-walled carbon nanotubes versus activated charcoal

    Science.gov (United States)

    Khalili, S.; Ghoreyshi, A. A.; Jahanshahi, M.; Davoodi, M.

    2012-09-01

    In this study, the quilibrium adsorption of CO2 on activated charcoal and multi-walled carbon nanotube (MWCNT) were experimentally investigated at temperature range of 298-318 K and pressures up to 40 bars. The maximum storage capacity for both materials was obtained at lowest temperature and highest pressure under study. The amount of CO2 adsorbed on MWCNT is 2 times higher than that of activated Charcoal whereas the specific surface area of activated carbon is aboute 2 times higher than MWNT. The experimental data of CO2 adsorption have been analyzed using different model isotherms such as the Freundlich and Langmuir. Heat of adsorption evaluated from a set of isotherms based on the Clausius-Clapeyron equation indicated physical nature of adsorption mechanism.

  13. Lean manufacturing measurement: the relationship between lean activities and lean metrics

    Directory of Open Access Journals (Sweden)

    Manotas Duque Diego Fernando

    2007-10-01

    Full Text Available Lean Manufacturing was developed by Toyota Motor company to address their specific needs in a restricted market in times of economic trouble. These concepts have been studied and proven to be transferrable and applicable to a wide variety of industries. This paper aims to integrate a set of metrics that have been proposed by different authors in such a way that they are consistent with the different stages and elements of Lean Manufacturing implementations. To achieve this, two frameworks for Lean implementations are presented and then the main factors for success are used as the basis to propose metrics that measure the advance in these factors. A tabular display of the impact of “Lean activities” on the metrics is presented, proposing that many a priori assumptions about the benefits on many different levels of improvement should be accurate. Finally, some ideas for future research and extension of the applications proposed on this paper are presented as closing points.

  14. Comparative Study of Alkali-Activated Fly Ash Manufactured Under Pulsed Microwave Curing and Thermal Oven Curing

    OpenAIRE

    Shi, Shi; Bai, Yun; Li, H.; Xu, D. L.; Basheer, P. A. Muhammed

    2014-01-01

    This paper compares the alkali-activated fly ash (AAFA) manufactured with thermal oven curing and pulsed microwave curing methods. Fly ash activated by 8M NaOH solution at a liquid to solid ratio of 0.3 was cured by thermal oven at 85°C and domestic microwave oven, respectively. Apart from compressive strength test, the temperature profiles of AAFA samples were captured by thermal camera. Reaction products of AAFA were characterised with XRD, FTIR and TG/DTG, while the microstructure of AAFA ...

  15. Lean Manufacturing measurement: The relationships between Lean activities and Lean metrics

    Directory of Open Access Journals (Sweden)

    Diego Fernando Manotas Duque

    2007-01-01

    Full Text Available Medición en Lean Manufacturing: Relaciones entre Actividades Lean y Métricas Lean Lean Manufacturing fue desarrollada por Toyota para satisfacer sus necesidades específicas en un mercado restringido y en tiempos de estrechez económica. Estos conceptos han sido estudiados y se ha comprobado su aplicabilidad en una amplia variedad de industrias. El objetivo de este artículo es el de integrar un conjunto de métricas que han sido propuestas por diferentes autores, de tal manera que sean consistentes con las etapas y elementos de implementaciones de Lean Manufacturing. Para lograrlo se presentan dos marcos de referencia para implementaciones Lean y los principales factores de éxito se utilizan como base para proponer métricas que identifiquen el avance en estos factores. Posteriormente se propone una tabla que cruza el impacto de las “Actividades Lean” sobre las métricas, postulando que muchos de los supuestos a priori sobre estos impactos deberían ser precisos. Finalmente se proponen algunas ideas para proyectos de investigación hacia el futuro y posibles extensiones de las aplicaciones propuestas aquí.

  16. The global decentralization of commercial aircraft production: Implications for United States-based manufacturing activity

    Science.gov (United States)

    Pritchard, David John

    This research explores the role of industrial offset agreements and international subcontracting patterns in the global decentralization of US commercial aircraft production. Particular attention is given to the manufacturing processes involved in the design and assembly of large passenger jets (100 seats or more). It is argued that the current geography of aircraft production at the global level has been shaped by a new international distribution of input costs and technological capability. Specifically, low-cost producers within several of the newly emerging markets (NEMs) have acquired front-end manufacturing expertise as a direct result of industrial offset contracts and/or other forms of technology transfer (e.g. international joint-ventures, imports of advanced machine tools). The economic and technological implications of industrial offset (compensatory trade) are examined with reference to the commercial future of US aircraft production. Evidence gathered via personal interviews with both US and foreign producers suggests that the current Western duopoly (Boeing and Airbus) faces a rather uncertain future. In particular, the dissertation shows that the growth of subcontracting and industrial offset portends the transformation of Boeing from an aircraft manufacturer to a systems integrator. The economic implications of this potential reconfiguration of the US aircraft industry are discussed in the context of several techno-market futures, some of which look rather bleak for US workers in this industry.

  17. Manufacturing and thermomechanical testing of actively cooled all beryllium high heat flux test pieces

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, N.N.; Sokolov, Yu.A.; Shatalov, G.E. [and others

    1995-09-01

    One of the problems affiliated to ITER high heat flux elements development is a problem of interface of beryllium protection with heat sink routinely made of copper alloys. To get rid of this problem all beryllium elements could be used as heat receivers in places of enhanced thermal loads. In accordance with this objectives four beryllium test pieces of two types have been manufactured in {open_quotes}Institute of Beryllium{close_quotes} for succeeding thermomechanical testing. Two of them were manufactured in accordance with JET team design; they are round {open_quotes}hypervapotron type{close_quotes} test pieces. Another two ones are rectangular test sections with a twisted tape installed inside of the circular channel. Preliminary stress-strain analysis have been performed for both type of the test pieces. Hypervapotrons have been shipped to JET where they were tested on JET test bed. Thermomechanical testing of pieces of the type of {open_quotes}swirl tape inside of tube{close_quotes} have been performed on Kurchatov Institute test bed. Chosen beryllium grade properties, some details of manufacturing, results of preliminary stress-strain analysis and thermomechanical testing of the test pieces {open_quotes}swirl tape inside of tube{close_quotes} type are given in this report.

  18. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.

    Science.gov (United States)

    Gryglewicz, Grażyna; Śliwak, Agata; Béguin, François

    2013-08-01

    A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium.

  19. Structural Characterization and Property Study on the Activated Alumina-activated Carbon Composite Material

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Qing; WU Ren-Ping; YE Xian-Feng

    2012-01-01

    AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and property of this material was discussed;The microstructures of the composite material were characterized by XRD,SEM,BET techniques;and its formaldehyde adsorption characteristic was also tested.The results showed that the optimal heat treatment temperature of the activated alumina-activated carbon composite material was 450 ℃,iodine adsorption value was 441.40 mg/g,compressive strength was 44 N,specific surface area was 360.07 m2/g,average pore size was 2.91 nm,and pore volume was 0.26 m3/g.According to the BET pore size distribution diagram,the composite material has dual-pore size distribution structure,the micro-pore distributes in the range of 0.6-1.7 nm,and the meso-pore in the range of 3.0-8.0 nm.The formaldehyde adsorption effect of the activated alumina-activated carbon composite material was excellent,much better than that of the pure activated carbon or activated alumina,and its saturated adsorption capacity was 284.19 mg/g.

  20. Active carbon filter health condition detection with piezoelectric wafer active sensors

    Science.gov (United States)

    Bao, Jingjing; Giurgiutiu, Victor; Rubel, Glenn O.; Peterson, Gregory W.; Ball, Thomas M.

    2011-04-01

    The impregnated active carbon used in air purification systems degrades over time due to exposure to contamination and mechanical effects (packing, settling, flow channeling, etc.). A novel approach is proposed to detect contamination in active carbon filters by combining the electromechanical impedance spectroscopy (EMIS) and electrochemical impedance spectroscopy (ECIS). ECIS is currently being used to evaluate active carbon filtration material; however, it cannot differentiate the impedance changes due to chemical contamination from those due to mechanical changes. EMIS can detect impedance changes due to mechanical changes. For the research work presented in this paper, Piezoelectric wafer active sensor (PWAS) was used for the EMIS method. Some remarkable new phenomena were unveiled in the detection of carbon filter status. 1. PWAS EMIS can detect the presence of contaminants, such as water and kerosene in the carbon bed 2. PWAS EMIS can monitor changes in mechanical pressure that may be associated with carbon bed packing, settling and flow channeling 3. EMIS and ECIS measurements are consistent with each other and complimentary A tentative simplified impedance model was created to simulate the PWAS-carbon bed system under increasing pressure. Similar impedance change pattern was observed when comparing the simulation results with experimental data.

  1. Surface functional groups and redox property of modified activated carbons

    Institute of Scientific and Technical Information of China (English)

    Zhang Xianglan; Deng Shengfu; Liu Qiong; Zhang Yan; Cheng Lei

    2011-01-01

    A series of activated carbons (ACs) were prepared using HNO3, H2O2 and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process. The effects of concentration of activation agent, activation time on the surface functional groups and redox property of ACs were characterized by Temperature Program Desorption (TPD) and Cyclic Voitammetry (CV). Results showed that lactone groups of ACs activated by HNO3 increase with activation time, and the carboxyl groups increase with the concentration of HNO3. Carbonyl/quinine groups of ACs activated by H2O2 increase with the activation time and the concentration of H2O2, although the acidic groups decrease with the concentration of H2O2. The redox property reflected by CV at 0 and 0.5 V is different with any kinds of oxygen functional groups characterized by TPD, but it is consistent with the SO2 catalytic oxidization/oxidation properties indicated by TPR.

  2. APPLICATION OF POWDERY ACTIVATED CARBONS FOR REMOVAL IBUPROFEN FROM WATER

    Directory of Open Access Journals (Sweden)

    Alicja Puszkarewicz

    2017-07-01

    Full Text Available The paper presents results of studies on the use of adsorptive properties of selected powdered activated carbons (Norit SA Super and Carbopol MB5 for removal of ibuprofen from water. The tests were performed on non-flow conditions, series depending on the type and dose of powdered adsorbents. The research was carried out on a model solution of ibuprofen at initial concentration C0 = 20 mg/dm3, at 200 C. Froundlich and Langmuir adsorption isotherms were used. Lagergrene kinetic models (PFO and Ho (PSO were used to describe adsorption kinetics. Both carbons exhibited a higher affinity for the adsorbent at a pH above 7. The better adsorbent was the Norit SA Super, for which, the highest adsorption capacity q = 0.448 g/g was achieved with dose D = 35 mg/dm3. The effectiveness of adsorption (decrease of ibuprofen in water was 78%. Total removal of ibuprofen was obtained for a dose of carbon D = 200 mg/dm3. With respect to Carbopol, the highest adsorption capacity (q = 0.353 g / g was achieved at a dose of 30 mg / dm3, resulting in a 53% efficiency. Studies have shown that both tested powdered activated carbons have contributed to effective cleaning of aqueous solutions containing ibuprofen.

  3. Synthesis and Antioxidant Activity of Hydroxytyrosol Alkyl-Carbonate Derivatives.

    Science.gov (United States)

    Fernandez-Pastor, Ignacio; Fernandez-Hernandez, Antonia; Rivas, Francisco; Martinez, Antonio; Garcia-Granados, Andres; Parra, Andres

    2016-07-22

    Three procedures have been investigated for the isolation of tyrosol (1) and hydroxytyrosol (2) from a phenolic extract obtained from the solid residue of olive milling. These three methods, which facilitated the recovery of these phenols, were chemical or enzymatic acetylation, benzylation, and carbomethoxylation, and subsequent carbonylation or acetonation reactions. Several new lipophilic alkyl-carbonate derivatives of hydroxytyrosol have been synthesized, coupling the primary hydroxy group of this phenol, through a carbonate linker, using alcohols with different chain lengths. The antioxidant properties of these lipophilic derivatives have been evaluated by different methods and compared with free hydroxytyrosol (2) and also with the well-known antioxidants BHT and α-tocopherol. Three methods were used for the determination of this antioxidant activity: FRAP and ABTS assays, to test the antioxidant power in hydrophilic media, and the Rancimat test, to evaluate the antioxidant capacity in a lipophilic matrix. These new alkyl-carbonate derivatives of hydroxytyrosol enhanced the antioxidant activity of this natural phenol, with their antioxidant properties also being higher than those of the commercial antioxidants BHT and α-tocopherol. There was no clear influence of the side-chain length on the antioxidant properties of the alkyl-carbonate derivatives of 2, although the best results were achieved mainly by the compounds with a longer chain on the primary hydroxy group of this natural phenolic substance.

  4. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2010-05-01

    Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R2) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model. © 2010 Elsevier Ltd.

  5. Iron oxide nanoparticles embedded in activated carbons prepared from hydrothermally treated waste biomass.

    Science.gov (United States)

    Hao, Wenming; Björkman, Eva; Yun, Yifeng; Lilliestråle, Malte; Hedin, Niklas

    2014-03-01

    Particles of iron oxide (Fe3O4 ; 20–40 nm) were embedded within activated carbons during the activation of hydrothermally carbonized (HTC) biomasses in a flow of CO2. Four different HTC biomass samples (horse manure, grass cuttings, beer production waste, and biosludge) were used as precursors for the activated carbons. Nanoparticles of iron oxide formed from iron catalyst included in the HTC biomasses. After systematic optimization, the activated carbons had specific surface areas of about 800 m2g1. The pore size distributions of the activated carbons depended strongly on the degree of carbonization of the precursors. Activated carbons prepared from highly carbonized precursors had mainly micropores, whereas those prepared from less carbonized precursors contained mainly mesopores. Given the strong magnetism of the activated carbon–nano-Fe3O4 composites, they could be particularly useful for water purification.

  6. Synthesis and characterization of carbon nanotube from coconut shells activated carbon

    Science.gov (United States)

    Melati, A.; Hidayati, E.

    2016-03-01

    Carbon nanotubes (CNTs) have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, photodynamic therapy, and gene therapy. They are considered as one of the most promising nanomaterial with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to the cells. CNTs have unique physical and chemical properties such as high aspect ratio, ultralight weight, high mechanical strength, high electrical conductivity, and high thermal conductivity. Coconut Shell was researched as active carbon source on 500 - 600°C. These activated carbon was synthesized becomes carbon nanotube and have been proposed as a promising tool for detecting the expression of indicative biological molecules at early stage of cancer. Clinically, biomarkers cancer can be detected by CNT Biosensor. We are using pyrolysis methods combined with CVD process or Wet Chemical Process on 600°C. Our team has successfully obtained high purity, and aligned MWCNT (Multi Wall Nanotube) bundles on synthesis CNT based on coconut shells raw materials. CNTs can be used to cross the mammalian cell membrane by endocytosis or other mechanisms. SEM characterization of these materials have 179 nm bundles on phase 83° and their materials compound known by using FTIR characterization.

  7. Ni supported on activated carbon as catalyst for flue gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of Ni supported on activated carbon are prepared by excessive impregnation and the desulfurization activity is investigated. It has been shown that the activated carbon-supported Ni is an efficient solid catalyst for flue gas desulfurization. The activated carbon treated by HNO3 exhibits high desulfurization activity, and different amounts of loaded-Ni on activated carbon significantly influence the desulfurization activity. The catalysts are studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results of XRD and XPS indicate that the activated carbon treated by HNO3 can increase oxygen-containing functional groups. Ni on activated carbon after calcination at 800 °C shows major Ni phase and minor NiO phase, and with increasing Ni content on activated carbon, Ni phase increases and affects the desulfurization activity of the catalyst, which proves that Ni is the main active phase.

  8. Additively Manufactured Propulsion System

    OpenAIRE

    Dushku, Matthew; Mueller, Paul

    2012-01-01

    New high-performance, carbon-fiber reinforced polymer material allows additive manufacturing to produce pressure vessels capable of high pressures (thousands of pounds per square inch). This advancement in turn allows integral hybrid propulsion which is revolutionary for both CubeSats and additively-manufactured spacecraft. Hybrid propulsion offers simplicity as compared to bipropellant liquid propulsion, significantly better safety compared to solid or monopropellant hydrazine propulsion, an...

  9. Activated carbon from leather shaving wastes and its application in removal of toxic materials.

    Science.gov (United States)

    Kantarli, Ismail Cem; Yanik, Jale

    2010-07-15

    In this study, utilization of a solid waste as raw material for activated carbon production was investigated. For this purpose, activated carbons were produced from chromium and vegetable tanned leather shaving wastes by physical and chemical activation methods. A detailed analysis of the surface properties of the activated carbons including acidity, total surface area, extent of microporosity and mesoporosity was presented. The activated carbon produced from vegetable tanned leather shaving waste produced has a higher surface area and micropore volume than the activated carbon produced from chromium tanned leather shaving waste. The potential application of activated carbons obtained from vegetable tanned shavings as adsorbent for removal of water pollutants have been checked for phenol, methylene blue, and Cr(VI). Adsorption capacities of activated carbons were found to be comparable to that of activated carbons derived from biomass.

  10. Development of manufacturing process for large-diameter composite monofilaments by pyrolysis of resin-impregnated carbon-fiber bundles

    Science.gov (United States)

    Bradshaw, W. G.; Pinoli, P. C.; Vidoz, A. E.

    1972-01-01

    Large diameter, carbon-carbon composite, monofilaments were produced from the pyrolysis of organic precursor resins reinforced with high-strenght carbon fibers. The mechanical properties were measured before and after pyrolysis and the results were correlated with the properties of the constituents. The composite resulting from the combination of Thornel 75 and GW-173 resin precursor produced the highest tensile strength. The importance of matching strain-to-failure of fibers and matrix to obtain all the potential reinforcement of fibers is discussed. Methods are described to reduce, within the carbonaceous matrix, pyrolysis flaws which tend to reduce the composite strength. Preliminary studies are described which demonstrated the feasibility of fiber-matrix copyrolysis to alleviate matrix cracking and provide an improved matrix-fiber interfacial bonding.

  11. Activated carbon from flash pyrolysis of eucalyptus residue.

    Science.gov (United States)

    Grima-Olmedo, C; Ramírez-Gómez, Á; Gómez-Limón, D; Clemente-Jul, C

    2016-09-01

    Forestry waste (eucalyptus sp) was converted into activated carbon by initial flash pyrolysis followed carbonization and CO2 activation. These residues were obtained from a pilot plant in Spain that produces biofuel, the biochar represented 10-15% in weight. It was observed that the highest activation was achieved at a temperature of 800 °C, the specific surface increased with time but, on the contrary, high loss of matter was observed. At 600 °C, although there was an important increase of the specific surface and the volume of micropores, at this temperature it was observed that the activation time was not an influential parameter. Finally, at 400 °C it was observed that the activation process was not very significant. Assessing the average pore diameter it was found that the lowest value corresponded to the activation temperature of 600 °C, which indicated the development of microporosity. When the activation temperature increases up to 800 °C the pore diameter increased developing mesoporosity.

  12. Activated carbon from flash pyrolysis of eucalyptus residue

    Directory of Open Access Journals (Sweden)

    Grima-Olmedo C

    2016-09-01

    Full Text Available Forestry waste (eucalyptus sp was converted into activated carbon by initial flash pyrolysis followed carbonization and CO2 activation. These residues were obtained from a pilot plant in Spain that produces biofuel, the biochar represented 10–15% in weight. It was observed that the highest activation was achieved at a temperature of 800 °C, the specific surface increased with time but, on the contrary, high loss of matter was observed. At 600 °C, although there was an important increase of the specific surface and the volume of micropores, at this temperature it was observed that the activation time was not an influential parameter. Finally, at 400 °C it was observed that the activation process was not very significant. Assessing the average pore diameter it was found that the lowest value corresponded to the activation temperature of 600 °C, which indicated the development of microporosity. When the activation temperature increases up to 800 °C the pore diameter increased developing mesoporosity.

  13. 75 FR 51754 - Certain Activated Carbon from the People's Republic of China: Notice of Partial Rescission of...

    Science.gov (United States)

    2010-08-23

    ... Activated Carbon from the People's Republic of China: Notice of Partial Rescission of Antidumping Duty... of initiation of an administrative review of the antidumping duty order on certain activated carbon... Activated Carbon Plant; Datong Forward Activated Carbon Co., Ltd.; Datong Guanghua Activated Carbon Co.,...

  14. Wetting and Non-Wetting Models of Black Carbon Activation

    Science.gov (United States)

    Henson, B. F.; Laura, S.

    2006-12-01

    We present the results of recent modeling studies on the activation of black carbon (BC) aerosol to form cloud condensation nuclei (CCN). We use a model of BC activation based on a general modification of the Koehler equation for insoluble activation in which we introduce a term based on the activity of water adsorbed on the particle surface. We parameterize the model using the free energy of adsorption, a parameter directly comparable to laboratory measurements of water adsorption on carbon. Although the model of the water- surface interaction is general, the form of the activation equation that results depends upon a further model of the distribution of water on the particle. One possible model involves the symmetric growth of a water shell around the isoluble particle core (wetting). This model predicts upper and lower bounding curves for the activation supersaturation given by the range of water interaction energies from hydrophobic to hydrophilic which are in agreement with a large body of recent activation data. The resulting activation diameters are from 3 to 10 times smaller than activation of soluble particles of identical dry diameter. Another possible model involves an exluded liquid droplet growing in contact with the particle (non-wetting). The geometry of this model much more resembles classic assumptions of heterogeneous nucleation theory. This model can yield extremely high activation supersaturation as a function of diameter, as has been observed in some experiments, and enables calculations in agreement with some of these results. We discuss these two geometrical models of water growth, the different behaviors predicted by the resulting activation equation, and the means to determine which model of growth is appropriate for a given BC particle characterized by either water interaction energy or morphology. These simple models enable an efficient and physically reasonable means to calculate the activation of BC aerosol to form CCN based upon a

  15. The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke

    Energy Technology Data Exchange (ETDEWEB)

    Wiessner, A.; Remmler, M.; Kuschk, P.; Stottmeister, U. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany). Dept. of Remediation Research

    1998-07-31

    This paper investigated activated carbon and activated coke adsorption for the treatment of highly contaminated discoloured industrial wastewater with a wide molecular size distribution of organic compounds. Lignite pyrolysis wastewater from a filled open-cast coal mine was used for continuous and discontinuous experiments. The investigations were performed using water samples taken from various depths of the deposits ponds. A comparison of the capacities of the adsorption materials used showed, that because of its large number of macro and mesopores, activated coke is more suitable for wastewater treatment and in addition cheaper than activated carbon.

  16. Activated carbon from vetiver roots: gas and liquid adsorption studies.

    Science.gov (United States)

    Gaspard, S; Altenor, S; Dawson, E A; Barnes, P A; Ouensanga, A

    2007-06-01

    Large quantities of lignocellulosic residues result from the industrial production of essential oil from vetiver grass (Vetiveria zizanioides) roots. These residues could be used for the production of activated carbon. The yield of char obtained after vetiver roots pyrolysis follows an equation recently developed [A. Ouensanga, L. Largitte, M.A. Arsene, The dependence of char yield on the amounts of components in precursors for pyrolysed tropical fruit stones and seeds, Micropor. Mesopor. Mater. 59 (2003) 85-91]. The N(2) adsorption isotherm follows either the Freundlich law K(F)P(alpha) which is the small alpha equation limit of a Weibull shaped isotherm or the classical BET isotherm. The surface area of the activated carbons are determined using the BET method. The K(F) value is proportional to the BET surface area. The alpha value increases slightly when the burn-off increases and also when there is a clear increase in the micropore distribution width.

  17. Inlfuence of Carbon Content on S Zorb Sorbent Activity

    Institute of Scientific and Technical Information of China (English)

    Xu Li

    2013-01-01

    The reaction activity of S Zorb sorbents with different sulfur contents was investigated, and the structure and composition of carbon-containing sorbents were characterized by XRD, FT-IR and TG-MS in order to delve into the kind and morphology of carbon on the sorbent. Test results have revealed that coke could be deposited on the S Zorb sorbent dur-ing the operating process, and the coke content was an important factor inlfuencing the reaction performance of the S Zorb sorbent. Retention of a deifnite amount of coke on the sorbent while securing the desulfurization activity of the S Zorb sor-bent would be conducive to the reduction of octane loss of reaction product.

  18. Activated carbon treatment of municipal solid waste incineration flue gas.

    Science.gov (United States)

    Lu, Shengyong; Ji, Ya; Buekens, Alfons; Ma, Zengyi; Jin, Yuqi; Li, Xiaodong; Yan, Jianhua

    2013-02-01

    Activated carbon injection is widely used to control dioxins and mercury emissions. Surprisingly little attention has been paid to its modelling. This paper proposes an expansion of the classical Everaerts-Baeyens model, introducing the expression of fraction of free adsorption sites, f (s), and asserting the significant contribution of fly ash to dioxins removal. Moreover, the model monitors dioxins partitioning between vapour and particulate phase, as well as removal efficiency for each congener separately. The effects of the principal parameters affecting adsorption are analysed according to a semi-analytical, semi-empirical model. These parameters include temperature, contact time during entrained-flow, characteristics (grain-size, pore structure, specific surface area) and dosage of activated carbon, lignite cokes or mineral adsorbent, fly ash characteristics and concentration, and type of incinerator plant.

  19. Water purification by sulfide-containing activated carbon.

    Science.gov (United States)

    Oeste, F D; Haas, R; Kaminski, L

    2000-03-01

    We investigated a new kind of activated carbon named gaiasafe-Formstoff as an agent for powerful heavy metal reduction. This activated carbon contains highly dispersed sulfide compounds. Our investigations with lead containing wastewaters showed an outstanding metal sulfide precipitation power of the new agent. The lead reduction rates are independent of wastewater parameters like lead concentration and complexing agent concentration. Contacted as powder or as a fixed bed with wastewater gaiasafe-Formstoff showed the best cleaning capacity in comparison to all other agents tested. Investigations with gaiasafe-Formstoff about its ability to reduce the contents of further heavy metals in wastewater are under way. The gaiasafe-Formstoff reaction products with wastewater represent an energy-rich and raw material-rich resource when fed to metallurgical processes.

  20. Nanostructured composite TiO{sub 2}/carbon catalysts of high activity for dehydration of n-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Cyganiuk, Aleksandra [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland); Klimkiewicz, Roman [Institute of Low Temperature and Structure Research PAN, 50-422 Wroclaw (Poland); Bumajdad, Ali [Faculty of Science, Kuwait University, PO Box 5969 Safat, Kuwait 13060 (Kuwait); Ilnicka, Anna [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland); Lukaszewicz, Jerzy P., E-mail: jerzy_lukaszewicz@o2.pl [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland)

    2015-08-15

    Highlights: • New biotechnological method for fabrication of composite catalysts. • In situ synthesis of nanosized TiO{sub 2} clusters in the carbon matrix. • High dispersion of TiO{sub 2} in carbon matrix. • High catalytic activity achieved for very low active phase content. • Efficient dehydration of n-butanol to butane-1. - Abstract: A novel method of wood impregnation with titanium ions is presented. Titanium(IV) ions were complexed to peroxo/hydroxo complexes which were obtained by treating a TiCl{sub 4} water solution with H{sub 2}O{sub 2}. The solution of chelated titanium ions was used for the impregnation of living stems of Salix viminalis wood. Saturated stems were carbonized at 600–800 °C, yielding a microporous carbon matrix, in which nanoparticles of TiO{sub 2} were uniformly distributed. A series of composite TiO{sub 2}–carbon catalysts was manufactured and tested in the process of n-butanol conversion to butane-1. The composite catalysts exhibited very high selectivity (ca. 80%) and yield (ca. 30%) despite a low content of titanium (ca. 0.5% atomic). The research proved that the proposed functionalization led to high dispersion of the catalytic phase (TiO{sub 2}), which played a crucial role in the catalyst performance. High dispersion of TiO{sub 2} was achieved due to a natural transport of complexed titanium ions in living plant stems.

  1. Absorption and adsorption of methane and carbon dioxide in hard coal and active carbon

    Energy Technology Data Exchange (ETDEWEB)

    Milewska-Duda, J.; Duda, J.; Nodzenski, A.; Lakatos, J. [Stanislaw Staszic University of Mining and Metallurgy, Krakow (Poland). Faculty of Fuels and Energy

    2000-07-01

    The paper shows what can be deduced on sorption mechanisms in hard coals and active carbon by using a theoretical model of sorption of small molecules in elastic submicroporous materials. This multiple sorption model (MSM) describes both adsorption and absorption phenomena. Basic assumptions and formulae of the MSM are presented. The computations were performed for isotherms of CO{sub 2} and CH{sub 4} at elevated pressures on three coal samples of different rank and on an active carbon. Nonideality of the sorbates is handled by an original state equation providing consistent information on fugacity and cohesion energy corresponding to a given molar volume of sorbate molecules in the sorption system. Surface structure of the studied coals and energetic parameters of the systems determined with MSM are compared to those obtained by using BET and Dubinin-Radushkievitch equations.

  2. Petroleum contaminated ground-water: Remediation using activated carbon.

    OpenAIRE

    2006-01-01

    Ground-water contamination resulting from the leakage of crude oil and refined petroleum products during extraction and processing operations is a serious and a growing environmental problem in Nigeria. Consequently, a study of the use of activated carbon (AC) in the clean up was undertaken with the aim of reducing the water contamination to a more acceptable level. In the experiments described, crude-oil contamination of ground water was simulated under laboratory conditions using ground-wat...

  3. Pesticide removal by combined ozonation and granular activated carbon filtration

    OpenAIRE

    Orlandini, E.

    1999-01-01

    Since the seventies, new water treatment processes have been introduced in the production of drinking water from surface water. Their major aim was to adequately cope with the disinfection of this water, and/or with the removal of pesticides and other organic micropollutants from it. This research focused on Biological Activated Carbon (BAC) filtration, which is a combination of ozonation and GAC filtration. Its general goal was identification and understanding of the mechanisms that underlie...

  4. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon.

    Science.gov (United States)

    Aktaş, Ozgür; Ceçen, Ferhan

    2007-03-22

    This study aims to clarify the effect of activated carbon type on the extent of adsorbability, desorbability, and bioregenerability in the treatment of 2-chlorophenol. Four different activated carbon types; thermally activated and chemically activated powdered carbons (PAC), and their granular countertypes (GAC) with similar physical characteristics were used. Thermally activated carbons adsorbed 2-chlorophenol much better than chemically activated ones. However, adsorption was more reversible in the case of chemically activated ones. The use of powdered and granular activated carbon countertypes resulted in comparable adsorption and desorption characteristics. For each activated carbon type, 2-chlorophenol exhibited higher adsorbability and lower desorbability than phenol. Biodegradation of 2-chlorophenol took place very slowly when it was used as the sole carbon source in acclimated and non-acclimated activated sludges. Bioregeneration occurred only via desorption due to an initial concentration gradient and no further desorption took place due to low biodegradability. Bioregeneration of activated carbon loaded with 2-chlorophenol was not a suitable option when 2-chlorophenol was the only carbon source. It is suggested to remove 2-chlorophenol via adsorption onto activated carbon rather than applying biological treatment. Also in such cases, the use of thermally activated carbons with higher adsorption and lower desorption capacities is recommended rather than chemically activated carbons.

  5. Additive Manufacturing (AM) Activities and Non-Destructive Evaluation (NDE) at GSFC

    Science.gov (United States)

    Jones, Justin S.

    2017-01-01

    NASA personnel will be meeting with a delegation from the Japan Aerospace Exploration Agency (JAXA) Office of Safety and Mission Assurance (OSMA) at Langley Research Center on 2217 through 3217. The purpose of the meeting is a technical interchange between NASA and JAXA to discuss Non-Destructive Evaluation (NDE) of Additive Manufacturing (AM) parts and the HALT process (relates to accelerated life testing). The visitors will be a small group of Japanese citizens. Goddard Space Flight Center (GSFC) has been asked to participate in the meeting, either in person or via teleconference. This presentation covers NDE efforts at GSFC and provides a cursory overview of AM and lab capabilities.

  6. Process understanding for scale-up and manufacture of active ingredients

    CERN Document Server

    Houson, Ian

    2011-01-01

    Process Understanding is the underpinning knowledge that allows the manufacture of chemical entities to be carried out routinely, robustly and to the required standard of quality. This area has gained in importance over the last few years, particularly due to the recent impetus from the USA`s Food and Drug Administration. This book covers the multidisciplinary aspects required for successful process design, safety, modeling, scale-up, PAT, pilot plant implementation, plant design as well the rapidly expanding area of outsourcing. In discussing what process understanding means to differ

  7. Special equipment in competitive activities of powerlifters and dynamics of its manufacture

    Directory of Open Access Journals (Sweden)

    Kotendzhy L. V.

    2012-02-01

    Full Text Available There was reviewed the problem of use of ergogenic facilities in powerlifting, which makes it possible to expand representation about patterns of this kind of sport development. There was given comparative characteristic of applying special equipment of alternative international powerlifting organizations. There was researched the influence of special equipment on the effectiveness of powerlifters. There was studied the chronology of manufacture dynamics of special powerlifting equipment in different periods. There was grounded the necessity of changes in priorities for further understanding of the special powerlifting equipment taking into account aesthetic, social and ethical norms and its impact on the human body.

  8. Influence of coal preoxidation on the porosity of the activated carbons with steam activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuwen; Gao, Jihui; Sun, Fei; Li, Yang; Wu, Shaohua; Qin, Yukun [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

    2013-07-01

    Activated carbons have been prepared from a low ash content anthracite preoxidized in air to different degrees. Steam has been used as activating agent to prepare different burn-off samples. The preoxidation effect on the physico-chemical characteristics of the resulting chars and activated carbons were comparatively studied. The surface area and porosity of sample was studied by N{sub 2} adsorption at 77 0A0;K. The results show that introduced oxygen in coal structure had a great influence on the carbonization and subsequent activation process. The carbonization of oxidized coal exhibited a broader volatile evolution with respect to temperature, and the resulting chars had a larger microporosity. The porosity of the char is a primary foundation to develop more microporosity upon activation. Activation of char from oxidized coal facilitated development of small scale micropore, however, the micropore widening was also observed at high burn-offs. Compared with development of supermicropore, the evolution of mesoporosity is hindered strongly by preoxidation treatment. The quantity of basic surface sites in activated carbons increased with an increase in oxidation degree, while the quantity of acidic sites appeared equivalent. It seemed that the amount of surface groups and the microporosity mainly developed in a parallel way.

  9. Role of activated carbon on micropollutans degradation by different radiation processes

    Directory of Open Access Journals (Sweden)

    Inmaculada Velo Gala

    2015-04-01

    Full Text Available The objective of this study was to analyse the influence of the presence of activated carbon on radiation processes. The triiodinated contrast medium diatrizoate was chosen as the contaminant model. We selected four commercial activated carbons and sixteen gamma radiation-modified carbons derived from these. The different advanced oxidation/reduction processes that have been studied were improved through the addition of activated carbon in the UV light and gamma radiating processes. In the UV/activated carbon process, the synergic activity of the activated carbon is enhanced in the samples with higher percentages of surface oxygen, ester/anhydride groups and carbon atoms with sp2 hybridization. Band gap determination of activated carbons revealed that they behave as semiconductor materials and, therefore, as photoactive materials in the presence of UV radiation, given that all band gap values are <4 eV. We also observed that the gamma radiation treatment reduces the band gap values of the activated carbons and that, in a single series of commercial carbons, lower band gap values correspond to higher contaminant removal rate values. We observed that the activity of the reutilized activated carbons is similar to that of the original carbons. Based on these results, we proposed that the activated carbon acts as a photocatalyst, promoting electrons of the valence band to the conduction band and increasing the generation of HO• radicals in the medium. Similarly, there was a synergic effect made by the presence of activated carbon in gamma radiation system, which favours pollutant removal. This synergic effect is independent of the textural but not the chemical characteristics of the activated carbon, observing a higher synergic activity for carbons with a higher surface content of oxygen, specifically quinone groups. We highlight that the synergic effect of the activated carbon requires adsorbent–adsorbate electrostatic interaction and is absent

  10. Adsorption of dyes onto activated carbon prepared from olive stones

    Institute of Scientific and Technical Information of China (English)

    Souad NAJAR-SOUISSI; Abdelmottaleb OUEDERNI; Abdelhamid RATEL

    2005-01-01

    Activated carbon was produced from olive stones(OSAC) by a physical process in two steps. The adsorption character of this activated carbon was tested on three colour dyes molecules in aqueous solution: Methylene blue(MB), Rhodamine B(RB) and Congo Red(CR). The adsorption equilibrium was studied through isotherms construction at 30℃, which were well described by Langmuir model.The adsorption capacity on the OSAC was estimated to be 303 mg/g, 217 mg/g and 167 mg/g respectively for MB, RB and CR. This activated carbon has a similar adsorption properties to that of commercial ones and show the same adsorption performances. The adsorption kinetics of the MB molecule in aqueous solution at different initial concentrations by OSAC was also studied. Kinetic experiments were well fitted by a simple intra-particle diffusion model. The measured kinetics constant was influenced by the initial concentration and we found the following correlation: Kid = 1.55 C00.51 .

  11. Immobilization biological activated carbon used in advanced drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Bacteria separated from a mature filter bed of groundwater treatment plants were incubated in a culture media containing iron and manganese. A consortium of 5 strains of bacteria removing iron and manganese were obtained by repeated enrichment culturing. It was shown from the experiments of effect factors that ironmanganese removal bacteria in the culture media containing both Fe and Mn grew better than in that containing only Fe, however, they were unable to grow in the culture media containing only Mn. When comparing the bacteria biomass in the case ofρ (DO) =2.8 mg/L andρ (DO) =9.0 mg/L, no significant difference was found.The engineering bacteria removing the organic and the bacteria removing iron and manganese were simultaneously inoculated into activated carbon reactor to treat the effluent of distribution network. The experimental results showed that by using IBAC ( Immobilization Biological Activated Carbon) treatment, the removal efficiency of iron, manganese and permanganate index was more than 98% , 96% and 55% , respectively. After the influent with turbidity of 1.5 NTU, color of 25 degree and offensive odor was treated, the turbidity and color of effluence were less than 0.5 NTU and 15 degree, respectively, and it was odorless. It is determined that the cooperation function of engineering bacteria and activated carbon achieved advanced drinking water treatment.

  12. Adsorption onto fluidized powdered activated carbon flocs-pACF.

    Science.gov (United States)

    Serpa, Ana Lídia; Schneider, Ivo André H; Rubio, Jorge

    2005-02-01

    This work presents a new adsorption technique where the adsorbent (powdered activated carbon-PAC) is in the form of suspended flocs formed with water-soluble polymer flocculants. Thus, the adsorption of a typical dye, methylene blue (MB), was studied onto polyacrylamide flocs of PAC (PACF) in a fluidized bed reactor. The technique is based on the fact that the adsorption capacity of PAC does not decrease after flocculation because the adsorbed polymer occupies only a few surface sites, in the form of trains, loops, and tails. Moreover, the adsorption was found to proceed through a rapid mass transfer of MB to the adsorbing PAC flocs, in the same extent as onto PAC. Because of the rapid settling characteristics of the aggregates formed, the two phase separations, loaded PAC and solution, become easier. Thus, the technique offers the advantages of conducting simultaneously both adsorption and solid/liquid separation all in one single stage. Results obtained showed that high MB removal values can be attained in a fluidized bed reactor (>90%) and that PACF presents a much higher adsorption capacity (breakthrough points) than granulated activated carbon (GAC) in the same adsorbing bed. It is believed that this technique highly broadens the potential of the use of powdered activated carbon or other similar ultrafine adsorbents.

  13. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    Science.gov (United States)

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.

  14. Lignin-Derived Advanced Carbon Materials.

    Science.gov (United States)

    Chatterjee, Sabornie; Saito, Tomonori

    2015-12-07

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure-property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Molecular isotopic engineering (MIE): industrial manufacture of naproxen of predetermined stable carbon-isotopic compositions for authenticity and security protection and intellectual property considerations

    Science.gov (United States)

    Jasper, J. P.; Farina, P.; Pearson, A.; Mezes, P. S.; Sabatelli, A. D.

    2016-05-01

    Molecular Isotopic Engineering (MIE) is the directed stable-isotopic synthesis of chemical products for reasons of product identification and of product security, and also for intellectual property considerations. We report here a generally excellent correspondence between the observed and predicted stable carbon-isotopic (δ13C) results for a successful directed synthesis of racemic mixture from its immediate precursors. The observed results are readily explained by the laws of mass balance and isotope mass balance. Oxygen- and hydrogen isotopic results which require an additional assessment of the effects of O and H exchange, presumably due to interaction with water in the reaction solution, are addressed elsewhere. A previous, cooperative study with the US FDA-DPA showed that individual manufacturers of naproxen could readily be differentiated by their stable-isotopic provenance (δ13C, δ18O, and δD ref. 1). We suggest that MIE can be readily employed in the bio/pharmaceutical industry without alteration of present manufacturing processes other than isotopically selecting and/or monitoring reactants and products.

  16. Synthesis of silica nanoparticles for the manufacture of porous carbon membrane and particle size analysis by sedimentation field-flow fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Ho; Eum, Chul; Hun; Choi, Seong Ho; Kim, Woon Jung [Dept. of Chemistry, Hannam University, Daejeon (Korea, Republic of)

    2016-11-15

    Silica nanoparticles were synthesized by emulsion polymerization by mixing ethanol, ammonium hydroxide, water, and tetraethyl orthosilicate. An apparatus was designed and assembled for a large-scale synthesis of silica nanospheres, which was aimed for uniform mixing of the reactants. Then sedimentation field-flow fractionation (SdFFF) was used to determine the size distribution of the silica nanoparticles. SdFFF provided mass-based separation where the retention time increased with the particle size, thus the size distribution of silica nanoparticles obtained from SdFFF appeared more accurate than that from dynamic light scattering, particularly for those having broad and multimodal size distributions. A disk-shaped porous carbon membrane (PCM) was manufactured for application as an adsorbent by pressurizing the silica particles, followed by calcination. Results showed that PCM manufactured in this study has relatively high surface area and temperature stability. The PCM surface was modified by attaching a carboxyl group (PCM-COOH) and then by incorporating silver (PCM-COOH-Ag). The amount of COOH group on PCM was measured electrochemically by cyclic voltammetry, and the surface area, pore size, pore volume of PCM-COOH-Ag by Brunauer–Emmet–Teller measurement. The surface area was 40.65 and reduced to 13.02 after loading a COOH group then increased up to 30.37 after incorporating Ag.

  17. Scalability of carbon-nanotube-based thin film transistors for flexible electronic devices manufactured using an all roll-to-roll gravure printing system

    Science.gov (United States)

    Koo, Hyunmo; Lee, Wookyu; Choi, Younchang; Sun, Junfeng; Bak, Jina; Noh, Jinsoo; Subramanian, Vivek; Azuma, Yasuo; Majima, Yutaka; Cho, Gyoujin

    2015-09-01

    To demonstrate that roll-to-roll (R2R) gravure printing is a suitable advanced manufacturing method for flexible thin film transistor (TFT)-based electronic circuits, three different nanomaterial-based inks (silver nanoparticles, BaTiO3 nanoparticles and single-walled carbon nanotubes (SWNTs)) were selected and optimized to enable the realization of fully printed SWNT-based TFTs (SWNT-TFTs) on 150-m-long rolls of 0.25-m-wide poly(ethylene terephthalate) (PET). SWNT-TFTs with 5 different channel lengths, namely, 30, 80, 130, 180, and 230 μm, were fabricated using a printing speed of 8 m/min. These SWNT-TFTs were characterized, and the obtained electrical parameters were related to major mechanical factors such as web tension, registration accuracy, impression roll pressure and printing speed to determine whether these mechanical factors were the sources of the observed device-to-device variations. By utilizing the electrical parameters from the SWNT-TFTs, a Monte Carlo simulation for a 1-bit adder circuit, as a reference, was conducted to demonstrate that functional circuits with reasonable complexity can indeed be manufactured using R2R gravure printing. The simulation results suggest that circuits with complexity, similar to the full adder circuit, can be printed with a 76% circuit yield if threshold voltage (Vth) variations of less than 30% can be maintained.

  18. COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; John W. Zondlo

    2001-07-01

    The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

  19. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells.

    Science.gov (United States)

    Yang, Wulin; Kim, Kyoung-Yeol; Logan, Bruce E

    2015-12-01

    The fabrication of activated carbon air cathodes for larger-scale microbial fuel cells requires a diffusion layer (DL) that is highly resistant to water leakage, oxygen permeable, and made using inexpensive materials. A hydrophobic polyvinylidene fluoride (PVDF) membrane synthesized using a simple phase inversion process was examined as a low cost ($0.9/m(2)), carbon-free DL that prevented water leakage at high pressure heads compared to a polytetrafluoroethylene/carbon black DL ($11/m(2)). The power density produced with a PVDF (20%, w/v) DL membrane of 1400±7mW/m(2) was similar to that obtained using a wipe DL [cloth coated with poly(dimethylsiloxane)]. Water head tolerance reached 1.9m (∼19kPa) with no mesh supporter, and 2.1m (∼21kPa, maximum testing pressure) with a mesh supporter, compared to 0.2±0.05m for the wipe DL. The elimination of carbon black from the DL greatly simplified the fabrication procedure and further reduced overall cathode costs.

  20. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.

    Science.gov (United States)

    Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline

    2015-01-23

    In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption.

  1. Preparation of creating active carbon from cigarette filter waste using microwave-induced KOH activation

    Science.gov (United States)

    Hamzah, Yanuar; Umar, Lazuardi

    2017-05-01

    For the first time, cigarette filter waste, which is an environmental hazardous material, is used as basic material prepared for creating activated carbon (AC) via KOH chemical activation using a microwave input power of 630 W and irradiation time of 20 minutes. Active carbon was characterized by TGA, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray, nitrogen adsorption-desorption, and absorption of methylene blue (MB). The results of x-ray diffraction showed that active carbon has a semi-crystalline structure with peaks of 2θ of 22.87° and 43.70°. Active carbon microstructure analysis showed that the layer height (Lc ) is inversely proportional to the width of the layer (La ), and the distance between the two layers is d002 and d100 , which depends significantly on the ratio of AC: KOH. It was found that the optimum BET surface area and adsorption capacity for MB were 328.13 m2 / g and 88.76 m2 / g, respectively. The results revealed the potential to prepare activated carbon from cigarette filter waste using microwave irradiation.

  2. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanzong; ZHENG Jingtang; QU Xianfeng; YU Weizhao; CHEN nonggang

    2008-01-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and acti-vated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H2O2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  3. Adsorption of triton X100 and potassium hydrogen phthalate on granular activated carbon from date pits

    Energy Technology Data Exchange (ETDEWEB)

    Merzougui, Z.; Nedjah, S.; Azoudj, Y.; Addoun, F. [Laboratoire d' etude physic-chimique des materiaux et application a l' environnement, Faculte de Chimie, USTHB (Algeria)], E-mail: zmerzougi@yahoo.fr

    2011-07-01

    Activated carbons, thanks to their versatility, are being used in the water treatment sector to absorb pollutants. Several factors influence the adsorption capacity of activated carbon and the aim of this study was to assess the effects of the porous texture and chemical nature of activated carbons on the adsorption of triton X100 and potassium hydrogen phthalate. Activated carbons used in this study were prepared from date pits with ZnCl2, KOH and H3PO4 by carbonization without adjuvant and adsorption of triton X100 and potassium hydrogen phthalate was conducted at 298K. Results showed that activated carbons prepared from date pits have a great potential for removing organic and inorganic pollutants from water and that the adsorption potential depends on the degree of activation of the activated carbons and on the compounds to absorb. This study highlighted that an increase of the carbon surface area and porosity results in a better adsorption capacity.

  4. 76 FR 67142 - Certain Activated Carbon From the People's Republic of China: Final Results and Partial...

    Science.gov (United States)

    2011-10-31

    ... chemicals. Also excluded from the scope is activated carbon cloth. Activated carbon cloth is a woven textile... various types where a woven format is required. Any activated carbon meeting the physical description of...'') Yearbook of Labor Statistics. Additionally, because the Department is now using Chapter 6A to...

  5. System and method for coproduction of activated carbon and steam/electricity

    Science.gov (United States)

    Srinivasachar, Srivats [Sturbridge, MA; Benson, Steven [Grand Forks, ND; Crocker, Charlene [Newfolden, MN; Mackenzie, Jill [Carmel, IN

    2011-07-19

    A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

  6. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Science.gov (United States)

    2010-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  7. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Science.gov (United States)

    2010-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  8. 78 FR 26748 - Certain Activated Carbon From the People's Republic of China: Preliminary Results of Antidumping...

    Science.gov (United States)

    2013-05-08

    ... International Trade Administration Certain Activated Carbon From the People's Republic of China: Preliminary... duty order on certain activated carbon from the People's Republic of China (``PRC'') for the period of... The merchandise subject to the order is certain activated carbon.\\1\\ The products are...

  9. Microstructure and mechanical properties of railway wheels manufactured with low-medium carbon Si-Mn-Mo-V steel

    Institute of Scientific and Technical Information of China (English)

    Mingru Zhang; Haicheng Gu

    2008-01-01

    The suitability of carbide-free bainite steel as railway wheel materials was investigated. The low-medium carbon Si-Mn-Mo-V steel was designed to make railway wheels by forging and rolling. The slack quenching with water was conducted on the tread of rim section by programmed control to simulate isothermal heat treatment after being austenitized. Microstructures and mechanical properties have been studied. The results indicate that the microstructure of the rim is mainly carbide-free bainite, and the mixed mi- crostructure of bainitic ferrite and granular bainite is observed in web and hub. The mechanical properties are superior to both the standard requirements and the commercial production, such as CL60 plain carbon. The Charpy impact energy is relatively high at room and/or subzero temperatures. The force-displacement curves and fractographies reveal the excellent ability of resistance to crack initiation and propagation.

  10. Preparation of TiO2-activated carbon complex membranes and their photoelectrocatalytic activity

    Institute of Scientific and Technical Information of China (English)

    尤宏; 姚杰; 孙丽欣; 王强

    2003-01-01

    The experimental process of preparing TiO2-activated carbon complex membranes with activated carbon powder as main carrier, PTFE as binder and wire netting as matrix is described in detail, and both photo-catalysis and photo-electro-catalysis are measured to study the properties of complex membranes. Experimental results show that the photo-catalytic activity of the membranes is high and stable in the process of treating Rhodamine-B; the application of an electric field accelerates the speed of photo-catalysis, and the efficiency of photo-catalysis is increased 2.5 times when the applied voltage is 0.8 V; and the degradation of Rhodamine-B follows the dynamics of first order reaction. It is concluded from the discussion of experimental results that the preparation process of TiO2-activated carbon complex membranes is a simple low-cost process suitable for large scale application.

  11. An Update on Natural Products with Carbonic Anhydrase Inhibitory Activity.

    Science.gov (United States)

    Karioti, Anastasia; Carta, Fabrizio; Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological processes. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. It is more than 70 years that synthetic compounds, mainly sulfonamides, have been used in clinical practice as diuretics and systemic acting antiglaucoma drugs. Recent studies using natural product libraries and isolated constituents from natural sources (such as fungi and plants) have disclosed novel chemotypes possessing carbonic anhydrase inhibition activities. These natural sources offer new opportunities in the search for new and more effective carbonic anhydrase inhibitors, and may serve as new leads for the design and development of future drugs. This review will discuss the most recent advances in the search of naturally occurring products and their synthetic derivatives that inhibit the CAs and their mechanisms of action at molecular level. Plant extracts are not considered in the present review.

  12. Enhanced adsorption of quaternary amine using modified activated carbon.

    Science.gov (United States)

    Prahas, Devarly; Wang, M J; Ismadji, Suryadi; Liu, J C

    2014-01-01

    This study examined different methodologies to modify activated carbon (AC) for the removal of quaternary amine, tetramethylammonium hydroxide (TMAH), from water. Commercial carbon (WAC) was treated by nitric acid oxidation (NA-WAC), silica impregnation (SM-WAC0.5), and oxygen plasma (P10-WAC), and their characteristics and adsorption capacity were compared. The Langmuir model fitted the equilibrium adsorption data well under different pH. The maximum adsorption capacity of WAC was 27.77 mg/g, while those of NA-WAC, SM-WAC 0.5, and P10-WAC were 37.46, 32.83 and 29.03 mg/g, respectively. Nitric acid oxidation was the most effective method for enhancing the adsorption capacity of TMAH. Higher pH was favorable for TMAH adsorption. Desorption study revealed that NA-WAC had no considerable reduction in performance even after five cycles of regeneration by 0.1 N hydrochloric acid. It was proposed that electrostatic interaction was the main mechanism of TMAH adsorption on activated carbon.

  13. Plasma Treated Active Carbon for Capacitive Deionization of Saline Water

    Directory of Open Access Journals (Sweden)

    Aiping Zeng

    2017-01-01

    Full Text Available The plasma treatment on commercial active carbon (AC was carried out in a capacitively coupled plasma system using Ar + 10% O2 at pressure of 4.0 Torr. The RF plasma power ranged from 50 W to 100 W and the processing time was 10 min. The carbon film electrode was fabricated by electrophoretic deposition. Micro-Raman spectroscopy revealed the highly increased disorder of sp2 C lattice for the AC treated at 75 W. An electrosorption capacity of 6.15 mg/g was recorded for the carbon treated at 75 W in a 0.1 mM NaCl solution when 1.5 V was applied for 5 hours, while the capacity of the untreated AC was 1.01 mg/g. The plasma treatment led to 5.09 times increase in the absorption capacity. The jump of electrosorption capacity by plasma treatment was consistent with the Raman spectra and electrochemical double layer capacitance. This work demonstrated that plasma treatment was a potentially efficient approach to activating biochar to serve as electrode material for capacitive deionization (CDI.

  14. Kinetics of continuous biodegradation of pesticide organic wastewater by activated carbon-activated sludge

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Organic triazophos wastewater was continuously treated with Rhodopseudomonas capsulatus and activated carbon and activated sludge system(PACT-AS) in a plug bioreactor. A kinetic model of PACT-AS wastewater treatment system was established to provide an useful basis for further simulate scale-up treatment of toxic organic wastewater.

  15. Preparation of functionalized and metal-impregnated activated carbon by a single-step activation method

    Science.gov (United States)

    Dastgheib, Seyed A.; Ren, Jianli; Rostam-Abadi, Massoud; Chang, Ramsay

    2014-01-01

    A rapid method to prepare functionalized and metal-impregnated activated carbon from coal is described in this paper. A mixture of ferric chloride and a sub-bituminous coal was used to demonstrate simultaneous coal activation, chlorine functionalization, and iron/iron oxides impregnation in the resulting porous carbon products. The FeCl3 concentration in the mixture, the method to prepare the FeCl3-coal mixture (solid mixing or liquid impregnation), and activation atmosphere and temperature impacted the surface area and porosity development, Cl functionalization, and iron species impregnation and dispersion in the carbon products. Samples activated in nitrogen or a simulated flue gas at 600 or 1000 °C for 1-2 min had surface areas up to ∼800 m2/g, bulk iron contents up to 18 wt%, and surface chlorine contents up to 27 wt%. Potential catalytic and adsorption application of the carbon materials was explored in catalytic wet air oxidation (CWAO) of phenol and adsorption of ionic mercury from aqueous solutions. Results indicated that impregnated activated carbons outperformed their non-impregnated counterparts in both the CWAO and adsorption tests.

  16. Supercritical fluid chromatography for GMP analysis in support of pharmaceutical development and manufacturing activities.

    Science.gov (United States)

    Hicks, Michael B; Regalado, Erik L; Tan, Feng; Gong, Xiaoyi; Welch, Christopher J

    2016-01-05

    Supercritical fluid chromatography (SFC) has long been a preferred method for enantiopurity analysis in support of pharmaceutical discovery and development, but implementation of the technique in regulated GMP laboratories has been somewhat slow, owing to limitations in instrument sensitivity, reproducibility, accuracy and robustness. In recent years, commercialization of next generation analytical SFC instrumentation has addressed previous shortcomings, making the technique better suited for GMP analysis. In this study we investigate the use of modern SFC for enantiopurity analysis of several pharmaceutical intermediates and compare the results with the conventional HPLC approaches historically used for analysis in a GMP setting. The findings clearly illustrate that modern SFC now exhibits improved precision, reproducibility, accuracy and robustness; also providing superior resolution and peak capacity compared to HPLC. Based on these findings, the use of modern chiral SFC is recommended for GMP studies of stereochemistry in pharmaceutical development and manufacturing.

  17. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    Science.gov (United States)

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics.

  18. Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity.

    Science.gov (United States)

    Neves, Sara C; Mota, Carlos; Longoni, Alessia; Barrias, Cristina C; Granja, Pedro L; Moroni, Lorenzo

    2016-05-24

    Additive manufactured three-dimensional (3D) scaffolds with tailored surface topography constitute a clear advantage in tissue regeneration strategies to steer cell behavior. 3D fibrous scaffolds of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer presenting different fiber surface features were successfully fabricated by additive manufacturing combined with wet-spinning, in a single step, without any post-processing. The optimization of the processing parameters, mainly driven by different solvent/non-solvent combinations, led to four distinct scaffold types, with average surface roughness values ranging from 0.071 ± 0.012 μm to 1.950 ± 0.553 μm, average pore sizes in the x- and y-axis between 351.1 ± 33.6 μm and 396.1 ± 32.3 μm, in the z-axis between 36.5 ± 5.3 μm and 70.7 ± 8.8 μm, average fiber diameters between 69.4 ± 6.1 μm and 99.0 ± 9.4 μm, and porosity values ranging from 60.2 ± 0.8% to 71.7 ± 2.6%. Human mesenchymal stromal cells (hMSCs) cultured on these scaffolds adhered, proliferated, and produced endogenous extracellular matrix. The effect of surface roughness and topography on hMSCs differentiation was more evident for cells seeded at lower density, where the percentage of cells in direct contact with the surface was higher compared to more densely seeded scaffolds. Under osteogenic conditions, lower surface roughness values (0.227 ± 0.035 μm) had a synergistic effect on hMSCs behavior, while chondrogenesis was favored on rougher surfaces (1.950 ± 0.553 μm).

  19. Electric Double-layer Capacitor Based on Activated Carbon Material

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this study electric double-layer capacitors (EDLCs) based on activated carbon material and organic electrolyte (tetraethyl ammonium tetrafluoroborate) were explored. The fabrication method for EDLC is presented and the performance of EDLC was examined by using the cyclic voltammetry, constant-current charging and discharging technique, electrochemical impedance spectroscopy measurements. Influence of various components and design parameters on the performance of the capacitors were preliminarily investigated. Up to now, EDLC based on carbon materials can deliver 20.7 W/kg at the discharge rate ofI=0.3 mA, together with the energy density of 8.5 Wh/kg. Equivalent series resistance (ESR) is 0.716 Ω.cm2. The specific power of the capacitor is low and further attempts to raise the power capability of the capacitors are necessary. Some considerations are put forward to further improve the performance of EDLC.

  20. Coupling dehydrogenation of isobutane in the presence of carbon dioxide over chromium oxide supported on active carbon

    Institute of Scientific and Technical Information of China (English)

    Jian Fei Ding; Zhang Feng Qin; Xue Kuan Li; Guo Fu Wang; Jian Guo Wang

    2008-01-01

    The dehydrogenation of isobutane (IB) to produce isobutene coupled with reverse water gas shift in the presence of carbon dioxide was investigated over the catalyst Cr2O3 supported on active carbon (Cr2O3/AC). The results illustrated that isobutane c onversion and isobutene yield can be enhanced through the reaction coupling in the presence of carbon dioxide. Moreover, carbon dioxide can partially eliminate carbonaceous deposition on the catalyst and keep the active phase (Cr2O3), which are then helpful to alleviate the catalyst deactivation.

  1. Sorption of organic compounds to activated carbons. Evaluation of isotherm models

    NARCIS (Netherlands)

    Pikaar, I.; Koelmans, A.A.; Noort, van P.C.M.

    2006-01-01

    Sorption to 'hard carbon' (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for so

  2. Influence of different carbon nanostructures on the electrocatalytic activity and stability of Pt supported electrocatalysts

    DEFF Research Database (Denmark)

    Stamatin, Serban Nicolae; Borghei, Maryam; Andersen, Shuang Ma;

    2014-01-01

    Commercially available graphitized carbon nanofibers and multi-walled carbon nanotubes, two carbon materials with very different structure, have been functionalized in a nitric–sulfuric acid mixture. Further on, the materials have been platinized by a microwave assisted polyol method. The relative...... that the functionalization improves the stability for multi-walled carbon nanotubes, at the cost of decreased activity....

  3. Metal Additive Manufacturing: A Review

    Science.gov (United States)

    Frazier, William E.

    2014-06-01

    This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

  4. Drawing method and device of activated carbon sludge from drums

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Shigeru [Toshiba Corp., Kawasaki, Kanagawa (Japan); Kaji, Koichi

    1998-09-11

    Upon drawing out active sludge accumulated while being separated from supernatant water in a drum for containing active sludge generated as residues after the processing of washing liquid generated in a nuclear power plant, the sludge is stirred together with the supernatant water while being scraped off from the surface by using a stirring blade equipped with teeth. Then the sludge in the form of a slurry is drained by a highly viscous fluid transferring-pump. Then accumulated active carbon sludge can be supplied quantitatively as a mayonnaise-like slurry to a furnace. Alternatively, the supernatant water is drawn out at first from a drum, and sludge is discharged to the outside next by using screw blades disposed backward while scraping the sludge from the surface by rotating scraping teeth. With such procedures, there can be provided an advantageous point that the accumulated active carbon sludge can be supplied in a state of small lumps quantitatively to a furnace. (T.M.)

  5. Particle emissions from laboratory activities involving carbon nanotubes

    Science.gov (United States)

    Lo, Li-Ming; Tsai, Candace S.-J.; Heitbrink, William A.; Dunn, Kevin H.; Topmiller, Jennifer; Ellenbecker, Michael

    2017-08-01

    This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20-30-nm-diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time, and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high-aspect-ratio particles were identified as being released from some activities. The EC concentration (0.87 μg/m3) at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating, and cutting. Various sampling methods all indicated different levels of CNTs from the activities; however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.

  6. Design, Manufacturing, and Characterization of High-Performance Lightweight Bipolar Plates Based on Carbon Nanotube-Exfoliated Graphite Nanoplatelet Hybrid Nanocomposites

    Directory of Open Access Journals (Sweden)

    Myungsoo Kim

    2012-01-01

    Full Text Available We report a study on manufacturing and characterization of a platform material for high-performance lightweight bipolar plates for fuel cells based on nanocomposites consisting of carbon nanotubes (CNTs and exfoliated graphite nanoplatelets (xGnPs. The experiments were designed and performed in three steps. In the preexperimental stage, xGnP-epoxy composite samples were prepared at various xGnP weight percentages to determine the maximum processable nanofiller concentration. The main part of the experiment employed the statistics-based design of experiments (DOE methodology to identify improved processing conditions and CNT : xGnP ratio for minimized electrical resistivity. In the postexperimental stage, optimized combinations of material and processing parameters were investigated. With the aid of a reactive diluent, 20 wt.% was determined to the be maximum processable carbon nanomaterial content in the epoxy. The DOE analyses revealed that the CNT : xGnP ratio is the most dominant factor that governs the electrical properties, and its implications in relation to CNT-xGnP interactions and microstructure are elucidated. In addition, samples fabricated near the optimized condition revealed that there exists an optimal CNT : xGnP ratio at which the electrical performance can be maximized. The electrical and mechanical properties of optimal samples suggest that CNT-xGnP hybrid nanocomposites can serve as an alternative material platform for affordable, lightweight bipolar plates.

  7. Production of activated carbon from a new precursor molasses by activation with sulphuric acid.

    Science.gov (United States)

    Legrouri, K; Khouya, E; Ezzine, M; Hannache, H; Denoyel, R; Pallier, R; Naslain, R

    2005-02-14

    Activated carbon has been prepared from molasses, a natural precursor of vegetable origin resulting from the sugar industry in Morocco. The preparation of the activated carbon from the molasses has been carried out by impregnation of the precursor with sulphuric acid, followed by carbonisation at varying conditions (temperature and gas coverage) in order to optimize preparation parameters. The influence of activation conditions was investigated by determination of adsorption capacity of methylene blue and iodine, the BET surface area, and the pore volume of the activated carbon were determined while the micropore volume was determined by the Dubinin-Radushkevich (DR) equation. The activated materials are mainly microporous and reveal the type I isotherm of the Brunauer classification for nitrogen adsorption. The activated carbons properties in this study were found for activation of the mixture (molasses/sulphuric acid) in steam at 750 degrees C. The samples obtained in this condition were highly microporous, with high surface area (> or =1200 m2/g) and the maximum adsorption capacity of methylene blue and iodine were 435 and 1430 mg/g, respectively.

  8. Computational manufacturing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a general framework for computational manufacturing. The methodology of computational manufacturing aims at integrating computational geometry, machining principle, sensor information fusion, optimization, computational intelligence and virtual prototyping to solve problems of the modeling, reasoning, control, planning and scheduling of manufacturing processes and systems. There are three typical problems in computational manufacturing, i.e., scheduling (time-domain), geometric reasoning (space-domain) and decision- making (interaction between time-domain and space-domain). Some theoretical fundamentals of computational manufacturing are also discussed.

  9. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea

    Science.gov (United States)

    Inal, I. Isil Gurten; Holmes, Stuart M.; Banford, Anthony; Aktas, Zeki

    2015-12-01

    Highly microporous and mesoporous activated carbons were produced from waste tea for application as supercapacitor electrodes, utilising a chemical activation method involving treatment with either K2CO3 or H3PO4. The area, pore structure characteristics and surface functionality of the activated carbons were evaluated to investigate the influence on electrochemical performance. The performance of the activated carbons as supercapacitor electrodes was tested by cyclic voltammetry (CV), impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD) measurements, in an aqueous electrolyte. The results showed that the pore structure and type of the activated carbon have significant impact on the supercapacitor performance. Both waste tea-based activated carbon electrodes showed good cyclic stability. However, despite its lower specific surface area the highly microporous activated carbon produced with K2CO3, exhibited much better capacitive performance than that of the mesoporous activated carbon produced with H3PO4.

  10. Carbon sink activity and GHG budget of managed European grasslands

    Science.gov (United States)

    Klumpp, Katja; Herfurth, Damien; Soussana, Jean-Francois; Fluxnet Grassland Pi's, European

    2013-04-01

    In agriculture, a large proportion (89%) of greenhouse gas (GHG) emission saving potential may be achieved by means of soil C sequestration. Recent demonstrations of carbon sink activities of European ecosystemes, however, often questioned the existence of C storing grasslands, as though a net sink of C was observed, uncertainty surrounding this estimate was larger than the sink itself (Janssens et al., 2003, Schulze et al., 2009. Then again, some of these estimates were based on a small number of measurements, and on models. Not surprising, there is still, a paucity of studies demonstrating the existence of grassland systems, where C sequestration would exceed (in CO2 equivalents) methane emissions from the enteric fermentation of ruminants and nitrous oxide emissions from managed soils. Grasslands are heavily relied upon for food and forage production. A key component of the carbon sink activity in grasslands is thus the impact of changes in management practices or effects of past and recent management, such as intensification as well as climate (and -variation). We analysed data (i.e. flux, ecological, management and soil organic carbon) from a network of European grassland flux observation sites (36). These sites covered different types and intensities of management, and offered the opportunity to understand grassland carbon cycling and trade-offs between C sinks and CH4 and N2O emissions. For some sites, the assessment of carbon sink activities were compared using two methods; repeated soil inventory and determination of the ecosystem C budget by continuous measurement of CO2 exchange in combination with quantification of other C imports and exports (net C storage, NCS). In general grassland, were a potential sink of C with 60±12 g C /m2.yr (median; min -456; max 645). Grazed sites had a higher NCS compared to cut sites (median 99 vs 67 g C /m2.yr), while permanent grassland sites tended to have a lower NCS compared to temporary sown grasslands (median 64 vs

  11. Properties of Portland-Composite Cements with metakaolin: Commercial and manufactured by Thermal Activation of Serbian Kaolin Clay

    Directory of Open Access Journals (Sweden)

    Mitrovic A.

    2012-09-01

    Full Text Available Portland-composite cements (CEM II were prepared with addition of 5 to 35% of metakaolin (MK, manufactured by thermal activation/calcination of Serbian kaolin clay, and commercial matakaolin (CMK. Performance of the composite cements was evaluated, through the setting time (initial and final, compressive strengths (for ages 2, 7, 28, 90 and 180 days and soundness, and compared with control cement (Portland cement – CEM I. Setting time (initial and final is accelerated in Portlandcomposite cements, for both metakaolins used. The acceleration is higher in cement with addition of commercial metakaolin. Lower compressive strength is obtained after 2 days of curing for all Portland-composite cements in comparison with control cement, since pozzolanic reaction still did not show its effect. After 7 days, pozzolanic reaction show its effect, manifested as compressive strength increase of Portland-composite cements with addition of up to 35% of CMK, and 25% in the case of cements with MK. After 28 days compressive strength was higher than that for control cement for cements prepared with addition of CMK, and with addition of up to 25% MK. After 90 days increased compressive strength was noticed with addition of 10 - 20% of CMK, and with 10 and 15% of MK, while after 180 days addition of both metakaolins influences compressive strength decrease. The results of the soundness, 0.5 mm for CEM I, and 1.0 mm in most Portland-composite cements indicate soundness increase with addition of metakaolins. Generally, better performance of Portland-composite cements was obtained with addition of commercial metakaolin, which may be attributed to the differences in the pozzolanic activity of the applied metakaolins, 20.5 MPa and 14.9 MPa for CMK and MK, respectively. By our previous findings pozzolanic activity of the thermally activated clay may be increased by subsequent milling of the metakaolin manufactured by thermal activation process.

  12. Activation and Micropore Structure Determination of Activated Carbon-Fiber Composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.

    1999-04-23

    Previous work focused on the production of carbon fiber composites and subsequently activating them to induce adsorbent properties. One problem related to this approach is the difficulty of uniformly activating large composites. In order to overcome this problem, composites have been made from pre-activated fibers. The loss of surface area upon forming the composites after activation of the fibers was investigated. The electrical resistivity and strength of these composites were compared to those made by activation after forming. It was found that the surface area is reduced by about 35% by forming the composite from pre-activated fibers. However, the properties of the activated sample are very uniform: the variation in surface area is less than {+-}0.5%. So, although the surface area is somewhat reduced, it is believed that making composites from pre-activated fibers could be useful in applications where the BET surface area is not required to be very high. The strength of the composites produced from pre-activated fibers is lower than for composites activated after forming when the carbon burnoff is below 45%. For higher burnoffs, the strength of composites made with pre-activated fibers is as good or better. In both cases, there is a dramatic decrease in strength when the fiber:binder ratio is reduced below 4:1. The electrical resistivity is slightly higher for composites made from pre-activated fibers than for composites that are activated after forming, other parameters being constant (P-200 fibers, similar carbon burnoffs). For both types of composite the resistivity was also found to increase with carbon burnoff. This is attributed to breakage of the fiber causing shorter conductive paths. The electrical resistivity also increases when the binder content is lowered, which suggests that there are fewer solid contact points between the fibers.

  13. Investigating effectiveness of activated carbons of natural sources on various supercapacitors

    Science.gov (United States)

    Faisal, Md. Shahnewaz Sabit; Rahman, Muhammad M.; Asmatulu, Ramazan

    2016-04-01

    Activated carbon can be produced from natural sources, such as pistachio and acorn shells, which can be an inexpensive and sustainable sources of natural wastes for the energy storage devices, such as supercapacitors. The carbonaceous materials used in this study were carbonized at the temperatures of 700°C and 900°C after the stabilization process at 240°C for two hours. These shells showed approximately 60% carbon yield. Carbonized nutshells were chemically activated using1wt% potassium hydroxide (KOH). Activated carbon powders with polyvinylidene fluoride (PVdF) were used to construct carbon electrodes. A 1M of tetraethylammonium tetrafluoroborate (TEABF4) and propylene carbonate (PC) were used as electrolytes. Electrochemical techniques, such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characterization of the supercapacitors. Scanning electron microscopy (SEM) was used to inspect the surface texture of the activated carbons. Activated pistachio shells carbonized at 700°C showed more porous surface texture than those carbonized at 900°C. Effects of the carbonization temperatures were studied for their electrochemical characteristics. The shells carbonized at 700°C showed better electrochemical characteristics compared to those carbonized at 900°C. The test results provided about 27,083 μF/g specific capacitance at a scan rate of 10mV/s. This study showed promising results for using these activated carbons produced from the natural wastes for supercapacitor applications.

  14. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  15. Synthesis and characterization of vanadium nanoparticles on activated carbon and their catalytic activity in thiophene hydrodesulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Susana [Centro de Catalisis, Petroleo y Petroquimica, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 40679 (Venezuela); Centro de Quimica Organometalica y Macromolecular, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 47778 (Venezuela); D' Ornelas, Lindora [Centro de Quimica Organometalica y Macromolecular, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 47778 (Venezuela); Betancourt, Paulino [Centro de Catalisis, Petroleo y Petroquimica, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 40679 (Venezuela)], E-mail: pbetanco@strix.ciens.ucv.ve

    2008-06-30

    Vanadium nanoparticles ({approx}7 nm) stabilized on activated carbon were synthesized by the reduction of VCl{sub 3}.3THF with K[BEt{sub 3}H]. This material was characterized by inductive coupled plasma-atomic emission spectroscopy (ICP-AES), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analyses. The catalytic performance of the carbon-supported vanadium was studied using thiophene hydrodesulfurization (HDS) as model reaction at 300 deg. C and P = 1 atm. The catalytic activity of the vanadium carbide phase on the activated carbon carrier was more significant than that of the reference catalysts, alumina supported NiMoS. The method proposed for the synthesis of such a catalyst led to an excellent performance of the HDS process.

  16. Kinetic and Thermodynamics Studies the Adsorption of Phenol on Activated Carbon from Rice Husk Activated by ZnCl2

    Directory of Open Access Journals (Sweden)

    Andi Muhammad Anshar

    2016-05-01

    Full Text Available The purpose of this study was to investigate the adsorption ability of activated carbon from rice husk in adsorbing phenol. Activated carbon used was in this studies burning risk husk at 300 and 400oC and then activated by 10% of ZnCl2. The from activated carbon was characterized using an Infrared Spectrometer, an X-ray diffraction, an Scanning Electron Microscope, and a gas sorption analyzer. The best activated carbon for adsorbing phenol was the activated carbon that prodused from the burning of rice husk at a temperature 400oC and activated with 10% of ZnCl2 for 24 hours. Adsorption capacity of the best activated carbon was 3.9370 mg/g adsorbent with Gibbs free energy of -25.493 kJ/mol.

  17. Appraising manufacturing location

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2002-01-01

    International location of manufacturing activities is an issue for managers of manufacturing companies as well as public policy makers. For managers, the issue is relevant because international locations offer opportunities for lowering costs due to productivity improvements. For governments the iss

  18. Assessing manufacturing location

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2004-01-01

    International location of manufacturing activities is an issue for managers of manufacturing companies as well as public policy-makers. For managers, the issue is relevant because international locations offer opportunities for lowering costs due to productivity improvements. For governments the iss

  19. Antimicrobial Activity of Chitosan-Carbon Nanotube Hydrogels

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2014-05-01

    Full Text Available In the present study, we have prepared chitosan-carbon nanotube (Chitosan-CNT hydrogels by the freeze-lyophilization method and examined their antimicrobial activity. Different concentrations of CNT were used in the preparation of Chitosan-CNT hydrogels. These differently concentrated CNT hydrogels were chemically characterized using Fourier Transform-Infrared Spectroscopy, Scanning Electron Microscopy and Optical microscopy. The porosity of the hydrogels were found to be >94%. Dispersion of chitosan was observed in the CNT matrix by normal photography and optical microscopy. The addition of CNT in the composite scaffold significantly reduced the water uptake ability. In order to evaluate antimicrobial activity, the serial dilution method was used towards Staphylococcus aureus, Escherichia coli and Candida tropicalis. The composite Chitosan-CNT hydrogel showed greater antimicrobial activity with increasing CNT concentration, suggesting that Chitosan-CNT hydrogel scaffold will be a promising biomaterial in biomedical applications.

  20. Electrochemical characteristics of activated carbon nanofiber electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min-Kang [Dept. of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin [Dept. of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of)], E-mail: sjpark@inha.ac.kr

    2009-08-25

    In this work, poly(amide imide) solutions in dimethylformamide were electrospun into webs consisting of 350 nm ultrafine nanofibers. These nanofiber webs were used to produce activated carbon nanofibers (ACNFs), through stabilization and carbonisation-activation processes. Experimental results indicated that ACNFs activated at 800 deg. C afforded the highest specific surface area but low mesopore volume. The high specific surface area, mainly due to the micropores, introduced maximum specific capacitance at low current density (150 F g{sup -1} at 10 mA g{sup -1}). Elevating the volume fraction of mesopores gave maximum specific capacitance at high current density (100 F g{sup -1} at 1000 mA g{sup -1}), which could be explained on the basis of ion mobility in the pores. Thus, the capacitance of the supercapacitors was strongly dependent on the specific surface area and micro- or mesopore volume of the ACNFs.

  1. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    Science.gov (United States)

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out.

  2. Characterization of activated carbon prepared by phosphoric acid activation of olive stones

    Directory of Open Access Journals (Sweden)

    S.M. Yakout

    2016-11-01

    Full Text Available The effects of activating agent concentration on the pore structure and surface chemistry of activated carbons derived from olive stone with chemical activation method using phosphoric acid as the activating agent were studied. Mass changes associated with the impregnation, carbonization and washing processes were measured. With H3PO4 dilute solutions (60, 70, and 80 wt% H3PO4, the loading of substance on CS increases with concentration. The concentration of the H3PO4 solution seems to control the processes of impregnation, carbonization and washing in the preparation of AC from olive stones by H3PO4 chemical activation. ACs have been characterized from the results obtained by N2 adsorption at 77 K. Moreover, the fractal dimension (D has been calculated in order to determine the AC surface roughness degree. Optimal textural properties of ACs have been obtained by chemical activation with H3PO4 80 wt.%. The BET surface areas and total pore volumes of the carbons produced at H3PO4 80 wt.% are 1218 m2/g and 0.6 cm3/g, respectively.

  3. Synthesis of a Carbon-activated Microfiber from Spider Webs Silk

    Science.gov (United States)

    Taer, E.; Mustika, W. S.; Taslim, R.

    2017-03-01

    Carbon fiber of spider web silk has been produced through the simple carbonization process. Cobwebs are a source of strong natural fiber, flexible and micrometer in size. Preparation of micro carbon fiber from spider webs that consist of carbonization and activation processes. Carbonization was performed in N2 gas environment by multi step heating profile up to temperature of 400 °C, while the activation process was done by using chemical activation with KOH activating agent assistance. Measurement of physical properties was conducted on the surface morphology, element content and the degree of crystallinity. The measurement results found that micro carbon fiber from spider webs has a diameter in the range of 0.5 -25 micrometers. It is found that the carbon-activated microfiber takes the amorphous form with the carbon content of 84 %.

  4. Thermal analysis of activated carbons modified with silver metavanadate

    Energy Technology Data Exchange (ETDEWEB)

    Goscianska, Joanna; Nowicki, Piotr; Nowak, Izabela [Faculty of Chemistry, Adam Mickiewicz University in Poznan, Grunwaldzka 6, 60-780 Poznan (Poland); Pietrzak, Robert, E-mail: pietrob@amu.edu.pl [Faculty of Chemistry, Adam Mickiewicz University in Poznan, Grunwaldzka 6, 60-780 Poznan (Poland)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Preparation of the activated carbons from waste materials as new supports for AgVO{sub 3}. Black-Right-Pointing-Pointer Decomposition of AgVO{sub 3} to V{sub 2}O{sub 5} and Ag{sup 0} for the samples 1 and 3 wt.% Ag-V is observed. Black-Right-Pointing-Pointer Samples containing 5 wt.% Ag-V decompose to vanadyl species as intermediate compounds. - Abstract: The effect of silver metavanadate doping on physicochemical properties and thermal behaviour of the activated carbons obtained from waste materials was investigated. The carbonaceous supports were subjected to carbonisation at 400 or 600 Degree-Sign C. The samples carbonised at 600 Degree-Sign C have much more developed surface area and porous structure than the analogous samples obtained at 400 Degree-Sign C. Impregnation of activated carbons with silver metavanadate leads to a decrease in their surface area and pore volume. According to thermal analysis (TG, DTG) in the samples containing 1 and 3 wt.% of silver metavanadate, AgVO{sub 3} is fully decomposed to do vanadium oxide and Ag, with no intermediate products, while in the samples containing 5 wt.% AgVO{sub 3}, this salt is decomposed to vanadyl species as intermediate compounds at 350 Degree-Sign C before the formation of V{sub 2}O{sub 5} at 500 Degree-Sign C. Moreover, in all samples impregnated with silver metavanadate the nanoparticles of silver undergo crystallisation leading to reduction of Ag{sup +} ions from the vanadium salt to Ag{sup 0}.

  5. Activated carbon is an electron-conducting amphoteric ion adsorbent

    CERN Document Server

    Biesheuvel, P M

    2015-01-01

    Electrodes composed of activated carbon (AC) particles can desalinate water by ion electrosorption. To describe ion electrosorption mathematically, accurate models are required for the structure of the electrical double layers (EDLs) that form within electrically charged AC micropores. To account for salt adsorption also in uncharged ACs, an "attraction term" was introduced in modified Donnan models for the EDL structure in ACs. Here it will be shown how instead of using an attraction term, chemical information of the surface structure of the carbon-water interface in ACs can be used to construct an alternative EDL model for ACs. This EDL model assumes that ACs contain both acidic groups, for instance due to carboxylic functionalities, and basic groups, due to the adsorption of protons to the carbon basal planes. As will be shown, this "amphoteric Donnan" model accurately describes various data sets for ion electrosorption in ACs, for solutions of NaCl, of CaCl2, and mixtures thereof, as function of the exter...

  6. Relation between interfacial energy and adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2013-03-01

    The adsorption efficacy of 16 pharmaceuticals on six different activated carbons is correlated to the thermodynamic work of adhesion, which was derived following the surface tension component approach. Immersion calorimetry was used to determine the surface tension components of activated carbon, while contact angle measurements on compressed plates were used to determine these for solutes. We found that the acid-base surface tension components of activated carbon correlated to the activated carbon oxygen content. Solute-water interaction correlated well to their solubility, although four solutes deviated from the trend. In the interaction between solute and activated carbon, van der Waals interactions were dominant and explained 65-94% of the total interaction energy, depending on the hydrophobicity of the activated carbon and solute. A reasonable relationship (r2 > 70) was found between the calculated work of adhesion and the experimentally determined activated carbon loading. © 2012 Elsevier Ltd. All rights reserved.

  7. Copper on activated carbon for catalytic wet air oxidation

    Directory of Open Access Journals (Sweden)

    Nora Dolores Martínez

    2009-03-01

    Full Text Available Textile industry is an important source of water contamination. Some of the organic contaminants cannot be eliminated by nature in a reasonable period. Heterogeneous catalytic wet air oxidation is one of the most effective methods to purify wastewater with organic contaminants. In this work, catalysts based on copper supported on activated carbon were synthesized. The activated carbons were obtained from industrial wastes (apricot core and grape stalk of San Juan, Argentina. These were impregnated with a copper salt and thermically treated in an inert atmosphere. Analysis of specific surface, pore volume, p zc, acidity, basicity and XRD patterns were made in order to characterize the catalysts. The catalytic activity was tested in the oxidation of methylene blue (MB and polyvinyl alcohol (PVA in aqueous phase with pure oxygen. Reaction tests were carried out in a Parr batch reactor at different temperatures, with a 0.2 MPa partial pressure of oxygen. The amount of unconverted organics was measured by spectrophotometry. Higher temperatures were necessary for the degradation of PVA compared to those for methylene blue.

  8. Preparation of palladium loaded carbon nanotubes and activated carbons for hydrogen sorption

    Energy Technology Data Exchange (ETDEWEB)

    Anson, A. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain)]. E-mail: aanson@ualberta.ca; Lafuente, E. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain); Urriolabeitia, E. [Departamento de Quimica Inorganica, Universidad de Zaragoza, 50009 Zaragoza (Spain); Navarro, R. [Departamento de Quimica Inorganica, Universidad de Zaragoza, 50009 Zaragoza (Spain); Benito, A.M. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain); Maser, W.K. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain); Martinez, M.T. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain)

    2007-06-14

    Single wall carbon nanotubes (SWNTs) and MAXSORB activated carbon have been used as the support of palladium nanoparticles. The preparation of the palladium loaded carbon materials has been done by direct reaction between the support and a Pd (0) compound, either Pd{sub 2}(dba){sub 3}.CHCl{sub 3} or Pd(PPh{sub 3}){sub 4}. The efficiency of the loading reaction has been much better when Pd{sub 2}(dba){sub 3}.CHCl{sub 3} has been chosen as the Pd source, reaching high palladium loadings (up to ca. 45 wt.%) with relatively small particle size (5-10 nm for SWNTs and 30-40 nm for MAXSORB). The hydrogen isotherms of the palladium loaded materials present a steep increase at very low pressures. The H/Pd atomic ratio of the samples has been found to be dependent on the Pd precursor, being higher in the case of Pd{sub 2}(dba){sub 3}.CHCl{sub 3}. Several samples have achieved H/Pd ratios higher than the value for bulk Pd (H/Pd {approx} 0.6-0.7). Maximum hydrogen sorption at room temperature in the palladium loaded samples has been found to be of 0.5 wt.% at atmospheric pressure. Oxidative treatments on the substrate before the palladium loading have diminished the efficiency of the loading reaction, the hydrogen adsorption, and the H/Pd atomic ratio.

  9. Current-induced strength degradation of activated carbon spheres in carbon supercapacitors

    Science.gov (United States)

    Sun, Yuan; Chen, Rong; Lipka, Stephen M.; Yang, Fuqian

    2016-05-01

    Activated carbon microspheres (ACSs), which are prepared using hydrothermal synthesis and ammonia activation, are used as the active materials in the anode and cathode of electric double layer capacitors (EDLCs). The ACS-based EDLCs of symmetrical electrodes exhibit good stability and a high degree of reversibility over 2000 charge-discharge cycles for electric current up to 10 A g-1. The ACSs maintain a nongraphitized carbon structure after over 2000 charge-discharge cycles. Nanoindentation experiments are performed on the ACSs, which are electrochemically cycled in a voltage window of 0-1 V at three electric currents of 0.5, 5, and 10 A g-1. For the same indentation load, both the contact modulus and indentation hardness of the ACSs decrease with the increase of the electric current used in the electrical charging and discharging. These results suggest that there exists strength degradation introduced by the electric current. A larger electric current will cause more strength degradation than a smaller electric current.

  10. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    Science.gov (United States)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  11. Selective catalytic reduction of sulfur dioxide by carbon monoxide over iron oxide supported on activated carbon

    OpenAIRE

    2014-01-01

    The selective reduction of sulfur dioxide with carbon monoxide to elemental sulfur was studied over AC-supported transition-metal oxide catalysts. According to the study, Fe2O3/AC was the most active catalyst among the 4 AC-supported catalysts tested. By using Fe2O3/AC, the best catalyst, when the feed conditions were properly optimized (CO/SO2 molar ratio = 2:1; sulfidation temperature, 400 °C; Fe content, 20 wt%; GHSV = 7000 mL g-1 h-1), 95.43% sulfur dioxide conversion and 86.59% sulfur yi...

  12. Effect of a biological activated carbon filter on particle counts

    Institute of Scientific and Technical Information of China (English)

    Su-hua WU; Bing-zhi DONG; Tie-jun QIAO; Jin-song ZHANG

    2008-01-01

    Due to the importance of biological safety in drinking water quality and the disadvantages which exist in traditional methods of detecting typical microorganisms such as Cryptosporidium and Giardia,it is necessary to develop an alternative.Particle counts is a qualitative measurement of the amount of dissolved solids in water.The removal rate of particle counts was previously used as an indicator of the effectiveness of a biological activated carbon(BAC)filter in removing Cryptosporidium and Giardia.The particle counts in a BAC filter effluent over one operational period and the effects of BAC filter construction and operational parameters were investigated with a 10 m3/h pilot plant.The results indicated that the maximum particle count in backwash remnant water was as high as 1296 count/ml and it needed about 1.5 h to reduce from the maximum to less than 50 count/ml.During the standard filtration period,particle counts stay constant at less than 50 count/ml for 5 d except when influ-enced by sand filter backwash remnant water.The removal rates of particle counts in the BAC filter are related to characteristics of the carbon.For example,a columned carbon and a sand bed removed 33.3% and 8.5% of particles,respectively,while the particle counts in effluent from a cracked BAC filter was higher than that of the influent.There is no significant difference among particle removal rates with different filtration rates.High post-ozone dosage(>2 mg/L)plays an important role in particle count removal;when the dosage was 3 mg/L,the removal rates by carbon layers and sand beds decreased by 17.5% and increased by 9.5%,respectively,compared with a 2 mg/L dosage.

  13. Process for the manufacture of a monolithic support for catalysts suitable for use in controlling carbon monoxide emissions

    Energy Technology Data Exchange (ETDEWEB)

    Paolasini, S.

    1981-07-07

    A monolithic support for a catalyst suitable for use in controlling carbon monoxide emission is prepared by forming a homogeneous, fluid semi-solid mass by admixing colloidal gamma alumina, alpha alumina monohydrate and ceramic fibres with fluidizing and binding agents, water and a mineral acid, said acid being used in an amount sufficient to convert said alpha Al/sub 2/O/sub 3/ monohydrate into a gel, forming the mass into a body of the desired shape, drying the body to substantially remove the added water, at least 10% of said added water being removed at a temperature lower than 50/sup 0/ C., and heat-treating the dried body at 800/sup 0/-1000/sup 0/ C.

  14. 75 FR 70208 - Certain Activated Carbon From the People's Republic of China: Final Results and Partial...

    Science.gov (United States)

    2010-11-17

    ... carbon cloth. Activated carbon cloth is a woven textile fabric made of or containing activated carbon fibers. It is used in masks and filters and clothing of various types where a woven format is required... preliminarily rescinded the review with respect to Lingzhou, the Department now finds that it would be unfair...

  15. Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow

    NARCIS (Netherlands)

    van der Mei, Henny C.; Atema-Smit, Jelly; Jager, Debbie; Langworthy, Don E.; Collias, Dimitris I.; Mitchell, Michael D.; Busscher, Henk J.

    2008-01-01

    In rural areas around the world, people often rely on water filtration plants using activated carbon particles for safe water supply. Depending on the carbon surface, adhering microorganisms die or grow to form a biofilm. Assays to assess the efficacy of activated carbons in bacterial removal do not

  16. Significance of the carbonization of volatile pyrolytic products on the properties of activated carbons from phosphoric acid activation of lignocellulosic material

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Songlin; Yang, Jianxiao; Cai, Xuan [Faculty of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 (China); Liu, Junli [Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042 (China)

    2009-07-15

    Two series of activated carbons derived from China fir (Cunninghamia lanceolata) wood impregnated with phosphoric acid were prepared in a cylindrical container that was kept in a closed state covered with a lid (the covered case) or in an open state. The effects of the carbonization of volatile pyrolytic products of starting materials on the properties of activated carbon were investigated in the process of phosphoric acid activation. Elemental analysis and SEM observation showed that both activating in the covered case and increasing the mass of starting material used favored the carbonization of volatile pyrolytic products. An investigation of N{sub 2} adsorption isotherms revealed that the carbonization of volatile pyrolytic products significantly enhanced mesopore development in the final carbons, especially pores with a size range from 2.5 to 30 nm, with little influence on micropores, and therefore produced a large increase in the adsorption capacity to Vitamin B12 (with a molecular size of 2.09 nm). Activated carbons with highly developed mesopores could be obtained in the covered case. The carbonization mechanism of volatiles was discussed and two different carbonization pathways (in solid and gas phases) were proposed during phosphoric acid activation. (author)

  17. Antimicrobial activity of tea as affected by the degree of fermentation and manufacturing season.

    Science.gov (United States)

    Chou, C C; Lin, L L; Chung, K T

    1999-05-01

    Bacillus subtilis, Escherichia coli, Proteus vulgaris, Pseudomonas fluorescens, Salmonella sp. and Staphylococcus aureus were used to test the antimicrobial activity of tea flush extract and extracts of various tea products. Among the six test organisms, P. fluorescens was the most sensitive to the extracts, while B. subtilis was the least sensitive. In general, antimicrobial activity decreased when the extents of tea fermentation increased. The antimicrobial activities of tea flush extract and extracts of tea products with different extents of fermentation varied with test organisms. Tea flush and Green tea, the unfermented tea, exerted the strongest antimicrobial activity followed by the partially fermented tea products such as Longjing, Tieh-Kuan-Ying, Paochung, and Oolong teas. On the other hand, Black tea, the completely fermented tea, showed the least antimicrobial activity. It was also noted that extracts of Oolong tea prepared in summer exhibited the strongest antimicrobial activity, followed by those prepared in spring, winter and fall.

  18. Characterization and Methanol Adsorption of Walnut-shell Activated Carbon Prepared by KOH Activation

    Institute of Scientific and Technical Information of China (English)

    YU Qiongfen; LI Ming; JI Xu; QIU Yu; ZHU Yuntao; LENG Congbin

    2016-01-01

    Walnut-shell activated carbons (WSACs) were prepared by the KOH chemical activation. The effects of carbonization temperature, activation temperature, and ratio of KOH to chars on the pore development of WSACs were investigated. Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) were employed to characterize the microstructure and morphology of WSACs. Methanol adsorption performance onto the optimal WSAC and the coal-based AC were also investigated. The results show that the optimal preparation conditions are a carbonization temperature of 700℃, an activation temperature of 700℃, and a mass ratio of 3. The BET surface area, the micropore volume, and the micropore volume percentage of the optimal WASC are 1636 m2/g, 0.641 cm3/g and 81.97%, respectively. There are a lot of micropores and a certain amount of meso- and macropores. The characteristics of the amorphous state are identified. The results show that the optimal WSAC is favorable for methanol adsorption. The equilibrium adsorption capacity of the optimal WSAC is 248.02mg/g. It is shown that the equilibrium adsorption capacity of the optimal WSAC is almost equivalent to that of the common activated carbon. Therefore the optimal WSAC could be a potential adsorbent for the solar energy adsorption refrigeration cycle.

  19. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Flue gas pollution is a serious environmental problem that needs to be solved for the sustainable development of China.The surface chemical properties of carbon have great influence on its desulphurization performance.A series of activated carbons (ACs) were prepared using HNO3,H2O2,NH3·H2O and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The ACs were physically and chemically characterized by iodine and SO2 adsorption,ultimate analysis,Boehm titration,and temperature-programmed reduction (TPR).Results showed that the iodine number and desulphurization capacity of NH3·H2O activated carbon (AC-NH3) increase with both activation time,and its desulphurization capacity also increases with the concentration of activation agent.However,HNO3 activated carbon (AC-HNO3) and H2O2 activated carbon (AC-H2O2) exhibit more complex behavior.Only their iodine numbers increase monotonously with activation time.Compared with steam activated AC (AC-H2O),the nitrogen content increases 0.232% in AC-NH3 and 0.077% in AC-HNO3.The amount of total basic site on AC-HNO3 is 0.19 mmol·g-1 higher than that on AC-H2O.H2O2 activation introduces an additional 0.08 mmol·g-1 carboxyl groups to AC surface than that introduced by steam activation.The desulphurization capacity of ACs in simulate flue gas desulphurization decreases as follows: AC-NH3 > AC-HNO3 > AC-H2O2 > AC-H2O.This sequence is in accord with the SO2 catalytic oxidation/oxidation ratio in the absence of oxygen and the oxidation property reflected by TPR.In the presence of oxygen,all adsorbed SO2 on ACs can be oxidized into SO3.The desulphurization capacity increases differently according to the activation agents;the desulphurization capacity of AC-NH3 and AC-HNO3 improves by 4.8 times,yet AC-H2O increases only by 2.62 as compared with the desulphurization of corresponding ACs in absence of oxygen.

  20. Soil Organic Carbon, Black Carbon, and Enzyme Activity Under Long-Term Fertilization

    Institute of Scientific and Technical Information of China (English)

    SHAO Xing-hua; ZHENG Jian-wei

    2014-01-01

    The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy ifeld was continuously fertilized over 30 yr with nine different fertilizer treatments including N, P, K, NP, NK, NPK, 2NPK (two-fold NPK), NPK+manure (NPKM), and CK (no fertilization), N, 90 kg urea-N ha-1 yr-1; P, 45 kg triple superphosphate-P2O5 ha-1 yr-1; K, 75 kg potassium chloride-K2O ha-1 yr-1;and pig manure, 22 500 kg ha-1 yr-1. Soil samples were collected and determined for SOC, BC content, and enzyme activity. The results showed that the SOC in the NPKM treatment was signiifcantly higher than those in the K, P, and CK treatments. The lowest SOC content was found in the CK treatment. SOC content was similar in the N, NP, NK, NPK, 2NPK, and NPKM treatments. There was no signiifcant difference in BC content among different treatments. The BC-to-SOC ratios (BC/SOC) ranged from 0.50 to 0.63, suggesting that BC might originate from the same source. Regarding enzyme activity, NPK treatment had higher urease activity than NPKM treatment. The urease activity of NPKM treatment was signiifcantly higher than that of 2NPK, NP, N, P, K, CK, and NPKM treatment which produced higher activities of acid phosphatase, catalase, and invertase than all other treatments. Our results indicated that long-term fertilization did not signiifcantly affect BC content. Concurrent application of manure and mineral fertilizers increased SOC content and signiifcantly enhanced soil enzyme activities. Correlation analysis showed that catalase activity was signiifcantly associated with invertase activity, but SOC, BC, and enzyme activity levels were not signiifcantly correlated with one another. No signiifcant correlations were observed between BC and soil enzymes. It is unknown whether soil enzymes play a role in the decomposition of BC.

  1. Manufacturing and Application of Pyramid Multi-tube Microwave Carbonization Furnace%金字塔形多管微波炭化炉的研制及其应用研究

    Institute of Scientific and Technical Information of China (English)

    赵敏; 朱端卫; 周文兵; 王砚; 孙宇

    2012-01-01

    The pyramid microwave carbonization furnace was designed and manufactured. Microwave was irradiated by three microwave tube from three directions. The furnace was equipped with a blender,which increase the uniformity in resonant cavity. The design of double microwave leakage protection furnace door reduces the risk of microwave leakage. The research results showed that under the microwave irradiation power 1 160 W and radiation time 18 min,the activated carbon has methylene blue adsorption value of 210 mL/g,which is 1. 75 times higher than the specifications in the standerd of activated carbon grade A (GB/T 13803.3 - 1999). Under the irradiation power of 680 W and irradiation time 5 min,the methylene blue adsorption value of phenol containing waste activated carbon can reach 110 mL/g,which is better than the level two standard of China.%自行设计并制造了金字塔形微波谐振腔的炭化炉,3个微波管从3个方向进行辐照,谐振腔内部增加了微波搅拌器,改变了微波辐照均匀性.双层微波防泄漏炉门设计,降低了微波泄漏的风险.经过应用研究表明,微波辐照功率1160W,辐照时间18 min,制得活性炭的亚甲基蓝吸附值210 mL/g,为国家标准规定的活性炭一级品GB/T 13803.3 - 1999的1.75倍.在680 W条件下,微波辐照载苯酚废活性炭5 min,可以获得亚甲基蓝吸附值为110 mL/g的再生活性炭,优于国家规定的二级品标准.

  2. High power lasers in manufacturing

    OpenAIRE

    Chatwin, Chris R

    2017-01-01

    Lecture covers a brief history of lasers and the important beam parameters for manufacturing applications. It introduces the main laser types that are appropriate for manufacturing: carbon dioxide lasers, Nd YAG, Diode and fibre lasers, excimer lasers. It then looks at applications to different products and also micro-engineering

  3. Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution

    Science.gov (United States)

    Ruiz, B.; Cabrita, I.; Mestre, A. S.; Parra, J. B.; Pires, J.; Carvalho, A. P.; Ania, C. O.

    2010-06-01

    The removal of a compound with therapeutic activity (paracetamol) from aqueous solutions using chemically modified activated carbons has been investigated. The chemical nature of the activated carbon material was modified by wet oxidation, so as to study the effect of the carbon surface chemistry and composition on the removal of paracetamol. The surface heterogeneity of the carbon created upon oxidation was found to be a determinant in the adsorption capability of the modified adsorbents, as well as in the rate of paracetamol removal. The experimental kinetic data were fitted to the pseudo-second order and intraparticle diffusion models. The parameters obtained were linked to the textural and chemical features of the activated carbons. After oxidation the wettability of the carbon is enhanced, which favors the transfer of paracetamol molecules to the carbon pores (smaller boundary layer thickness). At the same time the overall adsorption rate and removal efficiency are reduced in the oxidized carbon due to the competitive effect of water molecules.

  4. PENDEKATAN ACTIVITY-BASED COSTING DAN METODE PENCARIAN HEURISTIC UNTUK MENYELESAIKAN PROBLEM PEMILIHAN PERALATAN PADA FLEXIBLE MANUFACTURING SYSTEMS (FMS

    Directory of Open Access Journals (Sweden)

    Gregorius Satia Budhi

    2002-01-01

    Full Text Available The application of Activity Based Costing (ABC approach to select the set-machine that is used in the production of Flexible Manufacture System (FMS based on technical and economical criteria can be useful for producers to design FMS by considering the minimum production cost. In the other hand, Heuristic Search is known to have a short searching time. Algorithm Heuristic that using ABC approach as the weight in finding the solution to shorten the equipment selection time during the design / redesign process of the FMS in less than exponential time was designed in this research. The increasing speed is useful because with the faster time in design / redesign process, therefore the flexibility level of part variety that can be processed will become better. Theoretical and empirical analysis in Algorithm Heuristic shows that time searching to get appropriate set of equipment is not too long, so that we can assume that the designed Algorithm Heuristic can be implemented in the real world. By comparing the empirical result of Algorithm Heuristic to the Algorithm Exhaustive, we can also assume that Algorithm Heuristic that using ABC method as the weight for finding solution can optimise the equipment selection problem of FMS based on economical criteria too. Abstract in Bahasa Indonesia : Penggunaan pendekatan Activity Based Costing (ABC untuk memilih set mesin yang digunakan dalam produksi pada Flexible Manufacture Systems (FMS berdasar atas kriteria teknis dan ekonomis, dapat membantu pelaku produksi untuk mendisain FMS dengan pertimbangan minimalisasi biaya produksi. Sementara itu, Heuristic Search dikenal memiliki waktu pencarian yang singkat. Pada riset ini didisain sebuah Algoritma Heuristic yang menggunakan pendekatan ABC sebagai bobot dalam pencarian solusi, untuk mempersingkat waktu pemilihan peralatan saat desain/redisain FMS dalam waktu kurang dari waktu Eksponensial. Peningkatan kecepatan ini bermanfaat, karena dengan cepatnya waktu

  5. Effect of calcium on adsorption capacity of powdered activated carbon.

    Science.gov (United States)

    Li, Gang; Shang, Junteng; Wang, Ying; Li, Yansheng; Gao, Hong

    2013-12-01

    We investigated the effect of calcium ion on the adsorption of humic acid (HA) (as a target pollutant) by powered activated carbon. The HA adsorption isotherms at different pH and kinetics of two different solutions including HA alone and HA doped Ca(2+), were performed. It was showed that the adsorption capacity of powdered activated carbon (PAC) for HA was markedly enhanced when Ca(2+) was doped into HA. Also, HA and Ca(2+) taken as nitrate were tested on the uptake of each other respectively and it was showed that the adsorbed amounts of both of them were significantly promoted when HA and calcium co-existed. Furthermore, the adsorbed amount of HA slightly decreased with the increasing of Ca(2+) concentration, whereas the amount of calcium increased with the increasing of HA concentration, but all above the amounts without addition. Finally, the change of pH before and after adsorption process is studied. In the two different solutions including HA alone and HA doped Ca(2+), pH had a small rise, but the extent of pH of later solution was bigger.

  6. FLUORIDE SORPTION USING MORRINGA INDICA-BASED ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    G. Karthikeyan, S. Siva Ilango

    2007-01-01

    Full Text Available Batch adsorption experiments using activated carbon prepared from Morringa Indica bark were conducted to remove fluoride from aqueous solution. A minimum contact time of 25 min was required for optimum fluoride removal. The influence of adsorbent, dose, pH, co-ions (cations and anions on fluoride removal by the activated carbon has been experimentally verified. The adsorption of fluoride was studied at 30 C, 40 C and 50 C. The kinetics of adsorption and adsorption isotherms at different temperatures were studied. The fluoride adsorption obeyed both Langmuir and Freundlich isotherms and followed a pseudo first order kinetic model. The thermodynamic studies revealed that the fluoride adsorption by Morringa Indica is an endothermic process indicating an increase in sorption rate at higher temperatures. The negative values of G indicate the spontaneity of adsorption. SEM and XRD studies confirmed the surface morphological characteristics of the adsorbent and the deposition of fluoride on the surface of the material.

  7. Cellulose: A review as natural, modified and activated carbon adsorbent.

    Science.gov (United States)

    Suhas; Gupta, V K; Carrott, P J M; Singh, Randhir; Chaudhary, Monika; Kushwaha, Sarita

    2016-09-01

    Cellulose is a biodegradable, renewable, non-meltable polymer which is insoluble in most solvents due to hydrogen bonding and crystallinity. Natural cellulose shows lower adsorption capacity as compared to modified cellulose and its capacity can be enhanced by modification usually by chemicals. This review focuses on the utilization of cellulose as an adsorbent in natural/modified form or as a precursor for activated carbon (AC) for adsorbing substances from water. The literature revealed that cellulose can be a promising precursor for production of activated carbon with appreciable surface area (∼1300m(2)g(-1)) and total pore volume (∼0.6cm(3)g(-1)) and the surface area and pore volume varies with the cellulose content. Finally, the purpose of review is to report a few controversies and unresolved questions concerning the preparation/properties of ACs from cellulose and to make aware to readers that there is still considerable scope for future development, characterization and utilization of ACs from cellulose.

  8. Promoting direct interspecies electron transfer with activated carbon

    DEFF Research Database (Denmark)

    Liu, Fanghua; Rotaru, Amelia-Elena; Shrestha, Pravin M.

    2012-01-01

    Granular activated carbon (GAC) is added to methanogenic digesters to enhance conversion of wastes to methane, but the mechanism(s) for GAC’s stimulatory effect are poorly understood. GAC has high electrical conductivity and thus it was hypothesized that one mechanism for GAC stimulation of metha......Granular activated carbon (GAC) is added to methanogenic digesters to enhance conversion of wastes to methane, but the mechanism(s) for GAC’s stimulatory effect are poorly understood. GAC has high electrical conductivity and thus it was hypothesized that one mechanism for GAC stimulation...... of methanogenesis might be to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens. Metabolism was substantially accelerated when GAC was added to co-cultures of Geobacter metallireducens and Geobacter sulfurreducens grown under conditions previously shown to require DIET. Cells...... were attached to GAC, but did not aggregate as they do when making biological electrical connections between cells. Studies with a series of gene deletion mutants eliminated the possibility that GAC promoted electron exchange via interspecies hydrogen or formate transfer and demonstrated that DIET...

  9. Adsorption onto fibrous activated carbon: applications to water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Le Cloirec, P.; Brasquet, C.; Subrenat, E. [Ecole des Mines de Nantes, Nantes (France)

    1997-03-01

    The adsorption of polluted waters is performed by activated carbon fibers (ACF). This new material is characterized by scanning electron microscopy. BET surface areas and pore volumes are determined. Adsorption of natural organics (humic substances) and micropollutants (aromatic compounds such as benzene and toluene) is carried out in a batch or dynamic reactor. Classical models are applied and kinetic constants calculated. The results show that the performance of ACF is significantly higher than that of granular activated carbon (GAC) in terms of adsorption velocity and selectivity for micropollutants. These higher performances are due to some ACF physical properties, such as their high BET surface area and micropore volume. Moreover, the micropores are directly connected on the external surface area of fibers, which allows smaller mass transfer resistance. In a dynamic reactor, the breakthrough curves obtained with ACF beds are particularly steep, suggesting a smaller mass transfer resistance than that of GAC. The adsorption zone in an ACF bed is about 3.5 mm and is not really dependent on the water flow rate within the studied range. 25 refs., 14 figs., 6 tabs.

  10. Experimental study on adsorption kinetics of activated carbon/R134a and activated carbon/R507A pairs

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Khairul; Koyama, Shigeru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580 (Japan); Saha, Bidyut B. [Mechanical Engineering Department, Kyushu University, 744 Motooka, Fukuoka-shi, Fukuoka 819-0395 (Japan); Rahman, Kazi A.; Chakraborty, Anutosh; Ng, Kim Choon [Mechanical Engineering Department, National University of Singapore, 10 Kent Ridge Crescent (Singapore)

    2010-06-15

    The objective of this article is to evaluate adsorption kinetics of R134a and R507A on pitch based activated carbon experimentally by a constant volume variable pressure method at different adsorption temperatures ranging from 20 to 60 C. These data are useful for the design of adsorption cooling and refrigeration systems and are unavailable in the literature. Data obtained from the kinetic studies were analyzed with various kinetic models and the Fickian diffusion model is found to be the most suitable overall. Guided by the experimental measurements, the surface diffusion is also estimated and is found that it follows the classical Arrhenius law within the experimental range. (author)

  11. Effect of the nature the carbon precursor on the physico-chemical characteristics of the resulting activated carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Vicente, E-mail: vicente.jimenez@uclm.es [Facultad de Ciencias Quimicas, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Sanchez, Paula; Valverde, Jose Luis [Facultad de Ciencias Quimicas, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Romero, Amaya [Escuela Tecnica Agricola, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2010-11-01

    Carbon materials, including amorphous carbon, graphite, carbon nanospheres (CNSs) and different types of carbon nanofibers (CNFs) [platelet, herringbone and ribbon], were chemically activated using KOH. The pore structure of carbon materials was analyzed using N{sub 2}/77 K adsorption isotherms. The presence of oxygen groups was analyzed by temperature programmed desorption in He and acid-base titration. The structural order of the materials was studied by X-ray diffraction and temperature programmed oxidation. The morphology and diameter distribution of CNFs and CNSs were characterized by transmission electron microscopy. The materials were also characterized by temperature-desorption programmed of H{sub 2} and elemental composition. The ways in which the different structures were activated are described, showing the type of pores generated. Relationships between carbon yield, removed carbon, activation degree and graphitic character were also examined. The oxygen content in the form of oxygen-containing surface groups increased after the activation giving qualitative information about them. The average diameter of both CNFs and CNSs was decreased after the activation process as consequence of the changes produced on the material surface.

  12. Comparative Study on Super Fine Mesophase Powder and MCMB Used to Manufacture High-Density Isotropic Carbon Bulks

    Institute of Scientific and Technical Information of China (English)

    LI Tong-qi; HU Zi-jun; WANG Jun-shan; GUO Yu-ming; WANG Cheng-yang

    2006-01-01

    Mesocarbon microbeads (MCMB) and super fine mesophase powder (SFMP) were prepared firstly from a coal tar pitch and then hot-condensed into high-density isotropic carbon (HDIC) bulks under 160 Mpa and finally sintered at 1 000 ℃. By analyzing the thermogravimetric behavior of the MCMB and SFMP powders, their volume shrinkage and weight loss during sintering and the bulk density and flexural strengths of their sintered bulks, it was found that the smaller sizes and the richer β-resin contents of SFMP have facilitated formation of sintered bulks with more compact isotropic structure and higher flexural strengths than MCMB. Because of the filling and bonding effects of SFMP on MCMB bulks, addition of SFMP, albeit a little, can greatly increase the flexural strengths of sintered bulks of MCMB. However, adding MCMB, even a slight amount, into SFMP can severely impair the flexural strength of sintered bulks. This might be attributed to both the crack initiation along the boundaries between MCMB and SFMP and the formation of layered texture of MCMB sphere.

  13. Activated carbons from potato peels: The role of activation agent and carbonization temperature of biomass on their use as sorbents for bisphenol A uptake from aqueous solutions

    Science.gov (United States)

    Arampatzidou, An; Deliyanni, Eleni A.

    2015-04-01

    Activated carbons prepared from potato peels, a solid waste by product, and activated with different activating chemicals, have been studied for the adsorption of an endocrine disruptor (Bisphenol-A) from aqueous solutions. The potato peels biomass was activated with phosphoric acid, KOH and ZnCl2. The different activating chemicals were tested in order the better activation agent to be found. The carbons were carbonized by pyrolysis, in one step procedure, at three different temperatures in order the role of the temperature of carbonization to be pointed out. The porous texture and the surface chemistry of the prepared activated carbons were characterized by Nitrogen adsorption (BET), Scanning Electron Microscope (SEM), thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FTIR). Batch experiments were performed to investigate the effect of pH, the adsorbent dose, the initial bisphenol A concentration and temperature. Equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherms. The thermodynamic parameters such as the change of enthalpy (ΔH0), entropy (ΔS0) and Gibb's free energy (ΔG0) of adsorption systems were also evaluated. The adsorption capacity calculated from the Langmuir isotherm was found to be 450 mg g-1 at an initial pH 3 at 25 °C for the phosphoric acid activated carbon, that make the activated carbon a promising adsorbent material.

  14. Metal Ion Adsorption by Activated Carbons Made from Pecan Shells: Effect of Oxygen Level During Activation

    Science.gov (United States)

    Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as precursors for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this presenta...

  15. Copper (II) Adsorption by Activated Carbons from Pecan Shells: Effect of Oxygen Level During Activation

    Science.gov (United States)

    Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as precursors for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this paper is...

  16. Adsorption of Safranin-T from wastewater using waste materials- activated carbon and activated rice husks.

    Science.gov (United States)

    Gupta, Vinod K; Mittal, Alok; Jain, Rajeev; Mathur, Megha; Sikarwar, Shalini

    2006-11-01

    Textile effluents are major industrial polluters because of high color content, about 15% unfixed dyes and salts. The present paper is aimed to investigate and develop cheap adsorption methods for color removal from wastewater using waste materials activated carbon and activated rice husk-as adsorbents. The method was employed for the removal of Safranin-T and the influence of various factors such as adsorbent dose, adsorbate concentration, particle size, temperature, contact time, and pH was studied. The adsorption of the dye over both the adsorbents was found to follow Langmuir and Freundlich adsorption isotherm models. Based on these models, different useful thermodynamic parameters have been evaluated for both the adsorption processes. The adsorption of Safranin-T over activated carbon and activated rice husks follows first-order kinetics and the rate constants for the adsorption processes decrease with increase in temperature.

  17. REMOVAL OF HEAVY METALS FROM DYE EFFLUENT USING ACTIVATED CARBON PRODUCED FROM COCONUT SHELL

    OpenAIRE

    Onyeji, L. I.; Aboje, A. A.

    2011-01-01

    The ability of activated carbon produced from coconut shell to remoe mercury Hg (II), Lead Pb (II) and Copper Cu (II) from dye effluent was investigated. The activated carbon was produced through chemical activation processes by using zinc chloride (ZnCl2). The adsorption capacity was determined as a function of adsorbent dosage. The adsorption Isotherms of the studied metals on adsorbent were also determined and compared with the Langmair models. The activated carbon produced showed excellen...

  18. Activated carbons prepared from refuse derived fuel and their gold adsorption characteristics.

    Science.gov (United States)

    Buah, William K; Williams, Paul T

    2010-02-01

    Activated carbons produced from refuse derived fuel (RDF), which had been prepared from municipal solid waste have been characterized and evaluated for their potential for gold adsorption from gold chloride solution. Pyrolysis of the RDF produced a char, which was then activated via steam gasification to produce activated carbons. Steam gasification of the char at 900 degrees C for 3 h yielded 73 wt% activated carbon. The derived activated carbon had a surface area of 500 m2 g(-1) and a total pore volume of 0.19 cm3 g(-1). The gold adsorption capacity of the activated carbon was 32.1 mg Au g(-1) of carbon when contacted with an acidified gold chloride solution. The gold adsorption capacity was comparable to that of a commercial activated carbon tested under the same conditions and was well in the range of values of activated carbons used in the gold industry. Demineralization of the RDF activated carbon in a 5 M HCl solution resulted in enhancement of its textural properties but a reduction in the gold adsorption rate, indicating that the metal content of the RDF activated carbon influenced its gold adsorption rate.

  19. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    Science.gov (United States)

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-03-01

    A simple hydrogen adsorption measurement system utilizing the volumetri differential pressure technique has been designed, fabricated and calibrated. Hydroge adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will b helpful in understanding the adsorption property of the studied carbon materials using th fundamentals of adsorption theory. The principle of the system follows the Sievert-type metho The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range. R1, S1, S2, and S3 having known fixed volume The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operatin pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. Hig purity hydrogen is being used in the system and the amount of samples for the study is betwee 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of th adsorption process by eliminating the errors caused by temperature expansion effects and oth non-adsorption related phenomena. The ideal gas equation of state is applied to calculate th hydrogen adsorption capacity based on the differential pressure measurements. Activated carbo with a surface area of 644.87 m2/g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m2/g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption significant at 77

  20. Adsorption of naphthalene from aqueous solution on activated carbons obtained from bean pods.

    Science.gov (United States)

    Cabal, Belen; Budinova, Temenuzhka; Ania, Conchi O; Tsyntsarski, Boyko; Parra, José B; Petrova, Bilyana

    2009-01-30

    The preparation of activated carbons from bean pods waste by chemical (K(2)CO(3)) and physical (water vapor) activation was investigated. The carbon prepared by chemical activation presented a more developed porous structure (surface area 1580 m(2) g(-1) and pore volume 0.809 cm(3) g(-1)) than the one obtained by water vapor activation (258 m(2) g(-1) and 0.206 cm(3) g(-1)). These carbons were explored as adsorbents for the adsorption of naphthalene from water solutions at low concentration and room temperature and their properties are compared with those of commercial activated carbons. Naphthalene adsorption on the carbons obtained from agricultural waste was stronger than that of carbon adsorbents reported in the literature. This seems to be due to the presence of large amounts of basic groups on the bean-pod-based carbons. The adsorption capacity evaluated from Freundlich equation was found to depend on both the textural and chemical properties of the carbons. Naphthalene uptake on biomass-derived carbons was 300 and 85 mg g(-1) for the carbon prepared by chemical and physical activation, respectively. Moreover, when the uptake is normalized per unit area of adsorbent, the least porous carbon displays enhanced naphthalene removal. The results suggest an important role of the carbon composition including mineral matter in naphthalene retention. This issue remains under investigation.