WorldWideScience

Sample records for activated carbon gac

  1. Mechanistic investigation of industrial wastewater naphthenic acids removal using granular activated carbon (GAC) biofilm based processes.

    Science.gov (United States)

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2016-01-15

    Naphthenic acids (NAs) found in oil sands process-affected waters (OSPW) have known environmental toxicity and are resistant to conventional wastewater treatments. The granular activated carbon (GAC) biofilm treatment process has been shown to effectively treat OSPW NAs via combined adsorption/biodegradation processes despite the lack of research investigating their individual contributions. Presently, the NAs removals due to the individual processes of adsorption and biodegradation in OSPW bioreactors were determined using sodium azide to inhibit biodegradation. For raw OSPW, after 28 days biodegradation and adsorption contributed 14% and 63% of NA removal, respectively. For ozonated OSPW, biodegradation removed 18% of NAs while adsorption reduced NAs by 73%. Microbial community 454-pyrosequencing of bioreactor matrices indicated the importance of biodegradation given the diverse carbon degrading families including Acidobacteriaceae, Ectothiorhodospiraceae, and Comamonadaceae. Overall, results highlight the ability to determine specific processes of NAs removals in the combined treatment process in the presence of diverse bacteria metabolic groups found in GAC bioreactors.

  2. GAC

    CERN Multimedia

    GAC

    2014-01-01

          GAC-EPA Groupement des Anciens CERN-ESO Pensioners’ Association Association du Personnel du CERN CH-1211 GENEVE 23 e-mail : http://gac-epa@gac-epa.org web : http://www.gac-epa.org Nous vous annonçons que l’Assemblée générale ordinaire 2014 du GAC aura lieu le mercredi 26 mars 2014 à 14h00 à l’Amphithéâtre principal du CERN, bâtiment 60.

  3. GAC

    CERN Multimedia

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 8 mai de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. * * * * * Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  4. Hydrophobic organic chemicals (HOCs) removal from biologically treated landfill leachate by powder-activated carbon (PAC), granular-activated carbon (GAC) and biomimetic fat cell (BFC).

    Science.gov (United States)

    Liyan, Song; Youcai, Zhao; Weimin, Sun; Ziyang, Lou

    2009-04-30

    Biological pretreatment efficiently remove organic matter from landfill leachate, but further removal of refractory hydrophobic organic chemicals (HOCs) is hard even with advanced treatment. In this work, three-stage-aged refuse bioreactor (ARB) efficiently removed chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of fresh leachate produced in Shanghai laogang landfill, from 8603 to 451 mg L(-1) and 1368 to 30 mg L(-1), respectively. In downstream treatment, 3 g L(-1) powder-activated carbon (PAC), granular-activated carbon (GAC) and biomimetic fat cell (BFC) removed 89.2, 73.4 and 81.1% HOCs, but only 24.6, 19.1 and 8.9% COD, respectively. Through the specific HOCs accumulation characteristics of BFC, about 11.2% HOCs with low molecular weight (BFC. It was also found that the biologically treated leachate effluent exhibited a wide molecular weight distribution (34-514,646 Da). These constitutes are derived from both autochthonous and allochthonous matters as well as biological activities.

  5. Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes

    International Nuclear Information System (INIS)

    The GAC-SBR efficiency was decreased with the increase of dyestuff concentration or the decrease of bio-sludge concentration. The system showed the highest removal efficiency with synthetic textile wastewater (STWW) containing 40 mg/L direct red 23 or direct blue 201 under MLSS of 3000 mg/L and hydraulic retention time (HRT) of 7.5 days. But, the effluent NO3- was higher than that of the influent. Direct red 23 was more effective than direct blue 201 to repress the GAC-SBR system efficiency. The dyes removal efficiency of the system with STWW containing direct red 23 was reduced by 30% with the increase of direct red 23 from 40 mg/L to 160 mg/L. The system with raw textile wastewater (TWW) showed quite low BOD5 TKN and dye removal efficiencies of only 64.7 ± 4.9% and 50.2 ± 6.9%, respectively. But its' efficiencies could be increased by adding carbon sources (BOD5). The dye removal efficiency with TWW was increased by 30% and 20% by adding glucose (TWW + glucose) or Thai rice noodle wastewater (TWW + TRNWW), respectively. SRT of the systems were 28 ± 1 days and 31 ± 2 days with TWW + glucose and TWW + TRNWW, respectively

  6. GAC

    CERN Multimedia

    GAC-EPA

    2010-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 7 septembre de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 octobre, 2 novembre et 7 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   * * * * * Nous avons appris avec tristesse les décès de : M. Gianfalco POZZO (1926), décédé le 30.06.10. Il avait pris sa retraite en 1991 (ex-division PPE). Il laisse une veuve : ...

  7. Successful treatment of high azo dye concentration wastewater using combined anaerobic/aerobic granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR): simultaneous adsorption and biodegradation processes.

    Science.gov (United States)

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    The application of a granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR) for treatment of wastewater containing 1,000 mg/L Acid Red 18 (AR18) was investigated in this research. The treatment system consisted of a sequencing batch reactor equipped with moving GAC as biofilm support. Each treatment cycle consisted of two successive anaerobic (14 h) and aerobic (8 h) reaction phases. Removal of more than 91% chemical oxygen demand (COD) and 97% AR18 was achieved in this study. Investigation of dye decolorization kinetics showed that the dye removal was stimulated by the adsorption capacity of the GAC at the beginning of the anaerobic phase and then progressed following a first-order reaction. Based on COD analysis results, at least 77.8% of the dye total metabolites were mineralized during the applied treatment system. High-performance liquid chromatography analysis revealed that more than 97% of 1-naphthyalamine-4-sulfonate as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase. According to the scanning electron microscopic analysis, the microbial biofilms grew in most cavities and pores of the GAC, but not on the external surfaces of the GAC.

  8. Modelling GAC adsorption of biologically pre-treated process water from hydrothermal carbonization.

    Science.gov (United States)

    Fettig, J; Liebe, H

    2015-01-01

    Granular-activated carbon (GAC) adsorption of biologically pre-treated process waters from hydrothermal carbonization (HTC) of different materials was investigated. Overall, isotherms showed that most of the dissolved organic substances are strongly adsorbable while the non-adsorbable fractions are small. The equilibrium data were modelled by using five fictive components to represent the organic matter. Mean film transfer coefficients and mean intraparticle diffusivities were derived from short-column and batch kinetic test data, respectively. Breakthrough curves in GAC columns could be predicted satisfactorily by applying the film-homogeneous diffusion model and using the equilibrium and kinetic parameters determined from batch tests. Thus, the approach is suited to model GAC adsorption of HTC process water under technical-scale conditions. PMID:26114274

  9. The Effect of Microbial Population and Bioregeneration of used GAC in an Activated Sludge Reactor

    Directory of Open Access Journals (Sweden)

    SAEED REZA ASEMI

    2012-12-01

    Full Text Available In the present work an attempt is made to study the role of microbial population on bioregenerationof granular activated carbon (GAC loaded with phenol compounds in continues bioreactor. The GAC used to treat industrial wastewater of the Mobarakeh steel factory (Esfahan-Iran, is regenerated by means of biological method. Industrial microbes that obtained from the chemical wastewater treatment unit (in the Mobarakeh steel factory, were used in the bioregeneration process of activated carbon. The relationships between each two important parameters of bioregeneration such as adsorbed phenol, pH, mixed liquor suspended solids (MLSS, total suspended solids (TSS and sludge volume index (SVI were studied. It was observed that the adsorption capacity of the bioregenerated GAC increased during the two months of bioregeneration. Furthermore, it was found that pH gradually decreased with degradation of chemical compounds within pores of used GAC. The phenol adsorption capacity increased with increasing microbial cells concentration. In addition, the sludge volume index (SVI decreased from around 231.11 mL mg1*, to 32.68 mL mg-1 during two months of bioregeneration of used GAC. While microbial concentration increases during thebioregeneration process in continues bioreactor.

  10. Fenton- and Persulfate-driven Regeneration of Contaminant-spent Granular Activated Carbon

    Science.gov (United States)

    Fenton- or persulfate-driven chemical oxidation regeneration of spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto GAC and chemical oxidation regeneration of the spent-GAC. Environmental...

  11. Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR).

    Science.gov (United States)

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Abdul Rahman, Rakmi; Hasan Kadhum, Abdul Amir

    2013-05-30

    In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively. PMID:23542216

  12. Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR).

    Science.gov (United States)

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Abdul Rahman, Rakmi; Hasan Kadhum, Abdul Amir

    2013-05-30

    In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively.

  13. Sustainable Regeneration of Nanoparticle Enhanced Activated Carbon in Water

    Science.gov (United States)

    The regeneration and reuse of exhausted granular activated carbon (GAC) is an appropriate method for lowering operational and environmental costs. Advanced oxidation is a promising environmental friendly technique for GAC regeneration. The main objective of this research was to ...

  14. EFFECT OF GAC CHARACTERISTICS ON ADSORPTION OF ORGANIC POLLUTANTS

    Science.gov (United States)

    The impact of the characteristics of granular activated carbon (GAC) on adsorption capacity and on the potential for polymerization of phenolic compounds on the surface of GAC in the presence of molecular oxygen is evaluated in this study. Adsorption isotherm data were collected...

  15. Catalytic Sorption of (Chloro)Benzene and Napthalene in Aqueous Solutions by Granular Activated Carbon Supported Bimetallic Iron and Palladium Nanoparticles

    Science.gov (United States)

    Adsorption of benzene, chlorobenzene, and naphthalene on commercially available granular activated carbon (GAC) and bimetallic nanoparticle (Fe/Pd) loaded GAC was investigated for the potential use in active capping of contaminated sediments. Freundlich and Langmuir linearizatio...

  16. Evaluation of activated carbon processes for removing trihalomethane precursors from a surface water impoundment

    OpenAIRE

    Lavinder, Steven Robert

    1987-01-01

    A pilot plant study was conducted in Newport News, Virginia to investigate the effectiveness of powdered activated carbon [PAC] and granular activated carbon [GAC], with and without preoxidation, for reducing trihalomethane [THM] precursor concentrations in Harwood's Mill Reservoir water. Preoxidation with ozone followed by GAC is referred to as the "biological activated carbonâ [BAC] process. This study showed that the GAC and BAC processes obtained the same level of organic...

  17. ppGpp controlled by the Gac/Rsm regulatory pathway sustains biocontrol activity in Pseudomonas fluorescens CHA0.

    Science.gov (United States)

    Takeuchi, Kasumi; Yamada, Kosumi; Haas, Dieter

    2012-11-01

    In Pseudomonas fluorescens CHA0 and other fluorescent pseudomonads, the Gac/Rsm signal transduction pathway is instrumental for secondary metabolism and biocontrol of root pathogens via the expression of regulatory small RNAs (sRNAs). Furthermore, in strain CHA0, an imbalance in the Krebs cycle can affect the strain's ability to produce extracellular secondary metabolites, including biocontrol factors. Here, we report the metabolome of wild-type CHA0, a gacA-negative mutant, which has lost Gac/Rsm activities, and a retS-negative mutant, which shows strongly enhanced Gac/Rsm-dependent activities. Capillary electrophoresis-based metabolomic profiling revealed that the gacA and retS mutations had opposite effects on the intracellular levels of a number of central metabolites, suggesting that the Gac/Rsm pathway regulates not only secondary metabolism but also primary metabolism in strain CHA0. Among the regulated metabolites identified, the alarmone guanosine tetraphosphate (ppGpp) was characterized in detail by the construction of relA (for ppGpp synthase) and spoT (for ppGpp synthase/hydrolase) deletion mutants. In a relA spoT double mutant, ppGpp synthesis was completely abolished, the expression of Rsm sRNAs was attenuated, and physiological functions such as antibiotic production, root colonization, and plant protection were markedly diminished. Thus, ppGpp appears to be essential for sustaining epiphytic fitness and biocontrol activity of strain CHA0.

  18. The performance of four granular active carbons; Rendimiento de cuatro carbones activos granulares

    Energy Technology Data Exchange (ETDEWEB)

    Hontangas, P. A.; Morcillo Perez, J. L.

    1999-08-01

    The ability of granular active carbon (GAC) to absorb organic contaminants explains why is widely used in treating water for human consumption. This study used a pilot plant assess the efficiency of two vegetable and two mineral GACs in regard to the elimination of trihalomethanes, cloudiness and oxidisability. The iodine value was used to evaluate the loss of absorptions capacity of the different GACs. (Author) 9 refs.

  19. Condensate water treatment by adsorption onto an activated carbon grade with high-activity and low-silicate leaching

    Energy Technology Data Exchange (ETDEWEB)

    Herzer, J. [NORIT Germany, Kempen (Germany); Ernhofer, R. [BAYERNOIL Refineries, Ingolstadt (Germany); Dikkenberg, J. van den [NORIT Activated Carbon, Amersfoort (Netherlands)

    2006-07-01

    Granular activated carbon (GAC) is frequently used to remove dissolved organic impurities from condensate water. An optimal adsorption capacity and GAC life time are achieved by matching the size of the target organics versus the pore size distribution of the activated carbon. From a product range of over 150 activated carbon grades, eight different NORIT GAC types are available for condensate water polishing. Differences between these grades apply to adsorption properties, hydraulic properties and purity. Guidelines for design and operation of the GAC stage are provided. (orig.)

  20. Promoting direct interspecies electron transfer with activated carbon

    DEFF Research Database (Denmark)

    Liu, Fanghua; Rotaru, Amelia-Elena; Shrestha, Pravin M.;

    2012-01-01

    Granular activated carbon (GAC) is added to methanogenic digesters to enhance conversion of wastes to methane, but the mechanism(s) for GAC’s stimulatory effect are poorly understood. GAC has high electrical conductivity and thus it was hypothesized that one mechanism for GAC stimulation...... were attached to GAC, but did not aggregate as they do when making biological electrical connections between cells. Studies with a series of gene deletion mutants eliminated the possibility that GAC promoted electron exchange via interspecies hydrogen or formate transfer and demonstrated that DIET...... of methanogenesis might be to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens. Metabolism was substantially accelerated when GAC was added to co-cultures of Geobacter metallireducens and Geobacter sulfurreducens grown under conditions previously shown to require DIET. Cells...

  1. Degradation of 3,3'-iminobis-propanenitrile in aqueous solution by Fe(0)/GAC micro-electrolysis system.

    Science.gov (United States)

    Lai, Bo; Zhou, Yuexi; Yang, Ping; Yang, Jinghui; Wang, Juling

    2013-01-01

    The degradation of 3,3'-iminobis-propanenitrile was investigated using the Fe(0)/GAC micro-electrolysis system. Effects of influent pH value, Fe(0)/GAC ratio and granular activated carbon (GAC) adsorption on the removal efficiency of the pollutant were studied in the Fe(0)/GAC micro-electrolysis system. The degradation of 3,3'-iminobis-propanenitrile was affected by influent pH, and a decrease of the influent pH values from 8.0 to 4.0 led to the increase of degradation efficiency. Granular activated carbon was added as cathode to form macroscopic galvanic cells between Fe(0) and GAC and enhance the current efficiency of the Fe(0)/GAC micro-electrolysis system. The GAC could only adsorb the pollutant and provide buffer capacity for the Fe(0)/GAC micro-electrolysis system, and the macroscopic galvanic cells of the Fe(0)/GAC micro-electrolysis system played a leading role in degradation of 3,3'-iminobis-propanenitrile. With the analysis of the degradation products with GC-MS, possible reaction pathway for the degradation of 3,3'-iminobis-propanenitrile by the Fe(0)/GAC micro-electrolysis system was suggested.

  2. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    Science.gov (United States)

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties.

  3. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    Science.gov (United States)

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties. PMID:27131303

  4. Effects of ozonation and temperature on the biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2011-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. The removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxy

  5. Effects of ozonation and temperature on biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2010-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. Removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen

  6. Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon

    DEFF Research Database (Denmark)

    Bhatnagar, A.; Ji, M.; Choi, Y.H.;

    2008-01-01

    electron microscopy (SEM), Brunauer Emmett Teller (BET) N-2-gas adsorption, surface area and Energy Dispersive X-Ray (EDX) analysis. The comparison between untreated and ZnCl2 treated GAC indicates that treatment with ZnCl2 has significantly improved the adsorption efficacy of untreated GAC. The adsorption......Adsorption study with untreated and zinc chloride (ZnCl2) treated coconut granular activated carbon (GAC) for nitrate removal from water has been carried out. Untreated coconut GAC was treated with ZnCl2 and carbonized. The optimal conditions were selected by studying the influence of process...... capacity of untreated and ZnCl2 treated coconut GACs were found 1.7 and 10.2 mg/g, respectively. The adsorption of nitrate on ZnCl2 treated coconut GAC was studied as a function of contact time, initial concentration of nitrate anion, temperature, and pH by batch mode adsorption experiments. The kinetic...

  7. Persulfate Oxidation Regeneration of Granular Activated Carbon: Reversible Impacts on Sorption Behavior

    Science.gov (United States)

    Chemical oxidation regeneration of granular activated carbon (GAC) is a developing technology that can be carried out utilizing thermally-activated persulfate. During chemical regeneration of GAC, aggressive oxidative conditions lead to high acidity (pH < 2) and the accumulation ...

  8. COMPARISON OF PHENOL REMOVAL IN ANAEROBIC FLUIDIZED BED REACTORS WITH SAND AND GAC MEDIA

    Directory of Open Access Journals (Sweden)

    A.R. Yazdanbakhsh; A.R. Mesdaghinia; A. Torabian; M. Shariat

    1997-08-01

    Full Text Available In this study two identical anaerobic completely mixed fluidized bed reactors with GAC and sand media were employed for COD & phenol removal. At loading rate of 1.6 g phenol L-1d-1, the efficiency of phenol removal in GAC & sand reactors were 97.7% & 74%, respectively. At high loading rate of phenol (6.09 g phenol I: 1d1 the efficiency of phenol removal in GAC reactor was better than 95%. In GAC reactor, the main mechanism for phenol removal at steady state condition was biological process; this was concluded through balance of gas production and COD removal. Better efficiency of GAC reactor comparing with sand reactor was because of resistance to fluctuations, higher surface for biomass growth and adsorption capacity of activated carbon.

  9. In-Situ Regeneration of Saturated Granular Activated Carbon by an Iron Oxide Nanocatalyst

    Science.gov (United States)

    Granular activated carbon (GAC) can remove trace organic pollutants and natural organic matter (NOM) from industrial and municipal waters. This paper evaluates an iron nanocatalyst approach, based on Fenton-like oxidation reactions, to regenerate spent GAC within a packed bed con...

  10. Immobilized acclimated biomass-powdered activated carbon for the bioregeneration of granular activated carbon loaded with phenol and o-cresol.

    Science.gov (United States)

    Toh, Run-Hong; Lim, Poh-Eng; Seng, Chye-Eng; Adnan, Rohana

    2013-09-01

    The objectives of the study are to use immobilized acclimated biomass and immobilized biomass-powdered activated carbon (PAC) as a novel approach in the bioregeneration of granular activated carbon (GAC) loaded with phenol and o-cresol, respectively, and to compare the efficiency and rate of the bioregeneration of the phenolic compound-loaded GAC using immobilized and suspended biomasses under varying GAC dosages. Bioregeneration of GAC loaded with phenol and o-cresol, respectively, was conducted in batch system using the sequential adsorption and biodegradation approach. The results showed that the bioregeneration efficiency of GAC loaded with phenol or o-cresol was basically the same irrespective of whether the immobilized or suspended biomass was used. Nonetheless, the duration for bioregeneration was longer under immobilized biomass. The beneficial effect of immobilized PAC-biomass for bioregeneration is the enhancement of the removal rate of the phenolic compounds via adsorption and the shortening of the bioregeneration duration. PMID:23796608

  11. Immobilized acclimated biomass-powdered activated carbon for the bioregeneration of granular activated carbon loaded with phenol and o-cresol.

    Science.gov (United States)

    Toh, Run-Hong; Lim, Poh-Eng; Seng, Chye-Eng; Adnan, Rohana

    2013-09-01

    The objectives of the study are to use immobilized acclimated biomass and immobilized biomass-powdered activated carbon (PAC) as a novel approach in the bioregeneration of granular activated carbon (GAC) loaded with phenol and o-cresol, respectively, and to compare the efficiency and rate of the bioregeneration of the phenolic compound-loaded GAC using immobilized and suspended biomasses under varying GAC dosages. Bioregeneration of GAC loaded with phenol and o-cresol, respectively, was conducted in batch system using the sequential adsorption and biodegradation approach. The results showed that the bioregeneration efficiency of GAC loaded with phenol or o-cresol was basically the same irrespective of whether the immobilized or suspended biomass was used. Nonetheless, the duration for bioregeneration was longer under immobilized biomass. The beneficial effect of immobilized PAC-biomass for bioregeneration is the enhancement of the removal rate of the phenolic compounds via adsorption and the shortening of the bioregeneration duration.

  12. Gac-mediated changes in pyrroloquinoline quinone biosynthesis enhance the antimicrobial activity of Pseudomonas fluorescens SBW25

    NARCIS (Netherlands)

    Cheng, X.; Voort, van der M.; Raaijmakers, J.M.

    2015-01-01

    In Pseudomonas species, production of secondary metabolites and exoenzymes is regulated by the GacS/GacA two-component regulatory system. In P. fluorescens SBW25, mutations in the Gac-system cause major transcriptional changes and abolished production of the lipopeptide viscosin and of an exoproteas

  13. GAC - EPA

    CERN Multimedia

    GAC - EPA

    2010-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 7 septembre de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 octobre, 2 novembre et 7 décembre.   Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.     * * * * * Nous avons appris avec tristesse les décès de : M. Georges MARCHAND (1932), décédé le 08 août 2010. Il avait été mis en pens...

  14. Adsorption And Simultaneous Dechlorination Of PCBs On GAC/Fe/Pd: Mechanistic Aspects And Reactive Capping Barrier Concept

    Science.gov (United States)

    There are many concerns and challenges in current remediation strategies for sediments contaminated with polychlorinated biphenyls (PCBs). Our efforts have been geared toward the development of granular activated carbon (GAC) impregnated with reactive iron/palladium (Fe/Pd) bime...

  15. Modification of granular activated carbon surface by chitosan coating for geosmin removal: sorption performances.

    Science.gov (United States)

    Vinitnantharat, S; Rattanasirisophon, W; Ishibashi, Y

    2007-01-01

    This study presents the results of the sorption performances for geosmin removal by sorption onto granular activated carbons (GAC) manufactured from different raw materials of coconut shell and bituminous coal. The surface of GAC was modified by chitosan coating. The 90% deacetylated chitosan flakes were used for coating on GAC with the GAC: chitosan ratio of 5:1. The surface of GAC was characterised by scanning electron microscope (SEM) analysis, Fourier transform infrared spectroscopy and measurement of the pH solution of GAC samples. The sorption of geosmin onto the chitosan for both uncoated and coated GACs could be described by the Freundlich adsorption model. Data revealed that the sequence of Freundlich constant (K(F)) was chitosan coated bitominous coal (CB) > uncoated bituminous coal (UB) > chitos approximately equal to an coated coconut shell (CC) approximately equal to uncoated coconut shell (UC). The bituminous coal based GAC with chitosan coating had a maximum capacity of 23.57 microg/g which was approximately two-fold of uncoated bituminous coal based GAC. Two simplified kinetic models, pseudo-first order and pseudo-second order, were tested to investigate the sorption mechanisms. It was found that the intraparticle diffusion was a rate controlling step for the sorption and followed the pseudo-second order equation.

  16. Comparison between sequential and simultaneous application of activated carbon with membrane bioreactor for trace organic contaminant removal.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Kang, Jinguo; Nghiem, Long D; Price, William E; Guo, Wenshan; Ngo, Huu H; Tung, Kuo-Lun

    2013-02-01

    The removal efficiency of 22 selected trace organic contaminants by sequential application of granular activated carbon (GAC) and simultaneous application of powdered activated carbon (PAC) with membrane bioreactor (MBR) was compared in this study. Both sequential application of GAC following MBR treatment (MBR-GAC) and simultaneous application of PAC within MBR (PAC-MBR) achieved improved removal (over 95%) of seven hydrophilic and biologically persistent compounds, which were less efficiently removed by MBR-only treatment (negligible to 70%). However, gradual breakthrough of these compounds occurred over an extended operation period. Charged compounds, particularly, fenoprop and diclofenac, demonstrated the fastest breakthrough (complete and 50-70%, in MBR-GAC and PAC-MBR, respectively). Based on a simple comparison from the long-term performance stability and activated carbon usage points of view, PAC-MBR appears to be a better option than MBR-GAC treatment. PMID:23313687

  17. Effect of granular activated carbon concentration on the content of organic matter and salt, influencing E. coli activity and survival in fluidized bed disinfection reactor

    NARCIS (Netherlands)

    Racyte, J.; Langenhoff, A.A.M.; Ribeiro, A.F.M.M.R.; Paulitsch-Fuchs, A.H.; Bruning, H.; Rijnaarts, H.

    2014-01-01

    Granular activated carbon (GAC) is used in water treatment systems, typically to remove pollutants such as natural organic matter, volatile organic compounds, chlorine, taste, and odor. GAC is also used as a key component of a new technology that combines a fluidized bed reactor with radio frequency

  18. Removal of Trichloroethylene by Activated Carbon in the Presence and Absence of TiO2 Nanoparticles

    Science.gov (United States)

    Nanoparticles (NPs) are emerging as a new type of contaminant in water and wastewater. The fate of titanium dioxide nanoparticles (TiO2NPs) in a granular activated carbon (GAC) adsorber and their impact on the removal of trichloroethylene (TCE) by GAC was investigated...

  19. Removal of disinfection by-product formation potentials by biologically assisted GAC treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The object of this paper is to evaluate the removal of disinfection by-products formation potential by artificially intensified biological activated carbon(BAC) process which is developed on the basis of traditional ozone granular activated carbon (GAC). The results show that 23.1% of trihalomethane formation potential (THMFP) and 68% of haloacetic acid formation potential (HAAFP) can be removed by BAC,respectively. Under the same conditions, the removal rates of the same substances were 12.2% and 13-25 % respectively only by GAC process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. BAC process has some advantages such as long backwashing cycle time, low backwashing intensity and prolonged activated carbon lifetime, etc.

  20. Modeling and simulations of the removal of formaldehyde using silver nano-particles attached to granular activated carbon.

    Science.gov (United States)

    Shin, SeungKyu; Song, JiHyeon

    2011-10-30

    A combined reaction, consisting of granular activated carbon (GAC) adsorption and catalytic oxidation, has been proposed to improve the removal efficiencies of formaldehyde, one of the major indoor air pollutants. In this study, silver nano-particles attached onto the surface of GAC (Ag-GAC) using the sputtering method were evaluated for the simultaneous catalytic oxidation and adsorption of formaldehyde. The evolution of CO(2) from the silver nano-particles indicated that formaldehyde was catalytically oxidized to its final product, with the oxidation kinetics expressed as pseudo-first order. In addition, a packed column test showed that the mass of formaldehyde removed by the Ag-GAC was 2.4 times higher than that by the virgin GAC at a gas retention time of 0.5s. However, a BET analysis showed that the available surface area and micro-pore volume of the Ag-GAC were substantially decreased due to the deposition of the silver nano-particles. To simulate the performance of the Ag-GAC, the homogeneous surface diffusion model (HSDM), developed for the prediction of the GAC column adsorption, was modified to incorporate the catalytic oxidation taking place on the Ag-GAC surface. The modified HSDM demonstrated that numerical simulations were consistent with the experimental data collected from the Ag-GAC column tests. The model predictions implied that the silver nano-particles deposited on the GAC reduced the adsorptive capacity due to decreasing the available surface for the diffusion of formaldehyde into the GAC, but the overall mass of formaldehyde removed by the Ag-GAC was increased due to catalytic oxidation as a function of the ratio of the surface coverage by the nano-particles.

  1. Impacts of backwashing on granular activated carbon filters for advanced wastewater treatment.

    Science.gov (United States)

    Frank, Joshua; Ruhl, Aki Sebastian; Jekel, Martin

    2015-12-15

    The use of granular activated carbon (GAC) in fixed bed filters is a promising option for the removal of organic micropollutants (OMP) from wastewater treatment plant effluents. Frequent backwashing of the filter bed is inevitable, but its effect on potential filter stratification is not well understood yet and thus has been evaluated in the present study for two commercial GAC products. Backwashing of GAC filters was simulated with 10 or 100 filter bed expansions of 20 or 100% at backwash velocities of 12 and 40 m/h, respectively. Five vertical fractions were extracted and revealed a vertical stratification according to grain sizes and material densities. Sieve analyses indicated increasing grain sizes towards the bottom for one GAC while grain sizes of the other GAC were more homogeneously distributed throughout the filter bed. The apparent densities of the top sections were significantly lower than that of the bottom sections of both products. Comparative long term fixed bed adsorption experiments with the top and bottom sections of the stratified GAC showed remarkable differences in breakthrough curves of dissolved organic carbon, UV light absorption at 254 nm wavelength (UVA254) and OMP. GAC from the upper section showed constantly better removal efficiencies than GAC from the bottom section, especially for weakly adsorbing OMP such as sulfamethoxazole. Furthermore correlations between UVA254 reductions and OMP removals were found. PMID:26405842

  2. Impacts of backwashing on granular activated carbon filters for advanced wastewater treatment.

    Science.gov (United States)

    Frank, Joshua; Ruhl, Aki Sebastian; Jekel, Martin

    2015-12-15

    The use of granular activated carbon (GAC) in fixed bed filters is a promising option for the removal of organic micropollutants (OMP) from wastewater treatment plant effluents. Frequent backwashing of the filter bed is inevitable, but its effect on potential filter stratification is not well understood yet and thus has been evaluated in the present study for two commercial GAC products. Backwashing of GAC filters was simulated with 10 or 100 filter bed expansions of 20 or 100% at backwash velocities of 12 and 40 m/h, respectively. Five vertical fractions were extracted and revealed a vertical stratification according to grain sizes and material densities. Sieve analyses indicated increasing grain sizes towards the bottom for one GAC while grain sizes of the other GAC were more homogeneously distributed throughout the filter bed. The apparent densities of the top sections were significantly lower than that of the bottom sections of both products. Comparative long term fixed bed adsorption experiments with the top and bottom sections of the stratified GAC showed remarkable differences in breakthrough curves of dissolved organic carbon, UV light absorption at 254 nm wavelength (UVA254) and OMP. GAC from the upper section showed constantly better removal efficiencies than GAC from the bottom section, especially for weakly adsorbing OMP such as sulfamethoxazole. Furthermore correlations between UVA254 reductions and OMP removals were found.

  3. Removing lead in drinking water with activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.M.; Kuennen, R.W. (Amway Corp., Ada, MI (United States))

    1994-02-01

    A point-of-use (POU) granular activated carbon (GAC) fixed bed adsorber (FBA) was evaluated for reduction of soluble and insoluble lead from drinking water. Some of the factors which affect lead removal by GAC were evaluated, such as carbon type, solution pH, and a limited amount of work on competitive interactions. The design criteria for lead reduction by a POU device are also addressed. Minicolumns were used to evaluate the capacity of carbon for lead under a variety of conditions. The importance of surface chemistry of the carbon and the relationship with the pH of the water for lead reduction was demonstrated. Results indicate that a properly designed POU-GAC-FBA can reduce lead in drinking water to below the EPA action level of 15 ppb while being tested under a variety of conditions as specified under the National Sanitation Foundation (NSF) International Standard 53 test protocol. 37 refs., 9 figs., 1 tab.

  4. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors.

    Science.gov (United States)

    Lee, Jung-Yeol; Lee, Sang-Hoon; Park, Hee-Deung

    2016-04-01

    Direct interspecies electron transfer (DIET) via conductive materials can provide significant benefits to anaerobic methane formation in terms of production amount and rate. Although granular activated carbon (GAC) demonstrated its applicability in facilitating DIET in methanogenesis, DIET in continuous flow anaerobic reactors has not been verified. Here, evidences of DIET via GAC were explored. The reactor supplemented with GAC showed 1.8-fold higher methane production rate than that without GAC (35.7 versus 20.1±7.1mL-CH4/d). Around 34% of methane formation was attributed to the biomass attached to GAC. Pyrosequencing of 16S rRNA gene demonstrated the enrichment of exoelectrogens (e.g. Geobacter) and hydrogenotrophic methanogens (e.g. Methanospirillum and Methanolinea) from the biomass attached to GAC. Furthermore, anodic and cathodic currents generation was observed in an electrochemical cell containing GAC biomass. Taken together, GAC supplementation created an environment for enriching the microorganisms involved in DIET, which increased the methane production rate. PMID:26836607

  5. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons

    International Nuclear Information System (INIS)

    This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove ∼6.3 L g-1 dry media and ∼4 L g-1 dry media of water contaminated with 30 μg L-1 TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only ∼0.2 L/g dry media for TCE and ∼2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant.

  6. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    Science.gov (United States)

    Qu, Guangzhou; Liang, Dongli; Qu, Dong; Huang, Yimei; Li, Jie

    2014-06-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration.

  7. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Chang Qigang [Department of Civil Engineering, North Dakota State University, Fargo, ND 58105 (United States); School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China); Lin Wei, E-mail: wei.lin@ndsu.edu [Department of Civil Engineering, North Dakota State University, Fargo, ND 58105 (United States); Ying Weichi [School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2010-12-15

    Granular activated carbon (GAC) was impregnated with iron through a new multi-step procedure using ferrous chloride as the precursor for removing arsenic from drinking water. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was distributed evenly on the internal surface of the GAC. Impregnated iron formed nano-size particles, and existed in both crystalline (akaganeite) and amorphous iron forms. Iron-impregnated GACs (Fe-GACs) were treated with sodium hydroxide to stabilize iron in GAC and impregnated iron was found very stable at the common pH range in water treatments. Synthetic arsenate-contaminated drinking water was used in isotherm tests to evaluate arsenic adsorption capacities and iron use efficiencies of Fe-GACs with iron contents ranging from 1.64% to 12.13% (by weight). Nonlinear regression was used to obtain unbiased estimates of Langmuir model parameters. The arsenic adsorption capacity of Fe-GAC increased significantly with impregnated iron up to 4.22% and then decreased with more impregnated iron. Fe-GACs synthesized in this study exhibited higher affinity for arsenate as compared with references in literature and shows great potential for real implementations.

  8. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    International Nuclear Information System (INIS)

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration

  9. Granular activated carbon for removal of organic matter and turbidity from secondary wastewater.

    Science.gov (United States)

    Hatt, J W; Germain, E; Judd, S J

    2013-01-01

    A range of commercial granular activated carbon (GAC) media have been assessed as pretreatment technologies for a downstream microfiltration (MF) process. Media were assessed on the basis of reduction in both organic matter and turbidity, since these are known to cause fouling in MF membranes. Isotherm adsorption analysis through jar testing with supplementary column trials revealed a wide variation between the different adsorbent materials with regard to organics removal and adsorption kinetics. Comparison with previous work using powdered activated carbon (PAC) revealed that for organic removal above 60% the use of GAC media incurs a significantly lower carbon usage rate than PAC. All GACs tested achieved a minimum of 80% turbidity removal. This combination of turbidity and organic removal suggests that GAC would be expected to provide a significant reduction in fouling of a downstream MF process with improved product water quality. PMID:23306264

  10. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon.

    Science.gov (United States)

    Bian, Yanhong; Yang, Xufei; Liang, Peng; Jiang, Yong; Zhang, Changyong; Huang, Xia

    2015-11-15

    A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) desalination rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior desalination performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's desalination rate. PMID:26360230

  11. Pesticide Removal by Combined Ozonation and Granular Activated Carbon Filtration

    NARCIS (Netherlands)

    Orlandini, E.

    1999-01-01

    This research aimed to idendfy and understand mechanisms that underlie the beneficial effect of ozonation on removal of pesdcides and other micropoUutants by Granular Activated Carbon (GAC) filtradon. This allows optimization of the combination of these two processes, termed Biological Activated Car

  12. Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon

    Science.gov (United States)

    The present study suggests a combined adsorption and Fenton oxidation using an acid treated Fe-amended granular activated carbon (Fe-GAC) for effective removal of bisphenol A in water. When the Fe-GAC adsorbs and is saturated with BPA in water, Fenton oxidation of BPA occurs in ...

  13. Equilibrium and kinetic modeling of contaminant immobilization by activated carbon amended to sediments in the field.

    Science.gov (United States)

    Rakowska, Magdalena I; Kupryianchyk, Darya; Koelmans, Albert A; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-12-15

    Addition of activated carbons (AC) to polluted sediments and soils is an attractive remediation technique aiming at reducing pore water concentrations of hydrophobic organic contaminants (HOCs). In this study, we present (pseudo-)equilibrium as well as kinetic parameters for sorption of a series of PAHs and PCBs to powdered and granular activated carbons (AC) after three different sediment treatments: sediment mixed with powdered AC (PAC), sediment mixed with granular AC (GAC), and addition of GAC followed by 2 d mixing and subsequent removal ('sediment stripping'). Remediation efficiency was assessed by quantifying fluxes of PAHs towards SPME passive samplers inserted in the sediment top layer, which showed that the efficiency decreased in the order of PAC > GAC stripping > GAC addition. Sorption was very strong to PAC, with Log KAC (L/kg) values up to 10.5. Log KAC values for GAC ranged from 6.3-7.1 and 4.8-6.2 for PAHs and PCBs, respectively. Log KAC values for GAC in the stripped sediment were 7.4-8.6 and 5.8-7.7 for PAH and PCB. Apparent first order adsorption rate constants for GAC (kGAC) in the stripping scenario were calculated with a first-order kinetic model and ranged from 1.6 × 10(-2) (PHE) to 1.7 × 10(-5) d(-1) (InP). Sorption affinity parameters did not change within 9 months post treatment, confirming the longer term effectiveness of AC in field applications for PAC and GAC. PMID:25262554

  14. Reductive dehalogenation of disinfection byproducts by an activated carbon-based electrode system.

    Science.gov (United States)

    Li, Yuanqing; Kemper, Jerome M; Datuin, Gwen; Akey, Ann; Mitch, William A; Luthy, Richard G

    2016-07-01

    Low molecular weight, uncharged, halogenated disinfection byproducts (DBPs) are poorly removed by the reverse osmosis and advanced oxidation process treatment units often applied for further treatment of municipal wastewater for potable reuse. Granular activated carbon (GAC) treatment effectively sorbed 22 halogenated DBPs. Conversion of the GAC to a cathode within an electrolysis cell resulted in significant degradation of the 22 halogenated DBPs by reductive electrolysis at -1 V vs. Standard Hydrogen Electrode (SHE). The lowest removal efficiency over 6 h electrolysis was for trichloromethane (chloroform; 47%) but removal efficiencies were >90% for 13 of the 22 DBPs. In all cases, DBP degradation was higher than in electrolysis-free controls, and degradation was verified by the production of halides as reduction products. Activated carbons and charcoal were more effective than graphite for electrolysis, with graphite featuring poor sorption for the DBPs. A subset of halogenated DBPs (e.g., haloacetonitriles, chloropicrin) were degraded upon sorption to the GAC, even without electrolysis. Using chloropicrin as a model, experiments indicated that this loss was attributable to the partial reduction of sorbed chloropicrin from reducing equivalents in the GAC. Reducing equivalents depleted by these reactions could be restored when the GAC was treated by reductive electrolysis. GAC treatment of an advanced treatment train effluent for potable reuse effectively reduced the concentrations of chloroform, bromodichloromethane and dichloroacetonitrile measured in the column influent to below the method detection limits. Treatment of the GAC by reductive electrolysis at -1 V vs. SHE over 12 h resulted in significant degradation of the chloroform (63%), bromodichloromethane (96%) and dichloroacetonitrile (99%) accumulated on the GAC. The results suggest that DBPs in advanced treatment train effluents could be captured and degraded continuously by reductive electrolysis

  15. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality.

    Science.gov (United States)

    da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela

    2012-01-01

    This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.

  16. Use of chlorination, ozonization and GAC adsorption to eliminate triazine pesticides in water supplies; Eliminacion de plaguicidas en aguas de abastecimiento mediante cloracion, ozonizacion y adsorcion con GAC

    Energy Technology Data Exchange (ETDEWEB)

    Ormad Melero, M. P.; Garcia Castillo, F. J.; Munarriz Cid, B.

    2009-07-01

    This study is focused on the research made between Facsa and Universidad de Zaragoza (Spain) related to the oxidation techniques application by chlorination and ozonization, and their combination with granular activated carbon (GAC) adsorption of mineral origin, in order to control triazine pesticides in water supplies. Experiments are carried out is a pilot plant. Although the chlorination or ozonization can partially degrade pesticides under study (atrazine, simazine, terbutilazine and bromacil), their passing through an adsorption column with GAC mineral, achieves their total removal when their initial concentrations are about 500 ng/l. These concentrations are obtained by fortification of studied sample. (Author) 9 refs.

  17. Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Dosseto, Anthony; Richardson, Christopher; Price, William E; Nghiem, Long D

    2016-06-01

    Laccase was immobilized on granular activated carbon (GAC) and the resulting GAC-bound laccase was used to degrade four micropollutants in a packed-bed column. Compared to the free enzyme, the immobilized laccase showed high residual activities over a broad range of pH and temperature. The GAC-bound laccase efficiently removed four micropollutants, namely, sulfamethoxazole, carbamazepine, diclofenac and bisphenol A, commonly detected in raw wastewater and wastewater-impacted water sources. Mass balance analysis showed that these micropollutants were enzymatically degraded following adsorption onto GAC. Higher degradation efficiency of micropollutants by the immobilized compared to free laccase was possibly due to better electron transfer between laccase and substrate molecules once they have adsorbed onto the GAC surface. Results here highlight the complementary effects of adsorption and enzymatic degradation on micropollutant removal by GAC-bound laccase. Indeed laccase-immobilized GAC outperformed regular GAC during continuous operation of packed-bed columns over two months (a throughput of 12,000 bed volumes). PMID:26803903

  18. Removal of MIB and geosmin using granular activated carbon with and without MIEX pre-treatment.

    Science.gov (United States)

    Drikas, Mary; Dixon, Mike; Morran, Jim

    2009-12-01

    This study assessed the impact of MIEX pre-treatment, followed by either coagulation or microfiltration (MF), on the effectiveness of pilot granular activated carbon (GAC) filters for the removal of the taste and odour compounds, 2-methylisoborneol (MIB) and geosmin, from a surface drinking water source over a 2-year period. Complete removal of MIB and geosmin was achieved by all GAC filters for the first 10 months, suggesting that the available adsorption capacity was sufficient to compensate for differences in dissolved organic carbon (DOC) entering the GAC filters. Reduction of empty bed contact time (EBCT), in all but one GAC filter, resulted in breakthrough of spiked MIB and geosmin, with initial results inconclusive regarding the impact of MIEX pre-treatment. MIB and geosmin removal increased over the ensuing 12 months until complete removal of both MIB and geosmin was again achieved in all but one GAC filter, which had been pre-chlorinated. Autoclaving and washing the GAC filters had minimal impact on geosmin removal but reduced MIB removal by 30% in all but the pre-chlorinated filter, confirming that biodegradation impacted MIB removal. The impact of biodegradation was greater than any impact on GAC adsorption arising from DOC differences due to MIEX pre-treatment. It is not clear whether, at a lower initial EBCT, MIEX pre-treatment may have impacted on the adsorption capacity of the virgin GAC. The GAC filter maintained at the longer EBCT, which was also pre-chlorinated, completely removed MIB and geosmin for the period of the study, suggesting that the greater adsorption capacity was compensating for any decrease in biological degradation.

  19. Adsorption behavior of alpha -cypermethrin on cork and activated carbon.

    Science.gov (United States)

    Domingues, Valentina F; Priolo, Giuseppe; Alves, Arminda C; Cabral, Miguel F; Delerue-Matos, Cristina

    2007-08-01

    Studies were undertaken to determine the adsorption behavior of alpha -cypermethrin [R)-alpha -cyano-3-phenoxybenzyl(1S)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-alpha-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze alpha -cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time - 24 hours for both cork (1-2 mm and 3-4 mm) and GAC. For the studied alpha -cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1-2 mm have the maximum amount of adsorbed alpha-cypermethrin (q(m)) (303 microg/g); followed by GAC (186 microg/g) and cork 3-4 mm (136 microg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the alpha -cypermethrin adsorption phenomena on GAC, while alpha -cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing alpha -cypermethrin from water.

  20. Kinetics of adsorption of di-n-butyl phthalate (DBP) by four different granule-activated carbons

    Institute of Scientific and Technical Information of China (English)

    Po keung TSANG; Zhanqiang FANG; Hui LIU; Xiaolei CHEN

    2008-01-01

    The kinetics of the adsorption of an endocrine disruptor,di,n,butyl phthalate (DBP),by four different granulated,activated carbons (GACs) is presented in this paper. Results showed that adsorption of DBP by the four GACs followed first,order kinetics and the adsorption constant of the four GAC was found to follow the order:nut shell>coconut shell>Coaly carbon 1.0>Coaly carbon 1.5. Batch adsorption studies were also conducted to investigate the effect of pH on the adsorption process. The optimum pH for the removal of DBP from aqueous solutions under the experimental conditions used in this work was found to be 5.0. The characterization of the carbon surfaces was conducted by using scanning electron microscopy (SEM). Furthermore,results from infrared spectroscopic (IR) studies showed that physical adsorption plays an important role in the adsorption of DBP by the four selected GACs.

  1. Study on the adsorption of Cr(Ⅵ) onto landfill liners containing granular activated carbon or bentonite activated by acid

    Institute of Scientific and Technical Information of China (English)

    LU Hai-jun; LUAN Mao-tian; ZHANG Jin-li; YU Yong-xian

    2008-01-01

    The adsorption capacity of landfill liners containing granular activated carbon (GAC), or bentonite activated by acid, for Cr(VI) was investigated by batch testing. The results show that both GAC and activated bentonite could be used as sorptive amendments for trapping Cr(VI) in landfill liners. The Cr(VI) sorption to GAC and activated bentonite is much greater than Cr(VI) sorption to natural clay. The adsorption capacity of Cr(VI) onto all the soils increases with increasing temperature; adsorption ca-pacity is also significantly influenced by soil-solid concentration. As the soil-solid concentration increases the adsorption capacity first decreases logarithmically, but then stabilizes when the soil-solid concentration exceeds a critical value (e.g. 400 g/L). Perme-ability tests were conducted in the laboratory. The results indicate that the hydraulic conductivity of landfill liners containing GAC or activated bentonite can meet the engineering requirement of 1 nm/s. One-dimensional transport simulations for Cr(VI) were performed to evaluate the effect of GAC and activated bentonite on landfill liners. The results of the simulations indicate that land-fill liners containing GAC, or activated bentonite, significantly retard the transport of Cr(VI) relative to a conventional clay liner.

  2. GAC-EPA

    CERN Document Server

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 1er mars de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 avril, 3 mai, 7 juin, 6 septembre, 4 octobre, 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  3. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 1er décembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  4. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 2 février de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 1er mars, 5 avril, 3 mai, 7 juin, 6 septembre, 4 octobre, 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  5. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 1er novembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel La permanence suivante aura lieu le mardi 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  6. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 5 avril de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 3 mai, 7 juin, 6 septembre, 4 octobre, 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  7. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 5 avril de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 3 mai, 7 juin, 6 septembre, 4 octobre, 1er et 29 novembre décembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  8. GAC-EPA

    CERN Document Server

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : le mardi 29 novembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  9. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 4 octobre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  10. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 mai de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 7 juin, 6 septembre, 4 octobre, 1er et 29 novembre décembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  11. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : le mardi 1er novembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel. La permanence suivante aura lieu le mardi 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  12. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 7 février de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/ e-mail : gac-epa@gac-epa.org

  13. GAC-EPA

    CERN Document Server

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 novembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel La permanence suivante aura lieu le mardi 1er décembre 2015. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  14. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 février de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  15. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 2 juin de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 1er septembre, 6 octobre, 3 novembre et 1er décembre 2015. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  16. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2013-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 décembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  17. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2013-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 1er octobre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 novembre et 3 décembre 2013. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  18. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2013-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 5 novembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel La permanence suivante aura lieu le mardi 3 décembre 2013. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  19. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 mars de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 7 avril, 5 mai, 2 juin, 1er septembre, 6 octobre, 3 novembre et 1er décembre 2013. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  20. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 7 avril de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 mai, 2 juin, 1er septembre, 6 octobre, 3 novembre et 1er décembre 2013. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  1. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 8 mai de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. * * * * * Informations : http://gac-epa.org/ e-mail : gac-epa@gac-epa.org

  2. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2013-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 7 mai de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/ e-mail : gac-epa@gac-epa.org

  3. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2014-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 4 février de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org. * * * * * Carte de membre de l'Association du personnel du CERN Les membres GAC-EPA qui souhaitent recevoir une carte de membre AP en 2014 doivent  en faire la demande par email à secretariat@gac-epa.org, ou par lettre au secrétaire ...

  4. The Fate and Transport of the SiO2 Nanoparticles in a Granular Activated Carbon Bed and Their Impact on the Removal of VOCs

    Science.gov (United States)

    Adsorption isotherm, adsorption kinetics and column breakthrough experiments evaluating trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) were conducted in the presence and absence of silica nanoparticles (SiO2 NPs). Zeta potential of the SiO

  5. Comparison of activated carbon and bottom ash removal of reactive dye from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dincer, A.R.; Gunes, Y.; Karakaya, N.; Gunes, E. [Trakya University, Tekirdag (Turkey). Dept. of Environmental Engineering

    2007-03-15

    The adsorption of reactive dye from synthetic aqueous solution onto granular activated carbon (GAC) and coal-based bottom ash (CBBA) were studied under the same experimental conditions. As an alternative to GAC CBBA was used as adsorbent for dye removal from aqueous solution. The amount of Vertigo Navy Marine (VNM) adsorbed onto CBBA was lower compared with GAC at equilibrium and dye adsorption capacity increased from 0.71 to 3.82 mg g{sup -1}, and 0.73 to 6.35 mg g{sup -1} with the initial concentration of dye from 25 to 300 mg l{sup -1} respectively. The initial dye uptake of CBBA was not so rapid as in the case of GAC and the dye uptake was slow and gradually attained equilibrium.

  6. Microbial activity in granular activated carbon filters in drinking water treatment

    NARCIS (Netherlands)

    Knezev, A.

    2015-01-01

    The investigations described are carried out to analyse the microbiological processes in relation to the GAC characteristics and the removal of natural organic matter (NOM) in Granular Activated Carbon filters (GACFs) in water treatment. The main goal of the study was to obtain a qualitative descrip

  7. The Implications of Fe2O3 and TiO2 Nanoparticles on the Removal of Trichloroethylene by Activated Carbon in the Presence and Absence of Humic Acid

    Science.gov (United States)

    The implications of Fe2O3 and TiO2 nanoparticles (NPs) on a granular activated carbon (GAC) adsorber and their impact on the removal of Trichloroethylene (TCE) were investigated in the presence of humic acid (HA). The surface charge of the GAC and NPs was obtained in the presence...

  8. Use of chlorination, ozonization and GAC adsorption to eliminate triazine pesticides in water supplies

    International Nuclear Information System (INIS)

    This study is focused on the research made between Facsa and Universidad de Zaragoza (Spain) related to the oxidation techniques application by chlorination and ozonization, and their combination with granular activated carbon (GAC) adsorption of mineral origin, in order to control triazine pesticides in water supplies. Experiments are carried out is a pilot plant. Although the chlorination or ozonization can partially degrade pesticides under study (atrazine, simazine, terbutilazine and bromacil), their passing through an adsorption column with GAC mineral, achieves their total removal when their initial concentrations are about 500 ng/l. These concentrations are obtained by fortification of studied sample. (Author) 9 refs

  9. Adsorption of dissolved natural organic matter by modified activated carbons.

    Science.gov (United States)

    Cheng, Wei; Dastgheib, Seyed A; Karanfil, Tanju

    2005-06-01

    Adsorption of dissolved natural organic matter (DOM) by virgin and modified granular activated carbons (GACs) was studied. DOM samples were obtained from two water treatment plants before (i.e., raw water) and after coagulation/flocculation/sedimentation processes (i.e., treated water). A granular activated carbon (GAC) was modified by high temperature helium or ammonia treatment, or iron impregnation followed by high temperature ammonia treatment. Two activated carbon fibers (ACFs) were also used, with no modification, to examine the effect of carbon porosity on DOM adsorption. Size exclusion chromatography (SEC) and specific ultraviolet absorbance (SUVA(254)) were employed to characterize the DOMs before and after adsorption. Iron-impregnated (HDFe) and ammonia-treated (HDN) activated carbons showed significantly higher DOM uptakes than the virgin GAC. The enhanced DOM uptake by HDFe was due to the presence of iron species on the carbon surface. The higher uptake of HDN was attributed to the enlarged carbon pores and basic surface created during ammonia treatment. The SEC and SUVA(254) results showed no specific selectivity in the removal of different DOM components as a result of carbon modification. The removal of DOM from both raw and treated waters was negligible by ACF10, having 96% of its surface area in pores smaller than 1 nm. Small molecular weight (MW) DOM components were preferentially removed by ACF20H, having 33% of its surface area in 1--3 nm pores. DOM components with MWs larger than 1600, 2000, and 2700 Da of Charleston raw, Charleston-treated, and Spartanburg-treated waters, respectively, were excluded from the pores of ACF20H. In contrast to carbon fibers, DOM components from entire MW range were removed from waters by virgin and modified GACs. PMID:15927230

  10. Bacterial Community Structure Shifted by Geosmin in Granular Activated Carbon System of Water Treatment Plants.

    Science.gov (United States)

    Pham, Ngoc Dung; Lee, Eun-Hee; Chae, Seon-Ha; Cho, Yongdeok; Shin, Hyejin; Son, Ahjeong

    2016-01-01

    We investigated the relation between the presence of geosmin in water and the bacterial community structure within the granular activated carbon (GAC) system of water treatment plants in South Korea. GAC samples were collected in May and August of 2014 at three water treatment plants (Sungnam, Koyang, and Yeoncho in Korea). Dissolved organic carbon and geosmin were analyzed before and after GAC treatment. Geosmin was found in raw water from Sungnam and Koyang water treatment plants but not in that from Yeoncho water treatment plant. Interestingly, but not surprisingly, the 16S rRNA clone library indicated that the bacterial communities from the Sungnam and Koyang GAC systems were closely related to geosmin-degrading bacteria. Based on the phylogenetic tree and multidimensional scaling plot, bacterial clones from GAC under the influence of geosmin were clustered with Variovorax paradoxus strain DB 9b and Comamonas sp. DB mg. In other words, the presence of geosmin in water might have inevitably contributed to the growth of geosmin degraders within the respective GAC system.

  11. Arsenic adsorption and speciation in drinking water by GAC-based iron-containing adsorbents

    Science.gov (United States)

    Gim, Yewon; Terry, Jeff; Gu, Zhimang; Hua, B.; Deng, Baolin

    2008-04-01

    Granular Activated Carbon (GAC) with Iron adsorbents were developed for effective removal of arsenic from drinking water. The structure and proposed mechanism for As removal was studied using X-ray absorption spectroscopy. The oxidation state of As(III)GAC sample was calculated using XANES spectra and verified to be predominantly As(V). The structure was determined using EXAFS spectra of As(V) and Fe. The Fe spectra suggested thin layer of Fe oxide formation on GAC surface. As data showed As oxide formed bond on the Fe oxide surface. The spectra were calculated using multiple geometrically optimized models calculated using density functional theory. Further calculations were done to verify the structure, and further examine the structure.

  12. Pilot Study on Nanofiltration Combined with Ozonation and GAC for Advanced Drinking Water Treatment

    Institute of Scientific and Technical Information of China (English)

    XUE Gang; HE Sheng-bing; WANG Xin-ze

    2004-01-01

    A pilot-scale study of advanced drinking water treatment was carried out in test site, and a combination of ozonation, granular activated carbon (GAC) and nanofiltration was employed as the experimental process. By optimizing the operational parameters of ozonation and GAC, a large quantity of micro-pollutants in drinking water was removed, which made the post-positioned nanofiltration operate more reliably. It was evident that nanofiltration shows good performance for removing residual organic matter, meantime partial minerals can also be retained by nanofiltration. Therefore the quality of drinking water can be further improved. In addition, NF membrane fouling and scaling can be solved by concentrate recycling, anti-scalant dosing and chemical rinsing effectively. By GAC adsorption for the residue chlorine and ozone self-decomposition, their oxidation on NF membrane material can be eliminated completely.

  13. Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester.

    Science.gov (United States)

    Xu, Suyun; He, Chuanqiu; Luo, Liwen; Lü, Fan; He, Pinjing; Cui, Lifeng

    2015-11-01

    Two sizes of conductive particles, i.e. 10-20 mesh granulated activated carbon (GAC) and 80-100 mesh powdered activated carbon (PAC) were added into lab-scale upflow anaerobic sludge blanket reactors, respectively, to testify their enhancement on the syntrophic metabolism of alcohols and volatile fatty acids (VFAs) in 95days operation. When OLR increased to more than 5.8gCOD/L/d, the differences between GAC/PAC supplemented reactors and the control reactor became more significant. The introduction of activated carbon could facilitate the enrichment of methanogens and accelerate the startup of methanogenesis, as indicated by enhanced methane yield and substrate degradation. High-throughput pyrosequencing analysis showed that syntrophic bacteria and Methanosarcina sp. with versatile metabolic capability increased in the tightly absorbed fraction on the PAC surface, leading to the promoted syntrophic associations. Thus PAC prevails over than GAC for methanogenic reactor with heavy load. PMID:26298405

  14. Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities.

    Science.gov (United States)

    Gangupomu, Roja Haritha; Sattler, Melanie L; Ramirez, David

    2016-01-25

    The overall goal was to determine an optimum pre-treatment condition for carbon nanotubes (CNTs) to facilitate air pollutant adsorption. Various combinations of heat and chemical pre-treatment were explored, and toluene was tested as an example hazardous air pollutant adsorbate. Specific objectives were (1) to characterize raw and pre-treated single-wall (SW) and multi-wall (MW) CNTs and compare their physical/chemical properties to commercially available granular activated carbon (GAC), (2) to determine the adsorption capacities for toluene onto pre-treated CNTs vs. GAC. CNTs were purified via heat-treatment at 400 °C in steam, followed by nitric acid treatment (3N, 5N, 11N, 16N) for 3-12 h to create openings to facilitate adsorption onto interior CNT sites. For SWNT, Raman spectroscopy showed that acid treatment removed impurities up to a point, but amorphous carbon reformed with 10h-6N acid treatment. Surface area of SWNTs with 3 h-3N acid treatment (1347 m(2)/g) was higher than the raw sample (1136 m(2)/g), and their toluene maximum adsorption capacity was comparable to GAC. When bed effluent reached 10% of inlet concentration (breakthrough indicating time for bed cleaning), SWNTs had adsorbed 240 mg/g of toluene, compared to 150 mg/g for GAC. Physical/chemical analyses showed no substantial difference for pre-treated vs. raw MWNTs. PMID:26476807

  15. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems.

    Science.gov (United States)

    Paredes, L; Fernandez-Fontaina, E; Lema, J M; Omil, F; Carballa, M

    2016-05-01

    In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters. PMID:26897407

  16. Effect of Activated Carbon Amendment on Bacterial Community Structure and Functions in a PAH Impacted Urban Soil

    OpenAIRE

    Meynet, Paola; Hale, Sarah E.; Davenport, Russell J; Cornelissen, Gerard; Breedveld, Gijs D.; Werner, David

    2012-01-01

    We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2% powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophores...

  17. GAC-EPA

    CERN Document Server

    GAC-EPA

    2013-01-01

    Carte de membre de l'Association du personnel du CERN Comme cela a été précisé dans le bulletin d'automne n° 43, les membres GAC-EPA qui souhaitent recevoir une carte de membre AP en 2013 devront en faire la demande, avant le 31 janvier, par email à secretariat@gac-epa.org, ou par lettre au secrétaire du GAC-EPA, p/a Association du personnel CERN, CH-1211 GENEVE 23. Il n'y a pas de tacite reconduction de ces cartes et par conséquent une demande doit être faite chaque année par l'intéressé(e).

  18. GAC-EPA

    CERN Multimedia

    GAC-EPA

    GROUPEMENT DES ANCIENS DU CERN ESO PENSIONERS’S ASSOCIATION Le GAC-EPA organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 1er décembre de 13 h 30 à 16 h 00 Salle de conférence de l’Association du personnel Les permanences du GAC-EPA sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. http://www.gac-epa.org

  19. Microtiter plate based colorimetric assay for characterization of dehalogenation activity of GAC/Fe0 composite

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Salatas, Apostolos; Mines, Paul D.;

    2015-01-01

    Even though nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, a quantification of nZVI reactivity has not been standardized. Here, we developed series of colorimetric assays for determining reductive activity o...... based color assay will be useful and simple tool in various nZVI related research topics, e.g. different stabilization, immobilization, etc....

  20. The Hybrid Histidine Kinase LadS Forms a Multicomponent Signal Transduction System with the GacS/GacA Two-Component System in Pseudomonas aeruginosa

    Science.gov (United States)

    Redelberger, David; Fadel, Firas; Filloux, Alain; Sivaneson, Melissa; de Bentzmann, Sophie; Bordi, Christophe

    2016-01-01

    In response to environmental changes, Pseudomonas aeruginosa is able to switch from a planktonic (free swimming) to a sessile (biofilm) lifestyle. The two-component system (TCS) GacS/GacA activates the production of two small non-coding RNAs, RsmY and RsmZ, but four histidine kinases (HKs), RetS, GacS, LadS and PA1611, are instrumental in this process. RetS hybrid HK blocks GacS unorthodox HK autophosphorylation through the formation of a heterodimer. PA1611 hybrid HK, which is structurally related to GacS, interacts with RetS in P. aeruginosa in a very similar manner to GacS. LadS hybrid HK phenotypically antagonizes the function of RetS by a mechanism that has never been investigated. The four sensors are found in most Pseudomonas species but their characteristics and mode of signaling may differ from one species to another. Here, we demonstrated in P. aeruginosa that LadS controls both rsmY and rsmZ gene expression and that this regulation occurs through the GacS/GacA TCS. We additionally evidenced that in contrast to RetS, LadS signals through GacS/GacA without forming heterodimers, either with GacS or with RetS. Instead, we demonstrated that LadS is involved in a genuine phosphorelay, which requires both transmitter and receiver LadS domains. LadS signaling ultimately requires the alternative histidine-phosphotransfer domain of GacS, which is here used as an Hpt relay by the hybrid kinase. LadS HK thus forms, with the GacS/GacA TCS, a multicomponent signal transduction system with an original phosphorelay cascade, i.e. H1LadS→D1LadS→H2GacS→D2GacA. This highlights an original strategy in which a unique output, i.e. the modulation of sRNA levels, is controlled by a complex multi-sensing network to fine-tune an adapted biofilm and virulence response. PMID:27176226

  1. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shih-Hsien, E-mail: shchang@csmu.edu.tw [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Wang, Kai-Sung; Liang, Hsiu-Hao; Chen, Hsueh-Yu; Li, Heng-Ching; Peng, Tzu-Huan [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Su, Yu-Chun; Chang, Chih-Yuan [Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu, 300, Taiwan (China)

    2010-03-15

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L{sup -1} sorbed 82% of RB5 (100 mg L{sup -1}) within 4 h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30 s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH{sub 0} of 7, current density of 277 A m{sup -2}, and NaCl of 1 g L{sup -1}. However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L{sup -1} effectively removed COD and toxicity of electrocoagulation-treated solution within 4 h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30 s at power of 800 W, GAC/water ratio of 20 g L{sup -1}, and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A{sub 265} (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  2. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process

    International Nuclear Information System (INIS)

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L-1 sorbed 82% of RB5 (100 mg L-1) within 4 h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30 s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH0 of 7, current density of 277 A m-2, and NaCl of 1 g L-1. However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L-1 effectively removed COD and toxicity of electrocoagulation-treated solution within 4 h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30 s at power of 800 W, GAC/water ratio of 20 g L-1, and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A265 (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  3. Effects of granular activated carbon on methane removal performance and methanotrophic community of a lab-scale bioreactor.

    Science.gov (United States)

    Lee, Eun-Hee; Choi, Sun-Ah; Yi, Taewoo; Kim, Tae Gwan; Lee, Sang-Don; Cho, Kyung-Suk

    2015-01-01

    Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.

  4. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    Science.gov (United States)

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs.

  5. Performance evaluation of granular activated carbon system at Pantex: Rapid small-scale column tests to simulate removal of high explosives from contaminated groundwater

    International Nuclear Information System (INIS)

    A granular activated carbon (GAC) system is now in operation at Pantex to treat groundwater from the perched aquifer that is contaminated with high explosives. The main chemicals of concern are RDX and HMX. The system consists of two GAC columns in series. Each column is charged with 10,000 pounds of Northwestern LB-830 GAC. At the design flow rate of 325 gpm, the hydraulic loading is 6.47 gpm/ft2, and the empty bed contact time is 8.2 minutes per column. Currently, the system is operating at less than 10% of its design flow rate, although flow rate increases are expected in the relatively near future. This study had several objectives: Estimate the service life of the GAC now in use at Pantex; Screen several GACs to provide a recommendation on the best GAC for use at Pantex when the current GAC is exhausted and is replaced; Determine the extent to which natural organic matter in the Pantex groundwater fouls GAC adsorption sites, thereby decreasing the adsorption capacity for high explosives; and Determine if computer simulation models could match the experimental results, thereby providing another tool to follow system performance

  6. Performance evaluation of granular activated carbon system at Pantex: Rapid small-scale column tests to simulate removal of high explosives from contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Henke, J.L.; Speitel, G.E. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1998-08-01

    A granular activated carbon (GAC) system is now in operation at Pantex to treat groundwater from the perched aquifer that is contaminated with high explosives. The main chemicals of concern are RDX and HMX. The system consists of two GAC columns in series. Each column is charged with 10,000 pounds of Northwestern LB-830 GAC. At the design flow rate of 325 gpm, the hydraulic loading is 6.47 gpm/ft{sup 2}, and the empty bed contact time is 8.2 minutes per column. Currently, the system is operating at less than 10% of its design flow rate, although flow rate increases are expected in the relatively near future. This study had several objectives: Estimate the service life of the GAC now in use at Pantex; Screen several GACs to provide a recommendation on the best GAC for use at Pantex when the current GAC is exhausted and is replaced; Determine the extent to which natural organic matter in the Pantex groundwater fouls GAC adsorption sites, thereby decreasing the adsorption capacity for high explosives; and Determine if computer simulation models could match the experimental results, thereby providing another tool to follow system performance.

  7. Effects of pretreatment on the surface chemistry and pore size properties of nitrogen functionalized and alkylated granular activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jiajun [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhai Yunbo, E-mail: ybzhai@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen Hongmei; Li Caiting; Zeng Guangming; Pang Daoxiong; Lu Pei [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The effects of pretreatment on the surface chemistry and pore sizes were studied. Black-Right-Pointing-Pointer Treated GAC was nitrogen functionalized and alkylated GAC also called modified GAC. Black-Right-Pointing-Pointer HNO{sub 3} pretreatment caused a slight decrease in surface area and microporosity. Black-Right-Pointing-Pointer The nitrogen percentage of modified GAC which pretreated by H{sub 2}O{sub 2} was 4.07%. Black-Right-Pointing-Pointer The pyridine of modified GAC which pretreated by urea-formaldehyde resin was 45.88%. - Abstract: In this paper, granular activated carbon (GAC) from coconut shell was pretreated by HNO{sub 3}, H{sub 2}O{sub 2} and urea-formaldehyde resin, respectively. Then the obtained materials were functionalized in the same way for nitrogen group, and then alkylated. Effects of pretreatment on the surface chemistry and pore size of modified GACs were studied. Surface area and micropore volume of modified GAC which pretreated by HNO{sub 3} were 723.88 m{sup 2}/g and 0.229 cm{sup 3}/g, respectively, while virgin GAC were 742.34 m{sup 2}/g and 0.276 cm{sup 3}/g. Surface area and micropore volume decrease of the modified GACs which pretreated by the others two methods were more drastically. The types of groups presented were analyzed by electrophoresis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). N-CH{sub 3} group and C=N group were detected on the surfaces of these three kinds of modified GACs. Results of XPS showed that the nitrogen functions of modified GAC which pretreated by H{sub 2}O{sub 2} was 4.07%, it was more than that of the others two pretreatment methods. However, the modified GAC which pretreated by urea-formaldehyde resin was fixed more pyridine structure, which structure percentage was 45.88%, in addition, there were more basic groups or charge on the surface than the others.

  8. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles

    International Nuclear Information System (INIS)

    Highlights: → The morphology, content and distribution of ZrO2 nanoparticles inside the pores of GAC are affected by the type of GAC. → Lignite ZrO2-GAC exhibited Zr content of 12%, while bituminous based ZrO2-GAC exhibited Zr content of 9.5%. → The max. adsorption capacities under equilibrium conditions in 5 mM NaHCO3 buffered water matrix were ∼8.6 As/g Zr and ∼12.2 mg As/g Zr at pH = 7.6. → The max. adsorption capacities under equilibrium conditions in NSF 53 Challenge water matrix while ∼1.5 mg As/g Zr and ∼3.2 mg As/g Zr at pH = 7.6. → Introduction of nanoparticles did not impact the MB adsorption capacity of the lignite ZrO2-GAC, while the one of bituminous ZrO2-GAC decreased. - Abstract: This study investigated the effects of in situ ZrO2 nanoparticle formation on properties of granulated activated carbon (GAC) and their impacts on arsenic and organic co-contaminant removal. Bituminous and lignite based zirconium dioxide impregnated GAC (Zr-GAC) media were fabricated by hydrolysis of zirconium salt followed by annealing of the product at 400 oC in an inert environment. Media characterization suggested that GAC type does not affect the crystalline structure of the resulting ZrO2 nanoparticles, but does affect zirconium content of the media, nanoparticle morphology, nanoparticle distribution, and surface area of Zr-GAC. The arsenic removal performance of both media was compared using 5 mM NaHCO3 buffered ultrapure water and model groundwater containing competing ions, both with an initial arsenic C0 ∼ 120 μg/L. Experimental outcomes suggested favorable adsorption energies and higher or similar adsorption capacities than commercially available or experimental adsorbents when compared on the basis of metal content. Short bed adsorber column tests showed that arsenic adsorption capacity decreases as a result of kinetics of competing ions. Correlation between the properties of the media and arsenic and methylene blue removal suggested that

  9. Purification of Songhua River water with an integrated O3/AC-GAC process

    Institute of Scientific and Technical Information of China (English)

    GUAN Chun-yu; MA Jun; LIU Gui-fang; SUI Ming-hao

    2010-01-01

    Catalytic ozonation with coal-based activated carbon(carbozone)followed by GAC(granular activated carbon)filtration was compared with ozone-GAC process for water purification.Songhua River water pretreated with traditional processes was used as influent in the continuous-flow experiments.The carbozone-GAC process performed better than the ozone-GAC process during the 9.5-months operation period.The organic removal rate in carbozone was found to be very high in the initial operation period,and then gradually decreased to a steady level.At the steady state of operation,the average removal rates of permanganate index(PI)and UV254 were 25.8% and 67.8% in carbozone,and 6.6% and 53.7% in ozonation alone,respectively.The carbozone process also achieved a higher DOC removal than ozonation alone,and moreover,the number of semi-volatile organic compounds detected with GC/MS decreased from 44 to 28 in carbozone and 34 in ozonation alone,respectively.The catalyst surface became more acidic during the long-term operation with its PHPZC(pH at which its surface is zero charged)decreased from 7.0 to 6.2.In addition,the physical characteristics of the catalyst were also changed during the operation.

  10. Adsorption of cadmium ions from aqueous solution using granular activated carbon and activated clay

    Energy Technology Data Exchange (ETDEWEB)

    Wasewar, Kailas L. [Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra (India); Kumar, Pradeep; Teng, Tjoon Tow [Environmental Technology Division, School of Industrial Technology, University Science of Malaysia, Minden, Penang (Malaysia); Chand, Shri; Padmini, Bina N. [Department of Chemical Engineering, Indian Institute of Technology, Roorkee (India)

    2010-07-15

    The present study was aimed at removing cadmium ions from aqueous solution through batch studies using adsorbents, such as, granular activated carbon (GAC) and activated clay (A-clay). GAC was of commercial grade where as the A-clay was prepared by acid treatment of clay with 1 mol/L of H{sub 2}SO{sub 4}. Bulk densities of A-clay and GAC were 1132 and 599 kg/m{sup 3}, respectively. The surface areas were 358 m{sup 2}/g for GAC and 90 m{sup 2}/g for A-clay. The adsorption studies were carried out to optimize the process parameters, such as, pH, adsorbent dosage, and contact time. The results obtained were analyzed for kinetics and adsorption isotherm studies. The pH value was optimized at pH 6 giving maximum Cd removal of 84 and 75.2% with GAC and A-clay, respectively. The adsorbent dosage was optimized and was found to be 5 g/L for GAC and 10 g/L for A-clay. Batch adsorption studies were carried out with initial adsorbate (Cd) concentration of 100 mg/L and adsorbent dosage of 10 g/L at pH 6. The optimum contact time was found to be 5 h for both the adsorbents. Kinetic studies showed Cd removal a pseudo second order process. The isotherm studies revealed Langmuir isotherm to better fit the data than Freundlich isotherm. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    Science.gov (United States)

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP. PMID:25465650

  12. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    Science.gov (United States)

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  13. Advanced wastewater treatment by nanofiltration and activated carbon for high quality water reuse

    OpenAIRE

    Kazner, Christian

    2012-01-01

    Hybrid processes combining activated carbon and nanofiltration have been studied to identify the optimum solution for advanced wastewater treatment in high quality water reclamation and reuse. With a focus on the removal of bulk and trace organic compounds the investigation identified three promising process combinations, namely powdered activated carbon followed by nanofiltration (PAC/NF), granular activated carbon followed by nanofiltration (GAC/NF) and nanofiltration followed by granular a...

  14. Microwave pyrolysis of oily sludge with activated carbon.

    Science.gov (United States)

    Chen, Yi-Rong

    2016-12-01

    The aim of this study is to explore catalytic microwave pyrolysis of crude oil storage tank sludge for fuels using granular activated carbon (GAC) as a catalyst. The effect of GAC loading on the yield of pyrolysis products was also investigated. Heating rate of oily sludge and yield of microwave pyrolysis products such as oil and fuel gas was found to depend on the ratio of GAC to oily sludge. The optimal GAC loading was found to be 10%, while much smaller and larger feed sizes adversely influenced production. During oily sludge pyrolysis, a maximum oil yield of 77.5% was achieved. Pyrolytic oils with high concentrations of diesel oil and gasoline (about 70 wt% in the pyrolytic oil) were obtained. The leaching of heavy metals, such as Cr, As and Pb, was also suppressed in the solid residue after pyrolysis. This technique provides advantages such as harmless treatment of oily sludge and substantial reduction in the consumption of energy, time and cost.

  15. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 avril de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.     René Oberli 1930 – 2011 Nous avons le regret  de vous annoncer le décès de notre collègue et ami René Oberli survenu le 24 décembre 2011. Vous trouverez un hommage sur le site web du GAC-EPA sous http://www.gac-epa.org/History/Tributes/2011/Ren...

  16. Mechanisms of granular activated carbon anaerobic fluidized-bed process for treating phenols wastewater

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Granular activated carbon (GAC) anaerobic fluidized-bed reactor was applied to treating phenols wastewater. When influent phenol concentration was 1000 mg/L, volume loadings of phenol and CODCr were 0.39 kg/(m3*d) and 0.98 kg/(m3*d), their removal rates were 99.9% and 96.4% respectively. From analyzing above results, the main mechanisms of the process are that through fluidizing GAC, its adsorption is combined with biodegradation, both activities are brought into full play, and phenol in wastewater is effectively decomposed. Meanwhile problems concerning gas-liquid separation and medium plugging are well solved.

  17. A gacS deletion in Pseudomonas aeruginosa cystic fibrosis isolate CHA shapes its virulence.

    Directory of Open Access Journals (Sweden)

    Khady Mayebine Sall

    Full Text Available Pseudomonas aeruginosa, a human opportunistic pathogen, is capable of provoking acute and chronic infections that are associated with defined sets of virulence factors. During chronic infections, the bacterium accumulates mutations that silence some and activate other genes. Here we show that the cystic fibrosis isolate CHA exhibits a unique virulence phenotype featuring a mucoid morphology, an active Type III Secretion System (T3SS, hallmark of acute infections, and no Type VI Secretion System (H1-T6SS. This virulence profile is due to a 426 bp deletion in the 3' end of the gacS gene encoding an essential regulatory protein. The absence of GacS disturbs the Gac/Rsm pathway leading to depletion of the small regulatory RNAs RsmY/RsmZ and, in consequence, to expression of T3SS, while switching off the expression of H1-T6SS and Pel polysaccharides. The CHA isolate also exhibits full ability to swim and twitch, due to active flagellum and Type IVa pili. Thus, unlike the classical scheme of balance between virulence factors, clinical strains may adapt to a local niche by expressing both alginate exopolysaccharide, a hallmark of membrane stress that protects from antibiotic action, host defences and phagocytosis, and efficient T3S machinery that is considered as an aggressive virulence factor.

  18. Kinetic analysis of anionic surfactant adsorption from aqueous solution onto activated carbon and layered double hydroxide with the zero length column method

    OpenAIRE

    Schouten, Natasja; Ham, Louis G.J. van der; Euverink, Gert-Jan W.; Haan, André B. de

    2009-01-01

    Low cost adsorption technology offers high potential to clean-up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) and granular activated carbon (GAC) proved to be interesting materials for the removal of anionic surfactant, linear alkyl benzene sulfonate (LAS), which is the main contaminant in rinsing water. The main research question is to identify adsorption kinetics of LAS onto GAC-1240 and LDH. The influence of pre-treatment of the adsorbent, ...

  19. Fenton-Driven Chemical Regeneration of MTBE-Spent Granular Activated Carbon -- A Pilot Study

    Science.gov (United States)

    MTBE-spent granular activated carbon (GAC) underwent 3 adsorption/oxidation cycles. Pilot-scale columns were intermittently placed on-line at a ground water pump and treat facility, saturated with MTBE, and regenerated with H2O2 under different chemical, physical, and operational...

  20. Activated Carbon Fibers For Gas Storage

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D [ORNL; Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL

    2017-01-01

    The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability of NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.

  1. Destruction of Toluene by the Combination of High Frequency Discharge Electrodeless Lamp and Manganese Oxide-Impregnated Granular Activated Carbon Catalyst

    Directory of Open Access Journals (Sweden)

    Jianhui Xu

    2014-01-01

    Full Text Available The destruction of low concentration of toluene (0–30 ppm has been studied under the UV/photogenerated O3/MnO2-impregnated granular activated carbon (MnO2-impregnated GAC process by the combination of self-made high frequency discharge electrodeless lamp (HFDEL with MnO2-impregnated GAC catalyst. Experimental results showed that the initial toluene concentration can strongly affect the concentration of photogenerated O3 from HFDEL and the efficiency and mass rate of destruction of toluene via HFDEL/MnO2-impregnated GAC system. Active oxygen and hydroxyl radicals generated from HFDEL/MnO2-impregnated GAC system played a key role in the decomposition of toluene process and the intermediates formed by photolysis are more prone to be mineralized by the subsequent MnO2-impregnated GAC catalyst compared to the original toluene, resulting in synergistic mineralization of toluene by HFDEL/MnO2-impregnated GAC system. The role of MnO2-impregnated GAC catalyst is not only to eliminate the residual O3 completely but also to enhance the decomposition and mineralization of toluene.

  2. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions

    Directory of Open Access Journals (Sweden)

    Iuliana Gabriela Breaban

    2013-07-01

    Full Text Available The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC. In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m2, initial pH of aqueous dye solution (3 or 9, electrocoagulation time (20 or 180 min, GAC dose (0.1 or 0.5 g/L, support electrolyte (2 or 50 mM, initial dye concentration (0.05 or 0.25 g/L and current type (Direct Current—DC or Alternative Pulsed Current—APC. GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  3. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 6 décembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  4. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 6 mars de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  5. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2012-01-01

    Le GAC-EPA organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 5 juin de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  6. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 4 décembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  7. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 5 juin de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  8. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2014-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 2 décembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  9. "Comparison of Nanofiltration and GAC Adsorption Processes for Chloroform Removal from Drinking Water"

    Directory of Open Access Journals (Sweden)

    S Nasseri

    2004-08-01

    Full Text Available In this research, the Chloroform (CHCl3 removal effectiveness of two water treatment systems including membrane technology and granular activated carbon (GAC adsorption were studied. Two bench-scales were designed and set up: 1 Nanofiltration (NF spiral-wound modules and 2 GAC adsorption column. Chloroform was considered as trihalomethanes (THMs basic indicator compound. The inlet and outlet CHCl3 concentrations were detected by gas chromatography (GC with electron capture detector (ECD. The study was carried out for the two cases of spiked deionized water with CHCl3 and chlorinated Tehran tap water. Flow rate, CHCl3 and total dissolved solids (TDS concentrations were considered in both treatment systems and the transmembrane pressures for membrane pilot, as the basic variables affecting removal efficiencies. Results showed that CHCl3 rejection coefficients for NF 300 Da, NF 600 Da and GAC Column, with various operation conditions had a range of 55.2% to 87.8%, 78% to 85% and 41.4% to 74.1%, respectively. It was found that removal efficiencies for NF 600 Da were lower than those of NF 300 Da and GAC column. The obtained data were analyzed by SPSS and non-parametric Kruskal-Wallis method. Results showed a positive correlation between the flow rate, CHCl3 concentration and chloroform rejection coefficients and the TDS concentration had no significant effect on chloroform removal efficiencies.

  10. Adsorption of N-nitrosodimethylamine precursors by powdered and granular activated carbon.

    Science.gov (United States)

    Hanigan, David; Zhang, Jinwei; Herckes, Pierre; Krasner, Stuart W; Chen, Chao; Westerhoff, Paul

    2012-11-20

    Activated carbon (AC) has been shown to remove precursors of halogenated disinfection byproducts. Granular and powdered activated carbon (GAC, PAC) were investigated for their potential to adsorb N-nitrosodimethylamine (NDMA) precursors from blends of river water and effluent from a wastewater treatment plant (WWTP). At bench scale, waters were exposed to lignite or bituminous AC, either as PAC in bottle point experiments or as GAC in rapid small-scale column tests (RSSCTs). NDMA formation potential (FP) was used as a surrogate for precursor removal. NDMA FP was reduced by 37, 59, and 91% with 3, 8, and 75 mg/L of one PAC, respectively, with a 4-h contact time. In RSSCTs and in full-scale GAC contactors, NDMA FP removal always exceeded that of the bulk dissolved organic carbon (DOC) and UV absorbance at 254 nm. For example, whereas DOC breakthrough exceeded 90% of its influent concentration after 10,000 bed volumes of operation in an RSSCT, NDMA FP was less than 40% of influent concentration after the same bed life of the GAC. At full or pilot scale, high NDMA FP reduction ranging from >60 to >90% was achieved across GAC contactors, dependent upon the GAC bed life and/or use of a preoxidant (chlorine or ozone). In all experiments, NDMA formation was not reduced to zero, which suggests that although some precursors are strongly sorbed, others are not. This is among the first studies to show that AC is capable of adsorbing NDMA precursors, but further research is needed to better understand NDMA precursor chemical properties (e.g., hydrophobicity, molecular size) and evaluate how best to incorporate this finding into full-scale designs and practice.

  11. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2013-01-01

    Dear GAC-EPA members, This year, owing to works in the main Auditorium, we have to hold our General assembly in the auditorium of the Globe on 27 March 2013 and we really hope that you can be present. We wish to give you some preliminary practical recommendations: Do not forget your CERN access card, the guards may carry out checks. As far as possible, use public transport because there is very limited parking. If you come by car, park your vehicle on the car parks inside CERN because the outside car park cannot be used by visitors. Refreshments cannot be organized in the Globe; they will be held in cafeteria n°1, which will force us to move by using CERN entrances A or B or via building 33 (access cards required here too). We thank you for your attention and hope to see you soon. Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 2 avril de 13 h 30 à 16 h 00 Salle de réunion de l&rsquo...

  12. Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, Pseudomonas chlororaphis O6

    Directory of Open Access Journals (Sweden)

    Chul Hong Kim

    2014-06-01

    Full Text Available The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulator of many traits relevant to the biocontrol function of this bacterium. Proteomic analysis revealed 12 proteins were down-regulated in a gacS mutant of P. chlororaphis O6. These GacS-regulated proteins functioned in combating oxidative stress, cell signaling, biosynthesis of secondary metabolism, and secretion. The extent of regulation was shown by real-time RT-PCR to vary between the genes. Mutants of P. chlororaphis O6 were generated in two GacS-regulated genes, trpE, encoding a protein involved in tryptophan synthesis, and prnA, required for conversion of tryptophan to the antimicrobial compound, pyrrolitrin. Failure of the trpE mutant to induce systemic resistance in tobacco against a foliar pathogen causing soft rot, Pectobacterium carotovorum SCCI, correlated with reduced colonization of root surfaces implying an inadequate supply of tryptophan to support growth. Although colonization was not affected by mutation in the prnA gene, induction of systemic resistance was reduced, suggesting that pyrrolnitrin was an activator of plant resistance as well as an antifungal agent. Study of mutants in the other GacS-regulated proteins will indicate further the features required for biocontrol-activity in this rhizobacterium.

  13. Removal of Chlorinated Chemicals in H2 Feedstock Using Modified Activated Carbon

    Directory of Open Access Journals (Sweden)

    Prapaporn Luekittisup

    2015-01-01

    Full Text Available Activated carbon (GAC was impregnated by sodium and used as adsorbent to remove chlorinated hydrocarbon (CHC gases contaminated in H2 feedstock. The adsorption was carried out in a continuous packed-bed column under the weight hourly space velocity range of 0.8–1.0 hr−1. The adsorption capacity was evaluated via the breakthrough curves. This modified GAC potentially adsorbed HCl and VCM of 0.0681 gHCl/gadsorbent and 0.0026 gVCM/gadsorbent, respectively. It showed higher adsorption capacity than SiO2 and Al2O3 balls for both organic and inorganic CHCs removal. In addition, the kinetic adsorption of chlorinated hydrocarbons on modified GAC fit well with Yoon-Nelson model.

  14. Catalytic ozonation of pentachlorophenol in aqueous solutions using granular activated carbon

    Science.gov (United States)

    Asgari, Ghorban; Samiee, Fateme; Ahmadian, Mohammad; Poormohammadi, Ali; solimanzadeh, Bahman

    2014-11-01

    The efficiency of granular activated carbon (GAC) was investigated in this study as a catalyst for the elimination of pentachlorophenol (PCP) from contaminated streams in a laboratory-scale semi-batch reactor. The influence of important parameters including solution pH (2-10), radical scavenger (tert-butanol, 0.04 mol/L), catalyst dosage (0.416-8.33 g/L), initial PCP concentration (100-1000 mg/L) and ozone flow rate (2.3-12 mg/min) was examined on the efficiency of the catalytic ozonation process (COP) in degradation and mineralization of PCP in aqueous solution. The experimental results showed that catalytic ozonation with GAC was most effective at pH of 8 with ozone flow rate of 12 mg/min and a GAC dosage of 2 g. Compared to the sole ozonation process (SOP), the removal levels of PCP and COP were, 98, and 79 %, respectively. The degradation rate of kinetics was also investigated. The results showed that using a GAC catalyst in the ozonation of PCP produced an 8.33-fold increase in rate kinetic compared to the SOP under optimum conditions. Tert-butanol alcohol (TBA) was used as a radical scavenger. The results demonstrated that COP was affected less by TBA than by SOP. These findings suggested that GAC acts as a suitable catalyst in COP to remove refractory pollutants from aqueous solution.

  15. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon

    Science.gov (United States)

    Lewis, Ariel S.; Huntington, Thomas G.; Marvin-DiPasquale, Mark C.; Amirbahman, Aria

    2016-01-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment.

  16. Removal of microcystin-LR from spiked water using either activated carbon or anthracite as filter material.

    Science.gov (United States)

    Drogui, Patrick; Daghrir, Rimeh; Simard, Marie-Christine; Sauvageau, Christine; Blais, Jean François

    2012-01-01

    The occurrence of cyanobacterial toxins (blue-green algae) in drinking water sources is a big concern for human health. Removal of microcystin-LR (MC-LR) from drinking water was evaluated at the laboratory pilot scale using either granular activated carbon (GAC) or powdered activated carbon (PAC) and compared with the treatment using anthracite as filter material. Virgin GAC was more effective at removing MC-LR (initial concentration ranging from 9 to 47 microg L(-1)) to reach the World Health Organization recommended level (1.0 microg L(-1)). When the GAC filter was colonized by bacteria, the filter became less effective at removing MC-LR owing to competitive reactions occurring between protein adsorption (released by bacteria) and MC-LR adsorption. Using PAC, the concentration of MC-LR decreased from 22 to 3 microg L(-1) (removal of 86% of MC-LR) by the addition of 100 mg PAC L(-1). PMID:22629609

  17. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence, initialement prévue le 7 juin est avancée au mardi 31 mai de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel. Les permanences suivantes auront lieu les mardis 6 septembre, 4 octobre, 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  18. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : mardi 4 octobre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel. Les permanences suivantes auront lieu les mardis 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  19. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 mai de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel. Les permanences suivantes auront lieu les mardis 7 juin, 6 septembre, 4 octobre, 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  20. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence, initialement prévue le 6 septembre est avancée au mardi 30 août de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel. Les permanences suivantes auront lieu les mardis 4 octobre, 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires  

  1. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence, initialement prévue le 6 septembre est avancée au mardi 30 août de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel. Les permanences suivantes auront lieu les mardis 4 octobre, 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  2. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 8 février de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 8 mars, 5 avril, 4 mai, 7 juin, 6 septembre, 4 octobre, 8 novembre, 6 décembre.   Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   * * * * *

  3. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 4 octobre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les  permanences suivantes auront lieu les mardis 8 novembre et 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  4. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 8 novembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel La permanence suivante aura lieu le mardi 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  5. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 6 septembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les  permanences suivantes auront lieu les mardis 4 octobre, 8 novembre et 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  6. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 6 septembre de 13h30 à 16h00 Salle de conférence de l’Association du personnel Les prochaines permanences auront lieu les mardis 4 octobre, 8 novembre et 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  7. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 8 novembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel La  permanence suivante aura lieu le mardi 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  8. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 avril de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. CARTE DE MEMBRE Notre Groupement étant créé, selon nos Statuts, dans le cadre de l'Association du personnel du CERN (AP), chaque membre de notre Groupement est automatiquement membre de l'AP (statut 'membre pensionné'). En conséquence chacun d'entre nous p...

  9. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2012-01-01

        Le GAC organise chaque mois des permanences avec entretiens individuels.     La prochaine permanence se tiendra le : Mardi 6 novembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel La  permanence suivante aura lieu le mardi 4 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  10. GAC-EPA

    CERN Multimedia

    Staff Association

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 7 avril de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 mai, 2 juin, 1er septembre, 6 octobre, 3 novembre et 1er décembre 2015. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  11. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 5 mai de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 2 juin, 1er septembre, 6 octobre, 3 novembre et 1er décembre 2015. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  12. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2013-01-01

        Le GAC organise chaque mois des permanences avec entretiens individuels.     La prochaine permanence se tiendra le : Mardi 5 mars de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les  permanences suivantes auront lieu les mardis 2 avril, 7 mai, 4 juin, 3 septembre, 1er octobre,  5 novembre  et 3 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  13. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 2 juin de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 1er septembre, 6 octobre, 3 novembre et 1er décembre 2015. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  14. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2010-01-01

    GROUPEMENT DES ANCIENS DU CERN ET DE L’ESO Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 7 septembre de 13h30 à 16h00 Salle de conférence de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 octobre, 2 novembre et 7 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  15. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2010-01-01

    GROUPEMENT DES ANCIENS DU CERN ET DE L’ESO Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 6 avril de 13h30 à 16h00 Salle de conférence de l’Association du personnel Les permanences suivantes auront lieu les mardis 4 mai, 1er juin, 7 septembre, 5 octobre, 2 novembre et 7 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  16. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2010-01-01

    GROUPEMENT DES ANCIENS DU CERN ET DE L’ESO Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 4 mai de 13h30 à 16h00 Salle de conférence de l’Association du personnel Les permanences suivantes auront lieu les mardis 1er juin, 7 septembre, 5 octobre, 2 novembre et 7 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  17. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2010-01-01

    GROUPEMENT DES ANCIENS DU CERN ET DE L’ESO   Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 2 mars de 13h30 à 16h30 Salle de conférence de l’Association du personnel Les permanences suivantes auront lieu les mardis 6 avril, 4 mai, 1er juin, 7 septembre, 5 octobre, 2 novembre et 7 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  18. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2010-01-01

    GROUPEMENT DES ANCIENS DU CERN ET DE L’ESO Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 13 avril de 13h30 à 16h00 Salle de conférence de l’Association du personnel Les permanences suivantes auront lieu les mardis 4 mai, 1er juin, 7 septembre, 5 octobre, 2 novembre et 7 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  19. Degradation of H-acid in aqueous solution by microwave assisted wet air oxidation using Ni-loaded GAC as catalyst

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yao-bin; QUAN Xie; ZHAO Hui-min; CHEN Shuo; YANG Feng-lin

    2005-01-01

    A novel process, microwave assisted catalytic wet air oxidation(MW-CWO), was applied for the degradation of H-acid( 1-amino8-naphthol-3, 6-disulfonic acid) in aqueous solution. Ni-loaded granular activated carbon (GAG), prepared by immersion-calcination method, was used as catalyst. The results showed that the MW-CWO process was very effective for the degradation of H-acid in aqueous solution under atmospheric pressure with 87.4% TOC (total organic carbon) reduction in 20 min. Ni on GAC existed in the form of NiO as specified by XRD. Loss of Ni was significant in the initial stage, and then remained almost constant after 20 min reaction. BET surface area results showed that the surface property of GAC after MW-CWO process was superior to that of blank GAC.

  20. ORC-GAC-Fe0 system for the remediation of trichloroethylene and monochlorobenzene contaminated aquifer:1.Adsorption and degradation

    Institute of Scientific and Technical Information of China (English)

    LIN Qi; CHEN Ying-xu; Plagentz V.; Sch(a)fer D.; Dahmke A.

    2004-01-01

    Activities at a former Chemistry Triangle in Bitterfeld, Germany, resulted in contamination of groundwater with a mixture of trichloroethylene(TCE) and monochlorobenzene(MCB). The objective of this study was to develop a barrier system, which includes an ORC(oxygen release compounds) and GAC(granular activated carbon) layer for adsorption of MCB and bioregeneration of GAC, a Fe0layer for chemical reductive dechlorination of TCE and other chlorinated hydrocarbon in situ. A laboratory-scale column experiment was conducted to evaluate the feasibility of this proposed system. This experiment was performed using a series of continuous flow Teflon columns including an ORC column, a GAC column, and a Fe0 column. Simulated MCB and TCE contaminated groundwater was pumped upflow into this system at a flow rate of t. 1 ml/min. Results showed that 17%-50% of TCE and 28%-50% of MCB were dissipated in ORC column. Chloride ion, however, was not released, which suggest the dechlorination do not happen in ORC column. In GAC column, the adsorption of contaminants on activated carbon and their induced degradation by adapted microorganisms attached to the carbon surface were observed. Due to competitive exchange processes, TCE can be desorbed by MCB in GAC column and further degraded in iron column. The completely dechlorination rate of TCE was 0.16-0.18 cm-1, 1-4 magnitudes more than the formation rate of three dichloroethene isomers. Cis-DCE is the main chlorinated product, which can be cumulated in the system, not only depending on the formation rate and its decaying rate, but also the initial concentration of TCE.

  1. Activated Carbon Adsorption Properties of the Residual Matters in Textile Dyeing and Printing Secondary Effluent

    Institute of Scientific and Technical Information of China (English)

    TIAN Qing; LI Fang; LIU Fang; YANG Bo; CHEN Ji-hua

    2008-01-01

    The research employed the adsorption isotherm measurement, the batch kinetic adsorption and the rapid small-scale carbon column test (RSSCT) to find out the characteristics and main impacting factors of granular activated carbon (GAC) adsorption, in treating the textile dyeing-printing/polyester alkali de-weighting secondary effluent (TSE). The adsorption affinities and capacities for the organics surrogated by CODCr, color and UV254 (UV absorbency at λ= 254 nm) predicted by isotherm, small-scale-fixed bed were discussed. Adsorption rates for CODCr, color and UV254 are much different and carbon particle size dependent. The color adsorption rate and capacity should be taken as the main consideration factors in designing bio-activated carbon filter(BACF). The breakthrough of GAC adsorption column is mainly influenced by the low MW readily adsorbable organics in TSE. UVm is a good adsorption breakthrough indicator. The study provides References for BACFs' design and operation control in textile secondary effluent (TSE) tertiary treatment.

  2. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    Science.gov (United States)

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals <80% at <5,000 BV. In addition, breakthrough behavior was

  3. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    Science.gov (United States)

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals <80% at <5,000 BV. In addition, breakthrough behavior was

  4. Passivation process and the mechanism of packing particles in the Fe0/GAC system during the treatment of ABS resin wastewater.

    Science.gov (United States)

    Lai, Bo; Zhou, Yuexi; Wang, Juling; Zhang, Yunhong; Chen, Zhiqiang

    2014-01-01

    This study provides mechanistic insights into the passivation of the packing particles during the treatment of acrylonitrile-butadiene-styrene (ABS) resin wastewater by the Fe0/GAC system. The granular-activated carbon (GAC) and iron chippings (Fe0) were mixed together with a volumetric ratio of 1:1. GAC has a mean particle size of approximately 3-5 mm, a specific surface of 748 m2 g(-1), a total pore volume of 0.48 mL g(-1) and a bulk density of 0.49 g cm(-3). The iron chippings have a compact and non-porous surface morphology. The results show that the packing particles in the Fe0/GAC system would lose their activity because the removal of TOC and PO4(3-) for ABS resin wastewater could not carried out by the Fe0/GAC system after 40 days continuous running. Meanwhile, the availability of O2 and intrinsic reactivity of Fe0 play a key role on the form of passive film with different iron oxidation states. The passive film on the surface of iron chippings was formed by two phases: (a) local corrosion phase (0-20 d) and (b) co-precipitation phase (20-40 d), while that of GAC was mainly formed by the co-precipitation of corrosion products with SO4(2-) and PO4(3-) because SO4(2-) and PO4(3-) would not easily reach the Fe0 surface. Therefore, in order to avoid the occurrence of filler passivation, high concentrations of SO4(2-) and PO4(3-) in wastewater should be removed before the treatment process of the Fe/GAC system.

  5. Comparative study of different types of granular activated carbon in removing medium level radon from water

    International Nuclear Information System (INIS)

    Granular activated carbon (GAC) has proven its effectiveness in removing radon from water supplies. Laboratory and pilot plant studies were carried out using three different types of activated carbons (F-300, F-400, and HD-4000) to remove radon from water supply. From the experimental kinetic study, the data indicated that at least 6 h are needed to attain equilibrium between radon activity adsorbed onto carbon and its concentration in the aqueous phase. Also, it showed that HD-4000 has higher capacity for removing radon than the other two investigated carbons F-300 and F-400. The adsorption isotherms were satisfactorily explained by Freundlich equation. In the pilot plant study, the performance of the three activated carbons in removing radon at medium concentration (∼111 Bq dm-3) was evaluated over 60 days of continuous water flow. Four empty-bed contact times (EBCTs) corresponding to four bed depths were continuously monitored and the corresponding steady state adsorption-decay constant values were calculated and the efficiency of each carbon was used to provide a facet for comparison. The γ-radiation exposure rate distribution throughout each GAC bed was measured and compared. This study, despite paucity of literature in this field, is useful for designing a GAC adsorption system for the removal of medium level radon concentration from water supplies. (author)

  6. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 8 février de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 8 mars, 5 avril, 4 mai, 7 juin, 6 septembre, 4 octobre, 8 novembre, 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   * * * * * Nous avons appris avec tristesse les décès de : Mme Lyda GAECHTER (1927) survenu le 27 novembre 2010. Elle avait été mise en pension d&rsq...

  7. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le :   Mardi 8 mars de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 avril, 4 mai, 7 juin, 6 septembre, 4 octobre, 8 novembre, 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   * * * * * Nous avons appris avec tristesse le décès de : Mme Maria Pia GILI (1924) décédé le 30 janvier 2011, veuve de M. Aldo GILI retrait&a...

  8. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2013-01-01

    En tant que Président du GAC-EPA, je porte à votre connaissance ce communiqué émanant de la Direction du CERN. Le 2 juin 2013, le CERN inaugure le projet Passeport Big Bang, un parcours touristique et scientifique formé de dix plates-formes d'exposition devant dix sites du CERN dans le Pays de Gex et le Canton de Genève. Les plateformes sont reliées par des itinéraires balisés et par un jeu de piste. C'est un projet est mené en collaboration avec les communes du Pays de Gex, Meyrin et Genève Tourisme dans un souci de renforcer notre dialogue avec nos voisins : http://passeport-big-bang.web.cern.ch/fr. A l’occasion de cette inauguration, nous organisons un événement populaire et festif : le matin, les familles pourront participer à des randonnées à vélo tandis que les sportifs pourront tester les 5...

  9. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2010-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 2 novembre de 13h30 à 16h00 Salle de réunion de l’Association du personnel La permanence suivante aura lieu le mardi 7 décembre.   Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. * * * * * Nous avons appris avec tristesse les décès de : M. Charles E. HILL, décédé le 4 octobre 2010. Né en 1942. Entré au CERN en 1969, il avait pris sa retraite en 2007 (ex-AB). Il laisse une veuve : Mrs...

  10. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2010-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 7 décembre de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   * * * * *   Nous avons appris avec tristesse les décès de : M. Fernand CONTANT, né en 1924, décédé le 10 novembre 2010. Entré au CERN en 1957, il avait pris sa retraite en 1985 (ex-PS). M. Antonio DE TENA, né en 1928, déc&e...

  11. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2010-01-01

    INFORMATION Le service des maladies osseuses des Hôpitaux Universitaires de Genève (HUG) vous propose de participer à une étude visant à identifier les facteurs de risque de l'ostéoporose. Il est toujours encore à la recherche de personnes intéressées. Si vous êtes une femme entre 63 et 67 ans, un homme entre 63 et 67 ans, vous pouvez contacter Madame le Docteur Claire Durosier au 022 372 71 83 (lundi au vendredi, 9h - 18h). Dr. Jean-Paul DISS   *****   GROUPEMENT DES ANCIENS DU CERN ET DE L’ESO Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 4 mai de 13h30 à 16h00 Salle de conférence de l’Association du personnel Les permanences suivantes auront lieu les mardis 1er juin, 7 septembre, 5 octobre, 2 novembre et 7 décembre. Les permanences du Groupement...

  12. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2010-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 8 février de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 8 mars, 5 avril, 4 mai, 7 juin, 6 septembre, 4 octobre, 8 novembre, 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   * * * * * Nous avons appris avec tristesse les décès de : M. Ferdinand SCHENK (1923), décédé le 26 novembre 2010. Il avait pris sa retraite e...

  13. GAC-EPA

    CERN Multimedia

    GAC-EPA

    2010-01-01

    GROUPEMENT DES ANCIENS DU CERN ET DE L’ESO Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 7 septembre de 13h30 à 16h00 Salle de conférence de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 octobre, 2 novembre et 7 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   Nous avons appris avec tristesse les décès de : M. Helmut Rottstock (1928), décédé le 14 juillet 2010. Il avait pris sa ret...

  14. Removal of airborne microorganisms emitted from a wastewater treatment oxidation ditch by adsorption on activated carbon

    Institute of Scientific and Technical Information of China (English)

    Lin Li; Min Gao; Junxin Liu; Xuesong Guo

    2011-01-01

    Bioaerosol emissions from wastewater and wastewater treatment processes are a significant subgroup of atmospheric aerosols.Most previous work has focused on the evaluation of their biological risks.In this study, however, the adsorption method was applied to reduce airborne microorganisms generated from a pilot scale wastewater treatment facility with oxidation ditch.Results showed adsorption on granule activated carbon (GAC) was an efficient method for the purification of airborne microorganisms.The GAC itself had a maximum adsorption capacity of 2217 CFU/g for airborne bacteria and 225 CFU/g for fungi with a flow rate of 1.50 m3/hr.Over 85%of airborne bacteria and fungi emitted from thc oxidation ditch were adsorbed within 80 hr of continuous operation mode.Most of them had a particle size of 0.65-4.7 μm.Those airborne microorganisms with small particle size were apt to be adsorbed.The SEM/EDAX,BET and Boehm's titration methods were applied to analyse the physicochemical characteristics of the GAC.Relationships between GAC surface characteristics and its adsorption performance demonstrated that porous structure, large surface area, and hydrophobicity rendered GAC an effective absorber of airborne microorganisms.Two regenerate methods, ultraviolet irradiation and high pressure vapor, were compared for the regeneration of used activated carbon.High pressure vapor was an effective technique as it totally destroyed the microorganisms adhered to the activated carbon.Microscopic observation was also carried out to investigate original and used adsorbents.

  15. Granular biochar compared with activated carbon for wastewater treatment and resource recovery.

    Science.gov (United States)

    Huggins, Tyler M; Haeger, Alexander; Biffinger, Justin C; Ren, Zhiyong Jason

    2016-05-01

    Granular wood-derived biochar (BC) was compared to granular activated carbon (GAC) for the treatment and nutrient recovery of real wastewater in both batch and column studies. Batch adsorption studies showed that BC material had a greater adsorption capacity at the high initial concentrations of total chemical oxygen demand (COD-T) (1200 mg L(-1)), PO4 (18 mg L(-1)), and NH4 (50 mg L(-1)) compared to GAC. Conversely the BC material showed a lower adsorption capacity for all concentrations of dissolved chemical oxygen demand (COD-D) and the lower concentrations of PO4 (5 mg L(-1)) and NH4 (10 mg L(-1)). Packed bed column studies showed similar average COD-T removal rate for BC with 0.27 ± 0.01 kg m(-3) d(-1) and GAC with 0.24 ± 0.01 kg m(-3) d(-1), but BC had nearly twice the average removal rate (0.41 ± 0.08 kg m(-3) d(-3)) compared to GAC during high COD-T concentrations (>500 mg L(-1)). Elemental analysis showed that both materials accumulated phosphorous during wastewater treatment (2.6 ± 0.4 g kg(-1) and 1.9 ± 0.1 g kg(-1) for BC and GAC respectively). They also contained high concentrations of other macronutrients (K, Ca, and Mg) and low concentrations of metals (As, Cd, Cr, Pb, Zn, and Cu). The good performance of BC is attributed to its macroporous structure compared with the microporous GAC. These favorable treatment data for high strength wastewater, coupled with additional life-cycle benefits, helps support the use of BC in packed bed column filters for enhanced wastewater treatment and nutrient recovery. PMID:26954576

  16. Enhancing activated carbon adsorption of 2-methylisoborneol: methane and steam treatments

    Energy Technology Data Exchange (ETDEWEB)

    Kirk O. Nowack; Fred S. Cannon; David W. Mazyck [Pennsylvania State University, University Park, PA (United States). Department of Civil and Environmental Engineering

    2004-01-01

    This research investigated methods for tailoring a commercial, lignite-based granular activated carbon (GAC) to enhance its adsorption of 2-methylisoborneol (MIB) from natural water. Tailoring efforts focused on heat treatments in gas environments comprising steam and/or methane, since these gases can alter GAC pore structure and surface chemistry. Heat treatments that combined methane and steam enhanced MIB adsorption considerably, causing a 4-fold improvement (over untreated GAC) in fixed-bed adsorption performance relative to initial MIB breakthrough. These favorable effects, observed in rapid small-scale column tests, occurred following simultaneous and separate (sequential) applications of methane and steam. Moderately low temperature steam treatments also improved MIB uptake in fixed-bed adsorption tests but to a lesser extent (approximately 1.5-fold). In contrast, methane treatments alone, at various temperatures, led to significant carbon deposition within the GAC pore structure. As a result, total pore volume was reduced and MIB adsorption performance declined. 62 refs., 9 figs., 2 tabs.

  17. Removal and transformation of dissolved organic matter in secondary effluent during granular activated carbon treatment

    Institute of Scientific and Technical Information of China (English)

    Liang-liang WEI; Qing-liang ZHAO; Shuang XUE; Ting JIA

    2008-01-01

    This paper focused on the removal and transformation of the dissolved organic matter (DOM) in secondary effluent during the granular activated carbon (GAC) treatment. Using XAD-8/XAD-4 resins, DOM was fractionated into five classes:hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N) and hydrophilic fraction (HPI). Subsequently, the water quality parameters of dissolved organic carbon (DOC), absorbance of ultraviolet light at 254 nm (UV-254), specific ultraviolet light absorbance (SUVA) and trihalomethane formation potential (THMFP) were analyzed for the unfractionated and fractionated water samples. The results showed that the order of the DOC removal with respect to DOM fractions was observed to be HPI>HPO-A>HPO-N>TPI-A>TPI-N. During the GAC treatment, the THMFP of the unfractionated water samples decreased from 397.4 μg/L to 176.5 μg/L, resulting in a removal efficiency of 55.6%. The removal order of the trihalomethanes (THMs) precursor was as follows: HPO-A>TPI-A>TPI-N>HPO-N>HPI. By the GAC treatment, the specific THMFP of HPO-A, TPI-A, TPI-N and the original unfractionated water samples had a noticeable decrease, while that of HPO-N and HPI showed a converse trend. The Fourier transform infrared (FTIR) results showed that the hydroxide groups, carboxylic acids, aliphatie C-H were significantly reduced by GAC treatment.

  18. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance.

  19. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance. PMID:26463999

  20. Determination of pressure drop across activated carbon fiber respirator cartridges.

    Science.gov (United States)

    Balanay, Jo Anne G; Lungu, Claudiu T

    2016-01-01

    Activated carbon fiber (ACF) is considered as an alternative adsorbent to granular activated carbon (GAC) for the development of thinner, lighter, and efficient respirators because of their larger surface area and adsorption capacities, thinner critical bed depth, lighter weight, and fabric form. This study aims to measure the pressure drop across different types of commercially available ACFs in respirator cartridges to determine the ACF composition and density that will result in acceptably breathable respirators. Seven ACF types in cloth (ACFC) and felt (ACFF) forms were tested. ACFs in cartridges were challenged with pre-conditioned constant air flow (43 LPM, 23°C, 50% RH) at different compositions (single- or combination-ACF type) in a test chamber. Pressure drop across ACF cartridges were obtained using a micromanometer, and compared among different cartridge configurations, to those of the GAC cartridge, and to the NIOSH breathing resistance requirements for respirator cartridges. Single-ACF type cartridges filled with any ACFF had pressure drop measurements (23.71-39.93 mmH2O) within the NIOSH inhalation resistance requirement of 40 mmH2O, while those of the ACFC cartridges (85.47±3.67 mmH2O) exceeded twice the limit due possibly to the denser weaving of ACFC fibers. All single ACFF-type cartridges had higher pressure drop compared to the GAC cartridge (23.13±1.14 mmH2O). Certain ACF combinations (2 ACFF or ACFC/ACFF types) resulted to pressure drop (26.39-32.81 mmH2O) below the NIOSH limit. All single-ACFF type and all combination-ACF type cartridges with acceptable pressure drop had much lower adsorbent weights than GAC (≤15.2% of GAC weight), showing potential for light-weight respirator cartridges. 100% ACFC in cartridges may result to respirators with high breathing resistance and, thus, is not recommended. The more dense ACFF and ACFC types may still be possibly used in respirators by combining them with less dense ACFF materials and/or by

  1. Determination of pressure drop across activated carbon fiber respirator cartridges.

    Science.gov (United States)

    Balanay, Jo Anne G; Lungu, Claudiu T

    2016-01-01

    Activated carbon fiber (ACF) is considered as an alternative adsorbent to granular activated carbon (GAC) for the development of thinner, lighter, and efficient respirators because of their larger surface area and adsorption capacities, thinner critical bed depth, lighter weight, and fabric form. This study aims to measure the pressure drop across different types of commercially available ACFs in respirator cartridges to determine the ACF composition and density that will result in acceptably breathable respirators. Seven ACF types in cloth (ACFC) and felt (ACFF) forms were tested. ACFs in cartridges were challenged with pre-conditioned constant air flow (43 LPM, 23°C, 50% RH) at different compositions (single- or combination-ACF type) in a test chamber. Pressure drop across ACF cartridges were obtained using a micromanometer, and compared among different cartridge configurations, to those of the GAC cartridge, and to the NIOSH breathing resistance requirements for respirator cartridges. Single-ACF type cartridges filled with any ACFF had pressure drop measurements (23.71-39.93 mmH2O) within the NIOSH inhalation resistance requirement of 40 mmH2O, while those of the ACFC cartridges (85.47±3.67 mmH2O) exceeded twice the limit due possibly to the denser weaving of ACFC fibers. All single ACFF-type cartridges had higher pressure drop compared to the GAC cartridge (23.13±1.14 mmH2O). Certain ACF combinations (2 ACFF or ACFC/ACFF types) resulted to pressure drop (26.39-32.81 mmH2O) below the NIOSH limit. All single-ACFF type and all combination-ACF type cartridges with acceptable pressure drop had much lower adsorbent weights than GAC (≤15.2% of GAC weight), showing potential for light-weight respirator cartridges. 100% ACFC in cartridges may result to respirators with high breathing resistance and, thus, is not recommended. The more dense ACFF and ACFC types may still be possibly used in respirators by combining them with less dense ACFF materials and/or by

  2. Optimizing the industrial wastewater pretreatment by activated carbon and coagulation: effects of hydrophobicity/hydrophilicity and molecular weights of dissolved organics.

    Science.gov (United States)

    Khan, M Hammad; Ha, Dong-Hwan; Jung, Jinyoung

    2013-01-01

    This study addresses industrial wastewater treatment to remove dissolved organic compounds (DOC) using Fenton and coagulation processes, followed by granular activated carbon (GAC), and powdered activated carbon (PAC) as a pretreatment before reverse osmosis (RO). The effects of the hydrophobic / hydrophilic fractions and the molecular weights (MW) of the organics on DOC removal were tested and used to optimize the combination process. The raw wastewater (RWW) had a dominant hydrophobic fraction, as determined by polymeric resins Amberlite XAD-4. High performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) results showed that MW of organics were 256, 172, 258, 146, 392, 321, 182, 373, 276, 365, 409 and 453 in increasing order of hydrophobicity. GAC had higher adsorption capacity and was more selective for hydrophobic DOC removal than PAC. The removal efficiency of DOC by PAC and GAC was decreased after Fenton treatment, which decreased the hydrophobic fraction. Coagulation with ferric chloride efficiently removed the non-ionic hydrophilic and anionic hydrophilic organics. The coagulant doses selected as a pretreatment before GAC were 2.1 and 15.5 mg Fe(III)/mg DOC. The effluent total organic carbon (TOC) trends were correlated with the hydrophobic and hydrophilic fractions by using a rapid small-scale column test (RSSCT) for GAC breakthrough with a scale down factor of 5. GAC preferentially adsorbed the hydrophobic and the cationic hydrophilic organics. The effluent TOC trend could be divided into four stages: maximum adsorption, hydrophobic stage, exhaustion, and biological. The TOC removal after the exhaustion stage was almost equal to the hydrophilic fraction of TOC. Therefore these results demonstrated that the combination of coagulation and GAC adsorption was a highly efficient process for reducing DOC.

  3. Optimizing the industrial wastewater pretreatment by activated carbon and coagulation: effects of hydrophobicity/hydrophilicity and molecular weights of dissolved organics.

    Science.gov (United States)

    Khan, M Hammad; Ha, Dong-Hwan; Jung, Jinyoung

    2013-01-01

    This study addresses industrial wastewater treatment to remove dissolved organic compounds (DOC) using Fenton and coagulation processes, followed by granular activated carbon (GAC), and powdered activated carbon (PAC) as a pretreatment before reverse osmosis (RO). The effects of the hydrophobic / hydrophilic fractions and the molecular weights (MW) of the organics on DOC removal were tested and used to optimize the combination process. The raw wastewater (RWW) had a dominant hydrophobic fraction, as determined by polymeric resins Amberlite XAD-4. High performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) results showed that MW of organics were 256, 172, 258, 146, 392, 321, 182, 373, 276, 365, 409 and 453 in increasing order of hydrophobicity. GAC had higher adsorption capacity and was more selective for hydrophobic DOC removal than PAC. The removal efficiency of DOC by PAC and GAC was decreased after Fenton treatment, which decreased the hydrophobic fraction. Coagulation with ferric chloride efficiently removed the non-ionic hydrophilic and anionic hydrophilic organics. The coagulant doses selected as a pretreatment before GAC were 2.1 and 15.5 mg Fe(III)/mg DOC. The effluent total organic carbon (TOC) trends were correlated with the hydrophobic and hydrophilic fractions by using a rapid small-scale column test (RSSCT) for GAC breakthrough with a scale down factor of 5. GAC preferentially adsorbed the hydrophobic and the cationic hydrophilic organics. The effluent TOC trend could be divided into four stages: maximum adsorption, hydrophobic stage, exhaustion, and biological. The TOC removal after the exhaustion stage was almost equal to the hydrophilic fraction of TOC. Therefore these results demonstrated that the combination of coagulation and GAC adsorption was a highly efficient process for reducing DOC. PMID:23383639

  4. Heterogeneous adsorption behavior of landfill leachate on granular activated carbon revealed by fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC).

    Science.gov (United States)

    Lee, Sonmin; Hur, Jin

    2016-04-01

    Heterogeneous adsorption behavior of landfill leachate on granular activated carbon (GAC) was investigated by fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC). The equilibrium adsorption of two leachates on GAC was well described by simple Langmuir and Freundlich isotherm models. More nonlinear isotherm and a slower adsorption rate were found for the leachate with the higher values of specific UV absorbance and humification index, suggesting that the leachate containing more aromatic content and condensed structures might have less accessible sites of GAC surface and a lower degree of diffusive adsorption. Such differences in the adsorption behavior were found even within the bulk leachate as revealed by the dissimilarity in the isotherm and kinetic model parameters between two identified PARAFAC components. For both leachates, terrestrial humic-like fluorescence (C1) component, which is likely associated with relatively large sized and condensed aromatic structures, exhibited a higher isotherm nonlinearity and a slower kinetic rate for GAC adsorption than microbial humic-like (C2) component. Our results were consistent with size exclusion effects, a well-known GAC adsorption mechanism. This study demonstrated the promising benefit of using EEM-PARAFAC for GAC adsorption processes of landfill leachate through fast monitoring of the influent and treated leachate, which can provide valuable information on optimizing treatment processes and predicting further environmental impacts of the treated effluent.

  5. Assessment of activated carbon for environmental control of trace organics in petroleum refinery wastewater. [Granular vs. powdered

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Flotard, R. D.; Ford, D.

    1979-03-01

    Industrywide dollar costs and energy impacts are assessed for (1) granular activated carbon (GAC) in a continuous flow-through system and (2) powdered activated carbon (PAC) fed to an activated-sludge system, where either treatment option is in addition to 1983 BATEA-model requirements. Attainable trace organic removal levels for any given refinery are based upon data from a Class-B refinery that met wastewater BPCTCA in 1977. Scaling is done by assuming that the same percent COD or TOC must be removed as was removed at the Class-B refinery to achieve a like trace-organics removal level. Nationwide application of GAC technology would cost $445 million (capital cost) and $127 million for annual operation (1977 $ basis); corresponding PAC costs are $172 million (capital) and $82 million (annual). Estimated annual energy impacts are: GAC = 2.35 x 10/sup 6/ bbl crude oil (0.44% of annual throughput) and PAC = 5.26 x 10/sup 5/ bbl crude oil (0.0097% annual throughput). PAC technology should be considered for trace organics control throughout the petroleum refining industry and pilot studies should be done to answer outstanding questions. In addition to more favorable capital, operating, and energy costs, major advantages of PAC over GAC include flexibility in varying carbon type and dose, and minimization of the possibility of upset of the activated-sludge process.

  6. ENUMERATION, TRANSPORT AND SURVIVAL OF BACTERIA ATTACHED TO GRANULAR ACTIVITATED CARBON IN DRINKING WATER

    Science.gov (United States)

    The surfaces of granular activated carbon (GAC), sand, and anthracite particles were found to be populated to the same levels with heterotrophic plate count (HPC) bacteria. GAC supported a greater number of Klebsiella oxytoca than the other two filter media. In a study of operati...

  7. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions

    OpenAIRE

    Iuliana Gabriela Breaban; Corneliu Sergiu Stan; Liliana Rozemarie Manea; Benoit Cagnon; Igor Cretescu; Marius Sebastian Secula

    2013-01-01

    The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels w...

  8. The role of mesopores in MTBE removal with granular activated carbon.

    Science.gov (United States)

    Redding, Adam M; Cannon, Fred S

    2014-06-01

    This activated carbon research appraised how pore size and empty-bed contact time influenced the removal of methyl tert-butyl ether (MTBE) at part-per-billion (ppb) concentrations when MTBE was the sole organic impurity. The study compared six granular activated carbons (GACs) from three parent sources; these GACs contained a range of pore volume distributions and had uniform slurry pHs of 9.7-10.4 (i.e. the carbons' bulk surface chemistries were basic). Several of these activated carbons had been specifically tailored for enhanced sorption of trace organic compounds. In these tests, MTBE was spiked into deionized-distilled water (∼pH 7); MTBE loading was measured by isotherms and by rapid small-scale column tests (RSSCTs) that simulated full-scale empty-bed contact times of 7, 14, and 28 min. The results showed that both ultra-fine micropores and small-diameter mesopores were important for MTBE adsorption. Specifically, full MTBE loading during RSSCTs bore a strong correlation (R(2) = 0.94) to the product (mL/g × mL/g) of pore volume ≤4.06 Å wide and pore volume between ∼22 Å and ∼59 Å wide. This correlation was greater than for the product of any other pore volume combinations. Also, this product exhibited a stronger correlation than for just one or the other of these two pore ranges. This multiplicative relationship implied that both of these pore sizes were important for the optimum GAC performance of these six carbons (i.e. favorable mass transfer coupled with favorable sorption). The authors also compared MTBE mass loading during RSSCTs (μg MTBE/g GAC) to isotherm capacity (μg MTBE/g GAC). This RSSCT loading "efficiency" ranged from 28% to 96% for the six GACs; this efficiency correlated most strongly to pores that were 14-200 Å wide (R(2) = 0.94). This correlation indicated that only those carbons with a sufficient volume of 14-200 Å pores could adsorb MTBE to the extent that would be predicted from isotherm data.

  9. PAH-sequestration capacity of granular and powder activated carbon amendments in soil, and their effects on earthworms and plants.

    Science.gov (United States)

    Jakob, Lena; Hartnik, Thomas; Henriksen, Thomas; Elmquist, Marie; Brändli, Rahel C; Hale, Sarah E; Cornelissen, Gerard

    2012-07-01

    A field lysimeter study was carried out to investigate whether the amendment of 2% powder and granular activated carbon (PAC and GAC) to a soil with moderate PAH contamination had an impact on the PAH bioaccumulation of earthworms and plants, since AC is known to be a strong sorbent for organic pollutants. Furthermore, secondary effects of AC on plants and earthworms were studied through growth and nutrient uptake, and survival and weight gain. Additionally, the effect of AC amendments on soil characteristics like pH, water holding capacity, and the water retention curve of the soil were investigated. Results show that the amendment of 2% PAC had a negative effect on plant growth while the GAC increased the growth rate of plants. PAC was toxic to earthworms, demonstrated by a significant weight loss, while the results for GAC were less clear due to ambiguous results of a field and a parallel laboratory study. Both kinds of AC significantly reduced biota to soil accumulation factors (BSAFs) of PAHs in earthworms and plants. The GAC reduced the BSAFs of earthworms by an average of 47 ± 44% and the PAC amendment reduced them by 72 ± 19%. For the investigated plants the BSAFs were reduced by 46 ± 36% and 53 ± 22% by the GAC and PAC, respectively. PMID:22546631

  10. Desorption experiments and modeling of micropollutants on activated carbon in water phase: application to transient concentrations mitigation

    OpenAIRE

    Bourneuf, Séda; Jacob, Matthieu; Albasi, Claire; Sochard, Sabine; Richard, Romain; Manero, Marie-Hélène

    2016-01-01

    International audience Experimental studies and numerical modeling were conducted to assess the feasibility of a granular activated carbon column to buffer load variations of contaminants before wastewater treatment devices. Studies of cycles of adsorption, and more especially desorption, of methyldiethanolamine (MDEA) and 2,4-dimethylphenol (2,4-DMP) have been carried out on granular activated carbon (GAC). Dynamic variations of contaminants concentrations were run at several conditions o...

  11. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). PMID:25458677

  12. Removal of Chloroform (CHCl3 from Tehran Drinking Water by GAC and Air Stripping Columns

    Directory of Open Access Journals (Sweden)

    M T Samadi, S Nasseri, A Mesdaghinia, M R Alizadefard

    2004-07-01

    Full Text Available The harmful substances, defined as trihalomethanes (THMs, were found to be formed during the disinfection of drinking water when chlorine was used as the disinfectant. In this research, the effectiveness of granular activated carbon (GAC and air stripping (AS packed column for the removal of chloroform (CHCl3 (as THMs basic indicator compound in many resources in range of 50 to300µg/L, from drinking water was studied. Pilots of GAC and air stripping columns were designed and set up. The study was carried out for the two cases of deionized and chlorinated Tehran tap water. Also the effects of flow rate, chloroform and TDS concentrations were considered in both treatment systems. Gas chromatography (GC with electron capture detector (ECD was used for determination of chloroform concentration in inlet and outlet samples. The obtained data were analyzed by SPSS and non-parametric Kruskal–Wallis method. Results showed a positive correlation between the flow rate and chloroform concentration, and removal efficiencies. The average of variations of removal efficiencies for AS and GAC columns with deionized water samples were, 89.9%, 71.2% and for chlorinated Tehran tap water were 91.2% and 76.4%, respectively. The removal of feed residual chlorine in these columns with 0.5, 0.8 ppm was 100%, respectively and re-chlorination for finishing water was recommended. Results showed AS to be considered more effective in chloroform removal for conventional water treatment plants as a finishing process.

  13. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    Science.gov (United States)

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.

  14. [Microwave thermal remediation of soil contaminated with crude oil enhanced by granular activated carbon].

    Science.gov (United States)

    Li, Da-Wei; Zhang, Yao-Bin; Quan, Xie; Zhao, Ya-Zhi

    2009-02-15

    The advantage of rapid, selective and simultaneous heating of microwave heating technology was taken to remediate the crude oil-contaminated soil rapidly and to recover the oil contaminant efficiently. The contaminated soil was processed in the microwave field with addition of granular activated carbon (GAC), which was used as strong microwave absorber to enhance microwave heating of the soil mixture to remove the oil contaminant and recover it by a condensation system. The influences of some process parameters on the removal of the oil contaminant and the oil recovery in the remediation process were investigated. The results revealed that, under the condition of 10.0% GAC, 800 W microwave power, 0.08 MPa absolute pressure and 150 mL x min(-1) carrier gas (N2) flow-rate, more than 99% oil removal could be obtained within 15 min using this microwave thermal remediation enhanced by GAC; at the same time, about 91% of the oil contaminant could be recovered without significant changes in chemical composition. In addition, the experiment results showed that GAC can be reused in enhancing microwave heating of soil without changing its enhancement efficiency obviously.

  15. Evaluation of the treatment of reverse osmosis concentrates from municipal wastewater reclamation by coagulation and granular activated carbon adsorption.

    Science.gov (United States)

    Sun, Ying-Xue; Yang, Zhe; Ye, Tao; Shi, Na; Tian, Yuan

    2016-07-01

    Reverse osmosis concentrate (ROC) from municipal wastewater reclamation reverse osmosis (mWRRO) contains elevated concentrations of contaminants which pose potential risks to aquatic environment. The treatment of ROC from an mWRRO using granular activated carbon (GAC) combined pretreatment of coagulation was optimized and evaluated. Among the three coagulants tested, ferric chloride (FeCl3) presented relatively higher DOC removal efficiency than polyaluminium chloride and lime at the same dosage and coagulation conditions. The removal efficiency of DOC, genotoxicity, and antiestrogenic activity concentration of the ROC could achieve 16.9, 18.9, and 39.7 %, respectively, by FeCl3 coagulation (with FeCl3 dosage of 180.22 mg/L), which can hardly reduce UV254 and genotoxicity normalized by DOC of the DOM with MW <5 kDa. However, the post-GAC adsorption column (with filtration velocity of 5.7 m/h, breakthrough point adsorption capacity of 0.22 mg DOC/g GAC) exhibited excellent removal efficiency on the dominant DOM fraction of MW <5 kDa in the ROC. The removal efficiency of DOC, UV254, and TDS in the ROC was up to 91.8, 96, and 76.5 %, respectively, by the FeCl3 coagulation and post-GAC adsorption. Also, the DOM with both genotoxicity and antiestrogenic activity were completely eliminated by the GAC adsorption. The results suggest that GAC adsorption combined pretreatment of FeCl3 coagulation as an efficient method to control organics, genotoxicity, and antiestrogenic activity in the ROC from mWRRO system.

  16. Activated carbon amendment to sequester PAHs in contaminated soil: a lysimeter field trial.

    Science.gov (United States)

    Hale, Sarah E; Elmquist, Marie; Brändli, Rahel; Hartnik, Thomas; Jakob, Lena; Henriksen, Thomas; Werner, David; Cornelissen, Gerard

    2012-04-01

    Activated carbon (AC) amendment is an innovative method for the in situ remediation of contaminated soils. A field-scale AC amendment of either 2% powder or granular AC (PAC and GAC) to a PAH contaminated soil was carried out in Norway. The PAH concentration in drainage water from the field plot was measured with a direct solvent extraction and by deploying polyoxymethylene (POM) passive samplers. In addition, POM samplers were dug directly in the AC amended and unamended soil in order to monitor the reduction in free aqueous PAH concentrations in the soil pore water. The total PAH concentration in the drainage water, measured by direct solvent extraction of the water, was reduced by 14% for the PAC amendment and by 59% for GAC, 12 months after amendment. Measurements carried out with POM showed a reduction of 93% for PAC and 56% for GAC. The free aqueous PAH concentration in soil pore water was reduced 93% and 76%, 17 and 28 months after PAC amendment, compared to 84% and 69% for GAC. PAC, in contrast to GAC, was more effective for reducing freely dissolved concentrations than total dissolved ones. This could tentatively be explained by leaching of microscopic AC particles from PAC. Secondary chemical effects of the AC amendment were monitored by considering concentration changes in dissolved organic carbon (DOC) and nutrients. DOC was bound by AC, while the concentrations of nutrients (NO(3), NO(2), NH(4), PO(4), P-total, K, Ca and Mg) were variable and likely affected by external environmental factors. PMID:22265348

  17. 4-MCHM sorption to and desorption from granular activated carbon and raw coal.

    Science.gov (United States)

    Jeter, T Scott; Sarver, Emily A; McNair, Harold M; Rezaee, Mohammad

    2016-08-01

    4-Methylcyclohexanemethanol (4-MCHM) is a saturated higher alicyclic primary alcohol that is used in the froth flotation process for cleaning coal. In early 2014, a large spill of crude chemical (containing primarily 4-MCHM) to the Elk River near Charleston, WV contaminated the local water supply. Carbon filters at the affected water treatment facility quickly became saturated, and the contaminated water was distributed to nearby homes and businesses. Sorption of 4-MCHM to granular activated carbon (GAC) was studied in the laboratory using head space (HS) analysis via gas chromatography with a flame ionization detector (GC-FID). Sorption to raw coal was also investigated, since this material may be of interest as a sorbent in the case of an on-site spill. As expected, sorption to both materials increased with decreased particle size and with increased exposure time; although exposure time proved to be much more important in the case of GAC than for coal. Under similar conditions, GAC sorbed more 4-MCHM than raw coal (e.g., 84.9 vs. 63.1 mg/g, respectively, for 20 × 30 mesh particles exposed to 860 mg/L 4-MCHM solution for 24 h). Desorption from both materials was additionally evaluated. Interestingly, desorption of 4-MCHM on a mass per mass basis was also higher for GAC than for raw coal. Overall, results indicated that GAC readily sorbs 4-MCHM but can also readily release a portion of the chemical, whereas coal sorbs somewhat less 4-MCHM but holds it tightly. PMID:27219291

  18. Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon

    OpenAIRE

    Sohair I. Abou-Elela; Mohammed Eid M. Ali; Ibrahim, Hanan S.

    2016-01-01

    The process of retting flax produces a huge amount of wastewater which is characterized with bad unpleasant smell and high concentration of organic materials. Treatment of such waste had always been difficult because of the presence of refractory organic pollutants such as lignin. In this study, treatment of retting wastewater was carried out using combined system of Fenton oxidation process followed by adsorption on granular activated carbon (GAC). The effects of operating condition on Fento...

  19. The Sensor Kinase GacS Negatively Regulates Flagellar Formation and Motility in a Biocontrol Bacterium, Pseudomonas chlororaphis O6

    Directory of Open Access Journals (Sweden)

    Ji Soo Kim

    2014-06-01

    Full Text Available The GacS/GacA two component system regulates various traits related to the biocontrol potential of plant-associated pseudomonads. The role of the sensor kinase, GacS, differs between strains in regulation of motility. In this study, we determined how a gacS mutation changed cell morphology and motility in Pseudomonas chlororaphis O6. The gacS mutant cells were elongated in stationary-phase compared to the wild type and the complemented gacS mutant, but cells did not differ in length in logarithmic phase. The gacS mutant had a two-fold increase in the number of flagella compared with the wild type strain; flagella number was restored to that of the wild type in the complemented gacS mutant. The more highly flagellated gacS mutant cells had greater swimming motilities than that of the wild type strain. Enhanced flagella formation in the gacS mutant correlated with increased expression of three genes, fleQ, fliQ and flhF, involved in flagellar formation. Expression of these genes in the complemented gacS mutant was similar to that of the wild type. These findings show that this root-colonizing pseudomonad adjusts flagella formation and cell morphology in stationary-phase using GacS as a major regulator.

  20. Active carbon production from modified asphalt

    International Nuclear Information System (INIS)

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  1. Disinfection by-products and microbial contamination in the treatment of pool water with granular activated carbon.

    Science.gov (United States)

    Uhl, W; Hartmann, C

    2005-01-01

    For swimming pools, it is generally agreed that free chlorine levels have to be maintained to guarantee adequate disinfection. Recommended free chlorine levels can vary between 0.3 and 0.6 mg/L in Germany and up to 3 mg/L in other countries. Bathers introduce considerable amounts of organic matter, mainly in the form of such as urine and sweat, into the pool water. As a consequence, disinfection byproducts (DBPs) are formed. Regulations in Germany recommend levels of combined chlorine of less than 0.2 mg/L and levels of trihalomethanes (THMs) of less than 20 microg/L. Haloacetic acids (HAAs), haloacetonitriles (HANs), chloropicrin and chloral hydrate are also detected in considerable amounts. However, these compounds are not regulated yet. Swimming pool staff and swimmers, especially athletes, are primarily exposed to these byproducts by inhalation and/or dermal uptake. In Germany, new regulations for swimming pool water treatment generally require the use of activated carbon. In this project, three different types of granular activated carbon (GAC) (one standard GAC, two catalytic GACs) are compared for their long time behaviour in pool water treatment. In a pilot plant operated with real swimming pool water, production and removal of disinfection byproducts (THMs, HAAs, AOXs), of biodegradable substances (AOC), of bacteria (Pseudomonas aeruginosa, Legionella, coliforms, HPC) as well as the removal of chlorine and chloramines are monitored as function of GAC bed depth. Combined chlorine penetrates deeper in the filter bed than free chlorine does. However, both, free and combined chlorine removal efficiencies decrease over the time of filter operation. The decreases of removal efficiencies are also observed for parameters such as dissolved organic carbon, spectral absorption coefficient, adsorbable organic carbon and most of the disinfection byproducts. However, THMs, especially chloroform are produced in the filter bed. The GAC beds were contaminated microbially

  2. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Highlights: • A fluidized bed reactor, filled with a Pseudomonas aeruginosa immobilized on GAC, has been used for BPA removal. • BPA removal resulted from a biological activated carbon (BAC) process. • Equations describing the results have been indicated. • BPA removal was analyzed as a function of time and biofilm reuse. - Abstract: Serratia rubidiae, Pseudomonas aeruginosa and Escherichia coli K12 have been studied for their ability of Bisphenol A removal from aqueous systems and biofilm formation on activated granule carbon. Mathematical equations for biodegradation process have been elaborated and discussed. P. aeruginosa was found the best strain to be employed in the process of Bisphenol A removal. The yield in BPA removal of a P. aeruginosa biofilm grown on GAC and operating in a fluidized bed reactor has been evaluated. The results confirm the usefulness in using biological activated carbon (BAC process) to remove phenol compounds from aqueous systems

  3. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mita, Luigi [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Institute of Genetic and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples Italy (Italy); Grumiro, Laura [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Rossi, Sergio [Institute of Genetic and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples Italy (Italy); Bianco, Carmen; Defez, Roberto [Institute of Biosciences and BioResources, Via P. Castellino, 111, 80131 Naples (Italy); Gallo, Pasquale [Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, 80055 Portici, Naples (Italy); Mita, Damiano Gustavo, E-mail: mita@igb.cnr.it [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Institute of Genetic and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples Italy (Italy); Diano, Nadia [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Department of Experimental Medicine, Second University of Naples, Via S.M. di Costantinopoli, 16, 80138 Naples Italy (Italy)

    2015-06-30

    Highlights: • A fluidized bed reactor, filled with a Pseudomonas aeruginosa immobilized on GAC, has been used for BPA removal. • BPA removal resulted from a biological activated carbon (BAC) process. • Equations describing the results have been indicated. • BPA removal was analyzed as a function of time and biofilm reuse. - Abstract: Serratia rubidiae, Pseudomonas aeruginosa and Escherichia coli K12 have been studied for their ability of Bisphenol A removal from aqueous systems and biofilm formation on activated granule carbon. Mathematical equations for biodegradation process have been elaborated and discussed. P. aeruginosa was found the best strain to be employed in the process of Bisphenol A removal. The yield in BPA removal of a P. aeruginosa biofilm grown on GAC and operating in a fluidized bed reactor has been evaluated. The results confirm the usefulness in using biological activated carbon (BAC process) to remove phenol compounds from aqueous systems.

  4. Adsorption of Geosmin and MIB on Activated Carbon Fibers-Single and Binary Solute System

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Rangesh; Sorial, George A., E-mail: george.sorial@uc.ed [University of Cincinnati, Department of Civil and Environmental Engineering (United States)

    2009-08-15

    The adsorption of two taste- and odor-causing compounds, namely MIB (2-methyl isoborneol-C{sub 11}H{sub 20}O) and geosmin (C{sub 12}H{sub 22}O) on activated carbon was investigated in this study. The impact of adsorbent pore size distribution on adsorption of MIB and geosmin was evaluated through single solute and multicomponent adsorption of these compounds on three types of activated carbon fibers (ACFs) and one granular activated carbon (GAC). The ACFs (ACC-15, ACC-20, and ACC-25) with different degrees of activation had narrow pore size distributions and specific critical pore diameters whereas the GAC (F-400) had a wider pore size distribution and lesser microporosity. The effect of the presence of natural organic matter (NOM) on MIB and geosmin adsorption was also studied for both the single solute and binary systems. The Myers equation was used to evaluate the single solute isotherms as it converges to Henry's law at low coverage and also serves as an input for predicting multicomponent adsorption. The single solute adsorption isotherms fit the Myers equation well and pore size distribution significantly influenced adsorption on the ACFs and GAC. The ideal adsorbed solute theory (IAST), which is a well-established thermodynamic model for multicomponent adsorption, was used to predict the binary adsorption of MIB and geosmin. The IAST predicted well the binary adsorption on the ACFs and GAC. Binary adsorption isotherms were also conducted in the presence of oxygen (oxic) and absence of oxygen (anoxic). There were no significant differences in the binary isotherm between the oxic and anoxic conditions, indicating that adsorption was purely through physical adsorption and no oligomerization was taking place. Binary adsorptions for the four adsorbents were also conducted in the presence of humic acid to determine the effect of NOM and to compare with IAST predictions. The presence of NOM interestingly resulted in deviation from IAST behavior in case of two

  5. Kinetic analysis of anionic surfactant adsorption from aqueous solution onto activated carbon and layered double hydroxide with the zero length column method

    NARCIS (Netherlands)

    Schouten, Natasja; Ham, Louis G.J. van der; Euverink, Gert-Jan W.; Haan, André B. de

    2009-01-01

    Low cost adsorption technology offers high potential to clean-up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) and granular activated carbon (GAC) proved to be interesting materials for the removal of anionic surfactant, linear alkyl benzene sulfonate

  6. An innovative treatment concept for future drinking water production: fluidized ion exchange – ultrafiltration – nanofiltration – granular activated carbon filtration

    NARCIS (Netherlands)

    Li, S.; Heijman, S.G.J.; Verberk, J.Q.J.C.; Van Dijk, J.C.

    2009-01-01

    A new treatment concept for drinking water production from surface water has been investigated on a pilot scale. The treatment concept consists of fluidized ion exchange (FIEX), ultrafiltration (UF), nanofiltration (NF), and granular activated carbon filtration (GAC). The FIEX process removed calciu

  7. Removal of Volatile Organic Contaminants (VOCs) from the Groundwater Sources of Drinking Water via Granular Activated Carbon Treatment (WaterRF Report 4440)

    Science.gov (United States)

    The overall goal of this project was to assess the feasibility of granular activated carbon (GAC) for the treatment of selected carcinogenic volatile organic compounds (cVOC) to sub-μg/L levels. The project consisted of three tasks. The task objectives are: Task I - determine c...

  8. Adsorption onto fibrous activated carbon: applications to water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Le Cloirec, P.; Brasquet, C.; Subrenat, E. [Ecole des Mines de Nantes, Nantes (France)

    1997-03-01

    The adsorption of polluted waters is performed by activated carbon fibers (ACF). This new material is characterized by scanning electron microscopy. BET surface areas and pore volumes are determined. Adsorption of natural organics (humic substances) and micropollutants (aromatic compounds such as benzene and toluene) is carried out in a batch or dynamic reactor. Classical models are applied and kinetic constants calculated. The results show that the performance of ACF is significantly higher than that of granular activated carbon (GAC) in terms of adsorption velocity and selectivity for micropollutants. These higher performances are due to some ACF physical properties, such as their high BET surface area and micropore volume. Moreover, the micropores are directly connected on the external surface area of fibers, which allows smaller mass transfer resistance. In a dynamic reactor, the breakthrough curves obtained with ACF beds are particularly steep, suggesting a smaller mass transfer resistance than that of GAC. The adsorption zone in an ACF bed is about 3.5 mm and is not really dependent on the water flow rate within the studied range. 25 refs., 14 figs., 6 tabs.

  9. Ozonation of Cephalexin Antibiotic Using Granular Activated Carbon in a Circulating Reactor

    International Nuclear Information System (INIS)

    A circulating reactor was used to decompose cephalexin during catalytic ozonation. The effect of ozone supply and granular activated carbon (GAC) catalyst was investigated for removal of CEX and COD. The regeneration of exhausted activated carbon was investigated during in-situ ozonation. According to results, ozone supply appeared as the most influencing variable followed by dosage of granular activated carbon. The BET surface area, thermogravimetric analysis (TGA) and temperature programmed desorption (TPD) curves indicated that solid phase regeneration of activated carbon using ozone gas followed by mild thermal decomposition was very effective. The adsorption capacity of regenerated activated carbon was slightly lower than virgin activated carbon. The overall study revealed that catalytic ozonation was effective in removing cephalexin from solution and the method can be applied for in-situ ozonation processes. (author)

  10. Modified granular activated carbon: A carrier for the recovery of nickel ions from aqueous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Satapathy, D.; Natarajan, G.S.; Sen, R. [Central Fuel Research Inst., Nagpur (India)

    2004-07-01

    Granular Activated Carbon (GAC) is widely used for the removal and recovery of toxic pollutants including metals because of its low cost and high affinity towards the scavenging of metal ions. Activated carbon derived from bituminous coal is preferred for wastewater treatment due to its considerable hardness, a characteristic needed to keep down handling losses during re-activation. Commercial grade bituminous coal based carbon, viz. Filtrasorb (F-400), was used in the present work. The scavenging of precious metals such as nickel onto GAC was studied and a possible attempt made to recover the adsorbed Ni{sup 2+} ions through the use of some suitable leaching processes. As part of the study, the role of complexing agents on the surface of the carbon was also investigated. The use of organic complexing agents such as oxine and 2-methyloxine in the recovery process was found to be promising. In addition, the surface of the carbon was modified with suitable oxidising agents that proved to be more effective than chelating agents. Several attempts were made to optimise the recovery of metal ions by carrying out experiments with oxidising agents in order to obtain maximum recovery from the minimum quantity of carbon. Experiments with nitric acid indicated that not only was the carbon surface modified but such modification also helped in carbon regeneration.

  11. Regulation of GacA in Pseudomonas chlororaphis Strains Shows a Niche Specificity.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available The GacS/GacA two-component system plays a central role in the regulation of a broad range of biological functions in many bacteria. In the biocontrol organism Pseudomonas chlororaphis, the Gac system has been shown to positively control quorum sensing, biofilm formation, and phenazine production, but has an overall negative impact on motility. These studies have been performed with strains originated from the rhizosphere predominantly. To investigate the level of conservation between the GacA regulation of biocontrol-related traits in P. chlororaphis isolates from different habitats, the studies presented here focused on the endophytic isolate G5 of P. chlororaphis subsp. aurantiaca. A gacA mutant deficient in the production of N-acylhomoserine lactones (AHLs and phenazine was isolated through transposon mutagenesis. Further phenotypic characterization revealed that in strain G5, similar to other P. chlororaphis strains, a gacA mutation caused inability to produce biocontrol factors such as phenazine, HCN and proteases responsible for antifungal activity, but overproduced siderophores. LC-MS/MS analysis revealed that AHL production was also practically abolished in this mutant. However, the wild type exhibited an extremely diverse AHL pattern which has never been identified in P. chlororaphis. In contrast to other isolates of this organism, GacA in strain G5 was shown to negatively regulate biofilm formation and oxidative stress response whilst positively regulating cell motility and biosynthesis of indole-3-acetic acid (IAA. To gain a better understanding of the overall impact of GacA in G5, a comparative proteomic analysis was performed revealing that, in addition to some of the traits like phenazine mentioned above, GacA also negatively regulated lipopolysaccharide (LPS and trehalose biosynthesis whilst having a positive impact on energy metabolism, an effect not previously described in P. chlororaphis. Consequently, GacA regulation shows a

  12. Granular activated carbon adsorption and microwave regeneration for the treatment of 2,4,5-trichlorobiphenyl in simulated soil-washing solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xitao [Persistent Organic Pollutants Research Centre, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Yu Gang [Persistent Organic Pollutants Research Centre, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: yg-den@tsinghua.edu.cn; Han Wenya [Persistent Organic Pollutants Research Centre, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2007-08-25

    The treatment of 2,4,5-trichlorobiphenyl (PCB29) in simulated soil-washing solution by granular activated carbon (GAC) adsorption and microwave (MW) regeneration was investigated in this study. The PCB29 adsorption process was carried out in a continuous flow adsorption column. After adsorption, the PCB29-loaded GAC was dried at 103 deg. C, and regenerated in a quartz reactor by 2450 MHz MW irradiation at 700 W for 5 min. The efficacy of this procedure was analyzed by determining the rates and amounts of PCB29 adsorbed in successive adsorption/MW regeneration cycles. Effects of the regeneration on the textural properties and the PCB29 adsorption capacity of GAC were examined. It was found that after several adsorption/MW regeneration cycles, the adsorption rate of GAC increased, whereas, the adsorption capacity decreased, which could be explained according to the change of textural properties. Most of the PCB29 adsorbed on GAC was degraded within 3 min under MW irradiation, and the analysis of degradation products by GC-MS demonstrated that PCB29 experienced dechlorination during this treatment.

  13. Sorptive Uptake Studies of an Aryl-Arsenical with Iron Oxide Composites on an Activated Carbon Support

    Directory of Open Access Journals (Sweden)

    Jae H. Kwon

    2014-03-01

    Full Text Available Sorption uptake kinetics and equilibrium studies for 4-hydroxy-3-nitrobenzene arsonic acid (roxarsone was evaluated with synthetic magnetite (Mag-P, commercial magnetite (Mag-C, magnetite 10%, 19%, and 32% composite material (CM-10, -19, -32 that contains granular activated carbon (GAC, and synthetic goethite at pH 7.00 in water at 21 °C for 24 h. GAC showed the highest sorptive removal of roxarsone and the relative uptake for each sorbent material with roxarsone are listed in descending order as follows: GAC (471 mg/g > goethite (418 mg/g > CM-10 (377 mg/g CM-19 (254 mg/g > CM-32 (227 mg/g > Mag-P (132 mg/g > Mag-C (29.5 mg/g. The As (V moiety of roxarsone is adsorbed onto the surface of the iron oxide/oxyhydrate and is inferred as inner-sphere surface complexes; monodentate-mononuclear, bidentate-mononuclear, and bidentate-binuclear depending on the protolytic speciation of roxarsone. The phenyl ring of roxarsone provides the primary driving force for the sorptive interaction with the graphene surface of GAC and its composites. Thus, magnetite composites are proposed as multi-purpose adsorbents for the co-removal of inorganic and organic arsenicals due to the presence of graphenic and iron oxide active adsorption sites.

  14. Controlling a toxic shock of pentachlorophenol (PCP) to anaerobic digestion using activated carbon addition.

    Science.gov (United States)

    Xiao, Yeyuan; De Araujo, Cecilia; Sze, Chun Chau; Stuckey, David C

    2015-04-01

    Several powdered and granular activated carbons (PACs and GACs) were tested for adsorption of pentachlorophenol (PCP) in bench-scale anaerobic digestion reactors to control the toxicity of PCP to acetoclastic methanogenesis. Results showed that the adsorption capacities of PAC were reduced by 21-54%, depending on the PAC addition time, in the presence of the methanogenic sludge compared to the controls without sludge. As a preventive measure, PAC at a low dose of 20% (mass ratio to the VSS) added 24 h prior to, or simultaneously with, the addition of PCP could completely eliminate the toxic effects of PCP. At the same dose, PAC also enabled methanogenesis to recover immediately after the sludge had been exposed to PCP for 24h. GAC was not effective in enabling the recovery of methanogenesis due to its slow adsorption kinetics; however, at a dose of 80% it could partially ameliorate the toxic shock of PCP. PMID:25665874

  15. Effect of DOM Size on Organic Micropollutant Adsorption by GAC.

    Science.gov (United States)

    Kennedy, Anthony M; Summers, R Scott

    2015-06-01

    Granular activated carbon (GAC) adsorption of the micropollutants 2-methylisoborneol (MIB) and warfarin (WFN) at ng/L levels was investigated in five waters with isolated natural dissolved organic matter (DOM) held at a constant dissolved organic carbon concentration. Each water was evaluated for competitive adsorption effects based on the pretreatment of ultrafiltration, coagulation, and additional background micropollutants. Using the breakthrough with unfractionated DOM as a baseline, on average, the water with lower molecular weight (MW) DOM decreased MIB and WFN adsorption capacity by 59%, whereas the water with higher MW DOM increased MIB and WFN adsorption capacity by 64%. All waters showed similar decreasing MIB and WFN adsorption capacity with increasing empty bed contact time (EBCT), with more dramatic effects seen for the more strongly adsorbing WFN. On average, MIB and WFN adsorption kinetics were two times slower in the water with higher MW DOM compared to the water with lower MW DOM, as described by the intraparticle pore diffusion tortuosity. Increased adsorption competition from 27 micropollutants other than MIB and WFN at environmentally relevant concentrations had little to no effect on MIB and WFN breakthrough behavior. Any competitive effect from background micropollutants became indiscernible at longer EBCTs. PMID:25955134

  16. Impact of UV–H2O2 Advanced Oxidation and Aging Processes on GAC Capacity for the Removal of Cyanobacterial Taste and Odor Compounds

    Science.gov (United States)

    Zamyadi, Arash; Sawade, Emma; Ho, Lionel; Newcombe, Gayle; Hofmann, Ron

    2015-01-01

    Cyanobacteria and their taste and odor (T&O) compounds are a growing concern in water sources globally. Geosmin and 2-methylisoborneol (MIB) are the most commonly detected T&O compounds associated with cyanobacterial presence in drinking water sources. The use of ultraviolet and hydrogen peroxide (H2O2) as an advanced oxidation treatment for T&O control is an emerging technology. However, residual H2O2 (>80% of the initial dose) has to be removed from water prior final disinfection. Recently, granular activated carbon (GAC) is used to remove H2O2 residual. The objective of this study is to assess the impact of H2O2 quenching and aging processes on GAC capacity for the removal of geosmin and MIB. Pilot columns with different types of GAC and presence/absence of H2O2 have been used for this study. H2O2 removal for the operational period of 6 months has no significant impact on GAC capacity to remove the geosmin and MIB from water. PMID:26462247

  17. Theoretical and Experimental Study on the Adsorption and Desorption of Methane by Granular Activated Carbon at 25 ℃

    Institute of Scientific and Technical Information of China (English)

    E. Salehi; V. Taghikhani; C. Ghotbi; E. Nemati Lay; A. Shojaei

    2007-01-01

    A theoretical and experimental study was conducted to accurately determine the amount of adsorption and desorption of methane by various Granular Activated Carbon (GAC) under different physical conditions. To carry out the experiments, the volumetric method was used up to 500 psia at constant temperature of 25 ℃. In these experiments, adsorption as well as desorption capacities of four different GAC in the adsorption of methane, the major constituent of natural gas, at various equilibrium pressures and a constant temperature were studied. Also, various adsorption isotherm models were used to model the experimental data collected from the experiments. The accuracy of the results obtained from the adsorption isotherm models was compared and the values for the regressed parameters were reported. The results shows that the physical characteristics of activated carbons such as BET surface area, micropore volume, packing density, and pore size distribution play an important role in the amount of methane to be adsorbed and desorbed.

  18. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  19. Activated carbon load equalization of gas-phase toluene: effect of cycle length and fraction of time in loading

    Energy Technology Data Exchange (ETDEWEB)

    William M. Moe; Kodi L. Collins; John D. Rhodes [Louisiana State University, Baton Rouge, LA (United States). Department of Civil and Environmental Engineering

    2007-08-01

    Fluctuating pollutant concentrations pose challenges in the design and operation of air pollution control devices such as biofilters. Effective load equalization could decrease or eliminate many of these difficulties. In research described here, experiments were conducted to evaluate effects of cycle length and fraction of time contaminants are supplied on the degree of load equalization achieved by passively operated granular activated carbon (GAC) beds. Columns packed with bituminous coal based Calgon BPL 4 x 6 mesh GAC were subjected to a variety of cyclic loading conditions in which toluene was supplied at concentrations of 1000 or 250 ppmv during loading intervals, and uncontaminated air flowed through the columns during no-loading intervals. The fraction of time when toluene was supplied ranged from 1/2 to 1/6, and cycle lengths ranged from 6 to 48 h. Results demonstrate that passively operated GAC columns can temporarily accumulate contaminants during intervals of high influent concentration and desorb contaminants during intervals of no loading, resulting in appreciable load equalization without need for external regeneration by heating or other means. Greater load equalization was achieved as the fraction of time toluene was loaded decreased and as the cycle length decreased. A pore and surface diffusion model, able to predict the level of contaminant concentration attenuation in GAC columns with reasonable accuracy, was used to further explore the range of load equalization performance expected from columns of various packed bed depths. 19 refs., 6 figs., 1 tab.

  20. Developing Polycation-Clay Sorbents for Efficient Filtration of Diclofenac: Effect of Dissolved Organic Matter and Comparison to Activated Carbon.

    Science.gov (United States)

    Kohay, Hagay; Izbitski, Avital; Mishael, Yael G

    2015-08-01

    The presence of nanoconcentrations of persistent pharmaceuticals in treated wastewater effluent and in surface water has been frequently reported. A novel organic-inorganic hybrid sorbent based on adsorbing quarternized poly vinylpyridinium-co-styrene (QPVPcS) to montmorillonite (MMT) was designed for the removal of the anionic micropollutants. QPVPcS-clay composites were characterized by X-ray diffraction, FTIR, thermal gravimetric analysis, Zeta potential and element analysis. Based on these measurements polymer-clay micro- and nanostructures, as a function of polymer loading, were suggested. The affinity of the anionic pharmaceutical, diclofenac (DCF), to the composite was high and did not decrease dramatically with an increase of ionic strength, indicating that the interactions are not only electrostatic. The presence of humic acid (HA) did not hinder DCF removal by the composite; whereas, its filtration by granulated activated carbon (GAC) was compromised in the presence of HA. The kinetics and adsorption at equilibrium of DCF to the composite and to GAC were measured and modeled by the time dependent Langmuir equation. The adsorption of DCF to the composite was significantly faster than to GAC. Accordingly, the filtration of micro- and nanoconcentrations of DCF by composite columns, in the presence of HA, was more efficient than by GAC columns. PMID:26126078

  1. Removal of aluminum, iron and manganese ions from industrial wastes using granular activated carbon and Amberlite IR-120H

    Directory of Open Access Journals (Sweden)

    Mohamed E. Goher

    2015-01-01

    Full Text Available The removal of aluminum, iron and manganese from some pollution sources that drain into Ismailia Canal has been investigated using two different sorbents; granular activated carbon (GAC and Amberlite IR-120H (AIR-120H. Batch equilibrium experiments showed that the two sorbents have maximum removal efficiency for aluminum and iron pH 5 and 10 min contact time in ambient room temperature, while pH 7 and 30 min were the most appropriate for manganese removal. Dosage of 2 g/l for both GAC and AIR-120H was established to give the maximum removal capacity. At optimum conditions, the removal trend was in order of Al+3 > Fe+2 > Mn+2 with 99.2, 99.02 and 79.05 and 99.55, 99.42 and 96.65% of metal removal with GAC and AIR-120H, respectively. For the three metals, Langmuir and Freundlich isotherms showed higher R2 values, with a slightly better fitting for the Langmuir model. In addition, separation factors (RL and exponent (n values indicated favorable Langmuir (0 < RL < 1 and Freundlich (1 < n < 10 approach. GAC and AIR-120H can be used as excellent alternative, effective and inexpensive materials to remove high amounts of heavy metals from waste water.

  2. An innovative treatment concept for future drinking water production: fluidized ion exchange-ultrafiltration-nanofiltration-granular activated carbon filtration

    Directory of Open Access Journals (Sweden)

    J. C. van Dijk

    2009-01-01

    Full Text Available A new treatment concept for drinking water production from surface water has been investigated on a pilot scale. The treatment concept consists of fluidized ion exchange (FIEX, ultrafiltration (UF, nanofiltration (NF, and granular activated carbon filtration (GAC. The FIEX process removed calcium and other divalent cations; the UF membrane removed particles and micro-organisms; and the NF membrane and GAC removed natural organic matter (NOM and micro-pollutants. This study focused on the prevention of fouling of the UF and scaling of the NF and investigated the overall removal of micro-pollutants by the treatment concept. The results of the experiments showed that in 14 days of continuous operation at a flux of 65 l/h. m2 the UF performance was stable with the FIEX pre-treated feed water without the aid of a coagulant. The scaling of the NF was also not observed even at 97% recovery. Different micro-pollutants were spiked in the NF feed water and their concentrations in the effluent of NF and GAC were measured. The combination of NF and GAC removed most of the micro-pollutants successfully, except for the very polar substances with a molecular weight lower than 100 Daltons.

  3. Charcoal bed operation for optimal organic carbon removal

    International Nuclear Information System (INIS)

    Historically, evaporation, reverse osmosis or charcoal-demineralizer systems have been used to remove impurities in liquid radwaste processing systems. At Nine Mile point, we recently replaced our evaporators with charcoal-demineralizer systems to purify floor drain water. A comparison of the evaporator to the charcoal-demineralizer system has shown that the charcoal-demineralizer system is more effective in organic carbon removal. We also show the performance data of the Granulated Activated Charcoal (GAC) vessel as a mechanical filter. Actual data showing that frequent backflushing and controlled flow rates through the GAC vessel dramatically increases Total Organic Carbon (TOC) removal efficiency. GAC vessel dramatically increases Total Organic Carbon (TOC) removal efficiency. Recommendations are provided for operating the GAC vessel to ensure optimal performance

  4. Synthesis of iron/GAC catalyst for wastewater treatment using heterogeneous Fenton reaction

    Indian Academy of Sciences (India)

    S T T Le; T T Ngo; W Khanitchaidecha; A Nakaruk

    2015-08-01

    Iron catalyst dispersed on granular activated carbon (GAC) was prepared by impregnating Fe(NO3)3 solution on GAC. The mixed solution was annealed at 600°C in muffle furnace under ambient condition for 1 h. The structural property of the catalyst was investigated using X-ray diffraction (XRD). The catalyst’s activity and lifetime were tested using the degradation of 50 ppm methyl orange (MO) solution. In addition, the optimum conditions of the Fenton reaction such as initial pH, initial MO concentration hydrogen peroxide concentration and the amount of catalyst were also investigated. The XRD results showed that magnetite and haematite were two main compositions of the synthesized catalyst. The investigation of optimum conditions suggested that initial pH at 3 provided the highest efficiency of MO removal. In addition, the concentration of hydrogen peroxide at 8 ppm was the most suitable. The optimum condition of amount of catalyst was 5 g l−1. The efficiencies of MO removal reached 95% at 60 min of reaction time at low initial MO concentration (25–500 mg l−1). In the meantime, the removal efficiency was found to decrease with the increase in the initial MO concentration. The efficiency decreased to 70 and 30% at 1000 and 3000 mg l−1 of initial MO concentration, respectively. Additionally, after reuse the synthesized catalyst 3 times the MO removal efficiency still remained over 90%. In conclusion, the iron/GAC catalyst was successfully synthesized and applied to dye treatment using heterogeneous Fenton reaction. The catalyst showed high efficiency of MO removal and could be reused many times.

  5. FACTORS AFFECTING THE REMOVAL OF A BASIC AND AN AZO DYE FROM ARTIFICIAL SOLUTIONS BY ADSORPTION USING ACTIVATED CARBON

    OpenAIRE

    Albroomi, H I; ElSayed, Mohamed; Baraka, A.; Abdelmaged, M A

    2014-01-01

    Decolourisation of wastewater, particularly from textile industries, is one of the major environmental concerns these days. Current methods for removing dyes from wastewater are costly and cannot effectively be used to treat wide range of such wastewater. This work describes the use of commercial available granular activated carbon (GAC) as an efficient adsorbent material for dyes removal. Aqueous solutions of various basic dye Methylene Blue (MB) and azo-dye Tartrazine with concentrations 5-...

  6. Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates.

    Science.gov (United States)

    Anumol, Tarun; Sgroi, Massimiliano; Park, Minkyu; Roccaro, Paolo; Snyder, Shane A

    2015-06-01

    This study investigated the applicability of bulk organic parameters like dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254), and total fluorescence (TF) to act as surrogates in predicting trace organic compound (TOrC) removal by granular activated carbon in water reuse applications. Using rapid small-scale column testing, empirical linear correlations for thirteen TOrCs were determined with DOC, UV254, and TF in four wastewater effluents. Linear correlations (R(2) > 0.7) were obtained for eight TOrCs in each water quality in the UV254 model, while ten TOrCs had R(2) > 0.7 in the TF model. Conversely, DOC was shown to be a poor surrogate for TOrC breakthrough prediction. When the data from all four water qualities was combined, good linear correlations were still obtained with TF having higher R(2) than UV254 especially for TOrCs with log Dow>1. Excellent linear relationship (R(2) > 0.9) between log Dow and the removal of TOrC at 0% surrogate removal (y-intercept) were obtained for the five neutral TOrCs tested in this study. Positively charged TOrCs had enhanced removals due to electrostatic interactions with negatively charged GAC that caused them to deviate from removals that would be expected with their log Dow. Application of the empirical linear correlation models to full-scale samples provided good results for six of seven TOrCs (except meprobamate) tested when comparing predicted TOrC removal by UV254 and TF with actual removals for GAC in all the five samples tested. Surrogate predictions using UV254 and TF provide valuable tools for rapid or on-line monitoring of GAC performance and can result in cost savings by extended GAC run times as compared to using DOC breakthrough to trigger regeneration or replacement. PMID:25792436

  7. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue.

    Science.gov (United States)

    Jung, Kyung-Won; Choi, Brian Hyun; Hwang, Min-Jin; Jeong, Tae-Un; Ahn, Kyu-Hong

    2016-11-01

    Biomass-based granular activated carbon was successfully prepared by entrapping activated carbon powder derived from spent coffee grounds into calcium-alginate beads (SCG-GAC) for the removal of acid orange 7 (AO7) and methylene blue (MB) from aqueous media. The dye adsorption process is highly pH-dependent and essentially independent of ionic effects. The adsorption kinetics was satisfactorily described by the pore diffusion model, which revealed that pore diffusion was the rate-limiting step during the adsorption process. The equilibrium isotherm and isosteric heat of adsorption indicate that SCG-GAC possesses an energetically heterogeneous surface and operates via endothermic process in nature. The maximum adsorption capacities of SCG-GAC for AO7 (pH 3.0) and MB (pH 11.0) adsorption were found to be 665.9 and 986.8mg/g at 30°C, respectively. Lastly, regeneration tests further confirmed that SCG-GAC has promising potential in its reusability, showing removal efficiency of more than 80% even after seven consecutive cycles. PMID:27494099

  8. Removal of 2-ClBP from soil-water system using activated carbon supported nanoscale zerovalent iron.

    Science.gov (United States)

    Zhang, Wei; Yu, Tian; Han, Xiaolin; Ying, Weichi

    2016-09-01

    We explored the feasibility and removal mechanism of removing 2-chlorobiphenyl (2-ClBP) from soil-water system using granular activated carbon (GAC) impregnated with nanoscale zerovalent iron (reactive activated carbon or RAC). The RAC samples were successfully synthesized by the liquid precipitation method. The mesoporous GAC based RAC with low iron content (1.32%) exhibited higher 2-ClBP removal efficiency (54.6%) in the water phase. The result of Langmuir-Hinshelwood kinetic model implied that the different molecular structures between 2-ClBP and trichloroethylene (TCE) resulted in more difference in dechlorination reaction rates on RAC than adsorption capacities. Compared to removing 2-ClBP in the water phase, RAC removed the 2-ClBP more slowly in the soil phase due to the significant external mass transfer resistance. However, in the soil phase, a better removal capacity of RAC was observed than its base GAC because the chemical dechlorination played a more important role in total removal process for 2-ClBP. This important result verified the effectiveness of RAC for removing 2-ClBP in the soil phase. Although reducing the total RAC removal rate of 2-ClBP, soil organic matter (SOM), especially the soft carbon, also served as an electron transfer medium to promote the dechlorination of 2-ClBP in the long term. PMID:27593281

  9. Removal of 2-ClBP from soil-water system using activated carbon supported nanoscale zerovalent iron.

    Science.gov (United States)

    Zhang, Wei; Yu, Tian; Han, Xiaolin; Ying, Weichi

    2016-09-01

    We explored the feasibility and removal mechanism of removing 2-chlorobiphenyl (2-ClBP) from soil-water system using granular activated carbon (GAC) impregnated with nanoscale zerovalent iron (reactive activated carbon or RAC). The RAC samples were successfully synthesized by the liquid precipitation method. The mesoporous GAC based RAC with low iron content (1.32%) exhibited higher 2-ClBP removal efficiency (54.6%) in the water phase. The result of Langmuir-Hinshelwood kinetic model implied that the different molecular structures between 2-ClBP and trichloroethylene (TCE) resulted in more difference in dechlorination reaction rates on RAC than adsorption capacities. Compared to removing 2-ClBP in the water phase, RAC removed the 2-ClBP more slowly in the soil phase due to the significant external mass transfer resistance. However, in the soil phase, a better removal capacity of RAC was observed than its base GAC because the chemical dechlorination played a more important role in total removal process for 2-ClBP. This important result verified the effectiveness of RAC for removing 2-ClBP in the soil phase. Although reducing the total RAC removal rate of 2-ClBP, soil organic matter (SOM), especially the soft carbon, also served as an electron transfer medium to promote the dechlorination of 2-ClBP in the long term.

  10. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon

    International Nuclear Information System (INIS)

    The decolorization of industrial wastewater containing direct dye (Drimarene Red CL-3B) by advanced oxidation process using ozonation in a semi-batch bubble column reactor followed by granule activated carbon (GAC) adsorption process was studied. The effect of initial dye concentration, ozone concentration, pH and ozone-air flow rate on the rate of dye decolorization were investigated. It was found that the rate of dye decolorization increases with increasing ozone concentration, ozone-air flow rate, and pH but decreases with increasing initial dye concentration. This study is a hybrid system conducted in combination between ozonation process and GAC adsorption to reveal higher and efficient removal of color and TOC. The process started with ozonation for efficient and rapid decolorization of dyeing wastewater, followed by GAC adsorption process to gain efficient removal of color and TOC. The adsorption process was found to be very efficient in removal of ozonation residual TOC, in view of high TOC removal, up to 37% TOC removal was obtained. Numerical correlation using regression analysis for decolorization time with the operating conditions of the ozonation process were presented.

  11. In situ treatment with activated carbon reduces bioaccumulation in aquatic food chains.

    Science.gov (United States)

    Kupryianchyk, D; Rakowska, M I; Roessink, I; Reichman, E P; Grotenhuis, J T C; Koelmans, A A

    2013-05-01

    In situ activated carbon (AC) amendment is a new direction in contaminated sediment management, yet its effectiveness and safety have never been tested on the level of entire food chains including fish. Here we tested the effects of three different AC treatments on hydrophobic organic chemical (HOC) concentrations in pore water, benthic invertebrates, zooplankton, and fish (Leuciscus idus melanotus). AC treatments were mixing with powdered AC (PAC), mixing with granular AC (GAC), and addition-removal of GAC (sediment stripping). The AC treatments resulted in a significant decrease in HOC concentrations in pore water, benthic invertebrates, zooplankton, macrophytes, and fish. In 6 months, PAC treatment caused a reduction of accumulation of polychlorobiphenyls (PCB) in fish by a factor of 20, bringing pollutant levels below toxic thresholds. All AC treatments supported growth of fish, but growth was inhibited in the PAC treatment, which was likely explained by reduced nutrient concentrations, resulting in lower zooplankton (i.e., food) densities for the fish. PAC treatment may be advised for sites where immediate ecosystem protection is required. GAC treatment may be equally effective in the longer term and may be adequate for vulnerable ecosystems where longer-term protection suffices. PMID:23544454

  12. Pilot plant study on ozonation and biological activated carbon process for drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A study on advanced drinking water treatment was conducted in a pilot scale plant taking water from conventional treatment process. Ozonation-biological activated carbon process (O3-BAC) and granular activated carbon process (GAC) were evaluated based on the following parameters: CODMn, UV254, total organic carbon (TOC), assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC). In this test, the average removal rates of CODMn , UV254 and TOC in O3-BAC were18.2%, 9.0% and 10.2% higher on (AOC) than in GAC, respectively. Ozonation increased 19.3-57.6 μg Acetate-C/L in AOC-P17,45.6-130.6 μg Acetate-C/L in AOC-NOX and 0.1-0.5 mg/L in BDOC with ozone doses of 2-8 mg/L. The optimum ozone dose for maximum AOC formation was 3 mgO3/L. BAC filtration was effective process to improve biostability.

  13. Arsenate sorption by hydrous ferric oxide incorporated onto granular activated carbon with phenol formaldehyde resins coating.

    Science.gov (United States)

    Zhuang, J M; Hobenshield, E; Walsh, T

    2008-04-01

    A simple and effective method was developed using phenol formaldehyde (PF) resins to immobilize hydrous ferric oxide (HFO) onto granular activated carbon (GAC). The resulting sorbent possesses advantages for both the ferric oxide and the GAC, such as a great As-affinity of ferric oxide, large surface area of GAC, and enhanced physical strength. The studies showed that within one hour this sorbent was able to remove 85% of As(V) from water containing an initial As(V) concentration of 1.74 mg l(-1). The As(V) adsorption onto the sorbent was found to follow a pseudo-second order kinetics model. The adsorption isotherms were interpreted in terms of the Langmuir and Freundlich models. The equilibrium data fitted very well to both models. Column tests showed that this sorbent was able to achieve residual concentrations of As(V) in a range of 0.1-2.0 microg l(-1) while continuously treating about 180 bed volume (BV, 130 ml-BV) of arsenate water with an initial As(V) concentration of 1886 microg l(-1) at a filtration rate of 13.5 ml min(-1), i.e., an empty bed contact time (EBCT) of 9.6 min and a gram sorbent contact time (GSCT) of 0.15 min. After passing 635 BV of arsenate water, the exhausted sorbent was then tested by the Toxicity Characteristic Leaching Procedure (TCLP, US EPA Method 1311) test, and classified as non-hazardous for disposal. Hence, this HFO-PF-coated GAC has the capability to remove As(V) from industrial wastewater containing As(V) levels of about 2 mg l(-1).

  14. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.

    Science.gov (United States)

    Ersan, Gamze; Kaya, Yasemin; Apul, Onur G; Karanfil, Tanju

    2016-09-15

    The effect of NOM preloading on the adsorption of phenanthrene (PNT) and trichloroethylene (TCE) by pristine graphene nanosheets (GNS) and graphene oxide nanosheet (GO) was investigated and compared with those of a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based granular activated carbons (GACs). PNT uptake was higher than TCE by all adsorbents on both mass and surface area bases. This was attributed to the hydrophobicity of PNT. The adsorption capacities of PNT and TCE depend on the accessibility of the organic molecules to the inner regions of the adsorbent which was influenced from the molecular size of OCs. The adsorption capacities of all adsorbents decreased as a result of NOM preloading due to site competition and/or pore/interstice blockage. However, among all adsorbents, GO was generally effected least from the NOM preloading for PNT, whereas there was not observed any trend of NOM competition with a specific adsorbent for TCE. In addition, SWCNT was generally affected most from the NOM preloading for TCE and there was not any trend for PNT. The overall results indicated that the fate and transport of organic contaminants by GNSs and CNTs type of nanoadsorbents and GACs in different natural systems will be affected by water quality parameters, characteristics of adsorbent, and properties of adsorbate. PMID:27107611

  15. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor.

    Science.gov (United States)

    Mita, Luigi; Grumiro, Laura; Rossi, Sergio; Bianco, Carmen; Defez, Roberto; Gallo, Pasquale; Mita, Damiano Gustavo; Diano, Nadia

    2015-06-30

    Serratia rubidiae, Pseudomonas aeruginosa and Escherichia coli K12 have been studied for their ability of Bisphenol A removal from aqueous systems and biofilm formation on activated granule carbon. Mathematical equations for biodegradation process have been elaborated and discussed. P. aeruginosa was found the best strain to be employed in the process of Bisphenol A removal. The yield in BPA removal of a P. aeruginosa biofilm grown on GAC and operating in a fluidized bed reactor has been evaluated. The results confirm the usefulness in using biological activated carbon (BAC process) to remove phenol compounds from aqueous systems.

  16. An innovative treatment concept for future drinking water production: fluidized ion exchange – ultrafiltration – nanofiltration – granular activated carbon filtration

    Directory of Open Access Journals (Sweden)

    J. C. van Dijk

    2009-08-01

    Full Text Available A new treatment concept for drinking water production from surface water has been investigated on a pilot scale. The treatment concept consists of fluidized ion exchange (FIEX, ultrafiltration (UF, nanofiltration (NF, and granular activated carbon filtration (GAC. The FIEX process removed calcium and other divalent cations; the UF membrane removed particles and micro-organisms; and the NF membrane and GAC removed natural organic matter (NOM and micro-pollutants. This study focused on the prevention of fouling of the UF and scaling of the NF and investigated the overall removal of micro-pollutants by the treatment concept. The results of the experiments showed that in 14 days of continuous operation at a flux of 65 l/h m2 the UF performance was stable with the FIEX pre-treated feed water without the aid of a coagulant. The scaling of the NF was also not observed even at 97% recovery. Different micro-pollutants were spiked in the NF feed water and their concentrations in the effluent of NF and GAC were measured. The combination of NF and GAC removed most of the micro-pollutants successfully, except for the very polar substances with a molecular weight lower than 100 Daltons.

  17. Remediation of Trichloroethylene and Monochlorobenzene-Contaminated Aquifers Using the ORC-GAC-Fe0-CaCO3 System:Volatilization, Precipitation,and Porosity Losses

    Institute of Scientific and Technical Information of China (English)

    LIN Qi; V. PLAGENTZ; D. SCHAFER; A. DAHMKE

    2007-01-01

    The objectives of this study were to illustrate the reaction processes, to identify and quantify the precipitates formed, and to estimate the porosity losses in order to eliminate drawbacks during remediating monochlorobenzene (MCB) and trichloroethylene (TCE)-contaminated aquifers using the ORC-GAC-Fe0-CaCO3 system. The system consisted of four columns (112 cm long and 10 cm in diameter) with oxygen-releasing compound (ORC), granular activated carbon (GAC),zero-valent iron (Fe0), and calcite used sequentially as the reactive media. The concentrations of MCB in the GAC column effluent and TCE in the Fe0 column effluent were below the detection limit. However, the concentrations of MCB and TCE in the final calcite column exceeded the maximum contaminant level (MCL) under the Safe Drinking Water Act of the US Environmental Protection Agency (US EPA) that protects human health and environment. These results suggested that partitioning of MCB and TCE into the gas phase could occur, and also that transportation of volatile organic pollutants in the gas phase was important. Three main precipitates formed in the ORC-GAC-Fe0-CaCO3 system:CaCO3 in the ORC column along with Fe(OH)2 and FeCO3 in the Fe0 column. The total porosity losses caused by mineral precipitation corresponded to about 0.24% porosity in the ORC column, and 1% in the Fe0 column. The most important cause of porosity losses was anaerobic corrosion of iron. The porosity losses caused by gas because of the production and entrapment of oxygen in the ORC column and hydrogen in the Fe0 column should not be ignored. Volatilization, precipitation and porosity losses were considered to be the main drawbacks of the ORC-GAC-Fe0-CaCO3 system in remediating the MCB and TCE-contaminated aquifers. Thus, measurements such as using a suitable oxygen-releasing compound, weakening the increase in pH using a buffer material such as soil, stimulating biodegradation rates and minimizing the plugging caused by the relatively high

  18. Bioavailability assessments following biochar and activated carbon amendment in DDT-contaminated soil.

    Science.gov (United States)

    Denyes, Mackenzie J; Rutter, Allison; Zeeb, Barbara A

    2016-02-01

    The effects of 2.8% w/w granulated activated carbon (GAC) and two types of biochar (Burt's and BlueLeaf) on DDT bioavailability in soil (39 μg/g) were investigated using invertebrates (Eisenia fetida), plants (Cucurbita pepo spp. pepo) and a polyoxymethylene (POM) passive sampler method. Biochar significantly reduced DDT accumulation in E. fetida (49%) and showed no detrimental effects to invertebrate health. In contrast, addition of GAC caused significant toxic effects (invertebrate avoidance and decreased weight) and did not significantly reduce the accumulation of DDT into invertebrate tissue. None of the carbon amendments reduced plant uptake of DDT. Bioaccumulation of 4,4'DDT and 4,4'-DDE in plants (C. pepo spp. pepo) and invertebrates (E. fetida) was assessed using bioaccumulation factors (BAFs) and compared to predicted bioavailability using the freely-dissolved porewater obtained from a polyoxymethylene (POM) equilibrium biomimetic method. The bioavailable fraction predicted by the POM samplers correlated well with measured invertebrate uptake ( 10 μg/g. The results of these studies illustrate the importance of including plants in bioavailability studies as the use of carbon materials for in situ contaminant sorption moves from predominantly sediment to soil remediation technologies. PMID:26495827

  19. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Science.gov (United States)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  20. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7–8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π–π electron donor–acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion

  1. Characterization of the gacA-dependent surface and coral mucus colonization by an opportunistic coral pathogen Serratia marcescens PDL100.

    Science.gov (United States)

    Krediet, Cory J; Carpinone, Emily M; Ritchie, Kim B; Teplitski, Max

    2013-05-01

    Opportunistic pathogens rely on global regulatory systems to assess the environment and to control virulence and metabolism to overcome host defenses and outcompete host-associated microbiota. In Gammaproteobacteria, GacS/GacA is one such regulatory system. GacA orthologs direct the expression of the csr (rsm) small regulatory RNAs, which through their interaction with the RNA-binding protein CsrA (RsmA), control genes with functions in carbon metabolism, motility, biofilm formation, and virulence. The csrB gene was controlled by gacA in Serratia marcescens PDL100. A disruption of the S. marcescens gacA gene resulted in an increased fitness of the mutant on mucus of the host coral Acropora palmata and its high molecular weight fraction, whereas the mutant was as competitive as the wild type on the low molecular weight fraction of the mucus. Swarming motility and biofilm formation were reduced in the gacA mutant. This indicates a critical role for gacA in the efficient utilization of specific components of coral mucus and establishment within the surface mucopolysaccharide layer. While significantly affecting early colonization behaviors (coral mucus utilization, swarming motility, and biofilm formation), gacA was not required for virulence of S. marcescens PDL100 in either a model polyp Aiptasia pallida or in brine shrimp Artemia nauplii. PMID:23278392

  2. Characterization of the gacA-dependent surface and coral mucus colonization by an opportunistic coral pathogen Serratia marcescens PDL100.

    Science.gov (United States)

    Krediet, Cory J; Carpinone, Emily M; Ritchie, Kim B; Teplitski, Max

    2013-05-01

    Opportunistic pathogens rely on global regulatory systems to assess the environment and to control virulence and metabolism to overcome host defenses and outcompete host-associated microbiota. In Gammaproteobacteria, GacS/GacA is one such regulatory system. GacA orthologs direct the expression of the csr (rsm) small regulatory RNAs, which through their interaction with the RNA-binding protein CsrA (RsmA), control genes with functions in carbon metabolism, motility, biofilm formation, and virulence. The csrB gene was controlled by gacA in Serratia marcescens PDL100. A disruption of the S. marcescens gacA gene resulted in an increased fitness of the mutant on mucus of the host coral Acropora palmata and its high molecular weight fraction, whereas the mutant was as competitive as the wild type on the low molecular weight fraction of the mucus. Swarming motility and biofilm formation were reduced in the gacA mutant. This indicates a critical role for gacA in the efficient utilization of specific components of coral mucus and establishment within the surface mucopolysaccharide layer. While significantly affecting early colonization behaviors (coral mucus utilization, swarming motility, and biofilm formation), gacA was not required for virulence of S. marcescens PDL100 in either a model polyp Aiptasia pallida or in brine shrimp Artemia nauplii.

  3. Adsorption of Carbon Dioxide on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  4. Preparation and photocatalytic activity of TiO2-coated granular activated carbon composites by a molecular adsorption-deposition method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    TiO2 nanoparticle-coated granular activated carbon (GAC) composite photocatalysts (CPs) were suc-cessfully prepared by a molecular adsorption-deposition (MAD) method. The CPs were detected by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), BET surface area and UV-Vis adsorption spectroscopy, and their photoactivity was evaluated by methyl orange (MO) photodegradation. The results show that small-sized TiO2 nanoparticles were dispersed well, deposited on the surface of GAC, and showed slight blue shift in comparison with pure TiO2. With the increase in TiO2 content, the CPs showed band gaps in lower energy, smaller surface areas and the higher content of Ti3+ ions. Compared with pure TiO2 and others CPs samples, CPs-382 sample showed the highest photoactivity due to the optimum TiO2 content and surface area besides the synergic effect of photocatalytic degradation of TiO2 and adsorptive property of GAC. In addition, the CPs could be very easily reclaimed, recycled and reused for methyl orange removal while high photoactivity is pre-served.

  5. Preparation and photocatalytic activity of TiO2-coated granular activated carbon composites by a molecular adsorption-deposition method

    Institute of Scientific and Technical Information of China (English)

    LI Youdi; LI Jing; MA MingYuan; OUYANG YuZhu; YAN WenBin

    2008-01-01

    TiO2 nanoparUcle-coated granular activated carbon (GAC) composite photocatalysts (CPs) were suc-cessfully prepared by a molecular adsorption-deposition (MAD) method. The CPs were detected by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), BET surface area and UV-Vis adsorption spectroscopy, and their photoactivity was evaluated by methyl orange (MO) photodegradation. The results show that small-sized TiO2 nanoparticles were dispersed well, deposited on the surface of GAC, and showed slight blue shift in comparison with pure TiO2. With the increase in TiO2 content, the CPs showed band gaps in lower energy, smaller surface areas and the higher content of Ti3+ ions. Compared with pure TiO2 and others CPs samples, CPs-382 sample showed the highest photoactivity due to the optimum TiO2 content and surface area besides the synergic effect of photocatslytic degradation of TiO2 and adsorptive property of GAC. In addition, the CPs could be very easily reclaimed, recycled and reused for methyl orange removal while high photoactivity is pre-served.

  6. Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil.

    Science.gov (United States)

    Meynet, Paola; Hale, Sarah E; Davenport, Russell J; Cornelissen, Gerard; Breedveld, Gijs D; Werner, David

    2012-05-01

    We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2% powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophoresis (DGGE) shifted more strongly with time than in response to AC amendment. DGGE band sequencing revealed the presence of taxa with closest affiliations either to known PAH degraders, e.g. Rhodococcus jostii RHA-1, or taxa known to harbor PAH degraders, e.g. Rhodococcus erythropolis, in all soils. Quantification by real-time polymerase chain reaction yielded similar dioxygenases gene copy numbers in unamended, PAC-, or GAC-amended soil. PAH availability assessments in batch tests showed the greatest difference of 75% with and without biocide addition for unamended soil, while the lowest PAH availability overall was measured in PAC-amended, live soil. We conclude that AC had no detrimental effects on soil microbiology, AC-amended soils retained the potential to biodegrade PAHs, but the removal of available pollutants by biodegradation was most notable in unamended soil. PMID:22455603

  7. Determination of the structural and chemisorption characteristics of granulated active charcoal on the basis of coconut shell

    Directory of Open Access Journals (Sweden)

    Milenković Dragan D.

    2004-01-01

    Full Text Available Wastewater purification and the acquirement of drinking water from water streams that are in most cases recipients of various industrial plants, present a significant problem nowadays. The structural characteristics of granulated active charcoal (GAC obtained by the carbonization of coconut shells and activated by steam are presented in this paper. The established kinetics of suspending cyanide from aqueous solution using GAC impregnated with copper(II acetate were studied and a mathematical model estabkusged by a regression - correlation analysis.

  8. Effect of humic acid on pyrene removal from water by polycation-clay mineral composites and activated carbon.

    Science.gov (United States)

    Radian, Adi; Mishael, Yael

    2012-06-01

    Pyrene removal by polycation-montmorillonite (MMT) composites and granulated activated carbon (GAC) in the presence of humic acid (HA) was examined. Pyrene, HA, and sorbent interactions were characterized by FTIR, fluorescence and zeta measurements, adsorption, and column filtration experiments. Pyrene binding coefficients to the macromolecules were in the order of PVPcoS (poly-4-vinylpiridine-co-styrene) > HA > PDADMAC (poly diallyl-dimethyl-ammonium-chloride), correlating to pyrene-macromolecules compatibility. Electrostatic interactions explained the high adsorption of HA to both composites (∼100%), whereas HA adsorption by GAC was low. Pyrene removal by the composites, unlike GAC, was enhanced in the presence of HA; removal by PDADMAC-MMT increased from ∼50 (k(d) = 2.2 × 10(3) kg/L) to ∼70% (k(d) = 2.4 × 10(3) kg/L) in the presence of HA. This improvement was attributed to the adsorption of pyrene-HA complexes. PVPcoS-MMT was most efficient in removing pyrene (k(d) = 1.1 × 10(4) kg/L, >95% removal) which was explained in terms of specific π donor-π acceptor interactions. Pyrene uptake by column filters of GAC reached ∼50% and decreased to ∼30% in the presence of HA. Pyrene removal by the PVPcoS-MMT filter was significantly higher (100-85% removal), exhibiting only a small decrease in the presence of HA. The utilization of HA as an enhancing agent in pollutant removal is novel and of major importance in water treatment. PMID:22545663

  9. Investigation of decolorization of textile wastewater in an anaerobic/aerobic biological activated carbon system (A/A BAC).

    Science.gov (United States)

    Pasukphun, N; Vinitnantharat, S; Gheewala, S

    2010-04-01

    The aim of this study is to investigate the decolorization in anaerobic/aerobic biological activated carbon (A/A BAC) system. The experiment was divided into 2 stages; stage I is batch test for preliminary study of dye removal equilibrium time. The preliminary experiment (stage I) provided the optimal data for experimental design of A/A BAC system in SBR (stage II). Stage II is A/A BAC system imitated Sequencing Batch Reactor (SBR) which consist of 5 main periods; fill, react, settle, draw and idle. React period include anaerobic phase followed by aerobic phase. The BAC main media; Granular Activated Carbon (GAC), Mixed Cultures (MC) and Biological Activated Carbon (BAC) were used for dye and organic substances removal in three different solutions; Desizing Agent Solution (DAS), dye Solution (DS) and Synthetic Textile Wastewater (STW). Results indicate that GAC adsorption plays role in dye removal followed by BAC and MC activities, respectively. In the presence desizing agent, decolorization by MC was improved because desizing agent acts as co-substrates for microorganisms. It was found that 50% of dye removal efficiency was achieved in Fill period by MC. GC/MS analysis was used to identify dye intermediate from decolorization. Dye intermediate containing amine group was found in the solution and on BAC surfaces. The results demonstrated that combination of MC and BAC in the system promotes decolorization and dye intermediate removal. In order to improve dye removal efficiency in an A/A BAC system, replacement of virgin GAC, sufficient co-substrates supply and the appropriate anaerobic: aerobic period should be considered.

  10. Dewatering Peat With Activated Carbon

    Science.gov (United States)

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  11. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration.

    Science.gov (United States)

    Rigobello, Eliane Sloboda; Dantas, Angela Di Bernardo; Di Bernardo, Luiz; Vieira, Eny Maria

    2013-06-01

    This study was carried out to evaluate the efficiency of conventional drinking water treatment processes with and without pre-oxidation with chlorine and chlorine dioxide and the use of granular activated carbon (GAC) filtration for the removal of diclofenac (DCF). Water treatment was performed using the Jar test with filters on a lab scale, employing nonchlorinated artesian well water prepared with aquatic humic substances to yield 20HU true color, kaolin turbidity of 70 NTU and 1mgL(-1) DCF. For the quantification of DCF in water samples, solid phase extraction and HPLC-DAD methods were developed and validated. There was no removal of DCF in coagulation with aluminum sulfate (3.47mgAlL(-1) and pH=6.5), flocculation, sedimentation and sand filtration. In the treatment with pre-oxidation and disinfection, DCF was partially removed, but the concentration of dissolved organic carbon (DOC) was unchanged and byproducts of DCF were observed. Chlorine dioxide was more effective than chorine in oxidizing DCF. In conclusion, the identification of DCF and DOC in finished water indicated the incomplete elimination of DCF through conventional treatments. Nevertheless, conventional drinking water treatment followed by GAC filtration was effective in removing DCF (⩾99.7%). In the oxidation with chlorine, three byproducts were tentatively identified, corresponding to a hydroxylation, aromatic substitution of one hydrogen by chlorine and a decarboxylation/hydroxylation. Oxidation with chlorine dioxide resulted in only one byproduct (hydroxylation).

  12. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon. A comparative study

    International Nuclear Information System (INIS)

    Several methods are used In the pollutant removal from Industrial and domestic wastewater. However when the degradation of toxic organic pollutants, mainly the recalcitrant is objectified, the conventional treatments usually do not meet the desirable performance in the elimination or decrease the impact when the effluent are released to the environment what takes to the research of alternative methods that seek the improvement of the efficiency of the wastewater treatment systems jointly employees or separately. This work presents a study of degradation/removal of pollutants organic compounds comparing two methods using radiation from industrial electron beam and granular activated carbon (GAC). The removal efficiency of the pollutants was evaluated and it was verified that the efficiency of adsorption with activated carbon is similar to the radiation method. The obtained results allowed to evaluated the relative costs of these methods. (author)

  13. A comparative study of coagulation, granular- and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2015-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent organic pollutants in the environment and their occurrence causes toxicological effects on humans. We examined different conventional coagulant treatments such as alum, ferric chloride and polyaluminium chloride in removing these compounds. These were then compared with a natural coagulant (Moringa oleifera). We also investigated the powdered-activated carbon (PAC) and granular-activated carbon (GAC) for removing these compounds. At an initial dose of 5 mg/L, polyaluminium chloride led to a higher reduction of PFOS/PFOA compared with alum which in turn was higher than ferric. The removal efficiency increased with the increase in coagulant dose and decrease in pH. M. oleifera was very effective in reducing PFOS and PFOA than conventional coagulants, with a reduction efficiencies of 65% and 72%, respectively, at a dose of 30 mg/L. Both PAC and GAC were very effective in reducing these compounds than coagulations. PAC led to a higher reduction in PFOS and PFOA than GAC due to its greater surface area and shorter internal diffusion distances. The addition of PAC (10 min contact time) with coagulation (at 5 mg/L dosage) significantly increased the removal efficiency, and the maximum removal efficiency was for M. oleifera with 98% and 94% for PFOS and PFOA, respectively. The reduction efficiency of PFOS/PFOA was reduced with the increase in dissolved organic concentration due to the adsorption competition between organic molecules and PFOS/PFOA.

  14. A comparative study of coagulation, granular- and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2015-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent organic pollutants in the environment and their occurrence causes toxicological effects on humans. We examined different conventional coagulant treatments such as alum, ferric chloride and polyaluminium chloride in removing these compounds. These were then compared with a natural coagulant (Moringa oleifera). We also investigated the powdered-activated carbon (PAC) and granular-activated carbon (GAC) for removing these compounds. At an initial dose of 5 mg/L, polyaluminium chloride led to a higher reduction of PFOS/PFOA compared with alum which in turn was higher than ferric. The removal efficiency increased with the increase in coagulant dose and decrease in pH. M. oleifera was very effective in reducing PFOS and PFOA than conventional coagulants, with a reduction efficiencies of 65% and 72%, respectively, at a dose of 30 mg/L. Both PAC and GAC were very effective in reducing these compounds than coagulations. PAC led to a higher reduction in PFOS and PFOA than GAC due to its greater surface area and shorter internal diffusion distances. The addition of PAC (10 min contact time) with coagulation (at 5 mg/L dosage) significantly increased the removal efficiency, and the maximum removal efficiency was for M. oleifera with 98% and 94% for PFOS and PFOA, respectively. The reduction efficiency of PFOS/PFOA was reduced with the increase in dissolved organic concentration due to the adsorption competition between organic molecules and PFOS/PFOA. PMID:25860623

  15. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime.

    Science.gov (United States)

    Denyes, Mackenzie J; Rutter, Allison; Zeeb, Barbara A

    2013-11-01

    The in situ use of carbon amendments such as activated carbon (AC) and biochar to minimize the bioavailability of organic contaminants is gaining in popularity. In the first in situ experiment conducted at a Canadian PCB-contaminated Brownfield site, GAC and two types of biochar were statistically equal at reducing PCB uptake into plants. PCB concentrations in Cucurbita pepo root tissue were reduced by 74%, 72% and 64%, with the addition of 2.8% GAC, Burt's biochar and BlueLeaf biochar, respectively. A complementary greenhouse study which included a bioaccumulation study of Eisenia fetida (earthworm), found mechanically mixing carbon amendments with PCB-contaminated soil (i.e. 24 h at 30 rpm) resulted in shoot, root and worm PCB concentrations 66%, 59% and 39% lower than in the manually mixed treatments (i.e. with a spade and bucket). Therefore, studies which mechanically mix carbon amendments with contaminated soil may over-estimate the short-term potential to reduce PCB bioavailability.

  16. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale.

    Science.gov (United States)

    Mailler, R; Gasperi, J; Coquet, Y; Buleté, A; Vulliet, E; Deshayes, S; Zedek, S; Mirande-Bret, C; Eudes, V; Bressy, A; Caupos, E; Moilleron, R; Chebbo, G; Rocher, V

    2016-01-15

    Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m(3)/d - Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbonGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n=11), pharmaceuticals and hormones (PPHs; n=62) and other emerging pollutants (n=57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90-100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38-45%) and chemical oxygen demands (21-48%), DOC (13-44%) and UV-254 (22-48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO2(-). For micropollutants, PPHs have a good affinity for μGAC and high (>60%) or very high (>80%) removals are observed for most of the quantified compounds (n=22/32), i.e. atenolol (92

  17. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale.

    Science.gov (United States)

    Mailler, R; Gasperi, J; Coquet, Y; Buleté, A; Vulliet, E; Deshayes, S; Zedek, S; Mirande-Bret, C; Eudes, V; Bressy, A; Caupos, E; Moilleron, R; Chebbo, G; Rocher, V

    2016-01-15

    Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m(3)/d - Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbonGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n=11), pharmaceuticals and hormones (PPHs; n=62) and other emerging pollutants (n=57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90-100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38-45%) and chemical oxygen demands (21-48%), DOC (13-44%) and UV-254 (22-48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO2(-). For micropollutants, PPHs have a good affinity for μGAC and high (>60%) or very high (>80%) removals are observed for most of the quantified compounds (n=22/32), i.e. atenolol (92

  18. 2-chlorophenol sorption from aqueous solution using granular activated carbon and polymeric adsorbents

    Science.gov (United States)

    Ghatbandhe, A. S.; Jahagirdar, H. G.; Yenkie, M. K. N.; Deosarkar, S. D.

    2013-08-01

    Adsorption equilibrium and kinetics of 2-chlorophenol (2-CP) one of the chlorophenols (CPs) onto bituminous coal based Filtrasorb-400 grade granular activated carbon and three different types of polymeric adsorbents were studied in aqueous solution in a batch system. Langmuir isotherm models were applied to experimental equilibrium data of 2-CP adsorption. Equilibrium data fitted very well to the Langmuir equilibrium models of 2-CP. Adsorbent monolayer capacity Q Langmuir constant b and adsorption rate constants k a were evaluated. 2-CP adsorption using GAC is very rapid in the first hour of contact where 70-80% of the adsorbate is removed by GAC followed by a slow approach to equilibrium. Whereas in case of polymeric adsorbents 60-65% of the adsorbate is removed in the first 30 min which is then followed by a slow approach to equilibrium. The order of adsorption of 2-CP on different adsorbents used in the study is found to be in following order: F-400 > XAD-1180 > XAD-4 > XAD-7HP.

  19. Nitrate sorption on activated carbon modified with CaCl2: Equilibrium, isotherms and kinetics

    Directory of Open Access Journals (Sweden)

    Zanella Odivan

    2015-01-01

    Full Text Available In this study, nitrate (NO3- removal from aqueous solutions was investigated using granular activated carbon (GAC modified with CaCl2. Batch sorption studies were performed as a function of sorbent dose, initial nitrate concentration and pH. Sorption was maximized between pH 3 and 9. Studies on the effect of pH showed that the ion exchange mechanism might be involved in the sorption process. The percentage of nitrate removed increased with increasing sorbent concentration, and the ideal sorbent dose was found to be 20 g•L-1. Four isotherm models-Langmuir, Freundlich, Redlich-Peterson and Sips-were used to fit the experimental data. The Redlich-Peterson isotherm model explained the sorption process well and showed the best coefficient of determination (0.9979 and Chi-square test statistic (0.0079. Using the Sips isotherm model, the sorption capacity (qe was found to be 1.93 mg nitrate per g of sorbent. Kinetic experiments indicated that sorption was a fast process, reaching equilibrium within 120 min. The nitrate sorption kinetic data were successfully fitted to a pseudo-second-order kinetic model. The overall results demonstrated potential applications of modified GAC for nitrate removal from aqueous solutions.

  20. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon.

    Science.gov (United States)

    Hernández-Leal, L; Temmink, H; Zeeman, G; Buisman, C J N

    2011-04-01

    Ozonation and adsorption onto activated carbon were tested for the removal micropollutants of personal care products from aerobically treated grey water. MilliQ water spiked with micropollutants (100-1600 μgL(-1)) was ozonated at a dosing rate of 1.22. In 45 min, this effectively removed (>99%): Four parabens, bisphenol-A, hexylcinnamic aldehyde, 4-methylbenzylidene-camphor (4MBC), benzophenone-3 (BP3), triclosan, galaxolide and ethylhexyl methoxycinnamate. After 60 min, the removal efficiency of benzalkonium chloride was 98%, tonalide and nonylphenol 95%, octocrylene 92% and 2-phenyl-5-benzimidazolesulfonic acid (PBSA) 84%. Ozonation of aerobically treated grey water at an applied ozone dose of 15 mgL(-1), reduced the concentrations of octocrylene, nonylphenol, triclosan, galaxolide, tonalide and 4-methylbenzylidene-camphor to below limits of quantification, with removal efficiencies of at least 79%. Complete adsorption of all studied micropollutants onto powdered activated carbon (PAC) was observed in batch tests with milliQ water spiked with 100-1600 μgL(-1) at a PAC dose of 1.25 gL(-1) and a contact time of 5 min. Three granular activated carbon (GAC) column experiments were operated to treat aerobically treated grey water. The operation of a GAC column with aerobically treated grey water spiked with micropollutants in the range of 0.1-10 μgL(-1) at a flow of 0.5 bed volumes (BV)h(-1) showed micropollutant removal efficiencies higher than 72%. During the operation time of 1728 BV, no breakthrough of TOC or micropollutants was observed. Removal of micropollutants from aerobically treated grey water was tested in a GAC column at a flow of 2 BVh(-1). Bisphenol-A, triclosan, tonalide, BP3, galaxolide, nonylphenol and PBSA were effectively removed even after a stable TOC breakthrough of 65% had been reached. After spiking the aerobically treated effluent with micropollutants to concentrations of 10-100 μgL(-1), efficient removal to below limits of quantification

  1. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon. PMID:24898563

  2. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  3. Pleiotropic Effects of GacA on Pseudomonas fluorescens Pf0-1 In Vitro and in Soil

    OpenAIRE

    Seaton, Sarah C.; Silby, Mark W.; Levy, Stuart B.

    2013-01-01

    Pseudomonas species can exhibit phenotypic variation resulting from gacS or gacA mutation. P. fluorescens Pf0-1 is a gacA mutant and exhibits pleiotropic changes following the introduction of a functional allele. GacA enhances biofilm development while reducing dissemination in soil, suggesting that alternative Gac phenotypes enable Pseudomonas sp. to exploit varied environments.

  4. The Transcriptomic Fingerprint of the Pseudomonas fluorescens Pf-5 GacS/GacA Signal Transduction System

    Science.gov (United States)

    A whole genome oligonucleotide microarray was used to assess the global transcriptomic consequences of a gacA knock-out mutation in P. fluorescens Pf-5. Modest changes to the P. fluorescens Pf-5 transcriptome were observed during early exponential growth phase in the gacA null mutant. In contrast, g...

  5. Coupling granular activated carbon adsorption with membrane bioreactor treatment for trace organic contaminant removal: breakthrough behaviour of persistent and hydrophilic compounds.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D

    2013-04-15

    This study investigated the removal of trace organic contaminants by a combined membrane bioreactor - granular activated carbon (MBR-GAC) system over a period of 196 days. Of the 22 compounds investigated here, all six hydrophilic compounds with electron-withdrawing functional groups (i.e., metronidazole, carbamazepine, ketoprofen, naproxen, fenoprop and diclofenac) exhibited very low removal efficiency by MBR-only treatment. GAC post-treatment initially complemented MBR treatment very well; however, a compound-specific gradual deterioration of the removal of the above-mentioned problematic compounds was noted. While a 20% breakthrough of all four negatively charged compounds namely ketoprofen, naproxen, fenoprop and diclofenac occurred within 1000-3000 bed volumes (BV), the same level of breakthrough of the two neutral compounds metronidazole and carbamazepine did not occur until 11,000 BV. Single-solute isotherm parameters did not demonstrate any discernible correlation individually with any of the parameters that may govern adsorption onto GAC, such as log D, number of hydrogen-bond donor/acceptor groups, dipole moment or aromaticity ratio of the compounds. The isotherm data, however, could differentiate the breakthrough behaviour between negatively charged and neutral trace organic contaminants.

  6. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters.

    Science.gov (United States)

    Knopp, Gregor; Prasse, Carsten; Ternes, Thomas A; Cornel, Peter

    2016-09-01

    Conventional wastewater treatment plants are ineffective in removing a broad range of micropollutants, resulting in the release of these compounds into the aquatic environment, including natural drinking water resources. Ozonation is a suitable treatment process for micropollutant removal, although, currently, little is known about the formation, behavior, and removal of transformation products (TP) formed during ozonation. We investigated the elimination of 30 selected micropollutants (pharmaceuticals, X-ray contrast media, industrial chemicals, and TP) by biological treatment coupled with ozonation and, subsequently, in parallel with two biological filters (BF) or granular activated carbon (GAC) filters. The selected micropollutants were removed to very different extents during the conventional biological wastewater treatment process. Ozonation (specific ozone consumption: 0.87 ± 0.29 gO3 gDOC(-1), hydraulic retention time: 17 ± 3 min) eliminated a large number of the investigated micropollutants. Although 11 micropollutants could still be detected after ozonation, most of these were eliminated in subsequent GAC filtration at bed volumes (BV) of approximately 25,000 m(3) m(-3). In contrast, no additional removal of micropollutants was achieved in the BF. Ozonation of the analgesic tramadol led to the formation of tramadol-N-oxide that is effectively eliminated by GAC filters, but not by BF. For the antiviral drug acyclovir, the formation of carboxy-acyclovir was observed during activated sludge treatment, with an average concentration of 3.4 ± 1.4 μg L(-1) detected in effluent samples. Subsequent ozonation resulted in the complete elimination of carboxy-acyclovir and led to the formation of N-(4-carbamoyl-2-imino-5-oxo imidazolidin)-formamido-N-methoxyacetetic acid (COFA; average concentration: 2.6 ± 1.0 μg L(-1)). Neither the BF nor the GAC filters were able to remove COFA. These results highlight the importance of considering TP in the

  7. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters.

    Science.gov (United States)

    Knopp, Gregor; Prasse, Carsten; Ternes, Thomas A; Cornel, Peter

    2016-09-01

    Conventional wastewater treatment plants are ineffective in removing a broad range of micropollutants, resulting in the release of these compounds into the aquatic environment, including natural drinking water resources. Ozonation is a suitable treatment process for micropollutant removal, although, currently, little is known about the formation, behavior, and removal of transformation products (TP) formed during ozonation. We investigated the elimination of 30 selected micropollutants (pharmaceuticals, X-ray contrast media, industrial chemicals, and TP) by biological treatment coupled with ozonation and, subsequently, in parallel with two biological filters (BF) or granular activated carbon (GAC) filters. The selected micropollutants were removed to very different extents during the conventional biological wastewater treatment process. Ozonation (specific ozone consumption: 0.87 ± 0.29 gO3 gDOC(-1), hydraulic retention time: 17 ± 3 min) eliminated a large number of the investigated micropollutants. Although 11 micropollutants could still be detected after ozonation, most of these were eliminated in subsequent GAC filtration at bed volumes (BV) of approximately 25,000 m(3) m(-3). In contrast, no additional removal of micropollutants was achieved in the BF. Ozonation of the analgesic tramadol led to the formation of tramadol-N-oxide that is effectively eliminated by GAC filters, but not by BF. For the antiviral drug acyclovir, the formation of carboxy-acyclovir was observed during activated sludge treatment, with an average concentration of 3.4 ± 1.4 μg L(-1) detected in effluent samples. Subsequent ozonation resulted in the complete elimination of carboxy-acyclovir and led to the formation of N-(4-carbamoyl-2-imino-5-oxo imidazolidin)-formamido-N-methoxyacetetic acid (COFA; average concentration: 2.6 ± 1.0 μg L(-1)). Neither the BF nor the GAC filters were able to remove COFA. These results highlight the importance of considering TP in the

  8. Preparation of polyacrylnitrile (PAN)/ Manganese oxide based activated carbon nanofibers (ACNFs) for adsorption of Cadmium (II) from aqueous solution

    Science.gov (United States)

    Abdullah, N.; Yusof, N.; Jaafar, J.; Ismail, AF; Che Othman, F. E.; Hasbullah, H.; Salleh, W. N. W.; Misdan, N.

    2016-06-01

    In this work, activated carbon nanofibers (ACNFs) from precursor polyacrylnitrile (PAN) and manganese oxide (MnO2) were prepared via electrospinning process. The electrospun PAN/MnO2-based ACNFs were characterised in term of its morphological structure and specific surface area using SEM and BET analysis respectively. The comparative adsorption study of cadmium (II) ions from aqueous solution between the neat ACNFs, composite ACNFs and commercial granular activated carbon was also conducted. SEM analysis illustrated that composite ACNFs have more compact fibers with presence of MnO2 beads with smaller fiber diameter of 437.2 nm as compared to the neat ACNFs which is 575.5 nm. BET analysis elucidated specific surface area of ACNFs/MnO2 to be 67 m2/g. Under adsorption study, it was found out that Cd (II) removal by ACNFs/MnO2 was the highest (97%) followed by neat ACNFs (96%) and GAC (74%).

  9. Effects of the two-component system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and harpinEcc.

    Science.gov (United States)

    Cui, Y; Chatterjee, A; Chatterjee, A K

    2001-04-01

    Posttranscriptional regulation mediated by the regulator of secondary metabolites (RSM) RsmA-rsmB pair is the most important factor in the expression of genes for extracellular enzymes and HarpinEcc in Erwinia carotovora subsp. carotovora. RsmA is a small RNA-binding protein, which acts by lowering the half-life of a mRNA species. rsmB specifies an untranslated regulatory RNA and neutralizes the RsmA effect. It has been speculated that GacA-GacS, members of a two-component system, may affect gene expression via RsmA. Because expA, a gacA homolog, and expS (or rpfA), a gacS homolog, have been identified in E. carotovora subsp. carotovora, we examined the effects of these gacA and gacS homologs on the expression of rsmA, rsmB, and an assortment of exoprotein genes. The gacA gene of E. carotovora subsp. carotovora strain 71 stimulated transcription of genes for several extracellular enzymes (pel-1, a pectate lyase gene; peh-1, a polygalacturonase gene; and celV, a cellulase gene), hrpNEcc (an E. carotovora subsp. carotovora gene specifying the elicitor of hypersensitive reaction), and rsmB in GacA+ and GacS+ E. carotovora subsp. carotovora strains. Similarly, the E. carotovora subsp. carotovora gacA gene stimulated csrB (rsmB) transcription in Escherichia coli. A GacS- mutant of E. carotovora subsp. carotovora strain AH2 and a GacA- mutant of E. carotovora subsp. carotovora strain Ecc71 compared with their parent strains produced very low levels of rsmB, pel-1, peh-1, celV, and hrpNEcc transcripts but produced similar levels of rsmA RNA and RsmA protein as well as transcripts of hyperproduction of extracellular enzymes (Hex) hexA, kdgR (repressor of genes for uronate and pectate catabolism), rsmC, and rpoS (gene for Sigma-S, an alternate Sigma factor). The levels of rsmB, pel-1, peh-1, celV, and hrpNEcc transcripts as well as production of pectate lyase, polygalacturonase, cellulase, protease, and HarpinEcc proteins were stimulated in GacS- and GacA- mutants by GacS

  10. Spontaneous phenotypic suppression of GacA-defective Vibrio fischeri is achieved via mutation of csrA and ihfA

    OpenAIRE

    Foxall, Randi L.; Ballok, Alicia E.; Avitabile, Ashley; Whistler, Cheryl A.

    2015-01-01

    Background: Symbiosis defective GacA-mutant derivatives of Vibrio fischeri are growth impaired thereby creating a selective advantage for growth-enhanced spontaneous suppressors. Suppressors were isolated and characterized for effects of the mutations on gacA-mutant defects of growth, siderophore activity and luminescence. The mutations were identified by targeted and whole genome sequencing. Results: Most mutations that restored multiple phenotypes were non-null mutations that mapped to cons...

  11. PROGRESS ON ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  12. Breakthrough Curve Analysis for Column Dynamics Sorption of Mn(II) Ions from Wastewater by Using Mangostana garcinia Peel-Based Granular-Activated Carbon

    OpenAIRE

    Rafique, R. F.; A. K. Rashid; S. M. Zain; Z. Z. Chowdhury; Khalid, K.

    2013-01-01

    The potential of granular-activated carbon (GAC) derived from agrowaste of Mangostene (Mangostana garcinia) fruit peel was investigated in batch and fixed bed system as a replacement of current expensive methods for treating wastewater contaminated by manganese, Mn(II) cations. Batch equilibrium data was analyzed by Langmuir, Freundlich, and Temkin isotherm models at different temperatures. The effect of inlet metal ion concentration (50 mg/L, 70 mg/L, and 100 mg/L), feed flow rate (1 mL/min ...

  13. ACTIVATION ENERGY OF DESORPTION OF DIBENZOFURAN ON ACTIVATED CARBONS

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; LI Zhong; XI Hongxia; LUO Lingai

    2004-01-01

    Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.

  14. Persulfate Oxidation of MTBE- and Chloroform-Spent Granular Activated Carbon

    Science.gov (United States)

    Activated persulfate (Na2S2O8) regeneration of methyl tert-butyl ether (MTBE) and chloroform-spent GAC was evaluated in this study. Thermal-activation of persulfate was effective and resulted in greater MTBE removal than either alkaline-activation or H2O2–persulfate binary mixtur...

  15. Preparation of very pure active carbon

    International Nuclear Information System (INIS)

    The preparation of very pure active carbon is described. Starting from polyvinylidene chloride active carbon is prepared by carbonization in a nitrogen atmosphere, grinding, sieving and activation of the powder fraction with CO2 at 9500 to approximately 50% burn-off. The concentrations of trace and major elements are reduced to the ppb and ppm level, respectively. In the present set-up 100 g of carbon grains and approximately 50 g of active carbon powder can be produced weekly

  16. High-valued Utilization of China Fir Sawdust Extracted Essential Oil: Preparation of Granular Activated Carbons for n-Butane Adsorption

    Institute of Scientific and Technical Information of China (English)

    ZHU Guang-zhen; DENG Xian-lun; LIU Xiao-min

    2011-01-01

    [Objective] The aim was to study on the high-valued utilization of China Fir sawdust extracted essential oil. [Method] In the field of fir essential oil extraction, the processed China fir sawdust was used to prepare low-valued products. The high-valued utilization of China fir sawdust extracted essential oil (CFSEEO), namely as a precursor to prepare granular activated carbons (GACs), was attempted. The materials were characterized by ultimate analysis, SEM and XRD. [Rusult] A butane working capacity (BWC) of 14.3 g/100 ml was obtained by using the GACs with apparent density of 0.25 g/ml. It was available to introduce the technology of extracting essential oil from the China fir sawdust (CFS) in the industrial production process of activated carbons with high BWC (12.0 -16.5 g/100 ml) and high surface area (2 000 -2 630m2/g) using phosphoric acid based on previous studies of the authors. [Conclusion] The resulting carbon prepared with the raw materials containing lower moisture exhibited a better property on n-butane adsorption.

  17. The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Price, William E; Leusch, Frederic D L; Roddick, Felicity; Ngo, Hao H; Guo, Wenshan; Magram, Saleh F; Nghiem, Long D

    2014-09-01

    The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent. PMID:24980029

  18. Photoconductivity of Activated Carbon Fibers

    Science.gov (United States)

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  19. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb{sup 2+} from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, M. Shanika [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Silva, Rohini M. de, E-mail: rohini@chem.cmb.ac.lk [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Silva, K.M. Nalin de [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama (Sri Lanka)

    2015-10-01

    Highlights: • Synthesis of neat nano Hydroxyapatite using wet chemical precipitation methods. • This resulted rod like nanocrystals with a diameter around 50–80 nm. • Impregnation of of nano HAp onto the granular activated carbon (GAC) was achieved. • Materials were characterized using FT-IR, PXRD, and SEM. • Adsorption studies were conducted for Pb{sup 2+} ions. • The adsorption data were evaluated according to isotherm models. - Abstract: Synthesis of neat nano hydroxyapatite (HAp) was carried out using wet chemical precipitation methods at low temperature and this resulted rod like HAp nanocrystals with a diameter around 50–80 nm and length of about 250 nm. Impregnation of nano HAp onto the granular activated carbon (GAC) to prepare hydroxyapatite granular activated carbon nanocomposite (C-HAp) was carried out using in situ synthesis of nano HAp in the presence of GAC. The samples of neat nano HAp and C-HAp composite were characterized using Fourier-Transformed Infrared Spectroscopy (FT-IR), powder X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Detailed adsorption studies of neat nano HAp, C-HAp and neat GAC were conducted for Pb{sup 2+} ions at room temperature at different pH levels. The adsorption data for Pb{sup 2+} ions was evaluated according to both Langmuir and Freundlich adsorption isotherm models for both neat nano HAp and C-HAp separately at ambient temperature, 298 K. The equilibrium adsorption data were fitted well with Langmuir adsorption isotherm for neat nano HAp with an adsorption capacity in the range of 138–83 mg g{sup −1}. For C-HAp nanocomposite the adsorption data were well fitted with Freundlich model and the calculated adsorption capacity was in the range of 9–14 mg g{sup −1}. Leaching of Ca{sup 2+} ions by neat nano HAp and C-HAp were also analyzed as a function of pH. It was found that the leaching of Ca{sup 2+} was high in neat HAp than C-HAp. The leaching of Ca{sup 2+} by neat HAp and C

  20. 颗粒活性炭催化臭氧氧化降解活性黑5%Catalytic ozonation of aqueous reactive black 5 with granular activated carbon

    Institute of Scientific and Technical Information of China (English)

    刘莹; 吴德礼; 何宏平; 张亚雷

    2016-01-01

    本文以深度处理后印染废水为配水模拟实际废水,对颗粒活性炭催化臭氧氧化降解活性黑5进行了研究.用低温N2吸附-脱附等温线、SEM-EDS等对颗粒活性炭进行了表征,发现颗粒活性炭比表面积高达931 m2·g-1.考察了颗粒活性炭吸附性能和催化臭氧活性,结果表明单独臭氧与颗粒活性炭催化臭氧脱色率在反应30 min内均高达100%.反应1h时,5 g·L-1、10 g·L-1颗粒活性炭催化臭氧TOC去除率分别为57%、74%,比单独臭氧高出33%和50%,颗粒活性炭具有良好的催化效果,能提高对污染物的矿化效果.颗粒活性炭促进了溶解性臭氧分解,重复使用6次后10 g·L-1活性炭在反应时间为2h时染料废水TOC去除率均能稳定在85%左右,多次利用后活性炭的催化活性没有明显降低.EPR检测表明,其主要机制为颗粒活性炭能够稳定地催化臭氧分子分解产生羟基自由基,实现污水中有机物的矿化.%Catalytic ozonation of aqueous Reactive Black (RB5) in the presence of granular activated carbon (GAC) was investigated,employing the effluent from advanced treatment of dyeing wastewater as the simulated wastewater.The GAC was characterized by low temperature N2 adsorption-desorption isotherm and SEM-EDS.It was showed that the specific surface area of GAC reached 931 m2· g-1.In the experiments of GAC's adsorption performance and the catalytic activity of ozone,the results showed that the decolorization rate of GAC and ozone alone reached as high as 100% within 30 mins.While after one hour reaction,the TOC removal rate was 57% and 74% respectively in the presence of 5 g· L-1 and 10 g· L-1 GAC,which represented 33% and 50% increase compared to ozone alone.The GAC had good catalytic stability and enhanced the decomposition of the soluble ozone.10 g· L-1 GAC showed a stable ability to treat the dyeing wastewater with the TOC removal rate as high as 85%,within 2 hours after 6 times

  1. Rapeseed and Raspberry Seed Cakes as Inexpensive Raw Materials in the Production of Activated Carbon by Physical Activation: Effect of Activation Conditions on Textural and Phenol Adsorption Characteristics

    Directory of Open Access Journals (Sweden)

    Koen Smets

    2016-07-01

    Full Text Available The production of activated carbons (ACs from rapeseed cake and raspberry seed cake using slow pyrolysis followed by physical activation of the obtained solid residues is the topic of this study. The effect of activation temperature (850, 900 and 950 °C, activation time (30, 60, 90 and 120 min and agent (steam and CO2 on the textural characteristics of the ACs is investigated by N2 adsorption. In general, higher activation temperatures and longer activation times increase the BET specific surface area and the porosity of the ACs, regardless of the activation agent or raw material. Steam is more reactive than CO2 in terms of pore development, especially in the case of raspberry seed cake. The performance of the ACs in liquid adsorption is evaluated by batch phenol adsorption tests. Experimental data are best fitted by the Freundlich isotherm model. Based on total yield, textural characteristics and phenol adsorption, steam activation at 900 °C for 90 min and CO2 activation at 900 °C for 120 min are found as the best activation conditions. Raspberry seed cake turns out to be a better raw material than rapeseed cake. Moreover, AC from raspberry seed cake produced by steam activation at 900 °C for 90 min performs as well as commercial AC (Norit GAC 1240 in phenol adsorption. The adsorption kinetics of the selected ACs are best fitted by the pseudo-second-order model.

  2. Design of activated carbon/activated carbon asymmetric capacitors

    Directory of Open Access Journals (Sweden)

    Isabel ePiñeiro-Prado

    2016-03-01

    Full Text Available Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed.In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  3. Ammonium removal of drinking water at low temperature by activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria.

    Science.gov (United States)

    Qin, Wen; Li, Wei-Guang; Zhang, Duo-Ying; Huang, Xiao-Fei; Song, Yang

    2016-03-01

    We sought to confirm whether use of Acinetobacter strains Y7 and Y16, both strains of heterotrophic nitrifying bacteria, was practical for removing ammonium (NH4 (+)-N) from drinking water at low temperatures. To test this, ammonium-containing drinking water was treated with strains Y7 and Y16 at 8 and 2 °C. Continuous ammonium treatment was conducted in order to evaluate the performance of three biologically enhanced activated carbon (BEAC) filters in removing ammonium. The three BEAC filters were inoculated with strain Y7, strain Y16, and a mixture of strains Y7 and Y16, respectively. A granular activated carbon (GAC) filter, without inoculation by any strains, was tested in parallel with the BEAC filters as control. The results indicated that NH4 (+)-N removal was significant when a BEAC filter was inoculated with the mixture of strains Y7 and Y16 (BEAC-III filter). Amounts of 0.44 ± 0.05 and 0.25 ± 0.05 mg L(-1) NH4 (+)-N were removed using the BEAC-III filter at 8 and 2 °C, respectively. These values were 2.8-4.0-fold higher than the values of ammonium removal acquired using the GAC filter. The synergistic effect of using strains Y7 and Y16 in concert was the cause of the high-ammonium removal efficiency achieved by using the BEAC-III filter at low temperatures. In addition, a high C/N ratio may promote NH4 (+)-N removal efficiency by improving biomass and microbial activity. This study provides new insight into the use of biofilters to achieve biological removal of ammonium at low temperature. PMID:26527340

  4. Removal of micropollutants in WWTP effluent by biological assisted membrane carbon filtration (BioMAC).

    Science.gov (United States)

    Weemaes, M; Fink, G; Lachmund, C; Magdeburg, A; Stalter, D; Thoeye, C; De Gueldre, G; Van De Steene, B

    2011-01-01

    In the frame of the European FP6 project Neptune, a combination of biological activated carbon with ultrafiltration (BioMAC) was investigated for micropollutant, pathogen and ecotoxicity removal. One pilot scale set-up and two lab-scale set-ups, of which in one set-up the granular activated carbon (GAC) was replaced by sand, were followed up during a period of 11 months. It was found that a combination of GAC and ultrafiltration led to an almost complete removal of antibiotics and a high removal (>80%) of most of the investigated acidic pharmaceuticals and iodinated contrast media. The duration of the tests did however not allow to conclude that the biological activation was able to extend the lifetime of the GAC. Furthermore, a significant decrease in estrogenic and anti-androgenic activity could be illustrated. The set-up in which GAC was replaced by sand showed a considerably lower removal efficiency for micropollutants, especially for antibiotics but no influence on steroid activity. PMID:21245556

  5. Adsorption of Imidacloprid on Powdered Activated Carbon and Magnetic Activated Carbon

    OpenAIRE

    Zahoor, M.; Mahramanlioglu, M.

    2011-01-01

    The adsorptive characteristics of imidacloprid on magnetic activated carbon (MAC12) in comparison to powdered activated carbon (PAC) were investigated. Adsorption of imidacloprid onto powdered activated carbon and magnetic activated carbon was studied as a function of time, initial imidacloprid concentration, temperature and pH. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models for both carbons were used to describe the kinetic data. The adsorption equilibrium data we...

  6. EVALUATING CAPACITIES OF GAC PRELOADED WITH NATURAL WATER

    Science.gov (United States)

    Adsorption studies are conducted to determine how preloading a natural groundwater onto GAC affects the adsorption of cis-1,2-dichloroexthene in small-scale and pilot-scale columns. Capacities are determined from batch-isotherm tests, microcolumns, and pilot columns, which are p...

  7. Studies of activated carbon and carbon black for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  8. Application of Coal-based Activated Carbon to Drinking Water Treatment%煤质活性炭在饮用水处理中的应用

    Institute of Scientific and Technical Information of China (English)

    段友丽; 周婷; 王晋

    2012-01-01

    系统介绍了基于不同煤源和不同生产工艺所得煤质活性炭的特性;分析了活性炭在饮用水处理中的应用技术现状,重点介绍了粉末活性炭(PAC)和颗粒活性炭(GAC)的单独应用及与其他工艺的联合应用;基于活性炭的应用现状,提出水厂需结合原水水质、工艺特点、制水成本等因素综合选择净水用活性炭.%The characteristics of coal-based activated carbons which were produced with different coals and different production processes were elaborated. The application technology situation of activated carbon used in drinking water treatment was analyzed. The single application of powdered activated carbon and granular activated carbon as well as the combined application with other processes were introduced. Based on the application status of activated carbon, it was suggested that the activated carbon which used in water purification should be selected according to the raw water quality, process features and water production cost.

  9. Authorized Limit Evaluation of Spent Granular Activated Carbon Used for Vapor-Phase Remediation at the Lawrence Livermore National Laboratory Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    Devany, R; Utterback, T

    2007-01-11

    This report provides a technical basis for establishing radiological release limits for granular activated carbon (GAC) containing very low quantities of tritium and radon daughter products generated during environmental remediation activities at Lawrence Livermore National Laboratory (LLNL). This evaluation was conducted according to the Authorized Limit procedures specified in United States Department of Energy (DOE) Order 5400.5, Radiation Protection of the Public and the Environment (DOE, 1993) and related DOE guidance documents. The GAC waste is currently being managed by LLNL as a Resource Conservation and Recovery Act (RCRA) mixed waste. Significant cost savings can be achieved by developing an Authorized Limit under DOE Order 5400.5 since it would allow the waste to be safely disposed as a hazardous waste at a permitted off-site RCRA treatment and disposal facility. LLNL generates GAC waste during vapor-phase soil remediation in the Trailer 5475 area. While trichloroethylene and other volatile organic compounds (VOCs) are the primary targets of the remedial action, a limited amount of tritium and radon daughter products are contained in the GAC at the time of disposal. As defined in DOE Order 5400.5, an Authorized Limit is a level of residual radioactive material that will result in an annual public dose of 100 milliroentgen-equivalent man per year (mrem/year) or less. In 1995, DOE issued additional release requirements for material sent to a landfill that is not an authorized low-level radioactive waste disposal facility. Per guidance, the disposal site will be selected based on a risk/benefit assessment under the As-Low-As-Reasonably-Achievable (ALARA) process while ensuring that individual doses to the public are less than 25 mrem in a year, ground water is protected, the release would not necessitate further remedial action for the disposal site, and the release is coordinated with all appropriate authorities. The 1995 release requirements also state

  10. Preparation of activated carbon by chemical activation under vacuum.

    Science.gov (United States)

    Juan, Yang; Ke-Qiang, Qiu

    2009-05-01

    Activated carbons especially used for gaseous adsorption were prepared from Chinesefir sawdust by zinc chloride activation under vacuum condition. The micropore structure, adsorption properties, and surface morphology of activated carbons obtained under atmosphere and vacuum were investigated. The prepared activated carbons were characterized by SEM, FTIR, and nitrogen adsorption. It was found that the structure of the starting material is kept after activation. The activated carbon prepared under vacuum exhibited higher values of the BET surface area (up to 1079 m2 g(-1)) and total pore volume (up to 0.5665 cm3 g(-1)) than those of the activated carbon obtained under atmosphere. This was attributed to the effect of vacuum condition that reduces oxygen in the system and limits the secondary reaction of the organic vapor. The prepared activated carbon has well-developed microstructure and high microporosity. According to the data obtained, Chinese fir sawdust is a suitable precursor for activated carbon preparation. The obtained activated carbon could be used as a low-cost adsorbent with favorable surface properties. Compared with the traditional chemical activation, vacuum condition demands less energy consumption, simultaneity, and biomass-oil is collected in the procedure more conveniently. FTIR analysis showed that heat treatment would result in the aromatization of the carbon structure. PMID:19534162

  11. The Analysis of Activated Carbon Regeneration Technologies

    Institute of Scientific and Technical Information of China (English)

    姚芳

    2014-01-01

    A series of methods for activated carbon regeneration were briefly introduced.Such as thermal regeneration,chemical regeneration,biochemical regeneration,and newly supercritical fluid regeneration, electrochemical regeneration,light-catalyzed regeneration,and microwave radiation method,and the developing trend of activated carbon regeneration was predicted.

  12. Making Activated Carbon by Wet Pressurized Pyrolysis

    Science.gov (United States)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  13. Measuring and Modeling Organochlorine Pesticide Response to Activated Carbon Amendment in Tidal Sediment Mesocosms.

    Science.gov (United States)

    Thompson, Jay M; Hsieh, Ching-Hong; Hoelen, Thomas P; Weston, Donald P; Luthy, Richard G

    2016-05-01

    Activated carbon (AC) sediment amendment for hydrophobic organic contaminants (HOCs) is attracting increasing regulatory and industrial interest. However, mechanistic and well-vetted models are needed. Here, we conduct an 18 month field mesocosm trial at a site containing dichlorodiphenyltrichloroethane (DDT) and chlordane. Different AC applications were applied and, for the first time, a recently published mass transfer model was field tested under varying experimental conditions. AC treatment was effective in reducing DDT and chlordane concentration in polyethylene (PE) samplers, and contaminant extractability by Arenicola brasiliensis digestive fluids. A substantial AC particle size effect was observed. For example, chlordane concentration in PE was reduced by 93% 6 months post-treatment in the powdered AC (PAC) mesocosm, compared with 71% in the granular AC (GAC) mesocosm. Extractability of sediment-associated DDT and chlordane by A. brasiliensis digestive fluids was reduced by at least a factor of 10 in all AC treatments. The model reproduced the relative effects of varying experimental conditions (particle size, dose, mixing time) on concentrations in polyethylene passive samplers well, in most cases within 25% of experimental observations. Although uncertainties such as the effect of long-term AC fouling by organic matter remain, the study findings support the use of the model to assess long-term implications of AC amendment. PMID:27040592

  14. Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon

    Directory of Open Access Journals (Sweden)

    Sohair I. Abou-Elela

    2016-07-01

    Full Text Available The process of retting flax produces a huge amount of wastewater which is characterized with bad unpleasant smell and high concentration of organic materials. Treatment of such waste had always been difficult because of the presence of refractory organic pollutants such as lignin. In this study, treatment of retting wastewater was carried out using combined system of Fenton oxidation process followed by adsorption on granular activated carbon (GAC. The effects of operating condition on Fenton oxidation process such as hydrogen peroxide and iron concentration were investigated. In addition, kinetic study of the adsorption process was elaborated. The obtained results indicated that degradation of organic matters follows a pseudo-first order reaction with regression coefficient of 0.98. The kinetic model suggested that the rate of reaction was highly affected by the concentration of hydrogen peroxide. Moreover, the results indicated that the treatment module was very efficient in removing the organic and inorganic pollutants. The average percentage removal of chemical oxygen demand (COD, total suspended solid (TSS, oil, and grease was 98.60%, 86.60%, and 94.22% with residual values of 44, 20, and 5 mg/L, respectively. The treated effluent was complying with the National Regulatory Standards for wastewater discharge into surface water or reuse in the retting process.

  15. Effect of pore structure and surface chemical properties on adsorption properties of activated carbons%孔结构和表面化学性质对活性炭吸附性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘立恒; 辜敏; 鲜学福

    2012-01-01

    Adsorption isotherms of CO2,CH4 and N2 on three granular activated carbons(GAC-C,GAC-P and GAC-T) were determined at room temperature.Pore structure and surface chemical properties of granular activated carbons were characterized,and the effect of them on adsorption properties was investigated.The results showed that the relationships of gases adsorption capacity and uptake coefficient on granular activated carbons were CO2〉CH4〉N2,because of the differences of adsorption mechanism,pore structure,surface functional groups and molecular polarity.The adsorption capacities of CH4 and N2 were mainly controlled by micropore volume of activated carbon,and the differences of N2 and CO2 adsorption capacity were affected by micropores from 0.572 to 2.0 nm and pores from 0.4 to 6.0 nm,respectively.And uptake coefficient of CH4,was more relational with mesopore and macropore,while uptake coefficients of N2 and CO2 were mainly controlled by micropore and macropore,respectively.%测定了室温下3种活性炭(GAC-C、GAC-P和GAC-T)对CO2、CH4和N2的吸附性能,并对颗粒活性炭孔结构和表面化学性质进行了表征,探讨了孔结构和表面化学性质对活性炭吸附性能的影响。结果表明:由于吸附机理、孔结构、表面含氧官能团和分子极性的差异,CO2、CH4和N2在活性炭上的饱和吸附量和吸附常数的关系为CO2〉CH4〉N2;CH4和N2的饱和吸附量主要受活性炭微孔孔容的影响,N2和CO2饱和吸附量的差异分别是由0.572~2.0 nm的微孔和0.4~6 nm的孔引起的;CH4吸附常数主要受较大中孔和大孔影响,N2吸附常数与微孔密切相关,大孔对CO2的吸附常数影响最大。

  16. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  17. Adsorption Kinetics of Dibenzofuran in Activated Carbon Packed Bed%二苯并呋喃在活性炭床层中的吸附动力学

    Institute of Scientific and Technical Information of China (English)

    李湘; 李忠; 罗灵爱

    2008-01-01

    The adsorption of dibenzofuran (DBF) on three commercial granular activated carbons (GAC) was in-vestigated to correlate the adsorption equilibrium and kinetics with the morphological characteristics of activated carbons. Breakthrough experiment was conducted to determine the isotherm and kinetics of dibenzofuran on the ac-tivated carbons. All the experiment runs were performed in a fixed bed with a process temperature of 368 K. The effects of adsorbent morphological properties on the kinetics of the adsorption process were studied. The equilib-rium data are found satisfactory fitted to the Langmuir isotherm. An intraparticle diffusion model based on the ob- tained Langmuir isotherm was developed for predicting the fixed bed adsorption of dibenzofuran. The result indi- cated that this model fit all the breakthrough curves well. The surface diffusion coefficients of dibenzofuran on the activated carbon are calculated, and a relationship with the microperosity is found. As it was expected, the diben-zofuran molecule finds more kinetic restrictions for the diffusion in those carbons with narrower pore diameter.

  18. Preparation of microporous activated carbons based on carbonized apricot shells

    Directory of Open Access Journals (Sweden)

    Vladimir Pavlenko

    2014-10-01

    Full Text Available Results of applying the method of thermo-oxidative modification of fiber, based on the shell of apricot along with producing on its base microporous activated carbons that have high specific surface area and a significant amount of micropores were presented. The paper contains analysis and interpretation data of changes in the structure and composition of samples, which occurring as a result of thermal degradation of lignocellulosic materials. Morphological features of the surface of produced activated carbons were studied by using SEM microscopy; the pore structure and specific surface area were investigated using the method of low-temperature nitrogen adsorption.

  19. Activation of Carbon Dioxide and Synthesis of Propylene Carbonate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cycloaddition of carbon dioxide and propylene oxide to propylene carbonate catalyzed by tetra-tert-butyl metal phthalocyanine in the presence of tributylamine (TBA) shows higher yield than catalyzed by unsubstituted metal phthalocyanine. Comparing different catalysts of diverse metals, (t-Bu)4PcMg is more active than (t-Bu)4PcFe. But (t-Bu)4PcCo and (t-Bu)4PcNi only have low catalytic activities towards the reaction. Moreover, the yield will increase as the temperature increases.

  20. Feasibility study of MTBE removal in biological activated carbon adsorber%生物活性炭吸附工艺去除地下水中甲基叔丁基醚的可行性研究

    Institute of Scientific and Technical Information of China (English)

    李冰璟; 胡娟; 左军; 黄流雅; 杨丞磊; 张巍; 应维琪

    2011-01-01

    Methyl tert-butyl ether (MTBE) is a common gasoline additive; it has become a groundwater pollutant in many countries. Granular activated carbon (GAC) adsorption treatment is not cost effective for removing MTBE because it is not well adsorbed on activated carbon. Employing highly acclimated bacteria to degrade adsorbed MTBE to extend the service period of the GAC adsorber will make it more cost effective. Using the conventional inoculation method of circulating the seeding solution of MTBE degraders came with the spent GAC sample from a biological GAC treatment system of a MTBE remediation site to treat a high MTBE influent (30. 0 mg/L,simulating a newly contaminated groundwater) ,the effluent samples of inoculated coal and coconut GAC columns were nearly the same as those of the non-innoculated columns because the slow growing MTBE degraders were not easily retained and the low MTBE degradation rate. After a start-up period of less than two months,the small GAC columns filled with new coconut GAC on top of the same spent GAC became effective biological activated carbon (BAC) systems capable of removing >40% MTBE from the influent; a small dose of hydrogen peroxide provided the essential dissolved oxygen to sustain aerobic degradation of MTBE in the adsorbers; adding peroxide to the nfluents of two serial adsorbers is desirable in treating newly contaminated groundwater. When MTBE concentration of the influent declined steadily, the BAC capability prevented the sudden rise of MTBE concentration in the effluent and helped to restore the long term treatment effectiveness. Treating the low MTBE influent (1.0 mg/L),the five BAC columns of different spent GAC amount and operating conditions all demonstrated outstanding treatment performance in the 165 days of operation with stable MTBE removals of >97% and cumulative removal of >282% of the theoretical adsorptive capacity of the columns. The research has established an effective inoculation method to enable

  1. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    Institute of Scientific and Technical Information of China (English)

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  2. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n—HEXANE ON ACTIVATED CARBONS BY PTD TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIZhong; WANGHongjuan; 等

    2001-01-01

    In this paper,six kinds of activated carbons such as Ag+-activated carbon,Cu2+activated carbon,Fe3+-activated carbon,activated carbon,Ba2+-activated carbon and Ca2+activated carbon were prepared.The model for estimating activated energy of desorption was established.Temperature-programmed desorption(TPD)experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons.Results showed that the activation energy for the desorption of n-hexanol on the Ag+-activated carbon,the Cu2+-activated carbon and the Fe3+-activated carbon were higher than those of n-hexanol on the activated carbon,the Ca2+-activated carbon and the Ba2+-activated carbon.

  3. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n-HEXANE ON ACTIVATED CARBONS BY TPD TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+-activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+-activated carbon were prepared. The model for estimating activated energy of desorption was established. Temperature-programmed desorption (TPD) experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons. Results showed that the activation energy for the desorption of n-hexanol on the Ag+- activated carbon, the Cu2+- activated carbon and the Fe3+- activated carbon were higher than those of n-hexanol on the activated carbon, the Ca2+- activated carbon and the Ba2+- activated carbon.

  4. Organic solvent regeneration of granular activated carbon

    Science.gov (United States)

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  5. Antimicrobial Activity of Carbon-Based Nanoparticles

    Directory of Open Access Journals (Sweden)

    Solmaz Maleki Dizaj

    2015-03-01

    Full Text Available Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs (especially single-walled carbon nanotubes (SWCNTs and graphene oxide (GO nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery.

  6. Activated coconut shell charcoal carbon using chemical-physical activation

    Science.gov (United States)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  7. Refining of hydrochars/ hydrothermally carbonized biomass into activated carbons and their applications

    OpenAIRE

    Hao, Wenming

    2014-01-01

    Hydrothermally treated biomass could not only be used as a fuel or a fertilizer but it can also be refined into high-value products. Activated carbons are one of those. In the studies of this thesis, four different hydrothermally carbonized (HTC) biomasses, including horse manure, grass cuttings, beer waste and biosludge, have been successfully made into activated carbons. The activated carbon materials were in the forms of powdered activated carbons, powdered composites of activated carbon a...

  8. Magnetically driven anisotropic structural changes in the atomic laminate M n2GaC

    Science.gov (United States)

    Dahlqvist, M.; Ingason, A. S.; Alling, B.; Magnus, F.; Thore, A.; Petruhins, A.; Mockute, A.; Arnalds, U. B.; Sahlberg, M.; Hjörvarsson, B.; Abrikosov, I. A.; Rosen, J.

    2016-01-01

    Inherently layered magnetic materials, such as magnetic Mn +1A Xn (MAX) phases, offer an intriguing perspective for use in spintronics applications and as ideal model systems for fundamental studies of complex magnetic phenomena. The MAX phase composition Mn+1A Xn consists of Mn +1Xn blocks separated by atomically thin A -layers where M is a transition metal, A an A-group element, X refers to carbon and/or nitrogen, and n is typically 1, 2, or 3. Here, we show that the recently discovered magnetic M n2GaC MAX phase displays structural changes linked to the magnetic anisotropy, and a rich magnetic phase diagram which can be manipulated through temperature and magnetic field. Using first-principles calculations and Monte Carlo simulations, an essentially one-dimensional (1D) interlayer plethora of two-dimensioanl (2D) Mn-C-Mn trilayers with robust intralayer ferromagnetic spin coupling was revealed. The complex transitions between them were observed to induce magnetically driven anisotropic structural changes. The magnetic behavior as well as structural changes dependent on the temperature and applied magnetic field are explained by the large number of low energy, i.e., close to degenerate, collinear and noncollinear spin configurations that become accessible to the system with a change in volume. These results indicate that the magnetic state can be directly controlled by an applied pressure or through the introduction of stress and show promise for the use of M n2GaC MAX phases in future magnetoelectric and magnetocaloric applications.

  9. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon. A comparative study; Tratamento de efluentes industriais utilizando a radiacao ionizante de acelerador industrial de eletrons e por adsorcao com carvao ativado. Estudo comparativo

    Energy Technology Data Exchange (ETDEWEB)

    Las Casas, Alexandre

    2004-07-01

    Several methods are used In the pollutant removal from Industrial and domestic wastewater. However when the degradation of toxic organic pollutants, mainly the recalcitrant is objectified, the conventional treatments usually do not meet the desirable performance in the elimination or decrease the impact when the effluent are released to the environment what takes to the research of alternative methods that seek the improvement of the efficiency of the wastewater treatment systems jointly employees or separately. This work presents a study of degradation/removal of pollutants organic compounds comparing two methods using radiation from industrial electron beam and granular activated carbon (GAC). The removal efficiency of the pollutants was evaluated and it was verified that the efficiency of adsorption with activated carbon is similar to the radiation method. The obtained results allowed to evaluated the relative costs of these methods. (author)

  10. Open Letter from the GAC-EPA to the Chairman of the PFGB EPA

    CERN Multimedia

    GAC-EPA

    2012-01-01

    Following the publication by the Chairman of the Pension Fund Governing Board of  the Spring report of the Pension Fund in the CERN Bulletin issue dated 25 July 2012 (Nos 30 & 31), the GAC-EPA has reacted through an open letter. See www.gac-epa.org under Announcement.

  11. 花生壳活性炭的表征,表面改性及吸附脱除水中Pb2+离子%Peanut Shell Activated Carbon: Characterization, Surface Modification and Adsorption of Pb2+ from Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    徐涛; 刘晓勤

    2008-01-01

    Metal ion contamination of drinking water and waste water, especially with heavy metal ion such as lead, is a serious and ongoing problem. In this work, activated carbon prepared from peanut shell (PAC) was used for the removal of Pb2+ from aqueous solution. The impacts of the Pb2+ adsorption capacities of the acid-modified carbons oxidized with HNO3 were also investigated. The surface functional groups of PAC were confirmed by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Boehm titration. The textural properties (surface area, total pore volume) were evaluated from the nitrogen adsorption isotherm at 77K. The experimental results presented indicated that the adsorption data fitted better with the Langmuir adsorption model. A comparative study with a commercial granular activated carbon (GAC) showed that PAC was 10.3 times more efficient compared to GAC based on Langmuir maximum adsorption capacity. Further analysis results by the Langmuir equation showed that HNO3 [20% (by mass)] modified PAC has larger adsorption capacity of Pb2+ from aqueous solution (as much as 35.5mg.g1). The adsorption capacity enhancement ascribed to pore widening, increased cation-exchange capacity by oxygen groups, and the promoted hydrophilicity of the carbon surface.

  12. Preparation of microporous activated carbons based on carbonized apricot shells

    OpenAIRE

    Vladimir Pavlenko; Sergey Anurov; Zulkhair Mansurov; Bijsenbaev Makhmut; Tatyana Konkova; Seithan Azat; Sandugash Tanirbergenova; Nurzhamal Zhylybaeva

    2014-01-01

    Results of applying the method of thermo-oxidative modification of fiber, based on the shell of apricot along with producing on its base microporous activated carbons that have high specific surface area and a significant amount of micropores were presented. The paper contains analysis and interpretation data of changes in the structure and composition of samples, which occurring as a result of thermal degradation of lignocellulosic materials. Morphological features of the surface of produced...

  13. Activated carbon monoliths for methane storage

    Science.gov (United States)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  14. USING POWDERED ACTIVATED CARBON: A CRITICAL REVIEW

    Science.gov (United States)

    Because the performance of powdered activated carbon (PAC) for uses other than taste and odor control is poorly documented, the purpose of this article is to critically review uses that have been reported (i.e., pesticides and herbicides, synthetic organic chemicals, and trihalom...

  15. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    Science.gov (United States)

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  16. Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Directory of Open Access Journals (Sweden)

    Eduardo Santillan-Jimenez

    2015-03-01

    Full Text Available Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased.

  17. Methane Adsorption Study Using Activated Carbon Fiber and Coal Based Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Guo Deyong; Li Fei; Liu Wenge

    2013-01-01

    Inlfuence of ammonium salt treatment and alkali treatment of the coal based activated carbon (AC) and activated carbon ifber (ACF) adsorbents on methane adsorption capacity was studied via high-pressure adsorption experiment. Sur-face functional groups and pore structure of two types of adsorbents were characterized by the application of infrared ab-sorption spectroscopy (IR) and low temperature liquid nitrogen adsorption method. The results show that both ammonium salt treatment and alkali treatment have obvious effect on changing BET, pore volume as well as pore size distribution of adsorbents; and methane adsorption capacity of the activated carbon ifber is the maximum after the ammonium salt treatment.

  18. Supercapacitor Electrodes from Activated Carbon Monoliths and Carbon Nanotubes

    Science.gov (United States)

    Dolah, B. N. M.; Othman, M. A. R.; Deraman, M.; Basri, N. H.; Farma, R.; Talib, I. A.; Ishak, M. M.

    2013-04-01

    Binderless monoliths of supercapacitor electrodes were prepared by the carbonization (N2) and activation (CO2) of green monoliths (GMs). GMs were made from mixtures of self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches and a combination of 5 & 6% KOH and 0, 5 & 6% carbon nanotubes (CNTs) by weight. The electrodes from GMs containing CNTs were found to have lower specific BET surface area (SBET). The electrochemical behavior of the supercapacitor fabricated using the prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). In general an addition of CNTs into the GMs reduces the equivalent series resistance (ESR) value of the cells. A cell fabricated using electrodes from GM with 5% CNT and 5% KOH was found to have the largest reduction of ESR value than that from the others GMs containing CNT. The cell has steeper Warburg's slope than that from its respective non-CNT GM, which reflect the smaller resistance for electrolyte ions to move into pores of electrodes despite these electrodes having largest reduction in specific BET surface area. The cell also has the smallest reduction of specific capacitance (Csp) and maintains the specific power range despite a reduction in the specific energy range due to the CNT addition.

  19. Breakthrough Curve Analysis for Column Dynamics Sorption of Mn(II Ions from Wastewater by Using Mangostana garcinia Peel-Based Granular-Activated Carbon

    Directory of Open Access Journals (Sweden)

    Z. Z. Chowdhury

    2013-01-01

    Full Text Available The potential of granular-activated carbon (GAC derived from agrowaste of Mangostene (Mangostana garcinia fruit peel was investigated in batch and fixed bed system as a replacement of current expensive methods for treating wastewater contaminated by manganese, Mn(II cations. Batch equilibrium data was analyzed by Langmuir, Freundlich, and Temkin isotherm models at different temperatures. The effect of inlet metal ion concentration (50 mg/L, 70 mg/L, and 100 mg/L, feed flow rate (1 mL/min and 3 mL/min, and activated carbon bed height (4.5 cm and 3 cm on the breakthrough characteristics of the fixed bed sorption system were determined. The adsorption data were fitted with well-established column models, namely, Thomas, Yoon-Nelson, and Adams-Bohart. The results were best-fitted with Thomas and Yoon-Nelson models rather than Adams-Bohart model for all conditions. The column had been regenerated and reused consecutively for five cycles. The results demonstrated that the prepared activated carbon was suitable for removal of Mn(II ions from wastewater using batch as well as fixed bed sorption system.

  20. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  1. 催化活化法制备杉木基超高比表面积颗粒活性炭%Preparation of Granular Activated Carbon from China Fir with Super-high Surface Area by Catalysis Activation

    Institute of Scientific and Technical Information of China (English)

    朱光真; 邓先伦; 郭昊; 张燕萍

    2014-01-01

    以杉木屑为原料,在传统磷酸法工艺过程中添加辅助催化剂浓硫酸,制备超高比表面积颗粒活性炭。研究浓硫酸添加量、浸渍时间以及浸渍比对颗粒活性炭比表面积的影响。结果表明,浓硫酸添加量和浸渍时间在磷酸法制备超高比表面积颗粒活性炭中发挥着重要的作用,当浸渍时间为15 h、浓硫酸添加量为6%、浸渍比为2.1:1和浸渍时间为5 h、浓硫酸添加量为3%、浸渍比为2.1:1时,分别制备出比表面积为2825、2811 m2/g 的颗粒活性炭、总孔容分别为1.60、1.59 cm3/g,丁烷工作容量分别为154.8、157.3 g/L。%Super-high specific surface area granular activated carbon ( GAC) from China fir sawdust was prepared through adding concentrated sulfuric acid in the traditional technology by phosphoric acid activation method. Influences of different dosage of concentrated sulfuric acid, impregnation time and impregnation ratio on specific surface area was studied. The results showed that both of the dosage of concentrated sulfuric acid and impregnation time had great influence on specific surface area of GAC by phosphoric acid method. The GACs prepared under the conditions of impregnation time 15 h, dosage of concentrated sulfuric acid 6 %, impregnation ratio 2. 1:1 and impregnation time 5h, dosage of concentrated sulfuric acid 3 %, impregnation ratio 2. 1:1 gave the BET surface area of 2 825 and 2 811 m2/g, the total pore volume of 1. 60 and 1. 59 cm3/g, and butane working capacity (BWC) of 154. 8 and 157. 3 g/L, respectively.

  2. Active carbons from low temperature conversion chars

    International Nuclear Information System (INIS)

    Hulls obtained from the fruits of five tropical biomass have been subjected to low temperature conversion process and their chars activated by partial physical gasification to produce active carbons. The biomass are T. catappa, B. nitida, L leucophylla, D. regia and O. martiana. The bulk densities of the samples ranged from 0.32 g.cm3 to 0.52 g.cm3. Out of the samples T. catappa recorded the highest cellulose content (41.9 g.100g-1), while O. martiana contained the highest lignin content (40.7 g.100g-1). The ash of the samples were low (0.5 - 4.4%). The percentage of char obtained after conversion were high (33.7% - 38.6%). Active carbons obtained from T. catappa, D. regia and O. martiana, recorded high methylene blue numbers and iodine values. They also displayed good micro- and mesostructural characteristics. Micropore volume (Vmicro) was between 0.33cm3.g-1 - 0.40cm3.g-1, while the mesopore volume(Vmeso) was between 0.05 cm3.g-1 - 0.07 cm3.g-1. The BET specific surface exceeds 1000 m2.g-1. All these values compared favourably with high grade commercial active carbons. (author)

  3. Carbon nanomaterials: Biologically active fullerene derivatives.

    Science.gov (United States)

    Bogdanović, Gordana; Djordjević, Aleksandar

    2016-01-01

    Since their discovery, fullerenes, carbon nanotubes, and graphene attract significant attention of researches in various scientific fields including biomedicine. Nano-scale size and a possibility for diverse surface modifications allow carbon nanoallotropes to become an indispensable nanostructured material in nanotechnologies, including nanomedicine. Manipulation of surface chemistry has created diverse populations of water-soluble derivatives of fullerenes, which exhibit different behaviors. Both non-derivatized and derivatized fullerenes show various biological activities. Cellular processes that underline their toxicity are oxidative, genotoxic, and cytotoxic responses.The antioxidant/cytoprotective properties of fullerenes and derivatives have been considered in the prevention of organ oxidative damage and treatment. The same unique physiochemical properties of nanomaterials may also be associated with potential health hazards. Non-biodegradability and toxicity of carbon nanoparticles still remain a great concern in the area of biomedical application. In this review, we report on basic physical and chemical properties of carbon nano-clusters--fullerenes, nanotubes, and grapheme--their specificities, activities, and potential application in biological systems. Special emphasis is given to our most important results obtained in vitro and in vivo using polyhydroxylated fullerene derivative C₆₀(OH)₂₄. PMID:27483572

  4. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    Science.gov (United States)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  5. Proximate analysis for determination of micropores in granulated activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Ya. G.; Nikolaev, V.B.; Shepelev, A.N.

    1987-02-01

    A method is discussed for determining the specific micropore volume of granulated activated carbon used for water treatment in Soviet coking plants. Toluene molecules with a diameter of 0.67 nm are sorbed by activated carbon with micropore diameter ranging from 0.7 to 1.4 nm. Therefore, sorptive properties of activated carbon in relation to toluene supply information on micropore volume in carbon. A formula which describes this relation is derived. The method for determining micropore volume on the basis of toluene adsorption was tested using 8 types of activated carbon produced from coal and petroleum. Types of activated carbon characterized by the highest adsorption were selected. 1 ref.

  6. Production of activated carbon from microalgae

    OpenAIRE

    Hernández Férez, María del Remedio; Valdés Barceló, Francisco Javier; García Cortés, Ángela Nuria; Marcilla Gomis, Antonio; Chápuli Fernández, Eloy

    2008-01-01

    Presentado como póster en el 11th Mediterranean Congress of Chemical Engineering, Barcelona 2008. Resumen publicado en el libro de actas del congreso. Activated carbon is an important filter material for the removal of different compounds such as hazardous components in exhaust gases, for purification of drinking water, waste water treatment, adsorption of pollution from liquid phases, in catalysis, electrochemistry or for gas storage and present an important demand. Theoretically, activat...

  7. Radiochemical Analyses of the Filter Cake, Granular Activated Carbon, and Treated Ground Water from the DTSC Stringfellow Superfund Site Pretreatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Esser, B K; McConachie, W; Fischer, R; Sutton, M; Szechenyi, S

    2005-09-16

    The Department of Toxic Substance Control (DTSC) requested that Lawrence Livermore National Laboratory (LLNL) evaluate the treatment process currently employed at the Department's Stringfellow Superfund Site Pretreatment Plant (PTP) site to determine if wastes originating from the site were properly managed with regards to their radioactivity. In order to evaluate the current management strategy, LLNL suggested that DTSC characterize the effluents from the waste treatment system for radionuclide content. A sampling plan was developed; samples were collected and analyzed for radioactive constituents. Following is brief summary of those results and what implications for waste characterization may be made. (1) The sampling and analysis provides strong evidence that the radionuclides present are Naturally Occurring Radioactive Material (NORM). (2) The greatest source of radioactivity in the samples was naturally occurring uranium. The sample results indicate that the uranium concentration in the filter cake is higher than the Granular Activated Carbon (GAC) samples. (11 -14 and 2-6 ppm respectively). (3) No radiologic background for geologic materials has been established for the Stringfellow site, and comprehensive testing of the process stream has not been conducted. Without site-specific testing of geologic materials and waste process streams, it is not possible to conclude if filter cake and spent GAC samples contain radioactivity concentrated above natural background levels, or if radionuclides are being concentrated by the waste treatment process. Recommendation: The regulation of Technologically Enhanced, Naturally Occurring Radioactive Materials (T-NORM) is complex. Since the results of this study do not conclusively demonstrate that natural radioactive materials have not been concentrated by the treatment process it is recommended that the DTSC consult with the Department of Health Services (DHS) Radiological Health Branch to determine if any further

  8. Study on the removal of toxic substance from river water using O3-GAC process

    Institute of Scientific and Technical Information of China (English)

    杨玉楠; 孙志荣; 王宝贞; 杨敏; 李文兰

    2004-01-01

    This paper studied on the removal of toxic substance from river water using O3-GAC process. The result of GC/MS analysis indicated that the number of organic compound species was decreased by 55. 1%. The species of toxic substance of raw water also dec reased from 16 to 5. The total removal rate of CODMn andUV254were 45% ~ 72% and 60% ~ 80% following O3-GAC treatment. It reflected that this process had a good effective on removing unsaturation organic which absorb UV and toxic organic containing nitrogen. The results of Ames test indicated that raw water had a relatively strong mutagicity on TA 98. The O3-GAC process had a good ability in removing mutagen in water. The effluent water' s mutagicity is minus. The results of the study indicated that the effluent of the O3-GAC process was meet the demand of drinking water.

  9. Composite supercapacitor electrodes made of activated carbon/PEDOT:PSS and activated carbon/doped PEDOT

    Indian Academy of Sciences (India)

    T S Sonia; P A Mini; R Nandhini; Kalluri Sujith; Balakrishnan Avinash; S V Nair; K R V Subramanian

    2013-08-01

    In this paper, we report on the high electrical storage capacity of composite electrodes made from nanoscale activated carbon combined with either poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) or PEDOT doped with multiple dopants such as ammonium persulfate (APS) and dimethyl sulfoxide (DMSO). The composites were fabricated by electropolymerization of the conducting polymers (PEDOT:PSS, doped PEDOT) onto the nanoscale activated carbon backbone, wherein the nanoscale activated carbon was produced by ball-milling followed by chemical and thermal treatments. Activated carbon/PEDOT:PSS yielded capacitance values of 640 F g-1 and 26mF cm-2, while activated carbon/doped PEDOT yielded capacitances of 1183 F g-1 and 42 mF cm-2 at 10 mV s-1. This is more than five times the storage capacity previously reported for activated carbon–PEDOT composites. Further, use of multiple dopants in PEDOT improved the storage performance of the composite electrode well over that of PEDOT:PSS. The composite electrodes were characterized for their electrochemical behaviour, structural and morphological details and electronic conductivity and showed promise as high-performance energy storage systems.

  10. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  11. Cross-Species GacA-Controlled Induction of Antibiosis in Pseudomonads▿

    OpenAIRE

    Dubuis, Christophe; Haas, Dieter

    2006-01-01

    Signal extracts prepared from culture supernatants of Pseudomonas fluorescens CHA0 and Pseudomonas aeruginosa PAO stimulated GacA-dependent expression of small RNAs and hence of antibiotic compounds in both hosts. Pseudomonas corrugata LMG2172 and P. fluorescens SBW25 also produced signal molecules stimulating GacA-controlled antibiotic synthesis in strain CHA0, illustrating a novel, N-acyl-homoserine lactone-independent type of interspecies communication.

  12. Toluene removal from waste air stream by the catalytic ozonation process with MgO/GAC composite as catalyst.

    Science.gov (United States)

    Rezaei, Fatemeh; Moussavi, Gholamreza; Bakhtiari, Alireza Riyahi; Yamini, Yadollah

    2016-04-01

    This paper investigates the catalytic potential of MgO/GAC composite for toluene elimination from waste air in the catalytic ozonation process (COP). The MgO/GAC composite was a micro-porous material with the BET surface area of 1082m(2)/g. Different functional groups including aromatic CC, saturated CO of anhydrates, hydroxyl groups and SH bond of thiols were identified on the surface of MgO/GAC. Effects of residence time (0.5-4s), inlet toluene concentration (100-400ppmv) and bed temperature (25-100°C) were investigated on degradation of toluene in COP. Impregnation of GAC with MgO increased the breakthrough time and removal capacity by 73.9% and 64.6%, respectively, at the optimal conditions. The catalytic potential of the GAC and MgO/GAC for toluene degradation was 11.1% and 90.6%, respectively, at the optimum condition. The highest removal capacity using MgO/GAC (297.9gtoulene/gMgO/GAC) was attained at 100°C, whereas the highest removal capacity of GAC (128.5mgtoulene/gGAC) was obtained at 25°C. Major by-products of the toluene removal in COP with GAC were Formic acid, benzaldehyde, O-nitro-p-cresol and methyl di-phenyl-methane. MgO/GAC could greatly catalyze the decomposition of toluene in COPand formic acid was the main compound desorbed from the catalyst. Accordingly, the MgO/GAC is an efficient material to catalyze the ozonation of hydrocarbon vapors. PMID:26784452

  13. 78 FR 13894 - Certain Activated Carbon From China

    Science.gov (United States)

    2013-03-01

    ... COMMISSION Certain Activated Carbon From China Determination On the basis of the record \\1\\ developed in the... antidumping duty order on certain activated carbon from China would be likely to lead to continuation or... USITC Publication 4381 (February 2013), entitled Certain Activated Carbon from China: Investigation...

  14. Less-costly activated carbon for sewage treatment

    Science.gov (United States)

    Ingham, J. D.; Kalvinskas, J. J.; Mueller, W. A.

    1977-01-01

    Lignite-aided sewage treatment is based on absorption of dissolved pollutants by activated carbon. Settling sludge is removed and dried into cakes that are pyrolyzed with lignites to yield activated carbon. Lignite is less expensive than activated carbon previously used to supplement pyrolysis yield.

  15. Vibration damping with active carbon fiber structures

    Science.gov (United States)

    Neugebauer, Reimund; Kunze, Holger; Riedel, Mathias; Roscher, Hans-Jürgen

    2007-04-01

    This paper presents a mechatronic strategy for active reduction of vibrations on machine tool struts or car shafts. The active structure is built from a carbon fiber composite with embedded piezofiber actuators that are composed of piezopatches based on the Macro Fiber Composite (MFC) technology, licensed by NASA and produced by Smart Material GmbH in Dresden, Germany. The structure of these actuators allows separate or selectively combined bending and torsion, meaning that both bending and torsion vibrations can be actively absorbed. Initial simulation work was done with a finite element model (ANSYS). This paper describes how state space models are generated out of a structure based on the finite element model and how controller codes are integrated into finite element models for transient analysis and the model-based control design. Finally, it showcases initial experimental findings and provides an outlook for damping multi-mode resonances with a parallel combination of resonant controllers.

  16. Production of activated carbon from TCR char

    Science.gov (United States)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  17. The regeneration of polluted activated carbon by radiation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wu Minghong; Bao Borong [Shanghai Institute of Nuclear Research, Academia Sinica, Shanghai (China); Zhou Ruimin; Zhu Jinliang; Hu Longxin [Shanghai University, Shanghai (China)

    1998-10-01

    In this paper, the regeneration of used activated carbon from monosodium glutamate factory was experimented using radiation and acid-alkali chemical cleaning method. Results showed that the activated carbon saturated with pollutants can be wash away easily by flushing with chemical solution prior irradiation. DSC was used to monitor the change of carbon adsorption.

  18. Combination of adsorption and biodegradation processes for textile effluent treatment using a granular activated carbon-biofilm configured packed column system

    Institute of Scientific and Technical Information of China (English)

    ONG SoonAn; TOORISAKAEiichi; HIRATAMakoto; HANOTadashi

    2008-01-01

    The objective of this study was to investigate the feasibility of using a granular activated carbon-biofilm configured packed column system in the decolorization of azo dye Acid Orange 7-containing wastewater. The Acid Orange 7-degrading microbial from anaerobic sequencing batch reactor which treating the azo dye-containing wastewater for more than 200 d was immobilized on spent (GAC) through attachment. The granular activated carbon-biofilm configured packed column system showed the ability to decolorize 100% of the azo dye when working at high loading rate of Acid Orange 7 at 2.1 g/(L·d) with treatment time of 24 h. It was observed that the decolorization rate increased along with the increasing of initial Acid Orange 7 concentrations, until it reached an optimum point at about 0.38 g/h with initial Acid Orange 7 concentrations of 1,150 mg/L and the decolorization rate tend to be declined beyond this concentration.

  19. BATCH AND FIXED BED ADSORPTION STUDIES OF LEAD (II CATIONS FROM AQUEOUS SOLUTIONS ONTO GRANULAR ACTIVATED CARBON DERIVED FROM MANGOSTANA GARCINIA SHELL

    Directory of Open Access Journals (Sweden)

    Zaira Zaman Chowdhury,

    2012-05-01

    Full Text Available The feasibility of granular activated carbon (GAC derived from Mangostene (Mangostana garcinia fruit shell to remove lead, Pb2+ cations was investigated in batch and fixed bed sorption systems. Batch experiments were carried out to study equilibrium isotherms, kinetics, and thermodynamics by using an initial lead (Pb2+ ions concentration of 50 to 100 mg/L at pH 5.5. Equilibrium data were fitted using Langmuir, Freundlich, and Temkin linear equation models at temperatures 30°C, 50°C, and 70°C. Langmuir maximum monolayer sorption capacity was 25.00 mg/g at 30°C. The experimental data were best represented by pseudo-second-order and Elovich models. The sorption process was found to be feasible, endothermic, and spontaneous. In column experiments, the effects of initial cation concentration (50 mg/L, 70 mg/L, and 100 mg/L, bed height (4.5 cm and 3 cm, and flow rate (1 mL/min and 3 mL/min on the breakthrough characteristics were evaluated. Breakthrough curves were further analyzed by using Thomas and Yoon Nelson models to study column dynamics. The column was regenerated and reused consecutively for four cycles. The result demonstrated that the prepared activated carbon was suitable for removal of Pb2+ from synthetic aqueous solution using batch, as well as fixed bed sorption systems.

  20. 砂垫层控制活性炭滤池无脊椎动物穿透研究%Penetration control of invertebrates in the granular activated carbon filtration process with sand bed

    Institute of Scientific and Technical Information of China (English)

    尹文超; 张金松; 刘丽君; 赵岩; 李拓; 林超

    2013-01-01

    In view of the aesthetic problem and potential threat to safe drinking water caused by invertebrates, a series different depth of sand beds were located under granular activated carbon ( GAC ) media in five pilot -GAC filtration (GACF) columns to restrict invertebrates' penetration into the distribution system. During the study period of 10 months, 7 groups of invertebrates ( rotifers and crustaceans as the predominant species) were detected in the filtrates of the five GACF columns. The experimental results indicated that invertebrates could be removed effectively with the added sand beds compared with the sand bed-free GACF column. The mean abundances of invertebrates decreased significantly with the increase of the depth of sand beds. The 46. 6 % of rotifers and 85. 5% of larger invertebrates (size > 200 μm) could be removed from the filtrate. Sand sizes had a greater impact on rotifers removal than larger invertebrates. Also increasing removal ratios of particle matter were detected with the sand beds added. Further data analysis showed that there was significant correlation between the mean values of particle counts and abundances of invertebrates in the filtrates.%为控制无脊椎动物穿透带来的过滤水感官问题和潜在的安全风险,添加一系列不同粒径和不同高度的砂垫层于5根活性炭(Granular activated carbon,GAC)滤柱中.在10个月的连续运行期间,滤柱出水中共检出7类无脊椎动物(其中轮虫和甲壳类生物为优势种群).结果表明:砂垫层的添加可以有效防止无脊椎动物的穿透,且随着砂垫层高度的增加去除率逐渐升高,轮虫和体长大于200 μm无脊椎动物的去除率分别达46.6%和85.5%,石英砂粒径对轮虫的去除影响较大;砂垫层可以有效去除水中颗粒物,且出水中颗粒数与无脊椎动物丰度显著相关.

  1. Clinical and radiographic study of activated carbon workers.

    OpenAIRE

    Uragoda, C. G.

    1989-01-01

    Activated carbon is made in Sri Lanka by passing steam through charcoal made from coconut shells. The carbon does not contain free silica. Sixty six men who had worked in a factory making activated carbon for an average of 7.2 years had no more respiratory symptoms than a control group, and none showed radiological evidence of pneumoconiosis. There was no evidence that people exposed to charcoal and pure carbon for up to 11 years are at risk of developing pneumoconiosis.

  2. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  3. Superhydrophobic activated carbon-coated sponges for separation and absorption.

    Science.gov (United States)

    Sun, Hanxue; Li, An; Zhu, Zhaoqi; Liang, Weidong; Zhao, Xinhong; La, Peiqing; Deng, Weiqiao

    2013-06-01

    Highly porous activated carbon with a large surface area and pore volume was synthesized by KOH activation using commercially available activated carbon as a precursor. By modification with polydimethylsiloxane (PDMS), highly porous activated carbon showed superhydrophobicity with a water contact angle of 163.6°. The changes in wettability of PDMS- treated highly porous activated carbon were attributed to the deposition of a low-surface-energy silicon coating onto activated carbon (confirmed by X-ray photoelectron spectroscopy), which had microporous characteristics (confirmed by XRD, SEM, and TEM analyses). Using an easy dip-coating method, superhydrophobic activated carbon-coated sponges were also fabricated; those exhibited excellent absorption selectivity for the removal of a wide range of organics and oils from water, and also recyclability, thus showing great potential as efficient absorbents for the large-scale removal of organic contaminants or oil spills from water.

  4. Volumetric and superficial characterization of carbon activated; Caracterizacion volumetrica y superficial de carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T. [Departamento de Quimica, Gerencia de Ciencias Basicas, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  5. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    Science.gov (United States)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  6. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    Science.gov (United States)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P.

    2016-05-01

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  7. Activated Carbon Composites for Air Separation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Frederick S [ORNL; Contescu, Cristian I [ORNL; Tsouris, Costas [ORNL; Burchell, Timothy D [ORNL

    2011-09-01

    Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

  8. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Science.gov (United States)

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  9. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series

    International Nuclear Information System (INIS)

    Landfill leachate is generally characterized as a complex recalcitrant wastewater containing high concentration of dissolved organic matter (DOM). A combination of sequencing batch reactor (SBR) + aeration corrosive cell-Fenton (ACF) + granular activated carbon (GAC) adsorption in series was proposed for the purpose of removing pollutants in the leachate. Fractionation was also performed to investigate the composition changes and characteristics of the leachate DOM in each treatment process. Experimental results showed that organic matter, in terms of chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), and dissolved organic carbon (DOC), was reduced by 97.2%, 99.1%, and 98.7%, respectively. To differentiate the DOM portions, leachates were separated into five fractions by XAD-8 and XAD-4 resins: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The predominant fraction in the raw leachate was HPO-A (36% of DOC), while the dominant fraction in the final effluent was HPI (53% of DOC). Accordingly, macromolecules were degraded to simpler ones in a relatively narrow range below 1000 Da. Spectral and chromatographic analyses also showed that most humic-like substances in all fractions were effectively removed during the treatments and led to a simultaneous decrease in aromaticity.

  10. THE ROLE OF ACTIVATED CARBON IN SOLVING ECOLOGICAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    V. M. Mukhin

    2008-06-01

    Full Text Available The authors present a brief analysis of the current global situation concerning the utilization of activated carbon in various fields. The article presents data concerning the synthesis and adsorption and structure properties of new activated carbons, used for solving ecological problems. The authors investigated the newly obtained activated carbons in comparison with several AC marks known in the world. It has been shown that currently synthesized AC are competitive with foreign marks.

  11. HYDROGEN SULFIDE ADSORPTION BY ALKALINE IMPREGNATED COCONUT SHELL ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    HUI SUN CHOO

    2013-12-01

    Full Text Available Biogas is one type of renewable energy which can be burnt to produce heat and electricity. However, it cannot be burnt directly due to the presence of hydrogen sulfide (H2S which is highly corrosive to gas engine. In this study, coconut shell activated carbon (CSAC was applied as a porous adsorbent for H2S removal. The effect of amount of activated carbon and flow rate of gas stream toward adsorption capacity were investigated. Then, the activated carbons were impregnated by three types of alkaline (NaOH, KOH and K2CO3 with various ratios. The effects of various types of alkaline and their impregnation ratio towards adsorption capacity were analysed. In addition, H2S influent concentration and the reaction temperature on H2S adsorption were also investigated. The result indicated that adsorption capacity increases with the amount of activated carbon and decreases with flow rate of gas stream. Alkaline impregnated activated carbons had better performance than unimpregnated activated carbon. Among all impregnated activated carbons, activated carbon impregnated by K2CO3 with ratio 2.0 gave the highest adsorption capacity. Its adsorption capacity was 25 times higher than unimpregnated activated carbon. The result also indicated that the adsorption capacity of impregnated activated carbon decreased with the increment of H2S influent concentration. Optimum temperature for H2S adsorption was found to be 50˚C. In this study, the adsorption of H2S on K2CO3 impregnated activated carbon was fitted to the Langmuir isotherm. The fresh and spent K2CO3 impregnated activated carbon were characterized to study the adsorption process.

  12. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    Science.gov (United States)

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids.

  13. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  14. Fe/S doped granular activated carbon as a highly active heterogeneous persulfate catalyst toward the degradation of Orange G and diethyl phthalate.

    Science.gov (United States)

    Pu, Mengjie; Ma, Yongwen; Wan, Jinquan; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2014-03-15

    Fe/S doped granular activated carbon (Fe/SGAC) was synthesized with ferric nitrate, Na2S2O3 and (NH4)2S2O8 via an impregnation-precipitation, reduction-oxidation combining with aqueous-phase synthesis method treatment. Surface density of functional groups, surface area changes as well as the chemical state inside Fe/SGAC catalyst were studied by Boehm titration, N2 adsorption and X-ray photoelectron spectroscopy (XPS). The reactivity of the catalysts was tested by degrading Orange G (OG) and diethyl phthalate (DEP). The Fe/SGAC catalysts could significantly enhance the removal rate of OG as compared to persulfate alone and PS/GAC. And the catalytic capacity was also enhanced by S doping. But the degradation of DEP under the similar condition was inhibited by adsorption process because of the different hydrophobicities of OG and DEP molecule. Fe2O3/FeOOH (Fe(3+)) (represents ferrihydrite) together with FeO/Fe3O4 (Fe(2+)) and Fe2O3-satellite, which provide the new active site for persulfate catalyst was found to be the major components of iron element in Fe/SGAC catalyst; the existence of FeS2(S(-)) for sulfur element verified the assumption that the doped S element promoted the electron transfer between the persulfate species and iron oxide at the interface. COD removal experiment further confirmed that mostly contaminant removal was owed to the Fe/SGAC catalytic persulfate oxidation process. PMID:24461853

  15. Genome-wide search reveals a novel GacA-regulated small RNA in Pseudomonas species

    Directory of Open Access Journals (Sweden)

    Kay Elisabeth

    2008-04-01

    Full Text Available Abstract Background Small RNAs (sRNAs are widespread among bacteria and have diverse regulatory roles. Most of these sRNAs have been discovered by a combination of computational and experimental methods. In Pseudomonas aeruginosa, a ubiquitous Gram-negative bacterium and opportunistic human pathogen, the GacS/GacA two-component system positively controls the transcription of two sRNAs (RsmY, RsmZ, which are crucial for the expression of genes involved in virulence. In the biocontrol bacterium Pseudomonas fluorescens CHA0, three GacA-controlled sRNAs (RsmX, RsmY, RsmZ regulate the response to oxidative stress and the expression of extracellular products including biocontrol factors. RsmX, RsmY and RsmZ contain multiple unpaired GGA motifs and control the expression of target mRNAs at the translational level, by sequestration of translational repressor proteins of the RsmA family. Results A combined computational and experimental approach enabled us to identify 14 intergenic regions encoding sRNAs in P. aeruginosa. Eight of these regions encode newly identified sRNAs. The intergenic region 1698 was found to specify a novel GacA-controlled sRNA termed RgsA. GacA regulation appeared to be indirect. In P. fluorescens CHA0, an RgsA homolog was also expressed under positive GacA control. This 120-nt sRNA contained a single GGA motif and, unlike RsmX, RsmY and RsmZ, was unable to derepress translation of the hcnA gene (involved in the biosynthesis of the biocontrol factor hydrogen cyanide, but contributed to the bacterium's resistance to hydrogen peroxide. In both P. aeruginosa and P. fluorescens the stress sigma factor RpoS was essential for RgsA expression. Conclusion The discovery of an additional sRNA expressed under GacA control in two Pseudomonas species highlights the complexity of this global regulatory system and suggests that the mode of action of GacA control may be more elaborate than previously suspected. Our results also confirm that

  16. AVHRR GAC SST Reanalysis Version 1 (RAN1

    Directory of Open Access Journals (Sweden)

    Alexander Ignatov

    2016-04-01

    Full Text Available In response to its users’ needs, the National Oceanic and Atmospheric Administration (NOAA initiated reanalysis (RAN of the Advanced Very High Resolution Radiometer (AVHRR Global Area Coverage (GAC; 4 km sea surface temperature (SST data employing its Advanced Clear Sky Processor for Oceans (ACSPO retrieval system. Initially, AVHRR/3 data from five NOAA and two Metop satellites from 2002 to 2015 have been reprocessed. The derived SSTs have been matched up with two reference SSTs—the quality controlled in situ SSTs from the NOAA in situ Quality Monitor (iQuam and the Canadian Meteorological Centre (CMC L4 SST analysis—and analyzed in the NOAA SST Quality Monitor (SQUAM online system. The corresponding clear-sky ocean brightness temperatures (BT in AVHRR bands 3b, 4 and 5 (centered at 3.7, 11, and 12 µm, respectively have been compared with the Community Radiative Transfer Model simulations in another NOAA online system, Monitoring of Infrared Clear-sky Radiances over Ocean for SST (MICROS. For some AVHRRs, the time series of “AVHRR minus reference” SSTs and “observed minus model” BTs are unstable and inconsistent, with artifacts in the SSTs and BTs strongly correlated. In the official “Reanalysis version 1” (RAN1, data from only five platforms—two midmorning (NOAA-17 and Metop-A and three afternoon (NOAA-16, -18 and -19—were included during the most stable periods of their operations. The stability of the SST time series was further improved using variable regression SST coefficients, similarly to how it was done in the NOAA/NASA Pathfinder version 5.2 (PFV5.2 dataset. For data assimilation applications, especially those blending satellite and in situ SSTs, we recommend bias-correcting the RAN1 SSTs using the newly developed sensor-specific error statistics (SSES, which are reported in the product files. Relative performance of RAN1 and PFV5.2 SSTs is discussed. Work is underway to improve the calibration of AVHRR/3s and

  17. Preparation and application of active gangue's carbon black

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang-lin; ZHANG Yi-dong

    2007-01-01

    After three-stage pulverization, dry-distillated activation and coupling agent surface modification, the kaolinite-typed gangue of Sichuan Hongni Coal Mine(SHCM) can be manufactured into activated gangue's carbon black. Its surface area is >25 m2/g, and possesses carbon black's carbon framework and structure. It can be used as strengthening agent of high polymer material such as rubber.

  18. [Flue gas desulfurization by a novel biomass activated carbon].

    Science.gov (United States)

    Liu, Jie-Ling; Tang, Zheng-Guang; Chen, Jie; Jiang, Wen-Ju; Jiang, Xia

    2013-04-01

    A novel biomass columnar activated carbon was prepared from walnut shell and pyrolusite was added as a catalyst. The activated carbon prepared was used for flue gas desulphurization in a fixed-bed reactor with 16 g of activated carbon. The impact of operating parameters such as SO2 inlet concentration, space velocity, bed temperature, moisture content and O2 concentration on the desulfurization efficiency of activated carbon was investigated. The results showed that both the breakthrough sulfur capacity and breakthrough time of activated carbon decreased with the increase of SO2 inlet concentration within the range of 0.1% -0.3%. The breakthrough sulfur capacity deceased with the increase of space velocity, with optimal space velocity of 600 h(-1). The optimal bed temperature was 80 degrees C, and the desulfurization efficiency can be reduced if the temperature continue to increase. The presence of moisture and oxygen greatly promoted the adsorption of SO2 onto the activated carbon. The best moisture content was 10%. When the oxygen concentrations were between 10% and 13%, the desulfurization performance of activated carbon was the highest. Under the optimal operating conditions, the sulfur capacity of activated carbon was 252 mg x g(-1), and the breakthrough time was up to 26 h when the SO2 inlet concentration was 0.2%.

  19. Ozone Removal by Filters Containing Activated Carbon: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Spears, Mike; Sullivan, Douglas; Mendell, Mark

    2009-09-01

    This study evaluated the ozone removal performance of moderate-cost particle filters containing activated carbon when installed in a commercial building heating, ventilating, and air conditioning (HVAC) system. Filters containing 300 g of activated carbon per 0.09 m2 of filter face area were installed in two 'experimental' filter banks within an office building located in Sacramento, CA. The ozone removal performance of the filters was assessed through periodic measurements of ozone concentrations in the air upstream and downstream of the filters. Ozone concentrations were also measured upstream and downstream of a 'reference' filter bank containing filters without any activated carbon. The filter banks with prefilters containing activated carbon were removing 60percent to 70percent of the ozone 67 and 81 days after filter installation. In contrast, there was negligible ozone removal by the reference filter bank without activated carbon.

  20. Enhanced Capacitive Characteristics of Activated Carbon by Secondary Activation

    Institute of Scientific and Technical Information of China (English)

    YANG Hui; LU Tian-hong; Yoshio Masaki

    2004-01-01

    The effect of the improvement of commercial activated carbon(AC) on its specific capacitance and high rate capability of double layer(dl) charging/discharging process has been studied. The improvement of AC was carried out via a secondary activation under steam in the presence of catalyst NiCl2, and the suitable condition was found to be a heat treatment at about 875 ℃ for 1 h. Under those conditions, the discharge specific capacitance of the improved AC increases up to 53.67 F/g, showing an increase of about 25% as compared with that of as-received AC. The good rectangular-shaped voltammograms and A.C. impedance spectra prove that the high rate capability of the capacitor made of the improved AC is enhanced significantly. The capacitance resistance(RC) time constant of the capacitor containing the improved AC is 1.74 s, which is much lower than that of the one containing as-received AC(an RC value of 4. 73 s). It is noted that both kinds of AC samples show a similar specific surface area and pore size distribution, but some changes have taken place in the carbon surface groups, especially a decrease in the concentration of surface carbonyl groups after the improvement, which have been verified by means of X-photoelectron spectroscopy. Accordingly, it is suggested that the decrease in the concentration of surface carbonyl groups for the improved AC is beneficial to the organic electrolyte ion penetrating into the pores, thus leading to the increase in both the specific capacitance and high rate capability of the supercapacitor.

  1. Science Letters: Nitrogen doping of activated carbon loading Fe2O3 and activity in carbon-nitric oxide reaction

    Institute of Scientific and Technical Information of China (English)

    WAN Xian-kai; ZOU Xue-quan; SHI Hui-xiang; WANG Da-hui

    2007-01-01

    Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form of pyridinic nitrogen. The modified carbon shows excellent activity for NO reduction in the low temperature regime (<500 ℃) because of the cooperative effect of Fe2O3 and the surface nitrogen species.

  2. Adsorption of radon from a humid atmosphere on activated carbon

    International Nuclear Information System (INIS)

    Temperature and relative humidity can influence the adsorption capacity of radon on activated carbon to a great extent, depending on the physical properties of the carbon. Experiments were carried out to measure the radon uptake by an activated carbon in the presence of water vapor in a specially designed adsorption apparatus. The radon concentrations in the gas and solid phases were measured simultaneously once the adsorption equilibrium and the radioactive equilibrium between the radon daughter products were reached. The experiments in the presence of water vapor were carried out using two approaches. In one case the activated carbon was preequilibrated with water vapor prior to exposing it to radon. In the other case the carbon was exposed to a mixture of water vapor and radon. The uptake capacity for radon decreased substantially when both components were introduced together compared to when carbon was preequilibrated with water

  3. Production of activated carbon from Atili seed shells

    Directory of Open Access Journals (Sweden)

    Nehemiah Samuel MAINA

    2014-11-01

    Full Text Available Activated carbon was produced from atili (black date seed shells by chemical activation with phosphoric acid as an activating agent. Carbonization was done at temperatures of 350°C, 450°C, 550°C, 650°C and at corresponding resident times of 20, 30, 40, 50 and 60 minutes respectively in a muffle furnace. The study involved the determination of yield, carbon content, burn-off, moisture content, and ash content as well as the temperature and suitable resident time for carbonization. The result showed that, increasing the carbonization temperature from 350°C to 650°C as well as increasing the corresponding resident time from 20 to 60 minutes led to a decrease in carbonization yield as well as an increase in burn off. An increase in carbonization time led to a decrease in ash content while an increase in carbonization temperature led to a decrease in the moisture content. The yield, burn-off and ash content obtained at a carbonization temperature of 650°C and at a corresponding time of 60 minutes were found to be 68.29%, 31.71% and 0.75% respectively while the highest carbon content (99.16 and lowest moisture content (0.09 was obtained at this same temperature and corresponding time. The activated carbon produced gave a yield of 99.37%, ash content (2.01%, moisture content (4.20%, carbon content (93.79%, burn off (0.63% and pH of 6.752. These properties therefore indicate the suitability of the activated carbon produced.

  4. Fractal analysis of granular activated carbons using isotherm data

    Energy Technology Data Exchange (ETDEWEB)

    Khalili, N.R.; Pan, M. [Illinois Institute of Technology, Chicago, IL (United States). Dept. of Chemical and Environmental Engineering; Sandi, G. [Argonne National Lab., IL (United States)

    1997-08-01

    Utilization of adsorption on solid surfaces was exercised for the first time in 1785. Practical application of unactivated carbon filters, and powdered carbon were first demonstrated in the American water treatment plant, and a municipal treatment plant in New Jersey, in 1883 and 1930, respectively. The use of activated carbon became widespread in the next few decades. At present, adsorption on carbons has a wide spread application in water treatment and removal of taste, odor, removal of synthetic organic chemicals, color-forming organics, and desinfection by-products and their naturally occurring precursors. This paper presents an analysis of the surface fractal dimension and adsorption capacity of a group of carbons.

  5. The GacS/A-RsmA Signal Transduction Pathway Controls the Synthesis of Alkylresorcinol Lipids that Replace Membrane Phospholipids during Encystment of Azotobacter vinelandii SW136

    Science.gov (United States)

    Romero, Yanet; Guzmán, Josefina; Moreno, Soledad; Cocotl-Yañez, Miguel; Vences-Guzmán, Miguel Ángel; Castañeda, Miguel; Espín, Guadalupe; Segura, Daniel

    2016-01-01

    Azotobacter vinelandii is a soil bacterium that undergoes a differentiation process that forms cysts resistant to desiccation. During encystment, a family of alkylresorcinols lipids (ARs) are synthesized and become part of the membrane and are also components of the outer layer covering the cyst, where they play a structural role. The synthesis of ARs in A. vinelandii has been shown to occur by the activity of enzymes encoded in the arsABCD operon. The expression of this operon is activated by ArpR, a LysR-type transcriptional regulator whose transcription occurs during encystment and is dependent on the alternative sigma factor RpoS. In this study, we show that the two component response regulator GacA, the small RNA RsmZ1 and the translational repressor protein RsmA, implicated in the control of the synthesis of other cysts components (i.e., alginate and poly-ß-hydroxybutyrate), are also controlling alkylresorcinol synthesis. This control affects the expression of arsABCD and is exerted through the regulation of arpR expression. We show that RsmA negatively regulates arpR expression by binding its mRNA, repressing its translation. GacA in turn, positively regulates arpR expression through the activation of transcription of RsmZ1, that binds RsmA, counteracting its repressor activity. This regulatory cascade is independent of RpoS. We also show evidence suggesting that GacA exerts an additional regulation on arsABCD expression through an ArpR independent route. PMID:27055016

  6. 活性炭微孔对RO浓水中小分子有机物的吸附%Adsorption of Low Molecular Weight Organics in Reverse Osmosis Concentrate by Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    王丽丽; 顾平; 赵春霞; 张光辉

    2013-01-01

    In order to investigate the adsorption of dissolved organic matters (DOM) in reverse osmosis (RO) concentrate by activated carbon,granular activated carbon (GAC),powdered activated carbon (PAC) and activated carbon fiber (ACF) were used in adsorption experiments.The results showed that the PAC was the best adsorbent.When PAC dose was 0.9 g/L,the removal rates of COD from RO concentrate Ⅰ and Ⅱ were 54.8% and 71.8%,respectively.The molecular weight (MW) distribution of DOM in RO concentrate was studied,and the pore size distribution of new and used PAC were measured.The MW of DOM in RO concentrate Ⅱ was mostly less than 500 u.The micropores of less than 2 nm were mainly responsible for DOM adsorption,and micropores in the range of 2 to 4 nm played an assistant role.Therefore,PAC is suitable for the DOM adsorption in RO concentrate.%为研究活性炭对反渗透(RO)浓水中溶解性有机物(DOM)的吸附效果,首先采用颗粒活性炭(GAC)、粉末活性炭(PAC)和活性炭纤维(ACF)进行吸附试验.结果表明,PAC的吸附效果最佳,当PAC投量为0.9 g/L时,对RO浓水Ⅰ、Ⅱ中COD的去除率分别为54.8%和71.8%.同时研究了RO浓水中DOM的分子质量(MW)分布及新、旧PAC的孔径分布,发现RO浓水Ⅱ中以MW<500 u的DOM为主,而PAC的吸附作用以孔径<2 nm的微孔为主、孔径为2~4 nm的中孔为辅,因此适于吸附RO浓水中的DOM.

  7. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    Science.gov (United States)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  8. Studies relevant to the catalytic activation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Ford, P.C.

    1992-06-04

    Research activity during the 1991--1992 funding period has been concerned with the following topics relevant to carbon monoxide activation. (1) Exploratory studies of water gas shift catalysts heterogenized on polystyrene based polymers. (2) Mechanistic investigation of the nucleophilic activation of CO in metal carbonyl clusters. (3) Application of fast reaction techniques to prepare and to investigate reactive organometallic intermediates relevant to the activation of hydrocarbons toward carbonylation and to the formation of carbon-carbon bonds via the migratory insertion of CO into metal alkyl bonds.

  9. Decoration of activated carbon nanotubes by assembling nano-silver

    Institute of Scientific and Technical Information of China (English)

    Chen-sha Li; Bin-song Wang; Ying-jie Qiao; Wei-zhe Lu; Ji Liang

    2009-01-01

    A facile solution processed strategy of synthesizing nano silver assembled on carbon nanotubes (CNTs) at room tempera-ture was put forward. Activated carbon nanotubes were used as precursors for preparing silver-decorated nanotubes. The nature of the decorated nanotubes was studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and en-ergy-dispersive X-ray spectroscopy (EDX). The inert surfaces of carbon nanotubes were activated by introducing catalytic nuclei via an oxidation-sensitization-activation approach. Activated carbon nanotubes catalyzed the metal deposition specifically onto their surfaces upon immersion in electroless plating baths. The method produced nanotubes decorated with silver. The extent of silver decoration was found to be dependent on fabrication conditions. Dense nano silver assembled on nanotube surfaces could be ob-tained by keeping a low reaction rate in the solution phase. The results here show that this method is an efficient and simple means of achieving carbon nanotubes being assembled by nano metal.

  10. Preparation of activated carbons from Chinese coal and hydrolysis lignin

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Y.; Han, B.X. [Tuskegee University, Tuskegee, AL (USA). School of Engineering, Dept. of Chemical Engineering

    2001-07-01

    Activated carbons from Chinese coal and Chinese hydrolysis lignin have been prepared by chemical activation with potassium hydroxide. The following aspects of these activated materials have been analyzed: raw material; pre-treatment of raw material; activation agent, activation temperature and time, acid the activation agent/raw material ratio. Activated carbons with BET specific surface areas of the order of 2400-2600 m{sup 2}/g which exhibited substantial microporosity, a total pore volume of over 1.30 cm{sup 3}/g and a Methylene Blue adsorption capacity of over 440 mg/g were obtained.

  11. CCN activation of pure and coated carbon black particles.

    Science.gov (United States)

    Dusek, U; Reischl, G P; Hitzenberger, R

    2006-02-15

    The CCN (cloud condensation nucleus) activation of pure and coated carbon black particles was investigated using the University of Vienna cloud condensation nuclei counter (Giebl, H.; Berner, A.; Reischl, G.; Puxbaum, H.; Kasper-Giebl, A.; Hitzenberger, R. J. Aerosol Sci. 2002, 33, 1623-1634). The particles were produced by nebulizing an aqueous suspension of carbon black in a Collison atomizer. The activation of pure carbon black particles was found to require higher supersaturations than predicted by calculations representing the particles as insoluble, wettable spheres with mobility equivalent diameter. To test whether this effect is an artifact due to heating of the light-absorbing carbon black particles in the laser beam, experiments at different laser powers were conducted. No systematic dependence of the activation of pure carbon black particles on laser power was observed. The observations could be modeled using spherical particles and an effective contact angle of 4-6 degrees of water at their surface. The addition of a small amount of NaCl to the carbon black particles (by adding 5% by mass NaCl to the carbon black suspension) greatly enhanced their CCN efficiency. The measured CCN efficiencies were consistent with Kohler theory for particles consisting of insoluble and hygroscopic material. However, coating the carbon black particles with hexadecanol (a typical film-forming compound with one hydrophobic and one hydrophilic end) efficiently suppressed the CCN activation of the carbon black particles.

  12. Characterization of activated carbon produced from urban organic waste

    Directory of Open Access Journals (Sweden)

    Abdul Gani Haji

    2013-10-01

    Full Text Available The difficulties to decompose organic waste can be handled naturally by pyrolisis so it can  decomposes quickly that produces charcoal as the product. This study aims to investigate the characteristics of activated carbon from urban organic waste. Charcoal results of pyrolysis of organic waste activated with KOH 1.0 M at a temperature of 700 and 800oC for 60 to 120 minutes. Characteristics of activated carbon were identified by Furrier Transform Infra Red (FTIR, Scanning Electron Microscopy (SEM, and X-Ray Diffraction (XRD. However, their quality is determined yield, moisture content, ash, fly substances, fixed carbon, and the power of adsorption of iodine and benzene. The identified functional groups on activated carbon, such as OH (3448,5-3436,9 cm-1, and C=O (1639,4 cm-1. In general, the degree and distance between the layers of active carbon crystallites produced activation in all treatments showed no significant difference. The pattern of activated carbon surface topography structure shows that the greater the pore formation in accordance with the temperature increase the more activation time needed. The yield of activated carbon obtained ranged from 72.04 to 82.75%. The results of characterization properties of activated carbon was obtained from 1.11 to 5.41% water, 13.68 to 17.27% substance fly, 20.36 to 26.59% ash, and 56.14 to 62.31% of fixed carbon . Absorption of activated carbon was good enough at 800oC and 120 minutes of activation time, that was equal to 409.52 mg/g of iodine and 14.03% of benzene. Activated carbon produced has less good quality, because only the water content and flying substances that meet the standards.Doi: 10.12777/ijse.5.2.89-94 [How to cite this article: Haji, A.G., Pari, G., Nazar, M., and Habibati.  (2013. Characterization of activated carbon produced from urban organic waste . International Journal of Science and Engineering, 5(2,89-94. Doi: 10.12777/ijse.5.2.89-94

  13. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    Science.gov (United States)

    Tsubouchi, Naoto; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-01

    The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K2CO3 activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500-900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m2/g and 0.13 cm3/g at 800 °C, and 540 m2/g and 0.31 cm3/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300-3400 m2/g and 2.0-2.3 cm3/g after holding at 800-900 °C for 1 h. Heating a lignin/urea/K2CO3 mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K2CO3 and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  14. Granular activated carbon adsorption technology for removal of MTBE%颗粒活性炭吸附工艺对水体中甲基叔丁基醚的去除

    Institute of Scientific and Technical Information of China (English)

    胡娟; 黄流雅; 刘诺; 张巍; 刘友良; 应维琪

    2011-01-01

    通过批式平衡实验考察了各种材质活性炭对MTBE的最大吸附容量以及吸附的影响因素.结果表明各活性炭的吸附能力依次为JHBG1 >JHBG2>GCN830≥F300>YK>Bamboo,其中2种国产竹炭JHBG1和JHBG2对低浓度污染的地下水处理时的理论耗炭量分别为0.14和0.18g/L;水体中天然有机物对MTBE有一定的竞争吸附,丹宁酸值较大的活性炭比较有利于地下水中MTBE的去除.采用连续流的微型快速穿透实验(MCRB)考察了活性炭的吸附容量利用率,结果证明活性炭吸附可以作为一种有效的地下水中MTBE的去除工艺,这为MTBE污染场地的异位修复提供一个实际可行的参考.%Methy tert-butyl ether (MTBE), a popular organic solvent and gasoline additive, has become a common groundwater pollutant. Numerous isotherm runs were conducted to evaluate the effects of contact time, initial MTBE concentration, raw material/activation, and solution- composition on the adsorptive capacity of granular activated carbon (GAC) for MTBE. The adsorption capacity of the carbons employed was in the order of JHBG1>JHBG2>GCN830> F300>YK>Bamboo. JHBG1 and JHBG2 had the lower consumption amount of activated carbon (0.14 and 0.18g/L) among the six carbon samples during the treatment of low-concentration contaminated groundwater. The adsorption capacity utilization rate from micro column rapid breakthrough technique shows that the GAC adsorption was practical for removing a small quantity of MTBE from groundwater and could provide significant guidance for ectopic remediation for contaminated water.

  15. STUDIES ON THE PREPARATION OF ZINC-CONTAINING ACTIVATED CARBON FIBERS AND THEIR ANTIBACTERIAL ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several kinds of activated carbon fibers, using sisal fiber as precursors, were preparedwith steam activation or with ZnCl2 activation. Zinc or its compounds were dispersed in them. Theantibacterial activities of these activated carbon fibers were determined and compared. The researchresults showed that these sisal based activated carbon fibers supporting zinc have strongerantibacterial activity against Escherichia coli and S. aureus. The antibacterial activity is related tothe precursors, the pyrolysis temperature, and the zinc content. In addition, small quantity of silversupported on zinc-containing ACFs will greatly enhance the antibacterial activity of ACFs.

  16. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    Science.gov (United States)

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  17. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process.

    Science.gov (United States)

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng

    2014-11-01

    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 μm) volume and the increase of mesopore and macropore (0.1 μm

  18. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    Science.gov (United States)

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants. PMID:27214000

  19. Comparison of Adsorption Capability of Activated Carbon and Metal Doped TiO2 for Geosmin and 2-MIB Removal from Water

    Directory of Open Access Journals (Sweden)

    Aisha Asghar

    2015-01-01

    Full Text Available This study stemmed from consumer complaints about earthy and musty off-flavours in treated water of Rawal Lake Filtration Plant. In recent years, several novel adsorbents have been developed from nanomaterials for enhancing the contaminant removal efficiency. This paper presents preparation and the use of new adsorbents Pt doped titania and Fe doped titania, for the adsorption capacity of Geosmin and 2-MIB from water under laboratory conditions and their comparison, with most widely used activated carbon, under batch and column experiments. Stock solutions were prepared by using Geosmin and 2-MIB standards, procured by Sigma Aldrich (England. Samples were analysed using SPME-GC-FID. The adsorption of Geosmin and 2-MIB on GAC conformed to the Freundlich isotherm, while that of adsorption on metal doped titania fit equally well to both Langmuir and Freundlich isotherms. Moreover, data, generated for the kinetic isotherm, confirmed that Geosmin and 2-MIB removal is a function of contact time. Breakthrough column tests using 125 mg/L Pt doped titania nanoparticles, coated on glass beads against 700 ng/L of off-flavours, attained later breakthrough and exhaustion points and removed 98% of Geosmin and 97% of 2-MIB at room temperature. All columns could be regenerated using 50 mL 0.1 molar sodium hydroxide.

  20. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest

  1. Adsorption of light alkanes on coconut nanoporous activated carbon

    Directory of Open Access Journals (Sweden)

    K. S. Walton

    2006-12-01

    Full Text Available This paper presents experimental results for adsorption equilibrium of methane, ethane, and butane on nanoporous activated carbon obtained from coconut shells. The adsorption data were obtained gravimetrically at temperatures between 260 and 300K and pressures up to 1 bar. The Toth isotherm was used to correlate the data, showing good agreement with measured values. Low-coverage equilibrium constants were estimated using virial plots. Heats of adsorption at different loadings were also estimated from the equilibrium data. Adsorption properties for this material are compared to the same properties for BPL activated carbon and BAX activated carbon.

  2. Nickel adsorption by sodium polyacrylate-grafted activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ewecharoen, A. [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Thiravetyan, P., E-mail: paitip@hotmail.com [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Wendel, E.; Bertagnolli, H. [Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g{sup -1}. X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption.

  3. Nickel adsorption by sodium polyacrylate-grafted activated carbon.

    Science.gov (United States)

    Ewecharoen, A; Thiravetyan, P; Wendel, E; Bertagnolli, H

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g(-1). X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption. PMID:19576692

  4. Activated carbon fibers and engineered forms from renewable resources

    Science.gov (United States)

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  5. Tribological Characteristics of Chromium-active Carbon Electroplated Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    GUKa-fi; HUAMeng; Yi-min

    2004-01-01

    A process of chromium electroplating using a standard bath with additives and active carbon particles was reported, and the tribological behaviors of the composite coatings using the pin-on-disk tester and the table wear tester were i nvestig(aed. Experimental results indicate that the electroplated chromium-active carbon composite coatings exhibited the low friction coefficient anti excellent anti-wear properties whets coffered with the normal chromium electroplated ones. The formation of active carbon particles within the chromium matrices can be explained by SEM analysis and the mechanis of wear resistance of the composite coatings were studied.

  6. High Surface Area of Nano Pores Activated Carbon Derived From Agriculture Waste

    International Nuclear Information System (INIS)

    In this study, the high surface area of nano pores activated carbon rice husk originated from local biomass was investigated. The comparison in terms of surface area, porosity and behavior in electrochemical analysis with commercial activated carbon was studied in details. The nano pores activated carbon rice husk was synthesis using consecutive of carbonization and activation under purified nitrogen and carbon dioxide purge. Interestingly, the surface area and capacity of the nano pores activated carbon rice indicated higher in comparison to commercial activated carbon. This indicated that the nano pores activated carbon has potential to be developed further as an alternative material in reducing suspension on commercial activated carbon. (author)

  7. Mechanism of phenol adsorption onto electro-activated carbon granules.

    Science.gov (United States)

    Lounici, H; Aioueche, F; Belhocine, D; Drouiche, M; Pauss, A; Mameri, N

    2004-01-01

    The main purpose of this paper is to determine the mechanisms which govern the adsorption of the phenol onto electro-activated carbon granules. This new activation technique allowed an increase of the performance of the adsorbent. Two models were utilised to understand the improvement in the performance of electroactivated carbon granules. The first, a simple external resistance model based on film resistance, gave acceptable predictions, with an error of less than 15%, between the theoretical results and experimental data independent of the activation potential and phenol initial concentration. The second linear model, based on diffusion phenomena, was more representative in describing the experiment than the first model. It was observed that the electro-activation method did not change the mechanism which governs phenol adsorption onto granular carbon. Indeed, the same mathematical model based on diffusion phenomena made it possible to predict with a very low error (less than 5%) the experimental data obtained for the favourable activation potential, without activation potential and with an unfavourable activation potential. The electro-activation technique makes it possible to increase the number of active sites that improve the performance of the electro-activated granular carbon compared with conventional granular activated carbon.

  8. Interaction forces between waterborne bacteria and activated carbon particles

    NARCIS (Netherlands)

    Busscher, Henk J.; Dijkstra, Rene J. B.; Langworthy, Don E.; Collias, Dimitris I.; Bjorkquist, David W.; Mitchell, Michael D.; Van der Mei, Henny C.

    2008-01-01

    Activated carbons remove waterborne bacteria from potable water systems through attractive Lifshitz-van der Waals forces despite electrostatic repulsion between negatively charged cells and carbon surfaces. In this paper we quantify the interaction forces between bacteria with negatively and positiv

  9. Intact tropical forests, new evidence they uptake carbon actively

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available According to a paper recently published on Nature, tropical forests play as active carbon sink, absorbing 1.3·109 tons of carbon per year on a global scale. Functional interpretation is not clear yet, but a point is quite easy to realize: tropical forests accumulate and contain more carbon than any other vegetation cover and, if their disruption goes on at current rates, these ecosystems could revert to be a “carbon bomb”, releasing huge amount of CO2 to the atmosphere.

  10. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs

  11. TESTING GUIDELINES FOR TECHNETIUM-99 ADSORPTION ON ACTIVATED CARBON

    International Nuclear Information System (INIS)

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will

  12. Dynamic regulation of GacA in type III secretion, pectinase gene expression, pellicle formation, and pathogenicity of Dickeya dadantii (Erwinia chrysanthemi 3937).

    Science.gov (United States)

    Yang, Shihui; Peng, Quan; Zhang, Qiu; Yi, Xuan; Choi, Chang Jae; Reedy, Ralph M; Charkowski, Amy O; Yang, Ching-Hong

    2008-01-01

    Dickeya dadantii (Erwinia chrysanthemi 3937) secretes exoenzymes, including pectin-degrading enzymes, leading to the loss of structural integrity of plant cell walls. A type III secretion system (T3SS) is essential for full virulence of this bacterium within plant hosts. The GacS/GacA two-component signal transduction system participates in important biological roles in several gram-negative bacteria. In this study, a gacA deletion mutant (Ech137) of D. dadantii was constructed to investigate the effect of this mutation on pathogenesis and other phenotypes. Compared with wild-type D. dadantii, Ech137 had a delayed biofilm-pellicle formation. The production of pectate lyase (Pel), protease, and cellulase was diminished in Ech137 compared with the wild-type cells. Reduced transcription of two endo-Pel genes, pelD and pelL, was found in Ech137 using a green fluorescence protein-based fluorescence-activated cell sorter promoter activity assay. In addition, the transcription of T3SS genes dspE (an effector), hrpA (a structural protein of the T3SS pilus), and hrpN (a T3SS harpin) was reduced in Ech137. A lower amount of rsmB regulatory RNA was found in gacA mutant Ech137 compared with the wild-type bacterium by quantitative reverse-transcription polymerase chain reaction. Compared with wild-type D. dadantii, a lower amount of hrpL mRNA was observed in Ech137 at 12 h grown in medium. Although the role of RsmA, rsmB, and RsmC in D. dadantii is not clear, from the regulatory pathway revealed in E. carotovora, the lower expression of dspE, hrpA, and hrpN in Ech137 may be due to a post-transcriptional regulation of hrpL through the Gac-Rsm regulatory pathway. Consequently, the reduced exoenzyme production and Pel gene expression in the mutant may be sue partially to the regulatory role of rsmB-RsmA on exoenzyme expression. Similar to in vitro results, a lower expression of T3SS and pectinase genes of Ech137 also was observed in bacterial cells inoculated into Saintpaulia

  13. Adsorptive preconcentration of rareearth oxine complexes onto activated carbon

    International Nuclear Information System (INIS)

    This paper describes a method for the determination of traces of rare earth using energy dispersive x-ray fluorescence spectrometry (EDXRF) after preconcentration of their oxine complexes onto activated carbon. Various parameters that influence adsorptive preconcentration of rare earth onto activated carbon viz. pH, amounts of activated carbon and oxine, time of stirring and aqueous phase volume were systematically studied. A numerical method based on simple least square procedure using fifth order polynomial with 25 consecutive values was developed for smoothing and differentiation of EDXRF data which was previously digitized and averaged. First order derivative EDXRF in conjunction with adsorptive preconcentration on activated carbon enables one to determine as low as 10 ppb of each individual rare earth elements

  14. Application of Activated Carbon Mixed Matrix Membrane for Oxygen Purification

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2010-07-01

    Full Text Available This study is performed primarily to investigate the effect of activated carbon on oxygen separation performance of polyethersulfone mixed matrix membrane. In this study, polyethersulfone (PES-activated carbon (AC mixed matrix membranes were fabricated using dry/wet technique. This study investigates the effect of polyethersulfone concentration and activated carbon loading on the performance of mixed matrix membrane in terms of permeability and selectivity of O2/N2 gas separation. The fabricated flat sheet mixed matrix membranes were characterized using permeation test, Field Emission Scanning Electron Microscopy (FESEM analysis and Differential Scanning Calorimetry (DSC. It was found that the activated carbon loading affected the gas separation performance of mixed matrix membrane. PES- 1wt% AC membrane yielded 3.75 of O2/N2 selectivity, however 5 wt% of AC can produced 5 O2/N2 selectivity

  15. Functionalized Activated Carbon Derived from Biomass for Photocatalysis Applications Perspective

    Directory of Open Access Journals (Sweden)

    Samira Bagheri

    2015-01-01

    Full Text Available This review highlighted the developments of safe, effective, economic, and environmental friendly catalytic technologies to transform lignocellulosic biomass into the activated carbon (AC. In the photocatalysis applications, this AC can further be used as a support material. The limits of AC productions raised by energy assumption and product selectivity have been uplifted to develop sustainable carbon of the synthesis process, where catalytic conversion is accounted. The catalytic treatment corresponding to mild condition provided a bulk, mesoporous, and nanostructure AC materials. These characteristics of AC materials are necessary for the low energy and efficient photocatalytic system. Due to the excellent oxidizing characteristics, cheapness, and long-term stability, semiconductor materials have been used immensely in photocatalytic reactors. However, in practical, such conductors lead to problems with the separation steps and loss of photocatalytic activity. Therefore, proper attention has been given to develop supported semiconductor catalysts and certain matrixes of carbon materials such as carbon nanotubes, carbon microspheres, carbon nanofibers, carbon black, and activated carbons have been recently considered and reported. AC has been reported as a potential support in photocatalytic systems because it improves the transfer rate of the interface charge and lowers the recombination rate of holes and electrons.

  16. Synthesis of carbon nanofibers on impregnated powdered activated carbon as cheap substrate

    OpenAIRE

    Mamun, A. A.; Y.M. Ahmed; S.A. Muyibi; M.F.R. Al-Khatib; A.T. Jameel; M.A. AlSaadi

    2016-01-01

    The catalysis and characterization of carbon nanofibers (CNFs) composite are reported in this work. Carbon nanofibers were produced on oil palm shell powdered activated carbon (PAC), which was impregnated with nickel. Chemical Vapor Deposition (CVD) of C2H2 was used in the presence of hydrogen at ∼650 °C. The flow rates of carbon source and hydrogen were fixed. The CNFs formed directly on the surface of the impregnated PAC. Variable weight percentages (1%, 3%, 5%, 7% and 9%) of the catalyst s...

  17. The investment funds in carbon actives: state of the art

    International Nuclear Information System (INIS)

    Since the beginning in 1999 of the first funds by the World Bank, the purchase mechanisms of carbon actives, developed and reached today more than 1,5 milliards of euros. The landscape is relatively concentrated, in spite of the numerous initiatives. The author presents the situation since 1999, the importance of the european governmental investors, the purchase mechanisms management and an inventory of the carbon actives purchases. (A.L.B.)

  18. Microstructure and surface properties of lignocellulosic-based activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, P., E-mail: pegonzal@quim.ucm.es [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain); Centeno, T.A. [Instituto Nacional del Carbon-CSIC, Apartado 73, E-33080 Oviedo (Spain); Urones-Garrote, E. [Centro Nacional de Microscopia Electronica, Universidad Complutense, E-28040, Madrid (Spain); Avila-Brande, D.; Otero-Diaz, L.C. [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Activated carbons were produced by KOH activation at 700 Degree-Sign C. Black-Right-Pointing-Pointer The observed nanostructure consists of highly disordered graphene-like layers with sp{sup 2} bond content Almost-Equal-To 95%. Black-Right-Pointing-Pointer Textural parameters show high surface area ( Almost-Equal-To 1000 m{sup 2}/g) and pore width of 1.3-1.8 nm. Black-Right-Pointing-Pointer Specific capacitance reaches values as high as 161 F/g. - Abstract: Low cost activated carbons have been produced via chemical activation, by using KOH at 700 Degree-Sign C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp{sup 2} content Almost-Equal-To 95% and average mass density of 1.65 g/cm{sup 3} (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m{sup 2}/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm{sup 2}) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  19. Development and Environmental Applications of Activated Carbon Cloths

    OpenAIRE

    Ana Lea Cukierman

    2013-01-01

    Activated carbon cloths have received growing attention because they offer comparative advantages over the traditional powdered or granular forms of this well-known adsorbent, providing further potential uses for technological innovations in several fields. The present article provides an overview of research studies and advances concerned with the development of activated carbon cloths and their use as adsorbent in environmental applications, mostly reported in the last years. The influence ...

  20. Microwave absorbing properties of activated carbon fibre polymer composites

    Indian Academy of Sciences (India)

    Tianchun Zou; Naiqin Zhao; Chunsheng Shi; Jiajun Li

    2011-02-01

    Microwave absorption of composites containing activated carbon fibres (ACFs) was investigated. The results show that the absorptivity greatly depends on increasing ACF content in the absorbing layer, first increasing and then decreasing. When the content is 0.76 wt.%, the bandwidth below −10dB is 12.2 GHz. Comparing the absorption characteristics of the ACF composite with one containing unactivated fibres, it is found that carbon fibre activation increases the absorption of the composite.

  1. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas

    Science.gov (United States)

    Bachrun, Sutrisno; AyuRizka, Noni; Annisa, SolichaHidayat; Arif, Hidayat

    2016-01-01

    A series of experiments have been conducted to study the effects of different carbonization temperatures (400, 600, and 800oC) on characteristics of porosity in activated carbon derived from carbonized sugarcane bagassechar at activation temperature of 800oC. The results showed that the activated carbon derived from high carbonized temperature of sugarcane bagassechars had higher BET surface area, total volume, micropore volume and yield as compared to the activated carbon derived from low carbonized temperature. The BET surface area, total volume and micropore volume of activated carbon prepared from sugarcane bagassechars obtained at 800oC of carbonized temperature and activation time of 120 min were 661.46m2/g, 0.2455cm3/g and 0.1989cm3/g, respectively. The high carbonization temperature (800oC) generated a highly microporous carbonwith a Type-I nitrogen adsorption isotherm, while the low carbonization temperature (400 and 600oC) generated a mesoporous one with an intermediate between types I and IInitrogen adsorption isotherm.

  2. Removal of dye by immobilised photo catalyst loaded activated carbon

    International Nuclear Information System (INIS)

    The ability of activated carbon to adsorb and titanium dioxide to photo degrade organic impurities from water bodies is well accepted. Combination of the two is expected to enhance the removal efficiency due to the synergistic effect. This has enabled activated carbon to adsorb more and at the same time the lifespan of activated carbon is prolonged as the workload of removing organic pollutants is shared between activated carbon and titanium dioxide. Immobilisation is selected to avoid unnecessary filtering of adsorbent and photo catalyst. In this study, mixture of activated carbon and titanium dioxide was immobilised on glass slides. Photodegradation and adsorption studies of Methylene Blue solution were conducted in the absence and presence of UV light. The removal efficiency of immobilised TiO2/ AC was found to be two times better than the removal by immobilised AC or immobilised TiO2 alone. In 4 hours and with the concentration of 10 ppm, TiO2 loaded activated carbon prepared from 1.5 g/ 15.0 mL suspension produced 99.50 % dye removal. (author)

  3. Nanoporous activated carbon cloth for capacitive deionization of aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Han-Jun [Department of Materials Science, Hanseo University, Seosan, 352-820 (Korea, Republic of); Lee, Jong-Ho [Department of Chemistry, Hanseo University, Seosan, 352-820 (Korea, Republic of); Ahn, Hong-Joo [Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of); Jeong, Yongsoo [Korea Institute of Machinery and Materials, Changwon, 641-010 (Korea, Republic of); Kim, Young-Jig [Department of Metallurgical Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Chi, Choong-Soo [School of Advanced Materials Engineering, Kookmin University, Seoul, 136-702 (Korea, Republic of)]. E-mail: cschi@kookmin.ac.kr

    2006-09-25

    Activated nanostructured-carbon cloths with a high ratio of surface area to volume are used as electrode for capacitive deionization. The electrochemical properties on capacitive deionization for NaCl solution have been investigated to improve efficiency of capacitive deionization properties from aqueous solution, employing chemical surface-modification by etching in alkaline and acidic solution. The removal efficiency of inorganic salts of activated carbon cloths by chemical modification significantly increased. Specially the carbon cloth surface modified in HNO{sub 3} showed an effect of improvement in the CDI efficiency due to not only ion adsorption by an electric double layer, but also electron transfer by Faradaic reaction.

  4. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    Science.gov (United States)

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption. PMID:15797395

  5. The Formation of Carbon Nanofibers on Powdered Activated Carbon Impregnated with Nickel

    Science.gov (United States)

    Ahmed, Y. M.; Al-Mamun, A. A.; Muyibi, S. A.; Al-Khatib, M. F. R.; Jameel, A. T.; AlSaadi, M. A.

    2009-06-01

    In the present work, the production and characterization of carbon nanofibers (CNFs) composite is reported. Carbon nanofibers (CNF) were produced on powdered activated carbon PAC—impregnated with nickel—by Chemical Vapor Deposition (CVD) of a hydrocarbon in the presence of hydrogen at ˜780° C. The flow rates of carbon source and hydrogen were fixed. The CNFs were formed directly over the impregnated AC. Variable weight percentage ratios of the catalyst salt (Ni+2) were used for the impregnation (1, 3, 5, 7 and 9%, respectively). The product displays a relatively high surface area, essentially constituted by the external surface, and the absence of the bottled pores encountered with activated carbon. FSEM, TEM and TGA were used for the characterization of the product.

  6. Evaluation of Powdered Activated Carbon Efficiency in Removal of Dissolved Organic Carbon inWater Treatment

    OpenAIRE

    G.R Bonyadi nejad; R Hadian; M Saadani; B Jaberian; M.M Amin; A Khodabakhshi

    2010-01-01

    "n "nBackgrounds and Objectives: Powdered Activated$ carbon is known as a suitable absorbent for organic materials. The aim of this research is evaluation of Powdered Activated-Carbon (PAC) efficiency in removal of Dissolved Organic Carbon (DOC) in water treatment in Isfahan."nMaterials and Methods : The increase of PAC for DOC reduction has done in three paths in the Isfahan water treatment plant (WTP). These paths including: 1) Intake up to entrance of WTP 2) Intake to exit ofWTP 3) Between...

  7. Particle size distribution and property of bacteria attached to carbon fines in drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    Wang Leilei; Chen Wei; Lin Tao

    2008-01-01

    The quantitative change and size distribution of particles in the effluents from a sand filter and a granular activated carbon (GAC) filter in a drinking water treatment plant were investigated. The average total concentration of particles in the sand filter effluent during a filter cycle was 148 particles/mL, 27 of which were larger than 2 μm in size. The concentration in the GAC effluent (561 particles/mL) was significantly greater than that in the sand filter effluent. The concentration of particles larger than 2 μm in the GAC filter effluent reached 201 particles/mL, with the amount of particles with sizes between 2 μm and 15 μm increasing. The most probable number (MPN) of carbon fines reached 43 unit/L after six hours and fines between 0.45 μm and 8.0 μm accounted for more than 50%. The total concentration of outflowing bacteria in the GAC filter effluent, 350 CFU (colony-forming units) /mL, was greater than that in the sand filter effluent, 210 CFU/mL. The desorbed bacteria concentration reached an average of 310 CFU/mg fines. The disinfection efficiency of desorbed bacteria was lower than 40% with 1.5 mg/L of chlorine. The disinfection effect showed that the inactivation rate with 2.0 mg/L of chloramine (90%) was higher than that with chlorine (70%). Experimental results indicated that the high particle concentration in raw water and sedimentation effluent led to high levels of outflowing particles in the sand filter effluent. The activated carbon fines in the effluent accounted for a small proportion of the total particle amount, but the existing bacteria attached to carbon fines may influence the drinking water safety. The disinfection efficiency of desorbed bacteria was lower than that of free bacteria with chlorine, and the disinfection effect on bacteria attached to carbon fines with chloramine was better than that with only chlorine.

  8. The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae

    OpenAIRE

    Valente, Rita S.; Xavier, Karina B.

    2015-01-01

    Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify reg...

  9. Evaluation of Powdered Activated Carbon Efficiency in Removal of Dissolved Organic Carbon inWater Treatment

    Directory of Open Access Journals (Sweden)

    G.R Bonyadi nejad

    2010-07-01

    Full Text Available "n "nBackgrounds and Objectives: Powdered Activated$ carbon is known as a suitable absorbent for organic materials. The aim of this research is evaluation of Powdered Activated-Carbon (PAC efficiency in removal of Dissolved Organic Carbon (DOC in water treatment in Isfahan."nMaterials and Methods : The increase of PAC for DOC reduction has done in three paths in the Isfahan water treatment plant (WTP. These paths including: 1 Intake up to entrance of WTP 2 Intake to exit ofWTP 3 Between entrance and exit of waterworks. The paths were simulated by the Jar test system. Then DOC and UV254 absorption were analyzed and SUVA parameter for samples and activated-carbon adsorption isotherm was calculated."nResults: The injected PAC doses of 20,40,60,80 and 100 mg/l caused decreasing in DOC and UV254 absorption in every sample in all paths. The average of this decrease, from intake to WTP.s exit (second path was the greatest 69.8± 3.9%and the commonWTP process had capability of removing 35% of DOC. The first path also showed that PAC can reduce 33± 2% DOC of raw water by itself. Activated-carbon absorption results were adhered from Freundlich adsorption isotherm."nConclusion: In the third path therewas lessDOCremoval efficiency than exceptedwhen Activated- Carbon injected in rapid mixed basin with coagulant. Powdered activated carbon porosity reduction due to effect of coagulant can be the reason for this issue.Also according to different paths, the point of intake is more suitable for powdered activated carbon addition.

  10. Natural gas storage with activated carbon from a bituminous coal

    Science.gov (United States)

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  11. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    Science.gov (United States)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  12. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thibaud-Erkey, Catherine [United Technologies Research Center (UTRC), East Hartford, CT (United States); Karra, Reddy [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  13. Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon

    DEFF Research Database (Denmark)

    Andersen, Henrik Rasmus; Hwang, Yuhoon; Mines, Paul D.;

    2016-01-01

    Nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, however, the nano size should be of concern when nZVI is considered for water treatment, due to difficulties in recovery. The loss of nZVI causes not only...... of intermediate drying step were investigated to improve Fe0 content of Fe/GAC composites. The optimal condition was two hours of NaBH4 reduction without intermediate drying process. The prepared Fe/GAC composite showed synergistic effect of the adsorption capability of the GAC and the degradation capability...

  14. Porous texture evolution in Nomex-derived activated carbon fibers.

    Science.gov (United States)

    Villar-Rodil, S; Denoyel, R; Rouquerol, J; Martínez-Alonso, A; Tascón, J M D

    2002-08-01

    In the present work, the textural evolution of a series of activated carbon fibers with increasing burn-off degree, prepared by the pyrolysis and steam activation of Nomex aramid fibers, is followed by measurements of physical adsorption of N(2) (77 K) and CO(2) (273 K) and immersion calorimetry into different liquids (dichloromethane, benzene, cyclohexane). The immersion calorimetry results are discussed in depth, paying special attention to the choice of the reference material. The activated carbon fibers studied possess an essentially homogeneous microporous texture, which suggests that these materials may be applied in gas separation, either directly or with additional CVD treatment. PMID:16290775

  15. Proton catalysis with active carbons and partially pyrolyzed carbonaceous materials

    Institute of Scientific and Technical Information of China (English)

    V. V. Strelko; S. S. Stavitskaya; Yu. I. Gorlov

    2014-01-01

    The development of environmentally friendly solid acid catalysts is a priority task. Highly oxidized activated carbon and their ion-substituted (saline) forms are effective proton transfer catalysts in esterification, hydrolysis, and dehydration, and thus are promising candidates as solid acid cata-lysts. Computations by the ab initio method indicated the cause for the enchanced acidity of the carboxylic groups attached to the surface of highly oxidized carbon. The synthesis of phosphorilated carbon was considered, and the proton transfer reactions catalyzed by them in recent studies were analyzed. The development of an amorphous carbon acid catalyst comprising polycyclic carbonaceous (graphene) sheets with-SO3H,-COOH and phenolic type OH-groups was carried out. These new catalysts were synthesized by partial pyrolysis and subsequent sulfonation of carbohydrates, polymers, and other organic compounds. Their high catalytic activities in proton transfere reactions including the processing of bio-based raw materials was demonsrated.

  16. Biofuel intercropping effects on soil carbon and microbial activity.

    Science.gov (United States)

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  17. Biofuel intercropping effects on soil carbon and microbial activity.

    Science.gov (United States)

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  18. Production of activated carbons from coffee endocarp by CO2 and steam activation

    International Nuclear Information System (INIS)

    In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO2 was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO2 activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si-H bonds. (author)

  19. Decolorization of Cheddar cheese whey by activated carbon.

    Science.gov (United States)

    Zhang, Yue; Campbell, Rachel; Drake, MaryAnne; Zhong, Qixin

    2015-05-01

    Colored Cheddar whey is a source for whey protein recovery and is decolorized conventionally by bleaching, which affects whey protein quality. Two activated carbons were studied in the present work as physical means of removing annatto (norbixin) in Cheddar cheese whey. The color and residual norbixin content of Cheddar whey were reduced by a higher level of activated carbon at a higher temperature between 25 and 55°C and a longer time. Activated carbon applied at 40g/L for 2h at 30°C was more effective than bleaching by 500mg/L of hydrogen peroxide at 68°C. The lowered temperature in activated-carbon treatments had less effect on protein structure as investigated for fluorescence spectroscopy and volatile compounds, particularly oxidation products, based on gas chromatography-mass spectrometry. Activated carbon was also reusable, removing more than 50% norbixin even after 10 times of regeneration, which showed great potential for decolorizing cheese whey.

  20. ADSORPTION CHARACTERISTICS OF L-HISTIDINE ON ACTIVE CARBON

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Adsorption properties of L-histidine on active carbon were studied in the paper, which are affected by the main parameters, such as the quantity percent of active carbon, pH value of the solution, the time of adsorption equilibrium and adsorption temperature. The results indicate that adsorption equilibrium time of L-his on active carbon is about 80 minutes. With the increasing of the quantity percent of active carbon, the adsorbance of L-his decreases sharply, and increases lighter after that. When the quantity percent of active carbon is 10%, the adsorbance reaches the minimum.pH value of solution and extraction temperature have great affection on the adsorption. When the pH value is higher or lower than the pI of L-his, the adsorbance is small, even zero. It is proven that the experimental equilibrium data which are obtained under the conditions of 80 ℃and pH=1.0, are fitted with the Freundlich equation: q=2.5914c0.8097. The results can provide certain references in L-his adsorption process of industrial operation.

  1. Effect of activated carbon layer at sand-carbon filters vertical flow in domestic wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ewa Wąsik

    2014-12-01

    Full Text Available The paper presents the results of the research concerning treatment of domestic sewage in sand filters of vertical flow with granular activated carbon layer. Removal of organic compounds and nitrogen from wastewater pre-treated in a septic tank, as well as total suspended solids at different hydraulic load of sand-carbon filters were specified. It was shown that favourable conditions for the development of both heterotrophic and nitrifying bacteria were created in the double layer of sand and carbon filter with the upper layer of the activated carbon. For three-month cycle in the load range of 13-131 mm·d-1, mean effectiveness of BOD5, CODCr, N-NH4+ and total suspension were respectively 98%, 94%, 98% and 82%.

  2. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Dinesh [Environmental Chemistry Division, Industrial Toxicology Research Centre, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India)]. E-mail: dm_1967@hotmail.com; Singh, Kunwar P. [Environmental Chemistry Division, Industrial Toxicology Research Centre, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India); Singh, Vinod K. [Environmental Chemistry Division, Industrial Toxicology Research Centre, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India)

    2006-07-31

    An efficient adsorption process is developed for the decontamination of trivalent chromium from tannery effluents. A low cost activated carbon (ATFAC) was prepared from coconut shell fibers (an agricultural waste), characterized and utilized for Cr(III) removal from water/wastewater. A commercially available activated carbon fabric cloth (ACF) was also studied for comparative evaluation. All the equilibrium and kinetic studies were conducted at different temperatures, particle size, pHs, and adsorbent doses in batch mode. The Langmuir and Freundlich isotherm models were applied. The Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacities of ATFAC and ACF at 25 deg. C are 12.2 and 39.56 mg/g, respectively. Cr(III) adsorption increased with an increase in temperature (10 deg. C: ATFAC-10.97 mg/g, ACF-36.05 mg/g; 40 deg. C: ATFAC-16.10 mg/g, ACF-40.29 mg/g). The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent, and solid to liquid ratio. The adsorption of Cr(III) follows the pseudo-second-order rate kinetics. From kinetic studies various rate and thermodynamic parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. The sorption capacity of activated carbon (ATFAC) and activated carbon fabric cloth is comparable to many other adsorbents/carbons/biosorbents utilized for the removal of trivalent chromium from water/wastewater.

  3. Breakthrough CO₂ adsorption in bio-based activated carbons.

    Science.gov (United States)

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration. PMID:26257348

  4. Phenolic carbon tailored for the removal of polar organic contaminants from water: a solution to the metaldehyde problem?

    Science.gov (United States)

    Busquets, Rosa; Kozynchenko, Oleksandr P; Whitby, Raymond L D; Tennison, Stephen R; Cundy, Andrew B

    2014-09-15

    Current water treatment technologies are inefficient at treating water contaminated with metaldehyde, an 8-member cyclic tetramer of acetaldehyde widely used as a molluscicide in large-scale agriculture and in gardens, and which has been frequently observed to breach European regulatory limits in the UK due to its high solubility and frequent use. Here, we examine the controls on metaldehyde adsorption onto activated phenolic carbon, namely the influence of activation degree, pore size distribution, particle size, point of zero charge and surface functionalisation, by synthesising "tailored" carbons from phenolic resin. Metaldehyde adsorption has been found to be independent of specific surface area (SBET), which is highly unusual for an adsorption process, and is favoured in carbons with (a) high microporosity with narrow pore size distribution, (b) presence of mesopores which allow efficient diffusive transport, and (c) an absence of negatively charged functional groups. The maximum adsorption capacity of the phenolic resin-derived carbons, tested at an elevated (i.e. exceeding environmental levels) water concentration of 64 mg metaldehyde/L, was 76 mg metaldehyde/g carbon compared with 13 mg metaldehyde/g carbon in industrial granular activated carbon (GAC). The phenolic resin-derived carbons and GAC showed similar adsorption kinetics with maximum metaldehyde uptake occurring within 30 min under batch adsorption conditions, although adsorption isotherms indicate much stronger adsorption of metaldehyde on the phenolic resin-derived carbons. Adsorption efficiency for metaldehyde was maintained even in the presence of high background concentrations of organic matter and inorganic salts, indicating the potential utility of these "designer" carbons in waste and/or drinking water treatment. PMID:24880244

  5. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  6. Ferrous ion oxidation by Thiobacillus ferrooxidans immobilized on activated carbon

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ji-kui; QIN Wen-qing; NIU Yin-jian; LI Hua-xia

    2006-01-01

    The immobilization of Thiobacillus ferrooxidans on the activated carbon particles as support matrix was investigated. Cycling batch operation results in the complete oxidation of ferrous iron in 8 d when the modified 9 K medium is set to flow through the mini-bioreactor at a rate of 0.104 L/h at 25 ℃. The oxidation rate of ferrous iron with immobilized T. ferrooxidans is 9.38 g/(L·h). The results show that the immobilization of T. ferrooxidans on activated carbon can improve the rate of oxidation of ferrous iron. The SEM images show that a build-up of cells of T. ferrooxidans and iron precipitates is formed on the surface of activated carbon particles.

  7. CHARACTERIZATION OF ACACIA MANGIUM WOOD BASED ACTIVATED CARBONS PREPARED IN THE PRESENCE OF BASIC ACTIVATING AGENTS

    Directory of Open Access Journals (Sweden)

    Mohammed Danish

    2011-06-01

    Full Text Available The aim of this study was to observe the effects of alkaline activating agents on the characteristics, composition, and surface morphology of the designed activated carbons. Activated carbons were prepared by pyrolysis of Acacia mangium wood in the presence of two basic activating agents (calcium oxide and potassium hydroxide. The extent of impregnation ratio of precursor to activating agents was fixed at 2:1(w/w. Prior to pyrolysis, 24 hours soaking was conducted at 348 K. Activation was carried out in a stainless steel capped graphite crucible at 773 K for 2 hours in the absence of purge gas. The burn-off percentage was found to be 70.27±0.93% for CaO activated carbon (COAC and 73.30±0.20% for KOH activated carbon (PHAC. The activating agents had a strong influence on the surface functional groups as well as elemental composition of these activated carbons. Characterization of the activated carbon obtained was performed with field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, and nitrogen adsorption as Brunauer, Emmett and Teller (BET and Dubinin-Radushkevich (DR isotherms.

  8. Adsorption of naphthenic acids on high surface area activated carbons.

    Science.gov (United States)

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC. PMID:24766592

  9. Scale-up activation of carbon fibres for hydrogen storage

    OpenAIRE

    Kunowsky, Mirko; Marco Lozar, Juan Pablo; Cazorla Amorós, Diego; Linares Solano, Ángel

    2009-01-01

    In a previous study, we investigated, at a laboratory scale, the chemical activation of two different carbon fibres (CF), their porosity characterization, and their optimization for hydrogen storage [1]. In the present work, this study is extended to: (i) a larger range of KOH activated carbon fibres, (ii) a larger range of hydrogen adsorption measurements at different temperatures and pressures (i.e. at room temperature, up to 20 MPa, and at 77 K, up to 4 MPa), and (iii) a scaling-up activat...

  10. ACTIVATED CARBONS FROM VEGETAL RAW MATERIALS TO SOLVE ENVIRONMENTAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    Viktor Mukhin

    2014-06-01

    Full Text Available Technologies for active carbons obtaining from vegetable byproducts such as straw, nut shells, fruit stones, sawdust, hydrolysis products of corn cobs and sunflower husks have been developed. The physico-chemical characteristics, structural parameters and sorption characteristics of obtained active carbons were determined. The ability of carbonaceous adsorbents for detoxification of soil against pesticides, purification of surface waters and for removal of organic pollutants from wastewaters has been evaluated. The obtained results reveal the effectiveness of their use in a number of environmental technologies.

  11. Adsorption of Remazol Black B dye on Activated Carbon Felt

    OpenAIRE

    Donnaperna Lucio; Duclaux Laurent; Gadiou Roger

    2008-01-01

    The adsorption of Remazol Black B (anionic dye) on a microporous activated carbon felt is investigated from its aqueous solution. The surface chemistry of activated carbon is studied using X-ray microanalysis, "Boehm" titrations and pH of PZC measurements which indicates that the surface oxygenated groups are mainly acidic in nature. The kinetics of Remazol Black B adsorption is observed to be pH dependent and governed by the diffusion of the dye molecules. The experimental data can be explai...

  12. Study of Cadmium Removal from Environmental Water by Biofilm Covered Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    RA Dianati-Tilaki

    2004-10-01

    Full Text Available The contamination of water by toxic heavy metals is a world-wide environmental problem. Discharges containing cadmium, in particular, are strictly controlled due to the highly toxic nature of this element and its tendency to accumulate in the tissues of living organisms. Low concentration (below 5 mg`/L of cadmium is difficult to treat economically using chemical precipitation methodologies. Ion exchange and reverse Osmosis which can guarantee the metal concentration limits required by regulatory standards, have high operation and maintenance costs. The goal of this research was to determination of efficacy of using GAC, Biofilm and BAC columns to treat low concentration cadmium bearing water streams and was to determination of the effects of temperature and pH on the adsorption isotherms. Studies were conducted to delineate the effect of pH, temperature, initial Cd and adsorbent concentration on adsorption of Cd2+ by GAC, BAC and Biofilm. Breakthrough curves for removal of 0.5 mg/L Cd2+ by GAC, Biofilm and BAC columns at two contact times were plotted. Batch adsorption and column data are compared, pH is shown to be the decisive parameter in Cd removal for GAC but not for BAC or biofilter. Lagergren plots confirm applicability of first-order rate expression for adsorption of Cd by GAC, BAC and Biofilm. The adsorption coefficient (Kad for BAC was 2-3 times greater than those with plain GAC. Bed Volumes of water containing 0.5 mg/L Cd2+ treated at breakthrough for GAC, Biofilm and BAC columns were 45, 85 and 180 BV respectively. BAC is more efficient than GAC in the removing of Cd from water environment.

  13. Pore structure of the activated coconut shell charcoal carbon

    Science.gov (United States)

    Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S.

    2014-09-01

    The development of activated carbon from coconut shell charcoal has been investigated by using physical method to determine the influence of activation parameters in term of temperature, argon gas pressure and time period on the pore structure of the activated carbon. The coconut shell charcoal was produced by pyrolisis process at temperature of about 75 - 150 °C for 6 hours. The charcoal was activated at various temperature (532, 700 and 868 °C), argon gas pressure (6.59, 15 and 23.4 kgf/cm2) and time period of (10, 60 and 120 minutes). The results showed that the pores size were reduced and distributed uniformly as the activation parameters are increased.

  14. Liquid-phase adsorption of phenol onto activated carbons prepared with different activation levels

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, C.T.; Teng, H.S.

    2000-07-01

    The paper investigates the influence of the pore size distribution of activated carbon on the adsorption of phenol from aqueous solutions. Activated carbons with different porous structures were prepared by gasifying a bituminous coal char to different extents of burn-off. The results of adsorption experiments show that the phenol capacity of these carbons does not proportionally increase with their BET surface area. This reflects the heterogeneity of the carbon surface for adsorption. The pore size distributions of these carbons were found to vary with the burn-off level. The paper demonstrates that the heterogeneity of carbon surface for the phenol adsorption can be attributed to the different energies required for adsorption in different-size micropores.

  15. Production Scale-Up or Activated Carbons for Ultracapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  16. Effects of organic carbon sequestration strategies on soil enzymatic activities

    Science.gov (United States)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  17. Characteristics and properties of active carbon; El carbon activo sus caracteristicas y propiedades

    Energy Technology Data Exchange (ETDEWEB)

    Groso Cruzado, G.; Brosa Echevarria, J.

    1998-12-01

    Active carbon (AC) is a solid possessing two properties which make it extremely useful in treating water. The first consists in trapping all kinds of organic contaminants in its walls so avidly that it can leave water practically free of such compounds. The second consists in destroying the free waste chlorine which has failed to react once it has completed its disinfecting action. As a result, virtually all industries requiring potable water employ active carbon as one of their basic treatment methods. (Author) 7 refs.

  18. Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu2+

    Science.gov (United States)

    Xu, Hui; Yan, Jia; She, Xiaojie; Xu, Li; Xia, Jiexiang; Xu, Yuanguo; Song, Yanhua; Huang, Liying; Li, Huaming

    2014-01-01

    Graphene-analogue nanostructures defined as a new kind of promising materials with unique electronic, surface and optical properties have received much attention in the fields of catalysis, energy storage, sensing and electronic devices. Due to the distinctive structure characteristics of the graphene-analogue materials, they brought novel and amazing properties. Herein, graphene-analogue carbon nitride (GA-C3N4) was synthesized by high-yield, large-scale thermal exfoliation from the graphitic C3N4-based intercalation compound. Graphene-analogue carbon nitride exhibited 2D thin-layer structure with 6-9 atomic thickness, a high specific surface area of 30.1 m2 g-1, increased photocurrent responses and improved electron transport ability, which could give rise to enhancing the photocatalytic activity and stability. The graphene-analogue carbon nitride had a new features that could make it suitable as a sensor for Cu2+ determination. So GA-C3N4 is a new but promising candidate for heavy metal ions (Cu2+) determination in water environment. The photocatalytic mechanism and photoelectrochemical selective sensing of Cu2+ were also discussed.Graphene-analogue nanostructures defined as a new kind of promising materials with unique electronic, surface and optical properties have received much attention in the fields of catalysis, energy storage, sensing and electronic devices. Due to the distinctive structure characteristics of the graphene-analogue materials, they brought novel and amazing properties. Herein, graphene-analogue carbon nitride (GA-C3N4) was synthesized by high-yield, large-scale thermal exfoliation from the graphitic C3N4-based intercalation compound. Graphene-analogue carbon nitride exhibited 2D thin-layer structure with 6-9 atomic thickness, a high specific surface area of 30.1 m2 g-1, increased photocurrent responses and improved electron transport ability, which could give rise to enhancing the photocatalytic activity and stability. The graphene

  19. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    Science.gov (United States)

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive. PMID:25531980

  20. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    Science.gov (United States)

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  1. Highly active catalyst for vinyl acetate synthesis by modified activated carbon

    Institute of Scientific and Technical Information of China (English)

    Chun Yan Hou; Liang Rong Feng; Fa Li Qiu

    2009-01-01

    A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carriers by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 x 10-3e3.17m. Reaction mechanism was proposed.

  2. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Science.gov (United States)

    2010-07-01

    ... activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet three requirements: (a) Select a carbon injection system...

  3. Black carbon-mediated reduction of 2,4-dinitrotoluene by dithiothreitol.

    Science.gov (United States)

    Oh, Seok-Young; Son, Jong-Gil; Hur, Seung Hyun; Chung, Jin Suk; Chiu, Pei C

    2013-01-01

    By using various types of black carbon (BC), including chemically converted graphene (CCG), multiwalled carbon nanotubes (MWCNT), and granular activated carbon (GAC), BC-mediated reduction was investigated with 2,4-dinitrotoluene (DNT), a model nitroaromatic compound. We hypothesized that by providing sorption and electron transfer sites, BC can be used as a catalyst to accelerate DNT reduction by dithiothreitol (DTL), a thiol reductant. Results from batch experiments showed that CCG, MWCNT, and GAC could promote reduction of DNT by DTL. The yield ratio of the two aminonitro intermediates was approximately 1:1, which was consistent with that in a graphite system. However, fullerene did not significantly enhance the reduction of DNT, likely due to being a π acceptor. Kinetic data analysis showed that removal of DNT in the presence of BC and DTL was linearly proportional to the electrical conductivity of BC, suggesting that the graphitic structure of BC may be responsible for DNT removal. Our results indicate that the presence of BC materials may affect the fate of nitroaromatic compounds under electron-rich conditions.

  4. Preparation and characterization of activated carbon from demineralized tyre char

    Science.gov (United States)

    Manocha, S.; Prasad, Guddu R.; Joshi, Parth.; Zala, Ranjitsingh S.; Gokhale, Siddharth S.; Manocha, L. M.

    2013-06-01

    Activated carbon is the most adsorbing material for industrial waste water treatment. For wider applications, the main consideration is to manufacture activated carbon from low cost precursors, which are easily available and cost effective. One such source is scrap tyres. Recently much effort has been devoted to the thermal degradation of tyres into gaseous and liquid hydrocarbons and solid char residue, all of which have the potential to be processed into valuable products. As for solid residue, char can be used either as low-grade reinforcing filler or as activated carbon. The product recovered by a typical pyrolysis of tyres are usually, 33-38 wt% pyrolytic char, 38-55 wt% oil and 10-30 wt% solid fractions. In the present work activated carbon was prepared from pyrolyzed tyre char (PC). Demineralization involves the dissolution of metal into acids i.e. HCl, HNO3 and H2SO4 and in base i.e. NaOH. Different concentration of acid and base were used. Sodium hydroxide showed maximum amount of metal oxide removal. Further the concentration of sodium hydroxide was varied from 1N to 6N. As the concentration of acid are increased demineralization increases. 6N Sodium hydroxide is found to be more effective demineralising agent of tyre char.

  5. Ecotoxicological effects of activated carbon addition to sediments.

    NARCIS (Netherlands)

    Jonker, M.T.O.; Suijkerbuijk, M.P.; Schmitt, H.; Sinnige, T.L.

    2009-01-01

    Activated carbon (AC) addition is a recently developed technique for the remediation of sediments and soils contaminated with hydrophobic organic chemicals. Laboratory and field experiments have demonstrated that the addition of 3-4% of AC can reduce aqueous concentrations and the bioaccumulation po

  6. XPS of nitrogen-containing functional groups on activated carbon

    NARCIS (Netherlands)

    Jansen, R.J.J.; Bekkum, van H.

    1995-01-01

    XPS is used to study the binding energy of the Cls, Nls and Ols photoelectrons of surface groups on several nitrogen-containing activated carbons. Specific binding energies are assigned to amide (399.9 eV). lactam and imidc (399.7 eV). pyridine (398.7 eV), pyrrole (400.7 eV), alkylamine. secondary a

  7. Tertiary activated carbon treatment of paper and board industry wastewater

    NARCIS (Netherlands)

    Temmink, B.G.; Grolle, K.C.F.

    2005-01-01

    The feasibility of activated carbon post-treatment of (biologically treated) wastewater from the paper and board industry was investigated, the goal being to remove refractory organic pollutants and produce water that can be re-used in the production process. Because closing water-circuits in the pa

  8. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    Science.gov (United States)

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay.

  9. PREPARATION AND CHARACTERIZATION OF POLYMER-BASED SPHERICAL ACTIVATED CARBONS

    Institute of Scientific and Technical Information of China (English)

    Zhao-lian Zhu; Ai-min Li; Ming-fang Xia; Jin-nan Wan; Quan-xing Zhang

    2008-01-01

    A series of spherical activated carbons(SACs)with different pore structures were prepared from chloromethylated polydivinylbenzene by ZnCl2 activation.The effects of activation temperature and retention time on the yield and textural properties of the resulting SACs were studied.All the SACs are generated with high yield of above 65% and exhibit relatively high mesopore fraction(me%) of 35.7%-43.6% compared with conventional activated carbons.The sample zlc28 prepared at 800℃ for 2 h has the largest BET surface area of 891m2g-1 and pore volume of 0.489 cm3g-1,SEM and XRD analyses of zlc28 verify the presence of developed porous structure composed of disordered micrographite stacking with large amounts of interspaces in the order of nanometers.

  10. Activation and micropore structure of carbon-fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-12-01

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The main focus of recent work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites to produce controlled pore structures. Processes have been developed using activation in steam and CO{sub 2}, and a less conventional method involving oxygen chemisorption and subsequent heat treatment. Another objective has been to explore applications for the activated composites in environmental applications related to fossil energy production.

  11. Authigenic carbonates from active methane seeps offshore southwest Africa

    Science.gov (United States)

    Pierre, Catherine; Blanc-Valleron, Marie-Madeleine; Demange, Jérôme; Boudouma, Omar; Foucher, Jean-Paul; Pape, Thomas; Himmler, Tobias; Fekete, Noemi; Spiess, Volkhard

    2012-12-01

    The southwest African continental margin is well known for occurrences of active methane-rich fluid seeps associated with seafloor pockmarks at water depths ranging broadly from the shelf to the deep basins, as well as with high gas flares in the water column, gas hydrate accumulations, diagenetic carbonate crusts and highly diverse benthic faunal communities. During the M76/3a expedition of R/V METEOR in 2008, gravity cores recovered abundant authigenic carbonate concretions from three known pockmark sites—Hydrate Hole, Worm Hole, the Regab pockmark—and two sites newly discovered during that cruise, the so-called Deep Hole and Baboon Cluster. The carbonate concretions were commonly associated with seep-benthic macrofauna and occurred within sediments bearing shallow gas hydrates. This study presents selected results from a comprehensive analysis of the mineralogy and isotope geochemistry of diagenetic carbonates sampled at these five pockmark sites. The oxygen isotope stratigraphy obtained from three cores of 2-5 m length indicates a maximum age of about 60,000-80,000 years for these sediments. The authigenic carbonates comprise mostly magnesian calcite and aragonite, associated occasionally with dolomite. Their very low carbon isotopic compositions (-61.0 Hole and Worm Hole pockmarks which were interpreted to reflect spatiotemporal variations in AOM related to subsurface gas hydrate formation-decomposition.

  12. STUDIES ON THE CATALYTIC REACTION OF NITROGEN OXIDE ON METAL MODIFIED ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    FU Ruowen; DU Xiuying; LIN Yuansheng; XU Hao; HU Yiongjun

    2003-01-01

    The catalytic reaction of NO with CO and decomposition of NO over metal modified ACFs were investigated and compared with other carriers supported catalysts. It is demonstrated that Pd/ACF and Pd/Cu/ACF have high catalytic activity for the reaction of NO/CO, while Pt/ACF.Pt/Cu/ACF and Co/Cu/ACF have very Iow catalytic activity in similar circumstance. Pd-modified ACF possesses high catalytic decomposition of NO at 300 ℃. Pd/CB and Pd/GAC present good catalytic decomposition ability for NO only at low flowrate. Pd/G, Pd/ZMS and Pd/A however, do not show any catalytic activity for NO decomposition even at 400 ℃. Catalytic temperature, NO flowrate and loading of metal components affect the decomposition rate of NO. The coexistence of Cu with Pd on Cu/Pd/ACF leads to crystalline of palladium to more unperfected so as to that increase the catalytic activity.

  13. Determining water content in activated carbon for double-layer capacitor electrodes

    Science.gov (United States)

    Egashira, Minato; Izumi, Takuma; Yoshimoto, Nobuko; Morita, Masayuki

    2016-09-01

    Karl-Fisher titration is used to estimate water contents in activated carbon and the distribution of impurity-level water in an activated carbon-solvent system. Normalization of the water content of activated carbon is attempted using vacuum drying after immersion in water was controlled. Although vacuum drying at 473 K and 24 h can remove large amounts of water, a substantial amount of water remains in the activated carbon. The water release to propylene carbonate is less than that to acetonitrile. The degradation of capacitor cell capacitance for activated carbon with some amount of water differs according to the electrolyte solvent type: acetonitrile promotes greater degradation than propylene carbonate does.

  14. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅲ)-ADSORPTION ON MODIFIED ACTIVATED CARBON FIBER

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Structures of a series of activated carbon fibers were modified by impregnating them withorganic and inorganic materials such as Methylene blue(Mb)、 p-nitrophenol (PNP)、 NaCl or byoxidizing with KMnO4 or HNO3. The influence of pore filling or chemical treatment on their xenonadsorption properties was studied. The experimental results show that Mb and PNP filling ofactivated carbon fibers result in the decrease of xenon adsorption capacities of these treated ACFs,which is due to the decrease of their surface area and micro-pore volume. However, the adsorptioncapacity increases greatly with oxidizing treatment of activated carbon fibers by 7mol/L HNO3.

  15. THE REMOVAL OF GLYPHOSATE FROM DRINKING WATER

    Science.gov (United States)

    The effectiveness of granulated activated carbon (GAC), packed activated carbon (PAC), conventional treatment, membranes, and oxidation for removing glyphosate from natural waters is evaluated. Results indicate that GAC and PAC are not effective in removing glyphosate, while oxid...

  16. Iron-impregnated granular activated carbon for arsenic removal from drinking water

    Science.gov (United States)

    Chang, Qigang

    A new multi-step iron impregnation method was developed in this study to impregnate GAC with a high amount of iron that possesses desired characteristics: stable, even distribution, and high arsenic adsorption capacity. Research was carried out to investigate the impact of the amount of impregnated iron on arsenic adsorption properties: capacity, affinity, and kinetics. Fe-GACs were characterized in terms of the amount, stability, distribution, morphology, and species of impregnated iron. It was found that a high amount of iron was stably impregnated in GAC. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was evenly distributed on the internal surface of GAC. Impregnated iron formed nano-size particles and existed in both crystalline (akaganeite) and amorphous iron. Arsenic adsorption tests were conducted using Fe-GACs with iron content of 1.64--28.90% in a low arsenic concentration that is typical for drinking water treatment. The amount of impregnated iron affects arsenic maximum adsorption capacity (qm) but has little impact on the Langmuir constant h (the affinity of adsorbent for adsorbate). The qm for both As(V) and As(III) adsorptions increased significantly with increase of the amount of impregnated iron up to 13.59%. Further increase of iron amounts caused a gradual decrease of qm for As(V). BET analysis indicated impregnated iron possesses the highest surface area at iron content of 13.59%. A new second-order kinetic model was developed to investigate the impact of the amounts of impregnated iron on arsenic adsorption kinetics. With iron content increased from 1.64% to 28.90%, the intrinsic adsorption rate constants reduced from 4.6x10-2 1/hr to 1.18x10 -3 1/hr, which indicates that impregnated iron slows arsenic intraparticle diffusion rate in Fe-GAC. The decreased arsenic intraparticle diffusion rate was most likely caused by reduced pore size of Fe-GACs. Column tests were

  17. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.

    Science.gov (United States)

    Elmouwahidi, Abdelhakim; Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; Moreno-Castilla, Carlos

    2012-05-01

    Activated carbons were prepared by KOH-activation of argan seed shells (ASS). The activated carbon with the largest surface area and most developed porosity was superficially treated to introduce oxygen and nitrogen functionalities. Activated carbons with a surface area of around 2100 m(2)/g were obtained. Electrochemical measurements were carried out with a three-electrode cell using 1M H(2)SO(4) as electrolyte and Ag/AgCl as reference electrode. The O-rich activated carbon showed the lowest capacitance (259 F/g at 125 mA/g) and the lowest capacity retention (52% at 1A/g), due to surface carboxyl groups hindering electrolyte diffusion into the pores. Conversely, the N-rich activated carbon showed the highest capacitance (355 F/g at 125 mA/g) with the highest retention (93% at 1A/g), due to its well-developed micro-mesoporosity and the pseudocapacitance effects of N functionalities. This capacitance performance was among the highest reported for other activated carbons from a large variety of biomass precursors. PMID:22370231

  18. PERFORMANCE OF ACTIVATED SLUDGE-POWDERED ACTIVATED CARBON-WET AIR REGENERATION SYSTEMS

    Science.gov (United States)

    The investigation summarized in the report was undertaken to evaluate the performance of powdered activated carbon (PAC) technology used in conjunction with wet air regeneration (WAR) at municipal wastewater treatment plants. Excessive ash concentrations accumulated in the mixed ...

  19. Effect of activated carbon and electrolyte on properties of supercapacitor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effect of activated carbon and electrolyte on electrochemical properties of organic supercapacitor was investigated. The results show that specific surface area and mesoporosity of activated carbon influence specific capacitance. If specific surface area is larger and mesoporosity is higher, the specific capacitance will become bigger. Specific surface area influences resistance of carbon electrode and consequently influences power property and pore size distribution. If specific surface area is smaller and mesoporosity is higher, the power property will become better. Ash influences leakage current and electrochemical cycling stability. If ash content is lower, the performance will become better. The properties of supercapacitor highly depend on the electrolyte. The compatibility of electrolyte and activated carbon is a determining factor of supercapacitor's working voltage. LiPF6/(EC+EMC+DMC) is inappropriate for double layer capacitor. MeEt3NPF4/PC has higher specific capacitance than EtnNPFn/PC because methyl's electronegativity value is lower than ethyl and MeEt3N+ has more positive charges and stronger polarizability than Et4N+ when an ethyl is substituted by methyl.

  20. Structural Characterization and Property Study on the Activated Alumina-activated Carbon Composite Material

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Qing; WU Ren-Ping; YE Xian-Feng

    2012-01-01

    AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and property of this material was discussed;The microstructures of the composite material were characterized by XRD,SEM,BET techniques;and its formaldehyde adsorption characteristic was also tested.The results showed that the optimal heat treatment temperature of the activated alumina-activated carbon composite material was 450 ℃,iodine adsorption value was 441.40 mg/g,compressive strength was 44 N,specific surface area was 360.07 m2/g,average pore size was 2.91 nm,and pore volume was 0.26 m3/g.According to the BET pore size distribution diagram,the composite material has dual-pore size distribution structure,the micro-pore distributes in the range of 0.6-1.7 nm,and the meso-pore in the range of 3.0-8.0 nm.The formaldehyde adsorption effect of the activated alumina-activated carbon composite material was excellent,much better than that of the pure activated carbon or activated alumina,and its saturated adsorption capacity was 284.19 mg/g.

  1. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    Science.gov (United States)

    Clack, Herek L

    2012-07-01

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  2. Ligninolytic Activity of Ganoderma strains on Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    TYPUK ARTININGSIH

    2006-10-01

    Full Text Available Lignin is a phenylpropanoid polymers with only few carbon bonds might be hydrolized. Due to its complexity, lignin is particularly difficult to decompose. Ganoderma is one of white rot fungi capable of lignin degradation. The ligninolytic of several species Ganoderma growing under different carbon sources was studied under controlled conditions which P. chrysosporium was used as standard comparison.Three types of ligninolytic, namely LiP, MnP, and laccase were assessed quantitatively and qualitatively. Ratio between clear zone and diameter of fungal colony was used for measuring specific activity qualitatively.Four sspecies of Ganoderma showed positive ligninolytic qualitatively that G. lucidum KT2-32 gave the highest ligninolytic. Activity of LiP and MnP in different carbon sources was consistently resulted by G. lucidum KT2-32, while the highest activity of laccase was shown by G. ochrolaccatum SA2-14. Medium of Indulin AT affected production of protein extracellular and induced ligninolytic. Glucose, BMC, and pine sawdust did not affect the activity of ligninolytic. The specific activity of Ganoderma species was found to be higher than the one of P. chrysosporium.

  3. Irreversible adsorption of phenolic compounds by activated carbons

    International Nuclear Information System (INIS)

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs

  4. VPO catalysts synthesized on substrates with modified activated carbons

    International Nuclear Information System (INIS)

    VPO catalysts were prepared on oxidized and unoxidized activated carbons differing in initial porous structure. Carbons were oxidized under relatively soft (30% H2O2, 200 deg. C) and hard (50% H2O2, 350 deg. C) conditions. Carbon modification was carried out hydrothermally in a traditional autoclave (HTT) or a microwave reactor (MWT). The synthesis was also carried out under hydrothermal (HTS or MWS) conditions. V2O5 and NH4VO3 were used as precursors. The samples are characterized by diversified porous structure at SBET = 732-1617 m2/g and Vpor = 0.44-0.90 cm3/g, as well as various degree of VPO crystallinity. Possibility of preparation of the VPO catalysts under ecologically appropriate conditions, i.e. in aqueous solutions, was shown.

  5. Irreversible adsorption of phenolic compounds by activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  6. Preparation of activated carbons from olive-tree wood revisited. II. Physical activation with air

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Idriss, A.; Cuerda-Correa, E.M.; Fernandez-Gonzalez, C.; Alexandre-Franco, M.F.; Gomez-Serrano, V. [Extremadura Univ., Badajoz (Spain). Dept. of Organic and Inorganic Chemistry; Stitou, M. [Univ. Abdelmalek Esaadi, Tetouan (Morocco). Dept. de Chimie; Macias-Garcia, A. [Extremadura Univ., Badajoz (Spain). Dept. of Mechanical, Energetic and Materials Engineering

    2011-02-15

    Olive-tree has been grown in the Mediterranean countries for centuries. For an adequate development of the tree it must be subjected to different treatments such as trimming, large amounts of a woody residue being produced. Such a residue has been traditionally used as a domestic fuel or simply burnt in the landfield. In both cases greenhouse gases are generated to a large extent. Thus, the preparation of activated carbons from olive-tree wood appears as an attractive alternative to valorize this by-product. Commonly, two activation strategies are used with such an aim, namely chemical and physical activation. In this study, the optimization of the physical activation method with air for the production of activated carbon has been analyzed. The results obtained clearly show that if the preparation conditions are adequately controlled, it is possible to prepare activated carbons showing tailored properties in terms of micro- or mesoporous texture and surface area. (author)

  7. Surface functional groups and redox property of modified activated carbons

    Institute of Scientific and Technical Information of China (English)

    Zhang Xianglan; Deng Shengfu; Liu Qiong; Zhang Yan; Cheng Lei

    2011-01-01

    A series of activated carbons (ACs) were prepared using HNO3, H2O2 and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process. The effects of concentration of activation agent, activation time on the surface functional groups and redox property of ACs were characterized by Temperature Program Desorption (TPD) and Cyclic Voitammetry (CV). Results showed that lactone groups of ACs activated by HNO3 increase with activation time, and the carboxyl groups increase with the concentration of HNO3. Carbonyl/quinine groups of ACs activated by H2O2 increase with the activation time and the concentration of H2O2, although the acidic groups decrease with the concentration of H2O2. The redox property reflected by CV at 0 and 0.5 V is different with any kinds of oxygen functional groups characterized by TPD, but it is consistent with the SO2 catalytic oxidization/oxidation properties indicated by TPR.

  8. Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes.

    Science.gov (United States)

    Dong, Qiang; Wang, Gang; Wu, Tingting; Peng, Senpei; Qiu, Jieshan

    2015-05-15

    Capacitive deionization (CDI) is an alternative, effective and environmentally friendly technology for desalination of brackish water. The performance of the CDI device is highly determined by the electrode materials. In this paper, a composite of carbon nanotubes (CNTs) embedded in activated carbon nanofiber (ACF) was prepared by a direct co-electrospinning way and subsequent CO2 activation. The introduction of CNTs can greatly improve the conductivity while the CO2-mediated activation can render the final product with high porosity. As such, the hybrid structure can provide an excellent storage space and pathways for ion adsorption and conduction. When evaluated as electrode materials for CDI, the as-prepared CNT/ACF composites with higher electrical conductivity and mesopore ratios exhibited higher electrosorption capacity and good regeneration performance in comparison with the pure ACF. PMID:25595622

  9. Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors

    Science.gov (United States)

    Leitner, K.; Lerf, A.; Winter, M.; Besenhard, J. O.; Villar-Rodil, S.; Suárez-García, F.; Martínez-Alonso, A.; Tascón, J. M. D.

    Electrochemical characterization has been carried out for electrodes prepared of several activated carbon fiber samples derived from poly (m-phenylene isophthalamide) (Nomex) in an aqueous solution. Depending on the burn-off due to activation the BET surface area of the carbons was in the order of 1300-2800 m 2 g -1, providing an extensive network of micropores. Their capability as active material for supercapacitors was evaluated by using cyclic voltammetry and impedance spectroscopy. Values for the capacitance of 175 F g -1 in sulfuric acid were obtained. Further on, it was observed that the specific capacitance and the performance of the electrode increase significantly with increasing burn-off degree. We believe that this fact can be attributed to the increase of surface area and porosity with increasing burn-off.

  10. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    DEFF Research Database (Denmark)

    Marcussen, Lis; Krøll, A.

    1999-01-01

    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems.......Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary...

  11. Structure and electrochemical properties of activated polyacrylonitrile based carbon fibers containing carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Jagannathan, Sudhakar; Chae, Han Gi; Jain, Rahul; Kumar, Satish [School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2008-12-01

    Solution spun polyacrylonitrile (PAN), PAN/multi-wall carbon nanotube (MWCNT), and PAN/single-wall carbon nanotube (SWCNT) fibers containing 5 wt.% carbon nanotubes were stabilized in air and activated using CO{sub 2} and KOH. The surface area as determined by nitrogen gas adsorption was an order of magnitude higher for KOH activated fibers as compared to the CO{sub 2} activated fibers. The specific capacitance of KOH activated PAN/SWCNT samples was as high as 250 F g{sup -1} in 6 M KOH electrolyte. Under the comparable KOH activation conditions, PAN and PAN/SWCNT fibers had comparable surface areas (BET surface area about 2200 m{sup 2} g{sup -1}) with pore size predominantly in the range of 1-5 nm, while surface area of PAN/MWCNT samples was significantly lower (BET surface area 970 m{sup 2} g{sup -1}). The highest capacitance and energy density was obtained for PAN/SWCNT samples, suggesting SWCNT advantage in charge storage. The capacitance behavior of these electrodes has also been tested in ionic liquids, and the energy density in ionic liquid is about twice the value obtained using KOH electrolyte. (author)

  12. The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke

    Energy Technology Data Exchange (ETDEWEB)

    Wiessner, A.; Remmler, M.; Kuschk, P.; Stottmeister, U. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany). Dept. of Remediation Research

    1998-07-31

    This paper investigated activated carbon and activated coke adsorption for the treatment of highly contaminated discoloured industrial wastewater with a wide molecular size distribution of organic compounds. Lignite pyrolysis wastewater from a filled open-cast coal mine was used for continuous and discontinuous experiments. The investigations were performed using water samples taken from various depths of the deposits ponds. A comparison of the capacities of the adsorption materials used showed, that because of its large number of macro and mesopores, activated coke is more suitable for wastewater treatment and in addition cheaper than activated carbon.

  13. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2010-05-01

    Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R2) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model. © 2010 Elsevier Ltd.

  14. Ni supported on activated carbon as catalyst for flue gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of Ni supported on activated carbon are prepared by excessive impregnation and the desulfurization activity is investigated. It has been shown that the activated carbon-supported Ni is an efficient solid catalyst for flue gas desulfurization. The activated carbon treated by HNO3 exhibits high desulfurization activity, and different amounts of loaded-Ni on activated carbon significantly influence the desulfurization activity. The catalysts are studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results of XRD and XPS indicate that the activated carbon treated by HNO3 can increase oxygen-containing functional groups. Ni on activated carbon after calcination at 800 °C shows major Ni phase and minor NiO phase, and with increasing Ni content on activated carbon, Ni phase increases and affects the desulfurization activity of the catalyst, which proves that Ni is the main active phase.

  15. Activated carbon from flash pyrolysis of eucalyptus residue.

    Science.gov (United States)

    Grima-Olmedo, C; Ramírez-Gómez, Á; Gómez-Limón, D; Clemente-Jul, C

    2016-09-01

    Forestry waste (eucalyptus sp) was converted into activated carbon by initial flash pyrolysis followed carbonization and CO2 activation. These residues were obtained from a pilot plant in Spain that produces biofuel, the biochar represented 10-15% in weight. It was observed that the highest activation was achieved at a temperature of 800 °C, the specific surface increased with time but, on the contrary, high loss of matter was observed. At 600 °C, although there was an important increase of the specific surface and the volume of micropores, at this temperature it was observed that the activation time was not an influential parameter. Finally, at 400 °C it was observed that the activation process was not very significant. Assessing the average pore diameter it was found that the lowest value corresponded to the activation temperature of 600 °C, which indicated the development of microporosity. When the activation temperature increases up to 800 °C the pore diameter increased developing mesoporosity.

  16. Wetting and Non-Wetting Models of Black Carbon Activation

    Science.gov (United States)

    Henson, B. F.; Laura, S.

    2006-12-01

    We present the results of recent modeling studies on the activation of black carbon (BC) aerosol to form cloud condensation nuclei (CCN). We use a model of BC activation based on a general modification of the Koehler equation for insoluble activation in which we introduce a term based on the activity of water adsorbed on the particle surface. We parameterize the model using the free energy of adsorption, a parameter directly comparable to laboratory measurements of water adsorption on carbon. Although the model of the water- surface interaction is general, the form of the activation equation that results depends upon a further model of the distribution of water on the particle. One possible model involves the symmetric growth of a water shell around the isoluble particle core (wetting). This model predicts upper and lower bounding curves for the activation supersaturation given by the range of water interaction energies from hydrophobic to hydrophilic which are in agreement with a large body of recent activation data. The resulting activation diameters are from 3 to 10 times smaller than activation of soluble particles of identical dry diameter. Another possible model involves an exluded liquid droplet growing in contact with the particle (non-wetting). The geometry of this model much more resembles classic assumptions of heterogeneous nucleation theory. This model can yield extremely high activation supersaturation as a function of diameter, as has been observed in some experiments, and enables calculations in agreement with some of these results. We discuss these two geometrical models of water growth, the different behaviors predicted by the resulting activation equation, and the means to determine which model of growth is appropriate for a given BC particle characterized by either water interaction energy or morphology. These simple models enable an efficient and physically reasonable means to calculate the activation of BC aerosol to form CCN based upon a

  17. Synthesis of carbon nanofibers on impregnated powdered activated carbon as cheap substrate

    Directory of Open Access Journals (Sweden)

    A.A. Mamun

    2016-07-01

    Full Text Available The catalysis and characterization of carbon nanofibers (CNFs composite are reported in this work. Carbon nanofibers were produced on oil palm shell powdered activated carbon (PAC, which was impregnated with nickel. Chemical Vapor Deposition (CVD of C2H2 was used in the presence of hydrogen at ∼650 °C. The flow rates of carbon source and hydrogen were fixed. The CNFs formed directly on the surface of the impregnated PAC. Variable weight percentages (1%, 3%, 5%, 7% and 9% of the catalyst salt (Ni+2 were used for the impregnation. However, the best catalysis was observed on the substrate with 3% Ni+2. The product displayed a relatively high surface area, essentially constituted by the external surface. New functional groups also appeared compared to those in the PAC. Field Emission Scanning Microscopy (FESEM, Transmission Electron Microscopy (TEM, Fourier Transform Infrared (FTIR, BET surface area analysis and energy dispersive X-ray (EDX were used for the characterization of the new carbon nano product, which was produced through a clean novel process.

  18. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.

    Science.gov (United States)

    Gryglewicz, Grażyna; Śliwak, Agata; Béguin, François

    2013-08-01

    A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium. PMID:23794416

  19. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.

    Science.gov (United States)

    Gryglewicz, Grażyna; Śliwak, Agata; Béguin, François

    2013-08-01

    A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium.

  20. Pilot Study on Drinking Water Advanced Treatment by GAC-MF System

    Institute of Scientific and Technical Information of China (English)

    王欣泽; 薛罡; 王宝贞; 王琳

    2004-01-01

    The pilot performance of the combined GAC-MF membrane process for drinking water advanced treatment was described. In the process of GAC adsorption, under the conditions of 20 min HRT and 6 m/h filtration rate, the removal efficiencies of UV254 and trichloromethane could reach 40% and 50%respectively and the UV254 and trichloromethane in system effluent was less than 0.015 cm-1 and 5 μg/L respectively. In the post MF membrane process, MF membrane effectively retained the particles and bacteria in raw water. The effluent turbidity was less than 0.2 NTU and no bacteria were detected at all in permeate. A computer-controlled system was enployed to control this system. The membrane operating parameters of backwash interval, duration and flux were studied. The backwash interval of 10-min, 20-min and 60-min was researched respectively, and the variation of trans-membrane pressure was also analyzed. Consequently short backwash interval was recommended under the same water consume.

  1. Effects of maturity on physicochemical properties of Gac fruit (Momordica cochinchinensis Spreng.).

    Science.gov (United States)

    Tran, Xuan T; Parks, Sophie E; Roach, Paul D; Golding, John B; Nguyen, Minh H

    2016-03-01

    The aril around the seeds of Gac fruit is rich in fatty acids and carotenoids (lycopene and β-carotene). Understanding how these qualities are affected by fruit maturity at harvest may identify indices for quality assessment. Some physical and chemical properties of Gac fruit were determined for fruit harvested between 8 and 16 weeks after pollination (WAP). Fruit respiration rates and ethylene production rates were assessed after harvest and up to 20 days in storage at 20°C. Fruit harvested at 14 WAP had the highest oil (0.27 ± 0.02 g/g DW), lycopene content (0.45 ± 0.09 mg/g FW), and β-carotene content (0.33 ± 0.05 mg/g FW) which declined by 16 WAP. External skin color and aril TSS were indicative of oil and carotenoid contents in aril. Skin color, TSS and potentially firmness were good indices of fruit quality. Harvesting less mature fruit at 12 WAP would be practical as the fruit were firmer and more capable of transport; however, quality during postharvest ripening may be limited. Fruits continued to ripen after they were harvested and an ethylene peak in the least mature fruit may reflect a climacteric behavior but this needs further investigation. PMID:27004120

  2. Activated carbon from leather shaving wastes and its application in removal of toxic materials.

    Science.gov (United States)

    Kantarli, Ismail Cem; Yanik, Jale

    2010-07-15

    In this study, utilization of a solid waste as raw material for activated carbon production was investigated. For this purpose, activated carbons were produced from chromium and vegetable tanned leather shaving wastes by physical and chemical activation methods. A detailed analysis of the surface properties of the activated carbons including acidity, total surface area, extent of microporosity and mesoporosity was presented. The activated carbon produced from vegetable tanned leather shaving waste produced has a higher surface area and micropore volume than the activated carbon produced from chromium tanned leather shaving waste. The potential application of activated carbons obtained from vegetable tanned shavings as adsorbent for removal of water pollutants have been checked for phenol, methylene blue, and Cr(VI). Adsorption capacities of activated carbons were found to be comparable to that of activated carbons derived from biomass.

  3. Activated carbon from leather shaving wastes and its application in removal of toxic materials.

    Science.gov (United States)

    Kantarli, Ismail Cem; Yanik, Jale

    2010-07-15

    In this study, utilization of a solid waste as raw material for activated carbon production was investigated. For this purpose, activated carbons were produced from chromium and vegetable tanned leather shaving wastes by physical and chemical activation methods. A detailed analysis of the surface properties of the activated carbons including acidity, total surface area, extent of microporosity and mesoporosity was presented. The activated carbon produced from vegetable tanned leather shaving waste produced has a higher surface area and micropore volume than the activated carbon produced from chromium tanned leather shaving waste. The potential application of activated carbons obtained from vegetable tanned shavings as adsorbent for removal of water pollutants have been checked for phenol, methylene blue, and Cr(VI). Adsorption capacities of activated carbons were found to be comparable to that of activated carbons derived from biomass. PMID:20382474

  4. Synthesis and characterization of carbon nanotube from coconut shells activated carbon

    Science.gov (United States)

    Melati, A.; Hidayati, E.

    2016-03-01

    Carbon nanotubes (CNTs) have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, photodynamic therapy, and gene therapy. They are considered as one of the most promising nanomaterial with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to the cells. CNTs have unique physical and chemical properties such as high aspect ratio, ultralight weight, high mechanical strength, high electrical conductivity, and high thermal conductivity. Coconut Shell was researched as active carbon source on 500 - 600°C. These activated carbon was synthesized becomes carbon nanotube and have been proposed as a promising tool for detecting the expression of indicative biological molecules at early stage of cancer. Clinically, biomarkers cancer can be detected by CNT Biosensor. We are using pyrolysis methods combined with CVD process or Wet Chemical Process on 600°C. Our team has successfully obtained high purity, and aligned MWCNT (Multi Wall Nanotube) bundles on synthesis CNT based on coconut shells raw materials. CNTs can be used to cross the mammalian cell membrane by endocytosis or other mechanisms. SEM characterization of these materials have 179 nm bundles on phase 83° and their materials compound known by using FTIR characterization.

  5. Inlfuence of Carbon Content on S Zorb Sorbent Activity

    Institute of Scientific and Technical Information of China (English)

    Xu Li

    2013-01-01

    The reaction activity of S Zorb sorbents with different sulfur contents was investigated, and the structure and composition of carbon-containing sorbents were characterized by XRD, FT-IR and TG-MS in order to delve into the kind and morphology of carbon on the sorbent. Test results have revealed that coke could be deposited on the S Zorb sorbent dur-ing the operating process, and the coke content was an important factor inlfuencing the reaction performance of the S Zorb sorbent. Retention of a deifnite amount of coke on the sorbent while securing the desulfurization activity of the S Zorb sor-bent would be conducive to the reduction of octane loss of reaction product.

  6. Activated carbon is an electron-conducting amphoteric ion adsorbent

    OpenAIRE

    Biesheuvel, P. M.

    2015-01-01

    Electrodes composed of activated carbon (AC) particles can desalinate water by ion electrosorption. To describe ion electrosorption mathematically, accurate models are required for the structure of the electrical double layers (EDLs) that form within electrically charged AC micropores. To account for salt adsorption also in uncharged ACs, an "attraction term" was introduced in modified Donnan models for the EDL structure in ACs. Here it will be shown how instead of using an attraction term, c...

  7. Petroleum contaminated ground-water: Remediation using activated carbon.

    OpenAIRE

    Ayotamuno, M. J.; Kogbara, R. B.; Ogaji, S. O. T.; Probert, S. D.

    2006-01-01

    Ground-water contamination resulting from the leakage of crude oil and refined petroleum products during extraction and processing operations is a serious and a growing environmental problem in Nigeria. Consequently, a study of the use of activated carbon (AC) in the clean up was undertaken with the aim of reducing the water contamination to a more acceptable level. In the experiments described, crude-oil contamination of ground water was simulated under laboratory conditions using ground-wat...

  8. Factors governing the adsorption of ethanol on spherical activated carbons

    OpenAIRE

    Romero Anaya, Aroldo José; Lillo Ródenas, María Ángeles; Linares Solano, Ángel

    2015-01-01

    Ethanol adsorption on different activated carbons (mostly spherical ones) was investigated covering the relative pressure range from 0.001 to 1. Oxygen surface contents of the ACs were modified by oxidation (in HNO3 solution or air) and/or by thermal treatment in N2. To differentiate the concomitant effects of porosity and oxygen surface chemistry on ethanol adsorption, different sets of samples were used to analyze different relative pressure ranges (below 1000 ppmv concentration and close t...

  9. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    Science.gov (United States)

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original. PMID:23243870

  10. Immobilization biological activated carbon used in advanced drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Bacteria separated from a mature filter bed of groundwater treatment plants were incubated in a culture media containing iron and manganese. A consortium of 5 strains of bacteria removing iron and manganese were obtained by repeated enrichment culturing. It was shown from the experiments of effect factors that ironmanganese removal bacteria in the culture media containing both Fe and Mn grew better than in that containing only Fe, however, they were unable to grow in the culture media containing only Mn. When comparing the bacteria biomass in the case ofρ (DO) =2.8 mg/L andρ (DO) =9.0 mg/L, no significant difference was found.The engineering bacteria removing the organic and the bacteria removing iron and manganese were simultaneously inoculated into activated carbon reactor to treat the effluent of distribution network. The experimental results showed that by using IBAC ( Immobilization Biological Activated Carbon) treatment, the removal efficiency of iron, manganese and permanganate index was more than 98% , 96% and 55% , respectively. After the influent with turbidity of 1.5 NTU, color of 25 degree and offensive odor was treated, the turbidity and color of effluence were less than 0.5 NTU and 15 degree, respectively, and it was odorless. It is determined that the cooperation function of engineering bacteria and activated carbon achieved advanced drinking water treatment.

  11. Adsorption of dyes onto activated carbon prepared from olive stones

    Institute of Scientific and Technical Information of China (English)

    Souad NAJAR-SOUISSI; Abdelmottaleb OUEDERNI; Abdelhamid RATEL

    2005-01-01

    Activated carbon was produced from olive stones(OSAC) by a physical process in two steps. The adsorption character of this activated carbon was tested on three colour dyes molecules in aqueous solution: Methylene blue(MB), Rhodamine B(RB) and Congo Red(CR). The adsorption equilibrium was studied through isotherms construction at 30℃, which were well described by Langmuir model.The adsorption capacity on the OSAC was estimated to be 303 mg/g, 217 mg/g and 167 mg/g respectively for MB, RB and CR. This activated carbon has a similar adsorption properties to that of commercial ones and show the same adsorption performances. The adsorption kinetics of the MB molecule in aqueous solution at different initial concentrations by OSAC was also studied. Kinetic experiments were well fitted by a simple intra-particle diffusion model. The measured kinetics constant was influenced by the initial concentration and we found the following correlation: Kid = 1.55 C00.51 .

  12. Preparation of Activated Carbon from Waste Tires and its application in Gasoline Removal from Water

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Baghapour

    2014-03-01

    Conclusion: Produced activated carbon has desired surface area and adsorptive capacity for gasoline adsorption in aquatic environments and it seems preparation activated carbon from waste tiers is cheap, effective and environment friendly.

  13. Application of granular activated carbon/MnFe2O4 composite immobilized on C. glutamicum MTCC 2745 to remove As(III) and As(V): Kinetic, mechanistic and thermodynamic studies

    Science.gov (United States)

    Podder, M. S.; Majumder, C. B.

    2016-01-01

    The main objective of the present study was to investigate the efficiency of Corynebacterium glutamicum MTCC 2745 immobilized on granular activated carbon/MnFe2O4 (GAC/MnFe2O4) composite to treat high concentration of arsenic bearing wastewater. Non-linear regression analysis was done for determining the best-fit kinetic model on the basis of three correlation coefficients and three error functions and also for predicting the parameters involved in kinetic models. The results showed that Fractal-like mixed 1,2 order model for As(III) and Brouser-Weron-Sototlongo as well as Fractal-like pseudo second order models for As(V) were proficient to provide realistic description of biosorption/bioaccumulation kinetic. Applicability of mechanistic models in the current study exhibited that the rate governing step in biosorption/bioaccumulation of both As(III) and As(V) was film diffusion rather than intraparticle diffusion. The evaluated thermodynamic parameters ΔG0, ΔH0 and ΔS0 revealed that biosorption/bioaccumulation of both As(III) and As(V) was feasible, spontaneous and exothermic under studied conditions.

  14. Application of granular activated carbon/MnFe₂O₄ composite immobilized on C. glutamicum MTCC 2745 to remove As(III) and As(V): Kinetic, mechanistic and thermodynamic studies.

    Science.gov (United States)

    Podder, M S; Majumder, C B

    2016-01-15

    The main objective of the present study was to investigate the efficiency of Corynebacterium glutamicum MTCC 2745 immobilized on granular activated carbon/MnFe2O4 (GAC/MnFe2O4) composite to treat high concentration of arsenic bearing wastewater. Non-linear regression analysis was done for determining the best-fit kinetic model on the basis of three correlation coefficients and three error functions and also for predicting the parameters involved in kinetic models. The results showed that Fractal-like mixed 1,2 order model for As(III) and Brouser-Weron-Sototlongo as well as Fractal-like pseudo second order models for As(V) were proficient to provide realistic description of biosorption/bioaccumulation kinetic. Applicability of mechanistic models in the current study exhibited that the rate governing step in biosorption/bioaccumulation of both As(III) and As(V) was film diffusion rather than intraparticle diffusion. The evaluated thermodynamic parameters ΔG(0), ΔH(0) and ΔS(0) revealed that biosorption/bioaccumulation of both As(III) and As(V) was feasible, spontaneous and exothermic under studied conditions. PMID:26322840

  15. Enhanced photocatalytic activity of titanium dioxide by nut shell carbon

    Energy Technology Data Exchange (ETDEWEB)

    Shi Xiaoliang, E-mail: sxl@whut.edu.cn [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Wang Sheng; Dong Xuebin [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Zhang Qiaoxin [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2009-08-15

    Nut shell carbon (NSC)-nanotitanium dioxide (TiO{sub 2}) composites were prepared by sol-gel method. Photocatalytic activity on degradation of dye Rhodamine B was studied. X-ray diffraction, field emission scanning electron microscopy, Brunauer-Emmett-Teller surface area, pore size distribution, ultraviolet-vis light absorption spectrum, and photoluminescence spectrum were carried out to characterize the composite catalyst. The results indicated that the photocatalytic activity of NSC-nano-TiO{sub 2} composites was much higher than P25 (Degussa). NSC could greatly absorb the organic substance and oxygen of solution because of its large surface area.

  16. Converting poultry litter to activated carbon: optimal carbonization conditions and product sorption for benzene.

    Science.gov (United States)

    Guo, Mingxin; Song, Weiping

    2011-12-01

    To promote utilization of poultry litter as a source material for manufacturing low-cost activated carbon (AC) that can be used in wastewater treatment, this study investigated optimal production conditions and water-borne organic sorption potential of poultry litter-based AC. Pelletized broiler litter was carbonized at different temperatures for varied time periods and activated with steam at a range of flow rate and time. The AC products were examined for quality characteristics using standard methods and for organic sorption potentials using batch benzene sorption techniques. The study shows that the yield and quality of litter AC varied with production conditions. The optimal production conditions for poultry litter-based AC were carbonization at 700 degrees C for 45 min followed by activation with 2.5 ml min(-1) steam for another 45 min. The resulting AC possessed an iodine number of 454 mg g(-1) and a specific surface area of 403 m2 g(-1). It sorbed benzene in water following sigmoidal kinetic and isothermal patterns. The sorption capacity for benzene was 23.70 mg g(-1), lower than that of top-class commercial AC. The results, together with other reported research findings, suggest that poultry litter is a reasonable feedstock for low-cost AC applicable to pre-treat wastewater contaminated by organic pollutants and heavy metals. PMID:22439566

  17. Kinetics of continuous biodegradation of pesticide organic wastewater by activated carbon-activated sludge

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Organic triazophos wastewater was continuously treated with Rhodopseudomonas capsulatus and activated carbon and activated sludge system(PACT-AS) in a plug bioreactor. A kinetic model of PACT-AS wastewater treatment system was established to provide an useful basis for further simulate scale-up treatment of toxic organic wastewater.

  18. Cost/benefit analysis comparing ex situ treatment technologies for removing carbon tetrachloride from Hanford groundwater

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory conducted a cost/benefit and performance analysis to compare ex situ technologies that can be used to destroy the carbon tetrachloride (CCl4) in the ground water of Hanford's 200 West Area. The objective of this work was to provide a direct quantitative and qualitative comparison of competing technologies. The technologies examined included a biological system, the Thermochemical Environmental Energy System II (TEES II), and a UV/oxidation system. The factors examined included key system operation parameters, impact on inorganic contaminants in the ground water, and secondary waste production. The cost effectiveness of these destruction technologies was also compared to the cost for an air stripping/granular activated carbon (AS/GAC) system. While the AS/GAC system appeared to be more cost effective at many levels than the CCl4 destruction technologies, the secondary waste produced by this system may lead to significant cost and/or regulatory problems. The factors with the greatest influence on cost for each destruction technology are as follows: nutrient requirements for both of the biological systems, electricity requirements and the type of unit operations for the TEES II process, and electricity requirements for UV/oxidation

  19. Carbonic anhydrase activity in isolated chloroplasts of chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    In a new assay of carbonic anhydrase, NaH14CO3 solution at the bottom of a sealed vessel releases 14CO3 which diffuses to the top of the vessel to be assimilated by actively photosynthesizing Chlamydomonas cells. The assay is initiated by illuminating cells and stopped by turning the light off and killing the cells with acid. Enzyme activity was estimated from acid stable radioactivity above the uncatalyzed background level. With bovine carbonic anhydrase, 1.5 Wilbur Anderson Unit (WAU) can be consistantly measured at 5-6 fold above background. Sonicated whole cells of air adapted wild type (+)gave 741.1 ± 12.4 WAU/mg chl. Intact washed cells of mixotrophically grown wall-less mutant CWD(-) and a high CO2 requiring wall-less double mutant CIA-3/CW15 (-) gave 7.1 ± 1.9 and 2.8 ± 7.8 WAU/mg chl respectively. Chloroplasts isolated from CWD and CIA-3/CW15 and subsequently disrupted gave 64.0 ± 14.7 and 2.8 ± 3.2 WAU/mg chl respectively. Chloroplast sonicate from another wall-less mutant CW15(-) gave activity comparable to CWD. Thus on a chlorophyll basis, enzyme activity in chloroplasts from mixotrophically grown cells is about 1/10th of the level found in air adapted wild type cells. CIA-3 seems to lack this activity

  20. Speculative and hedging activities in the European carbon market

    International Nuclear Information System (INIS)

    We explore the dynamics of the speculative and hedging activities in European futures carbon markets by using volume and open interest data. A comparison of the three phases in the European Union Emission Trading Scheme (EU ETS) reveals that (i) Phase II of the EU ETS seems to be the most speculative phase to date and (ii) the highest degree of speculative activity for every single phase occurs at the moment of listing the contracts for the first time. A seasonality analysis identifies a higher level of speculation in the first quarter of each year, related to the schedule of deadlines of the EU ETS. In addition, a time series analysis confirms that most of the speculative activity each year occurs in the front contract, whereas the hedging demand concentrates in the second-to-deliver futures contract. -- Highlights: •This study explores the evolution of speculative and hedging activities in futures carbon markets by using volume and open interest data. •Phase II of the EU ETS seems to be the most speculative phase to date. •A seasonality analysis identifies a higher level of speculation in the first quarter of each year. •Most of the speculative activity occurs in the front contract. •The hedging demand concentrates in the second-to-deliver futures contract