WorldWideScience

Sample records for actinide decay heat

  1. Properties of Fission-Product decay heat from Minor-Actinide fissioning systems

    International Nuclear Information System (INIS)

    Oyamatsu, Kazuhiro; Mori, Hideki

    2000-01-01

    The aggregate Fission-Product (FP) decay heat after a pulse fission is examined for Minor Actinide (MA) fissiles 237 Np, 241 Am, 243 Am, 242 Cm and 244 Cm. We find that the MA decay heat is comparable but smaller than that of 235 U except for cooling times at about 10 8 s (approx. = 3 y). At these cooling times, either the β or γ component of the FP decay heat for these MA's is substantially larger than the one for 235 U. This difference is found to originate from the cumulative fission yield of 106 Ru (T 1/2 = 3.2x10 7 s). This nuclide is the parent of 106 Rh (T 1/2 = 29.8 s) which is the dominant source of the decay heat at 10 8 s (approx. = 3 y). The fission yield is nearly an increasing function of the fissile mass number so that the FP decay heat is the largest for 244 Cm among the MA's at the cooling time. (author)

  2. Fuel cycle related parametric study considering long lived actinide production, decay heat and fuel cycle performances

    International Nuclear Information System (INIS)

    Raepsaet, X.; Damian, F.; Lenain, R.; Lecomte, M.

    2001-01-01

    One of the very attractive HTGR reactor characteristics is its highly versatile and flexible core that can fulfil a wide range of diverse fuel cycles. Based on a GTMHR-600 MWth reactor, analyses of several fuel cycles were carried out without taking into account common fuel particle performance limits (burnup, fast fluence, temperature). These values are, however, indicated in each case. Fuel derived from uranium, thorium and a wide variety of plutonium grades has been considered. Long-lived actinide production and total residual decay heat were evaluated for the various types of fuel. The results presented in this papers provide a comparison of the potential and limits of each fuel cycle and allow to define specific cycles offering lowest actinide production and residual heat associated with a long life cycle. (author)

  3. Alpha decay and cluster decay of some neutron-rich actinide nuclei

    Indian Academy of Sciences (India)

    2017-02-09

    Feb 9, 2017 ... Abstract. Nuclei in the actinide region are good in exhibiting cluster radioactivity. In the present work, the half-lives of α-decay and heavy cluster emission from certain actinide nuclei have been calculated using cubic plus Yukawa plus exponential model (CYEM). Our model has a cubic potential for the ...

  4. TMI-2 decay power: LASL fission-product and actinide decay power calculations for the President's Commission at Three Mile Island

    International Nuclear Information System (INIS)

    England, T.R.; Wilson, W.B.

    1979-10-01

    Fission-product and actinide decay heating, gas content, curies, and detailed contributions of the most important nuclide contributors were supplied in a series of letters following requests from the Presidential Commission on the Accident at Three Mile Island. In addition, similar data assuming different irradiation (power) histories were requested for purposes of comparison. This report consolidates the tabular and graphical data supplied and explains its basis

  5. TMI-2 decay power: LASL fission-product and actinide decay power calculations for the President's Commission at Three Mile Island

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Wilson, W.B.

    1979-10-01

    Fission-product and actinide decay heating, gas content, curies, and detailed contributions of the most important nuclide contributors were supplied in a series of letters following requests from the Presidential Commission on the Accident at Three Mile Island. In addition, similar data assuming different irradiation (power) histories were requested for purposes of comparison. This report consolidates the tabular and graphical data supplied and explains its basis.

  6. Uncertainties in fission-product decay-heat calculations

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, K.; Ohta, H.; Miyazono, T.; Tasaka, K. [Nagoya Univ. (Japan)

    1997-03-01

    The present precision of the aggregate decay heat calculations is studied quantitatively for 50 fissioning systems. In this evaluation, nuclear data and their uncertainty data are taken from ENDF/B-VI nuclear data library and those which are not available in this library are supplemented by a theoretical consideration. An approximate method is proposed to simplify the evaluation of the uncertainties in the aggregate decay heat calculations so that we can point out easily nuclei which cause large uncertainties in the calculated decay heat values. In this paper, we attempt to clarify the justification of the approximation which was not very clear at the early stage of the study. We find that the aggregate decay heat uncertainties for minor actinides such as Am and Cm isotopes are 3-5 times as large as those for {sup 235}U and {sup 239}Pu. The recommended values by Atomic Energy Society of Japan (AESJ) were given for 3 major fissioning systems, {sup 235}U(t), {sup 239}Pu(t) and {sup 238}U(f). The present results are consistent with the AESJ values for these systems although the two evaluations used different nuclear data libraries and approximations. Therefore, the present results can also be considered to supplement the uncertainty values for the remaining 17 fissioning systems in JNDC2, which were not treated in the AESJ evaluation. Furthermore, we attempt to list nuclear data which cause large uncertainties in decay heat calculations for the future revision of decay and yield data libraries. (author)

  7. TMI-2 decay power: LASL fission-product and actinide decay power calculations for the President's commission on the accident at Three Mile Island

    International Nuclear Information System (INIS)

    England, T.R.; Wilson, W.B.

    1980-03-01

    Fission-product and actinide decay heating, gas content, curies, and detailed contributions of the most important nuclide contributors were supplied in a series of letters following requests from the Presidential Commission on the Accident at Three Mile Island. In addition, similar data assuming different irradiation (power) histories were requested for purposes of comparison. This report consolidates the tabular and graphical data supplied and explains its basis

  8. Decay heat and gamma dose-rate prediction capability in spent LWR fuel

    International Nuclear Information System (INIS)

    Neely, G.J.; Schmittroth, F.

    1982-08-01

    The ORIGEN2 code was established as a valid means to predict decay heat from LWR spent fuel assemblies for decay times up to 10,000 year. Calculational uncertainties ranged from 8.6% to a maximum of 16% at 2.5 years and 300 years cooling time, respectively. The calculational uncertainties at 2.5 years cooling time are supported by experiment. Major sources of uncertainty at the 2.5 year cooling time were identifed as irradiation history (5.7%) and nuclear data together with calculational methods (6.3%). The QAD shielding code was established as a valid means to predict interior and exterior gamma dose rates of spent LWR fuel assemblies. A calculational/measurement comparison was done on two assemblies with different irradiation histories and supports a 35% calculational uncertainty at the 1.8 and 3.0 year decay times studied. Uncertainties at longer times are expected to increase, but not significantly, due to an increased contribution from the actinides whose inventories are assigned a higher uncertainty. The uncertainty in decay heat rises to a maximum of 16% due to actinide uncertainties. A previous study was made of the neutron emission rate from a typical Turkey Point Unit 3, Region 4 spent fuel assembly at 5 years decay time. A conservative estimate of the neutron dose rate at the assembly surface was less than 0.5 rem/hr

  9. A method of the sensitivity analysis of build-up and decay of actinides

    International Nuclear Information System (INIS)

    Mitani, Hiroshi; Koyama, Kinji; Kuroi, Hideo

    1977-07-01

    To make sensitivity analysis of build-up and decay of actinides, mathematical methods related to this problem have been investigated in detail. Application of time-dependent perturbation technique and Bateman method to sensitivity analysis is mainly studied. For the purpose, a basic equation and its adjoint equation for build-up and decay of actinides are systematically solved by introducing Laplace and modified Laplace transforms and their convolution theorems. Then, the mathematical method of sensitivity analyses is formulated by the above technique; its physical significance is also discussed. Finally, application of eigenvalue-method is investigated. Sensitivity coefficients can be directly calculated by this method. (auth.)

  10. An optimization methodology for heterogeneous minor actinides transmutation

    Science.gov (United States)

    Kooyman, Timothée; Buiron, Laurent; Rimpault, Gérald

    2018-04-01

    In the case of a closed fuel cycle, minor actinides transmutation can lead to a strong reduction in spent fuel radiotoxicity and decay heat. In the heterogeneous approach, minor actinides are loaded in dedicated targets located at the core periphery so that long-lived minor actinides undergo fission and are turned in shorter-lived fission products. However, such targets require a specific design process due to high helium production in the fuel, high flux gradient at the core periphery and low power production. Additionally, the targets are generally manufactured with a high content in minor actinides in order to compensate for the low flux level at the core periphery. This leads to negative impacts on the fuel cycle in terms of neutron source and decay heat of the irradiated targets, which penalize their handling and reprocessing. In this paper, a simplified methodology for the design of targets is coupled with a method for the optimization of transmutation which takes into account both transmutation performances and fuel cycle impacts. The uncertainties and performances of this methodology are evaluated and shown to be sufficient to carry out scoping studies. An illustration is then made by considering the use of moderating material in the targets, which has a positive impact on the minor actinides consumption but a negative impact both on fuel cycle constraints (higher decay heat and neutron) and on assembly design (higher helium production and lower fuel volume fraction). It is shown that the use of moderating material is an optimal solution of the transmutation problem with regards to consumption and fuel cycle impacts, even when taking geometrical design considerations into account.

  11. Reactor physics aspects of burning actinides in a nuclear reactor

    International Nuclear Information System (INIS)

    Hage, W.; Schmidt, E.

    1978-01-01

    A short review of the different recycling strategies of actinides other than fuel treated in the literature, is given along with nuclear data requirements for actinide build-up and transmutation studies. The effects of recycling actinides in a nuclear reactor on the flux distribution, the infinite neutron multiplication factor, the reactivity control system, the reactivity coefficients and the delayed neutron fraction are discussed considering a notional LWR or LMFBR as an Actinide Trasmutaton Reactor. Some operational problems of Actinide Transmutation reactors are mentioned, which are caused by the α-decay heat and the neutron sources of Actinide Target Elements

  12. Fission yields data generation and benchmarks of decay heat estimation of a nuclear fuel

    Science.gov (United States)

    Gil, Choong-Sup; Kim, Do Heon; Yoo, Jae Kwon; Lee, Jounghwa

    2017-09-01

    Fission yields data with the ENDF-6 format of 235U, 239Pu, and several actinides dependent on incident neutron energies have been generated using the GEF code. In addition, fission yields data libraries of ORIGEN-S, -ARP modules in the SCALE code, have been generated with the new data. The decay heats by ORIGEN-S using the new fission yields data have been calculated and compared with the measured data for validation in this study. The fission yields data ORIGEN-S libraries based on ENDF/B-VII.1, JEFF-3.1.1, and JENDL/FPY-2011 have also been generated, and decay heats were calculated using the ORIGEN-S libraries for analyses and comparisons.

  13. Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dube, Charu L., E-mail: dubecharu@gmail.com; Stennett, Martin C.; Gandy, Amy S.; Hyatt, Neil C.

    2016-03-15

    Highlights: • Alpha decay of actinides in iron phosphate glasses is simulated by employing ion irradiation technique. • FTIR and Raman spectroscopic measurements confirm modification of glass network. • The depolymerisation of glass network after irradiation is attributed to synergetic effect of nuclear and electronic losses. - Abstract: A surrogate approach of ion beam irradiation is employed to simulate alpha decay of actinides in iron phosphate nuclear waste glasses. Bismuth and helium ions of different energies have been selected for simulating glass matrix modification owing to radiolysis and ballistic damage due to recoil atoms. Structural modification and change in coordination number of network former were probed by employing Reflectance Fourier-Transform Infrared (FT-IR), and Raman spectroscopies as a consequence of ion irradiation. Depolymerisation is observed in glass sample irradiated at intermediate energy of 2 MeV. Helium blisters of micron size are seen in glass sample irradiated at low helium ion energy of 30 keV.

  14. Build-up and decay of fuel actinides in the fuel cycle of nuclear reactors

    International Nuclear Information System (INIS)

    Tasaka, Kanji; Kikuchi, Yasuyuki; Shindo, Ryuichi; Yoshida, Hiroyuki; Yasukawa, Shigeru

    1976-05-01

    For boiling water reactors, pressurized light-water reactors, pressure-tube-type heavy water reactors, high-temperature gas-cooled reactors, and sodium-cooled fast breeder reactors, uranium fueled and mixed-oxide fueled, each of 1000 MWe, the following have been studied: (1) quantities of plutonium and other fuel actinides built up in the reactor, (2) cooling behaviors of activities of plutonium and other fuel actinides in the spent fuels, and (3) activities of plutonium and other fuel actinides in the high-level reprocessing wastes as a function of storage time. The neutron cross section and decay data of respective actinide nuclides are presented, with their evaluations. For effective utilization of the uranium resources and easy reprocessing and high-level waste management, a thermal reactor must be fueled with uranium; the plutonium produced in a thermal reactor should be used in a fast reactor; and the plutonium produced in the blanket of a fast reactor is more appropriate for a fast reactor than that from a thermal reactor. (auth.)

  15. Performance of ALMR passive decay heat removal system

    International Nuclear Information System (INIS)

    Boardman, C.E.; Hunsbedt, A.

    1991-01-01

    The Advanced Liquid Metal Reactor (ALMR) concept has a totally passive safety-grade decay heat removal system referred to as the Reactor Vessel Auxiliary Cooling System (RVACS) that rejects heat from the small (471 MWt) modular reactor to the environmental air by natural convection heat transfer. The system has no active components, requires no operator action to initiate, and is inherently reliable. The RVACS can perform its function under off-normal or degraded operating conditions without significant loss in performance. Several such events are described and the RVACS thermal performance for each is given and compared to the normal operation performance. The basic RVACS performance as well as the performance during several off-normal events have been updated to reflect design changes for recycled fuel with minor actinides for end of equilibrium cycle conditions. The performance results for several other off-normal events involving various degrees of RVACS air flow passage blockages are presented. The results demonstrated that the RVACS is unusually tolerant to a wide range of postulated faults. (author)

  16. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Directory of Open Access Journals (Sweden)

    Ternovykh Mikhail

    2017-01-01

    Full Text Available Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  17. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Science.gov (United States)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  18. Summary report of third research coordination meeting on updated decay data library for actinides

    International Nuclear Information System (INIS)

    Kellett, M.A.

    2009-07-01

    The third meeting of the Coordinated Research Project on 'Updated Decay Data Library for Actinides' was held at the IAEA, Vienna on 8-10 October 2008. A summary of the presentations made by each participant is given, along with subsequent discussions. The evaluation procedure was reviewed, and a short tutorial session was given on the use of software adopted from the Decay Data Evaluation Project (DDEP). The list of radionuclides under review and evaluation was updated, along with their agreed allocation amongst participants. (author)

  19. CRBRP decay heat removal systems

    International Nuclear Information System (INIS)

    Hottel, R.E.; Louison, R.; Boardman, C.E.; Kiley, M.J.

    1977-01-01

    The Decay Heat Removal Systems for the Clinch River Breeder Reactor Plant (CRBRP) are designed to adequately remove sensible and decay heat from the reactor following normal shutdown, operational occurrences, and postulated accidents on both a short term and a long term basis. The Decay Heat Removal Systems are composed of the Main Heat Transport System, the Main Condenser and Feedwater System, the Steam Generator Auxiliary Heat Removal System (SGAHRS), and the Direct Heat Removal Service (DHRS). The overall design of the CRBRP Decay Heat Removal Systems and the operation under normal and off-normal conditions is examined. The redundancies of the system design, such as the four decay heat removal paths, the emergency diesel power supplies, and the auxiliary feedwater pumps, and the diversities of the design such as forced circulation/natural circulation and AC Power/DC Power are presented. In addition to overall design and system capabilities, the detailed designs for the Protected Air Cooled Condensers (PACC) and the Air Blast Heat Exchangers (ABHX) are presented

  20. Minor Actinide Transmutation Physics for Low Conversion Ratio Sodium Fast Reactors

    International Nuclear Information System (INIS)

    Mehdi Asgari; Samuel E. Bays; Benoit Forget; Rodolfo Ferrer

    2007-01-01

    The effects of varying the reprocessing strategy used in the closed cycle of a Sodium Fast Reactor (SNF) prototype are presented in this paper. The isotopic vector from the aqueous separation of transuranic (TRU) elements in Light Water Reactor (LWR) spent nuclear fuel (SNF) is assumed to also vary according to the reprocessing strategy of the closed fuel cycle. The decay heat, gamma energy, and neutron emission of the fuel discharge at equilibrium are found to vary depending on the separation strategy. The SFR core used in this study corresponds to a burner configuration with a conversion ratio of ∼0.5 based on the Super-PRISM design. The reprocessing strategies stemming from the choice of either metal or oxide fuel for the SFR are found to have a large impact on the equilibrium discharge decay heat, gamma energy, and neutron emission. Specifically, metal fuel SFR with pyroprocessing of the discharge produces the largest amount of TRU consumption (166 kg per Effective Full Power Year or EFPY), but also the highest decay heat, gamma energy, and neutron emission. On the other hand, an oxide fuel SFR with PUREX reprocessing minimizes the decay heat and related parameters of interest to a minimum, even when compared to thermal Mixed Oxide (MOX) or Inert Matrix Fuel (IMF) on a per mass basis. On an assembly basis, however, the metal SFR discharge has a lower decay heat than an equivalent oxide SFR assembly for similar minor actinide consumptions (∼160 kg/EFPY.) Another disadvantage in the oxide PUREX reprocessing scenario is that there is no consumption of americium and curium, since PUREX reprocessing separates these minor actinides (MA) and requires them to be disposed of externally

  1. Influence of high burnup on the decay heat power of spent fuel at long-term storage

    International Nuclear Information System (INIS)

    Bergelson, B.; Gerasimov, A.; Tikhomirov, G.

    2005-01-01

    Development and application of advanced fuel with higher burnup is now in practice of NPP with light water reactors in an increasing number of countries. High burnup allows to decrease significantly consumption of uranium. However, spent fuel of this type contains increased amount of high active actinides and fission products in comparison with spent fuel of common-type burnup. Therefore extended time of storage, improved cooling system of the storage facility will be required along with more strong radiation protection during storage, transportation and processing. Calculated data on decay heat power of spent uranium fuel of light water VVER-1000 type reactor are discussed in the paper. Long-term storage of discharged fuel during 100000 years is considered. Calculations were made for burnups of 40-70 MW d/kg. In the initial 50-year period of storage, power of fission products is much higher than that of actinides. Power of gamma-radiation is mainly due to fission products. During subsequent storage power of fission products quickly decreases, the main contribution to the power is given by actinides rather than by fission products. (author)

  2. Development of limiting decay heat values

    International Nuclear Information System (INIS)

    Khotylev, V.A.; Thompson, J.W.; Gibb, R.A.

    1999-01-01

    A number of tools are used in the assessment of decay heat during an outage of the CANDU-6. Currently, the technical basis for all of these tools is 'CANDU Channel Decay Power', Reference 1. The methods used in that document were limited to channel decay powers. However, for most outage support analysis, decay heat limits are based on bundle heats. Since the production of that document in 1977, new versions of codes, and updates of general-purpose and CANDU-specific libraries have become available. These tools and libraries have both a more formal technical basis than Reference 1, and also a more formal validation base. Using these tools it is now possible to derive decay heat with more specific input parameters, such as fuel composition, heat per unit of fuel, and irradiation history, and to assign systematically derived uncertainty allowances to such decay heat values. In particular, we sought to examine a broad range of likely bundle histories, and thus establish a set of limiting bundle decay beat values, that could serve as a bounding envelope for use in Nuclear Safety Analysis. (author)

  3. Radioactive decay pattern of actinides present in waste from Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Hiromoto, Goro; Dellamano, José Claudio, E-mail: hiromoto@ipen.br, E-mail: jcdellam@ipen.br [Instituto de PesquisasEnergéticas e Nucleares (GRR/IPEN/CNEN-SP), São Paulo, SP (Brazil). Gerência de Rejeitos Radioativos

    2017-07-01

    Brazil is currently planning to produce {sup 99}Mo from fission of LEU targets to meet the present national demand of {sup 99m}Tc. The {sup 99}Mo activity planned at the end of irradiation is 5000 Ci (185 TBq) per weekly cycle, in order to meet the present demand of 1000 Ci (37 TBq) per week, after target cooling and processing. To predict the activities that will be handled in the waste treatment facility, the computational code SCALE 6.0 was used to simulate the irradiation of the uranium targets and the decay of radioactive products. This study presents the findings of this research, mainly focused on the actinides activity that will be present in the waste and the respective radioactive decay pattern over a period of one hundred thousand years. (author)

  4. Core Power Limits For A Lead-Bismuth Natural Circulation Actinide Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cliff Bybee; Kim, D.; Todreas, N. E.; Mujid S. Kazimi

    2002-04-01

    The Idaho National Engineering and Environmental Laboratory and Massachusetts Institute of Technology are investigating the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The design being considered here is a pool type reactor that burns actinides and utilizes natural circulation of the primary coolant, a conventional steam power conversion cycle, and a passive decay heat removal system. Thermal-hydraulic evaluations of the actinide burner reactor were performed to determine allowable core power ratings that maintain cladding temperatures below corrosion-established temperature limits during normal operation and following a loss-of-feedwater transient. An economic evaluation was performed to optimize various design parameters by minimizing capital cost. The transient power limit was initially much more restrictive than the steady-state limit. However, enhancements to the reactor vessel auxiliary cooling system for transient decay heat removal resulted in an increased power limit of 1040 MWt, which was close to the steady-state limit. An economic evaluation was performed to estimate the capital cost of the reactor and its sensitivity to the transient power limit. For the 1040 MWt power level, the capital cost estimate was 49 mills per kWhe based on 1999 dollars.

  5. On the hazard accumulation of actinide waste in a Pu-fueled LMFBR power economy with and without by-product actinide recycling

    International Nuclear Information System (INIS)

    Anselmi, L.; Caruso, K.; Hage, W.; Schmidt, E.

    1979-01-01

    The actinide waste arisings in terms of hazard potential for ingestion and inhalation are given for a Pu-fueled LMFBR Power Economy as function of decay time. The data were assessed for two simplified fuel cycles, one considering the recycling of by-product actinides and the other their complete discharge to the high-level waste. Two durations of nuclear power and several loss fractions of actinides to the waste were considered. The major contributors in form of chemical elements or isotopes to the actinide waste hazard built up during the nuclear power duration were identified for various decay intervals

  6. Search for EC-decayed neutron-deficient actinide isotopes using gas-jet coupled JAERI-ISOL

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Kazuaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    To study the nuclear properties of unknown neutron deficient actinide isotopes which decay mainly via orbital electron capture (EC), we have developed a composite system consisting of a gas-jet transport apparatus and a thermal ion-source at the JAERI-ISOL. With this system, search for {sup 236}Am produced in the {sup 235}U({sup 6}Li, 5n) reaction has been performed. Pu KX-rays associated with the EC decay of {sup 236}Am are observed at the mass-236 fraction. The half-life of {sup 236}Am is evaluated to be 4.4min. The outline of the gas-jet coupled JAERI-ISOL system and typical performance are given. (author)

  7. Minor Actinides Burnup Enhancement in the European Sodium Fast Reactor through Moderator Material Addition

    International Nuclear Information System (INIS)

    Ramos, R.L.; Buiron, L.

    2013-01-01

    Conclusions: • ZrH 2 was the best moderator material, followed by MgO and MgAl 2 O 4 ; • When the number of moderator pins is increased: – the percentage of minor actinides consumed increases; – the total mass consumed of minor actinides decreases; – the decay heat generated decreases; – the neutron flux in the reactor varies very little. Perspectives: • For future studies it would be possible to evaluate the use of other materials with resonances in the scattering cross section in the fast range that would improve the results obtained with Mg. • It would be necessary to consider how to add moderator material without changing the initial mass of minor actinides. E.g., adding the moderator at the periphery of the minor actinide elements

  8. Decay heat uncertainty quantification of MYRRHA

    Directory of Open Access Journals (Sweden)

    Fiorito Luca

    2017-01-01

    Full Text Available MYRRHA is a lead-bismuth cooled MOX-fueled accelerator driven system (ADS currently in the design phase at SCK·CEN in Belgium. The correct evaluation of the decay heat and of its uncertainty level is very important for the safety demonstration of the reactor. In the first part of this work we assessed the decay heat released by the MYRRHA core using the ALEPH-2 burnup code. The second part of the study focused on the nuclear data uncertainty and covariance propagation to the MYRRHA decay heat. Radioactive decay data, independent fission yield and cross section uncertainties/covariances were propagated using two nuclear data sampling codes, namely NUDUNA and SANDY. According to the results, 238U cross sections and fission yield data are the largest contributors to the MYRRHA decay heat uncertainty. The calculated uncertainty values are deemed acceptable from the safety point of view as they are well within the available regulatory limits.

  9. Study on diverse passive decay heat removal approach

    International Nuclear Information System (INIS)

    Lin Qian; Si Shengyi

    2012-01-01

    One of the most important principles for nuclear safety is the decay heat removal in accidents. Passive decay heat removal systems are extremely helpful to enhance the safety. In currently design of many advanced nuclear reactors, kinds of passive systems are proposed or developed, such as the passive residual heat removal system, passive injection system, passive containment cooling system. These systems provide entire passive heat removal paths from core to ultimate heat sink. Various kinds of passive systems for decay heat removal are summarized; their common features or differences on heat removal paths and design principle are analyzed. It is found that, these passive decay heat removal paths are similarly common on and connected by several basic heat transfer modes and steps. By the combinations or connections of basic modes and steps, new passive decay heat removal approach or diverse system can be proposed. (authors)

  10. Strongly Enhanced Low Energy Alpha-Particle Decay in Heavy Actinide Nuclei and Long-Lived Superdeformed and Hyperdeformed Isomeric States

    CERN Document Server

    Marinov, Amnon; Kolb, D.; Weil, J.L.

    2001-01-01

    Relatively low energy and very enhanced alpha-particle groups have been observed in various actinide fractions produced via secondary reactions in a CERN W target which had been irradiated with 24-GeV protons. In particular, 5.14, 5.27 and 5.53 MeV alpha-particle groups with corresponding half-lives of 3.8(+ -)1.0 y, 625(+ -)84 d and 26(+ -)7 d, have been seen in Bk, Es and Lr-No sources, respectively. The measured energies are a few MeV lower than the known g.s. to g.s. alpha-decays in the corresponding neutron-deficient actinide nuclei. The half-lives are 4 to 7 orders of magnitude shorter than expected from the systematics of alpha-particle decay in this region of nuclei. The deduced evaporation residue cross sections are in the mb region, about 4 orders of magnitude higher than expected. A consistent interpretation of the data is given in terms of production of long-lived isomeric states in the second and third wells of the potential-energy surfaces of the parent nuclei, which decay to the corresponding w...

  11. The file of evaluated decay data in ENDF/B

    International Nuclear Information System (INIS)

    Reich, C.W.

    1991-01-01

    One important application of nuclear decay data is the Evaluated Nuclear Data File/B (ENDF/B), the base of evaluated nuclear data used in reactor research and technology activities within the United States. The decay data in the Activation File (158 nuclides) and the Actinide File (108 nuclides) excellently represent the current status of this information. In particular, the half-lives and gamma and alpha emission probabilities, quantities that are so important for many applications, of the actinide nuclides represent a significant improvement over those in ENDF/B-V because of the inclusion of data produced by an International Atomic Energy Agency Coordinated Research Program. The Fission Product File contains experimental decay data on ∼510 nuclides, which is essentially all for which a meaningful number of data are available. For the first time, delayed-neutron spectra for the precursor nuclides are included. Some hint of problems in the fission product data base is provided by the gamma decay heat following a burst irradiation of 239 Pu

  12. Study on diverse passive decay heat removal approach and principle

    International Nuclear Information System (INIS)

    Lin Qian; Si Shengyi

    2012-01-01

    Decay heat removal in post-accident is one of the most important aspects concerned in the reactor safety analysis. Passive decay heat removal approach is used to enhance nuclear safety. In advanced reactors, decay heat is removed by multiple passive heat removal paths through core to ultimate heat sink by passive residual heat removal system, passive injection system, passive containment cooling system and so on. Various passive decay heat removal approaches are summarized in this paper, the common features and differences of their heat removal paths are analyzed, and the design principle of passive systems for decay heat removal is discussed. It is found that. these decay heat removal paths is combined by some basic heat transfer processes, by the combination of these basic processes, diverse passive decay heat removal approach or system design scheme can be drawn. (authors)

  13. Evaluation of actinide partitioning and transmutation

    International Nuclear Information System (INIS)

    1982-01-01

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  14. Calculational tracking of decay heat for FFTF plant

    International Nuclear Information System (INIS)

    Cillan, T.F.; Carter, L.L.

    1985-01-01

    A detailed calculational monitoring of decay heat for each assembly on the Fast Flux Test Facility (FFTF) plant is obtained by utilizing a decay heat data base and user friendly computer programs to access the data base. Output includes the time-dependent decay heat for an assembly or a specific set of assemblies, and optional information regarding the curies of activated nuclides along the axial length of the assembly. The decay heat data base is updated periodically, usually at the end of each irradiation cycle. 1 ref., 2 figs

  15. Decay heat uncertainty quantification of MYRRHA

    OpenAIRE

    Fiorito Luca; Buss Oliver; Hoefer Axel; Stankovskiy Alexey; Eynde Gert Van den

    2017-01-01

    MYRRHA is a lead-bismuth cooled MOX-fueled accelerator driven system (ADS) currently in the design phase at SCK·CEN in Belgium. The correct evaluation of the decay heat and of its uncertainty level is very important for the safety demonstration of the reactor. In the first part of this work we assessed the decay heat released by the MYRRHA core using the ALEPH-2 burnup code. The second part of the study focused on the nuclear data uncertainty and covariance propagation to the MYRRHA decay hea...

  16. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol

    2014-01-01

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  17. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  18. Beta-decay and decay heat. Summary report of consultants' meeting

    International Nuclear Information System (INIS)

    Nicols, A.L.

    2006-01-01

    Experts on decay data and decay heat calculations participated in a Consultants' Meeting organized at IAEA Headquarters on 12-14 December 2005. Debate focused on the validation of decay heat calculations as a function of cooling time for fuel irradiated in power reactors through comparisons with experimental benchmark data. Both the current understanding and quantification of mean beta and gamma decay energies were reviewed with respect to measurements and the Gross Theory of Beta Decay. Particular emphasis was placed on the known development of total absorption gamma-ray spectroscopy (TAGS), and detailed discussions took place to formulate the measurement requirements for mean beta and gamma data of individual radionuclides. This meeting was organized in cooperation with the OECD/NEA Working Party for Evaluation and Cooperation (WPEC). Proposals and recommendations were made to resolve particular difficulties, and an initial list of fission products was produced for TAGS studies. The discussions, conclusions and recommendations of the meeting are briefly described in this report. (author)

  19. Impact of minor actinide recycling on sustainable fuel cycle options

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T. K.; Taiwo, T. A.

    2017-11-01

    the repository performance. On the other hand, recycling minor actinides also results in an increase of the recycled fuel characteristics and therefore of the charged fuel. The radioactivity is slightly increased while the decay heat and radiotoxicities are very significantly increased. Despite these differences, the characteristics of the fuel at time of discharge remain similar whether minor actinides are recycled or not, with the exception of the inhalation radiotoxicity which is significantly larger with minor actinide recycling. After some cooling the characteristics of the discharged fuel become larger when minor actinides are recycled, potentially affecting the reprocessing plant requirements. Recycling minor actinides has a negative impact on the characteristics of the fresh fuel and will make it more challenging to fabricate fuel containing minor actinides.

  20. Sensitivity analysis of minor actinides transmutation to physical and technological parameters

    International Nuclear Information System (INIS)

    Kooyman, T.; Buiron, L.

    2015-01-01

    derived from this approach include the maximum neutron source and decay heat load acceptable at reprocessing and fabrication steps, which influence among other things the total minor actinides inventory, the overall complexity of the cycle and the size of the geological repository. Based on this analysis, a new methodology to assess transmutation strategies is proposed. (authors)

  1. Decay calculations on medium-level and actinide-containing wastes from the LWR fuel cycle. Pt. 2

    International Nuclear Information System (INIS)

    Haug, H.O.

    1981-12-01

    1. The radiotoxicity index as inherent property of the radionuclide inventory was calculated for medium-level and actinide-containing wastes. The calculations were based on the annual limits of intake of the German Radiation Protection Ordinance as well as the new values of annual limits of intake from ICRP-30. The latter imply a higher rating of the toxicity of transuranium nuclides and a lower rating of Sr-90, Tc-99, and Ra-226. Thus, the annual radiotoxicity index is controlled by the transuranics after 10 to 100 years. 2. From the comparison of the radiotoxicity index of conditional and packed wastes with the same volume of uranium ore, it was evaluated that the relative radiotoxicity of the medium-level wastes decreases below the level of pitchblende after less than 100 years and below a 3% uranium ore after less than 2000 of decay. However, based on ICRP-30, the relative radiotoxicity index decreases below the level of pitchblende after 1000 years and decays to the level of the 3% uranium ore at about 10 5 years. 3. The comparison of the radiotoxicity concentration of the total disposal layer with a uranium ore deposit shows that the radiotoxicity concentration based on ICRP-30 of the self-heating wastes placed in single boreholes decays within 2000 years (high level waste within 3000 years) below the level of a uranium ore deposit of 0.2% uranium. The radiotoxicity concentration of the medium-level process waste and the alpha-waste disposed off in disposal chambers decreases to the level of a uranium ore deposit with 0.4 to 6% uranium after about 10 4 years, and 1% after about 10 5 years. (orig./HP) [de

  2. Chromatographic generator systems for the actinides and natural decay series elements

    International Nuclear Information System (INIS)

    McAlister, D.R.; Horwitz, E.P.

    2011-01-01

    This work describes chromatographic radionuclide generator systems for the production of actinides and natural decay series elements. The generator systems begin with alpha emitting parent radioisotopes with half-lives (T 1/2 ) of greater than one year and produce alpha or beta emitting radioisotopes with half-lives of hours to days. Chromatographic systems were chosen to minimize radiolytic damage to chromatographic supports, preserve the parent activity for repeated use, provide high purity daughter radionuclide tracers, and to minimize or eliminate the need for evaporation of solutions of the parent or daughter nuclides. Useful secondary separations involving the daughters of the initial parent radionuclide are also described. Separation systems for 210 Bi, 210 Po, 211 Pb, 212 Pb, 223 Ra, 224 Ra, 225 Ra, 225 Ac, 227 Th, 228 Th, 231 Th, 234 Th, and 239 Np are outlined in detail. (orig.)

  3. An application program for fission product decay heat calculations

    International Nuclear Information System (INIS)

    Pham, Ngoc Son; Katakura, Jun-ichi

    2007-10-01

    The precise knowledge of decay heat is one of the most important factors in safety design and operation of nuclear power facilities. Furthermore, decay heat data also play an important role in design of fuel discharges, fuel storage and transport flasks, and in spent fuel management and processing. In this study, a new application program, called DHP (Decay Heat Power program), has been developed for exact decay heat summation calculations, uncertainty analysis, and for determination of the individual contribution of each fission product. The analytical methods were applied in the program without any simplification or approximation, in which all of linear and non-linear decay chains, and 12 decay modes, including ground state and meta-stable states, are automatically identified, and processed by using a decay data library and a fission yield data file, both in ENDF/B-VI format. The window interface of the program is designed with optional properties which is very easy for users to run the code. (author)

  4. Design of an experiment to measure the decay heat of an irradiated PWR fuel: MERCI experiment; Conception d'une experience de mesure de la puissance residuelle d'un combustible irradie: l'experience MERCI

    Energy Technology Data Exchange (ETDEWEB)

    Bourganel, St

    2002-11-01

    After a reactor shutdown, a significant quantity of energy known as 'decay heat' continues to be generated from the irradiated fuel. This heat source is due to the disintegration energy of fission products and actinides. Decay heat determination of an irradiated fuel is of the utmost importance for safety analysis as the design cooling systems, spent fuel transport, or handling. Furthermore, the uncertainty on decay heat has a straight economic impact. The unloading fuel spent time is an example. The purpose of MERCI experiment (irradiated fuel decay heat measurement) consists in qualifying computer codes, particularly the DARWIN code system developed by the CEA in relation to industrial organizations, as EDF, FRAMATOME and COGEMA. To achieve this goal, a UOX fuel is irradiated in the vicinity of the OSIRIS research reactor, and then the decay heat is measured by using a calorimeter. The objective is to reduce the decay heat uncertainties from 8% to 3 or 4% at short cooling times. A full simulation on computer of the MERCI experiment has been achieved: fuel irradiation analysis is performed using transport code TRIPOLI4 and evolution code DARWIN/PEPIN2, and heat transfer with CASTEM2000 code. The results obtained are used for the design of this experiment. Moreover, we propose a calibration procedure decreasing the influence of uncertainty measurements and an interpretation method of the experimental results and evaluation of associated uncertainties. (author)

  5. Actinide recycle

    Energy Technology Data Exchange (ETDEWEB)

    Till, C; Chang, Y [Argonne National Laboratory, Argonne, IL (United States)

    1990-07-01

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository.

  6. Actinide recycle

    International Nuclear Information System (INIS)

    Till, C.; Chang, Y.

    1990-01-01

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository

  7. Criticality and thermal analyses of separated actinides

    International Nuclear Information System (INIS)

    Bakker, E.

    2004-01-01

    Curium and americium pose special problems in the chemical preparation of spent fuel for transmutation. Once separated from the other actinides, the isotopes can lead to nuclear fission with the subsequent release of a large amount of radiation. A neutron criticality code was used to determine k eff for varying quantities of Cm 2 O 3 and Am 2 O 3 held within spherical or cylindrical containers. These geometries were investigated both in air and in water. Recommendations are made on the maximum amount of Cm 2 O 3 and Am 2 O 3 that can be safely stored or handled before encountering criticality. Several isotopes of curium and americium also generate a significant amount of heat by radioactive decay. If kilogram quantities are stored in a container, for example, the material may heat to an equilibrium temperature that exceeds its melting temperature. The heat generation of curium and americium present even more restriction on the mass of that can safely be contained in one location. (author)

  8. Actinide recycle in LMFBRs as a waste management alternative

    International Nuclear Information System (INIS)

    Beaman, S.L.

    1979-01-01

    A strategy of actinide burnup in fast reactor systems has been investigated as an approach for reducing the long term hazards and storage requirements of the actinide waste elements and their decay daughters. The actinide recycle studies also included plutonium burnup studies in the event that plutonium is no longer required as a fuel. Particular emphasis was placed upon the timing of the recycle program, the requirements for separability of the waste materials, and the impact of the actinides on the reactor operations and performance. It is concluded that actinide recycle and plutonium burnout are attractive alternative waste management concepts. 25 refs., 14 figs., 34 tabs

  9. Advances in technologies for decay heat removal

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Berkovich, V.; Bianchi, A.; Chen B.; Meseth, J.; Vecchiarelli, J.; Vidard, M.

    1999-01-01

    The various decay heat removal concepts that have been used for the evolutionary water reactor plant designs developed worldwide are examined and common features identified. Although interesting new features of the 'classical' plants are mentioned, the emphasis is on passive core and containment decay heat removal systems. The various systems are classified according to the function they have to accomplish; they often share common characteristics and similar equipment. (author)

  10. Design of an experiment to measure the decay heat of an irradiated PWR fuel: MERCI experiment; Conception d'une experience de mesure de la puissance residuelle d'un combustible irradie: l'experience MERCI

    Energy Technology Data Exchange (ETDEWEB)

    Bourganel, St

    2002-11-01

    After a reactor shutdown, a significant quantity of energy known as 'decay heat' continues to be generated from the irradiated fuel. This heat source is due to the disintegration energy of fission products and actinides. Decay heat determination of an irradiated fuel is of the utmost importance for safety analysis as the design cooling systems, spent fuel transport, or handling. Furthermore, the uncertainty on decay heat has a straight economic impact. The unloading fuel spent time is an example. The purpose of MERCI experiment (irradiated fuel decay heat measurement) consists in qualifying computer codes, particularly the DARWIN code system developed by the CEA in relation to industrial organizations, as EDF, FRAMATOME and COGEMA. To achieve this goal, a UOX fuel is irradiated in the vicinity of the OSIRIS research reactor, and then the decay heat is measured by using a calorimeter. The objective is to reduce the decay heat uncertainties from 8% to 3 or 4% at short cooling times. A full simulation on computer of the MERCI experiment has been achieved: fuel irradiation analysis is performed using transport code TRIPOLI4 and evolution code DARWIN/PEPIN2, and heat transfer with CASTEM2000 code. The results obtained are used for the design of this experiment. Moreover, we propose a calibration procedure decreasing the influence of uncertainty measurements and an interpretation method of the experimental results and evaluation of associated uncertainties. (author)

  11. Status of the Japanese decay heat standard

    International Nuclear Information System (INIS)

    Katakura, Jun-ichi

    1992-01-01

    Fission product decay heat power plays an important role in the safety evaluation of nuclear power plants, especially for the analysis of hypothetical reactor accident scenarios. The ANS-5.1 decay heat standard for safety evaluation issued in 1979 has been used widely, even in Japan. Since the issuance of the standard, several improvements have been made to measurements and summation calculations. Summation calculations, in particular, have improved because of the adoption of theoretically calculated decay energies for nuclides with incomplete decay data. Taking into consideration those improvements, the Atomic Energy Society of Japan (AESJ) organized a research committee on a standard for decay heat power in nuclear reactors in 1987. The committee issued its recommendation after more than 2 yr discussion. After the AESJ recommendation, the Nuclear Safety Commission of Japan also began to discuss whether the recommendation should be included in its regulatory guide. The commission concluded in 1992 that the recommendation should be approved for licensing analysis of reactors if three times the uncertainties attached to the recommendation are included in the analysis. The AESJ recommendation may now be used for the safety evaluation of reactors in Japan in addition to the standards already used, which include ANS-5.1 (1973), General Electric Corporation (GE) curve, and ANS-5.1 (1979)

  12. Radionuclide mass inventory, activity, decay heat, and dose rate parametric data for TRIGA spent nuclear fuels

    International Nuclear Information System (INIS)

    Sterbentz, J.W.

    1997-03-01

    Parametric burnup calculations are performed to estimate radionuclide isotopic mass and activity concentrations for four different Training, Research, and Isotope General Atomics (TRIGA) nuclear reactor fuel element types: (1) Aluminum-clad standard, (2) Stainless Steel-clad standard, (3) High-enrichment Fuel Life Improvement Program (FLIP), and (4) Low-enrichment Fuel Life Improvement Program (FLIP-LEU-1). Parametric activity data are tabulated for 145 important radionuclides that can be used to generate gamma-ray emission source terms or provide mass quantity estimates as a function of decay time. Fuel element decay heats and dose rates are also presented parametrically as a function of burnup and decay time. Dose rates are given at the fuel element midplane for contact, 3.0-feet, and 3.0-meter detector locations in air. The data herein are estimates based on specially derived Beginning-of-Life (BOL) neutron cross sections using geometrically-explicit TRIGA reactor core models. The calculated parametric data should represent good estimates relative to actual values, although no experimental data were available for direct comparison and validation. However, because the cross sections were not updated as a function of burnup, the actinide concentrations may deviate from the actual values at the higher burnups

  13. Actinide burning in the integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1993-01-01

    During the past few years, Argonne National Laboratory has been developing the integral fast reactor (IFR), an advanced liquid-metal reactor concept. In the IFR, the inherent properties of liquid-metal cooling are combined with a new metallic fuel and a radically different refining process to allow breakthroughs in passive safety, fuel cycle economics, and waste management. A key feature of the IFR concept is its unique pyroprocessing. Pyroprocessing has the potential to radically improve long-term waste management strategies by exploiting the following attributes: 1. Minor actinides accompany plutonium product stream; therefore, actinide recycling occurs naturally. Actinides, the primary source of long-term radiological toxicity, are removed from the waste stream and returned to the reactor for in situ burning, generating useful energy. 2. High-level waste volume from pyroprocessing call be reduced substantially as compared with direct disposal of spent fuel. 3. Decay heat loading in the repository can be reduced by a large factor, especially for the long-term burden. 4. Low-level waste generation is minimal. 5. Troublesome fission products, such as 99 Tc, 129 I, and 14 C, are contained and immobilized. Singly or in combination, the foregoing attributes provide important improvements in long-term waste management in terms of the ease in meeting technical performance requirements (perhaps even the feasibility of demonstrating that technical performance requirements can be met) and perhaps also in ultimate public acceptance. Actinide recycling, if successfully developed, could well help the current repository program by providing an opportunity to enhance capacity utilization and by deferring the need for future repositories. It also represents a viable technical backup option in the event unforeseen difficulties arise in the repository licensing process

  14. Decay heat experiment and validation of calculation code systems for fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Wada, Masayuki

    1999-10-01

    Although accurate estimation of decay heat value is essential for safety analyses of fusion reactors against loss of coolant accidents and so on, no experimental work has been devoted to validating the estimation. Hence, a decay heat measurement experiment was performed as a task (T-339) of ITER/EDA. A new detector, the Whole Energy Absorption Spectrometer (WEAS), was developed for accurate and efficient measurements of decay heat. Decay heat produced in the thirty-two sample materials which were irradiated by 14-MeV neutrons at FNS/JAERI were measured with WEAS for a wide cooling time period from 1 min to 400 days. The data presently obtained were the first experimental decay heat data in the field of fusion. Validity of decay heat calculation codes of ACT4 and CINAC-V4, activation cross section libraries of FENDL/A-2.0 and JENDL Activation File, and decay data was investigated through analyses of the experiment. As a result, several points that should be modified were found in the codes and data. After solving the problems, it was demonstrated that decay heat valued calculated for most of samples were in good agreement with the experimental data. Especially for stainless steel 316 and copper, which were important materials for ITER, decay heat could be predicted with accuracy of {+-}10%. (author)

  15. Decay heat experiment and validation of calculation code systems for fusion reactor

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Ikeda, Yujiro; Wada, Masayuki

    1999-10-01

    Although accurate estimation of decay heat value is essential for safety analyses of fusion reactors against loss of coolant accidents and so on, no experimental work has been devoted to validating the estimation. Hence, a decay heat measurement experiment was performed as a task (T-339) of ITER/EDA. A new detector, the Whole Energy Absorption Spectrometer (WEAS), was developed for accurate and efficient measurements of decay heat. Decay heat produced in the thirty-two sample materials which were irradiated by 14-MeV neutrons at FNS/JAERI were measured with WEAS for a wide cooling time period from 1 min to 400 days. The data presently obtained were the first experimental decay heat data in the field of fusion. Validity of decay heat calculation codes of ACT4 and CINAC-V4, activation cross section libraries of FENDL/A-2.0 and JENDL Activation File, and decay data was investigated through analyses of the experiment. As a result, several points that should be modified were found in the codes and data. After solving the problems, it was demonstrated that decay heat valued calculated for most of samples were in good agreement with the experimental data. Especially for stainless steel 316 and copper, which were important materials for ITER, decay heat could be predicted with accuracy of ±10%. (author)

  16. Contribution of short-lived nuclides to decay heat

    International Nuclear Information System (INIS)

    Katakura, Jun-ichi

    1987-01-01

    Comments are made on the calculation of decay heat, centering on evaluation of average decay energy. It is difficult to obtain sufficiently useful decay diagrams of short lived nucleides. High-energy levels are often missing in inferior decay diagrams, leading to an overestimation of the intensity of beta-rays at low-energy levels. Such an overestimation or underestimation due to the inferiority of a decay diagram is referred to as pandemonium effect. The pandemonium effect can be assessed by means of the ratio of the measured energy of the highest level of the daughter nuclide to the Q β -value of the beta-decay. When a satisfactory decay diagram cannot be obtained, the average decay energy has to be estimated by theoretical calculation. The gross theory for beta-decay proposed by Yamada and Takahashi is employed for the calculation. To carry out the calculation according to this theory, it is required to determine the value for the parameter Q 00 , the lowest energy of the daughter nuclide that meets the selection rule for beta-decay. Currently, Q 00 to be used for this purpose is estimated from data on the energy of the lowest level found in a decay diagram, even if it is inferior. Some examples of calculation of decay heat using the average beta- or gamma-ray energy are shown and compared with measurements. (author)

  17. Consistency among integral measurements of aggregate decay heat power

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, H.; Sagisaka, M.; Oyamatsu, K.; Kukita, Y. [Nagoya Univ. (Japan)

    1998-03-01

    Persisting discrepancies between summation calculations and integral measurements force us to assume large uncertainties in the recommended decay heat power. In this paper, we develop a hybrid method to calculate the decay heat power of a fissioning system from those of different fissioning systems. Then, this method is applied to examine consistency among measured decay heat powers of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U and {sup 239}Pu at YAYOI. The consistency among the measured values are found to be satisfied for the {beta} component and fairly well for the {gamma} component, except for cooling times longer than 4000 s. (author)

  18. Application of least-squares method to decay heat evaluation

    International Nuclear Information System (INIS)

    Schmittroth, F.; Schenter, R.E.

    1976-01-01

    Generalized least-squares methods are applied to decay-heat experiments and summation calculations to arrive at evaluated values and uncertainties for the fission-product decay-heat from the thermal fission of 235 U. Emphasis is placed on a proper treatment of both statistical and correlated uncertainties in the least-squares method

  19. Total decay heat estimates in a proto-type fast reactor

    International Nuclear Information System (INIS)

    Sridharan, M.S.

    2003-01-01

    Full text: In this paper, total decay heat values generated in a proto-type fast reactor are estimated. These values are compared with those of certain fast reactors. Simple analytical fits are also obtained for these values which can serve as a handy and convenient tool in engineering design studies. These decay heat values taken as their ratio to the nominal operating power are, in general, applicable to any typical plutonium based fast reactor and are useful inputs to the design of decay-heat removal systems

  20. The prediction of minor actinides amounts accumulated in the spent fuel in China

    International Nuclear Information System (INIS)

    Zhou Peide

    2000-01-01

    The amounts of the Minor Actinides accumulated in the spent fuel are predicted according to the Nuclear Power Plant development plan envisaged in China. The Minor Actinides generated in the spent fuel unloaded from a typical PWR per year are calculated. The decay characteristics of the Minor Actinides during storage and cooling period are also calculated. At last, the Minor Actinides amounts accumulated in all spent fuel which were unloaded before sometime are given

  1. ORIGEN2.1 Cycle Specific Calculation of Krsko Nuclear Power Plant Decay Heat and Core Inventory

    International Nuclear Information System (INIS)

    Vukovic, J.; Grgic, D.; Konjarek, D.

    2010-01-01

    This paper presents ORIGEN2.1 computer code calculation of Krsko Nuclear Power Plant core for Cycle 24. The isotopic inventory, core activity and decay heat are calculated in one run for the entire core using explicit depletion and decay of each fuel assembly. Separate pre-ori application which was developed is utilized to prepare corresponding ORIGEN2.1 inputs. This application uses information on core loading pattern to determine fuel assembly specific depletion history using 3D burnup which is obtained from related PARCS computer code calculation. That way both detailed single assembly calculations as well as whole core inventory calculations are possible. Because of the immense output of the ORIGEN2.1, another application called post-ori is used to retrieve and plot any calculated property on the basis of nuclide, element, summary isotope or group of elements for activation products, actinides and fission products segments. As one additional possibility, with the post-ori application it is able to calculate radiotoxicity from calculated ORIGEN2.1 inventory. The results which are obtained using the calculation model of ORIGEN2.1 computer code are successfully compared against corresponding ORIGEN-S computer code results.(author).

  2. Summary report of RAMONA investigations into passive decay heat removal

    International Nuclear Information System (INIS)

    Hoffmann, H.; Marten, K.; Weinberg, D.; Frey, H.H.; Rust, K.; Ieda, Y.; Kamide, H.; Ohshima, H.; Ohira, H.

    1995-07-01

    An important safety feature of an advanced sodium-cooled reactor (e.g. European Fast Reactor, EFR) is the passive decay heat removal. This passive concept is based on several direct reactor cooling systems operating independently from each other. Each of the systems consists of a sodium/sodium decay heat exchanger immersed in the primary vessel and connected via an intermediate sodium loop to a heat sink formed by a sodium/air heat exchanger installed in a stack with air inlet and outlet dampers. The decay heat is removed by natural convection on the sodium side and natural draft on the air side. To demonstrate the coolability of the pool-type primary system by buoyancy-driven natural circulation, tests were performed under steady-state and transient conditions in facilities of different scale and detail. All these investigations serve to understand the physical processes and to verify computer codes used to transfer the results to reactor conditions. RAMONA is the three-dimensional 1:20-scaled apparatus equipped with all active components. Water is used as simulant fluid for sodium. The maximum core power is 75 kW. The facility is equipped with about 250 thermocouples to register fluid temperatures. Velocities and mass flows are measured by Laser Doppler Anemometers and magneto-inductive flowmeters. Flow paths are visualized by tracers. The conclusion of the investigations is that the decay heat can be removed from the primary system by means of natural convection. Always flow paths develop, which ensure an effective cooling of all regions. This is even proved for extreme conditions, e.g. in case of delays of the decay heat exchanger startup, failures of several DHR chains, and a drop of the fluid level below the inlet windows of the IHXs and decay heat exchangers. (orig.) [de

  3. Elimination of waste actinides by recycling them to nuclear reactors

    International Nuclear Information System (INIS)

    McKay, H.A.C.

    1981-01-01

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then decayed to insignificant levels, leaving the actinides as the principal hazardous species remaining. It is therefore at first sight an attractive idea to recycle the actinides in nuclear reactors, so as to eliminate them by nuclear fission. There are good reasons for examining the idea in detail, and studies have been carried out in a number of countries. These have culminated recently in international conferences at the European Joint Research Centre at Ispra in Italy and at Austin, Texas in the USA as well as in the issue of an IAEA Technical Report entitled An Evaluation of Actinide Partitioning and Transmutation, a product of a four-year IAEA Co-ordinated Research Programme, on which the present article is based. The term partitioning refers to the separation of the actinides from nuclear fuel cycle wastes, a necessary preliminary step to their introduction into reactors for transmutation by nuclear fission. The complete scheme will be referred to as P-T, i.e. partitioning-transmutation

  4. Actinide isotopic analysis systems

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Ruhter, W.D.; Gunnink, R.

    1990-01-01

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  5. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions

  6. Nuclear decay data: some applications and needs

    International Nuclear Information System (INIS)

    Reich, C.W.

    1985-01-01

    Nuclear decay data have broad relevance to a number of basic scientific disciplines as well as to many areas of technology. In this paper we discuss selected applications where decay data are making, or promise to make, important contributions. The following specific illustrations are discussed: the large body of precise new actinide-nuclide decay data produced through the work of the recently concluded IAEA Coordinated Research Program on the Measurement and Evaluation of Transactinium Isotope Nuclear Decay Data; the use of actinide-nuclide half-lives as reference standards in nuclear-data measurements; and the relevance of short-lived fission-product decay data to basic physics and reactor technology and some of the problems and challenges that they present to both theory and experiment

  7. Thermochemical and thermophysical properties of minor actinide compounds

    International Nuclear Information System (INIS)

    Minato, Kazuo; Takano, Masahide; Otobe, Haruyoshi; Nishi, Tsuyoshi; Akabori, Mitsuo; Arai, Yasuo

    2009-01-01

    Burning or transmutation of minor actinides (MA: Np, Am, Cm) that are classified as the high-level radioactive waste in the current nuclear fuel cycle is an option for the advanced nuclear fuel cycle. Although the thermochemical and thermophysical properties of minor actinide compounds are essential for the design of MA-bearing fuels and analysis of their behavior, the experimental data on minor actinide compounds are limited. To support the research and development of the MA-bearing fuels, the property measurements were carried out on minor actinide nitrides and oxides. The lattice parameters and their thermal expansions were measured by high-temperature X-ray diffractometry. The specific heat capacities were measured by drop calorimetry and the thermal diffusivities by laser-flash method. The thermal conductivities were determined by the specific heat capacities, thermal diffusivities and densities. The oxygen potentials were measured by electromotive force method.

  8. General survey of applications which require actinide nuclear data

    International Nuclear Information System (INIS)

    Raman, S.

    1976-01-01

    This review paper discusses the actinide waste problem, the buildup of toxic isotopes in the fuel, the neutron activity associated with irradiated fuel, the 252 Cf buildup problem, and the production of radioisotope power sources as broad areas that require actinide cross-section data. Decay data enter into the area of radiological safety and health physics. This paper also discusses a few cross-section measurements in progress at the Oak Ridge Electron Linear Accelerator. The availability of actinide samples through the Transuranium Program at Oak Ridge is discussed in considerable detail. The present data status with respect to the various applications is reviewed along with recommendations for improving the data base

  9. Decay heat removal for the liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Zemanick, P.P.; Brown, N.W.

    1975-01-01

    The functional and reliability requirements of the decay heat removal systems are described. The reliability requirement and its rationale as adequate assurance that public health and safety are safeguarded are presented. The means by which the reliability of the decay heat removal systems are established to meet their requirement are identified. The heat removal systems and their operating characteristics are described. The discussion includes the overflow heat removal service and its role in decay heat removal if needed. The details of the systems are described to demonstrate the elements of redundancy and diversity in the systems design. The quantitative reliability assessment is presented, including the reliability model, the most important assumptions on which the analysis is based, sources of failure data, and the preliminary numerical results. Finally, the qualitative analyses and administrative controls will be discussed which ensure reliability attainment in design, fabrication, and operation, including minimization of common mode failures. A component test program is planned to provide reliability data on selected critical heat removal system equipment. This test plan is described including a definition of the test parameters of greatest interest and the motivation for the test article selection. A long range plan is also in place to collect plant operational data and the broad outlines of this plan are described. A statement of the high reliability of the Clinch River Breeder reactor Plant decay heat removal systems and a summary of the supporting arguments is presented. (U.S.)

  10. Decay Heat Removal for the Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zemanick, P. P.; Brown, N. W.

    1975-10-15

    The functional and reliability requirements of the decay heat removal systems are described. The reliability requirement and its rationale as adequate assurance that public health and safety are safeguarded are presented. The means by which the reliability of the decay heat removal systems are established to meet their requirement are identified. The heat removal systems and their operating characteristics are described. The discussion includes the overflow heat removal service and its role in decay heat removal if needed. The details of the systems are described to demonstrate the elements of redundancy and diversity in the systems design. The quantitative reliability assessment is presented, including the reliability model, the most important assumptions on which the analysis is based, sources of failure data, and the preliminary numerical results. Finally, the qualitative analyses and administrative controls will be discussed which ensure reliability attainment in design, fabrication, and operation, including minimization of common mode failures. A component test program is planned to provide reliability data on selected critical heat removal system equipment. This test plan is described including a definition of the test parameters of greatest interest and the motivation for the test article selection. A long range plan is also in place to collect plant operational data and the broad outlines of this plan are described. The paper closes with a statement of the high reliability of the Clinch River Breeder Reactor Plant decay heat removal systems and a summary of the supporting arguments. (author)

  11. Decay Heat Calculations for Reactors: Development of a Computer Code ADWITA

    International Nuclear Information System (INIS)

    Raj, Devesh

    2015-01-01

    Estimation of release of energy (decay heat) over an extended period of time after termination of neutron induced fission is necessary for determining the heat removal requirements when the reactor is shutdown, and for fuel storage and transport facilities as well as for accident studies. A Fuel Cycle Analysis Code, ADWITA (Activation, Decay, Waste Incineration and Transmutation Analysis) which can generate inventory based on irradiation history and calculate radioactivity and decay heat for extended period of cooling, has been written. The method and data involved in Fuel Cycle Analysis Code ADWITA and some results obtained shall also be presented. (author)

  12. Actinide production in the reaction of heavy ions with curium-248

    International Nuclear Information System (INIS)

    Moody, K.J.

    1983-07-01

    Chemical experiments were performed to examine the usefulness of heavy ion transfer reactions in producing new, neutron-rich actinide nuclides. A general quasi-elastic to deep-inelastic mechanism is proposed, and the utility of this method as opposed to other methods (e.g. complete fusion) is discussed. The relative merits of various techniques of actinide target synthesis are discussed. A description is given of a target system designed to remove the large amounts of heat generated by the passage of a heavy ion beam through matter, thereby maximizing the beam intensity which can be safely used in an experiment. Also described is a general separation scheme for the actinide elements from protactinium (Z=91) to mendelevium (Z=101), and fast specific procedures for plutonium, americium and berkelium. The cross sections for the production of several nuclides from the bombardment of 248 Cm with 18 O, 86 Kr and 136 Xe projectiles at several energies near and below the Coulomb barrier were determined. The results are compared with yields from 48 Ca and 238 U bombardments of 248 Cm. Simple extrapolation of the product yields into unknown regions of charge and mass indicates that the use of heavy ion transfer reactions to produce new, neutron-rich above-target species is limited. The substantial production of neutron-rich below-target species, however, indicates that with very heavy ions like 136 Xe and 238 U the new species 248 Am, 249 Am and 247 Pu should be produced with large cross sections from a 248 Cm target. A preliminary, unsuccessful attempt to isolate 247 Pu is outlined. The failure is probably due to the half life of the decay, which is calculated to be less than 3 minutes. The absolute gamma ray intensities from 251 Bk decay, necessary for calculating the 251 Bk cross section, are also determined

  13. Jeff-3 and decay heat calculations

    International Nuclear Information System (INIS)

    Huynh, T.D.

    2009-07-01

    The decay heat power, i.e. the residual heat generated by irradiated nuclear fuels, is a significant parameter to define the power of a reactor. A good evaluation of this power depends both on the accuracy of the processing algorithm and on the quality of the physical data used. This report describes the steps carried out, ranging from tests of consistency to the validation by calculations - experiments comparisons, allowing to choose the validated nuclear data. We have compared the Jeff-3 evaluation (only the file 8 containing decay data) with the Jeff-2.2 and Endf/B7.O evaluations through the computation of residual power. It appears that the residual powers computed by the DARWIN code from Jeff-3.1.1 data for short times agree more with experimental data. There is a slight discrepancy (∼ 2%) between Jeff-3.1 and Jeff-3.1.1 on the total residual power computed for PWR UO 2 fuel. For long decay times the discrepancy is more significant between Jeff-3.1.1 and Jeff-2 on the computation of detailed residual powers because some prevailing isotopes have more formation channels taken into account in Jeff-3 and Jeff-3.1.1 than in Jeff-2

  14. Method for removal of decay heat of radioactive substances

    International Nuclear Information System (INIS)

    Hesky, H.; Wunderer, A.

    1981-01-01

    In this process, the decay heat from radioactive substances is removed by means of a liquid carried in the coolant loop. The liquid is partially evaporated by the decay heat. The steam is used to drive the liquid through the loop. When a static pressure level equivalent to the pressure drop in the loop is exceeded, the steam is separated from the liquid, condensed, and the condensate is reunited with the return flow of liquid for partial evaporation. (orig.) [de

  15. Identification of new neutron-rich actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Oura, Yasuji; Sakama, Minoru; Ohyama, T. [Tokyo Metropolitan Univ. (Japan)] [and others

    1999-10-01

    To advance research on new neutron-deficient actinide isotopes using an on-line isotope separator combined with a gas-jet injector installed in the JAERI Tandem accelerator, Tokai, performance test of the equipment was carried out. Efficiency of the product isotopes being transported from the target chamber to the measuring system was greatly improved by employing lead iodides (PbI{sub 2}) as the aerosol carrier. With the help of this technique, the authors succeeded in synthesizing and identifying actinide isotopes, {sup 235}Am and {sup 236}Am, and measured their alpha-decay half-life. (S. Ohno)

  16. On the influence of the americium isotopic vector on the cooling time of minor actinides bearing blankets in fast reactors

    Directory of Open Access Journals (Sweden)

    Kooyman Timothée

    2018-01-01

    Full Text Available In the heterogeneous minor actinides transmutation approach, the nuclei to be transmuted are loaded in dedicated targets often located at the core periphery, so that long-lived heavy nuclides are turned into shorter-lived fission products by fission. To compensate for low flux level at the core periphery, the minor actinides content in the targets is set relatively high (around 20 at.%, which has a negative impact on the reprocessing of the targets due to their important decay heat level. After a complete analysis of the main contributors to the heat load of the irradiated targets, it is shown here that the choice of the reprocessing order of the various feeds of americium from the fuel cycle depends on the actual limit for fuel reprocessing. If reprocessing of hot targets is possible, it is more interesting to reprocess first the americium feed with a high 243Am content in order to limit the total cooling time of the targets, while if reprocessing of targets is limited by their decay heat, it is more interesting to wait for an increase in the 241Am content before loading the americium in the core. An optimization of the reprocessing order appears to lead to a decrease of the total cooling time by 15 years compared to a situation where all the americium feeds are mixed together when two feeds from SFR are considered with a high reprocessing limit.

  17. Sensitivity and uncertainty analysis for fission product decay heat calculations

    International Nuclear Information System (INIS)

    Rebah, J.; Lee, Y.K.; Nimal, J.C.; Nimal, B.; Luneville, L.; Duchemin, B.

    1994-01-01

    The calculated uncertainty in decay heat due to the uncertainty in basic nuclear data given in the CEA86 Library, is presented. Uncertainties in summation calculation arise from several sources: fission product yields, half-lives and average decay energies. The correlation between basic data is taken into account. The uncertainty analysis were obtained for thermal-neutron-induced fission of U235 and Pu239 in the case of burst fission and irradiation time. The calculated decay heat in this study is compared with experimental results and with new calculation using the JEF2 Library. (from authors) 6 figs., 19 refs

  18. The effect of load factor on fission product decay heat from discharged reactor fuel

    International Nuclear Information System (INIS)

    Davies, B.S.J.

    1978-07-01

    A sum-of-exponentials expression representing the decay heat power following a burst thermal irradiation of 235 U has been used to investigate the effect of load factor during irradiation on subsequent decay heat production. A sequence of random numbers was used to indicate reactor 'on' and 'off' periods for irradiations which continued for a total of 1500 days at power and were followed by 100 days cooling. It was found that for these conditions decay heat is almost proportional to load factor. Estimates of decay heat uncertainty arising from the random irradiation pattern are also given. (author)

  19. A passive decay heat removal system for LWRs based on air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan); Yano, Takahiro [Graduate School of Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan)

    2015-05-15

    Highlights: • A passive decay heat removal system for LWRs is discussed. • An air cooler model which condenses steam is developed. • The decay heat can be removed by air coolers with forced convection. • The dimensions of the air cooler are proposed. - Abstract: The present paper describes the capability of an air cooling system (ACS) to remove decay heat from a core of LWR such as an advanced boiling water reactor (ABWR) and a pressurized water reactor (PWR). The motivation of the present research is the Fukushima severe accident (SA) on 11 March 2011. Since emergency cooling systems using electricity were not available due to station blackout (SBO) and malfunctions, many engineers might understand that water cooling was not completely reliable. Therefore, a passive decay heat removal (DHR) system would be proposed in order to prevent such an SA under the conditions of an SBO event. The plant behaviors during the SBO are calculated using the system code NETFLOW++ for the ABWR and PWR with the ACS. Two types of air coolers (ACs) are applied for the ABWR, i.e., a steam condensing air cooler (SCAC) of which intake for heat transfer tubes is provided in the steam region, and single-phase type of which intake is provided in the water region. The DHR characteristics are calculated under the conditions of the forced air circulation and also the natural air convection. As a result of the calculations, the decay heat can be removed safely by the reasonably sized ACS when heat transfer tubes are cooled with the forced air circulation. The heat removal rate per one finned heat transfer tube is evaluated as a function of air flow rate. The heat removal rate increases as a function of the air flow rate.

  20. Overview report of RAMONA-NEPTUN program on passive decay heat removal

    International Nuclear Information System (INIS)

    Weinberg, D.; Rust, K.; Hoffmann, H.

    1996-03-01

    The design of the advanced sodium-cooled European Fast Reactor provides a safety graded decay heat removal concept which ensures the coolability of the primary system by natural convection when forced cooling is lost. The findings of the RAMONA and NEPTUN experiments indicate that the decay heat can be safely removed by natural convection. The operation of the decay heat exchangers being installed in the upper plenum causes the formation of a thermal stratification associated with a pronounced temperature gradient. The vertical extent of the stratification and the qualitity of the gradient are depending on the fact whether a permeable or an impermeable shell covers the above core structure. A delayed startup time of the decay heat exchangers leads only to a slight increase of the temperatures in the upper plenum. A complete failure of half of the decay heat exchangers causes a higher temperature level in the primary system, but does not alter the global temperature distribution. The transient development of the temperatures is faster going on in a three-loop model than in a four-loop model due to the lower amount of heat stored in the compacter primary vessel. If no coolant reaches the core inlet side via the intermediate heat exchangers, the core remains coolable. In this case, cold water of the upper plenum penetrates into the subassemblies (thermosyphon effects) and the interwrapper spaces existing in the NEPTUN core. The core coolability from above is feasible without any difficulty though the temperatures increase to a minor degree at the top end of the core. The thermal hydraulic computer code FLUTAN was applied for the 3D numerical simulation of the majority of the steady state RAMONA and NEPTUN tests as well as for selected transient RAMONA tests. (orig./HP) [de

  1. Development of a fast reactor for minor actinides transmutation - (1) Overview and method development - 5092

    International Nuclear Information System (INIS)

    Takeda, T.; Usami, S.; Fujimura, K.; Takakuwa, M.

    2015-01-01

    The Ministry of Education, Culture, Sports, Science and Technology in Japan has launched a national project entitled 'technology development for the environmental burden reduction' in 2013. The present study is one of the studies adopted as the national project. The objective of the study is the efficient and safe transmutation and volume reduction of minor actinides (MA) with long-lived radioactivity and high decay heat contained in high level radioactive wastes by using sodium cooled fast reactors. We are developing MA transmutation core concepts which harmonize efficient MA transmutation with core safety. To accurately design the core concepts we have improved calculation methods for estimating the transmutation rate of individual MA nuclides, and estimating and reducing uncertainty of MA transmutation. The overview of the present project is first described. Then the method improvement is presented with numerical results for a minor-actinide transmutation fast reactor. The analysis is based on Monju reactor data. (authors)

  2. Experience with after-shutdown decay heat removal - BWRs and PWRs

    International Nuclear Information System (INIS)

    Haugh, J.J.; Mollerus, F.J.; Booth, H.R.

    1992-01-01

    Boiling-water reactors (BWRs) and pressurized-water reactors (PWRs) make use of residual heat removal systems (RHRSs) during reactor shutdown. RHRS operational events involving an actual loss or significant degradation of an RHRS during shutdown heat removal are often prompted or aggravated by complex, changing plant conditions and by concurrent maintenance operations. Events involving loss of coolant inventory, loss of decay heat removal capability, or inadvertent pressurization while in cold shutdown have occurred. Because fewer automatic protective fetures are operative during cold shutdowns, both prevention and termination of events depend heavily on operator action. The preservation of RHRS cooling should be an important priority in all shutdown operations, particularly where there is substantial decay heat and a reduced water inventory. 13 refs., 3 figs., 4 tabs

  3. A proposed Regulatory Guide basis for spent fuel decay heat

    International Nuclear Information System (INIS)

    Hermann, O.W.; Parks, C.V.; Renier, J.P.

    1991-01-01

    A proposed revision to Regulatory Guide 3.54, ''Spent Fuel Heat Generation in an Independent Spent Fuel Storage Installation'' has been developed for the US Nuclear Regulatory Commission. The proposed revision includes a data base of decay heat rates calculated as a function of burnup, specific power, cooling time, initial fuel 235 U enrichment and assembly type (i.e., PWR or BWR). Validation of the calculational method was done by comparison with existing measured decay heat rates. Procedures for proper use of the data base, adjustment formulae accounting for effects due to differences in operating history and initial enrichment, and a defensible safety factor were derived. 15 refs., 6 tabs

  4. Biological pathways and chemical behavior of plutonium and other actinides in the environment

    International Nuclear Information System (INIS)

    Dahlman, R.C.; Bondietti, E.A.; Eyman, L.D.

    1976-01-01

    The principal long-lived actinide elements that may enter the environment from either U or Pu fuel cycles are Pu, Am, Cm, and Np. Approximately 25% of the alpha activity estimated to be released to the atmosphere from the LMFBR fuel cycle will be contributed by 241 Am, 242 Cm, and 244 Cm. The balance of the alpha activity will come from Pu isotopes. Activities of 242 Cm, 244 Cm, 241 Am, 243 Am, and 237 Np in waste may exceed concentrations of Pu isotopes in waste after various periods of decay. Thorium and uranium isotopes may also be released by operations of the thorium fuel cycle. Environmental actinides are discussed under the following headings: sources of man-made actinide elements; pathways of exposure; environmental chemistry of actinides; uptake of actinides by plants; distribution of actinides in components of White Oak Lake; entry of actinides into terrestrial food chains; relationship between chemical behavior and uptake of actinides by organisms; and behavior of Pu in freshwater and marine food chains

  5. A decay heat removal methodology for reuseable orbital transfer vehicles

    Science.gov (United States)

    McDaniel, Patrick J.; Perkins, David R.

    1992-07-01

    Operation of a nuclear thermal rocket(NTR) as the propulsion system for a reusable orbital transfer vehicle has been considered. This application is the most demanding in terms of designing a multiple restart capability for an NTR. The requirements on a NTR cooling system associated with the nuclear decay heat stored during operation have been evaluated, specifically for a Particle Bed Reactor(PBR) configuration. A three mode method of operation has been identified as required to adequately remove the nuclear decay heat.

  6. AEA studies on passive decay heat removal in advanced reactors

    International Nuclear Information System (INIS)

    Lillington, J.N.

    1994-01-01

    The main objectives of the UK study were: to identify, describe and compare different types of systems proposed in current designs; to identify key scenarios in which passive decay heat removal systems play an important preventative or mitigative role; to assess the adequacy of the relevant experimental database; to assess the applicability and suitability of current generation models/codes for predicting passive decay heat removal; to assess the potential effectiveness of different systems in respect of certain key licensing questions

  7. Passive decay heat removal from the core region

    International Nuclear Information System (INIS)

    Hichen, E.F.; Jaegers, H.

    2002-01-01

    The decay heat in commercial Light Water Reactors is commonly removed by active and redundant safety systems supported by emergency power. For advanced power plant designs passive safety systems using a natural circulation mode are proposed: several designs are discussed. New experimental data gained with the NOKO and PANDA facilities as well as operational data from the Dodewaard Nuclear Power Plant are presented and compared with new calculations by different codes. In summary, the effectiveness of these passive decay heat removal systems have been demonstrated: original geometries and materials and for the NOKO facility and the Dodewaard Reactor typical thermal-hydraulic inlet and boundary conditions have been used. With several codes a good agreement between calculations and experimental data was achieved. (author)

  8. A passive decay-heat removal system for an ABWR based on air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan); Yano, Takahiro [School of Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan)

    2017-01-15

    Highlights: • A passive decay heat removal system for an ABWR is discussed using combined system of the reactor and an air cooler. • Effect of number of pass of the finned heat transfer tubes on heat removal is investigated. • The decay heat can be removed by air coolers with natural convection. • Two types of air cooler are evaluated, i.e., steam condensing and water cooling types. • Measures how to improve the heat removal rate and to make compact air cooler are discussed. - Abstract: This paper describes the capability of an air cooling system (ACS) operated under natural convection conditions to remove decay heat from the core of an Advanced Boiling Water Reactor (ABWR). The motivation of the present research is the Fukushima Severe Accident (SA). The plant suffered damages due to the tsunami and entered a state of Station Blackout (SBO) during which seawater cooling was not available. To prevent this kind of situation, we proposed a passive decay heat removal system (DHRS) in the previous study. The plant behavior during the SBO was calculated using the system code NETFLOW++ assuming an ABWR with the ACS. However, decay heat removal under an air natural convection was difficult. In the present study, a countermeasure to increase heat removal rate is proposed and plant transients with the ACS are calculated under natural convection conditions. The key issue is decreasing pressure drop over the tube banks in order to increase air flow rate. The results of the calculations indicate that the decay heat can be removed by the air natural convection after safety relief valves are actuated many times during a day. Duct height and heat transfer tube arrangement of the AC are discussed in order to design a compact and efficient AC for the natural convection mode. As a result, a 4-pass heat transfer tubes with 2-row staggered arrangement is the candidate of the AC for the DHRS under the air natural convection conditions. The heat removal rate is re-evaluated as

  9. Gas core reactors for actinide transmutation and breeder applications. Annual report

    International Nuclear Information System (INIS)

    Clement, J.D.; Rust, J.H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions

  10. Analytical evaluation of actinide sensitivities

    International Nuclear Information System (INIS)

    Sola, A.

    1977-01-01

    The analytical evaluation of the sensitivities of actinides to various parameters such as cross sections, decay constants, flux and time is presented. The formulae are applied to isotopes of the Uranium, Neptunium, Plutonium and Americium series. The agreement between analytically obtained and computer evaluated sensitivities being always good, it is throught that the formulation includes all the important parameters entering in the evaluation of sensitivities. A study of the published data is made

  11. Tests for removal of decay heat by natural convection

    International Nuclear Information System (INIS)

    Kashiwagi, E.; Wataru, M.; Gomi, Y.; Hattori, Y.; Ozaki, S.

    1993-01-01

    Interim storage technology for spent fuel by dry storage casks have been investigated. The casks are vertically placed in a storage building. The decay heat is removed from the outer cask surface by natural convection of air entering from the building wall to the roof. The air flow pattern in the storage building was governed by the natural driving pressure difference and circulating flow. The purpose of this study is to understand the mechanism of the removal of decay heat from casks by natural convection. The simulated flow conditions in the building were assumed as a natural and forced combined convection and were investigated by the turbulent quantities near wall. (author)

  12. Analysis of a convection loop for GFR post-LOCA decay heat removal

    International Nuclear Information System (INIS)

    Williams, W.C.; Hejzlar, P.; Saha, P.

    2004-01-01

    A computer code (LOCA-COLA) has been developed at MIT for steady state analysis of convective heat transfer loops. In this work, it is used to investigate an external convection loop for decay heat removal of a post-LOCA gas-cooled fast reactor (GFR). The major finding is that natural circulation cooling of the GFR is feasible under certain circumstances. Both helium and CO 2 cooled system components are found to operate in the mixed convection regime, the effects of which are noticeable as heat transfer enhancement or degradation. It is found that CO 2 outdoes helium under identical natural circulation conditions. Decay heat removal is found to have a quadratic dependence on pressure in the laminar flow regime and linear dependence in the turbulent flow regime. Other parametric studies have been performed as well. In conclusion, convection cooling loops are a credible means for GFR decay heat removal and LOCA-COLA is an effective tool for steady state analysis of cooling loops. (authors)

  13. Evaluation of actinide partitioning and transmutation in light-water reactors

    International Nuclear Information System (INIS)

    Collins, Emory D.; Renier, John-Paul

    2004-01-01

    Advanced Fuel Cycle Initiative (AFCI) studies were made to evaluate the feasibility of multicycle transmutation of plutonium and the minor actinides (MAs) in light-water reactors (LWRs). Results showed that significant repository benefits, cost reductions, proliferation resistance, and effective use of facilities can be obtained. Key advantages are shown to be made possible by processing 30-year-decayed spent fuel rather than the more traditional 5-year-decayed fuel. (authors)

  14. Observation of large scissors resonance strength in actinides.

    Science.gov (United States)

    Guttormsen, M; Bernstein, L A; Bürger, A; Görgen, A; Gunsing, F; Hagen, T W; Larsen, A C; Renstrøm, T; Siem, S; Wiedeking, M; Wilson, J N

    2012-10-19

    The orbital M1 scissors resonance has been measured for the first time in the quasicontinuum of actinides. Particle-γ coincidences are recorded with deuteron and (3)He-induced reactions on (232)Th. The residual nuclei (231,232,233)Th and (232,233) Pa show an unexpectedly strong integrated strength of B(M1)=11-15μ(n)(2) in the E(γ)=1.0-3.5 MeV region. The increased γ-decay probability in actinides due to scissors resonance is important for cross-section calculations for future fuel cycles of fast nuclear reactors and may also have an impact on stellar nucleosynthesis.

  15. WAD, a program to calculate the heat produced by alpha decay

    International Nuclear Information System (INIS)

    Jarvis, R.G.; Bretzlaff, C.I.

    1982-09-01

    The FORTRAN program WAD (Watts from Alpha Decay) deals with the alpha and beta decay chains to be encountered in advanced fuel cycles for CANDU reactors. The data library covers all necessary alpha-emitting and beta-emitting nuclides and the program calculates the heat produced by alpha decay. Any permissible chain can be constructed very simply

  16. Decay heat measurement on fusion reactor materials and validation of calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro; Wada, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Decay heat rates for 32 fusion reactor relevant materials irradiated with 14-MeV neutrons were measured for the cooling time period between 1 minute and 400 days. With using the experimental data base, validity of decay heat calculation systems for fusion reactors were investigated. (author)

  17. On Error Analysis of ORIGEN Decay Data Library Based on ENDF/B-VII.1 via Decay Heat Estimation after a Fission Event

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Gil, Choong-Sup; Lee, Young-Ouk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The method is strongly dependent on the available nuclear structure data, i.e., fission product yield data and decay data. Consequently, the improvements in the nuclear structure data could have guaranteed more reliable decay heat estimation for short cooling times after fission. The SCALE-6.1.3 code package includes the ENDF/B-VII.0-based fission product yield data and ENDF/B-VII.1-based decay data libraries for the ORIGEN-S code. The generation and validation of the new ORIGEN-S yield data libraries based on the recently available fission product yield data such as ENDF/B-VII.1, JEFF-3.1.1, JENDL/FPY-2011, and JENDL-4.0 have been presented in the previous study. According to the study, the yield data library in the SCALE-6.1.3 could be regarded as the latest one because it resulted in almost the same outcomes as the ENDF/B-VII.1. A research project on the production of the nuclear structure data for decay heat estimation of nuclear fuel has been carried out in Korea Atomic Energy Research Institute (KAERI). The data errors contained in the ORIGEN-S decay data library of SCALE-6.1.3 have been clearly identified by their changing variables. Also, the impacts of the decay data errors have been analyzed by estimating the decay heats for the fission product nuclides and their daughters after {sup 235}U thermal-neutron fission. Although the impacts of decay data errors are quite small, it reminds us the possible importance of decay data when estimating the decay heat for short cooling times after a fission event.

  18. Evaluation of Heat Removal Performance of Passive Decay Heat Removal system for S-CO{sub 2} Cooled Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; Lee, Jeong Ik; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The modular systems is able to be transported by large trailer. Moreover, dry cooling system is applied for waste heat removal. The characteristics of MMR takes wide range of construction area from coast to desert, isolated area and disaster area. In MMR, Passive decay heat removal system (PDHRS) is necessary for taking the advantage on selection of construction area where external support cannot be offered. The PDHRS guarantees to protect MMR without external support. In this research, PDHRS of MMR is introduced and decay heat removal performance is analyzed. The PDHRS guarantees integrity of reactor coolant system. The high level of decay heat (2 MW) can be removed by PDHRS without offsite power.

  19. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    Directory of Open Access Journals (Sweden)

    Nuttin A.

    2012-02-01

    Full Text Available The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX and uranium/plutonium mixed oxide (MOX fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated.

  20. Feasibility studies of actinide recycle in LMFBRs as a waste management alternative

    International Nuclear Information System (INIS)

    Beaman, S.L.; Aitken, E.A.

    1976-01-01

    A strategy of actinide burnup in LMFBRs is being investigated as a waste management alternative to long term storage of high level nuclear waste. This strategy is being evaluated because many of the actinides in the waste from spent-fuel reprocessing have half-lives of thousands of years and an alternative to geological storage may be desired. From a radiological viewpoint, the actinides and their daughters dominate the waste hazard for decay times beyond about 400 years. Actinide burnup in LMFBRs may be an attractive alternative to geological storage because the actinides can be effectively transmuted to fission products which have significantly shorter half-lives. Actinide burnup in LMFBRs rather than LWRs is preferred because the ratio of fission reaction rate to capture reaction rate for the actinides is higher in an LMFBR, and an LMFBR is not so sensitive to the addition of the actinide isotopes. An actinide target assembly recycle scheme is evaluated to determine the effects of the actinides on the LMFBR performance, including local power peaking, breeding ratio, and fissile material requirements. Several schemes are evaluated to identify any major problems associated with reprocessing and fabrication of recycle actinide-containing assemblies. The overall efficiency of actinide burnout in LMFBRs is evaluated, and equilibrium cycle conditions are determined. It is concluded that actinide recycle in LMFBRs offers an attractive alternative to long term storage of the actinides, and does not significantly affect the performance of the host LMFBR. Assuming a 0.1 percent or less actinide loss during reprocessing, a 0.1 percent loss of less during fabrication, and proper recycle schemes, virtually all of the actinides produced by a fission reactor economy could be transmuted in fast reactors

  1. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  2. Molecular dynamics studies of actinide nitrides

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke; Minato, Kazuo

    2004-01-01

    The molecular dynamics (MD) calculation was performed for actinide nitrides (UN, NpN, and PuN) in the temperature range from 300 to 2800 K to evaluate the physical properties viz., the lattice parameter, thermal expansion coefficient, compressibility, and heat capacity. The Morse-type potential function added to the Busing-Ida type potential was employed for the ionic interactions. The interatomic potential parameters were determined by fitting to the experimental data of the lattice parameter. The usefulness and applicability of the MD method to evaluate the physical properties of actinide nitrides were studied. (author)

  3. Current status of decay heat measurements, evaluations, and needs

    International Nuclear Information System (INIS)

    Dickens, J.K.

    1986-01-01

    Over a decade ago serious concern over possible consequences of a loss-of-coolant accident in a commercial light-water reactor prompted support of several experiments designed specifically to measure the latent energy of beta-ray and gamma-ray emanations from fission products for thermal reactors. This latent energy was termed Decay Heat. At about the same time the American Nuclear Society convened a working group to develop a standard for use in computing decay heat in real reactor environs primarily for regulatory requirements. This working group combined the new experimental results and best evaluated data into a standard which was approved by the ANS and by the ANSI. The primary work since then has been (a) on improvements to computational efforts and (b) experimental measurements for fast reactors. In addition, the need for decay-heat data has been extended well beyond the time regime of a loss-of-coolant accident; new concerns involve, for example, away-from-reactor shipments and storage. The efficacy of the ANS standard for these longer time regimes has been a subject of study with generally positive results. However, a specific problem, namely, the consequences of fission-product neutron capture, remains contentious. Satisfactory resolution of this problem merits a high priority. 31 refs

  4. Few atom chemistry of the trans actinide element rutherfordium (Rf)

    International Nuclear Information System (INIS)

    Nagame, Y.

    2002-01-01

    Studies of chemical properties of the trans actinide elements - starting with element 104 (Rf) - offer the unique opportunity to obtain information about trends in the Periodic Table at the limits of nuclear stability and to assess the magnitude of the influence of relativistic effects on chemical properties. To explore experimentally the influence of relativistic effects of electron shell structure, we study the chemical properties of the trans actinide elements. So far, we have developed some experimental apparatuses for the study of chemical properties of the trans actinide elements: a beam-line safety system for the usage of the gas-jet coupled radioactive 248 Cm target chamber for the production of trans actinides, a rotating wheel catcher apparatus for the measurement of α particles and spontaneous fission decay of trans actinides and an automated rapid chemical separation apparatus based on high performance liquid chromatography. The trans actinide nuclide, the element 104, 261 Rf (t 1/2 = 78 s) has been successfully produced via the reactions of 248 Cm( 18 O,5n) at the JAERI (Japan Atomic Energy Research Institute) tandem accelerator. The evaluated production cross section was about 10 nb, indicating that the production rate was approximately 2 atoms per min. Because of the short half-life and the low production rate of Rf, each atom produced decays before a new atom is synthesized. It means that any chemistry to be performed must be done on an 'atom-at-a-time' basis. Therefore rapid, very efficient and selective chemical procedures are indispensable to isolate the desired trans actinide 261 Rf. To perform fast and repetitive ion-exchange separation of Rf, we have developed the apparatus AIDA (Automated Ion exchange separation system coupled with the Detection apparatus for Alpha spectroscopy). Recently, ion-exchange behavior of Rf in acidic solutions has been studied with AIDA, and the results indicate that anion-exchange behavior of Rf is quite similar

  5. Post shut-down decay heat removal from nuclear reactor core by natural convection loops in sodium pool

    Energy Technology Data Exchange (ETDEWEB)

    Rajamani, A. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Sundararajan, T., E-mail: tsundar@iitm.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Prasad, B.V.S.S.S. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Parthasarathy, U.; Velusamy, K. [Nuclear Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2016-05-15

    Highlights: • Transient simulations are performed for a worst case scenario of station black-out. • Inter-wrapper flow between various sub-assemblies reduces peak core temperature. • Various natural convection paths limits fuel clad temperatures below critical level. - Abstract: The 500 MWe Indian pool type Prototype Fast Breeder Reactor (PFBR) has a passive core cooling system, known as the Safety Grade Decay Heat Removal System (SGDHRS) which aids to remove decay heat after shut down phase. Immediately after reactor shut down the fission products in the core continue to generate heat due to beta decay which exponentially decreases with time. In the event of a complete station blackout, the coolant pump system may not be available and the safety grade decay heat removal system transports the decay heat from the core and dissipates it safely to the atmosphere. Apart from SGDHRS, various natural convection loops in the sodium pool carry the heat away from the core and deposit it temporarily in the sodium pool. The buoyancy driven flow through the small inter-wrapper gaps (known as inter-wrapper flow) between fuel subassemblies plays an important role in carrying the decay heat from the sub-assemblies to the hot sodium pool, immediately after reactor shut down. This paper presents the transient prediction of flow and temperature evolution in the reactor subassemblies and the sodium pool, coupled with the safety grade decay heat removal system. It is shown that with a properly sized decay heat exchanger based on liquid sodium and air chimney stacks, the post shutdown decay heat can be safely dissipated to atmospheric air passively.

  6. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  7. Analysis of decay heat removal by natural convection in PFBR

    International Nuclear Information System (INIS)

    Kasinathan, N.; Vaidyanathan, G.; Chetal, S.C.; Bhoje, S.B.

    1993-01-01

    PFBR is a 500 MWe, 1200 MWt pool type LMFBR. In order to assure reliable decay heat removal, four totally independent Safety Grade Decay Heat Removal Systems (SGDHRS) which removes heat directly from the hot pool, is provided. Each of the SGDHRS comprises of a hot pool dipped decay heat exchanger (DHX), a sodium - air heat exchanger (AHX) at a suitable elevation and associated piping and circuits. This paper brings out the step by step approach that have been taken to decide on the preliminary sizing of the SGDHRS components, and static and transient analysis to assess the adequacy of the Decay Heat Removal capacity of the SGDHRS during the worst of the foreseen design basis conditions. The maximum values the important safety related temperatures viz., clad hotspot, hot pool top surface, reactor inlet, fuel subassembly outlets etc., would reach, can be obtained only through a comprehensive transient analysis. In order to get quick and reasonably meaningful results, one dimensional thermal-hydraulics models for the core, hot and cold pools, IHX, DHX, AHX and various pipings were developed and a code DHDYN formulated. With this a total power failure situation followed by initiations of DHR half an hour later was studied and the results revealed the following: (i) clad hotspot temperature in the in-vessel stored spent fuel subassemblies could be held below 800 deg. C only if primary sodium flow through these subassemblies are increased up to three times the originally allocated flow in the design, (ii) hotpool top zone temperature reaches 572 deg. C, (iii) reactor inlet temperature reaches 482 deg. C, (iv) the hot pool top zone temperature cools down to 450 deg. C in about 25 h. Thus these results satisfactorily established the adequacy of the sizing and the capability of the SGDHRS. DHDYN code is also used to study the RAMONA water experiments conducted in Germany. Initial results available has brought out the conservative nature of the DHDYN predictions as compared

  8. Production and measurement of minor actinides in the commercial fuel cycle

    International Nuclear Information System (INIS)

    Stanbro, W.D.

    1997-03-01

    The minor actinide elements, particularly neptunium and americium, are produced as a normal byproduct of the operation of thermal power reactors. Because of the existence of long-lived isotopes of these elements, they constitute the major sources of the residual radiation in spent fuel or in wastes resulting from reprocessing. This has led to examinations by some countries of the possibility of separating the minor actinides from waste products. The papers found in this report address the production of minor actinides in common thermal power reactors as well as approaches to measure these materials in various media. The first paper in this volume, open-quotes Production of Minor Actinides in the Commercial Fuel Cycle,close quotes uses calculations with the ORIGEN2 reactor and decay code to estimate the amounts of minor actinides in spent fuel and separated plutonium as a function of reactor irradiation and the time after discharge. The second paper, open-quotes Destructive Assay of Minor Actinides,close quotes describes a number of promising approaches for the chemical analysis of minor actinides in the various forms in which they are found at reprocessing plants. The next paper, open-quotes Hybrid KED/XRF Measurement of Minor Actinides in Reprocessing Plants,close quotes uses the results of a simulation model to examine the possible applications of the hybrid KED/XRF instrument to the determination of minor actinides in some of the solutions found in reprocessing plants. In open-quotes Calorimetric Assay of Minor Actinides,close quotes the authors show some possible extensions of this powerful technique beyond the normal plutonium assays to include the minor actinides. Finally, the last paper in this volume, open-quotes Environment Measurements of Transuranic Nuclides,close quotes discusses what is known about the levels of the minor actinides in the environment and ways to analyze for these materials in environmental matrices

  9. Naturally-occurring zirconolites - analogues for the long-term encapsulation of actinides in synroc

    International Nuclear Information System (INIS)

    Hart, K.P.; Lumpkin, G.R.; Giere, R.; Williams, C.T.; McGlinn, P.J.; Payne, T.E.

    1996-01-01

    The use of natural zirconolites to assess the effect of α-decay damage and geochemical alteration on the release of actinides from HLW wasteforms is critically examined. There is evidence that the natural zirconolites provide a good chemical and radiation damage analogy for the HLW wasteforms, but additional work is required to define the geochemical environments in which zirconolite is stable or unstable (e.g., suffering corrosion or chemical alteration, including loss of actinides). (orig.)

  10. Radiation characteristics of spent fuel of heavy-water research reactor during long-term storage

    International Nuclear Information System (INIS)

    Gerasimov, A.S.; Kiselev, G.V.; Myrtsymova, L.A.; Zaritskaya, T.S.

    2002-01-01

    Decay heat power and radiotoxicity by water of actinides and fission products from spent fuel of heavy-water research reactor RA were calculated for period of storage during 300000 years. Three variants of fuel enrichment by 235 U were considered: 2%, 21%, and 80%. The mass of 235 U in one fuel element was supposed to be the same for all variants of enrichment. The decay heat power of fission products in initial period is about 20 times higher than that of actinides. Decay heat power and radiotoxicity of actinides do not practically decrease during long period of time as they are determined by nuclides with very long half-life periods. (author)

  11. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    International Nuclear Information System (INIS)

    Kooyman, T.; Buiron, L.; Rimpault, G.

    2017-01-01

    Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long- and short-term neutron and gamma source is carried out whereas in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing. (authors)

  12. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    Directory of Open Access Journals (Sweden)

    Kooyman Timothée

    2017-01-01

    Full Text Available Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long- and short-term neutron and gamma source is carried out whereas in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  13. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    Science.gov (United States)

    Kooymana, Timothée; Buiron, Laurent; Rimpault, Gérald

    2017-09-01

    Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long and short term neutron and gamma source is carried out while in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  14. Production of actinide isotopes in simulated PWR fuel and their influence on inherent neutron emission

    International Nuclear Information System (INIS)

    Bosler, G.E.; Phillips, J.R.; Wilson, W.B.; LaBauve, R.J.; England, T.R.

    1982-07-01

    This report describes calculations that examine the sensitivity of actinide isotopes to various reactor parameters. The impact of actinide isotope build-up, depletion, and decay on the neutron source rate in a spent-fuel assembly is determined, and correlations between neutron source rates and spent-fuel characteristics such as exposure, fissile content, and plutonium content are established. The application of calculations for evaluating experimental results is discussed

  15. Passive Decay Heat Removal System for Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; Lee, Jeong Ik; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    Dry cooling system is applied as waste heat removal system therefore it is able to consider wide construction site. Schematic figure of the reactor is shown in Fig. 1. In safety features, the reactor has double containment and passive decay heat removal (PDHR) system. The double containment prevents leakage from reactor coolant system to be emitted into environment. The passive decay heat removal system copes with design basis accidents (DBAs). Micros Modular Reactor (MMR) which has been being developed in KAIST is S-CO{sub 2} gas cooled reactor and shows many advantages. The S-CO{sub 2} power cycle reduces size of compressor, and it makes small size of power plant enough to be transported by trailer.The passive residual heat removal system is designed and thermal hydraulic (TH) analysis on coolant system is accomplished. In this research, the design process and TH analysis results are presented. PDHR system is designed for MMR and coolant system with the PDHR system is analyzed by MARS-KS code. Conservative assumptions are applied and the results show that PDHR system keeps coolant system under the design limitation.

  16. Decay heat rates calculated using ORIGEN-S and CINDER10 with common data libraries

    International Nuclear Information System (INIS)

    Brady, M.C.; Hermann, O.W.; Beard, C.A.; Bohnhoff, W.J.; England, T.R.

    1991-01-01

    A set of two benchmark problems were proposed as part of an international comparison of decay heat codes. Problem specifications included explicit fission-yield, decay and capture data libraries to be used in the calculations. This paper describes the results obtained using these common data to perform the benchmark calculations with two popular depletion codes, ORIGEN-S and CINDER10. Short descriptions of the methods used by each of these codes are also presented. Results from other contributors to the international comparison are discussed briefly. This comparison of decay heat codes using common data libraries demonstrates that discrepant results in calculated decay heat rates are the result of differences in the nuclear data input to the codes and not the method of solution. 15 refs., 2 figs., 8 tabs

  17. The thermodynamic functions of gaseous actinide elements

    International Nuclear Information System (INIS)

    Rand, M.H.

    1979-01-01

    The actinide gases have large number of unobserved energy states - up to 3 x 10 6 for Pu(g) - which could contribute to the partition function and its derivatives, from which the thermal functions of these gases are calculated. Existing compilations have simply ignored these levels. By making reasonable assumptions as to the distribution of these energy states, their effect on the functions can be calculated. It is concluded that the existing compilations will be inadequate above approximately 2000K. The effect is particularly marked on the heat capacity. For example, when unobserved levels for Pu(g) are included, the heat capacity of Pu(g) reaches a maximum value of more than 12R at 3200K. Similar considerations will apply to the gaseous actinide ions. (orig.) [de

  18. Study on decay heat removal capability of reactor vessel auxiliary cooling system

    International Nuclear Information System (INIS)

    Nishi, Y.; Kinoshita, I.

    1991-01-01

    The reactor vessel auxiliary cooling system (RVACS) is a simple, Passive decay heat removal system for an LMFBR. However, the heat removal capacity of this system is small compared to that of an immersed type of decay heat exchanger. In this study, a high-porosity porous body is proposed to enhance the RVACS's heat transfer performance to improve its applicability. The objectives of this study are to propose a new method which is able to use thermal radiation effectively, to confirm its heat removal capability and to estimate its applicability limit of RVACS for an LMFBR. Heat transfer tests were conducted in an experimental facility with a 3.5 m heat transfer height to evaluate the heat transfer performance of the high-porosity porous body. Using the experimental results, plant transient analyses were performed for a 300 MWe pool type LMFBR under a Total Black Out (TBO) condition to confirm the heat removal capability. Furthermore, the relationship between heat removal capability and thermal output of a reactor were evaluated using a simple parameter model

  19. Measurements of decay heat and gamma-ray intensity of spent LWR fuel assemblies

    International Nuclear Information System (INIS)

    Vogt, J.; Agrenius, L.; Jansson, P.; Baecklin, A.; Haakansson, A.; Jacobsson, S.

    1999-01-01

    Calorimetric measurements of the decay heat of a number of BWR and PWR fuel assemblies have been performed in the pools at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel, CLAB. Gamma-ray measurements, using high-resolution gamma-ray spectroscopy (HRGS), have been carried out on the same fuel assemblies in order to test if it is possible to find a simple and accurate correlation between the 137 CS -intensity and the decay heat for fuel with a cooling time longer than 10-12 years. The results up to now are very promising and may ultimately lead to a qualified method for quick and accurate determination of the decay heat of old fuel by gamma-ray measurements. By means of the gamma spectrum the operator declared data on burnup, cooling time and initial enrichment can be verified as well. CLAB provides a unique opportunity in the world to follow up the decay heat of individual fuel assemblies during several decades to come. The results will be applicable for design and operation of facilities for wet and dry interim storage and subsequent encapsulation for final disposal of the fuel. (author)

  20. Thermal-Hydraulic Analyses of Transients in an Actinide-Burner Reactor Cooled by Forced Convection of Lead Bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cliff Bybee

    2003-09-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and the Massachusetts Institute of Technology (MIT) are investigating the suitability of lead or lead–bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The current analysis evaluated a pool type design that relies on forced circulation of the primary coolant, a conventional steam power conversion system, and a passive decay heat removal system. The ATHENA computer code was used to simulate various transients without reactor scram, including a primary coolant pump trip, a station blackout, and a step reactivity insertion. The reactor design successfully met identified temperature limits for each of the transients analyzed.

  1. Decay heat removal analyses on the heavy liquid metal cooled fast breeding reactor. Comparisons of the decay heat removal characteristics on lead, lead-bismuth and sodium cooled reactors

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Ohshima, Hiroyuki; Yamaguchi, Akira

    2000-04-01

    The feasibility study on several concepts for the commercial fast breeder reactor(FBR) in future has been conducted in JNC for the kinds of possible coolants and fuel types to confirm the direction of the FBR developments in Japan. In this report, Lead and Lead-Bismuth eutectic coolants were estimated for the decay heat removal characteristics by the comparison with sodium coolant that has excellent features for the heat transfer and heat transport performance. Heavy liquid metal coolants, such as Lead and Lead-Bismuth, have desirable chemical inertness for water and atmosphere. Therefore, there are many economical plant proposals without an intermediate heat transport system that prevents the direct effect on a reactor core by the chemical reaction between water and the liquid metal coolant at the hypocritical tube failure accidents in a steam generator. In this study, transient analyses on the thermal-hydraulics have been performed for the decay heat removal events in Equivalent plant' with the Lead, Lead-Bismuth and Sodium coolant by using Super-COPD code. And a resulted optimized lead cooled plant in feasibility study was also analyzed for the comparison. In conclusion, it is become clear that the natural circulation performance, that has an important roll in passive safety characteristic of the reactor, is more excellent in heavy liquid metals than sodium coolant during the decay heat removal transients. However, we need to confirm the heat transfer reduction by the oxidized film or the corrosion products expected to appear on the heat transfer surface in the Lead and Lead-Bismuth circumstance. (author)

  2. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation

    International Nuclear Information System (INIS)

    Fiorito, L.; Diez, C.J.; Cabellos, O.; Stankovskiy, A.; Van den Eynde, G.; Labeau, P.E.

    2014-01-01

    Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235 U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation

  3. Passive safety systems for decay heat removal of MRX

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, M; Iida, H; Hoshi, T [Japan Atomic Energy Research Inst., Ibaraki (Japan). Nuclear Ship System Lab.

    1996-12-01

    The MRX (marine Reactor X) is an advanced marine reactor, its design has been studied in Japan Atomic Energy Research Institute. It is characterized by four features, integral type PWR, in-vessel type control rod drive mechanisms, water-filled containment vessel and passive decay heat removal system. A water-filled containment vessel is of great advantage since it ensures compactness of a reactor plant by realizing compact radiation shielding. The containment vessel also yields passive safety of MRX in the event of a LOCA by passively maintaining core flooding without any emergency water injection. Natural circulation of water in the vessels (reactor and containment vessels) is one of key factors of passive decay heat removal systems of MRX, since decay heat is transferred from fuel rods to atmosphere by natural circulation of the primary water, water in the containment vessel and thermal medium in heat pipe system for the containment vessel water cooling in case of long terms cooling after a LOCA as well as after reactor scram. Thus, the ideal of water-filled containment vessel is considered to be very profitable and significant in safety and economical point of view. This idea is, however, not so familiar for a conventional nuclear system, so experimental and analytical efforts are carried out for evaluation of hydrothermal behaviours in the reactor pressure vessel and in the containment vessel in the event of a LOCA. The results show the effectiveness of the new design concept. Additional work will also be conducted to investigate the practical maintenance of instruments in the containment vessel. (author). 4 refs, 9 figs, 2 tabs.

  4. A new type of active actinide target for studying fission and (n,xn) reactions

    International Nuclear Information System (INIS)

    Belier, G.; Aupiais, J.; Varignon, C.; Vayre, S.

    2011-01-01

    A new type of active target for the detection of fission of actinides has been developed, it is based on α spectrometry through liquid scintillation. The target uses the liquid-liquid extraction in order to mix the actinide with the liquid organic scintillator. The actinide to be detected is inside the detector itself which maximises the efficiency of the detector. The use of an organic scintillator allows the identification of the particles emitted. Indeed, the time delay for the transfer of the energy deposited in the solvent towards the scintillating molecules depends on the type of the energy deposits: instantaneous fluorescence is obtained for direct excitation while delayed fluorescence is obtained for energy deposits through ionization. By discriminating the different slow and quick components of the photomultiplier signal it is then possible to identify the particle: beta, alpha or fission products. This target has been tested with Cf 252 irradiated with 18 MeV neutrons, the experimental data show different peaks corresponding to alpha decay (97%), spontaneous fission (3%), beta decay and recoil protons due to neutron emissions. (A.C.)

  5. Analysis of Multiple Spurious Operation Scenarios for Decay Heat Removal Function of CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngseung; Bae, Yeon-kyoung; Kim, Myungsu [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The worst fire broke out in the Browns Ferry Nuclear Power Plant on March 22, 1975. A fire occurrence in a nuclear power plant has recognized a latently serious incident. Nuclear power plants should achieve and maintain the safe shutdown conditions during and after the occurrence of a fire. Functions of the safe shutdown are five such as the shutdown function, the decay heat removal function, the containment function, monitoring and control function, and the supporting function for CANDU type reactors. The purpose of this paper is to analyze that the decay heat removal function of the safe shutdown functions for CANDU type reactors is achieved under the fire induced multiple spurious operation. The scenarios of the fire induced multiple spurious operations (MSO) for the systems used for the decay heat cooling were analyzed. Additionally, Integrated Severe Accident Analysis code for CANDU plants (ISAAC) for determining success criteria of thermal hydraulic analysis was used. Decay heat cooling systems of CANDU reactors are the auxiliary feedwater system, the emergency water supply system, and the shutdown cooling system. A big fire can threat the safety of nuclear power plants, and safe shutdown conditions. The regulatory body in Korea requires the fire hazard analysis including fire induced MSOs. The safe shutdown functions for CANDU reactors are the shutdown function, the decay heat removal function, the containment function, the monitoring and control function, and the supporting service function. The number of spurious operations for the auxiliary feedwater system is more than six and that for the emergency water supply system is one. Additionally, misoperations for the shutdown cooling system are more than two. Accordingly, if total nine components could be spuriously operated, the decay heat removal function would be lost entirely.

  6. Analysis of Multiple Spurious Operation Scenarios for Decay Heat Removal Function of CANDU Reactors

    International Nuclear Information System (INIS)

    Lee, Youngseung; Bae, Yeon-kyoung; Kim, Myungsu

    2016-01-01

    The worst fire broke out in the Browns Ferry Nuclear Power Plant on March 22, 1975. A fire occurrence in a nuclear power plant has recognized a latently serious incident. Nuclear power plants should achieve and maintain the safe shutdown conditions during and after the occurrence of a fire. Functions of the safe shutdown are five such as the shutdown function, the decay heat removal function, the containment function, monitoring and control function, and the supporting function for CANDU type reactors. The purpose of this paper is to analyze that the decay heat removal function of the safe shutdown functions for CANDU type reactors is achieved under the fire induced multiple spurious operation. The scenarios of the fire induced multiple spurious operations (MSO) for the systems used for the decay heat cooling were analyzed. Additionally, Integrated Severe Accident Analysis code for CANDU plants (ISAAC) for determining success criteria of thermal hydraulic analysis was used. Decay heat cooling systems of CANDU reactors are the auxiliary feedwater system, the emergency water supply system, and the shutdown cooling system. A big fire can threat the safety of nuclear power plants, and safe shutdown conditions. The regulatory body in Korea requires the fire hazard analysis including fire induced MSOs. The safe shutdown functions for CANDU reactors are the shutdown function, the decay heat removal function, the containment function, the monitoring and control function, and the supporting service function. The number of spurious operations for the auxiliary feedwater system is more than six and that for the emergency water supply system is one. Additionally, misoperations for the shutdown cooling system are more than two. Accordingly, if total nine components could be spuriously operated, the decay heat removal function would be lost entirely

  7. Control of the ASTRA decay heat removal system

    International Nuclear Information System (INIS)

    Nedelik, A.

    1982-11-01

    To ensure a minimum of core cooling even under severest accident conditions (loss of reactor pool water) a core spray system for decay heat removal has been installed at the ASTRA-reactor. The automatic and manual control of the system, its power supply and test procedures are shortly described. (Author)

  8. Flexibility of ADS for minor actinides transmutation in different two-stage PWR-ADS fuel cycle scenarios

    International Nuclear Information System (INIS)

    Zhou, Shengcheng; Wu, Hongchun; Zheng, Youqi

    2018-01-01

    Highlights: •ADS reloading scheme is optimized to raise discharge burnup and lower reactivity loss. •ADS is flexible to be combined with various pyro-chemical reprocessing technologies. •ADS is flexible to transmute MAs from different spent PWR fuels. -- Abstract: A two-stage Pressurized Water Reactor (PWR)-Accelerator Driven System (ADS) fuel cycle is proposed as an option to transmute minor actinides (MAs) recovered from the spent PWR fuels in the ADS system. At the second stage, the spent fuels discharged from ADS are reprocessed by the pyro-chemical process and the recovered actinides are mixed with the top-up MAs recovered from the spent PWR fuels to fabricate the new fuels used in ADS. In order to lower the amount of nuclear wastes sent to the geological repository, an optimized scattered reloading scheme for ADS is proposed to maximize the discharge burnup and lower the burnup reactivity loss. Then the flexibility of ADS for MA transmutation is evaluated in this research. Three aspects are discussed, including: different cooling time of spent ADS fuels before reprocessing, different reprocessing loss of spent ADS fuels, and different top-up MAs recovered from different kinds of spent PWR fuels. The ADS system is flexible to be combined with various pyro-chemical reprocessing technologies with specific spent fuels cooling time and unique reprocessing loss. The reduction magnitudes of the long-term decay heat and radiotoxicity of MAs by transmutation depend on the reprocessing loss. The ADS system is flexible to transmute MAs recovered from different kinds of spent PWR fuels, regardless of UOX or MOX fuels. The reduction magnitudes of the long-term decay heat and radiotoxicity of different MAs by transmutation stay on the same order.

  9. Strategy of experimental studies in PNC on natural convection decay heat removal

    International Nuclear Information System (INIS)

    Ieda, Y.; Kamide, H.; Ohshima, H.; Sugawara, S.; Ninokata, H.

    1993-01-01

    Experimental studies have been and are being carried out in PNC to establish the design and safety evaluation methods and the design and safety evaluation guide lines for decay heat removal by natural convection. A strategy of the experimental studies in PNC is described in this paper. The sphere of studies in PNC is to develop the evaluation methods to be available to DRACS as well as PRACS and IRACS for the plant where decay heat is removed by natural convection in some cases of loss of station service power. Similarity parameters related to natural convection are derived from the governing equations. The roles of both sodium and water experiments are defined in consideration of the importance of the similarity parameters and characteristics of scale model experiments. The experimental studies in PNC are reviewed. On the basis of the experimental results, recommended evaluation methods are shown for decay heat removal feature by natural convection. Future experimental works are also proposed. (author)

  10. Ten years of experience in extraction chromatographic processes for the recovery, separation and purification of actinides elements

    International Nuclear Information System (INIS)

    Madic, C.; Bourges, J.; Koehly, G.

    1984-06-01

    Ten years ago the extraction chromatographic technique was developed for preparative purposes and is now applied for all chemicals separations needed for the production of actinides isotopes. That technique appears to be simple and flexible. It can be used for the production of microgram to kilogram amounts of actinide isotopes. This paper focuses on the experience gained and describes some peculiar production of actinide isotopes solved by using extraction chromatographic technique. After a review of extracting molecules and equipment, treatment of irradiated targets (preparation of Pu 238 and removal of neptunium, production of Am 243 and Cm 244), recovery of actinides from alpha aqueous wastes (preparation of Am 241) and recovery of decay products from aged actinide stocks (recovery of Am 241 from Pu stocks, of U 234 from Pu 238 stocks) are described

  11. Transient testing of the FFTF for decay-heat removal by natural convection

    International Nuclear Information System (INIS)

    Beaver, T.R.; Johnson, H.G.; Stover, R.L.

    1982-06-01

    This paper reports on the series of transient tests performed in the FFTF as a major part of the pre-operations testing program. The structure of the transient test program was designed to verify the capability of the FFTF to safely remove decay heat by natural convection. The series culminated in a scram from full power to complete natural convection in the plant, simulating a loss of all electrical power. Test results and acceptance criteria related to the verification of safe decay heat removal are presented

  12. Extension of hybrid micro-depletion model for decay heat calculation in the DYN3D code

    International Nuclear Information System (INIS)

    Bilodid, Yurii; Fridman, Emil; Shwageraus, E.

    2017-01-01

    This work extends the hybrid micro-depletion methodology, recently implemented in DYN3D, to the decay heat calculation by accounting explicitly for the heat contribution from the decay of each nuclide in the fuel.

  13. Extension of hybrid micro-depletion model for decay heat calculation in the DYN3D code

    Energy Technology Data Exchange (ETDEWEB)

    Bilodid, Yurii; Fridman, Emil [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety; Kotlyar, D. [Georgia Institute of Technology, Atlanta, GA (United States); Shwageraus, E. [Cambridge Univ. (United Kingdom)

    2017-06-01

    This work extends the hybrid micro-depletion methodology, recently implemented in DYN3D, to the decay heat calculation by accounting explicitly for the heat contribution from the decay of each nuclide in the fuel.

  14. Decay heat removal plan of the SNR-300: a licensed concept

    International Nuclear Information System (INIS)

    Morgenstern, F.H.; Gyr, W.; Stoetzel, H.; Vossebrecker, H.

    1976-01-01

    The report describes how the decay heat removal plan of the SNR-300 has been established in 3 essential licensing steps, thus giving a very significant example for the slow but steady progress in the overall licensing process of the plant. (1) Introduction of an ECCS in addition to the 3 main heat transfer chains as a back-up for rather unlikely and undefined occurrences, 1970; (2) Experimental and computational demonstration of a reliable functioning of the in-vessel natural convection of the fluid flow, 1974; and (3) Proof of fulfilling the general safety and specific reliability criteria for the overall decay heat removal plan; i.e., the 3 main heat transfer chains with specific installations on the steam/water system side and the ECCS, 1976. Some special problem areas, for instance the cavity concept provided for the pipe fracture accident, have still to be licensed, but they do not contribute considerably to the overall risk

  15. Radionuclide inventory and heat generation analysis in disposal of radioactive waste

    International Nuclear Information System (INIS)

    Suryanto

    1997-01-01

    Radionuclide inventory and heat generation analysis on spent nuclear fuel were done in order to study the potential radionuclides contributing radiological impact to human being caused by spent fuel disposal. The study was carried out using the Bateman equation of radionuclide decay chains for fission products and actinides. the results showed that Cs-137, Sr-90 and Pu-239 dominated inventory of spent fuel, in which Pu-238 and Pu-240 dominated heat generation during disposal. Accordingly, the above radionuclides could be considered as the reference radionuclides for safety analysis of spent nuclear fuel disposal (author)

  16. Studies related to emergency decay heat removal in EBR-II

    International Nuclear Information System (INIS)

    Singer, R.M.; Gillette, J.L.; Mohr, D.; Tokar, J.V.; Sullivan, J.E.; Dean, E.M.

    1979-01-01

    Experimental and analytical studies related to emergency decay heat removal by natural circulation in the EBR-II heat transport circuits are described. Three general categories of natural circulation plant transients are discussed and the resultant reactor flow and temperature response to these events are presented. these categories include the following: (1) loss of forced flow from decay power and low initial flow rates; (2) reactor scram with a delayed loss of forced flow; and (3) loss of forced flow with a plant protective system activated scram. In all cases, the transition from forced to natural convective flow was smooth and the peak in-core temperature rises were small to moderate. Comparisons between experimental measurements in EBR-II and analytical predictions of the NATDEMO code are included

  17. A study on the characteristics of the decay heat removal capacity for a large thermal rated LMR design

    International Nuclear Information System (INIS)

    Uh, J. H.; Kim, E. K.; Kim, S. O.

    2003-01-01

    The design characteristics and the decay heat removal capacity according to the type of DHR (Decay Heat Removal) system in LMR are quantitatively analyzed, and the general relationship between the rated core thermal power and decay heat removal capacity is created in this study. Based on these analyses results, a feasibility of designing a larger thermal rating KALIMER plant is investigated in view of decay heat removal capacity, and DRC (Direct Reactor Cooling) type DHR system which rejects heat from the reactor pool to air is proper to satisfy the decay heat removal capacity for a large thermal rating plant above 1,000 MWth. Some defects, however, including the heat loss under normal plant operation and the lack of reliance associated with system operation should be resolved in order to adopt the total passive concept. Therefore, the new concept of DHR system for a larger thermal rating KALIMER design, named as PDRC (passive decay heat removal circuit), is established in this study. In the newly established concept of PDRC, the Na-Na heat exchanger is located above the sodium cold pool and is prevented from the direct sodium contact during normal operation. This total passive feature has the superiority in the aspect of the minimizing the normal heat loss and the increasing the operation reliance of DHR system by removing either any operator action or any external operation signal associated with system operation. From this study, it is confirmed that the new concept of PDRC is useful to the designing of a large thermal rating power plant of KALIMER-600 in view of decay heat removal capability

  18. Parametric decay instabilities in ECR heated plasmas

    International Nuclear Information System (INIS)

    Porkolab, M.

    1982-01-01

    The possibility of parametric excitation of electron Bernstein waves and low frequency ion oscillations during ECR heating at omega/sub o/ approx. = l omega/sub ce/, l = 1,2 is examined. In particular, the thresholds for such instabilities are calculated. It is found that Bernstein waves and lower hybrid quasi-modes have relatively low homogeneous where T/sub e/ approx. = T/sub i/. Thus, these processes may lead to nonlinear absorption and/or scattering of the incident pump wave. The resulting Bernstein waves may lead to either more effective heating (especially during the start-up phase) or to loss of microwave energy if the decay waves propagate out of the system before their energy is absorbed by particles. While at omega/sub o/ = omega/sub UH/ the threshold is reduced due to the WKB enhancement of the pump wave, (and this instability may be important in tokamaks) in EBT's and tandem mirrors the instability at omega /sub o/ greater than or equal to 2 omega/sub ce/ may be important. The instability may persist even if omega > 2 omega/sub ce/ and this may be the case during finite beta depression of the magnetic field in which case the decay waves may be trapped in the local magnetic well so that convective losses are minimized. The excited fluctuations may lead to additional scattering of the ring electrons and the incident microwave fields. Application of these calculations to ECR heating of tokamaks, tandem mirrors, and EBT's will be examined

  19. Decay heat removal and transient analysis in accidental conditions in the EFIT reactor

    International Nuclear Information System (INIS)

    Bandini, G.; Meloni, P.; Polidori, M.; Casamirra, M.; Castiglia, F.; Giardina, M.

    2007-01-01

    The development of a conceptual design of an industrial scale transmutation facility (EFIT) of several 100 MW thermal power based on Accelerator Driven System (ADS) is addressed in the frame of the European EUROTRANS Integral Project. In normal operation, the core power of EFIT reactor is removed through steam generators by four secondary loops fed by water. A safety-related Decay Heat Removal (DHR) system provided with four independent inherently safe loops is installed in the primary vessel to remove the decay heat by natural convection circulation under accidental conditions which lead to the Loss of Heat Sink (LOHS). In order to confirm the adequacy of the adopted solution for decay heat removal in accidental conditions, some multi-D analyses have been carried out with the SIMMER-III code. The results of the SIMMER-III code have been then used to support the RELAP5 1-D representation of the natural circulation flow paths in the reactor vessel. Finally, the thermal-hydraulic RELAP5 code has been employed for the analysis of LOHS accidental scenarios. (author)

  20. Decay Heat Removal and Transient Analysis in Accidental Conditions in the EFIT Reactor

    Directory of Open Access Journals (Sweden)

    Giacomino Bandini

    2008-01-01

    Full Text Available The development of a conceptual design of an industrial-scale transmutation facility (EFIT of several 100 MW thermal power based on accelerator-driven system (ADS is addressed in the frame of the European EUROTRANS Integral Project. In normal operation, the core power of EFIT reactor is removed through steam generators by four secondary loops fed by water. A safety-related decay heat removal (DHR system provided with four independent inherently safe loops is installed in the primary vessel to remove the decay heat by natural convection circulation under accidental conditions which are caused by a loss-of-heat sink (LOHS. In order to confirm the adequacy of the adopted solution for decay heat removal in accidental conditions, some multi-D analyses have been carried out with the SIMMER-III code. The results of the SIMMER-III code have been then used to support the RELAP5 1D representation of the natural circulation flow paths in the reactor vessel. Finally, the thermal-hydraulic RELAP5 code has been employed for the analysis of LOHS accidental scenarios.

  1. Removal of decay heat by specially designed isolation condensers for advanced heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dhawan, M L; Bhatia, S K [Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    For Advanced Heavy Water Reactor (AHWR), removal of decay heat and containment heat is being considered by passive means. For this, special type of isolation condensers are designed. Isolation condensers when submerged in a pool of water, are the best choice because condensation of high temperature steam is an extremely efficient heat transfer mechanism. By the use of isolation condensers, not only heat is removed but also pressure and temperature of the system are automatically controlled without losing the coolant and without using conventional safety relief valves. In this paper, design optimisation studies of isolation condensers of different types with natural circulation for the removal of core decay heat for AHWR is presented. (author). 8 refs., 2 figs.

  2. Reduction of weighing errors caused by tritium decay heating

    International Nuclear Information System (INIS)

    Shaw, J.F.

    1978-01-01

    The deuterium-tritium source gas mixture for laser targets is formulated by weight. Experiments show that the maximum weighing error caused by tritium decay heating is 0.2% for a 104-cm 3 mix vessel. Air cooling the vessel reduces the weighing error by 90%

  3. Specialists' meeting on evaluation of decay heat removal by natural convection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    Decay heat removal by natural convection (DHRNC) is essential to enhancing the safety of liquid metal fast reactors (LMFRs). Various design concepts related to DHRNC have been proposed and experimental and analytical studies have been carried out in a number of countries. The purpose of this Specialists' Meeting on 'Decay Heat Removal by Natural Convection' organized by the International Working Group on Fast Reactors IAEA, is to exchange information about the state of the art related to methodologies on evaluation of DHRNC features (experimental studies and code developments) and to discuss problems which need to be solved in order to evaluate DHRNC properly and reasonably. The following main topical areas were discussed by delegates: Overview; Experimental studies and code validation; Design study. Two main DHR systems for LMFR are under consideration: (i) direct reactor auxiliary cooling system (DRACS) with immersed DFIX in main vessel, intermediate sodium loop and sodium-air heat exchanger; and (ii) auxiliary cooling system which removes heat from the outside surface of the reactor vessel by natural convection of air (RVACS). The practicality and economic viability of the use of RVACS is possible up to a modular type reactor or a middle size reactor based on current technology. For the large monolithic plant concepts DRACS is preferable. The existing experimental results and the codes show encouraging results so that the decay heat removal by pure natural convection is feasible. Concerning the objective, 'passive safety', the DHR by pure natural convection is essential feature to enhance the reliability of DHR.

  4. Specialists' meeting on evaluation of decay heat removal by natural convection

    International Nuclear Information System (INIS)

    1993-02-01

    Decay heat removal by natural convection (DHRNC) is essential to enhancing the safety of liquid metal fast reactors (LMFRs). Various design concepts related to DHRNC have been proposed and experimental and analytical studies have been carried out in a number of countries. The purpose of this Specialists' Meeting on 'Decay Heat Removal by Natural Convection' organized by the International Working Group on Fast Reactors IAEA, is to exchange information about the state of the art related to methodologies on evaluation of DHRNC features (experimental studies and code developments) and to discuss problems which need to be solved in order to evaluate DHRNC properly and reasonably. The following main topical areas were discussed by delegates: Overview; Experimental studies and code validation; Design study. Two main DHR systems for LMFR are under consideration: (i) direct reactor auxiliary cooling system (DRACS) with immersed DFIX in main vessel, intermediate sodium loop and sodium-air heat exchanger; and (ii) auxiliary cooling system which removes heat from the outside surface of the reactor vessel by natural convection of air (RVACS). The practicality and economic viability of the use of RVACS is possible up to a modular type reactor or a middle size reactor based on current technology. For the large monolithic plant concepts DRACS is preferable. The existing experimental results and the codes show encouraging results so that the decay heat removal by pure natural convection is feasible. Concerning the objective, 'passive safety', the DHR by pure natural convection is essential feature to enhance the reliability of DHR

  5. Actinide metal processing

    International Nuclear Information System (INIS)

    Sauer, N.N.; Watkin, J.G.

    1992-01-01

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage

  6. Synthesis of tetravalent actinide chlorides. Versatile compounds for actinide chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Maerz, Juliane [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements

    2016-07-01

    Anhydrous actinide tetrachlorides (AnCl{sub 4}) were synthesized under mild conditions to provide versatile compounds for actinide chemistry. They enable a direct access to actinide complexes with organic and inorganic ligands.

  7. Microscopic beta and gamma data for decay-heat needs

    International Nuclear Information System (INIS)

    Dickens, J.K.

    1983-01-01

    Microscopic beta and gamma data for decay-heat needs are defined as absolute-intensity spectral distributions of beta and gamma rays following radioactive decay of radionuclides created by, or following, the fission process. Four well-known evaluated data files, namely the US ENDF/B-V, the UK UKFPDD-2, the French BDN (for fission products), and the Japanese JNDC Nuclear Data Library, are reviewed. Comments regarding the analyses of experimental data (particularly gamma-ray data) are given; the need for complete beta-ray spectral measurements is emphasized. Suggestions on goals for near-term future experimental measurements are presented. 34 references

  8. In-calandria retention of corium in Indian PHWR - experimental simulations with decay heat

    International Nuclear Information System (INIS)

    Nayak, A.K.

    2015-01-01

    The severe accident at Fukushima has compelled the nuclear community to relook at the safety of existing nuclear power plants (NPP) against natural origin events of beyond design basis and prolonged station black out (SBO). A major lesson learned is to assess the capability of the safety systems to cool the reactor core and spent fuel storage facilities in the event of a prolonged station black out (SBO). Similar safety review is planned for the Indian Pressurized Heavy Water Reactors (PHWRs) considering a prolonged SBO. The Indian PHWR is a heavy water-moderated and cooled, natural uranium-fuelled reactor in which the horizontal fuel channels are submerged in a pool of heavy water moderator located inside the calandria vessel. The calandria vessel is surrounded by a calandria vault having large volume of light water. Concerns are raised that in the event of an unmitigated SBO, it may result into a low probable severe accident leading to core melt down. The core melt may further fail the calandria vessel in case the melt is not quenched. If the calandria vessel fails, the corium shall interact with the cold calandria vault water and concrete resulting in generation of large amount of non-condensable gases and steam which will lead to over pressurization of containment and may cause its failure. Therefore, in-calandria corium retention via external cooling using vault water can be considered as an important accident management program in PHWR. In this strategy, the core melt retains inside the calandria vessel by continually removing the stored heat and decay heat through outer surface of the vessel by cooling water and maintaining the integrity of the vessel. The present study focuses on experimental investigation in a scaled facility of an Indian PHWR to investigate the coolability of molten corium with simulated decay heat by using the calandria vault water. Molten borosilicate glass was used as the simulant due to its comparable heat transfer characteristics

  9. Interaction between actinides and protein: the calmodulin

    International Nuclear Information System (INIS)

    Brulfert, Florian

    2016-01-01

    Considering the environmental impact of the Fukushima nuclear accident, it is fundamental to study the mechanisms governing the effects of the released radionuclides on the biosphere and thus identify the molecular processes generating the transport and deposition of actinides, such as neptunium and uranium. However, the information about the microscopic aspect of the interaction between actinides and biological molecules (peptides, proteins...) is scarce. The data being mostly reported from a physiological point of view, the structure of the coordination sites remains largely unknown. These microscopic data are indeed essential for the understanding of the interdependency between structural aspect, function and affinity.The Calmodulin (CaM) (abbreviation for Calcium-Modulated protein), also known for its affinity towards actinides, acts as a metabolic regulator of calcium. This protein is a Ca carrier, which is present ubiquitously in the human body, may also bind other metals such as actinides. Thus, in case of a contamination, actinides that bind to CaM could avoid the protein to perform properly and lead to repercussions on a large range of vital functions.The complexation of Np and U was studied by EXAFS spectroscopy which showed that actinides were incorporated in a calcium coordination site. Once the thermodynamical and structural aspects studied, the impact of the coordination site distortion on the biological efficiency was analyzed. In order to evaluate these consequences, a calorimetric method based on enzyme kinetics was developed. This experiment, which was conducted with both uranium (50 - 500 nM) and neptunium (30 - 250 nM) showed a decrease of the heat produced by the enzymatic reaction with an increasing concentration of actinides in the medium. Our findings showed that the Calmodulin actinide complex works as an enzymatic inhibitor. Furthermore, at higher neptunium (250 nM) and uranium (500 nM) concentration the metals seem to have a poison

  10. A new look at actinide recycle

    International Nuclear Information System (INIS)

    Burch, W.D.; Croff, A.G.; Rawlins, J.A.; Schulz, W.W.

    1991-01-01

    This paper will address the justification for reexamination of the value of recovering the minor actinides and certain fission products from spent light-water reactor fuels and describe some of the technical progress that has been made since the major studies of a decade ago. During this time, the US Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission have begun establishing detailed criteria and regulations for geologic repositories. An examination of the hazards of waste disposal relative to the EPA release standards reveals that removal of 99.9% of the actinides (Pu, Am, and Np) reduces these hazards quite close to the EPA standards after 300 years' decay of the strontium and cesium. It may be also useful to remove and separately manage and dispose of certain of the long-lived fission products, such as 99 Tc and 129 I. Much additional work is required to fully assess the appropriate target recoveries as the hazards and risks are more closely examined and as the standards are reworked and refined. The two decades before the projected start of the US repository may present a window of opportunity to introduce several better management practices that act to simplify the repository safety issues. From a technical standpoint, significant progress has been made on recovery of the actinides from aqueous wastes though use of the TRUEX process. Additional work is required to demonstrate the application of the process to spent LWR fuels, but it appears straightforward. In addition, work at the Argonne National Laboratory on the liquid-metal reactor metal fuel cycle shows the relative simplicity of recycle of the actinides in that fast reactor cycle. Much work remains to fully demonstrate that actinides from all secondary waste streams can be removed to the target levels from both the aqueous reprocessing of LWR fuel and the pyro processes for the metal-fueled fast reactor. 9 refs., 2 figs

  11. Summary report of NEPTUN investigations into transient thermal hydraulics of the passive decay heat removal

    International Nuclear Information System (INIS)

    Weinberg, D.; Hoffmann, H.; Rust, K.; Frey, H.H.; Hain, K.; Leiling, W.; Hayafune, H.

    1995-12-01

    The results corroborate the findings of tests with the RAMONA model. With the core power reduction at scram and the start of the decay heat exchangers operation cold fluid is delivered into the prevailing upper plenum. A temperature stratification develops with distinct large temperature gradients. The onset of natural convection is mainly influenced by two effects, namely, the temperature increase on the intermediate heat exchangers primary sides as a result of which the downward pressures are reduced, and the startup of the decay heat exchangers which leads to a decrease of the buoyancy forces in the core. The temperatures of the upper plenum are systematically reduced as soon as the decay heat exchangers are in operation. Then mixed fluid in the hot plenum reaches the intermediate heat exchangers inlet windows and causes an increase in the core flow rate. The primary pump coastdown curve influences the primary system thermal hydraulics only during the first thousand seconds after scram. The longer the pumps operate the more cold fluid is delivered via the core to the upper plenum. The delay of the start of the decay heat exchangers operation separates the two effects which influence the core mass flow, namely the heatup of the intermediate heat exchangers as well as the formation of the stratification in the upper plenum. Increasing the power as well as the operation of only half of the available decay heat exchangers increase the system temperatures. A permeable above core structure produces a temperature stratification along the total upper plenum, and therefore a lower temperature gradient in the region between core outlet and lower edge of the above core structure, in comparison to the impermeable design. A complete flow path blockage of the primary fluid through the intermediate heat exchangers leads to an enhanced cooling effect of the interstitial flow and gives rise to a thermosiphon effect inside the core elements. (orig./GL) [de

  12. Significance of actinide chemistry for the long-term safety of waste disposal

    International Nuclear Information System (INIS)

    Kim, Jae Il

    2006-01-01

    A geochemical approach to the long-term safety of waste disposal is discussed in connection with the significance of actinides, which shall deliver the major radioactivity inventory subsequent to the relatively short-term decay of fission products. Every power reactor generates transuranic (TRU) elements: plutonium and minor actinides (Np, Am, Cm), which consist chiefly of long-lived nuclides emitting alpha radiation. The amount of TRU actinides generated in a fuel life period is found to be relatively small (about 1 wt% or less in spent fuel) but their radioactivity persists many hundred thousands years. Geological confinement of waste containing TRU actinides demands, as a result, fundamental knowledge on the geochemical behavior of actinides in the repository environment for a long period of time. Appraisal of the scientific progress in this subject area is the main objective of the present paper. Following the introductory discussion on natural radioactivities, the nuclear fuel cycle is briefly brought up with reference to actinide generation and waste disposal. As the long-term disposal safety concerns inevitably with actinides, the significance of the aquatic actinide chemistry is summarized in two parts: the fundamental properties relevant to their aquatic behavior and the geochemical reactions in nanoscopic scale. The constrained space of writing allows discussion on some examples only, for which topics of the primary concern are selected, e.g. apparent solubility and colloid generation, colloid-facilitated migration, notable speciation of such processes, etc. Discussion is summed up to end with how to make a geochemical approach available for the long-term disposal safety of nuclear waste or for the Performance Assessment (PA) as known generally

  13. A PRA case study of extended long term decay heat removal for shutdown risk assessment

    International Nuclear Information System (INIS)

    Roglans, J.; Ragland, W.A.; Hill, D.J.

    1992-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A research reactor, has recently been completed at Argonne National Laboratory (ANL). The results of this PRA have shown that the decay heat removal system for EBR-II is extremely robust and reliable. In addition, the methodology used demonstrates how the actions of other systems not normally used for actions of other systems not normally used for decay heat removal can be used to expand the mission time of the decay heat removal system and further increase its reliability. The methodology may also be extended to account for the impact of non-safety systems in enhancing the reliability of other dedicated safety systems

  14. Removal of actinides from high-level wastes generated in the reprocessing of commercial fuels

    International Nuclear Information System (INIS)

    Bond, W.D.; Leuze, R.E.

    1975-09-01

    Progress is reported on a technical feasibility study of removing the very long-lived actinides (uranium, neptunium, plutonium, americium, and curium) from high-level wastes generated in the commercial reprocessing of spent nuclear fuels. The study was directed primarily at wastes from the reprocessing of light water reactor (LWR) fuels and specifically to developing satisfactory methods for reducing the actinide content of these wastes to values that would make 1000-year-decayed waste comparable in radiological toxicity to natural uranium ore deposits. Although studies are not complete, results thus far indicate the most promising concept for actinide removal includes both improved recovery of actinides in conventional fuel reprocessing and secondary processing of the high-level wastes. Secondary processing will be necessary for the removal of americium and curium and perhaps some residual plutonium. Laboratory-scale studies of separations methods that appear most promising are reported and conceptual flowsheets are discussed. (U.S.)

  15. Actinide separation by electrorefining

    International Nuclear Information System (INIS)

    Fusselman, S.P.; Gay, R.L.; Grantham, L.F.; Grimmett, D.L.; Roy, J.J.; Inoue, T.; Hijikata, T.; Krueger, C.L.; Storvick, T.S.; Takahashi, N.

    1995-01-01

    TRUMP-S is a pyrochemical process being developed for the recovery of actinides from PUREX wastes. This paper describes development of the electrochemical partitioning step for recovery of actinides in the TRUMP-S process. The objectives are to remove 99 % of each actinide from PUREX wastes, with a product that is > 90 % actinides. Laboratory tests indicate that > 99 % of actinides can be removed in the electrochemical partitioning step. A dynamic (not equilibrium) process model predicts that 90 wt % product actinide content can be achieved through 99 % actinide removal. Accuracy of model simulation results were confirmed in tests with rare earths. (authors)

  16. Development of a new decay heat removal system for a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sim, Yoon Sub; Park, Rae Young; Kim, Seyun

    2007-01-01

    The heat removal capacity of a RCCS is one of the major parameters limiting the capacity of a HTGR based on a passive safety system. To improve the plant economy of a HTGR, the decay heat removal capacity needs to be improved. For this, a new analysis system of an algebraic method for the performance of various RCCS designs was set up and the heat transfer characteristics and performance of the designs were analyzed. Based on the analysis results, a new passive decay heat removal system with a substantially improved performance, LFDRS was developed. With the new system, one can have an expectation that the heat removal capacity of a HTGR could be doubled

  17. Large scale experiments with a 5 MW sodium/air heat exchanger for decay heat removal

    International Nuclear Information System (INIS)

    Stehle, H.; Damm, G.; Jansing, W.

    1994-01-01

    Sodium experiments in the large scale test facility ILONA were performed to demonstrate proper operation of a passive decay heat removal system for LMFBRs based on pure natural convection flow. Temperature and flow distributions on the sodium and the air side of a 5 MW sodium/air heat exchanger in a natural draught stack were measured during steady state and transient operation in good agreement with calculations using a two dimensional computer code ATTICA/DIANA. (orig.)

  18. Preliminary study of the decay heat removal strategy for the gas demonstrator allegro

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Gusztáv, E-mail: gusztav.mayer@energia.mta.hu [Hungarian Academy of Sciences, Centre for Energy Research, P.O. Box 49, H-1525 Budapest (Hungary); Bentivoglio, Fabrice, E-mail: fabrice.bentivoglio@cea.fr [CEA/DEN/DM2S/STMF/LMES, F-38054, Grenoble (France)

    2015-05-15

    Highlights: • Improved decay heat removal strategy was adapted for the 75 MW ALLEGRO MOX core. • New nitrogen injection strategy was proposed for the DEC LOCA transients. • Preliminary CATHARE study shows that most of the investigated transients fulfill criteria. • Further improvements and optimizations are needed for nitrogen injection. - Abstract: The helium cooled Gas Fast Reactor (GFR) is one of the six reactor concepts selected in the frame of the Generation IV International Forum. Since no gas cooled fast reactor has ever been built, a medium power demonstrator reactor – named ALLEGRO – is necessary on the road towards the 2400 MWth GFR power reactor. The French Commissariat à l’Energie Atomique (CEA) completed a wide range of studies during the early stage of development of ALLEGRO, and later the ALLEGRO reactor concept was developed in several European Union projects in parallel with the GFR2400. The 75 MW thermal power ALLEGRO is currently developed in the frame of the European ALLIANCE project. As a result of the collaboration between CEA and the Hungarian Academy of Sciences Centre for Energy Research (MTA EK) new improvements were done in the safety approach of ALLEGRO. A complete Decay Heat Removal (DHR) strategy was devised, relying on the primary circuits as a first way to remove decay heat using pony-motors to drive the primary blowers, and on the secondary and tertiary circuits being able to work in forced or natural circulation. Three identical dedicated loops circulating in forced convection are used as a second way to remove decay heat, and these loops can circulate in natural convection for pressurized transients, providing a third way to remove decay heat in case of accidents when the primary circuit is still under pressure. The possibility to use nitrogen to enhance both forced and natural circulation is discussed. This DHR strategy is supported by a wide range of accident transient simulations performed using the CATHARE2 code

  19. Development of whole energy absorption spectrometer for decay heat measurement on fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    To measure decay heat on fusion reactor materials irradiated by D-T neutrons, a Whole Energy Absorption Spectrometer (WEAS) consisting of a pair of large BGO (bismuth-germanate) scintillators was developed. Feasibility of decay heat measurement with WEAS for various materials and for a wide range of half-lives (seconds - years) was demonstrated by experiments at FNS. Features of WEAS, such as high sensitivity, radioactivity identification, and reasonably low experimental uncertainty of {approx} 10 %, were found. (author)

  20. Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors

    International Nuclear Information System (INIS)

    Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco

    2016-01-01

    Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.

  1. Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco, E-mail: gianfranco.caruso@uniroma1.it

    2016-08-15

    Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.

  2. Study on the leaching behavior of actinides from nuclear fuel debris

    Science.gov (United States)

    Kirishima, Akira; Hirano, Masahiko; Akiyama, Daisuke; Sasaki, Takayuki; Sato, Nobuaki

    2018-04-01

    For the prediction of the leaching behavior of actinides contained in the nuclear fuel debris generated by the Fukushima Daiichi nuclear power plant accident in Japan, simulated fuel debris consisting of a UO2-ZrO2 solid solution doped with 137Cs, 237Np, 236Pu, and 241Am tracers was synthesized and investigated. The synthesis of the debris was carried out by heat treatment at 1200 °C at different oxygen partial pressures, and the samples were subsequently used for leaching tests with Milli-Q water and seawater. The results of the leaching tests indicate that the leaching of actinides depends on the redox conditions under which the debris was generated; for example, debris generated under oxidative conditions releases more actinide nuclides to water than that generated under reductive conditions. Furthermore, we found that, as Zr(IV) increasingly substituted U(IV) in the fluorite crystal structure of the debris, the actinide leaching from the debris decreased. In addition, we found that seawater leached more actinides from the debris than pure water, which seems to be caused by the complexation of actinides by carbonate ions in seawater.

  3. Application study of the heat pipe to the passive decay heat removal system of the modular HTR

    International Nuclear Information System (INIS)

    Ohashi, K.; Okamoto, F.; Hayakawa, H.; Hayashi, T.

    2001-01-01

    To investigate the applicability of the heat pipe to the decay hat removal (DHR) system of the modular HTRs, preliminary study of the Heat Pipe DHR System was performed. The results show that the Heat Pipe DHR System is applicable to the modular HTRs and its heat removal capability is sufficient. Especially by applying the variable conductance heat pipe, the possibility of a fully passive DHR system with lower heat loss during normal operation is suggested. The experiments to obtain the fundamental characteristics data of the variable conductance heat pipe were carried out. The experimental results show very clear features of self-control characteristics. The experimental results and the experimental analysis results are also shown. (author)

  4. Deposition of aerosols formed by HCDA due to decay heat transport in inner containment atmospheres

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1976-01-01

    Coupling of decay heat transfer by aerosol-laden inner containment atmospheres with aerosol deposition from such atmospheres leads to useful and simple models for calculation of the time dependence of the aerosol mass concentration. Special attention is given to thermophoretic deposition (dry case) and condensation followed by gravitational deposition (wet case). Attractive features of the models are: 1) coagulation can be omitted and therefore complicated and doubtful calculations on coagulation are avoided, 2) material and particle size of the aerosol are not important for the aerosol decay rate, 3) the aerosol decay rate is related to the decay heat production which is known function of time, and the relevant part of it must be assessed usually for other purposes as well. (orig.) [de

  5. Derivation of decay heat benchmarks for U235 and Pu239 by a least squares fit to measured data

    International Nuclear Information System (INIS)

    Tobias, A.

    1989-05-01

    A least squares technique used by previous authors has been applied to an extended set of available decay heat measurements for both U235 and Pu239 to yield simultaneous fits to the corresponding beta, gamma and total decay heat. The analysis takes account of both systematic and statistical uncertainties, including correlations, via calculations which use covariance matrices constructed for the measured data. The results of the analysis are given in the form of beta, gamma and total decay heat estimates following fission pulses and a range of irradiation times in both U235 and Pu239. These decay heat estimates are considered to form a consistent set of benchmarks for use in the assessment of summation calculations. (author)

  6. Program and presentations of the 33th Actinide Days

    International Nuclear Information System (INIS)

    2003-04-01

    The 'Journees des Actinides' (JDA) is an annual conference which provides a forum for discussions on all aspects related to the chemical and physical properties of the actinides. At the 2003 meeting, mainly the following properties were discussed of actinides and a number of actinide compounds and complexes: crystal structure, crystal-phase transformations and transformation temperatures; electrical properties including superconductivity and superconducting transition temperatures; magnetic properties; specific heat and other thermodynamic properties; electronic structure, especially in condensed matter; chemical and physico-chemical properties. The relevant experimental techniques were also dealt with, such as neutron diffraction; X-ray diffraction, in particular using synchrotron radiation; photoemission techniques, electron microscopy and spectroscopy, etc. Altogether 96 contributions were presented, of which 42 were oral presentations and 54 poster presentations. A program of the meeting and texts of both type of presentations were published in electronic form in the PDF format. All contributions were inputted to INIS; the full text of the program and the presentations has been incorporated into the INIS collection of non-conventional literature on CD-ROM. (A.K.)

  7. Detailed comparison between decay heat data calculated by the summation method and integral measurements

    International Nuclear Information System (INIS)

    Rudstam, G.

    1979-01-01

    The fission product library FPLIB has been used for a calculation of the decay heat effect in nuclear fuel. The results are compared with integral determinations and with results obtained using the ENDF/BIV data base. In the case of the beta part, and also for the total decay heat, the FPLIB-data seem to be superior to the ENDF/BIV-data. The experimental integral data are in many cases reproduced within the combined limits of error of the methods. (author)

  8. RELAP5 and SIMMER-III code assessment on CIRCE decay heat removal experiments

    International Nuclear Information System (INIS)

    Bandini, Giacomino; Polidori, Massimiliano; Meloni, Paride; Tarantino, Mariano; Di Piazza, Ivan

    2015-01-01

    Highlights: • The CIRCE DHR experiments simulate LOHS+LOF transients in LFR systems. • Decay heat removal by natural circulation through immersed heat exchangers is investigated. • The RELAP5 simulation of DHR experiments is presented. • The SIMMER-III simulation of DHR experiments is presented. • The focus is on the transition from forced to natural convection and stratification in a large pool. - Abstract: In the frame of THINS Project of the 7th Framework EU Program on Nuclear Fission Safety, some experiments were carried out on the large scale LBE-cooled CIRCE facility at the ENEA/Brasimone Research Center to investigate relevant safety aspects associated with the removal of decay heat through heat exchangers (HXs) immersed in the primary circuit of a pool-type lead fast reactor (LFR), under loss of heat sink (LOHS) accidental conditions. The start-up and operation of this decay heat removal (DHR) system relies on natural convection on the primary side and then might be affected by coolant mixing and temperature stratification phenomena occurring in the LBE pool. The main objectives of the CIRCE experimental campaign were to verify the behavior of the DHR system under representative accidental conditions and provide a valuable database for the assessment of both CFD and system codes. The reproduced accidental conditions refer to a station blackout scenario, namely a protected LOHS and loss of flow (LOF) transient. In this paper the results of 1D RELAP5 and 2D SIMMER-III simulations are compared with the experimental data of more representative DHR transients T-4 and T-5 in order to verify the capability of these codes to reproduce both forced and natural convection conditions observed in the primary circuit and the right operation of the DHR system for decay heat removal. Both codes are able to reproduce the stationary conditions and with some uncertainties the transition to natural convection conditions until the end of the transient phase. The trend

  9. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions

  10. Summary report of NEPTUN investigations into the steady state thermal hydraulics of the passive decay heat removal

    International Nuclear Information System (INIS)

    Rust, K.; Weinberg, D.; Hoffmann, H.; Frey, H.H.; Baumann, W.; Hain, K.; Leiling, W.; Hayafune, H.; Ohira, H.

    1995-12-01

    During the course of steady state NEPTUN investigations, the effects of different design and operating parameters were studied; in particular: The shell design of the above core sturcture, the core power, the number of decay heat exchangers put in operation, the complete flow path blockage at the primary side of the intermediate heat exchangers, and the fluid level in the primary vessel. The findings of the NEPTUN experiments indicate that the decay heat can be safely removed by natural convection. The interwrapper flow makes an essential contribution to that behavior. The decay heat exchangers installed in the upper plenum cause a thermal stratification associated with a pronounced gradient. The vertical extent of the stratification and the quantity of the gradient are depending on the fact whether a permeable or an impermeable shell covers the above core structure. An increase of the core power or a reduction of the number of decay heat exchangers being in operation leads to a higher temperature level in the primary system but does not alter the global temperature distribution. In the case that no coolant enters the inlet windows at the primary side of the intermediate and decay heat exchangers, the core remains coolable as far as the primary vessel is filled with fluid up to a minimum level. Cold water penetrates from the upper plenum into the core and removes the decay heat. The thermal hydraulic computer code FLUTAN was applied for the three-dimensional numerical simulation of the majority of NEPTUN tests reported here. The comparison of computed against experimental data indicates a qualitatively and quantitatively satisfying agreement of the findings with respect to the field of isotherms as well as the temperature profiles in the upper plenum and within the core region of very complex geometry. (orig./HP) [de

  11. Radiochemical studies of neutron deficient actinide isotopes

    International Nuclear Information System (INIS)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, 242 Bk, was produced with a cross-section of approximately 10 μb in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, αxn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,αxn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z 1 + Z 2 = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,αxn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of 228 Pu, 230 Pu, 232 Cm, or 238 Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes

  12. Analysis of the WCLL European demo blanket concept in terms of activation and decay heat after exposure to neutron irradiation

    Directory of Open Access Journals (Sweden)

    Stankunas Gediminas

    2017-01-01

    Full Text Available This comparative paper describes the activation and decay heat calculations for water-cooled lithium-lead performed part of the EURO fusion WPSAE programme and specifications in comparison to other European DEMO blanket concepts on the basis of using a three-dimensional neutronics calculation model. Results are provided for a range of decay times of interest for maintenance activities, safety and waste management assessments. The study revealed that water-cooled lithium-lead has the highest total decay heat at longer decay times in comparison to the helium-cooled design which has the lowest total decay heat. In addition, major nuclides were identified for water-cooled lithium-lead in W armour, Eurofer, and LiPb. In addition, great attention has been dedicated to the analysis of the decay heat and activity both from the different water-cooled lithium-lead blanket modules for the entire reactor and from each water-cooled lithium-lead blanket module separately. The neutron induced activation and decay heat at shutdown were calculated by the FISPACT code, using the neutron flux densities and spectra that were provided by the preceding MCNP neutron transport calculations.

  13. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Lap-Yan, C.; Wie, T. Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.

  14. A revised ANS standard for decay heat from fission products

    International Nuclear Information System (INIS)

    Schrock, V.E.

    1978-01-01

    The draft ANS 5.1 standard on decay heat was published in 1971 and given minor revision in 1973. Its basis was the best estimate working curve developed by K. Shure in 1961. Liberal uncertainties were assigned to the standard values because of lack of data for short cooling times and large discrepancies among experimental data. Research carried out over the past few years has greatly improved the knowledge of this phenomenon and a major revision of the standard has been completed. Very accurate determination of the decay heat is now possible, expecially within the first 10 4 seconds, where the influence of neutron capture in fission products may be treated as a small correction to the idealized zero capture case. The new standard accounts for differences among fuel nuclides. It covers cooling time to 10 9 seconds, but provides only an ''upper bound'' on the capture correction in the interval 10 4 9 seconds. (author)

  15. Safe management of actinides in the nuclear fuel cycle: Role of mineralogy

    International Nuclear Information System (INIS)

    Ewing, R.C.

    2011-01-01

    During the past 60 years, more than 1800 metric tonnes of Pu, and substantial quantities of the 'minor' actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g., 239 Pu), a source of fissile material for nuclear weapons (e.g., 239 Pu and 237 Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., 239 Pu and 237 Np). There are two basic strategies for the disposition of these heavy elements: (1) to 'burn' or transmute the actinides using nuclear reactors or accelerators; (2) to 'sequester' the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A 2 B 2 O 7 (A rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage. Recent developments in our understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms. (author)

  16. Safe management of actinides in the nuclear fuel cycle: Role of mineralogy; La gestion des actinides dans le cycle du combustible nucleaire: le role de la mineralogie

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C. [Department of Nuclear Engineering and Radiological Sciences, Department of Geological Sciences, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-1005 (United States)

    2011-02-15

    During the past 60 years, more than 1800 metric tonnes of Pu, and substantial quantities of the 'minor' actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g., {sup 239}Pu), a source of fissile material for nuclear weapons (e.g., {sup 239}Pu and {sup 237}Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., {sup 239}Pu and {sup 237}Np). There are two basic strategies for the disposition of these heavy elements: (1) to 'burn' or transmute the actinides using nuclear reactors or accelerators; (2) to 'sequester' the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A{sub 2}B{sub 2}O{sub 7} (A rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage. Recent developments in our understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms. (author)

  17. Actinide oxide photodiode and nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Milan; Usov, Igor

    2017-12-05

    Photodiodes and nuclear batteries may utilize actinide oxides, such a uranium oxide. An actinide oxide photodiode may include a first actinide oxide layer and a second actinide oxide layer deposited on the first actinide oxide layer. The first actinide oxide layer may be n-doped or p-doped. The second actinide oxide layer may be p-doped when the first actinide oxide layer is n-doped, and the second actinide oxide layer may be n-doped when the first actinide oxide layer is p-doped. The first actinide oxide layer and the second actinide oxide layer may form a p/n junction therebetween. Photodiodes including actinide oxides are better light absorbers, can be used in thinner films, and are more thermally stable than silicon, germanium, and gallium arsenide.

  18. Thermodynamic Properties of Actinides and Actinide Compounds

    Science.gov (United States)

    Konings, Rudy J. M.; Morss, Lester R.; Fuger, Jean

    The necessity of obtaining accurate thermodynamic quantities for the actinide elements and their compounds was recognized at the outset of the Manhattan Project, when a dedicated team of scientists and engineers initiated the program to exploit nuclear energy for military purposes. Since the end of World War II, both fundamental and applied objectives have motivated a great deal of further study of actinide thermodynamics. This chapter brings together many research papers and critical reviews on this subject. It also seeks to assess, to systematize, and to predict important properties of the actinide elements, ions, and compounds, especially for species in which there is significant interest and for which there is an experimental basis for the prediction.

  19. Effect of heat-treatment with raw cotton seed oil on decay resistance and dimensional stability of Beech (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    مریم قربانی

    2015-05-01

    Full Text Available This research was conducted to determine the effect of heat-treatment with raw cotton seed oil on decay resistance and dimensional stability of beech according to EN113 and ASTM-D1037 standards respectively. The heat treatment with raw cotton seed oil was carried out in the cylinder at the temperatures of 130 and 170oC for 30 and 60 minutes. Oil uptake, density, volumetric swelling, water absorption and weight loss exposed to decay were measured. Oil uptake at 30 and 60 min were determined 10.5 and 13.3 Kg/cm3 respectively. Oil-heat treated samples at 30min and 130°C indicated the maximum density with 87.7% increase. According to results, oil-heat treatment improved water repellency and dimensional stability. Water absorption in 130°C and 60 minutes decreased 76% in comparison with control. Decay resistance of oil soaked samples for 60minutes was 80.2% more than control samples. Oil-heat treatment compared with oil treatment improved decay resistance, this effect was significant at 30 min. The temperature rise of oil–heat treatment at 30 minutes improved decay resistance, but the improvement under same level of temperature with increase time was not significant.

  20. Experimental validation of decay heat calculation codes and associated nuclear data libraries for fusion energy

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Wada, Masayuki; Ikeda, Yujiro

    2001-01-01

    Validity of decay heat calculations for safety designs of fusion reactors was investigated by using decay heat experimental data on thirty-two fusion reactor relevant materials obtained at the 14-MeV neutron source facility of FNS in JAERI. Calculation codes developed in Japan, ACT4 and CINAC version 4, and nuclear data bases such as JENDL/Act-96, FENDL/A-2.0 and Lib90 were used for the calculation. Although several corrections in algorithms for both the calculation codes were needed, it was shown by comparing calculated results with the experimental data that most of activation cross sections and decay data were adequate. In cases of type 316 stainless steel and copper which were important for ITER, prediction accuracy of decay heat within ±10% was confirmed. However, it was pointed out that there were some problems in parts of data such as improper activation cross sections, e,g., the 92 Mo(n, 2n) 91g Mo reaction in FENDL, and lack of activation cross section data, e.g., the 138 Ba(n, 2n) 137m Ba reaction in JENDL. Modifications of cross section data were recommended for 19 reactions in JENDL and FENDL. It was also pointed out that X-ray and conversion electron energies should be included in decay data. (author)

  1. Experimental validation of decay heat calculation codes and associated nuclear data libraries for fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Wada, Masayuki; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    Validity of decay heat calculations for safety designs of fusion reactors was investigated by using decay heat experimental data on thirty-two fusion reactor relevant materials obtained at the 14-MeV neutron source facility of FNS in JAERI. Calculation codes developed in Japan, ACT4 and CINAC version 4, and nuclear data bases such as JENDL/Act-96, FENDL/A-2.0 and Lib90 were used for the calculation. Although several corrections in algorithms for both the calculation codes were needed, it was shown by comparing calculated results with the experimental data that most of activation cross sections and decay data were adequate. In cases of type 316 stainless steel and copper which were important for ITER, prediction accuracy of decay heat within {+-}10% was confirmed. However, it was pointed out that there were some problems in parts of data such as improper activation cross sections, e,g., the {sup 92}Mo(n, 2n){sup 91g}Mo reaction in FENDL, and lack of activation cross section data, e.g., the {sup 138}Ba(n, 2n){sup 137m}Ba reaction in JENDL. Modifications of cross section data were recommended for 19 reactions in JENDL and FENDL. It was also pointed out that X-ray and conversion electron energies should be included in decay data. (author)

  2. Development of nitride fuel and pyrochemical process for transmutation of minor actinides

    International Nuclear Information System (INIS)

    Arai, Yasuo; Akabori, Mitsuo; Minato, Kazuo; Uno, Masayoshi

    2010-01-01

    Nitride fuel cycle for transmutation of minor actinides has been investigated under the double-strata fuel cycle concept. Mononitride solid solutions containing minor actinides have been prepared and characterised. Thermo-physical properties, such as thermal expansion, heat capacity and thermal diffusivity, have been measured by use of minor actinide nitride and burn-up simulated nitride samples. Irradiation behaviour of nitride fuel has been examined by irradiation tests. Pyrochemical process for treatment of spent nitride fuel has been investigated mainly by electrochemical measurements and nitride formation behaviour in pyrochemical process has been studied for recycled fuel fabrication. Recent results of experimental study on nitride fuel and pyrochemical process are summarised in the paper. (authors)

  3. Heterogeneous all actinide recycling in LWR all actinide cycle closure concept

    International Nuclear Information System (INIS)

    Tondinelli, Luciano

    1980-01-01

    A project for the elimination of transuranium elements (Waste Actinides, WA) by neutron transmutation is developed in a commercial BWR with U-Pu (Fuel Actinides, FA) recycle. The project is based on the All Actinide Cycle Closure concept: 1) closure of the 'back end' of the fuel cycle, U-Pu coprocessing, 2) waste actinide disposal by neutron transmutation. The reactor core consists of Pu-island fuel assemblies containing WAs in target pins. Two parallel reprocessing lines for FAs and WAs are provided. Mass balance, hazard measure, spontaneous activity during 10 recycles are calculated. Conclusions are: the reduction in All Actinide inventory achieved by Heterogeneous All Actinide Recycling is on the order of 83% after 10 recycles. The U235 enrichment needed for a constant end of cycle reactivity decreases for increasing number of recycles after the 4th recycle. A diffusion-burnup calculation of the pin power peak factors in the fuel assembly shows that design limits can be satisfied. A strong effort should be devoted to the solution of the problems related to high values of spontaneous emission by the target pins

  4. FY2011 Annual Report for the Actinide Isomer Detection Project

    International Nuclear Information System (INIS)

    Warren, Glen A.; Francy, Christopher J.; Ressler, Jennifer J.; Erikson, Luke E.; Tatishvili, Gocha; Hatarik, R.

    2011-01-01

    This project seeks to identify a new signature for actinide element detection in active interrogation. This technique works by exciting and identifying long-lived nuclear excited states (isomers) in the actinide isotopes and/or primary fission products. Observation of isomers in the fission products will provide a signature for fissile material. For the actinide isomers, the decay time and energy of the isomeric state is unique to a particular isotope, providing an unambiguous signature for SNM. This project entails isomer identification and characterization and neutron population studies. This document summarizes activities from its third year - completion of the isomer identification characterization experiments and initialization of the neutron population experiments. The population and decay of the isomeric state in 235U remain elusive, although a number of candidate gamma rays have been identified. In the course of the experiments, a number of fission fragment isomers were populated and measured (Ressler 2010). The decays from these isomers may also provide a suitable signature for the presence of fissile material. Several measurements were conducted throughout this project. This report focuses on the results of an experiment conducted collaboratively by PNNL, LLNL and LBNL in December 2010 at LBNL. The measurement involved measuring the gamma-rays emitted from an HEU target when bombarded with 11 MeV neutrons. This report discussed the analysis and resulting conclusions from those measurements. There was one strong candidate, at 1204 keV, of an isomeric signature of 235U. The half-life of the state is estimated to be 9.3 μs. The measured time dependence fits the decay time structure very well. Other possible explanations for the 1204-keV state were investigated, but they could not explain the gamma ray. Unfortunately, the relatively limited statistics of the measurement limit, and the lack of understanding of some of the systematic of the experiment, limit

  5. Impact of the total absorption gamma-ray spectroscopy on FP decay heat calculations

    International Nuclear Information System (INIS)

    Yoshida, Tadashi; Tachibana, Takahiro; Katakura, Jun-ichi

    2004-01-01

    We calculated the average β- and γ-ray energies, E β and E γ , for 44 short-lived isotopes of Rb, Sr, Y, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm and Eu from the data by Greenwood et al, who measured the β-feed in the decay of these nuclides using the total absorption γ-ray spectrometer. These E β and E γ were incorporated into the decay files from JENDL, JEF2.2 and ENDF-B/VI, and the decay heats were calculated. The results were compared with the integral measurements by the University of Tokyo, ORNL and Lowell. In the case of JENDL, where the correction for the so-called Pandemonium effect is applied on the basis of the gross theory, the very good agreement is no longer maintained. The γ-ray component is overestimated in the cooling time range from 3 to 300 seconds, suggesting a kind of an over-correction as for the Pandemonium effect. We have to evaluate both the applicability of the TAGS results and the correction method itself in order to generate a more consistent data basis for decay heat summation calculations. (author)

  6. Actinides-1981

    International Nuclear Information System (INIS)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry

  7. Actinides-1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  8. Process for denitrating waste solutions containing nitrates and actinides with simultaneous separation of the actinides

    International Nuclear Information System (INIS)

    Gompper, K.

    1986-01-01

    The invention is intended to reduce the acid and nitrate content of nitrate waste solutions, to reduce the total salt content of the waste solution, to remove the actinides contained in it by precipitation, without any danger of violent reactions or an increase in the volume of the waste solution. The invention achieves this by mixing the waste solution with diethyl oxalate at room temperature and heating the mixture to at least 80 0 C. (orig./PW) [de

  9. Fusion-driven actinide burner design study. Second quarterly progress report

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Gold, R.E.; Holman, R.R.

    1975-11-01

    The Second Quarterly Progress Report summarizes the status at the mid-point of the conceptual design effort. The fusion driver continues to pose some of the principal design problems due to the necessity of advancing plasma engineering and technology for long pulse, high duty cycle operation. The development of credible design solutions to these problems is one of the major objectives of the study. The TF and OH coil designs have been modified to provide a more compact arrangement in the nose region of the TF coils and to ensure fully cryostable operation. A unique concept has been developed to effectively shield the TF coils from the poloidal fields. A vacuum vessel concept which separates the functions for sustaining the differential pressure load and for sealing the vacuum system is described. The thickness of the blanket has been decreased to reduce the power density and the actinide inventory. Determination and presentation of actinide depletion characteristics represents a major element thus far in the study and is a principal objective. Evaluation of the changes in the hazard only during irradiation proved to be an inadequate measure of the reduction in long term hazards due to the importance of radioactive daughter products which appear much later in time. Therefore, comparisons have been made of long term decay characteristics before and after irradiation in the actinide burner. It has also been noted that some of the actinides that are produced during irradiation have beneficial applications as radioisotopic power sources. These and other considerations suggest that alternate approaches to assessing the waste management problem be considered to develop a meaningful perspective on long term hazards from the actinides

  10. Fusion-driven actinide burner design study. Second quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Chi, J.W.H.; Gold, R.E.; Holman, R.R.

    1975-11-01

    The Second Quarterly Progress Report summarizes the status at the mid-point of the conceptual design effort. The fusion driver continues to pose some of the principal design problems due to the necessity of advancing plasma engineering and technology for long pulse, high duty cycle operation. The development of credible design solutions to these problems is one of the major objectives of the study. The TF and OH coil designs have been modified to provide a more compact arrangement in the nose region of the TF coils and to ensure fully cryostable operation. A unique concept has been developed to effectively shield the TF coils from the poloidal fields. A vacuum vessel concept which separates the functions for sustaining the differential pressure load and for sealing the vacuum system is described. The thickness of the blanket has been decreased to reduce the power density and the actinide inventory. Determination and presentation of actinide depletion characteristics represents a major element thus far in the study and is a principal objective. Evaluation of the changes in the hazard only during irradiation proved to be an inadequate measure of the reduction in long term hazards due to the importance of radioactive daughter products which appear much later in time. Therefore, comparisons have been made of long term decay characteristics before and after irradiation in the actinide burner. It has also been noted that some of the actinides that are produced during irradiation have beneficial applications as radioisotopic power sources. These and other considerations suggest that alternate approaches to assessing the waste management problem be considered to develop a meaningful perspective on long term hazards from the actinides.

  11. Process for denitrating waste solutions containing nitric acid actinides simultaneously separating the actinides

    International Nuclear Information System (INIS)

    Gompper, K.

    1984-01-01

    The invention should reduce the acid and nitrate content of waste solutions containing nitric acid as much as possible, should reduce the total salt content of the waste solution, remove the actinides contained in it by precipitation and reduce the α radio-activity in the remaining solution, without having to worry about strong reactions or an increase in the volume of the waste solution. The invention achieves this by mixing the waste solution with diethyl oxalate at room temperature and heating the mixture to at least 80 0 C. (orig.) [de

  12. 'Thermal ghosts': apparent decay of fixed surfaces caused by heat diffusion

    International Nuclear Information System (INIS)

    Livadiotis, George

    2007-01-01

    The behaviour concerning classical heat diffusion on fixed thermal surfaces, studied by observations, still holds surprises. As soon as convective and radiative processes are negligible within the medium, this is considered to be free from energy sources and sinks. Then, the heat diffusion equation is conveniently solved using standard Fourier methods. Some considerations about the contrast effect suggest that the surface boundary would rather be observed to follow specific area decay dynamics than remaining fixed and static. Here it is shown that the apparent boundary lies on a specific isothermal spatiotemporal curve, which depends on the observing device. This is characterized by a slight, though determinative, difference between its radiance and that of the ambient background. Thereafter, the heat diffusion yields apparent boundary shrinkage with the passing of time. This phenomenon is particularly notable for two reasons: its lifetime and final decay rate depend only on the medium thermal properties, while being independent of the apparent boundary spatiotemporal curve. Thus, the former provides a suitable method for measuring the medium thermal properties via the observational data. The latter strongly reveal a kind of universality of some characteristic properties of the phenomenon, common to all observers

  13. Radiochemical studies of neutron deficient actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, /sup 242/Bk, was produced with a cross-section of approximately 10 ..mu..b in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, ..cap alpha..xn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,..cap alpha..xn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z/sub 1/ + Z/sub 2/ = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,..cap alpha..xn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of /sup 228/Pu, /sup 230/Pu, /sup 232/Cm, or /sup 238/Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes.

  14. Actinide targets for fundamental research in nuclear physics

    Science.gov (United States)

    Eberhardt, K.; Düllmann, Ch. E.; Haas, R.; Mokry, Ch.; Runke, J.; Thörle-Pospiech, P.; Trautmann, N.

    2018-05-01

    Thin actinide layers deposited on various substrates are widely used as calibration sources in nuclear spectroscopy. Other applications include fundamental research in nuclear chemistry and -physics, e.g., the chemical and physical properties of super-heavy elements (SHE, Z > 103) or nuclear reaction studies with heavy ions. For the design of future nuclear reactors like fast-fission reactors and accelerator-driven systems for transmutation of nuclear waste, precise data for neutron absorption as well as neutron-induced fission cross section data for 242Pu with neutrons of different energies are of particular importance, requiring suitable Pu-targets. Another application includes studies of nuclear transitions in 229Th harvested as α-decay recoil product from a thin layer of its 233U precursor. For this, a thin and very smooth layer of 233U is used. We report here on the production of actinide layers mostly obtained by Molecular Plating (MP). MP is currently the only fabrication method in cases where the desired actinide material is available only in very limited amounts or possesses a high specific activity. Here, deposition is performed from organic solution applying a current density of 1-2 mA/cm2. Under these conditions target thicknesses of 500-1000 μg/cm2 are possible applying a single deposition step with deposition yields approaching 100 %. For yield determination α-particle spectroscopy, γ-spectroscopy and Neutron Activation Analysis is routinely used. Layer homogeneity is checked with Radiographic Imaging. As an alternative technique to MP the production of thin lanthanide and actinide layers by the so-called "Drop on Demand"-technique applied e.g., in ink-jet printing is currently under investigation.

  15. Nuclear transmutation of actinides other than fuel as a radioactive waste management scheme

    International Nuclear Information System (INIS)

    Cecille, L.; Hage, W.; Hettinger, H.; Mannone, F.; Mousty, F.; Schmidt, E.; Sola, A.; Huber, B.; Koch, L.

    1977-01-01

    The bulk of fission products in the high-level waste (HLW) decays to innocuous hazard levels within about 600 years. Actinide waste and a few fission products however represent a potential risk up to some hundreds of thousand of years. An alternative to the disposal of the whole HLW in geological formations is its fractionation, a nuclear transmutation of long-lived isotopes in fission reactors and a geological disposal of the other components. This solution would decrease the potential long-term risks of the geological waste disposal and would also accomodate to the demand of public opinion. The results of studies related to this management scheme are outlined with special reference to areas, where additional effort is required for realistic cost/benefit evaluations. Reactor physics calculations demonstrated the feasibility of actinide incineration in thermal and fast reactors. Obtained transmutation rates are sufficiently high to garantee acceptably small actinide inventories in the reactor in the case of self-generated actinide recycling. It appears that fast breeders could be used as transmutation devices without major additional reactor devlopment work. The thermal power rating of actinide fuel elements and the contribution of actinides and of minor amounts of lanthanide impurities to the neutron economy of the reactor has been evaluated. Sensitivity studies indicated that the results are dependent on the reactor operation mode and on the accuracy of the nuclear data. These calculations permitted the identification of isotopes for which cross section masurements and improved theoretical methods are required. The chemical separation of actinides from the HLW with the envisaged decontamination factors is being studied by solvent extraction and precipitation techniques using waste simulates and samples of high activity waste from European reprocessing plants. Up to now, the obtained results do not yet allow a definitive judgement on the feasibility of actinides

  16. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-01-01

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs

  17. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    Energy Technology Data Exchange (ETDEWEB)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  18. Integral decay-heat measurements and comparisons to ENDF/B--IV and V

    International Nuclear Information System (INIS)

    England, T.R.; Schenter, R.E.; Schmittroth, F.

    Results from recent integral decay-power experiments are presented and compared with summation calculations. The experiments include the decay power following thermal fission of 233 U, 235 U, and 239 Pu. The summation calculations use ENDF/B-IV decay data and yields from Versions IV and V. Limited comparisons of experimental β and γ spectra with summation calculations using ENDF/B-IV are included. Generalized least-squares methods are applied to the recent 235 U and 239 Pu decay-power experiments and summation calculations to arrive at evaluated values and uncertainties. Results for 235 U imply uncertainties less than 2% (1 sigma) for the ''infinite'' exposure case for all cooling times greater than 10 seconds. The uncertainties for 239 Pu are larger. Accurate analytical representations of the decay power are presented for 235 , 238 U, and 239 Pu for use in light-water reactors and as the nominal values in the new ANS 5.1 Draft Standard (1978). Comparisons of the nominal values with ENDF/B-IV and the 1973 ANS Draft Standard in current use are included. Gas content, important to decay-heat experiments, and absorption effects on decay power are reviewed. 37 figures, 8 tables

  19. Minor Actinides Recycling in PWRs

    International Nuclear Information System (INIS)

    Delpech, M.; Golfier, H.; Vasile, A.; Varaine, F.; Boucher, L.; Greneche, D.

    2006-01-01

    Recycling of minor actinides in current and near future PWR is considered as one of the options of the general waste management strategy. This paper presents the analysis of this option both from the core physics and fuel cycle point of view. A first indicator of the efficiency of different neutron spectra for transmutation purposes is the capture to fission cross sections ratio which is less favourable by a factor between 5 to 10 in PWRs compared to fast reactors. Another indicator presented is the production of high ranking isotopes like Curium, Berkelium or Californium in the thermal or epithermal spectrum conditions of PWR cores by successive neutron captures. The impact of the accumulation of this elements on the fabrication process of such PWR fuels strongly penalizes this option. The main constraint on minor actinides loadings in PWR (or fast reactors) fuels are related to their direct impact (or the impact of their transmutation products) on the reactivity coefficients, the reactivity control means and the core kinetics parameters. The main fuel cycle physical parameters like the neutron source, the alpha decay power, the gamma and neutrons dose rate and the criticality aspects are also affected. Recent neutronic calculations based on a reference core of the Evolutionary Pressurized Reactor (EPR), indicates typical maximum values of 1 % loadings. Different fuel design options for minor actinides transmutation purposes in PWRs are presented: UOX and MOX, homogeneous and heterogeneous assemblies. In this later case, Americium loading is concentrated in specific pins of a standard UOX assembly. Recycling of Neptunium in UOX and MOX fuels was also studied to improve the proliferation resistance of the fuel. The impact on the core physics and penalties on Uranium enrichment were underlined in this case. (authors)

  20. Analysis of decay heat removal following loss of RHR

    International Nuclear Information System (INIS)

    Naff, S.A.; Ward, L.W.

    1991-01-01

    Recent plant experience has included many events occurring during outages at pressurized water reactors. A recent example is the loss of residual heat removal system event that occurred March 20, 1990 at the Vogtle-1 plant following refueling. Plant conditions during outages differ markedly from those prevailing at normal full-power operation on which most past research has concentrated. Specifically, during outages the core power is low, the coolant system may be in a drained state with air or nitrogen present, and various reactor coolant system closures may be unsecured. With the residual heat removal system operating, the core decay heat is readily removed. However, if the residual heat removal system capability is lost and alternative heat removal means cannot be established, heat up of the coolant could lead to core coolant boil-off, fuel rod heat up, and core damage. A study was undertaken by the Nuclear Regulatory Commission to identify what information was needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that might be used, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain into the reactor coolant system, core water boil-off, and reflux condensation cooling processes

  1. Filtered thermal neutron captured cross sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Pham Ngoc Son; Vuong Huu Tan

    2015-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R ed ) of 420 and neutron flux (Φ th ) of 1.6*10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross sections for nuclide of 51 V, by the activation method relative to the standard reaction 197 Au(n,γ) 198 Au. In addition to the activities of neutron capture cross sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U are introduced in this report. (author)

  2. Subsurface interactions of actinide species and microorganisms. Implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Rittmann, B.E.; Reed, D.T.

    1999-01-01

    By reviewing how microorganisms interact with actinides in subsurface environments, the way how bioremediation controls the fate of actinides is assessed. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. The way how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility is described. Why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions is explained. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. Development of mathematical models that link microbiological and geochemical reactions is described. Throughout, the key research needs are identified. (author)

  3. Radiation and Thermal Ageing of Nuclear Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J [ORNL

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  4. Analysis and testing of W-DHR system for decay heat removal in the lead-cooled ELSY reactor

    International Nuclear Information System (INIS)

    Bandini, Giacomino; Meloni, Paride; Polidori, Massimiliano; Gaggini, Piero; Labanti, Valerio; Tarantino, Mariano; Cinotti, Luciano; Presciuttini, Leonardo

    2009-01-01

    An innovative LFR system that complies with GEN IV goals is under design in the frame of ELSY European project. ELSY is a lead-cooled pool-type reactor of about 1500 MW thermal power which normally relies on the secondary system for decay heat removal. Since the secondary system is not safety-grade and must be fully depressurized in case of detection of a steam generator tube rupture, an independent and much reliable decay heat removal (DHR) system is foreseen on the primary side. Owing to the limited capability of the Reactor Vessel Air Cooling System (RVACS) in this large power reactor, additional safety-grade loops equipped with coolers immersed in the primary coolant are necessary for an efficient removal of decay heat. Some of these loops (W-DHR) are of innovative design and may operate with water at atmospheric pressure. In the frame of the ICE program to be performed on the integral facility CIRCE at ENEA/Brasimone research centre within the EUROTRANS European project, integral circulation experiments with core heat transport and heat removal by steam generator will be conducted in a reactor pool-type configuration. Taking advantage from this experimental program, a mock-up of W-DHR heat exchanger will be tested in order to investigate its functional behavior for decay heat removal. Some pre-test calculations of W-DHR heat exchanger operation in CIRCE have been performed with the RELAP5 thermal-hydraulic code in order to support the heat exchanger design and test conduct. In this paper the experimental activity to be conducted in CIRCE and main results from W-DHR pre-test calculations are presented, along with a preliminary investigation of the W-DHR system efficiency in ELSY configuration. (author)

  5. Evaluation of induced activity, decay heat and dose rate distribution after shutdown in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Koichi [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Satoh, Satoshi; Hayashi, Katsumi; Yamada, Koubun; Takatsu, Hideyuki; Iida, Hiromasa

    1997-03-01

    Induced activity, decay heat and dose rate distributions after shutdown were estimated for 1MWa/m{sup 2} operation in ITER. The activity in the inboard blanket one day after shutdown is 1.5x10{sup 11}Bq/cm{sup 3}, and the average decay heating rate 0.01w/cm{sup 3}. The dose rate outside the 120cm thick concrete biological shield is two order higher than the design criterion of 5{mu}Sv/h. This indicates that the biological shield thickness should be enhanced by 50cm in concrete, that is, total thickness 170cm for workers to enter the reactor room and to perform maintenance. (author)

  6. Actinide colloid generation in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.

    1990-05-01

    The progress made in the investigation of actinide colloid generation in groundwaters is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudocolloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC project MIRAGE II, particularly, to research area: complexation and colloids. (orig.)

  7. Evaluation of spent fuel isotopics, radiation spectra and decay heat using the scale computational system

    International Nuclear Information System (INIS)

    Parks, C.V.; Hermann, O.W.; Ryman, J.C.

    1986-01-01

    In order to be a self-sufficient system for transport/storage cask shielding and heat transfer analysis, the SCALE system developers included modules to evaluate spent fuel radiation spectra and decay heat. The primary module developed for these analyses is ORIGEN-S which is an updated verision of the original ORIGEN code. The COUPLE module was also developed to enable ORIGEN-S to easily utilize multigroup cross sections and neutron flux data during a depletion analysis. Finally, the SAS2 control module was developed for automating the depletion and decay via ORIGEN-S while using burnup-dependent neutronic data based on a user-specified fuel assembly and reactor history. The ORIGEN-S data libraries available for depletion and decay have also been significantly updated from that developed with the original ORIGEN code

  8. Study of Thorium Phosphate Diphosphate (TPD) formation in nitric medium for the decontamination of high activity actinides bearing effluents

    International Nuclear Information System (INIS)

    Rousselle, Jerome

    2004-01-01

    Considering several activities in the nuclear industry and research, several low-level liquids wastes (LLLW) containing actinides in nitric medium must be decontaminated before being released in the environment. These liquid wastes mainly contain significant amounts of uranium(VI), neptunium(V) and plutonium(IV). In this work, two chemical ways were studied to decontaminate LLLW then to incorporate simultaneously uranium, neptunium and plutonium in the Thorium Phosphate Diphosphate (TPD). Both ways started from a nitric solution containing thorium and the actinides considered, present at their lower stable oxidation state. The first way consisted in the initial precipitation of actinide and thorium mixed oxalate. After drying the mixture containing the powder and phosphoric acid under dried argon, a poly-phase system was obtained. It was mainly composed by a thorium-actinide oxalate-phosphate. This mixture was transformed into a TPDAn solid solution (An = U, Np and/or Pu) by heating treatment at 1200 deg. C under inert atmosphere. The second way consisted in the precipitation of a precursor of TPD, identified as the Thorium Phosphate Hydrogen Phosphate loaded with the actinides considered. The gel initially formed by mixing concentrated phosphoric acid solution with the nitric actinide solution was heated at 90 - 160 deg. C in a closed PTFE container for several weeks. It led to the TPDAn solid solutions after heating at 1100 deg. C in air or under inert argon. The efficiency of both processes was evaluated through the determination of the decontamination for each actinide considered. Considering the encouraging results obtained for both kinds of processes, some complementary studies are now required before performing the effective decontamination of real Low-Level Liquid Waste using one of the methods proposed. (author) [fr

  9. Uncertainties on decay heat power due to fission product data uncertainties; Incertitudes sur la puissance residuelle dues aux incertitudes sur les donnees de produits de fission

    Energy Technology Data Exchange (ETDEWEB)

    Rebah, J

    1998-08-01

    Following a reactor shutdown, after the fission process has completely faded out, a significant quantity of energy known as 'decay heat' continues to be generated in the core. The knowledge with a good precision of the decay heat released in a fuel after reactor shutdown is necessary for: residual heat removal for normal operation or emergency shutdown condition, the design of cooling systems and spent fuel handling. By the summation calculations method, the decay heat is equal to the sum of the energies released by individual fission products. Under taking into account all nuclides that contribute significantly to the total decay heat, the results from summation method are comparable with the measured ones. Without the complete covariance information of nuclear data, the published uncertainty analyses of fission products decay heat summation calculation give underestimated errors through the variance/covariance analysis in consideration of correlation between the basic nuclear data, we calculate in this work the uncertainties on the decay heat associated with the summation calculations. Contribution to the total error of decay heat comes from uncertainties in three terms: fission yields, half-lives and average beta and gamma decay energy. (author)

  10. Research in actinide chemistry

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1993-01-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH - , CO 3 2- , PO 4 3- , humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements

  11. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    Energy Technology Data Exchange (ETDEWEB)

    Cassayre, L., E-mail: cassayre@chimie.ups-tlse.fr [Laboratoire de Genie Chimique (LGC), Departement Procedes Electrochimiques, CNRS-UMR 5503, Universite de Toulouse III - Paul Sabatier, 31062 Toulouse (France); Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany)

    2011-07-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl{sub 3}. A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl{sub 3} alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl{sub 2}/UAl{sub 3} molar ratio, providing complete chlorination of the alloy without formation of volatile UCl{sub 5} and UCl{sub 6}. The results showed high efficient chlorination at a temperature of 150 deg. C.

  12. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    International Nuclear Information System (INIS)

    Cassayre, L.; Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P.

    2011-01-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl 3 . A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl 3 alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl 2 /UAl 3 molar ratio, providing complete chlorination of the alloy without formation of volatile UCl 5 and UCl 6 . The results showed high efficient chlorination at a temperature of 150 deg. C.

  13. ALPHA - The long-term passive decay heat removal and aerosol retention program

    International Nuclear Information System (INIS)

    Guentay, S.; Varadi, G.; Dreier, J.

    1996-01-01

    The Paul Scherrer Institute initiated the major new experimental and analytical program ALPHA in 1990. The program is aimed at understanding the long-term decay heat removal and aerosol questions for the next generation of Passive Light Water Reactors. The ALPHA project currently includes four major items: the large-scale, integral system behaviour test facility PANDA, which will be used to examine multidimensional effects of the SBWR decay heat removal system; an investigation of the thermal hydraulics of natural convection and mixing in pools and large volumes (LINX); a separate-effects study of aerosols transport and deposition in plenum and tubes (AIDA); while finally, data from the PANDA facility and supporting separate effects tests will be used to develop and qualify models and provide validation of relevant system codes. The paper briefly reviews the above four topics and current status of the experimental facilities. (author). 3 refs, 12 figs

  14. ALPHA - The long-term passive decay heat removal and aerosol retention program

    Energy Technology Data Exchange (ETDEWEB)

    Guentay, S; Varadi, G; Dreier, J [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-01

    The Paul Scherrer Institute initiated the major new experimental and analytical program ALPHA in 1990. The program is aimed at understanding the long-term decay heat removal and aerosol questions for the next generation of Passive Light Water Reactors. The ALPHA project currently includes four major items: the large-scale, integral system behaviour test facility PANDA, which will be used to examine multidimensional effects of the SBWR decay heat removal system; an investigation of the thermal hydraulics of natural convection and mixing in pools and large volumes (LINX); a separate-effects study of aerosols transport and deposition in plenum and tubes (AIDA); while finally, data from the PANDA facility and supporting separate effects tests will be used to develop and qualify models and provide validation of relevant system codes. The paper briefly reviews the above four topics and current status of the experimental facilities. (author). 3 refs, 12 figs.

  15. Study of minor actinides transmutation in heavy water cooled tight-pitch lattice

    International Nuclear Information System (INIS)

    Xu Xiaoqin; Shiroya, S.

    2002-01-01

    Minor actinides inhere long half-life and high toxicity. It is an alternative technical pathway and helpful for reducing environmental impact to incinerate minor actinides in spent fuel of nuclear power plants. Because of its high neutron, γ and β emitting rates and heat generation rate, it is necessary to imply more severe control and shielding techniques in the chemical treatment and fabrication. From economic view-point, it is suitable to transmute minor actinides in concentrated way. A technique for MA transmutation by heavy water cooled tight-pitch lattice system is proposed, and calculated with SRAC95 code system. It is shown that tight-pitch heavy water lattice can transmute MA effectively. The accelerator-driven subcritical system is practical for MA transmutation because of its low fraction of effective delay neutrons

  16. Gas-Cooled Fast Reactor (GFR) Decay Heat Removal Concepts

    International Nuclear Information System (INIS)

    K. D. Weaver; L-Y. Cheng; H. Ludewig; J. Jo

    2005-01-01

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with an outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report is a compilation of work performed on decay heat removal systems for a 2400 MWt GFR during this fiscal year (FY05)

  17. Filtered thermal neutron captured cross-sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Son, Pham Ngoc; Tan, Vuong Huu

    2014-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R cd ) of 420 and neutron flux (Φ th ) of 1.6x10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross-sections for nuclide of 51 V, 55 Mn, 180 Hf and 186 W by the activation method relative to the standard reaction 197 Au(n,g) 198 Au. In addition to the activities of neutron capture cross-sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U, 238 U, 239 Pu and 232 Th are introduced in this report. (author)

  18. Code ACTIVE for calculation of the transmutation, induced activity and decay heat in neutron irradiation

    International Nuclear Information System (INIS)

    Ioki, Kimihiro; Harada, Yuhei; Asami, Naoto.

    1976-03-01

    The computer code ACTIVE has been prepared for calculation of the transmutation rate, induced activity and decay heat. Calculations are carried out with activation chain and spatial distribution of neutron energy spectrum. The spatial distribution of secondary gamma-ray source due to the unstable nuclides is also obtainable. Special attension is paid to the short life decays. (auth.)

  19. A review of U-235 decay heat measurements and calculations

    International Nuclear Information System (INIS)

    Walker, W.H.

    1979-08-01

    Recent scintillator measurements of fission product decay β and γ power, and calorimetric measurements of their sum are analyzed to obtain estimates of E sub(β) and E sub(γ), the β and γ components of the delayed energy per fission in a reactor. Calculations using the ENDF/B-4 fission product file are compared to the measured results and used to estimate the contributions to E sub(β) and E sub(γ) for decay times greater than 10 5 s. A value of E sub(ν), the anti-neutrino component, consistent with the measured component is also calculated. It is found that the decay heat measured in two calorimetric experiments (the sum of the β and γ components) is about 15 percent greater than the separately-measured energies (averages of five β and two γ measurements). Thus, depending on normalization, E sub(β) and E sub(γ) can vary widely. After all experimental uncertainties are taken into account the range of possible values has as lower limits the values calculated using ENDF/B-4, with upper limits about 40 percent greater. (author)

  20. Actinides

    International Nuclear Information System (INIS)

    Martinot, L.; Fuger, J.

    1985-01-01

    The oxidation behavior of the actinides is explained on the basis of their electronic structure. The actinide elements, actinium, thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, and laurencium are included. For all except the last three elements, the points of discussion are oxidation states, Gibbs energies and potentials, and potential diagram for the element in acid solution; and thermodynamic properties of these same elements are tabulated. References are cited following discussion of each element with a total of 97 references being cited. 13 tables

  1. Application of optimal estimation techniques to FFTF decay heat removal analysis

    International Nuclear Information System (INIS)

    Nutt, W.T.; Additon, S.L.; Parziale, E.A.

    1979-01-01

    The verification and adjustment of plant models for decay heat removal analysis using a mix of engineering judgment and formal techniques from control theory are discussed. The formal techniques facilitate dealing with typical test data which are noisy, redundant and do not measure all of the plant model state variables directly. Two pretest examples are presented. 5 refs

  2. Decay heat from products of 235U thermal fission by fast-response boil-off calorimetry

    International Nuclear Information System (INIS)

    Yarnell, J.L.; Bendt, P.J.

    1977-09-01

    A cryogenic boil-off calorimeter was used to measure the decay heat from the products of thermal-neutron-induced fission of 235 U. Data are presented for cooling times between 10 and 10 5 s following a 2 x 10 4 s irradiation at constant thermal-neutron flux. The experimental uncertainty (1 sigma) in these measurements was approximately 2 percent, except at the shortest cooling times where it rose to approximately 4 percent. The beta and gamma energy from an irradiated 235 U sample was absorbed in a thermally isolated 52-kg copper block that was held at 4 K by an internal liquid helium reservoir. The absorbed energy evaporated liquid helium from the reservoir and a hot-film anemometer flowmeter recorded the evolution rate of the boil-off gas. The decay heat was calculated from the gas-flow rate using the heat of vaporization of helium. The calorimeter had a thermal time constant of 0.85 s. The energy loss caused by gamma leakage from the absorber was less than or equal to 3 percent; a correction was made by Monte Carlo calculations based on experimentally determined gamma spectra. The data agree within the combined uncertainties with summation calculations using the ENDF/B-IV data base. The experimental data were combined with summation calculations to give the decay heat for infinite (10 13 s) irradiation

  3. Probabilistic analysis of the loss of the decay heat removal function for Creys-Malville reactor

    International Nuclear Information System (INIS)

    Lanore, J.M.; Villeroux-Lombard, C.; Bouscatie, F.; Pavret de la Rochefordiere, A.

    1982-01-01

    The classical fault tree/event tree methods do not take into account the dependence in time of the systems behaviour during the sequences, and that is quite unrealistic for the decay heat removal function. It was then necessary to use a new methodology based on functional states of the whole system and on transition laws between these states. Thus, the probabilistic analysis of the decay heat removal function for Creys-Malville plant is performed in a global way. The main accident sequences leading to the loss of the function are then determined a posteriori. The weak points are pointed out, in particular the importance of common mode failures

  4. Development of a water boil-off spent-fuel calorimeter system. [To measure decay heat generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J.M.; Shupe, J.W. Jr.

    1981-05-01

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW.

  5. Performance of the prism reactor's passive decay heat removal system

    International Nuclear Information System (INIS)

    Magee, P.M.; Hunsbedt, A.

    1989-01-01

    The PRISM modular reactor concept has a totally passive safety-grade decay heat removal system referred to as the Reactor Vessel Auxiliary Cooling System (RVACS) that rejects heat from the reactor by radiation and natural convection of air. The system is inherently reliable and is not subject to the failure modes commonly associated with active cooling systems. The thermal performance of RVACS exceeds requirements and significant thermal margins exist. RVACS has been shown to perform its function under many postulated accident conditions. The PRISM power plant is equipped with three methods for shutdown: condenser cooling in conjunction with intermediate sodium and steam generator systems, and auxiliary cooling system (ACS) which removes heat from the steam generator by natural convection of air and transport of heat from the core by natural convection in the primary and intermediate systems, and a safety- grade reactor vessel auxiliary cooling system (RVACS) which removes heat passively from the reactor containment vessel by natural convection of air. The combination of one active and two passive systems provides a highly reliable and economical shutdown heat removal system. This paper provides a summary of the RVACS thermal performance for expected operating conditions and postulated accident events. The supporting experimental work, which substantiates the performance predictions, is also summarized

  6. An evaluation of nodalization/decay heat/ volatile fission product release models in ISAAC code

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong Mann; Park, Soo Yong; Kim, Dong Ha

    2003-03-01

    An ISAAC computer code, which was developed for a Level-2 PSA during 1995, has developed mainly with fundamental models for CANDU-specific severe accident progression and also the accident-analyzing experiences are limited to Level-2 PSA purposes. Hence the system nodalization model, decay model and volatile fission product release model, which are known to affect fission product behavior directly or indirectly, are evaluated to both enhance understanding for basic models and accumulate accident-analyzing experiences. As a research strategy, sensitivity studies of model parameters and sensitivity coefficients are performed. According to the results from core nodalization sensitivity study, an original 3x3 nodalization (per loop) method which groups horizontal fuel channels into 12 representative channels, is evaluated to be sufficient for an optimal scheme because detailed nodalization methods have no large effect on fuel thermal-hydraulic behavior, total accident progression and fission product behavior. As ANSI/ANS standard model for decay heat prediction after reactor trip has no needs for further model evaluation due to both wide application on accident analysis codes and good comparison results with the ORIGEN code, ISAAC calculational results of decay heat are used as they are. In addition, fission product revaporization in a containment which is caused by the embedded decay heat, is demonstrated. The results for the volatile fission product release model are analyzed. In case of early release, the IDCOR model with an in-vessel Te release option shows the most conservative results and for the late release case, NUREG-0772 model shows the most conservative results. Considering both early and late release, the IDCOR model with an in-vessel Te bound option shows mitigated conservative results.

  7. A decay heat removal system requiring no external energy

    International Nuclear Information System (INIS)

    Costes, D.; Fermandjian, J.

    1983-12-01

    A new Decay heat Removal System is described for PWR's with dry containment, i.e. a containment building which encloses no permanent reserve of cooling water. This new system is intended to provide a high level of safety since it uses no external energy, but only the thermodynamic energy of the air-steam-liquid water mixture generated in the containment after the failure of the primary circuit (''LOCA'') or of the secondary circuit. Thermodynamics of the system is evaluated first: after some design considerations, the use of the system for protecting actual PWR's is addressed

  8. Recent development in computational actinide chemistry

    International Nuclear Information System (INIS)

    Li Jun

    2008-01-01

    Ever since the Manhattan project in World War II, actinide chemistry has been essential for nuclear science and technology. Yet scientists still seek the ability to interpret and predict chemical and physical properties of actinide compounds and materials using first-principle theory and computational modeling. Actinide compounds are challenging to computational chemistry because of their complicated electron correlation effects and relativistic effects, including spin-orbit coupling effects. There have been significant developments in theoretical studies on actinide compounds in the past several years. The theoretical capabilities coupled with new experimental characterization techniques now offer a powerful combination for unraveling the complexities of actinide chemistry. In this talk, we will provide an overview of our own research in this field, with particular emphasis on applications of relativistic density functional and ab initio quantum chemical methods to the geometries, electronic structures, spectroscopy and excited-state properties of small actinide molecules such as CUO and UO 2 and some large actinide compounds relevant to separation and environment science. The performance of various density functional approaches and wavefunction theory-based electron correlation methods will be compared. The results of computational modeling on the vibrational, electronic, and NMR spectra of actinide compounds will be briefly discussed as well [1-4]. We will show that progress in relativistic quantum chemistry, computer hardware and computational chemistry software has enabled computational actinide chemistry to emerge as a powerful and predictive tool for research in actinide chemistry. (authors)

  9. Impact on geologic repository usage from limited actinide recycle in pressurized light water reactors

    International Nuclear Information System (INIS)

    Wigeland, Roald A.; Bauer, Theodore H.; Hill, Robert N.; Stillman, John A.

    2007-01-01

    A project has been conducted as part of the U.S. Department of Energy Advanced Fuel Cycle Initiative to evaluate the impact of limited actinide recycling in light water reactors on the utilization of a geologic repository where loading of the repository is constrained by the decay heat of the emplaced materials. In this study, it was assumed that spent PWR fuel was processed, removing the uranium, plutonium, americium, and neptunium, along with the fission products cesium and strontium. Previous work had demonstrated that these elements were responsible for limiting loading in the repository based on thermal constraints. The plutonium, americium, and neptunium were recycled in a PWR, with process waste and spent recycled fuel being sent to the repository. The cesium and strontium were placed in separate storage for 100-300 years to allow for decay prior to disposal. The study examined the effect of single and multiple recycles of the recovered plutonium, americium, and neptunium, as well as different processing delay times. The potential benefit to the repository was measured by the increase in utilization of repository space as indicated by the allowable linear loading in the repository drifts (tunnels). The results showed that limited recycling would provide only a small fraction of the benefit that could be achieved with repeated processing and recycling, as is possible in fast neutron reactors. (author)

  10. The effect of actinides on the microstructural development in a metallic high-level nuclear waste form

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D. D., Jr.; Sinkler, W.; Abraham, D. P.; Richardson, J. W., Jr.; McDeavitt, S. M.

    1999-10-25

    Waste forms to contain material residual from an electrometallurgical treatment of spent nuclear fuel have been developed by Argonne National Laboratory. One of these waste forms contains waste stainless steel (SS), fission products that are noble to the process (e.g., Tc, Ru, Pd, Rh), Zr, and actinides. The baseline composition of this metallic waste form is SS-15wt.% Zr. The metallurgy of this baseline alloy has been well characterized. On the other hand, the effects of actinides on the alloy microstructure are not well understood. As a result, SS-Zr alloys with added U, Pu, and/or Np have been cast and then characterized, using scanning electron microscopy, transmission electron microscopy, and neutron diffraction, to investigate the microstructural development in SS-Zr alloys that contain actinides. Actinides were found to congregate non-uniformally in a Zr(Fe,Cr,Ni){sub 2+x} phase. Apparently, the actinides were contained in varying amounts in the different polytypes (C14, C15, and C36) of the Zr(Fe,Cr,Ni){sub 2+x} phase. Heat treatment of an actinide-containing SS-15 wt.% Zr alloy showed the observed microstructure to be stable.

  11. Reliability assessment on decay heat removal system of a fast reactor

    International Nuclear Information System (INIS)

    Hioki, Kazumasa

    1991-01-01

    The reliability of a decay heat removal system (DHRS) is influenced by the success criteria, the components which constitute the system, the support systems configuration, and the mission time. Assessments were performed to investigate quantitatively the effects of these items. Failure probabilities of DHRS under forced or natural circulation modes were calculated and then components and systems of large importance for each mode were identified. (author)

  12. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  13. Criteria for achieving actinide reduction goals

    International Nuclear Information System (INIS)

    Liljenzin, J.O.

    1996-01-01

    In order to discuss various criteria for achieving actinide reduction goals, the goals for actinide reduction must be defined themselves. In this context the term actinides is interpreted to mean plutonium and the so called ''minor actinides'' neptunium, americium and curium, but also protactinium. Some possible goals and the reasons behind these will be presented. On the basis of the suggested goals it is possible to analyze various types of devices for production of nuclear energy from uranium or thorium, such as thermal or fast reactors and accelerator driven system, with their associated fuel cycles with regard to their ability to reach the actinide reduction goals. The relation between necessary single cycle burn-up values, fuel cycle processing losses and losses to waste will be defined and discussed. Finally, an attempt is made to arrange the possible systems on order of performance with regard to their potential to reduce the actinide inventory and the actinide losses to wastes. (author). 3 refs, 3 figs, 2 tabs

  14. Actinides: why are they important biologically

    International Nuclear Information System (INIS)

    Durbin, P.W.

    1978-01-01

    The following topics are discussed: actinide elements in energy systems; biological hazards of the actinides; radiation protection standards; and purposes of actinide biological research with regard to toxicity, metabolism, and therapeutic regimens

  15. A computer code for calculation of radioactive nuclide generation and depletion, decay heat and γ ray spectrum. FPGS90

    International Nuclear Information System (INIS)

    Ihara, Hitoshi; Katakura, Jun-ichi; Nakagawa, Tsuneo

    1995-11-01

    In a nuclear reactor radioactive nuclides are generated and depleted with burning up of nuclear fuel. The radioactive nuclides, emitting γ ray and β ray, play role of radioactive source of decay heat in a reactor and radiation exposure. In safety evaluation of nuclear reactor and nuclear fuel cycle, it is needed to estimate the number of nuclides generated in nuclear fuel under various burn-up condition of many kinds of nuclear fuel used in a nuclear reactor. FPGS90 is a code calculating the number of nuclides, decay heat and spectrum of emitted γ ray from fission products produced in a nuclear fuel under the various kinds of burn-up condition. The nuclear data library used in FPGS90 code is the library 'JNDC Nuclear Data Library of Fission Products - second version -', which is compiled by working group of Japanese Nuclear Data Committee for evaluating decay heat in a reactor. The code has a function of processing a so-called evaluated nuclear data file such as ENDF/B, JENDL, ENSDF and so on. It also has a function of making figures of calculated results. Using FPGS90 code it is possible to do all works from making library, calculating nuclide generation and decay heat through making figures of the calculated results. (author)

  16. A computer code for calculation of radioactive nuclide generation and depletion, decay heat and {gamma} ray spectrum. FPGS90

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, Hitoshi; Katakura, Jun-ichi; Nakagawa, Tsuneo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-11-01

    In a nuclear reactor radioactive nuclides are generated and depleted with burning up of nuclear fuel. The radioactive nuclides, emitting {gamma} ray and {beta} ray, play role of radioactive source of decay heat in a reactor and radiation exposure. In safety evaluation of nuclear reactor and nuclear fuel cycle, it is needed to estimate the number of nuclides generated in nuclear fuel under various burn-up condition of many kinds of nuclear fuel used in a nuclear reactor. FPGS90 is a code calculating the number of nuclides, decay heat and spectrum of emitted {gamma} ray from fission products produced in a nuclear fuel under the various kinds of burn-up condition. The nuclear data library used in FPGS90 code is the library `JNDC Nuclear Data Library of Fission Products - second version -`, which is compiled by working group of Japanese Nuclear Data Committee for evaluating decay heat in a reactor. The code has a function of processing a so-called evaluated nuclear data file such as ENDF/B, JENDL, ENSDF and so on. It also has a function of making figures of calculated results. Using FPGS90 code it is possible to do all works from making library, calculating nuclide generation and decay heat through making figures of the calculated results. (author).

  17. NEW METHOD FOR DETERMINATION OF ACTINIDES AND STRONTIUM IN ANIMAL TISSUE

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S; Jay Hutchison, J; Don Faison, D

    2007-05-07

    The analysis of actinides in animal tissue samples is very important for environmental monitoring. There is a need to measure actinide isotopes with very low detection limits in animal tissue samples, including fish, deer, hogs, beef and shellfish. A new, rapid actinide separation method has been developed and implemented that allows the measurement of plutonium, neptunium, uranium, americium, curium and strontium isotopes in large animal tissue samples (100-200 g) with high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and DGA-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), americium (Am), and curium (Cm) using a single multi-stage column combined with alpha spectrometry. Sr-90 is collected on Sr Resin{reg_sign} from Eichrom Technologies (Darien, IL, USA). After acid digestion and furnace heating of the animal tissue samples, the actinides and Sr-89/90 are separated using column extraction chromatography. This method has been shown to be effective over a wide range of animal tissue matrices. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.

  18. Validation of intermediate heat and decay heat exchanger model in MARS-LMR with STELLA-1 and JOYO tests

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chiwoong; Ha, Kwiseok; Hong, Jonggan; Yeom, Sujin; Eoh, Jaehyuk [Sodium-cooled Fast Reactor Design Division, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Jeong, Hae-yong, E-mail: hyjeong@sejong.ac.kr [Department of Nuclear Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2016-11-15

    Highlights: • The capability of the MARS-LMR for heat transfer through IHX and DHX is evaluated. • Prediction of heat transfer through IHXs and DHXs is essential in the SFR analysis. • Data obtained from the STELLA-1 and the JOYO test are analyzed with the MARS-LMR. • MARS-LMR adopts the Aoki’s correlation for tube side and Graber-Rieger’s for shell. • The performance of the basic models and other available correlations is evaluated. • The current models in MARS-LMR show best prediction for JOYO and STELLA-1 data. - Abstract: The MARS-LMR code has been developed by the Korea Atomic Energy Research Institute (KAERI) to analyze transients in a pool-type sodium-cooled fast reactor (SFR). Currently, KAERI is developing a prototype Gen-IV SFR (PGSFR) with metallic fuel. The decay heat exchangers (DHXs) and the intermediate heat exchangers (IHXs) were designed as a sodium-sodium counter-flow tube bundle type for decay heat removal system (DHRS) and intermediate heat transport system (IHTS), respectively. The IHX and DHX are important components for a heat removal function under normal and accident conditions, respectively. Therefore, sodium heat transfer models for the DHX and IHX heat exchangers were added in MARS-LMR. In order to validate the newly added heat transfer model, experimental data were obtained from the JOYO and STELLA-1 facilities were analyzed. JOYO has two different types of IHXs: type-A (co-axial circular arrangement) and type-B (triangular arrangement). For the code validation, 38 and 39 data points for type A and type B were selected, respectively. A DHX performance test was conducted in STELLA-1, which is the test facility for heat exchangers and primary pump in the PGSFR. The DHX test in STELLA-1 provided eight data points for a code validation. Ten nodes are used in the heat transfer region is used, based on the verification test for the heat transfer models. RMS errors for JOYO IHX type A and type B of 19.1% and 4.3% are obtained

  19. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  20. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2010-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  1. Actinide Separation Demonstration Facility, Tarapur

    International Nuclear Information System (INIS)

    Vishwaraj, I.

    2017-01-01

    Partitioning of minor actinide from high level waste could have a substantial impact in lowering the radio toxicity associated with high level waste as well as it will reduce the burden on geological repository. In Indian context, the partitioned minor actinide could be routed into the fast breeder reactor systems scheduled for commissioning in the near period. The technological breakthrough in solvent development has catalyzed the partitioning programme in India, leading to the setting up and hot commissioning of the Actinide Separation Demonstration Facility (ASDF) at BARC, Tarapur. The engineering scale Actinide Separation Demonstration Facility (ASDF) has been retrofitted in an available radiological hot cell situated adjacent to the Advanced Vitrification Facility (AVS). This location advantage ensures an uninterrupted supply of high-level waste and facilitates the vitrification of the high-level waste after separation of minor actinides

  2. Experimental and analytical studies for the validation of HTR-VGD and primary cell passive decay heat removal. Supplement. Calculations

    International Nuclear Information System (INIS)

    Geiss, M.; Giannikos, A.; Hejzlar, P.; Kneer, A.

    1993-04-01

    The alternative concept for a modular HTR-reactor design by Siempelkamp, Krefeld, using a prestressed cast iron vessel (VGD) combined with a cast iron/concrete module for the primary cell with integrated passive decay heat removal system was fully qualified with respect to operational and accidental thermal loads. The main emphasis was to confirm and validate the passive decay heat removal capability. An experimental facility (INWA) was designed, instrumented and operated with an appropriate electrical heating system simulating steady-state operational and transient accidental thermal loads. The experiments were accompanied by extensive computations concerning the combination of conductive, radiative and convective energy transport mechanisms in the different components of the VGD/primary cell structures, as well as elastic-plastic stress analyses of the VGD. In addition, a spectrum of potential alternatives for passive energy removed options have been parametrically examined. The experimental data clearly demonstrate that the proposed Siempelkamp-design is able to passively and safely remove the decay heat for operational and accidental conditions without invalidating technological important thermal limits. This also holds in case of failures of both the natural convection system and ultimate heat sink by outside concrete water film cooling. (orig./HP) [de

  3. Design of Passive Decay Heat Removal System using Mercury Thermosyphon for SFR

    Energy Technology Data Exchange (ETDEWEB)

    You, Byung Hyun; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, thermosyphon application is suggested to accomplish the fully passive safety grade system and compactness of components via enhance the heat removal performance. A two-phase evaporating thermosyphon operates when the evaporator is heated, the working fluid start boiling, the vapor that is formed moves to the condenser, where it is condensed on the walls, giving up the heat of phase change to the cooling fluid. Gravity forces cause the condensate to condensed liquid flow to the evaporator again. These processes occur continuously, which causes transfer of heat from evaporator to condenser vice versa. After the thermal design and performance evaluation, the results were compared with the performance of conventional DRACS system. For the same amount of decay heat removal performance of PDRC system of KALIMER-600 mercury thermosyphon system can archive around 30∼50% of compactness. For the detailed design, improved analytical model and experimental data for the validation will be required to specify the new DHR system.

  4. An Operators View of Reliability Testing and Decay Heat Rejection Systems

    International Nuclear Information System (INIS)

    Henderson, J.D.C.

    1975-01-01

    The object of this paper is to review the in-situ testing of DHR systems, and to convey policy rather than to indicate a definitive test programme. The test policy is aimed primarily at commissioning the plant and secondly at providing such support for reliability predictions as is practical. Provisions for removal of decay heat from the core and from the reactor tank are described in papers by Broadley and Davies

  5. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  6. Concentration of actinides in the food chain

    International Nuclear Information System (INIS)

    Bulman, R.A.

    1976-06-01

    Considerable concern is now being expressed over the discharge of actinides into the environment. This report presents a brief review of the chemistry of the actinides and examines the evidence for interaction of the actinides with some naturally-occurring chelating agents and other factors which might stimulate actinide concentration in the food chain of man. This report also reviews the evidence for concentration of actinides in plants and for uptake through the gastrointestinal tract. (author)

  7. Thermal-hydraulics of actinide burner reactors

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Mukaiyama, Takehiko; Takano, Hideki; Ogawa, Toru; Osakabe, Masahiro.

    1989-07-01

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  8. Impurities that cause difficulty in stripping actinides from commercial tetraalkylcarbamoylmethylphosphonates

    International Nuclear Information System (INIS)

    Bahner, C.T.; Shoun, R.R.; McDowell, W.J.

    1977-09-01

    Dihexyl[(diethylcarbamoyl)methyl]phosphonate (DHDECMP) in diethylbenzene extracts actinides well from 6 M nitric acid solution, but commercially available DHDECMP contains impurities which interfere with stripping the actinides from the organic extract. DHDECMP purified by molecular distillation does not contain these impurities, but the pot residue contains increased concentrations of them. Heating the purified DHDECMP causes the formation of products which interfere with stripping in the same way, suggesting that high temperatures employed in the manufacture of DHDECMP may produce the offending impurities. These impurities can be separated from the heat-decomposed material or the pot residues by dilution with a large volume of hexanes (causing part of the impurities to separate as a second liquid phase) followed by equilibration of the hexane solution with dilute alkali. After the treatment with hexane and dilute alkali, the DHDECMP is readily recovered and functions well in the actinide extraction process. Dibutyl[(dibutylcarbamoyl)methyl]-phosphonate (DBDBCMP) and di(2-ethylhexyl)[(diethylcarbamoyl)-methyl]phosphonate (DEHDECMP) are purified less effectively by these methods. Similar separation methods using diethylbenzene or CCl 4 as solvent do not remove impurities as completely as the hexane process. Impurities can also be removed from a benzene solution of the DHDECMP pot residue by passing it through a column packed with silica gel or diethylaminoethyl cellulose. These impurities have been separated into fractions for analytical examination by use of various solvents and by column chromatography. Hexyl hydrogen [(diethylcarbamoyl)methyl]-phosphonate has been identified tentatively as a principal objectionable impurity. Dihexyl phosphoric acid and possibly dihexylphosphonate have been identified in other fractions

  9. Activity inventories and decay heat calculations for a DEMO with HCPB and HCLL blanket modules

    International Nuclear Information System (INIS)

    Stankunas, Gediminas; Tidikas, Andrius; Pereslavstev, Pavel; Catalán, Juan; García, Raquel; Ogando, Francisco; Fischer, Ulrich

    2016-01-01

    Highlights: • The afterheat and activity inventories were calculated for Eurofer steel which is the reference structural material for DEMO. • The decay heat for the HCPB DEMO was found to be larger than for the HCLL both for short and longer cooling times. • The comparison calculations were performed for a single outboard blanket module of the HCLL DEMO assuming High-Temperature Ferritic–Martensitic (HT-FM) steel and SS-316 (LN) as structural material. - Abstract: Activation inventories, decay heat and radiation doses are important nuclear quantities which need to be assessed on a reliable basis for the safe operation of a fusion nuclear power reactor. The afterheat and activity inventories were shown to be dominated by the Eurofer steel which is the reference structural material for DEMO. The decay heat for the HCPB DEMO was found to be larger than for the HCLL both for short (a few days) and longer (more than a year) cooling times. As for the alternative steels, the induced radioactivity was turned out to be lowest for the SS-316 until about 200 years after shut-down. Afterwards, the activity level of SS-316 steel was found to be the highest. For these times, the activity of both Eurofer and the HT-FM steel is about one order of magnitude lower.

  10. Activity inventories and decay heat calculations for a DEMO with HCPB and HCLL blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Stankunas, Gediminas, E-mail: gediminas.stankunas@lei.lt [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos Str. 3, LT-44403 Kaunas (Lithuania); Tidikas, Andrius [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos Str. 3, LT-44403 Kaunas (Lithuania); Pereslavstev, Pavel [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Catalán, Juan; García, Raquel; Ogando, Francisco [Departamento de Ingeniería Energética, UNED, 28040 Madrid (Spain); Fischer, Ulrich [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • The afterheat and activity inventories were calculated for Eurofer steel which is the reference structural material for DEMO. • The decay heat for the HCPB DEMO was found to be larger than for the HCLL both for short and longer cooling times. • The comparison calculations were performed for a single outboard blanket module of the HCLL DEMO assuming High-Temperature Ferritic–Martensitic (HT-FM) steel and SS-316 (LN) as structural material. - Abstract: Activation inventories, decay heat and radiation doses are important nuclear quantities which need to be assessed on a reliable basis for the safe operation of a fusion nuclear power reactor. The afterheat and activity inventories were shown to be dominated by the Eurofer steel which is the reference structural material for DEMO. The decay heat for the HCPB DEMO was found to be larger than for the HCLL both for short (a few days) and longer (more than a year) cooling times. As for the alternative steels, the induced radioactivity was turned out to be lowest for the SS-316 until about 200 years after shut-down. Afterwards, the activity level of SS-316 steel was found to be the highest. For these times, the activity of both Eurofer and the HT-FM steel is about one order of magnitude lower.

  11. Improvement of gross theory of beta-decay for application to nuclear data

    Science.gov (United States)

    Koura, Hiroyuki; Yoshida, Tadashi; Tachibana, Takahiro; Chiba, Satoshi

    2017-09-01

    A theoretical study of β decay and delayed neutron has been carried out with a global β-decay model, the gross theory. The gross theory is based on a consideration of the sum rule of the β-strength function, and gives reasonable results of β-decay rates and delayed neutron in the entire nuclear mass region. In a fissioning nucleus, neutrons are produced by β decay of neutron-rich fission fragments from actinides known as delayed neutrons. The average number of delayed neutrons is estimated based on the sum of the β-delayed neutron-emission probabilities multiplied by the cumulative fission yield for each nucleus. Such a behavior is important to manipulate nuclear reactors, and when we adopt some new high-burn-up reactors, properties of minor actinides will play an important roll in the system, but these data have not been sufficient. We re-analyze and improve the gross theory. For example, we considered the parity of neutrons and protons at the Fermi surface, and treat a suppression for the allowed transitions in the framework of the gross theory. By using the improved gross theory, underestimated half-lives in the neutron-rich indium isotopes and neighboring region increase, and consequently follow experimental trend. The ability of reproduction (and also prediction) of the β-decay rates, delayed-neutron emission probabilities is discussed. With this work, we have described the development of a programming code of the gross theory of β-decay including the improved parts. After preparation finished, this code can be released for the nuclear data community.

  12. Inherent protection of plutonium by doping minor actinide in thermal neutron spectra

    International Nuclear Information System (INIS)

    Peryoga, Yoga; Sagara, Hiroshi; Saito, Masaki; Ezoubtchenko, Alexey

    2005-01-01

    The present study focuses on the exploration of the effect of minor actinide (MA) addition into uranium oxide fuels of different enrichment (5% 235 U and 20% 235 U) as ways of increasing fraction of even-mass-number plutonium isotopes. Among plutonium isotopes, 238 Pu, 240 Pu and 242 Pu have the characteristics of relatively high decay heat and spontaneous fission neutron rate that can improve proliferation-resistant properties of a plutonium composition. Two doping options were proposed, i.e. doping of all MA elements (Np, Am and Cm) and doping of only Np to observe their effect on plutonium proliferation-resistant properties. Pressurized water reactor geometry has been chosen for fuels irradiation environment where irradiation has been extended beyond critical to explore the subcritical system potential. Results indicate that a large amount of MA doping within subcritical operation highly improves the proliferation-resistant properties of the plutonium with high total plutonium production. Doping of 1% MA or Np into 5% 235 U enriched uranium fuel appears possible for critical operation of the current commercial light water reactor with reasonable improvement in the plutonium proliferation-resistant properties. (author)

  13. Actinide colloid generation in groundwater. Part 2

    International Nuclear Information System (INIS)

    Kim, J.I.

    1991-01-01

    The progress made in the investigation of actinide colloid generation in groundwater is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudo colloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC Mirage II project, in particular the complexation and colloids research area

  14. Decay heat and activity of the structural materials of the fuel and blanket assemblies of the second and third core of KNK II

    International Nuclear Information System (INIS)

    Winterhagen, D.

    1986-06-01

    The decay heat and activity caused by structural materials have been calculated for the fuel assemblies of KNK II (second and third core) with a residence time of 720 equivalent full-power days (efpd) and the blanket assemblies with 1880 efpd. The values are given for the different zones of the assemblies (head, active zone, fission gas plenum, foot and stellite area) for decay times from 1 to 20 years. For decay times beyond 2 years more than 80 % of the decay heat are caused by the Co60-decay, more than 60 % of which result from the stellite in the foot area [de

  15. Assessment of Partitioning Processes for Transmutation of Actinides

    International Nuclear Information System (INIS)

    2010-04-01

    To obtain public acceptance of future nuclear fuel cycle technology, new and innovative concepts must overcome the present concerns with respect to both environmental compliance and proliferation of fissile materials. Both these concerns can be addressed through the multiple recycling of all transuranic elements (TRUs) in fast neutron reactor. This is only possible through a process known as partitioning and transmutation scheme (P and T) as this scheme is expected to reduce the long term radio-toxicity as well as the radiogenic heat production of the nuclear waste. Proliferation resistance of separated plutonium could further be enhanced by mixing with self-generated minor actinides. In addition, P and T scheme is expected to extend the nuclear fuel resources on earth about 100 times because of the recycle and reuse of fissile actinides. Several Member States are actively pursuing the research in the field of P and T and consequently several IAEA publications have addressed this topic. The present coordinated research project (CRP) focuses on the potentials in minimizing the residual TRU inventories of the discharged nuclear waste and in enhancing the proliferation resistance of the future civil nuclear fuel cycle. Partitioning approaches can be grouped into aqueous- (hydrometallurgical) and pyroprocesses. Several aqueous processes based on sequential separation of actinides from spent nuclear fuel have been developed and tested at pilot plant scale. In view of the proliferation resistance of the intermediate and final products of a P and T scheme, a group separation of all actinides together is preferable. The present CRP has gathered experts from different organisations and institutes actively involved in developing P and T scheme as mentioned in the list of contributors and also taken into consideration the studies underway in France and the UK. The scientific objectives of the CRP are: To minimize the environmental impact of actinides in the waste stream; To

  16. Design of passive decay heat removal system using thermosyphon for low temperature and low pressure pool type LWR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; You, Byung Hyun; Jung, Yong Hun; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    In seawater desalination process which doesn't need high temperature steam, the reactor has profitability. KAIST has be developing the new reactor design, AHR400, for only desalination. For maximizing safety, the reactor requires passive decay heat removal system. In many nuclear reactors, DHR system is loop form. The DHR system can be designed simple by applying conventional thermosyphon, which is fully passive device, shows high heat transfer performance and simple structure. DHR system utilizes conventional thermosyphon and its heat transfer characteristics are analyzed for AHR400. For maximizing safety of the reactor, passive decay heat removal system are prepared. Thermosyphon is useful device for DHR system of low pressure and low temperature pool type reactor. Thermosyphon is operated fully passive and has simple structure. Bundle of thermosyphon get the goal to prohibit boiling in reactor and high pressure in reactor vessel.

  17. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO 2 + ) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO 2 + ; therefore, cation-cation complexes indicate something unique about AnO 2 + cations compared to actinide cations in general. The first cation-cation complex, NpO 2 + ·UO 2 2+ , was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO 2 + species, the cation-cation complexes of NpO 2 + have been studied most extensively while the other actinides have not. The only PuO 2 + cation-cation complexes that have been studied are with Fe 3+ and Cr 3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO 2 + ·UO 2 2+ , NpO 2 + ·Th 4+ , PuO 2 + ·UO 2 2+ , and PuO 2 + ·Th 4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M -1

  18. Actinides and fission products partitioning from high level liquid waste

    International Nuclear Information System (INIS)

    Yamaura, Mitiko

    1999-01-01

    The presence of small amount of mixed actinides and long-lived heat generators fission products as 137 Cs and 90 Sr are the major problems for safety handling and disposal of high level nuclear wastes. In this work, actinides and fission products partitioning process, as an alternative process for waste treatment is proposed. First of all, ammonium phosphotungstate (PWA), a selective inorganic exchanger for cesium separation was chosen and a new procedure for synthesizing PWA into the organic resin was developed. An strong anionic resin loaded with tungstate or phosphotungstate anion enables the precipitation of PWA directly in the resinous structure by adding the ammonium nitrate in acid medium (R-PWA). Parameters as W/P ratio, pH, reactants, temperature and aging were studied. The R-PWA obtained by using phosphotungstate solution prepared with W/P=9.6, 9 hours digestion time at 94-106 deg C and 4 to 5 months aging time showed the best capacity for cesium retention. On the other hand, Sr separation was performed by technique of extraction chromatography, using DH18C6 impregnated on XAD7 resin as stationary phase. Sr is selectively extracted from acid solution and >99% was recovered from loaded column using distilled water as eluent. Concerning to actinides separations, two extraction chromatographic columns were used. In the first one, TBP(XAD7) column, U and Pu were extracted and its separations were carried-out using HNO 3 and hydroxylamine nitrate + HNO 3 as eluent. In the second one, CMP0-TBP(XAD7) column, the actinides were retained on the column and the separations were done by using (NH 4 ) 2 C 2 O 4 , DTPA, HNO 3 and HCl as eluent. The behavior of some fission products were also verified in both columns. Based on the obtained data, actinides and fission products Cs and Sr partitioning process, using TBP(XAD7) and CMP0-TBP(XAD7) columns for actinides separation, R-PWA column for cesium retention and DH18C6(XAD7) column for Sr isolation was performed

  19. Recycle of LWR actinides to an IFR

    International Nuclear Information System (INIS)

    Pierce, R.D.; Ackerman, J.P.; Johnson, G.K.; Mulcahey, T.P.; Poa, D.S.

    1991-01-01

    Large quantities of actinide elements are present in irradiated light water reactor fuel that is stored throughout the world. Because of the high fission to capture ratio for the transuranium (TRU) elements with the high energy neutrons in metal-fueled integral fast reactors (IFR), that reactor can consume these elements effectively. The stored fuel may represent valuable resource for the expanding application of fast power reactors. In addition, the removal of TRU elements from spent LWR fuel has the potential for increasing the capacity of high level waste facilities by reducing the heat load and may increase the margin of safety in meeting licensing requirement. Argonne National Laboratory is developing a pyrochemical process, which is compatible with the IFR fuel cycle for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. Two pyrochemical processes, that is, salt transport process and blanket processing study, are discussed in this paper. Also the experimental studies are reported. (K.I.)

  20. Free energy and heat capacity

    International Nuclear Information System (INIS)

    Kurata, M.; Devanathan, R.

    2015-01-01

    Free energy and heat capacity of actinide elements and compounds are important properties for the evaluation of the safety and reliable performance of nuclear fuel. They are essential inputs for models that describe complex phenomena that govern the behaviour of actinide compounds during nuclear fuels fabrication and irradiation. This chapter introduces various experimental methods to measure free energy and heat capacity to serve as inputs for models and to validate computer simulations. This is followed by a discussion of computer simulation of these properties, and recent simulations of thermophysical properties of nuclear fuel are briefly reviewed. (authors)

  1. Extraction chromatogrpahy of actinides, ch. 7

    International Nuclear Information System (INIS)

    Mueller, W.

    1975-01-01

    This review on extraction chromatography of actinides emphasizes the important usage of neutral (Tributylphosphate), basic (substituted ammonium salts), and acidic (HDEHP) extractants, and their application to separations of actinides in the di-to hexavalent oxidation state. Furthermore, the actinide extraction by ketones, ethers, alcohols and β-diketones is discussed

  2. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  3. Actinide speciation in the environment

    International Nuclear Information System (INIS)

    Choppin, G.R.

    2007-01-01

    Nuclear test explosions and nuclear reactor wastes and accidents have released large amounts of radioactivity into the environment. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides are introduced into the aquatic system. Chemical speciation, oxidation state, redox reactions, and sorption characteristics are necessary in predicting solubility of the different actinides, their migration behaviors and their potential effects on marine biota. The most significant of these variables is the oxidation state of the metal ion as the simultaneous presence of more than one oxidation state for some actinides in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters, are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is much more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK sp ≥56) but which can be present in the pentavalent form in aqautic phases as colloidal material. The solubility of hexavalent UO 2 2+ in sea water is relatively high due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(OH)(CO 3 ) is the limiting species for the solubility of Am(III) in sea water. Thorium(IV) is present as Th(OH) 4 , in colloidal form. The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in natural waters which must be considered in assessing the environmental behavior of actinides. Much is understood about sorption of actinides on surfaces, the mode of migration of actinides in such waters and the potential effects of these radioactive species on marine biota, but much more understanding of the behavior of the actinides in the environment is

  4. Possible design of PBR for passive decay heat removal

    International Nuclear Information System (INIS)

    Sambuu, Odmaa; Obara, Toru

    2016-01-01

    Conditions for design parameters of above-ground and underground, prismatic high-temperature gas-cooled reactor (HTGR)s for passive decay heat removal based on fundamental heat transfer mechanisms were obtained in the previous works. In the present study, analogous conditions were obtained for pebble bed reactors by performing the same procedure using the model for heat transfer in porous media of COMSOL 4.3a software, and the results were compared. For the power density profile, several approximated distributions together with original one throughout the 10-MWt high-temperature gas-cooled reactor-test module (HTR-10) were used, and it was found that an HTR-10 with a uniform power density profile has the higher safety margin than those with other profiles. In other words, the safety features of a PBR can be enhanced by flattening the power density profile. We also found that a prismatic HTGR with a uniform power density profile throughout the core has a greater safety margin than a PBR with the same design characteristics. However, when the power density profile is not flattened during the operation, the PBR with the linear power density profile has more safety margin than the prismatic HTGR with the same design parameters and with the power density profile by cosine and Bessel functions. (author)

  5. Alpha decay and various problems related to it

    International Nuclear Information System (INIS)

    Katori, Kenji

    1992-01-01

    On the proton-excessive nucleus side of lanthanide and actinide, alpha decay is the main decay mode. In lanthanide region, alpha decay has been measured to the drip line for most even-even nuclei. In the measurement of alpha decay, emitted energy and life are measured, but the measurement of converted alpha width remains in the limited range. In order to obtain the converted alpha width of high accuracy, the nucleus formation in larger quantity on the drip line and the simultaneous measurement with a multiple detector system including gamma ray and beta ray are required. In this paper, three topics related to alpha cluster and alpha decay and the problems that confront at present are discussed. The continuation to exist of alpha cluster structure to heavy nuclei, the analysis of lanthanide nucleus region by the alpha giant resonance model, and the new data on the alpha ray decaying from the mass of 175, 176 and 177 are reported. In lanthanide nucleus region, remarkable interference was not observed between beta-2 and beta-3 modes in the converted alpha width measured between the ground states. The present problems in alpha decay are enumerated. (K.I.)

  6. Thermal hydraulic parametric investigation of decay heat removal from degraded core of a sodium cooled fast Breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Lokesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar Sharma, Anil, E-mail: aksharma@igcar.gov.in [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India); Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India)

    2017-03-15

    Highlights: • Decay heat removal from degraded core of a typical SFR is highlighted. • Influence of number of DHXs in operation on PAHR is analyzed. • Investigations on structural integrity of the inner vessel and core catcher. • Feasibility study for retention of a part of debris in upper pool of SFR. - Abstract: Ensuring post accident decay heat removal with high degree of reliability following a Core Disruptive Accident (CDA) is very important in the design of sodium cooled fast reactors (SFR). In the recent past, a lot of research has been done towards the design of an in-vessel core catcher below the grid plate to prevent the core debris reaching the main vessel in a pool type SFR. However, during an energetic CDA, the entire core debris is unlikely to reach the core catcher. A significant part of the debris is likely to settle in core periphery between radial shielding subassemblies and the inner vessel. Failure of inner vessel due to the decay heat can lead to core debris reaching the main vessel and threatening its integrity. On the other hand, retention of a part of debris in core periphery can reduce the load on main core catcher. Towards achieving an optimum design of SFR and safety evaluation, it is essential to quantify the amount of heat generating core debris that can be retained safely within the primary vessel. This has been performed by a mathematical simulation comprising solution of 2-D transient form of the governing equations of turbulent sodium flow and heat transfer with Boussinesq approximations. The conjugate conduction-convection model adopted for this purpose is validated against in-house experimental data. Transient evolutions of natural convection in the pools and structural temperatures in critical components have been predicted. It is found that 50% of the core debris can be safely accommodated in the gap between radial shielding subassemblies and inner vessel without exceeding structural temperature limit. It is also

  7. Optimized design of an ex-vessel cooling thermosyphon for decay heat removal in SFR

    International Nuclear Information System (INIS)

    Choi, Jae Young; Jeong, Yong Hoon; Song, Sub Lee; Chang, Soon Heung

    2017-01-01

    Passive decay heat removal and sodium fire are two major key issues of nuclear safety in sodium-cooled fast reactor (SFR). Several decay heat removal systems (DHR) were suggested for SFR around the world so far. Those DHRS mainly classified into two concepts: Direct reactor cooling system and ex-vessel cooling system. Direct reactor cooling method represented by PDHRS from PGSFR has disadvantages on its additional in-vessel structure and potential sodium fire risk due to the sodium-filled heat exchanger exposed to air. Contrastively, ex-vessel cooling method represented by RVACS from PRISM has low decay heat removal performance, which cannot be applicable to large scale reactors, generally over 1000 MWth. No passive DHRSs which can solve both side of disadvantages has been suggested yet. The goal of this study was to propose ex-vessel cooling system using two-phase closed thermosyphon to compensate the disadvantages of the past DHRSs. Reference reactor was Innovative SFR (iSFR), a pool-type SFR designed by KAIST and featured by extended core lifetime and increased thermal efficiency. Proposed ex-vessel cooling system consisted of 4 trains of thermosyphons and designed to remove 1% of thermal power with 10% of margin. The scopes of this study were design of proposed passive DHRS, validation of system analysis and optimization of system design. Mercury was selected as working fluid to design ex-vessel thermosyphon in consideration of system geometry, operating temperature and required heat flux. SUS 316 with chrome coated liner was selected as case material to resist against high corrosivity of mercury. Thermosyphon evaporator was covered on the surface of reactor vessel as the geometry of hollow shell filled with mercury. Condenser was consisted of finned tube bundles and was located in isolated water pool, the ultimate heat sink. Operation limits and thermal resistance was estimated to guarantee whether the design was adequate. System analysis was conducted by in

  8. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2012-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using highly sensitive and advanced laser-based spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been applied for the chemical speciation of actinide in aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. Development of TRLFS technology for the chemical speciation of actinides, Development of laser-induced photo-acoustic spectroscopy (LPAS) system, Application of LIBD technology to investigate dynamic behaviors of actinides dissolution reactions, Development of nanoparticle analysis technology in groundwater using LIBD, Chemical speciation of plutonium complexes by using a LWCC system, Development of LIBS technology for the quantitative analysis of actinides, Evaluation on the chemical reactions between actinides and humic substances, Spectroscopic speciation of uranium-ligand complexes in aqueous solution, Chemical speciation of actinides adsorbed on metal oxides surfaces

  9. Improved Design Concept for ensuring the Passive Decay Heat Removal Performance of an SFR

    International Nuclear Information System (INIS)

    Eoh, Jae Hyuk; Lee, Tae Ho; Han, Ji Woong; Kim, Seong O

    2011-01-01

    In order to enhance the operational reliability of a purely passive decay heat removal system in KALIMER, which is named as PDRC, three design options to prevent a sodium freezing in an intermediate decay heat removal circuit were proposed, and their feasibilities was quantitatively evaluated. For all the options, more specific design considerations were made to confirm their feasibility to properly materialize their concepts in a practical system design procedure, and the general definitions for a purely passive concept and its design features have been discussed. A numerical study to evaluate the coastdown flow effect of the primary pump was performed to figure out the early stage DHR capability inside reactor pool during a loss of normal heat sink accident. The thermal-hydraulic calculations have been made by using the COMMIX-1AR/P code, and it was found that the initiation of heat removal by DHX could be accelerated by the increase of the coastdown time but it needs a large-sized flywheel. For the demonstration of the innovative concept, a large scale sodium thermal-hydraulic test facility is currently being designed. It is very difficult to reproduce both a hydrodynamic and a thermodynamic similarity to the prototype plant if the thermal driving head is determined by structure-to-fluid heat transfer under natural circulation flow. Hence the similitude requirements for the sodium thermal-hydraulic test facility employing natural convection heat transfer were developed, and the preliminary design data of the test facility by implementing proper scaling methodologies was produced. The design restrictions imposed on the test facility and the scaling distortions of the design data to the full-scale system were also discussed

  10. Safe actinide disposition in molten salt reactors

    International Nuclear Information System (INIS)

    Gat, U.

    1997-01-01

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs

  11. Beta and gamma decay heat evaluation for the thermal fission of 235U

    International Nuclear Information System (INIS)

    Schenter, G.K.; Schmittroth, F.

    1979-01-01

    Beta and gamma fission product decay heat curves are evaluated for the thermal fission of 235 U. Experimental data that include beta, gamma, and total measurements are combined with summation calculations based on ENDF/B in a consistent evaluation. Least-squares methods are used that take proper account of data uncertainties and correlations. 4 figures, 2 tables

  12. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life VHTR Configurations: Designs, Advantages and Limitations

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.

    2009-01-01

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

  13. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Pavel V. Tsvetkov

    2009-05-20

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

  14. Estimation of formation heat of rare earth and actinide alloys

    International Nuclear Information System (INIS)

    Shubin, A.B.; Yamshchikov, L.F.; Raspopin, S.P.

    1986-01-01

    A method for forecasting the enthalpy of formation of scandium, yttrium, lanthanum and lanthanides, thorium, uranium and plutonium alloys with a series of fusible metals (Al, Ga, In, Tl, Sn, Pb, Sb, Bi) is proposed. The obtained confidence internal value for the calculated Δ f H 0 values exceeds sufficiently the random error of the experimental determination of the rare metal alloy formation enthalpies. However, taking into account considerable divergences in results of Δ f H 0 determinations performed by different science groups, one may conclude, that such forecasting accuracy may be useful in the course of estimation calculations, especially, for actinide element alloys

  15. Method and device to remove the decay heat produced in the core of a nuclear reactor

    International Nuclear Information System (INIS)

    Loimann, E.; Reutler, H.

    1977-01-01

    For decay haet removal of the HTGR the heat absorbed by the top reflector is discharged by means of heat exchangers. For this purpose the heat exchangers are arranged between the top bricks consisting of graphite blocks. By convection or forced circulation with the aid of pumps the liquid coolant is flowing in a cycle between the individual heat exchangers connected in parallel and a heat sink arranged outside the containment. The distributing and collection pipes are mounted between the upper and lower thermal shield. The heat exchanger compartments themselves consist of double-walled hollow bodies with a disc-shaped section and a columnar part extending from there to one side respectively. (RW) [de

  16. Actinides burnup in a sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Pineda A, R.; Martinez C, E.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The burnup of actinides in a nuclear reactor is been proposed as part of an advanced nuclear fuel cycle, this process would close the fuel cycle recycling some of the radioactive material produced in the open nuclear fuel cycle. These actinides are found in the spent nuclear fuel from nuclear power reactors at the end of their burnup in the reactor. Previous studies of actinides recycling in thermal reactors show that would be possible reduce the amounts of actinides at least in 50% of the recycled amounts. in this work, the amounts of actinides that can be burned in a fast reactor is calculated, very interesting results surge from the calculations, first, the amounts of actinides generated by the fuel is higher than for thermal fuel and the composition of the actinides vector is different as in fuel for thermal reactor the main isotope is the {sup 237}Np in the fuel for fast reactor the main isotope is the {sup 241}Am, finally it is concluded that the fast reactor, also generates important amounts of waste. (Author)

  17. Burning actinides in very hard spectrum reactors

    International Nuclear Information System (INIS)

    Robinson, A.H.; Shirley, G.W.; Prichard, A.W.; Trapp, T.J.

    1978-01-01

    The major unresolved problem in the nuclear industry is the ultimate disposition of the waste products of light water reactors. The study demonstrates the feasibility of designing a very hard spectrum actinide burner reactor (ABR). A 1100 MW/sub t/ ABR design fueled entirely with actinides reprocessed from light water reactor (LWR) wastes is proposed as both an ultimate disposal mechanism for actinides and a means of concurrently producing usable power. Actinides from discharged ABR fuel are recycled to the ABR while fission products are routed to a permanent repository. As an integral part of a large energy park, each such ABR would dispose of the waste actinides from 2 LWRs

  18. Citrate-based open-quotes Talspeakclose quotes actinide-lanthanide separation process

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Toth, L.M.; Bond, W.D.

    1997-01-01

    Lanthanide elements are produced in relatively high yield by fission of 235 U. Almost all the lanthanide isotopes decay to stable nonradioactive lanthanide isotopes in a relatively short time. Consequently, it is highly advantageous to separate the relatively small actinide fraction from the relatively large quantities of lanthanide isotopes. The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. Previous work based on the use of lactic or glycolic acid has shown deleterious effects of some impurity ions such as zirconium(IV), even at concentrations on the order of 10 -4 M. Other perceived problems were the need to maintain the pH and reagent concentrations within a narrow range and a significant solubility of the organic phase at high carboxylic acid concentrations. The authors' cold experiments showed that replacing the traditional extractants glycolic or lactic acid with citric acid eliminates or greatly reduces the deleterious effects produced by impurities such as zirconium. An extensive series of batch tests was done using a wide range of reagent concentrations at different pH values, temperatures, and contact times. The results demonstrated that the citrate-based TALSPEAK can tolerate appreciable changes in pH and reagent concentrations while maintaining an adequate lanthanide extraction. Experiments using a three-stage glass mixer-settler showed a good lanthanide extraction, appropriate phase disengagement, no appreciable deleterious effects due to the presence of impurities such as zirconium, excellent pH buffering, and no significant loss of organic phase

  19. Development of margin assessment methodology of decay heat removal function against external hazards. (2) Tornado PRA methodology

    International Nuclear Information System (INIS)

    Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

    2014-01-01

    Probabilistic Risk Assessment (PRA) for external events has been recognized as an important safety assessment method after the TEPCO's Fukushima Daiichi nuclear power station accident. The PRA should be performed not only for earthquake and tsunami which are especially key events in Japan, but also the PRA methodology should be developed for the other external hazards (e.g. tornado). In this study, the methodology was developed for Sodium-cooled Fast Reactors paying attention to that the ambient air is their final heat sink for removing decay heat under accident conditions. First, tornado hazard curve was estimated by using data recorded in Japan. Second, important structures and components for decay heat removal were identified and an event tree resulting in core damage was developed in terms of wind load and missiles (i.e. steel pipes, boards and cars) caused by a tornado. Main damage cause for important structures and components is the missiles and the tornado missiles that can reach those components and structures placed on high elevations were identified, and the failure probabilities of the components and structures against the tornado missiles were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or outtake in the decay heat removal system, and a probability of failure caused by the missile impacts. Finally, the event tree was quantified. As a result, the core damage frequency was enough lower than 10 -10 /ry. (author)

  20. Actinide separative chemistry

    International Nuclear Information System (INIS)

    Boullis, B.

    2004-01-01

    Actinide separative chemistry has focused very heavy work during the last decades. The main was nuclear spent fuel reprocessing: solvent extraction processes appeared quickly a suitable, an efficient way to recover major actinides (uranium and plutonium), and an extensive research, concerning both process chemistry and chemical engineering technologies, allowed the industrial development in this field. We can observe for about half a century a succession of Purex plants which, if based on the same initial discovery (i.e. the outstanding properties of a molecule, the famous TBP), present huge improvements at each step, for a large part due to an increased mastery of the mechanisms involved. And actinide separation should still focus R and D in the near future: there is a real, an important need for this, even if reprocessing may appear as a mature industry. We can present three main reasons for this. First, actinide recycling appear as a key-issue for future nuclear fuel cycles, both for waste management optimization and for conservation of natural resource; and the need concerns not only major actinide but also so-called minor ones, thus enlarging the scope of the investigation. Second, extraction processes are not well mastered at microscopic scale: there is a real, great lack in fundamental knowledge, useful or even necessary for process optimization (for instance, how to design the best extracting molecule, taken into account the several notifications and constraints, from selectivity to radiolytic resistivity?); and such a need for a real optimization is to be more accurate with the search of always cheaper, cleaner processes. And then, there is room too for exploratory research, on new concepts-perhaps for processing quite new fuels- which could appear attractive and justify further developments to be properly assessed: pyro-processes first, but also others, like chemistry in 'extreme' or 'unusual' conditions (supercritical solvents, sono-chemistry, could be

  1. Actinides integral measurements on FCA assemblies

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko; Okajima, Shigeaki

    1984-01-01

    Actinide integral measurements were performed on eight assemblies of FCA where neutron energy spectra were shifted systematically from soft to hard in order to evaluate and modify the nuclear cross section data of major actinides. Experimental values on actinide fission rates and sample reactivity worths are compared with the calculated values using JENDL-2 and ENDF/B-V (or IV) data sets. (author)

  2. Minor Actinide Burning in Thermal Reactors. A Report by the Working Party on Scientific Issues of Reactor Systems

    International Nuclear Information System (INIS)

    Hesketh, K.; Porsch, D.; Rimpault, G.; Taiwo, T.; Worrall, A.

    2013-01-01

    The actinides (or actinoids) are those elements in the periodic table from actinium upwards. Uranium (U) and plutonium (Pu) are two of the principal elements in nuclear fuel that could be classed as major actinides. The minor actinides are normally taken to be the triad of neptunium (Np), americium (Am) and curium (Cm). The combined masses of the remaining actinides (i.e. actinium, thorium, protactinium, berkelium, californium, einsteinium and fermium) are small enough to be regarded as very minor trace contaminants in nuclear fuel. Those elements above uranium in the periodic table are known collectively as the transuranics (TRUs). The operation of a nuclear reactor produces large quantities of irradiated fuel (sometimes referred to as spent fuel), which is either stored prior to eventual deep geological disposal or reprocessed to enable actinide recycling. A modern light water reactor (LWR) of 1 GWe capacity will typically discharge about 20-25 tonnes of irradiated fuel per year of operation. About 93-94% of the mass of uranium oxide irradiated fuel is comprised of uranium (mostly 238 U), with about 4-5% fission products and ∼1% plutonium. About 0.1-0.2% of the mass is comprised of neptunium, americium and curium. These latter elements accumulate in nuclear fuel because of neutron captures, and they contribute significantly to decay heat loading and neutron output, as well as to the overall radio-toxic hazard of spent fuel. Although the total minor actinide mass is relatively small - approximately 20-25 kg per year from a 1 GWe LWR - it has a disproportionate impact on spent fuel disposal, and thus the longstanding interest in transmuting these actinides either by fission (to fission products) or neutron capture in order to reduce their impact on the back end of the fuel cycle. The combined masses of the trace actinides actinium, thorium, protactinium, berkelium and californium in irradiated LWR fuel are only about 2 parts per billion, which is far too low for

  3. Radiation characteristics of spent nuclear fuel at accumulation in long-term storage

    International Nuclear Information System (INIS)

    Bergelson, Boris R.; Gerasimov, Aleksander S.

    1999-01-01

    Time dependence of a decay heat power and radiotoxicity of a single spent nuclear fuel unloading of VVER-1000 reactors at its storage or the same characteristics in accumulation mode with annual addition of spent nuclear fuel in long-term storage are investigated. At calculations of decay heat power, the contributions of alpha-, beta-, and gamma- irradiations were taken into account, at calculations of a radiotoxicity - maximum permissible activity of nuclides in air and in water were taken into account. It is determined that at accumulation less than 100 years, the main contribution to decay heat power is given by fission products, at further storage the power is determined in greater degree by actinides. The radiotoxicity of actinides by air is rich greater than that of fission products - more than 50 times in beginning of a storage and by 2-3 orders of magnitude after 100 and more years. A radiotoxicity of fission products by water at accumulation less than 20 years is a little bit more than actinides, at further accumulation the contribution of fission products decreases. At time of accumulation 100 years, the fission products give the contribution in total radiotoxicity about 40%, at time 1000 years - about 7%. (author)

  4. The ratio between the decay heat output and activity content of discharged magnox fuel

    International Nuclear Information System (INIS)

    Davies, B.S.J.

    1977-01-01

    Values of the ratio between activity and heat production rate have been calculated for magnox fuel irradiated to 3500 and 8000 MWd.Te -1 and for cooling times of 100, 200 and 500 days. Results are expressed in terms of both MeV.decay -1 and MCi.KW -1 . The results indicate that: for these irradiation and cooling conditions 21 nuclides account for over 99% of the total activity; the calculated values show only small variations with burn-up and cooling time, although the mean energy per decay does fall slightly at 500 days cooling: so for many purposes a median value of 0.63 MeV.decay -1 (0.27 MCi.MW -1 ) may be used; the calculated values have standard deviations ranging from 2.6% at 100 days cooling to 9% at 500 days cooling. (author)

  5. Actinide burning and waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pigford, T H [University of California, Berkeley, CA (United States)

    1990-07-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  6. Actinide burning and waste disposal

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1990-01-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  7. A value/impact assessment for alternative decay heat removal systems

    International Nuclear Information System (INIS)

    Cave, L.; Kastenberg, W.E.; Lin, K.Y.

    1984-01-01

    A Value/Impact assessment for several alternative decay heat removal systems has been carried out using several measures. The assessment is based on an extension of the methodology presented in the Value/Impact Handbook and includes the effects of uncertainty. The assessment was carried out as a function of site population density, existing plant features, and new plant features. Value/Impact measures based on population dose are shown to be sensitive to site, while measures which monetize and aggregate risk are less so. The latter are dominated by on-site costs such as replacement power costs. (orig.)

  8. Selection of exception limits for all actinide nuclides based on revised criteria for safe international transport and including storage delay

    International Nuclear Information System (INIS)

    Lavarenne, C.; Rouyer, V.; Mennerdahl, D.; Dean, C.; Barton, N.; Jean, F.

    2004-01-01

    Since 1998, there have been some speculations about future transport of significant quantities and concentrations of other actinide nuclides than the four currently listed in the regulation for the safe transport of the radioactive material. Therefore, it raised a need to specify exception limits for such actinides. In order to define credible exception limits, it was necessary to have reasonably accurate data for all actinide nuclides. Then the DGTREN/participants decided to perform calculations with different codes (MONK, MCNP, CRISTAL and SCALE) and different cross-section libraries (JEF2.2, ENDFB, etc.). The parameters of interest (such as k-infinite, critical masses) were determined. This article presents the work achieved and the questions raised, e.g. related to the effect of the radioactive decay of the isotopes on the criticality risks. It also points out the need for an evolution of the regulation of the safe transport of radioactive materials and gives a proposition of modification for the IAEA requirements related to, firstly, the list of the fissile materials, secondly, the rule to determine the quantities of actinide nuclides that can be excepted from the requirements for the packages containing fissile materials

  9. Chemistry of actinides and fission products

    International Nuclear Information System (INIS)

    Pruett, D.J.; Sherrow, S.A.; Toth, L.M.

    1988-01-01

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  10. Study of actinide paramagnetism in solution

    International Nuclear Information System (INIS)

    Autillo, Matthieu

    2015-01-01

    The physiochemical properties of actinide (An) solutions are still difficult to explain, particularly the behavioral differences between An(III) and Ln(III). The study of actinide paramagnetic behavior may be a 'simple' method to analyze the electronic properties of actinide elements and to obtain information on the ligand-actinide interaction. The objective of this PhD thesis is to understand the paramagnetic properties of these elements by magnetic susceptibility measurements and chemical shift studies. Studies on actinide electronic properties at various oxidation states in solution were carried out by magnetic susceptibility measurements in solution according to the Evans method. Unlike Ln(III) elements, there is no specific theory describing the magnetic properties of these ions in solution. To obtain accurate data, the influence of experimental measurement technique and radioactivity of these elements was analyzed. Then, to describe the electronic structure of their low energy states, the experimental results were complemented with quantum chemical calculations from which the influence of the ligand field was studied. Finally, these interpretations were applied to better understand the variations in the magnetic properties of actinide cations in chloride and nitrate media. Information about ligand-actinide interactions may be determined from an NMR chemical shift study of actinide complexes. Indeed, modifications induced by a paramagnetic complex can be separated into two components. The first component, a Fermi contact contribution (δ_c) is related to the degree of covalency in coordination bonds with the actinide ions and the second, a dipolar contribution (δ_p_c) is related to the structure of the complex. The paramagnetic induced shift can be used only if we can isolate these two terms. To achieve this study on actinide elements, we chose to work with the complexes of dipicolinic acid (DPA). Firstly, to characterize the geometrical parameters, a

  11. Thermodynamic analysis of light-actinide elements

    International Nuclear Information System (INIS)

    Brosh, Eli; Makov, Guy; Shneck, Roni Z.

    2005-01-01

    The thermophysical properties of the alpha phases of the light actinide elements Th, U, Np and Pu were analysed. For each of the analysed elements, the Gibbs free-energy was modelled by an explicit function of temperature T and pressure P over the whole relevant T-P range, in a manner compatible with the CALPHAD (Calculation of Alloy Phase Diagrams) method. Several adjustable model-parameters were fitted to available experimental results. The model is based on a new semi-empirical equation of state, which interpolates with Thomas-Fermi type models for the volume and with the Dulong-Petit value for the heat capacity, at extreme pressures

  12. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  13. Burn of actinides in MOX fuel cells

    International Nuclear Information System (INIS)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G.

    2017-09-01

    The spent fuel from nuclear reactors is stored temporarily in dry repositories in many countries of the world. However, the main problem of spent fuel, which is its high radio-toxicity in the long term, is not solved. A new strategy is required to close the nuclear fuel cycle and for the sustain ability of nuclear power generation, this strategy could be the recycling of plutonium to obtain more energy and recycle the actinides generated during the irradiation of the fuel to transmute them in less radioactive radionuclides. In this work we evaluate the quantities of actinides generated in different fuels and the quantities of actinides that are generated after their recycling in a thermal reactor. First, we make a reference calculation with a regular enriched uranium fuel, and then is changed to a MOX fuel, varying the plutonium concentrations and determining the quantities of actinides generated. Finally, different amounts of actinides are introduced into a new fuel and the amount of actinides generated at the end of the fuel burn is calculated, in order to determine the reduction of minor actinides obtained. The results show that if the concentration of plutonium in the fuel is high, then the production of minor actinides is also high. The calculations were made using the cell code CASMO-4 and the results obtained are shown in section 6 of this work. (Author)

  14. Understanding decay resistance, dimensional stability and strength changes in heat treated and acetylated wood

    Science.gov (United States)

    Roger M. Rowell; Rebecca E. Ibach; James McSweeny; Thomas Nilsson

    2009-01-01

    Reductions in hygroscopicity, increased dimensional stability and decay resistance of heat-treated wood depend on decomposition of a large portion of the hemicelluloses in the wood cell wall. In theory, these hemicelluloses are converted to small organic molecules, water and volatile furan-type intermediates that can polymerize in the cell wall. Reductions in...

  15. Minor actinide transmutation - a waste management option

    International Nuclear Information System (INIS)

    Koch, L.

    1986-01-01

    The incentive to recycle minor actinides results from the reduction of the long-term α-radiological risk rather than from a better utilization of the uranium resources. Nevertheless, the gain in generated electricity by minor actinide transmutation in a fast breeder reactor can compensate for the costs of their recovery and make-up into fuel elements. Different recycling options of minor actinides are discussed: transmutation in liquid metal fast breeder reactors (LMFBRs) is possible as long as plutonium is not recycled in light water reactors (LWRs). In this case a minor actinide burner with fuel of different composition has to be introduced. The development of appropriate minor actinide fuels and their properties are described. The irradiation experiments underway or planned are summarized. A review of minor actinide partitioning from the PUREX waste stream is given. From the present constraints of LMFBR technology a reduction of the long-term α-radiological risk by a factor of 200 is deduced relative to that from the direct storage of spent LWR fuel. Though the present accumulation of minor actinides is low, nuclear transmutation may be needed when nuclear energy production has grown. (orig.)

  16. Localized dryout: An approach for managing the thermal hydrologi-cal effects of decay heat at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T. A.; Nitao, J.J.; Ramspott, L.D.

    1995-11-01

    For a nuclear waste repository in the unsaturated zone at Yucca Mountain, there are two thermal loading approaches to using decay heat constructively -- that is, to substantially reduce relative humidity and liquid flow near waste packages for a considerable time, and thereby limit waste package degradation and radionuclide dissolution and release. ''Extended dryout'' achieves these effects with a thermal load high enough to generate large-scale (coalesced) rock dryout. ''Localized dryout''(which uses wide drift spacing and a thermal load too low for coalesced dryout) achieves them by maintaining a large temperature difference between the waste package and drift wall; this is done with close waste package spacing (generating a high line-heat load) and/or low-thermal-conductivity backfill in the drift. Backfill can greatly reduce relative humidity on the waste package in both the localized and extended dryout approaches. Besides using decay heat constructively, localized dryout reduces the possibility that far-field temperature rise and condensate buildup above the drifts might adversely affect waste isolation

  17. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    International Nuclear Information System (INIS)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P.; Cassayre, L.

    2008-01-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl 3 . A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl 3 is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl 5 and UCl 6 . It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  18. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany); Cassayre, L. [Laboratoire de Genie Chimique (LGC), Universite Paul Sabatier, UMR CNRS 5503, 118 route de Narbonne, 31062 Toulouse Cedex 04 (France)

    2008-07-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl{sub 3}. A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl{sub 3} is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl{sub 5} and UCl{sub 6}. It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  19. Beta decay heat following U-235, U-238 and Pu-239 neutron fission

    Science.gov (United States)

    Li, Shengjie

    1997-09-01

    This is an experimental study of beta-particle decay heat from 235U, 239Pu and 238U aggregate fission products over delay times 0.4-40,000 seconds. The experimental results below 2s for 235U and 239Pu, and below 20s for 238U, are the first such results reported. The experiments were conducted at the UMASS Lowell 5.5-MV Van de Graaff accelerator and 1-MW swimming-pool research reactor. Thermalized neutrons from the 7Li(p,n)7Be reaction induced fission in 238U and 239Pu, and fast neutrons produced in the reactor initiated fission in 238U. A helium-jet/tape-transport system rapidly transferred fission fragments from a fission chamber to a low background counting area. Delay times after fission were selected by varying the tape speed or the position of the spray point relative to the beta spectrometer that employed a thin-scintillator-disk gating technique to separate beta-particles from accompanying gamma-rays. Beta and gamma sources were both used in energy calibration. Based on low-energy(energies 0-10 MeV. Measured beta spectra were unfolded for their energy distributions by the program FERD, and then compared to other measurements and summation calculations based on ENDF/B-VI fission-product data performed on the LANL Cray computer. Measurements of the beta activity as a function of decay time furnished a relative normalization. Results for the beta decay heat are presented and compared with other experimental data and the summation calculations.

  20. Moessbauer effect studies with actinides

    International Nuclear Information System (INIS)

    Stone, J.A.

    1966-01-01

    Moessbauer resonance studies in the actinide elements offer a new technique for measuring solid-state properties to a region of the periodic chart where such information is relatively sparse. It is well known that the actinides, the elements with atomic numbers from 90 to 103, form a transition series due to filling of the 5f electron shell, analogous to the rare-earth series in which the 4f shell is filled. Like the rare earths, the actinide metals and compounds are expected to exhibit a variety of interesting magnetic properties, but, unlike the rare earths, there have been few studies of the magnetic behaviour of actinides, and these properties are largely unknown. The chemical properties of the actinides have been studied somewhat more extensively, and, in contrast to the rare earths, form a multiplicity of stable valence states, especially in the lighter members of the series. It is just these properties, magnetic and chemical, for which the Moessbauer effect is a valuable probe, sensitive to the magnetic and electric environment of an atom. The rare-earth series has been a particularly fruitful region in terms of the number of elements which have been shown to exhibit the Moessbauer effect, and for this reason the exploitation of the Moessbauer effect to yield new solid-state and chemical information on the rare earths is a highly active field of research today. There is every reason to believe that the actinides can be similarly studied by the Moessbauer effect. 43 refs, 6 figs, 4 tabs

  1. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    International Nuclear Information System (INIS)

    Perkasa, Y. S.; Waris, A.; Kurniadi, R.; Su'ud, Z.

    2014-01-01

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator

  2. Study on thermalhydraulics of natural circulation decay heat removal in FBR. Experiment with water of typical reactor trip in the demonstration FBR

    International Nuclear Information System (INIS)

    Koga, Tomonari; Murakami, Takahiro; Eguchi, Yuzuru

    2010-01-01

    Intending to enhance safety and to reduce costs, an FBR plant is being developed in Japan. In relies solely on natural circulation of the primary cooling loop to remove a decay heat of the core after reactor trips. A water test was carried out to advance the development. The test used a 1/10 reduced scale model simulating the core and cooling systems. The experiments simulated representative accidents from steady state to decay heat removal through reactor trip and clarified thermal-hydraulic issues on the thermal circulation performance. Some modifications of the system design were proposed for solving serious problems of natural circulation. An improved design complying with the suggestions will make it possible for natural circulation of the cooling systems to remove the decay heat of the core without causing and unstable or unpredictable change. (author)

  3. The Decay Data Evaluation Project (DDEP) and the JEFF-3.3 radioactive decay data library: Combining international collaborative efforts on evaluated decay data

    Science.gov (United States)

    Kellett, Mark A.; Bersillon, Olivier

    2017-09-01

    The Decay Data Evaluation Project (DDEP), is an international collaboration of decay data evaluators formed with groups from France, Germany, USA, China, Romania, Russia, Spain and the UK, mainly from the metrology community. DDEP members have evaluated over 220 radionuclides, following an agreed upon methodology, including a peer review. Evaluations include all relevant parameters relating to the nuclear decay and the associated atomic processes. An important output of these evaluations are recommendations for new measurements, which can serve as a basis for future measurement programmes. Recently evaluated radionuclides include: 18F, 59Fe, 82Rb, 82Sr, 88Y, 90Y, 89Zr, 94mTc, 109Cd, 133Ba, 140Ba, 140La, 151Sm and 169Er. The DDEP recommended data have recently been incorporated into the JEFF-3.3 Radioactive Decay Data Library. Other sources of nuclear data include 900 or so radionuclides converted from the Evaluated Nuclear Structure Data File (ENSDF), 500 from two UK libraries (UKPADD6.12 and UKHEDD2.6), the IAEA Actinide Decay Data Library, with the remainder converted from the NUBASE evaluation of nuclear properties. Mean decay energies for a number of radionuclides determined from total absorption gamma-ray spectroscopy (TAGS) have also been included, as well as more recent European results from TAGS measurements performed at the University of Jyväskylä by groups from the University of Valencia, Spain and SUBATECH, the University of Nantes, France. The current status of the DDEP collaboration and the JEFF Radioactive Decay Data Library will be presented. Note to the reader: the pdf file has been changed on September 22, 2017.

  4. Actinide nanoparticle research

    International Nuclear Information System (INIS)

    Kalmykov, Stepan N.; Denecke, Melissa A.

    2011-01-01

    This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale. (orig.)

  5. Investigation on natural convection decay heat removal for the EFR status of the program

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, F [Kernforschungszentrum Karlsruhe (Germany); Essig, C [Siemens AG, Bergisch Gladbach (Germany); Georgeoura, S [AEA Reactor Service, Dounreay (United Kingdom); Tenchine, D [CEA Grenoble (France)

    1993-02-01

    The European Research and Development (R+D) Program on decay heat removal by natural convection for the European Fast Reactor (EFR) covers the calculational methods and the model experiments performed for code validation. The studies concentrate on important physical effects of the cooling modes within the primary system and the direct reactor cooling circuits and include reactor experiments. (author)

  6. Investigation on natural convection decay heat removal for the EFR status of the program

    International Nuclear Information System (INIS)

    Hofmann, F.; Essig, C; Georgeoura, S.; Tenchine, D.

    1993-01-01

    The European Research and Development (R+D) Program on decay heat removal by natural convection for the European Fast Reactor (EFR) covers the calculational methods and the model experiments performed for code validation. The studies concentrate on important physical effects of the cooling modes within the primary system and the direct reactor cooling circuits and include reactor experiments. (author)

  7. Burning minor actinides in a HTR energy spectrum

    International Nuclear Information System (INIS)

    Pohl, Christoph; Rütten, H. Jochem

    2012-01-01

    Highlights: ► Burn-up analysis for varying plutonium/minor actinide fuel compositions. ► The influence of varying heavy metal fuel element loads is investigated. ► Significant burn-up via radiative capture and subsequently fission is observed. ► Difference observed between fuel element burn-up and total actinide burning rate. - Abstract: The generation of nuclear energy by means of the existing nuclear reactor systems is based mainly on the fission of U-235. But this comes along with the capture of neutrons by the U-238 faction and results in a build-up of plutonium isotopes and minor actinides as neptunium, americium and curium. These actinides are dominant for the long time assessment of the radiological risk of a final disposal therefore a minimization of the long living isotopes is aspired. Burning the actinides in a high temperature helium cooled graphite moderated reactor (HTR) is one of these options. The use of plutonium isotopes to sustain the criticality of the system is intended to avoid on the one hand highly enriched uranium because of international regulations and on the other hand low enriched uranium because of the build up of new actinides from neutron capture in the U-238 fraction. Because initial minor actinide isotopes are typically not fissionable by thermal neutrons the idea is to fission instead the intermediate isotopes generated by the first neutron capture. This paper comprises calculations for plutonium/minor actinides/thorium fuel compositions and their correlated final burn-up for a generic pebble bed HTR based on the reference design of the 400 MW PBMR. In particular the cross sections and the neutron balance of the different minor actinide isotopes in the higher thermal energy spectrum of a HTR will be discussed. For a fuel mixture of plutonium and minor actinides a significant burn-up of these actinides up to 20% can be achieved but at the expense of a higher residual fraction of plutonium in the burned fuel. Combining

  8. Actinides reduction by recycling in a thermal reactor

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Martinez C, E.; Balboa L, H.

    2014-10-01

    This work is directed towards the evaluation of an advanced nuclear fuel cycle in which radioactive actinides could be recycled to remove most of the radioactive material; firstly a production reference of actinides in standard nuclear fuel of uranium at the end of its burning in a BWR reactor is established, after a fuel containing plutonium is modeled to also calculate the actinides production in MOX fuel type. Also it proposes a design of fuel rod containing 6% of actinides in a matrix of uranium from the tails of enrichment, then four standard uranium fuel rods are replaced by actinides rods to evaluate the production and transmutation thereof, the same procedure was performed in the fuel type MOX and the end actinide reduction in the fuel was evaluated. (Author)

  9. Determination of microscopic interactions between actinides and humic substances

    International Nuclear Information System (INIS)

    Brunel, Benoit

    2015-01-01

    Large amount of plutonium has been introduced into the environment as a result of nuclear weapons testing, and nuclear power-plant accidents. Contaminated areas, which need a particular survey, have become a very interesting place to study and understand the plutonium behaviour in the environment. Until few years ago, it was admitted that plutonium introduced into subsurface environment is relatively immobile, owing to its low solubility in ground water and strong sorption onto rocks. However, studies of contaminated areas show that humic substances, which are ubiquitous in environment, can alter the speciation of metal ion, e.g. plutonium, and thus their migration. These humic substances are major components of the natural organic matter in soil and water as well as in geological organic deposits such as lake sediments, peats and brown coals. They are complex heterogeneous mixtures of polydisperse supra-molecules formed by biochemical and chemical reactions during the decay and transformation of plant and microbial remains. The knowledge of the impact of humic substances on the plutonium migration is required to assess their transport in natural systems. However, due to the complex and heterogeneous nature of humic substances, there are a lot of difficulties in the description of microscopic interactions. The aim of this PhD thesis is to evaluate as precisely as possible interactions between actinides and humic substances. This work is divided in two parts: on the one hand humic substances will be separated to identify each component, on the other hand the speciation of actinides with characterized humic substances will be studied. In the first part of this study, new methods are developed to study the speciation of actinides with humic substances using two kinds of mass spectrometers: an ICP-MS and a high resolution mass spectrometer using various ionization devices (ESI, APCI, DART, APPI) in order to determine all active molecules for the complexation. In the

  10. Passive Decay Heat Removal Strategy of Integrated Passive Safety System (IPSS) for SBO-combined Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Ho; Chang, Soon Heung; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The weak points of nuclear safety would be in outmoded nuclear power plants like the Fukushima reactors. One of the systems for the safety enhancement is integrated passive safety system (IPSS) proposed after the Fukushima accidents. It has the five functions for the prevention and mitigation of a severe accident. Passive decay heat removal (PDHR) strategy using IPSS is proposed for coping with SBO-combined accidents in this paper. The two systems for removing decay heat before core-melt were applied in the strategy. The accidents were simulated by MARS code. The reference reactor was OPR1000, specifically Ulchin-3 and 4. The accidents included loss-of-coolant accidents (LOCA) because the coolant losses could be occurred in the SBO condition. The examples were the stuck open of PSV, the abnormal open of SDV and the leakage of RCP seal water. Also, as LOCAs with the failure of active safety injection systems were considered, various LOCAs were simulated in SBO. Based on the thermal hydraulic analysis, the probabilistic safety analysis was carried out for the PDHR strategy to estimate the safety enhancement in terms of the variation of core damage frequency. AIMS-PSA developed by KAERI was used for calculating CDF of the plant. The IPSS was applied in the PDHR strategy which was developed in order to cope with the SBO-combined accidents. The estimation for initiating SGGI or PSIS was based on the pressure in RCS. The simulations for accidents showed that the decay heat could be removed for the safety duration time in SBO. The increase of safety duration time from the strategy provides the increase of time for the restoration of AC power.

  11. PRODUCTION OF ACTINIDE METAL

    Science.gov (United States)

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  12. Potential carcinogenic effects of actinides in the environment

    International Nuclear Information System (INIS)

    Harley, N.H.; Pasternack, B.S.

    1979-01-01

    Inhalation of alpha emitting actinides delivers a dose to critical cancer sites in the human body. These sites are the bronchial epithelium and cells near bone surfaces. Inhalation of the naturally occurring actinides uranium and thorium in resuspended soil in the air results in a continuous exposure for the global population of about 0.1 fCi/m 3 for each of these actinides. The highest dose is from the natural actinide 230 Th. Over 50 yr, the dose to bronchial epithelium is 0.05 mrad and to bone surfaces 0.4 mrad. In the case of accidental environmental contamination (e.g. near a nuclear fuel reprocessing plant) the man-made actinides plutonium, americium and curium could deliver about the same alpha dose to these sites if the soil is contaminated to the same level as the natural actinides (approximately 1 pCi/g). Two nuclear accidents have already produced contamination of about this level. Exposures in this case, however, are to small local populations compared with global exposure for the natural actinides. Significant enhancement of the natural radioactive actinide pollution by combustion of all types of fossil fuel is suspected but not enough data are available to estimate total population doses. (author)

  13. End point control of an actinide precipitation reactor

    International Nuclear Information System (INIS)

    Muske, K.R.

    1997-01-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements

  14. On the suitability of lanthanides as actinide analogs

    International Nuclear Information System (INIS)

    Raymond, Kenneth; Szigethy, Geza

    2008-01-01

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond group at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries. (authors)

  15. Review of actinide decorporation with chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Ansoborlo, E. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/CETAMA), 30 - Marcoule (France); Amekraz, B.; Moulin, Ch. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR), 91 - Gif sur Yvette (France); Moulin, V. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares (DEN/DDIN/MR), 91 - Gif Sur Yvette (France); Taran, F. [CEA Saclay (DSV/DBJC/SMMCB), 91 - Gif-sur-Yvette (France); Bailly, Th.; Burgada, R. [Centre National de la Recherche Scientifique (CNRS/LCSB/UMR 7033), 93 - Bobigny (France); Henge-Napoli, M.H. [CEA Valrho, Site de Marcoule (INSTN), 30 (France); Jeanson, A.; Den Auwer, Ch.; Bonin, L.; Moisy, Ph. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/SCPS), 30 - Marcoule (France)

    2007-10-15

    In case of accidental release of radionuclides in a nuclear facility or in the environment, internal contamination (inhalation, ingestion or wound) with actinides represents a severe health risk to human beings. It is therefore important to provide effective chelation therapy or decorporation to reduce acute radiation damage, chemical toxicity, and late radiation effects. Speciation governs bioavailability and toxicity of elements and it is a prerequisite tool for the design and success of new ligands or chelating agents. The purpose of this review is to present the state-of-the-art of actinide decorporation within biological media, to recall briefly actinide metabolism, to list the basic constraints of actinide-ligand for development, to describe main tools developed and used for decorporation studies, to review mainly the chelating agents tested for actinides, and finally to conclude on the future trends in this field. (authors)

  16. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    International Nuclear Information System (INIS)

    Clark, David L.; Fedosseev, Alexander M.

    2001-01-01

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier

  17. Transmutation of waste actinides in light water reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-04-01

    Actinide recycle and transmutation calculations were made for three irradiation options of a light water reactor (LWR). The cases considered were: all actinides recycled in regular uranium fuel assemblies; transuranic actinides recycled in separate MOX assemblies with 235 U enrichment of uranium; and transuranic actinides recycled in separate MOX assemblies with plutonium enrichment of natural uranium. When all actinides were recycled in a uniform lattice, the transuranic inventory after ten recycles was 38% of the inventory accumulated without recycle. When the transuranics from two regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after five recycles

  18. Chemical compatibility of HLW borosilicate glasses with actinides

    International Nuclear Information System (INIS)

    Walker, C.T.; Scheffler, K.; Riege, U.

    1978-11-01

    During liquid storage of HLLW the formation of actinide enriched sludges is being expected. Also during melting of HLW glasses an increase of top-to-bottom actinide concentrations can take place. Both effects have been studied. Besides, the vitrification of plutonium enriched wastes from Pu fuel element fabrication plants has been investigated with respect to an isolated vitrification process or a combined one with the HLLW. It is shown that the solidification of actinides from HLLW and actinide waste concentrates will set no principal problems. The leaching of actinides has been measured in salt brine at 23 0 C and 115 0 C. (orig.) [de

  19. Transient Performance of Air-cooled Condensing Heat Exchanger in Long-term Passive Cooling System during Decay Heat Load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In the event of a 'loss of coolant accident'(LOCA) and a non-LOCA, the secondary passive cooling system would be activated to cool the steam in a condensing heat exchanger that is immersed in an emergency cooldown tank (ECT). Currently, the capacities of these ECTs are designed to be sufficient to remove the sensible and residual heat from the reactor coolant system for 72 hours after the occurrence of an accident. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. Therefore, the tank should be refilled regularly from an auxiliary water supply system when the system is used for more than 72 hours. Otherwise, the system would fail to dissipate heat from the condensing heat exchanger due to the loss of the cooling water. Ultimately, the functionality of the passive cooling system would be seriously compromised. As a passive means of overcoming the water depletion in the tank, Kim et al. applied for a Korean patent covering the concept of a long-term passive cooling system for an ECT even after 72 hours. This study presents transient performance of ECT with installing air-cooled condensing heat exchanger under decay heat load. The cooling capacity of an air-cooled condensing heat exchanger was evaluated to determine its practicality.

  20. Meeting of Specialists on the Reliability of Decay Heat Removal Systems for Fast Reactors. Summary Report

    International Nuclear Information System (INIS)

    1975-10-01

    The Specialists Meeting on Reliability of Decay Heat Removal Systems proposed for Fast Reactors was sponsored by the UKAEA Safety & Reliability Directorate and held at Harwell between 28th April and 1st May, 1975. The meeting was attended by delegates from six countries - (USA, Federal Republic of Germany, France, Japan, USSR and the UK). A list of participants is included in an Appendix to this report. The subject matter of the meeting was concerned with the degree to which the ability to maintain decay heat removal from a fast reactor after shutdown in normal and abnormal circumstances could be guaranteed by design provisions and substantiated by reliability analysis techniques, operational testing etc. Consideration of conditions prevailing after a hypothetical core melt down incident were not included in the subject matter. The deliberations of the meeting were focussed at each working session on a defined theme and its dependant topics as shown in the detailed Agenda included in this report. Although provision had been made in the Agenda for a limited amount of discussion of the decay heat rejection problems of Gas Cooled Fast Reactors, delegates had no contributions to offer on this subject. During each session a Recording Secretary prepared a summary of the main points made by national delegates and of the resulting recommendations and conclusions. These draft summaries were made available to delegates during subsequent sessions of the meeting and approved by them for inclusion in the Summary, General Conclusions and Recommendations provided under Table of Contents (item 3 and 4)

  1. Investigation on natural convection decay heat removal for the EFR: Status of the program

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H; Weinberg, D [Kernforschungszentrum Karlsruhe GmbH, IATF, Karlsruhe (Germany); Webster, R [AEA Reactor Services, Dounreay (United Kingdom)

    1991-07-01

    The European Research and Development Program on decay heat removal by natural convection for the European Fast Reactor (EFR) covers the calculational methods and the model experiments performed for code validation. The studies concentrate on important physical effects of the cooling modes withinthe primary system and the direct reactor cooling circuits and include fundamental tests as well as reactor experiments. (author)

  2. Analysis of Decay Heat Removal by Natural Convection in LMR with a Combined Steam Generator

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Eoh, Jae Hyuk; Han, Ji Woong; Lee, Tae Ho

    2011-01-01

    Liquid metal reactors (LMRs) conventionally employ an intermediate heat transport system (IHTS) to protect the nuclear core during a sodium-water reaction (SWR) event. However these SWR-related components increase plant construction costs. In order to eliminate the need for an IHTS, a combined steam generator, which is an integrated heat exchanger of a steam generator and intermediate heat exchanger (IHX), was proposed by the Korea Atomic Energy Research Institute (KAERI). The objective of this work is to analyze the natural circulation heat removal capability of the rector system using a combined steam generator. As a means of decay heat removal, a normal heat transport path is composed of a primary sodium system, intermediate lead-bismuth circuit combined with SG and steam/water system. This paper presents the results of the possible temperature and natural circulation flows in all circuits during a steady state for a given reactor power level varied as a function of time

  3. U/Th-isotopes as natural analogues for the mobility of actinides in granitic rocks

    International Nuclear Information System (INIS)

    Mengel, K.; Gerdes, A.

    2001-01-01

    The short-lived decay products of 238 U ( 234 U and 230 Th) can be used as natural analogues for actinides in a hard rock repository. Their mobility in the past may serve as a key for understanding actinide migration in the future. For generally old calcites of the HRL Aespoethe age of disturbance of 238 U/ 234 U and 234 U/ 230 Th activity ratios ranges from 30 000 to 436 000 years at degrees of disturbance ranging from 0.5 to 6.7. The results obtained imply that during the past 440 000 years U was mobile throughout the tunnel sections of the HRL Aespoeinvestigated here. For the FL Grimsel, the disequilibrium states of the 234 U/ 238 U and 230 Th/ 234 U activity ratios in fracture minerals (calcites silicates) also imply that the reactions causing isotopic disturbances have occurred within the past 500 000 years. The U/Th-isotope data of both the samples from the HRL Aespoeand the FL Grimsel have in common the mobilization of U in secondary fracture minerals by migrating solutions within the past 500 000 years. As for the question of a final disposal of radioactive waste in granite host rocks, the transport of U - and thus of similarly behaving actinides - in migrating underground solutions can therefore not be ruled out, if suitable hydraulic systems are considered. (orig.)

  4. Shutdown decay heat removal analysis: Plant case studies and special issues: Summary report

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.; Cramond, W.R.; Sanders, G.A.; Hatch, S.W.

    1989-04-01

    Shutdown Decay Heat Removal Requirements has been designated as Unresolved Safety Issue (USI) A-45. The overall objectives of the USI A-45 program were to evaluate the safety adequacy of decay heat removal (DHR) systems in existing light water reactor nuclear power plants and to assess the value and impact (benefit-cost) of alternative measures for improving the overall reliability of the DHR function. To provide the technical data required to meet these objectives a program was developed that examined the state of DHR system reliability in a sample of existing plants. This program identified potential vulnerabilities and identified and established the feasibility of potential measures to improve the reliability of the DHR function. A value/impact (V/I) analysis of the more promising of such measures was conducted and documented. This report summarizes those studies. In addition, because of the evolving nature of V/I analyses in support of regulation, a number of supporting studies related to appropriate procedures and measures for the V/I analyses were also conducted. These studies are also summarized herein. This report only summarizes findings of technical studies performed by Sandia National Laboratories as part of the program to resolve this issue. 46 refs., 7 figs., 124 tabs

  5. Report on the IAEA coordinated research programme on the intercomparison of evaluations of actinide neutron nuclear data

    International Nuclear Information System (INIS)

    Yiftah, S.

    1979-03-01

    Following discussions and Consultants Meeting in 1976, the IAEA, in response to recommendations made formed two coordinated research projects (CRP): one on the Intercomparison of Evaluations of Actinide Neutron Nuclear Data, the other on the Measurement and Evaluation of Transactinium Isotope Nuclear Decay Data. This report covers work done, and to be done, in the framework of the first CRP, as well as some of the practical problems for future work. (B.G.)

  6. Advances in computational actinide chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqi; Wu, Jingyi; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Multidisciplinary Initiative Center; Su, Jing [Chinese Academy of Sciences, Shanghai (China). Div. of Nuclear Materials Science and Engineering; Li, Jun [Tsinghua Univ., Beijing (China). Dept. of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering

    2014-04-01

    The advances in computational actinide chemistry made in China are reviewed. Several areas relevant to chemistry of actinides in gas, liquid, and solid phases have been explored. However, we limit the scope to selected contributions in the chemistry of molecular actinide systems in gas and liquid phases. These studies may be classified into two categories: treatment of relativistic effects, which cover the development of two- and four-component Hamiltonians and the optimization of relativistic pseudopotentials, and the applications of theoretical methods in actinide chemistry. The applications include (1) the electronic structures of actinocene, noble gas complexes, An-C multiple bonding compounds, uranyl and its isoelectronic species, fluorides and oxides, molecular systems with metal-metal bonding in their isolated forms (U{sub 2}, Pu{sub 2}) and in fullerene (U{sub 2} rate at C{sub 60}), and the excited states of actinide complexes; (2) chemical reactions, including oxidation, hydrolysis of UF{sub 6}, ligand exchange, reactivities of thorium oxo and sulfido metallocenes, CO{sub 2}/CS{sub 2} functionalization promoted by trivalent uranium complex; and (3) migration of actinides in the environment. A future outlook is discussed. (orig.)

  7. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    Susilo, Jati

    2002-01-01

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6 t h of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  8. Actinide recovery from waste and low-grade sources

    International Nuclear Information System (INIS)

    Navratil, J.D.; Schulz, W.W.

    1982-01-01

    Actinide and nuclear fuel cycle operations generate a variety of process waste streams. New methods are needed to remove and recover actinides. More interest is also being expressed in recovering uranium from oceans, phosphoric acid, and other low grade sources. To meet the need for an up-to-date status report in the area of actinide recovery from waste and low grade sources, these papers were brought together. The papers provide an authoritative, in-depth coverage of an important area of nuclear and industrial and engineering chemistry which cover the following topics: uranium recovery from oceans and phosphoric acid; recovery of actinides from solids and liquid wastes; plutonium scrap recovery technology; and other new developments in actinide recovery processes

  9. Transmutation of LWR waste actinides in thermal reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-01-01

    Recycle of actinides to a reactor for transmutation to fission products is being considered as a possible means of waste disposal. Actinide transmutation calculations were made for two irradiation options in a thermal (LWR) reactor. The cases considered were: all actinides recycled in regular uranium fuel assemblies, and transuranic actinides recycled in separate mixed oxide (MOX) assemblies. When all actinides were recycled in a uranium lattice, a reduction of 62% in the transuranic inventory was achieved after 10 recycles, compared to the inventory accumulated without recycle. When the transuranics from 2 regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after 5 recycles

  10. Actinide science. Fundamental and environmental aspects

    International Nuclear Information System (INIS)

    Choppin, Gregory R.

    2005-01-01

    Nuclear test explosions and reactor wastes have deposited an estimated 16x10 15 Bq of plutonium into the world's aquatic systems. However, plutonium concentration in open ocean waters is orders of magnitude less, indicating that most of the plutonium is quite insolvable in marine waters and has been incorporated into sediments. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides were introduced into the aquatic system. Actinide solubility depends on such factors as pH(hydrolysis), E H (oxidation state), reaction with complexants (e.g. carbonate, phosphate, humic acid, etc.) sorption to surfaces of minerals and/or colloids, etc., in the water. The most significant of these variables is the oxidation sate of the metal ion. The simultaneous presence of more than one oxidation state for some actinides (e.g. plutonium) in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation but can undergo reduction to the Pu(IV) oxidation state with its different elemental behavior. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK SP - 56). The net solubility of hexavalent UO 2 2+ in sea water is also limited by hydrolysis; however, it has a relatively high concentration due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(CO) 3 (OH), is the limiting species for the solubility of Am(III) in sea water. Thorium is found exclusively as the tetravalent species and its solubility is limited by the formation of quite insoluble Th(OH) 4 . The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in

  11. Solubility of actinides and surrogates in nuclear glasses

    International Nuclear Information System (INIS)

    Lopez, Ch.

    2003-01-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO 2 at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  12. Nuclear waste forms for actinides

    Science.gov (United States)

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  13. Fusion barrier characteristics of actinides

    Science.gov (United States)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-03-01

    We have studied fusion barrier characteristics of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations. After the calculation of fusion barrier heights and positions, we have searched for their parameterization. We have achieved the empirical formula for fusion barrier heights (VB), positions (RB), curvature of the inverted parabola (ħω) of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations (6 projectile target combinations. The values produced by the present formula are also compared with experiments. The present pocket formula produces fusion barrier characteristics of actinides with the simple inputs of mass number (A) and atomic number (Z) of projectile-targets.

  14. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38{sup th} JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment.

  15. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    International Nuclear Information System (INIS)

    2008-01-01

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38 th JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment

  16. Material composition and nuclear data libraries' influence on nickel-chromium alloys activation evaluation: a comparison with decay heat experiments

    CERN Document Server

    Cepraga, D G

    2000-01-01

    The paper presents the activation analyses on Inconel-600 nickel-chromium alloy. Three activation data libraries, namely the EAF-4.1, the EAF-97 and the FENDL/A-2, and the FENDL/D-2 decay data library, have been used to perform the calculation with the European activation code ANITA-4/M. The neutron flux distribution into the material samples was provided by JAERI as results of 3D Monte-Carlo MCNP transport code experiment simulation. A comparison with integral decay heat measurement performed at the Fusion Neutronics Source (FNS), JAERI, Tokai, Japan, is used to validate the computational approach. The calculation results are given and discussed. The impact of the material composition, including impurities, on the decay heat of samples irradiated in fusion-like neutron spectra is assessed and discussed. The discrepancies calculations-experiments are within the experimental errors, that is between 6% and 10%, except for the short cooling times (less than 40 min after the end of irradiation). To improve calcul...

  17. Decay heat of 235U fission products by beta- and gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Dickens, J.K.; Love, T.A.; McConnell, J.W.; Peelle, R.W.

    1976-09-01

    The fast-rabbit facilities of the ORRR were used to irradiate 1- to 10-μg samples of 235 U for 1, 10, and 100 s. Released power is observed using nuclear spectroscopy to permit separate observations of emitted β and γ spectra in successive time intervals. The spectra were integrated over energy to obtain total decay heat and the β- and γ-ray results are summed together. 10 fig, 2 tables

  18. JENDL FP decay data file 2000 and the beta-decay theory

    International Nuclear Information System (INIS)

    Yoshida, Tadashi; Katakura, Jun Ichi; Tachibana, Takahiro

    2002-01-01

    JENDL FP Decay Data File 2000 has been developed as one of the special purpose files of the Japanese Evaluated Nuclear Data Library (JENDL), which constitutes a versatile nuclear data basis for science and technology. In the format of ENDF-6 this file includes the decay data for 1087 unstable fission product (FP) nuclides and 142 stable nuclides as their daughters. The primary purpose of this file is to use in the summation calculation of FP decay heat, which plays a critical role in nuclear safety analysis; the loss-of-coolant accident analysis of reactors, for example. The data for a given nuclide are its decay modes, the Q value, the branching ratios, the average energies released in the form of beta- and gamma-rays per decay, and their spectral data. The primary source of the decay data adopted here is the ENSDF (Evaluated Nuclear Structure Data File). The data in ENSDF, however, cover only the measured values. The data of the short-lived nuclides, which are essential for the decay heat calculations at short cooling times, are often fully lacking or incomplete even if they exist. This is mainly because of their short half-life nature. For such nuclides a theoretical model calculation is applied in order to fill the gaps between the true and the experimentally known decay schemes. In practice we have to predict the average decay energies and the spectral data for a lot of short-lived FPs by use of beta-decay theories. Thus the beta-decay theory plays a very important role in generating the FP decay data file

  19. FAKIR: a user-friendly standard for decay heat and activity calculation of LWR fuel

    International Nuclear Information System (INIS)

    Pretesacque, P.; Nimal, J.C.; Huynh, T.D.; Zachar, M.

    1993-01-01

    The shipping casks owned by the transporters and the unloading and storage facilities are subjected by their design safety report to decay heat and activity limits. It is the responsibility of the consignor or the consignee to check the compliance of the fuel assemblies to the shipped or stored with regard to these limiting safety parameters. Considering the diversity of the parties involved in the transport and storage cycle, a standardization has become necessary. This has been achieved by the FAKIR code. The FAKIR development started in 1984 in collaboration between COGEMA, CEA-SERMA and NTL. Its main specifications were to be a user-friendly code, to use the contractual data given in the COGEMA transport and reprocessing sheet 1 as input, and to over-estimate decay heat and activity. Originally based on computerizable standards such as ANSI or USNRC, the FAKIR equations and data libraries are now based on the fully qualified PEPIN/APOLLO calculation codes. FAKIR is applicable to all patterns of irradiation histories, with burn up from 1000 MWd/TeU to 70.000 MWd/TeU and cooling times from 1 second to 100 years. (J.P.N.)

  20. Actinide Source Term Program, position paper. Revision 1

    International Nuclear Information System (INIS)

    Novak, C.F.; Papenguth, H.W.; Crafts, C.C.; Dhooge, N.J.

    1994-01-01

    The Actinide Source Term represents the quantity of actinides that could be mobilized within WIPP brines and could migrate with the brines away from the disposal room vicinity. This document presents the various proposed methods for estimating this source term, with a particular focus on defining these methods and evaluating the defensibility of the models for mobile actinide concentrations. The conclusions reached in this document are: the 92 PA open-quotes expert panelclose quotes model for mobile actinide concentrations is not defensible; and, although it is extremely conservative, the open-quotes inventory limitsclose quotes model is the only existing defensible model for the actinide source term. The model effort in progress, open-quotes chemical modeling of mobile actinide concentrationsclose quotes, supported by a laboratory effort that is also in progress, is designed to provide a reasonable description of the system and be scientifically realistic and supplant the open-quotes Inventory limitsclose quotes model

  1. Limitations of actinide recycle and waste disposal consequences

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Raedt, C. de

    1994-01-01

    The paper emphasizes the impact of Light Water Reactor - Mixed Oxides introduction on the subsequent actinide management and fate of reprocessed and depleted uranium. The spent fuel from LWR-MOX contains in principle 75% of the initially produced plutonium. This new source term has to be considered together with the minor actinides from the conventional reprocessing. Subsequent LWR-MOX reprocessing in the first step in a very long term Pu + minor actinides management. Recycling of Pu + minor actinides in fast reactors to significantly reduce the Pu and minor actinides inventory (e.g. a factor of 10) is a very slow process which requires the development and operation of a large park of actinide burner reactors during an extended period of time. The overall feasibility of the P and T option will greatly depend on the massive introduction during the next century of fast neutron reactors as a replacement to the present LWR generation of nuclear power plants. (authors). 11 refs., 6 tabs., 2 figs

  2. 33rd Actinide Separations Conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  3. 33rd Actinide Separations Conference

    International Nuclear Information System (INIS)

    McDonald, L.M.; Wilk, P.A.

    2009-01-01

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  4. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  5. Hydrothermal decomposition of actinide(IV oxalates: a new aqueous route towards reactive actinide oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Walter Olaf

    2016-01-01

    Full Text Available The hydrothermal decomposition of actinide(IV oxalates (An= Th, U, Pu at temperatures between 95 and 250 °C is shown to lead to the production of highly crystalline, reactive actinide oxide nanocrystals (NCs. This aqueous process proved to be quantitative, reproducible and fast (depending on temperature. The NCs obtained were characterised by X-ray diffraction and TEM showing their size to be smaller than 15 nm. Attempts to extend this general approach towards transition metal or lanthanide oxalates failed in the 95–250 °C temperature range. The hydrothermal decomposition of actinide oxalates is therefore a clean, flexible and powerful approach towards NCs of AnO2 with possible scale-up potential.

  6. Analysis of some modes of multibody decays of low excited actinide nuclei

    International Nuclear Information System (INIS)

    Pyatkov, Yu V; Lavrova, J E; Kamanin, D V; Alexandrov, A A; Alexandrova, I A; Goryainova, Z I; Kuznetsova, E A; Strekalovsky, A O; Strekalovsky, O V; Zhuchko, V E; Mkaza, N; Malaza, V

    2017-01-01

    Careful studies of the fission fragments mass correlation distributions let us to reveal specific linear structures in the region of a big missing mass. It became possible due to applying of effective cleaning of this region from the background linked with scattered fragments. One of the most pronounced structure looks like a rectangle bounded by the magic nuclei. The fission events aggregated in the rectangle show a very low total kinetic energy. We propose possible scenario of forming and decay of the multi-cluster prescission configuration decisive for the experimental findings. This approach is valid as well for treating of another rare decay modes discovered in the past. (paper)

  7. Nuclear energy waste-space transportation and removal

    Science.gov (United States)

    Burns, R. E.

    1975-01-01

    A method for utilizing the decay heat of actinide wastes to power an electric thrust vehicle is proposed. The vehicle, launched by shuttle to earth orbit and to earth escape by a tug, obtains electrical power from the actinide waste heat by thermionic converters. The heavy gamma ray and neutron shielding which is necessary as a safety feature is removed in orbit and returned to earth for reuse. The problems associated with safety are dealt with in depth. A method for eliminating fission wastes via chemical propulsion is briefly discussed.

  8. Nuclear energy waste: space transportation and removal

    International Nuclear Information System (INIS)

    Burns, R.E.

    1975-12-01

    A method for utilizing the decay heat of actinide wastes to power an electric thrust vehicle is proposed. The vehicle, launched by shuttle to earth orbit and to earth escape by a tug, obtains electrical power from the actinide waste heat by thermionic converters. The heavy gamma ray and neutron shielding which is necessary as a safety feature is removed in orbit and returned to earth for reuse. The problems associated with safety are dealt with in depth. A method for eliminating fission wastes via chemical propulsion is briefly discussed

  9. PANDA passive decay heat removal transient test results

    International Nuclear Information System (INIS)

    Bandurski, Th.; Dreier, J.; Huggenberger, M.

    1997-01-01

    PANDA is a large scale facility for investigating the long-term decay heat removal from the containment of a next generation of 'passive' Advanced Light Water Reactors (ALWR). PANDA was used to examine the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric (GE) Simplified Boiling Water Reactor (SBWR). The first PANDA test series had the dual objectives of demonstrating the performance of the SBWR PCCS and extending the data base available for containment analysis code qualification. The test objectives also include the study of the effects of mixing and stratification of steam and noncondensible gases in the drywell (DW) and in the suppression chamber or wetwell (WW). Ten tests were conducted in the course of the PANDA SBWR Program. The tests demonstrated a favorable and robust overall PCCS performance under different conditions. The present paper focuses on the main phenomena observed during the tests with respect to PCCS operation and DW gas mixing. (author)

  10. Passive Decay Heat Removal System Options for S-CO2 Cooled Micro Modular Reactor

    International Nuclear Information System (INIS)

    Moon, Jangsik; Jeong, Yong Hoon; Lee, Jeong Ik

    2014-01-01

    To achieve modularization of whole reactor system, Micro Modular Reactor (MMR) which has been being developed in KAIST took S-CO 2 Brayton power cycle. The S-CO 2 power cycle is suitable for SMR due to high cycle efficiency, simple layout, small turbine and small heat exchanger. These characteristics of S-CO 2 power cycle enable modular reactor system and make reduced system size. The reduced size and modular system motived MMR to have mobility by large trailer. Due to minimized on-site construction by modular system, MMR can be deployed in any electricity demand, even in isolated area. To achieve the objective, fully passive safety systems of MMR were designed to have high reliability when any offsite power is unavailable. In this research, the basic concept about MMR and Passive Decay Heat Removal (PDHR) system options for MMR are presented. LOCA, LOFA, LOHS and SBO are considered as DBAs of MMR. To cope with the DBAs, passive decay heat removal system is designed. Water cooled PDHR system shows simple layout, but has CCF with reactor systems and cannot cover all DBAs. On the other hand, air cooled PDHR system with two-phase closed thermosyphon shows high reliability due to minimized CCF and is able to cope with all DBAs. Therefore, the PDHR system of MMR will follows the air-cooled PDHR system and the air cooled system will be explored

  11. Research for actinides extractants from various wastes

    International Nuclear Information System (INIS)

    Musikas, C.; Cuillerdier, C.; Condamines, N.

    1990-01-01

    This paper is an overview of the actinides solvent extraction research undertaken in Fontenay-aux-Roses. Two kinds of extractants are investigated; those usable for the improvement of the nowadays nuclear fuels reprocessing and those necessary for advanced fuels cycles which include the minor actinides (Np, Am) recovery for a further elimination through nuclear reactions. In the first class the mono and diamides, alternative to the organophosphorus extractants, TBP and polyfunctional phosphonates, showed promising properties. The main results are discussed. For the future efficient extractants for trivalent actinides-lanthanides group separations are suitable. The point about the actinides (III) - lanthanides (III) group separation chemistry and the development of some of these extractants are given

  12. ACTINET - EU network of excellence for actinide sciences

    International Nuclear Information System (INIS)

    Gompper, K.

    2006-01-01

    ACTINET, the Network of Excellence for Actinide Sciences within the 6th EU Framework Program, was launched in March 2004 for an initial period of four years. A number of tools are available in ACTINET to serve the purposes of the project, i.e. stimulate and coordinate actinide research in Europe, promote integration, train young scientists and, in this way, ensure and enhance European competence. The large European actinide laboratories with their unique experimental and analytical equipment are available to scientists from Europe as so-called 'pool facilities' within the framework of joint research projects. Setting up a 'theoretical user lab' has turned out to be a promising way of exploiting the synergies of theory and experiment in various fields of actinide science. Joint research projects are supported within the network, working with actinides being made possible in the pool facilities. Training and instruction are ensured by seminars, workshops, and schools organized annually. In familiarizing young scientists with actinide work, ACTINET exercises training functions and contributes to ensuring and enhancing European competence in the field on the medium and long term. Even after only half of its term, ACTINET is developing into a live network, thus decisively contributing towards promoting, coordinating and integrating European actinide research. As actinides play a key role in the use of nuclear power, this benefits European industries, research centers, operators of nuclear power plants and nuclear facilities as well as licensing and regulatory authorities. (orig.)

  13. Superconductivity in the actinides

    International Nuclear Information System (INIS)

    Smith, J.L.; Lawson, A.C.

    1985-01-01

    The trends in the occurrence of superconductivity in actinide materials are discussed. Most of them seem to show simple transition metal behavior. However, the superconductivity of americium proves that the f electrons are localized in that element and that ''actinides'' is the correct name for this row of elements. Recently the superconductivity of UBe 13 and UPt 3 has been shown to be extremely unusual, and these compounds fall in the new class of compounds now known as heavy fermion materials

  14. Activation calculation and environmental safety analysis for fusion experimental breeder (FEB)

    Energy Technology Data Exchange (ETDEWEB)

    Kaiming, Feng [Southwest Inst. of Physics, Leshan, SC (China)

    1996-04-01

    An activation calculation code FDKR and decay chain data library AFDCDLIB are used to calculate the radioactivity, decay heat, dose rate and biological hazard potential (BHP) form activation products, actinides and fission products in a Fusion Experiment Breeder (FEB). The code and library are introduced briefly, and calculation results and decay curves of related hazards after one year operation with 150 MW fusion power are given. The total radioactivity inventory, decay heat and BHP are 5.74 x 10{sup 20} Bq, 8.34 MW and 4.08 x 10{sup 8} km{sup 3} of air, respectively, at shutdown. Results obtained show that the first wall of FEB can meet the nuclear waste disposal criteria for the NRC 10 CFR61 Class C after a few weeks from shutdown. The inventory of important actinides for the fuel reprocessing, such as {sup 232}U and {sup 237}Np were also calculated. It was shown that their concentrations do not excess the limit value of environmental safety required. (9 refs., 4 figs., 9 tabs.).

  15. Molecular and electronic structure of actinide hexa-cyanoferrates; Structure moleculaire et electronique des hexacyanoferrates d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Bonhoure, I

    2001-07-01

    The goal of this work is to improve our knowledge on the actinide-ligand bond properties. To this end, the hexacyanoferrate entities have been used as pre-organized ligand. We have synthesized, using mild chemistry, the following series of complexes: An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Th, U, Np, Pu); Am{sup III}[Fe{sup III}(CN){sub 6}].xH{sub 2}O; Pu {sup III}[Co{sup III}(CN){sub 6}].xH{sub 2}O and K(H?)An{sup III}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Pu, Am). The metal oxidation states have been obtained thanks to the {nu}{sub CN}, stretching vibration and to the actinide L{sub III} absorption edge studies. As Prussian Blue, the An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Np, Pu) are class II of Robin and Day compounds. X-ray Diffraction has shown besides that these complexes crystallize in the P6{sub 3}/m space group, as the isomorphic LaKFe(CN){sub 6}.4H{sub 2}O complex used as structural model. The EXAFS oscillations at the iron K edge and at the An L{sub III} edge allowed to determine the An-N, An-O, Fe-C and Fe-N distances. The display of the multiple scattering paths for both edges explains the actinide contribution absence at the iron edge, whereas the iron signature is present at the actinide edge. We have shown that the actinide coordination sphere in actinides hexa-cyanoferrates is comparable to the one of lanthanides. However, the actinides typical behavior towards the lanthanides is brought to the fore by the An{sup IV} versus Ln{sup III} ions presence in this family of complexes. Contrarily to the 4f electrons, the 5f electrons influence the electronic properties of the compounds of this family. However, the gap between the An-N and Ln-N distances towards the corresponding metals ionic radii do not show any covalence bond evolution between the actinide and lanthanide series. (author)

  16. Influence of fission product transport on delayed neutron precursors and decay heat sources in LMFBR accidents

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.

    1981-01-01

    A method is presented for studying the influence of fission product transpot on delayed neutron precursors and decay heat sources during Liquid Metal Fast Breeder Reactor (LMFBR) unprotected accidents. The model represents the LMFBR core as a closed homogeneous cell. Thermodynamic phase equilibrium theory is used to predict fission product mobility. Reactor kinetics behavior is analyzed by an extension of point kinetics theory. Group dependent delayed neutron precursor and decay heat source retention factors, which represent the fraction of each group retained in the fuel, are developed to link the kinetics and thermodynamics analysis. Application of the method to a highly simplified model of an unprotected loss-of-flow accident shows a time delay on the order of 10 ms is introduced in the predisassembly power history if fission product motion is considered when compared to the traditional transient solution. The post-transient influence of fission product transport calculated by the present model is a 24 percent reduction in the decay heat level in the fuel material which is similar to traditional approximations. Isotopes of the noble gases, Kr and Xe, and the elements I and Br are shown to be very mobile and are responsible for a major part of the observed effects. Isotopes of the elements Cs, Se, Rb, and Te were found to be moderately mobile and contribute to a lesser extent to the observed phenomena. These results obtained from the application of the described model confirm the initial hypothesis that sufficient fission product transport can occur to influence a transient. For these reasons, it is concluded that extension of this model into a multi-cell transient analysis code is warranted

  17. Actinide chemistry in the far field

    International Nuclear Information System (INIS)

    Livens, F.R.; Morris, K.; Parkman, R.; Moyes, L.

    1996-01-01

    The environmental chemistry of the actinides is complicated due both to the extensive redox and coordination chemistry of the elements and also to the complexity of the reactive phases encountered in natural environments. In the far field, interactions with reactive surfaces, coatings and colloidal particles will play a crucial role in controlling actinide mobility. By virtue of both their abundance and reactivity; clays and other layer aluminosilicate minerals, hydrous oxides and organic matter (humic substances) are all identified as having the potential to react with actinide ions and some possible modes of interaction are described, together with experimental evidence for their occurrence. (author)

  18. Parametric Decay during HHFW on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bernabei, S.; Biewer, T.; Diem, S.; Hosea, J.; LeBlanc, B.; Phillips, C.K.; Ryan, P.; Swain, D.W.

    2005-01-01

    High Harmonic Fast Wave (HHFW) heating experiments on NSTX have been observed to be accompanied by significant edge ion heating (T i >> T e ). This heating is found to be anisotropic with T perp > T par . Simultaneously, coherent oscillations have been detected with an edge Langmuir probe. The oscillations are consistent with parametric decay of the incident fast wave (ω > 13ω ci ) into ion Bernstein waves and an unobserved ion-cyclotron quasi-mode. The observation of anisotropic heating is consistent with Bernstein wave damping, and the Bernstein waves should completely damp in the plasma periphery as they propagate toward a cyclotron harmonic resonance. The number of daughter waves is found to increase with rf power, and to increase as the incident wave's toroidal wavelength increases. The frequencies of the daughter wave are separated by the edge ion cyclotron frequency. Theoretical calculations of the threshold for this decay in uniform plasma indicate an extremely small value of incident power should be required to drive the instability. While such decays are commonly observed at lower harmonics in conventional ICRF heating scenarios, they usually do not involve the loss of significant wave power from the pump wave. On NSTX an estimate of the power loss can be found by calculating the minimum power required to support the edge ion heating (presumed to come from the decay Bernstein wave). This calculation indicates at least 20-30% of the incident rf power ends up as decay waves

  19. Separations chemistry for actinide elements: Recent developments and historical perspective

    International Nuclear Information System (INIS)

    Nash, K.L.; Choppin, G.R.

    1997-01-01

    With the end of the cold war, the principal mission in actinide separations has changed from production of plutonium to cleanup of the immense volume of moderately radioactive mixed wastes which resulted from fifty years of processing activities. In order to approach the cleanup task from a proper perspective, it is necessary to understand how the wastes were generated. Most of the key separations techniques central to actinide production were developed in the 40's and 50's for the identification and production of actinide elements. Total actinide recovery, lanthanide/actinide separations, and selective partitioning of actinides from inert constituents are currently of primary concern. To respond to the modern world of actinide separations, new techniques are being developed for separations ranging from analytical methods to detect ultra-trace concentrations (for bioassay and environmental monitoring) to large-scale waste treatment procedures. In this report, the history of actinide separations, both the basic science and production aspects, is examined and evaluated in terms of contemporary priorities

  20. 1981 Annual Status Report. Plutonium fuels and actinide programme

    International Nuclear Information System (INIS)

    1981-01-01

    In this 1981 report the work carried out by the European Institute for Transuranium elements is reviewed. Main topics are: operation limits of plutonium fuels: swelling of advanced fuels, oxide fuel transients, equation of state of nuclear materials; actinide cycle safety: formation of actinides (FACT), safe handling of plutonium fuel (SHAPE), aspects of the head-end processing of carbide fuel (RECARB); actinide research: crystal chemistry, solid state studies, applied actinide research

  1. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    Science.gov (United States)

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  2. Extraction chromatography of actinides

    International Nuclear Information System (INIS)

    Muller, W.

    1978-01-01

    Extraction chromatography of actinides in the oxidation state from 2 to 6 is reviewed. Data on using neutral (tbp), basic (substituted ammonium salts) and acidic [di-(2-ethylhexyl)-phosphoric acid (D2EHPA)] extracting agents ketones, esters, alcohols and β-diketones in this method are given. Using the example of actinide separation using D2EHPA, discussed are factors influencing the efficiency of their chromatography separation (nature and particle size of the carrier materials, extracting agents amount on the carrier, temperature and elution rate)

  3. Actinide nitride ceramic transmutation fuels for the Futurix-FTA irradiation experiment

    International Nuclear Information System (INIS)

    Voit, St.; McClellan, K.; Stanek, Ch.; Maloy, St.

    2007-01-01

    Full text of publication follows. The transmutation of plutonium and other minor actinides is an important component of an advanced nuclear fuel cycle. The Advanced Fuel Cycle Initiative (AFCI) is currently considering mono-nitrides as potential transmutation fuel material on account of the mutual solubility of actinide mono-nitrides as well as their desirable thermal characteristics. The feedstock is most commonly produced by a carbothermic reduction/nitridisation process, as it is for this programme. Fuel pellet fabrication is accomplished via a cold press/sinter approach. In order to allow for easier investigation of the synthesis and fabrication processes, surrogate material studies are used to compliment the actinide activities. Fuel compositions of particular interest denoted as low fertile (i.e. containing uranium) and non-fertile (i.e. not containing uranium) are (PuAmNp) 0.5 U 0.5 N and (PuAm) 0.42 Zr 0.58 N, respectively. The AFCI programme is investigating the validity of these fuel forms via Advanced Test Reactor (ATR) and Phenix irradiations. Here, we report on the recent progress of actinide-nitride transmutation fuel development and production for the Futurix-FTA irradiation experiment. Furthermore, we highlight specific cases where the complimentary approach of surrogate studies and actinide development aid in the understanding complex material issues. In order to allow for easier investigation of the fundamental materials properties, surrogate materials have been used. The amount of surrogate in each compound was determined by comparing both molar concentration and lattice parameter mismatch via Vegard Law. Cerium was chosen to simultaneously substitute for Pu, Am and Np, while depleted U was chosen to substitute for enriched U. Another goal of this work was the optimisation of added graphite during carbothermic reduction in order to minimise the duration of the carbon removal step (i.e. heat treatment under H 2 containing gas). One proposed

  4. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  5. Effect of tin oxide nano particles and heat treatment on decay resistance and physical properties of beech wood (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    Maryam Ghorbani

    2014-11-01

    Full Text Available This research was conducted to investigate the effect of Tin oxide nanoparticles and heat treatment on decay resistance and physical properties of beech wood. Biological and physical test samples were prepared according to EN-113 and ASTM-D4446-05 standards respectively. Samples were classified into 4 groups: control, impregnation with Tin oxide nanoparticles, heat treatment and nano-heat treatment. Impregnation with Tin oxide nano at 5000ppm concentration was carried out in the cylinder according to Bethell method. Then, samples were heated at 140, 160 and 185˚C for 2 and 4 hours. According to results, decay resistance improved with increasing time and temperature of heat treatment. Least weight loss showed 46.39% reduction in nano-heat samples treated at 180˚C for 4 hours in comparison with control at highest weight loss. Nano-heat treated samples demonstrated the maximum amount of water absorption without significant difference with control and nanoparticles treated samples. Increase in heat treatment temperature reduced water absorption so that it is revealed 47.8% reduction in heat treated samples at 180°C for 4h after 24h immersion in water. In nano-heat treated samples at 180˚C for 2h was measured least volume swelling. Volume swelling in nano-treated samples decreased 8.7 and 22.76% after 2 and 24 h immersion in comparison with the control samples respectively.

  6. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  7. Actinide isotopes in the marine environment

    International Nuclear Information System (INIS)

    Holm, E.; Fukai, R.

    1986-01-01

    Studies of actinide isotopes in the environment are important not only from the viewpoint of their radiological effects on human life, but also from the fact that they act as excellent biochemical and geochemical tracers especially in the marine environment. For several of the actinide isotopes there is still a lack of basic data on concentration levels and further investigations on their chemical and physical speciation are required to understand their behaviour in the marine environment. The measured and estimated activity concentration levels of artificial actinides are at present in general a few orders of magnitude lower than those of the natural ones and their concentration factors in biota are relatively low, except in a few species of macroalgae and phytoplankton. The contribution from seafood to total ingestion of actinides by the world population is a few per cent and, therefore, the dose to man from these long-lived radionuclides caused by seafood ingestion is usually low. (orig.)

  8. Amount, disposal and relative toxicity of long-lived fission products and actinides in the radioactive wastes of the nuclear fuel cycles

    International Nuclear Information System (INIS)

    Haug, H.O.

    1975-11-01

    A review is presented on the magnitude of the long-term problems of radioactive wastes from the nuclear power industry of the FRG (and Western Europe). The production of long-lived fission products and actinides has been calculated for several fuel types of the uranium-plutonium and thorium-uranium fuel cycles and related to a prediction of the development and share of LWR, FBR and HTGR. The quantities and concentrations of actinides, the radioactivity and relative toxicity index of the wastes of reprocessing (and fuel refabrication) and their changes by radioactive decay are presented. The radiotoxicity of the nuclide inventory of the solidified high-level wastes have been compared with naturally occuring uranium ores. On the long term (>10 3 years) the radiotoxicity level of the total area of the final repository in deep geological formation does not result in a significantly higher radiotoxicity level than an uranium ore deposit of low uranium content. Also discussed have been the chemical separation of the actinides from high-level wastes and recycling in fission reactors. (orig.) [de

  9. Passive decay heat removal by natural air convection after severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, F.J.; Neitzel, H.J. [Forschungszentrum Karlsruhe Institut fur Angewandte Thermo- und Fluiddynamik, Karlsruhe (Germany); Cheng, X. [Technische Universitaet Karlsruhe Institut fur Stroemungslehre und Stroemungsmaschinen, Karlsruhe (Germany)

    1995-09-01

    The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.

  10. Material attractiveness of plutonium composition on doping minor actinide of large FBR

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Kuno, Yusuke

    2011-01-01

    Material attractiveness analysis on isotopic plutonium compositions of fast breeder reactors (FBR) has been investigated based on figure of merit (FOM) formulas as key parameters as well as decay heat (DH) and spontaneous fission neutron (SFN) compositions. Increasing minor actinide (MA) doping gives the significant effect to increase Pu-238 composition. However, the compositions of Pu-240 and Pu-242 become less with increasing MA doping. DH and SFN compositions in the core regions similar to the DH and SFN compositions of MOX-grade. Material attractiveness based on FOM1 formula shows all isotopic plutonium compositions in the blanket regions as well as in the core regions are categorized as high attractive material. Adopted FOM2 formula can distinguishes the material attractiveness levels which show the plutonium compositions in blanket regions as high attractiveness level and its composition in the core regions as low level of material attractiveness. MA doping is effective to reduce the material attractiveness level of blanket regions from high to medium and it requires much more MA doping rate to achieve low level of attractiveness (FOM<1) based on adopted FOM1 formula. Low material attractiveness level can be obtained by 4 % or more doping MA based on adopted FOM2 formula which considers not only DH composition effect, but also SFN composition effect that gives relatively higher contribution to material barrier of plutonium isotopes. (author)

  11. Protected plutonium breeding by transmutation of minor actinides in fast breeder reactor

    International Nuclear Information System (INIS)

    Meiliza, Yoshitalia; Saito, Masaki; Sagara, Hiroshi

    2008-01-01

    The improvement of proliferation resistance properties of Pu and the burnup characteristics of fast breeder reactor (FBR) had been studied by utilizing minor actinides (MAs) to produce more 238 Pu from 237 Np and 241 Am through neutron capture reaction. The higher the 238 Pu content in the fuel, the higher the proliferation resistance of the fuel would be owing to the natural characteristics of 238 Pu with high decay heat and high neutron production. The present paper deals with the assessment of passive measure against nuclear material proliferation by focusing on improving the inherent proliferation barrier of discharged Pu from an FBR. Results showed that 5% MA doping to the blanket of an FBR gives as high as 17-19% 238 Pu, which could be seen as a significant improvement of the proliferation properties of Pu. Moreover, additional 5% ZrH 2 , together with 5% MA doping to the blanket, could enhance the 238 Pu fraction much more (22-24%). With an assumption of protected Pu whose 238 Pu isotopic fraction is more than 12%, the present paper revealed that protected Pu could be produced more than the Pu consumed (protected Pu breeding) through incineration in an FBR with doping of a minimum 3% MAs or (2% MAs+5% ZrH 2 ) to the blanket. (author)

  12. Advanced core concepts with enhanced proliferation resistance by transmutation of minor actinides

    International Nuclear Information System (INIS)

    Saito, Masaki

    2005-01-01

    ''Protected Plutonium Production (P 3 )'' has been proposed to establish high burn-up cores and to produce protected with high proliferation resistance due to high decay heat and large number of spontaneous fission neutron of 238 Pu by the transmutation of Minor Actinides (MAs) which is presently treated as high-level waste. The burn-up calculations have shown that the advanced fuel with UO 2 (11-13% enrichment of 235 U) by doping 237 Np to produce 238 Pu in the commercialized large LWRs burn up to 100 GWd/t with 238 Pu to Pu ratio of about 20% which means the fuel is highly protected from proliferation. It was also predicted that medium or small size LWR cores with 15-17% enrichment, liquid metal cooled cores, and gas cooled cores added by 1-2% Np could achieve 100 GWd/t burning with bearing high proliferation resistance. The 237 Np mass balance calculations have revealed that more than 20 nuclear P 3 plants of 300 MWe could be supplied with enough 237 Np from the Japanese commercial plants in equilibrium fuel cycles. From the present studies, it is confirmed that MAs are treated as burnable and fertile materials not only to extend the core life but also to improve plutonium proliferation resistance of the future nuclear energy systems instead of their geological disposal or just their burning through fission. (author)

  13. The status of thermal-hydraulic studies on the decay heat removal by natural convection using RAMONA and NEPTUN models

    International Nuclear Information System (INIS)

    Hoffmann, H.; Hain, K.; Marten, K.; Rust, K.; Weinberg, D.; Ohira, H.

    2004-01-01

    Thermal-hydraulic experiments were performed with water in order to simulate the decay heat removal by natural convection in a pool-type sodium-cooled reactor. Two test rigs of different scales were used, namely RAMONA (1:20) and NEPTUN (1:5). RAMONA served to study the transition from nominal operation by forced convection to decay heat removal operation by natural convection. Steady-state similarity tests were carried out in both facilities. The investigations cover nominal and non-nominal operation conditions. These data provide a broad basis for the verification of computer programs. Numerical analyses performed with the three-dimensional FLUTAN code indicated that the thermal-hydraulic processes can be quantitatively simulated even for the very complex geometry of the NEPTUN test rig. (author)

  14. Actinides and heavy fermions

    International Nuclear Information System (INIS)

    Smith, J.L.; Fisk, Z.; Ott, H.R.

    1987-01-01

    The actinide series of elements begins with f-shell electrons forming energy bands, contributing to the bonding, and possessing no magnetic moments. At americium the series switches over to localized f electrons with magnetic moments. In metallic compounds this crossover of behavior can be modified and studied. In this continuum of behavior a few compounds on the very edge of localized f-electron behavior exhibit enormous electronic heat capacities at low temperatures. This is associated with an enhanced thermal mass of the conduction electrons, which is well over a hundred times the free electron mass, and is what led to the label heavy fermion for such compounds. A few of these become superconducting at even lower temperatures. The excitement in this field comes from attempting to understand how this heaviness arises and from the likelihood that the superconductivity is different from that of previously known superconductors. The effects of thorium impurities in UBe 13 were studied as a representative system for studying the nature of the superconductivity

  15. Actinide collisions for QED and superheavy elements with the time-dependent Hartree-Fock theory and the Balian-Vénéroni variational principle

    Directory of Open Access Journals (Sweden)

    Kedziora David J.

    2011-10-01

    Full Text Available Collisions of actinide nuclei form, during very short times of few zs (10−21 s, the heaviest ensembles of interacting nucleons available on Earth. Such collisions are used to produce super-strong electric fields by the huge number of interacting protons to test spontaneous positron-electron pair emission (vacuum decay predicted by the quantum electrodynamics (QED theory. Multi-nucleon transfer in actinide collisions could also be used as an alternative way to fusion in order to produce neutron-rich heavy and superheavy elements thanks to inverse quasifission mechanisms. Actinide collisions are studied in a dynamical quantum microscopic approach. The three-dimensional time-dependent Hartree-Fock (TDHF code tdhf3d is used with a full Skyrme energy density functional to investigate the time evolution of expectation values of one-body operators, such as fragment position and particle number. This code is also used to compute the dispersion of the particle numbers (e.g., widths of fragment mass and charge distributions from TDHF transfer probabilities, on the one hand, and using the BalianVeneroni variational principle, on the other hand. A first application to test QED is discussed. Collision times in 238U+238U are computed to determine the optimum energy for the observation of the vacuum decay. It is shown that the initial orientation strongly affects the collision times and reaction mechanism. The highest collision times predicted by TDHF in this reaction are of the order of ~ 4 zs at a center of mass energy of 1200 MeV. According to modern calculations based on the Dirac equation, the collision times at Ecm > 1 GeV are sufficient to allow spontaneous electron-positron pair emission from QED vacuum decay, in case of bare uranium ion collision. A second application of actinide collisions to produce neutron-rich transfermiums is discussed. A new inverse quasifission mechanism associated to a specific orientation of the nuclei is proposed to

  16. Heating tokamaks by parametric decay of intense extraordinary mode radiation

    International Nuclear Information System (INIS)

    Elder, G.B.; Perkins, F.W.

    1979-08-01

    Intense electron beam technology has developed coherent, very high power (350 megawatts) microwave sources at frequencies which are a modest fraction of the electron cyclotron frequency in tokamaks. Propagation into a plasma occurs via the extraordinary mode which is subject to parametric decay instabilities in the density range ω/sub o/ 2 2 < ω/sub o/(ω/sub o/ + Ω/sub e/). For an incident wave focused onto a hot spot by a dish antenna of radius rho, the effective threshold power P/sub o/ required to induced effective parametric heating is P/sub o/ approx. = 10 MW x/rho Ω/sub e//ω/sub o/ (T/sub e//1 keV)/sup 3/2/ where x denotes the distance to the hot spot

  17. Thin layers in actinide research

    International Nuclear Information System (INIS)

    Gouder, T.

    1998-01-01

    Surface science research at the ITU is focused on the synthesis and surface spectroscopy studies of thin films of actinides and actinide compounds. The surface spectroscopies used are X-ray and ultra violet photoelectron spectroscopy (XPS and UPS, respectively), and Auger electron spectroscopy (AES). Thin films of actinide elements and compounds are prepared by sputter deposition from elemental targets. Alloy films are deposited from corresponding alloy targets and could be used, in principle, as replicates of these targets. However, there are deviations between alloy film and target composition, which depend on the deposition conditions, such as pressure and target voltage. Mastering of these effects may allow us to study stoichiometric film replicates instead of thick bulk compounds. As an example, we discuss the composition of U-Ni films prepared from a UNi 5 target. (orig.)

  18. Potential benefits of waste transmutation to the U.S. high-level waste respository

    Energy Technology Data Exchange (ETDEWEB)

    Michaels, G.E. [Oak Ridge National Laboratory, TN (United States)

    1995-10-01

    This paper reexamines the potential benefits of waste transmutation to the proposed U.S. geologic repository at the Yucca Mountain site based on recent progress in the performance assessment for the Yucca Mountain base case of spent fuel emplacement. It is observed that actinides are assumed to have higher solubility than in previous studies and that Np and other actinides now dominate the projected aqueous releases from a Yucca Mountain repository. Actinides are also indentified as the dominant source of decay heat in the repository, and the effect of decay heat in perturbing the hydrology, geochemistry, and thermal characteristics of Yucca Mountain are reviewed. It is concluded that the potential for thermally-driven, buoyant, gas-phase flow at Yucca Mountain introduces data and modeling requirements that will increase the costs of licensing the site and may cause the site to be unattractive for geologic disposal of wastes. A transmutation-enabled cold repository is proposed that might allow licensing of a repository to be based upon currently observable characteristics of the Yucca Mountain site.

  19. Rapid determination of actinides in seawater samples

    International Nuclear Information System (INIS)

    Maxwell, S.L.; Culligan, B.K.; Hutchison, J.B.; Utsey, R.C.; McAlister, D.R.

    2014-01-01

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti +3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used to separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1-2 weeks and provide chemical yields of ∼30-60 %. This new sample preparation method can be performed in 4-8 h with tracer yields of ∼85-95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort. (author)

  20. Phase coherence of parametric-decay modes during high-harmonic fast-wave heating in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, J. A., E-mail: carlsson@pppl.gov [Crow Radio and Plasma Science, Princeton, New Jersey 08540 (United States); Wilson, J. R.; Hosea, J. C.; Greenough, N. L.; Perkins, R. J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States)

    2016-06-15

    Third-order spectral analysis, in particular, the auto bicoherence, was applied to probe signals from high-harmonic fast-wave heating experiments in the National Spherical Torus Experiment. Strong evidence was found for parametric decay of the 30 MHz radio-frequency (RF) pump wave, with a low-frequency daughter wave at 2.7 MHz, the local majority-ion cyclotron frequency. The primary decay modes have auto bicoherence values around 0.85, very close to the theoretical value of one, which corresponds to total phase coherence with the pump wave. The threshold RF pump power for onset of parametric decay was found to be between 200 kW and 400 kW.

  1. Heat capacity of ThO2

    International Nuclear Information System (INIS)

    Peng Shian

    1996-01-01

    The heat capacity C p of ThO 2 can be calculated as the phonon part of C p for other actinide dioxides used as fuel in nuclear reactors. Precise determination of the phonon part of C p of actinide dioxides is helpful to find out the contributions of other factors to C p . In this paper we have, through studying the heat capacity of ThO 2 , developed a general method applicable to the study of C p of other solids. In the developed method the three type -- different experimental measurements made on a solid-heat capacity, thermal expansion and Debye Waller factor -- can be brought together for comparison. The application of this method to the study of C p of ThO 2 has enabled us to propose a better description of C p of ThO 2 than the generally accepted expression

  2. Level Densities in the actinide region and indirect n,y cross section measurements using the surrogate method

    Directory of Open Access Journals (Sweden)

    Wiedeking M.

    2012-02-01

    Full Text Available Results from a program of measurements of level densities and gamma ray strength functions in the actinide region are presented. Experiments at the Oslo cyclotron involving the Cactus/Siri detectors and 232Th(d,x and 232Th(3He,x reactions were carried out to help answer the question of which level density model is the most appropriate for actinide nuclei, since it will have an impact on cross section calculations important for reactor physics simulations. A new technique for extracting level densities and gamma ray strength functions from particle-gamma coincidence data is proposed and results from the development of this technique are presented. In addition, simultaneous measurements of compound nuclear gamma decay probabilities have been performed for the key thorium cycle nuclei 233Th, 231Th and 232Pa up to around 1MeV above the neutron binding energy and have enabled extraction of indirect neutron induced capture cross sections for the 232Th, 231Pa and 230Th nuclei using the surrogate reaction method. Since the neutron capture cross section for 232Th is already well known from direct measurements a comparison provides a stringent test of the applicability of the surrogate technique in the actinide region.

  3. Easy-to-use application programs for decay heat and delayed neutron calculations on personal computers

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, Kazuhiro [Nagoya Univ. (Japan)

    1998-03-01

    Application programs for personal computers are developed to calculate the decay heat power and delayed neutron activity from fission products. The main programs can be used in any computers from personal computers to main frames because their sources are written in Fortran. These programs have user friendly interfaces to be used easily not only for research activities but also for educational purposes. (author)

  4. Radiochemistry and actinide chemistry

    International Nuclear Information System (INIS)

    Guillaumont, R.; Peneloux, A.

    1989-01-01

    The analysis of trace amounts of actinide elements by means of radiochemistry, is discussed. The similarities between radiochemistry and actinide chemistry, in the case of species amount by cubic cm below 10 12 , are explained. The parameters which allow to define what are the observable chemical reactions, are given. The classification of radionuclides in micro or macrocomponents is considered. The validity of the mass action law and the partition function in the definition of the average number of species for trace amounts, is investigated. Examples illustrating the results are given

  5. Elaboration of extracting, incinerable and/or conducting resins, for the grouped conversion of actinides; Conception de resines extractantes, incinerables et/ou conductrices, pour la conversion groupee d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, H. [Paris-11 Univ., 91 - Orsay (France)]|[CEA Valrho, Lab. de Chimie des Actinides (LCA), 30 - Marcoule (France)

    2006-07-01

    The first results obtained in the framework of the study called PEACE (Process for the Elaboration of Actinide Carbide from ion Exchange resin) concern the fixation of neodymium(III) (simulating trivalent actinides) on two carboxylic resins: the first one is of gel type and the second one of macroporous type. A kinetic study of the exchange NH{sub 4}{sup +}/Nd{sup 3+} has shown that: 1)neodymium is fixed under the form of a complexed or hydrolyzed specie of neodymium of charge 2+ 2)a high charge rate is reached (40% in mass for the dried resin which corresponds to an exchange capacity of 11 meq/g dry of introduced resin) 3)the exchange kinetics is better for the macroporous resin than for the gel resin. A heat treatment of the macroporous resin charged in neodymium has been carried out until the carbonization by the mean of thermal gravimetric analyses carried out under air and argon. A carbon/neodymium ratio of about 5 is obtained after carbonization under argon. Scanning electron microscopy analyses carried out on the macroporous resin charged in neodymium have revealed a conservation of the sphericity and a consequent reduction of the resin balls diameter after heat treatment and an homogeneous distribution of neodymium inside the sphere. (O.M.)

  6. Selective extraction of actinides from high level liquid wastes. Study of the possibilities offered by the Redox properties of actinides

    International Nuclear Information System (INIS)

    Adnet, J.M.

    1991-07-01

    Partitioning of high level liquid wastes coming from nuclear fuel reprocessing by the PUREX process, consists in the elimination of minor actinides (Np, Am, and traces of Pu and U). Among the possible processes, the selective extraction of actinides with oxidation states higher than three is studied. First part of this work deals with a preliminary step; the elimination of the ruthenium from fission products solutions using the electrovolatilization of the RuO4 compound. The second part of this work concerns the complexation and oxidation reactions of the elements U, Np, Pu and Am in presence of a compound belonging to the insaturated polyanions family: the potassium phosphotungstate. For actinide ions with oxidation state (IV) complexed with phosphotungstate anion the extraction mechanism by dioctylamine was studied and the use of a chromatographic extraction technic permitted successful separations between tetravalents actinides and trivalents actinides. Finally, in accordance with the obtained results, the basis of a separation scheme for the management of fission products solutions is proposed

  7. Development of core hot spot evaluation method for decay heat removal by natural circulation under transient conditions in sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki; Doda, Norihiro; Kamide, Hideki; Watanabe, Osamu; Ohkubo, Yoshiyuki

    2010-01-01

    Toward the commercialization of fast reactors, a design study of Japan Sodium-cooled Fast Reactor (JSFR) is being performed. In this design study, the adoption of decay heat removal system operated by fully natural circulation is being examined from viewpoints of economic competitiveness and passive safety. This paper describes a new evaluation method of core hot spot under transient conditions from forced to natural circulation operations that is necessary for confirming feasibility of the fully natural circulation decay heat removal system. The new method consists of three analysis steps in order to include effects of thermal hydraulic phenomena particular to the natural circulation decay heat removal, e.g., flow redistribution in fuel assemblies caused by buoyancy force, and therefore it enables more rational hot spot evaluation rather than conventional ones. This method was applied to a hot spot evaluation of loss-of-external-power event and the result was compared with those by conventional 1D and detailed 3D simulations. It was confirmed that the proposed method can estimate the hot spot with reasonable degree of conservativeness. (author)

  8. Analysis of evidence for an irreproducible martensite-like behavior in actinide metals and alloys below room temperature

    International Nuclear Information System (INIS)

    Sandenaw, T.A.

    1976-05-01

    Evidence is presented which suggests that a low-temperature, martensite-like behavior may be quite general in actinide metals and their alloys and compounds. There may be no metastable martensitic embryos in an α-phase structure of high-purity U, Np, and Pu formed by a diffusion-controlled β → α transformation, and thus no evidence for low-temperature phases. The effect of impurity content on observed low-temperature physical properties of these actinides is noted. It is proposed that impurities may be playing several roles. They may permit an electron redistribution in dilute alloys dependent upon the length of holding time. Experimentally determined values for the electronic contribution to heat capacity and the density of states of U, Np, and Pu should thus vary over a considerable range, as has been observed. Variations in interstitial ordering of impurity atoms with processing may yield stacking variants of each basic close-packed actinide metal structure and thus determine the number and structure of low-temperature phase. 46 references

  9. Structural characterization of the Actinides (III) and (IV) - DOTA complexes

    International Nuclear Information System (INIS)

    Audras, Matthieu

    2014-01-01

    The polyamino-carboxylate anions have been identified as compounds of interest in the operations of actinide separation, in actinide migration in the environment and in human radio-toxicology. The structural characterization of complexes formed between actinides and polyamino-carboxylates ligands is essential for a better understanding of actinide-ligands interactions. Among the polyamino-carboxylate anions, the DOTA ligand (1,4,7,10-tetraaza-cyclododecane tetraacetic acid) is described as a very strong complexing agent of the lanthanides(III), but has been little studied with actinides. The objective of this thesis is to describe the complexes formed between the actinides (III) and (IV) and the DOTA ligand, and compare them with the lanthanide complexes. For this, an approach has been introduced to characterize the complexes by complementary analytical techniques (spectrophotometry, electro-spray ionization mass spectrometry, NMR, EXAFS, electrochemistry), but also by calculations of theoretical chemistry to help the interpretation of the experimental data. The formation of a 1:1 complex is observed with the actinides(III) (plutonium and americium) as for lanthanides(III): rapid formation of intermediate species which evolves slowly towards the formation of a limit complex. Within this complex, the cation is located inside the cavity formed by the ligand. Four nitrogen atoms and four oxygen atoms from the carboxylate functions are involved in the coordination sphere of the cation. However, differences were observed in the bond lengths formed between the cation and the nitrogen atoms (the bonds are somewhat shorter in the case of actinide complexes) as well as the complexation kinetics, which is slightly faster for the actinides(III) than for lanthanide(III) ions of equivalent radius. The same behavior was observed in solution upon complexation of actinides(IV) (uranium, plutonium and neptunium): slow formation of a 1:1 complex (actinide(IV):ligand) in wherein the

  10. Calculated investigation of actinide transmutation in the BOR-60 reactor

    International Nuclear Information System (INIS)

    Zhemkov, I.Yu.; Ishunina, O.V.; Yakovleva, I.V.

    2000-01-01

    One of the prospective actinide burner reactor type is the fast reactor with a 'hard' spectrum and small breeding factor, which is the BOR-60. The calculated investigations demonstrate that Loading up to 40% of minor-actinides to the BOR-60 reactor did not lead to the considerable change of neutron-physical characteristics. The performed calculations show that the BOR- 60 reactor possesses a high efficiency of the minor-actinide and plutonium bum-up (up to 37 kg/(TW · h)) hat is comparable with properties of the actinide burner-reactors under design. The BOR-60 reactor can provide a homogeneous minor-actinide Loading (minor-actinide addition to the standard fuel) to the core and heterogeneous Loading (as separate assemblies-targets with a high minor-actinide fraction) to the first rows of a radial blanket that allows the optimum usage of the reactor and its characteristics. (authors)

  11. Recent progress in actinide and lanthanide solvent extraction

    International Nuclear Information System (INIS)

    Musikas, C.; Hubert, H.; Benjelloun, N.; Vitorge, P.; Bonnin, M.; Forchioni, A.; Chachaty, C.

    1983-04-01

    Work in progress on actinide solvent extraction is briefly reviewed in this paper. 1 H and 31 P NMR are used to elucidate several fundamental unsolved problems concerning organophosphorous extractants often used in actinides extraction: determination of site of dialkylthiophosphate protonation and addition of basic phosphine oxide to dibutylthiophosphoric acid dimer. Extraction of Am III and Eu from high radioactivity level wastes by tetrasubsituted methylene diamides is investigated. Trivalent actinide-lanthanide group are separated by solvent extraction using soft donor ligand complexes which are more stable. The synergism of dinonylnaphtalene sulfonic acid (HDNNS) associated with several neutral donors like TBP, TOPO, amides are examined in the trivalent and tetravalent actinide extraction

  12. Actinide removal from aqueous solution with activated magnetite

    International Nuclear Information System (INIS)

    Kochen, R.L.; Thomas, R.L.

    1987-01-01

    An actinide aqueous waste treatment process using activated magnetite has been developed at Rocky Flats. The use and effectiveness of various magnetites in lowering actinide concentrations in aqueous solution are described. Experiments indicate that magnetite particle size and pretreatment (activation of the magnetite surface with hydroxyl ions greatly influence the effective use of magnetite as an actinide adsorbent. With respect to actinide removal, Ba(OH) 2 -activated magnetite was more effective over a broader pH range than was NaOH-activated magnetite. About 50% less Ba(OH) 2 -activated magnetite was required to lower plutonium concentration from 10 -4 to 10 -8 g/l. 7 refs., 8 tabs

  13. Formation of actinides in irradiated HTGR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    dos Santos, A. M.

    1976-03-15

    Actinide nuclide concentrations of 11 spent AVR fuel elements were determined experimentally. The burnup of the spheres varied in the range between 10% and 100% fifa, the Th : U ratio was 5 : 1. The separation procedures for an actinide isolation were tested with highly irradiated ThO/sub 2/. Separation and decontamination factors are presented. Build-up of /sup 232/U was discussed. The AVR breeding rate was ascertained to be 0.5. The hazard potential of high activity waste was calculated. Actinide recovery factors were proposed in order to reduce the hazard potential of the waste by an actinide removal under consideration of the reprocessing technology which is available presently.

  14. Decay heat removal and heat transfer under normal and accident conditions in gas cooled reactors

    International Nuclear Information System (INIS)

    1994-08-01

    The meeting was convened by the International Atomic Energy Agency on the recommendation of the IAEA's International Working Group on Gas Cooled Reactors. It was attended by participants from China, France, Germany, Japan, Poland, the Russian Federation, Switzerland, the United Kingdom and the United States of America. The meeting was chaired by Prof. Dr. K. Kugeler and Prof. Dr. E. Hicken, Directors of the Institute for Safety Research Technology of the KFA Research Center, and covered the following: Design and licensing requirements for gas cooled reactors; concepts for decay heat removal in modern gas cooled reactors; analytical methods for predictions of thermal response, accuracy of predictions; experimental data for validation of predictive methods - operational experience from gas cooled reactors and experimental data from test facilities. Refs, figs and tabs

  15. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increa...

  16. Effects on auto-irradiation on the solubility of mineral phases enriched by actinides

    International Nuclear Information System (INIS)

    Prot, T.

    1993-07-01

    The scope of the present work is to investigate possible effects of self-irradiation damage induced by α-decay (α-recoil nucleus and α-particle) on the hydrated layer formed by aqueous corrosion of nuclear glass and on alteration phases of a granitic geological repository (calcium carbonate or iron oxides and oxihydroxide) which would be likely irradiated in the framework of high-level radioactive waste disposal, for sufficient concentration of actinides and age. Our experimental procedure relies on a bombardment with external beams of 1.5 to 1.8 MeV He ions and 200 KeV Pb ions, which respectively simulate the radiation effects of α-particles and of α-recoil nuclei. We have observed in a first step, direct irradiation effects (change of volume and refractive index, chemical modification) by means of optical microscopy, microtopographical analysis (surface profilometer) and R.B.S. and X.P.S. In a second step, corrosion tests were performed in static conditions to observe a possible indirect effect (increase of the hydratation rate, actinide release) on the later evolution as for example, a marked increase in solubility (calcium carbonate case)

  17. Design of DC Conduction Pump for PGSFR Active Decay Heat Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dehee; Hong, Jonggan; Lee, Taeho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A DC conduction pump has been designed for the ADHRS of PGSFR. A VBA code developed by ANL was utilized to design and optimize the pump. The pump geometry dependent parameters were optimized to minimize the total current while meeting the design requirements. A double-C type dipole was employed to produce the calculated magnetic strength. Numerical simulations for the magnetic field strength and its distribution around the dipole and for the turbulent flow under magnetic force will be carried out. A Direct Current (DC) conduction Electromagnetic Pump (EMP) has been designed for Active Decay Heat Removal System (ADHRS) of PGSFR. The PGSFR has active as well as passive systems for the DHRS. The passive DHRS (PDHRS) works by natural circulation head and the ADHRS is driven by an EMP for the DHRS sodium loop and a blower for the finned-tube sodium-to-air heat exchanger (FHX). An Annular Linear Induction Pump (ALIP) can be also considered for the ADHRS, but DC conduction pump has been chosen. Selection basis of DHRS EMP is addressed and EMP design for single ADHRS loop with 1MWt heat removal capacity is introduced.

  18. Analysis of the WCLL European demo blanket concept in terms of activation and decay heat after exposure to neutron irradiation

    OpenAIRE

    Stankunas Gediminas; Tidikas Andrius

    2017-01-01

    This comparative paper describes the activation and decay heat calculations for water-cooled lithium-lead performed part of the EURO fusion WPSAE programme and specifications in comparison to other European DEMO blanket concepts on the basis of using a three-dimensional neutronics calculation model. Results are provided for a range of decay times of interest for maintenance activities, safety and waste management assessments. The study revealed that water-c...

  19. Experimental observation of microwave absorption and electron heating due to the two plasmon decay instability and resonance absorption

    International Nuclear Information System (INIS)

    Rasmussen, D.A.

    1981-01-01

    The interaction of intense microwaves with an inhomogeneous plasma is studied in two experimental devices. In the first device an investigation was made of microwave absorption and electron heating due to the parametric decay of microwaves into electron plasma waves (Two Plasmon Decay instability, TPDI), modeling a process which can occur near the quarter critical surface in laser driven pellets. P-polarized microwave (f = 1.2 GHz, P 0 less than or equal to 12 kW) are applied to an essentially collisionless, inhomogeneous plasma, in an oversized waveguide, in the U.C. Davis Prometheus III device. The initial density scale length near the quarter critical surface is quite long (L/lambda/sub De/ approx. = 3000 or k 0 L approx. = 15). The observed threshold power for the TPDI is quite low (P/sub T/approx. = 0.1 kW or v/sub os//v/sub e/ approx. = 0.1). Near the threshold the decay waves only occur near the quarter critical surface. As the incident power is increased above threshold, the decay waves spread to lower densities, and for P 0 greater than or equal to lkW, (v/sub os//v/sub e/ greater than or equal to 0.3) suprathermal electron heating is strong for high powers (T/sub H/ less than or equal to 12 T/sub e/ for P 0 less than or equal to 8 kW or v/sub os//v/sub e/ less than or equal to 0.9)

  20. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  1. Neutron nuclear data evaluation for actinide nucleic

    International Nuclear Information System (INIS)

    Chen Guochang; Yu Baosheng; Duan Junfeng; Ge Zhigang; Cao Wentian; Tang Guoyou; Shi Zhaomin; Zou Yubin

    2010-01-01

    The nuclear data with high accuracy for minor actinides are playing an important role in nuclear technology applications, including reactor design and operation, fuel cycle concepts, estimation of the amount of minor actinides in high burn-up reactors and the minor actinides transmutation. Through describe the class of nuclear data and nuclear date library, and introduce the procedure of neutron nuclear data evaluation. 234 U(n, f) and 237 Np(n, 2n) reaction experimental data evaluation was evaluated. The fission nuclear data are updated and improved. (authors)

  2. Experimental studies of actinides in molten salts

    International Nuclear Information System (INIS)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  3. JNDC FP decay data file

    International Nuclear Information System (INIS)

    Yamamoto, Tohru; Akiyama, Masatsugu

    1981-02-01

    The decay data file for fission product nuclides (FP DECAY DATA FILE) has been prepared for summation calculation of the decay heat of fission products. The average energies released in β- and γ-transitions have been calculated with computer code PROFP. The calculated results and necessary information have been arranged in tabular form together with the estimated results for 470 nuclides of which decay data are not available experimentally. (author)

  4. Actinide partitioning-transmutation program final report. IV. Miscellaneous aspects

    International Nuclear Information System (INIS)

    Alexander, C.W.; Croff, A.G.

    1980-09-01

    This report discusses seven aspects of actinide partitioning-transmutation (P-T) which are important in any complete evaluation of this waste treatment option but which do not fall within other major topical areas concerning P-T. The so-called miscellaneous aspects considered are (1) the conceptual design of a shipping cask for highly neutron-active fresh and spent P-T fuels, (2) the possible impacts of P-T on mixed-oxide fuel fabrication, (3) alternatives for handling the existing and to-be-produced spent fuel and/or wastes until implementation of P-T, (4) the decay and dose characteristics of P-T and standard reactor fuels, (5) the implications of P-T on currently existing nuclear policy in the United States, (6) the summary costs of P-T, and (7) methods for comparing the risks, costs, and benefits of P-T

  5. Band structure studies of actinide systems

    International Nuclear Information System (INIS)

    Koelling, D.D.

    1976-01-01

    The nature of the f-orbitals in an actinide system plays a crucial role in determining the electronic properties. It has long been realized that when the actinide separation is small enough for the f-orbitals to interact directly, the system will exhibit itinerant electron properties: an absence of local moment due to the f-orbitals and sometimes even superconductivity. However, a number of systems with the larger actinide separation that should imply local moment behavior also exhibit intinerant properties. Such systems (URh 3 , UIr 3 , UGe 3 , UC) were examined to learn something about the other f-interactions. A preliminary observation made is that there is apparently a very large and ansiotropic mass enhancement in these systems. There is very good reason to believe that this is not solely due to large electron--electron correlations but to a large electron--phonon interaction as well. These features of the ''non-magnetic'', large actinide separation systems are discussed in light of our results to date. Finally, the results of some recent molecular calculations on actinide hexafluorides are used to illustrate the shielding effects on the intra-atomic Coulomb term U/sub f-f/ which would appear in any attempt to study the formation of local moments. As one becomes interested in materials for which a band structure is no longer an adequate model, this screened U/sub ff/ is the significant parameter and efforts must be made to evaluate it in solid state systems

  6. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    Takano, Masahide; Itoh, Akinori; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  7. ALMR potential for actinide consumption

    International Nuclear Information System (INIS)

    Cockey, C.L.; Thompson, M.L.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) is a US Department of Energy (DOE) sponsored fast reactor design based on the Power Reactor, Innovative Small Module (PRISM) concept originated by General Electric. This reactor combines a high degree of passive safety characteristics with a high level of modularity and factory fabrication to achieve attractive economics. The current reference design is a 471 MWt modular reactor fueled with ternary metal fuel. This paper discusses actinide transmutation core designs that fit the design envelope of the ALMR and utilize spent LWR fuel as startup material and for makeup. Actinide transmutation may be accomplished in the ALMR core by using either a breeding or burning configuration. Lifetime actinide mass consumption is calculated as well as changes in consumption behavior throughout the lifetime of the reactor. Impacts on system operational and safety performance are evaluated in a preliminary fashion. Waste disposal impacts are discussed. (author)

  8. Uncertainty of decay heat calculations originating from errors in the nuclear data and the yields of individual fission products

    International Nuclear Information System (INIS)

    Rudstam, G.

    1979-01-01

    The calculation of the abundance pattern of the fission products with due account taken of feeding from the fission of 235 U, 238 U, and 239 Pu, from the decay of parent nuclei, from neutron capture, and from delayed-neutron emission is described. By means of the abundances and the average beta and gamma energies the decay heat in nuclear fuel is evaluated along with its error derived from the uncertainties of fission yields and nuclear properties of the inddividual fission products. (author)

  9. From alchemy to super-actinides. The preparation, physical-chemical properties and the limits of the Periodic Table

    International Nuclear Information System (INIS)

    Kuruc, J.

    2016-01-01

    In this review a brief history of the discovery of the periodic law, discoveries of elements from the epoch of alchemy to the synthesis of actinides and transactinides is described. The preparation of transactinides (elements with Z ≥ 104 to Z = 118) is discussed, using already proposed names of the elements with Z = 113, 115, 117 and 118: nihonium, moscovium, tennessine and oganesson. The Periodic Tables are presented in short form, the long 18-column and 32-column form. The periodic table containing elements of 8"t"h and 9"t"h periods and its possible range is discussed. By extrapolation of decay half-time of the heaviest isotopes of elements from thorium up to oganesson decay half-time of unbihexium (Z = 126) was predicted about 378 seconds. (author

  10. Investigation on spent fuel characteristics of reduced-moderation water reactor (RMWR)

    International Nuclear Information System (INIS)

    Fukaya, Y.; Okubo, T.; Uchikawa, S.

    2008-01-01

    The spent fuel characteristics of the reduced-moderation water reactor (RMWR) have been investigated using the SWAT and ORIGEN codes. RMWR is an advanced LWR concept for plutonium recycling by using the MOX fuel. In the code calculation, the ORIGEN libraries such as one-group cross-section data prepared for RMWR were necessary. Since there were no open libraries for RMWR, they were produced in this study by using the SWAT code. New libraries based on the heterogeneous core modeling in the axial direction and with the variable actinide cross-section (VXSEC) option were produced and selected as the representative ORIGEN libraries for RMWR. In order to investigate the characteristics of the RMWR spent fuel, the decay heat, the radioactivity and the content of each nuclide were evaluated with ORIGEN using these libraries. In this study, the spent fuel characteristics of other types of reactors, such as PWR, BWR, high burn-up PWR, full-MOX-PWR, full-MOX-BWR and FBR, were also evaluated with ORIGEN. It has been found that about a half of the decay heat of the RMWR spent fuel comes from the actinides nuclides. It is the same with the radioactivity. The decay heat and the radioactivity of the RMWR spent fuel are lower than those of full-MOX-LWRs and FBR, and are the same level as those of the high burn-up PWR. The decay heat and the radioactivity from the fission products (FPs) in the spent fuel mainly depend on the burn-up and the burn-up time rather than the reactor type. Therefore, the decay heat and the radioactivity from FPs in the RMWR spent fuel are smaller, reflecting its relatively long burn-up time resulted from its core characteristics with the high conversion ratio. The radioactivity from the actinides in the spent fuel mainly depends on the 241 Pu content in the initial fuel, and the decay heat mainly depends on 238 Pu and 244 Cm. The contribution of 244 Cm is much smaller in RMWR than in MOX-LWRs because of the difference in the spectrum. In addition, from

  11. Investigation on spent fuel characteristics of reduced-moderation water reactor (RMWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, Y. [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency (JAEA), Oarai-machi, Ibaraki-ken 311-1393 (Japan)], E-mail: fukaya.yuji@jaea.go.jp; Okubo, T.; Uchikawa, S. [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency (JAEA), Oarai-machi, Ibaraki-ken 311-1393 (Japan)

    2008-07-15

    The spent fuel characteristics of the reduced-moderation water reactor (RMWR) have been investigated using the SWAT and ORIGEN codes. RMWR is an advanced LWR concept for plutonium recycling by using the MOX fuel. In the code calculation, the ORIGEN libraries such as one-group cross-section data prepared for RMWR were necessary. Since there were no open libraries for RMWR, they were produced in this study by using the SWAT code. New libraries based on the heterogeneous core modeling in the axial direction and with the variable actinide cross-section (VXSEC) option were produced and selected as the representative ORIGEN libraries for RMWR. In order to investigate the characteristics of the RMWR spent fuel, the decay heat, the radioactivity and the content of each nuclide were evaluated with ORIGEN using these libraries. In this study, the spent fuel characteristics of other types of reactors, such as PWR, BWR, high burn-up PWR, full-MOX-PWR, full-MOX-BWR and FBR, were also evaluated with ORIGEN. It has been found that about a half of the decay heat of the RMWR spent fuel comes from the actinides nuclides. It is the same with the radioactivity. The decay heat and the radioactivity of the RMWR spent fuel are lower than those of full-MOX-LWRs and FBR, and are the same level as those of the high burn-up PWR. The decay heat and the radioactivity from the fission products (FPs) in the spent fuel mainly depend on the burn-up and the burn-up time rather than the reactor type. Therefore, the decay heat and the radioactivity from FPs in the RMWR spent fuel are smaller, reflecting its relatively long burn-up time resulted from its core characteristics with the high conversion ratio. The radioactivity from the actinides in the spent fuel mainly depends on the {sup 241}Pu content in the initial fuel, and the decay heat mainly depends on {sup 238}Pu and {sup 244}Cm. The contribution of {sup 244}Cm is much smaller in RMWR than in MOX-LWRs because of the difference in the spectrum

  12. Actinide recycle potential in the integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. In the IFR pyroprocessing, minor actinides accompany plutonium product stream, and therefore, actinide recycle occurs naturally. The fast neutron spectrum of the IFR makes it an ideal actinide burner, as well. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and potential implications on long-term waste management

  13. The radiological impact of actinides discharged to the Irish Sea

    International Nuclear Information System (INIS)

    Hunt, G.J.; Smith, B.D.

    1999-01-01

    This paper describes the radiological effects of releases of actinides to the Irish Sea from Sellafield, the major source. Exposure pathways to man since the commencement of discharges in 1952 are reviewed; the importance of actinides began to increase with increased discharges in the 1970s. With the demise of the porphyra/laverbread pathway due to transport difficulties, the pathway due to fish and shellfish consumption became critical, particularly for actinides through molluscan shellfish. A reassessment on the current basis of effective dose shows that peak exposures to the critical group of about 2 mSv yr -1 were received in the mid-1970s, about 30% of which was due to actinides. Effective doses have since reduced but the relative importance of actinides is greater, due to the interplay of discharges of radionuclides from Sellafield and their behaviour in the environment. Additive doses through sea food due to releases of natural radionuclides from the Marchon phosphate plant at Whitehaven are also considered, although the actinide component from this source has been small. Exposures due to actinides from Sellafield via other pathways are shown to be much lower than those involving sea food. Collective doses are also considered; these peaked at about 300 man-Sv to the European population (including the UK) in 1979, with only a few percent due to actinides. As in the case of critical group doses, the relative importance of actinides has increased in recent years within the decreasing total collective dose. For both critical group and collective doses, therefore, the actinide component needs to be kept under review. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Environmental chemistry of the actinide elements

    International Nuclear Information System (INIS)

    Rao Linfeng

    1986-01-01

    The environmental chemistry of the actinide elements is a new branch of science developing with the application of nuclear energy on a larger and larger scale. Various aspects of the environmental chemistry of the actinide elements are briefly reviewed in this paper, such as its significance in the nuclear waste disposal, its coverage of research fields and possible directions for future study

  15. Phase Behavior and Equations of State of the Actinide Oxides

    Science.gov (United States)

    Chidester, B.; Pardo, O. S.; Panero, W. R.; Fischer, R. A.; Thompson, E. C.; Heinz, D. L.; Prescher, C.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    The distribution of the long-lived heat-producing actinide elements U and Th in the deep Earth has important implications for the dynamics of the mantle and possibly the energy budget of Earth's core. The low shear velocities of the Large Low-Shear Velocity Provinces (LLSVPs) on the core-mantle boundary suggests that these regions are at least partially molten and may contain concentrated amounts of the radioactive elements, as well as other large cations such as the rare Earth elements. As such, by exploring the phase behavior of actinide-bearing minerals at extreme conditions, some insight into the mineralogy, formation, and geochemical and geodynamical effects of these regions can be gained. We have performed in situ high-pressure, high-temperature synchrotron X-ray diffraction experiments and calculations on two actinide oxide materials, UO2 and ThO2, to determine their phase behavior at the extreme conditions of the lower mantle. Experiments on ThO2 reached 60 GPa and 2500 K, and experiments on UO2 reached 95 GPa and 2500 K. We find that ThO2 exists in the fluorite-type structure to 20 GPa at high temperatures, at which point it transforms to the high-pressure cotunnite-type structure and remains thus up to 60 GPa. At room temperature, an anomalous expansion of the fluorite structure is observed prior to the transition, and may signal anion sub-lattice disorder. Similarly, UO2 exists in the fluorite-type structure at ambient conditions and up to 28 GPa at high temperatures. Above these pressures, we have observed a previously unidentified phase of UO2 with a tetragonal structure as the lower-temperature phase and the cotunnite-type phase at higher temperatures. Above 78 GPa, UO2 undergoes another transition or possible dissociation into two separate oxide phases. These phase diagrams suggest that the actinides could exist as oxides in solid solution with other analogous phases (e.g. ZrO2) in the cotunnite-type structure throughout much of Earth's lower mantle.

  16. Actinide separations by supported liquid membranes

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Rickert, P.; Chiarizia, R.

    1984-01-01

    The work has demonstrated that actinide removal from synthetic waste solutions using both flat-sheet and hollow-fiber SLM's is a feasible chemical process at the laboratory scale level. The process is characterized by the typical features of SLM's processes: very small quantities of extractant required; the potential for operations with high feed/strip volume ratios, resulting in a corresponding concentration factor of the actinides; and simplicity of operation. Major obstacles to the implementation of the SLM technology to the decontamination of liquid nuclear wastes are the probable low resistance of polypropylene supports to high radiation fields, which may prevent the application to high-level nuclear wastes; the unknown lifetime of the SLM; and the high Na content of the separated actinide solution

  17. Analysis of large soil samples for actinides

    Science.gov (United States)

    Maxwell, III; Sherrod, L [Aiken, SC

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  18. Application of the EXtrapolated Efficiency Method (EXEM) to infer the gamma-cascade detection efficiency in the actinide region

    Energy Technology Data Exchange (ETDEWEB)

    Ducasse, Q. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); CEA-Cadarache, DEN/DER/SPRC/LEPh, 13108 Saint Paul lez Durance (France); Jurado, B., E-mail: jurado@cenbg.in2p3.fr [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); Mathieu, L.; Marini, P. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); Morillon, B. [CEA DAM DIF, 91297 Arpajon (France); Aiche, M.; Tsekhanovich, I. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France)

    2016-08-01

    The study of transfer-induced gamma-decay probabilities is very useful for understanding the surrogate-reaction method and, more generally, for constraining statistical-model calculations. One of the main difficulties in the measurement of gamma-decay probabilities is the determination of the gamma-cascade detection efficiency. In Boutoux et al. (2013) [10] we developed the EXtrapolated Efficiency Method (EXEM), a new method to measure this quantity. In this work, we have applied, for the first time, the EXEM to infer the gamma-cascade detection efficiency in the actinide region. In particular, we have considered the {sup 238}U(d,p){sup 239}U and {sup 238}U({sup 3}He,d){sup 239}Np reactions. We have performed Hauser–Feshbach calculations to interpret our results and to verify the hypothesis on which the EXEM is based. The determination of fission and gamma-decay probabilities of {sup 239}Np below the neutron separation energy allowed us to validate the EXEM.

  19. Application of the EXtrapolated Efficiency Method (EXEM) to infer the gamma-cascade detection efficiency in the actinide region

    International Nuclear Information System (INIS)

    Ducasse, Q.; Jurado, B.; Mathieu, L.; Marini, P.; Morillon, B.; Aiche, M.; Tsekhanovich, I.

    2016-01-01

    The study of transfer-induced gamma-decay probabilities is very useful for understanding the surrogate-reaction method and, more generally, for constraining statistical-model calculations. One of the main difficulties in the measurement of gamma-decay probabilities is the determination of the gamma-cascade detection efficiency. In Boutoux et al. (2013) [10] we developed the EXtrapolated Efficiency Method (EXEM), a new method to measure this quantity. In this work, we have applied, for the first time, the EXEM to infer the gamma-cascade detection efficiency in the actinide region. In particular, we have considered the "2"3"8U(d,p)"2"3"9U and "2"3"8U("3He,d)"2"3"9Np reactions. We have performed Hauser–Feshbach calculations to interpret our results and to verify the hypothesis on which the EXEM is based. The determination of fission and gamma-decay probabilities of "2"3"9Np below the neutron separation energy allowed us to validate the EXEM.

  20. Spin and orbital moments in actinide compounds

    DEFF Research Database (Denmark)

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...... experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced...

  1. Geochemical constraints on accumulation of actinide critical masses from stored nuclear waste in natural rock repositories. Technical report, April 1, 1978--August 31, 1978 (plus supplemental time to December 31, 1978)

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1978-01-01

    Results of a literature search of abundant data on lanthanide and actinide individual and joint systematics are presented. Covered were several papers/reports about uranium solution chemistry, uranium deposits, a natural fission reactor, rare-earch deposits, manganese nodules, bedded and dome salt deposits, and miscellaneous items. This literature search is not complete but represents efforts of seven individuals attempting to gather data relevant to the objectives defined in this report. Many foreign articles, as well as many English language articles are absent. Approximately 800 articles were inspected; 69 are included in the References cited. The data search for actinides and lanthanides in natural rocks indicated that only limited segregation of the actinides U, Np, Pu, Am, and Cm from the lanthanides is possible should high-level waste be released from canisters stored in various geomedia. Supporting this were studies of Oklo and other uranium deposits, manganese nodules, monomineralic and concretion formation rates, and actinide and lathanide transport in brines. The fact that some waste canisters may, under certain conditions, contain several critical masses of one or more actinides is countered by the facts that (a) most actinides have very short half-lives and would decay before release from canisters, (b) released actinides and lanthanides, although dispersed, would be transported and deposited as a group, thus preventing point concentration of any actinides, and (c) 235 U has a much longer half-life than the other actinides, thus allowing greater time for possible reaccumulation and criticality; such a scenario would demand that 235 U be segregated effectively from other elements in the lanthanide-actinide groups.No mechanism to do this is consistent with the natural occurrences studied or the theoretical Eh-pH diagrams considered

  2. Evaluating the efficacy of a minor actinide burner

    International Nuclear Information System (INIS)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Omberg, R.P.; Wootan, D.W.

    1993-06-01

    The efficacy of a minor actinide burner can be evaluated by comparing safety and economic parameters to the support ratio. Minor actinide mass produced per unit time in this number of Light Water Reactors (LWRs) can be burned during the same time period in one burner system. The larger the support ratio for a given set of safety and economic parameters, the better. To illustrate this concept, the support ratio for selected Liquid Metal Reactor (LMR) burner core designs was compared with corresponding coolant void worths, a fundamental safety concern following the Chernobyl accident. Results can be used to evaluate the cost in reduced burning of minor actinides caused by LMR sodium void reduction efforts or to compare with other minor actinide burner systems

  3. Activation, decay heat, and waste classification studies of the European DEMO concept

    Science.gov (United States)

    Gilbert, M. R.; Eade, T.; Bachmann, C.; Fischer, U.; Taylor, N. P.

    2017-04-01

    Inventory calculations have a key role to play in designing future fusion power plants because, for a given irradiation field and material, they can predict the time evolution in chemical composition, activation, decay heat, gamma-dose, gas production, and even damage (dpa) dose. For conceptual designs of the European DEMO fusion reactor such calculations provide information about the neutron shielding requirements, maintenance schedules, and waste disposal prospects; thereby guiding future development. Extensive neutron-transport and inventory calculations have been performed for a reference DEMO reactor model with four different tritium-breeding blanket concepts. The results have been used to chart the post-operation variation in activity and decay heat from different vessel components, demonstrating that the shielding performance of the different blanket concepts—for a given blanket thickness—varies significantly. Detailed analyses of the simulated nuclide inventories for the vacuum vessel (VV) and divertor highlight the most dominant radionuclides, potentially suggesting how changes in material composition could help to reduce activity. Minor impurities in the raw composition of W used in divertor tiles, for example, are shown to produce undesirable long-lived radionuclides. Finally, waste classifications, based on UK regulations, and a recycling potential limit, have been applied to estimate the time-evolution in waste masses for both the entire vessel (including blanket modules, VV, divertor, and some ex-vessel components) and individual components, and also to suggest when a particular component might be suitable for recycling. The results indicate that the large mass of the VV will not be classifiable as low level waste on the 100 year timescale, but the majority of the divertor will be, and that both components will be potentially recyclable within that time.

  4. Trends in actinide processing at Hanford

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1993-09-01

    In 1989, the mission at the Hanford Site began a dramatic and sometimes painful transition. The days of production--as we used to know it--are over. Our mission officially has become waste management and environmental cleanup. This mission change didn't eliminate many jobs--in fact, budgets have grown dramatically to support the new mission. Most all of the same skilled crafts, engineers, and scientists are still required for the new mission. This change has not eliminated the need for actinide processing, but it has certainly changed the focus that our actinide chemists and process engineers have. The focus used to be on such things as increasing capacity, improving separations efficiency, and product purity. Minimizing waste had become a more important theme in recent years and it is still a very important concept in the waste management and environmental cleanup arena. However, at Hanford, a new set of words dominates the actinide process scene as we work to deal with actinides that still reside in a variety of forms at the Hanford Site. These words are repackage, stabilize, remove, store and dispose. Some key activities in each of these areas are described in this report

  5. Report on the IAEA coordinated research program on the measurement and evaluation of transactinium isotope nuclear decay data

    International Nuclear Information System (INIS)

    Reich, C.W.

    1979-01-01

    As one result of the First IAEA Advisory Group Meeting on Transactinium Isotope Nuclear Data, held in November 1975 at Karlsruhe, an IAEA Coordinated Research Program was set up to address certain identified actinide-isotope decay-data needs in reactor technology. At present, laboratories from five nations are involved in this effort. This paper gives an overview of this program, including its origin and the present status of the measurements being carried out. The current status of the actinide-nuclide half-life, spontaneous-fission branching ratio, α-intensity and γ-intensity data of concern to the Coordinated Research Program is presented and briefly discussed. 3 figures, 9 tables

  6. Rapid column extraction method for actinides and strontium in fish and other animal tissue samples

    International Nuclear Information System (INIS)

    Maxwell III, S.L.; Faison, D.M.

    2008-01-01

    The analysis of actinides and radiostrontium in animal tissue samples is very important for environmental monitoring. There is a need to measure actinide isotopes and strontium with very low detection limits in animal tissue samples, including fish, deer, hogs, beef and shellfish. A new, rapid separation method has been developed that allows the measurement of plutonium, neptunium, uranium, americium, curium and strontium isotopes in large animal tissue samples (100-200 g) with high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin R , TRU Resin R and DGA Resin R cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), americium (Am), and curium (Cm) using a single multi-stage column combined with alphaspectrometry. Strontium is collected on Sr Resin R from Eichrom Technologies (Darien, IL, USA). After acid digestion and furnace heating of the animal tissue samples, the actinides and 89/90 Sr are separated using column extraction chromatography. This method has been shown to be effective over a wide range of animal tissue matrices. Vacuum box cartridge technology with rapid flow rates is used to minimize sample preparation time. (author)

  7. Mechanical environmental transport of actinides and ¹³⁷Cs from an arid radioactive waste disposal site.

    Science.gov (United States)

    Snow, Mathew S; Clark, Sue B; Morrison, Samuel S; Watrous, Matthew G; Olson, John E; Snyder, Darin C

    2015-10-01

    Aeolian and pluvial processes represent important mechanisms for the movement of actinides and fission products at the Earth's surface. Soil samples taken in the early 1970's near a Department of Energy radioactive waste disposal site (the Subsurface Disposal Area, SDA, located in southeastern Idaho) provide a case study for studying the mechanisms and characteristics of environmental actinide and (137)Cs transport in an arid environment. Multi-component mixing models suggest actinide contamination within 2.5 km of the SDA can be described by mixing between 2 distinct SDA end members and regional nuclear weapons fallout. The absence of chemical fractionation between (241)Am and (239+240)Pu with depth for samples beyond the northeastern corner and lack of (241)Am in-growth over time (due to (241)Pu decay) suggest mechanical transport and mixing of discrete contaminated particles under arid conditions. Occasional samples northeast of the SDA (the direction of the prevailing winds) contain anomalously high concentrations of Pu with (240)Pu/(239)Pu isotopic ratios statistically identical to those in the northeastern corner. Taken together, these data suggest flooding resulted in mechanical transport of contaminated particles into the area between the SDA and a flood containment dike in the northeastern corner, following which subsequent contamination spreading in the northeastern direction resulted from wind transport of discrete particles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Subcritical limits for special fissile actinides

    International Nuclear Information System (INIS)

    Clark, H.K.

    1980-01-01

    Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than /sup 233/U, /sup 235/U, and /sup 239/Pu that have an odd number of neutrons in the nucleus; S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River

  9. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  10. Separation of actinides and their transmutation

    International Nuclear Information System (INIS)

    Bouchard, M.; Bathelier, M.; Cousin, M.

    1978-08-01

    Neutron irradiation of long-half-life actinides for transmutation into elements with shorter half-life is investigated as a means to reduce the long-term hazards of these actinides. The effectiveness of the method is analysed by applying it to fission product solutions from the first extraction cycle of fuel reprocessing plants. Basic principles, separation techniques and transmutation efficiencies are studied and discussed in detail

  11. Site preferences of actinide cations in [NZP] compounds

    Science.gov (United States)

    Hawkins, H. T.; Spearing, D. R.; Smith, D. M.; Hampel, F. G.; Veirs, D. K.; Scheetz, B. E.

    2000-07-01

    Compounds adopting the sodium dizirconium tris(phosphate) (NaZr2(PO4)3) structure type belong to the [NZP] structural family of compounds. [NZP] compounds possess desirable properties that would permit their application as hosts for the actinides. These properties include compositional flexibility (i.e., three structural sites that can accommodate a variety of different cations), high thermal stability, negligible thermal expansion, and resistance to radiation damage. Experimental data indicate that [NZP] compounds resist dissolution and release of constituents over a wide range of experimental conditions. Moreover, [NZP] compounds may be synthesized by both conventional and novel methods and may be heat treated or sintered at modest temperatures (800 °C-1350 °C) in open or restricted systems.

  12. Actinide uptake onto zeolite-L and SAPO-34

    International Nuclear Information System (INIS)

    Amini, S.; Dyer, A.

    1994-01-01

    The characteristics of ion exchange of uranyl and americium, which are α-emitting radioactive nuclides, were examined by batch and column methods. SAPO-34 showed good selectivity for uranyl ion at pH 2-3.5, and distribution coefficients of Am 3+ and UO 2 2+ increased with equilibrium pH. γ irradiation (2 MGy) did not show any significant effect on the uptake of both of actinide ions onto L and SAPO-34. Higher doses of γ-irradiation (up to 10 MGy) created a change of equilibrium pH, and hence uptake, due to radiolysis of water and heat localization generated by γ-radiation and annealing processes. (author) 19 refs.; 15 figs.; 3 tabs

  13. Passive decay heat removal by sump cooling after core meltdown

    International Nuclear Information System (INIS)

    Knebel, J.U.; Mueller, U.

    1996-01-01

    This article presents the basic physical phenomena and scaling criteria of decay heat removal from a large coolant pool by single-phase and two-phase natural circulation flow. The physical significance of the dimensionless similarity groups derived is evaluated. The above results are applied to the SUCO program that is performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. The sump cooling concept is based on passive safety features within the containment. The work is supported by the German utilities and the Siemens AG. The article gives first measurement results of the 1:20 linearly scaled plane two-dimensional SUCOS-2D test facility. The experimental results of the model geometry are transformed to prototype conditions

  14. Study on remain actinides recovery in pyro reprocessing

    International Nuclear Information System (INIS)

    Suharto, Bambang

    1996-01-01

    The spent fuel reprocessing by dry process called pyro reprocessing have been studied. Most of U, Pu and MA (minor actinides) from the spent fuel will be recovered and be fed back to the reactor as new fuel. Accumulation of remain actinides will be separated by extraction process with liquid cadmium solvent. The research was conducted by computer simulation to calculate the stage number required. The calculation's results showed on the 20 stages extractor more than 99% actinides can be separated. (author)

  15. Evaluation of the decay heat removal capability using the concept of a thermosyphon in the liquid metal reactor

    International Nuclear Information System (INIS)

    Kim, Y. S.; Sim, Y. S.; Kim, W. K.

    2000-01-01

    A study related to understand the characteristics of the heat pipe and thermosyphon was performed to evaluate their applicabilities to the current PSDRS (Passive Safety Decay heat Removal System) in the KALIMER (Korea Advanced LIquid MEtal Reactor) design. The possible heat transfer rate by the heat pipe and thermosyphon was reviewed to compare the required capability in the PSDRS. A quantitative comparison was done between the current PSDRS and the modified PSDRS with the thermosyphon. The result showed the dominant heat transfer rate in the air channel, e.g. radiation or convection, is different from each other. The total heat transfer rate is not sensitive to the operating temperature of the thermosyphon. The heat removal by the air in the modified case is relatively reduced and the resultant outlet temperature appears less than above 10 .deg. C. A reversal heat transfer between the air and the thermosyphon may exist near the exit of the active heat transfer region. The total heat transfer rate by the modified case showed about 20∼40% increase relative to the reference one

  16. A thermoelectric-conversion power supply system using a strontium heat source of high-level radioactive nuclear waste

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka

    2011-01-01

    A thermoelectric-conversion power supply system with radioactive strontium in high-level radioactive waste has been proposed. A combination of Alkali Metal Thermo-Electric Conversion (AMTEC) and a strontium fluoride heat source can provide a compact and long-lived power supply system. A heat source design with strontium fluoride pin bundles with Hastelloy cladding and intermediate copper has been proposed. This design has taken heat transportation into consideration, and, in this regard, the feasibility has been confirmed by a three-dimensional thermal analysis using Star-CD code. This power supply system with an electric output of 1 MW can be arranged in a space of 50 m 2 and approximately 1.1 m height and can be operated for 15 years without refueling. This compact and long-lived power supply is suitable for powering sources for remote places and middle-sized ships. From the viewpoint of geological disposal of high-level waste, the proposed power supply system provides a financial base for strontium-cesium partitioning. That is, a combination of minor-actinide recycling and strontium-cesium partitioning can eliminate a large part of decay heat in high-level waste and thus can save much space for geological disposal. (author)

  17. Use of fast-spectrum reactors for actinide burning

    International Nuclear Information System (INIS)

    Chang, Yoon I.

    1991-01-01

    Finally, Integral Fast Reactor (IFR) pyroprocessing has been developed only in recent years and it appears to have potential as a relatively uncomplicated, effective actinide recovery process. In fact, actinide recycling occurs naturally in the IFR fuel cycle. Although still very much developmental, the entire IFR fuel cycle will be demonstrated on prototype-scale in conjunction with the EBR-II and its refurbished Fuel Cycle Facility starting in late 1991. A logical extension to this work, therefore, is to establish whether this IFR pyrochemical processing can be applied to extracting actinides from LWR spent fuel. This paper summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs. 4 figs., 4 tabs

  18. The effect of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1992-01-01

    The near field of the proposed UK repository for ILW/LLW will contain containers of conditioned waste in contact with a cementious backfill. It will contain significant quantities of iron and steel, Magnox and Zircaloy. Colloids deriving from their corrosion products may possess significant sorption capacity for radioelements. If the colloids are mobile in the groundwater flow, they could act as a significant vector for activity transport into the far field. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium has been studied under chemical conditions representing the transition from the near field to the far field. Desorption R d values of ≥ 5 x 10 6 ml g -1 were measured for both actinides on these oxides and hydroxides when actinide sorption took place under the near-field conditions and desorption took place under the far-field conditions. Desorption of the actinides occurred slowly from the colloids under far-field conditions when the colloids had low loadings of actinide and more quickly at high loadings of actinide. Desorbed actinide was lost to the walls of the experimental vessel. (author)

  19. Disposition of actinides released from high-level waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-01-01

    The disposition of actinide elements released from high-level waste glasses into a tuff groundwater in laboratory tests at 90 degrees C at various glass surface area/leachant volume ratios (S/V) between dissolved, suspended, and sorbed fractions has been measured. While the maximum release of actinides is controlled by the corrosion rate of the glass matrix, their solubility and sorption behavior affects the amounts present in potentially mobile phases. Actinide solubilities are affected by the solution pH and the presence of complexants released from the glass, such as sulfate, phosphate, and chloride, radiolytic products, such as nitrate and nitrite, and carbonate. Sorption onto inorganic colloids formed during lass corrosion may increase the amounts of actinides in solution, although subsequent sedimentation of these colloids under static conditions leads to a significant reduction in the amount of actinides in solution. The solution chemistry and observed actinide behavior depend on the S/V of the test. Tests at high S/V lead to higher pH values, greater complexant concentrations, and generate colloids more quickly than tests at low S/V. The S/V also affects the rate of glass corrosion

  20. Research on the actinide chemistry in Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyseok; Park, Yong Joon; Cho, Young Hwan; and others

    2012-04-15

    Fundamental technique to measure chemical behaviors and properties of lanthanide and actinide in radioactive waste is necessary for the development of pryochemical process. First stage, the electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipments, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media. In the second stage, measurement system for physical properties at pyrochemical process such as viscosity, melting point and conductivity is established, and property database at different compositions of lanthanide and actinide is collected. And, both interactions between elements and properties with different potential are measured at binary composition of actinide-lanthanide in molten salt using electrochemical/spectroscopic integrated measurement system.

  1. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  2. Nonaqueous method for dissolving lanthanide and actinide metals

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1975-01-01

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol

  3. Biotransformation of uranium and other actinides in radioactive wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1998-01-01

    Microorganisms affect the solubility, bioavailability, and mobility of actinides in radioactive wastes. Under appropriate conditions, actinides are solubilized or stabilized by the direct enzymatic or indirect nonenzymatic actions of microorganisms. Biotransformation of various forms of uranium (ionic, inorganic, and organic complexes) by aerobic and anaerobic microorganisms has been extensively studied, whereas limited information is available on other important actinides (Th, Np, Pu, and Am). Fundamental information on the mechanisms of biotransformation of actinides by microbes under various environmental conditions will be useful in predicting the long-term performance of waste repositories and in developing strategies for waste management and remediation of contaminated sites. (orig.)

  4. Characterization and development of an active scintillating target for nuclear reaction studies on actinides

    Energy Technology Data Exchange (ETDEWEB)

    Belier, Gilbert, E-mail: gilbert.belier@cea.fr [CEA, DAM, DIF, DPTA, Centre du Grand Rue, 91297 Arpajon (France); Aupiais, Jean; Varignon, Cyril; Vayre, Sylvain [CEA, DAM, DIF, DPTA, Centre du Grand Rue, 91297 Arpajon (France)

    2012-02-01

    This article presents the development of a new kind of active actinide target, based on organic liquid scintillators containing the dissolved isotope. Amongst many advantages one can mention the very high detection efficiency, the Pulse Shape Discrimination capability, the fast response allowing high count rates and good time resolution and the ease of fabrication. The response of this target to fission fragments has been studied. The discrimination of alpha, fission and proton recoil events is demonstrated. The alpha decay and fission detection efficiencies are simulated and compared to measurements. Finally the use of such a target in the context of fast neutron induced reactions is discussed.

  5. Characterization and development of an active scintillating target for nuclear reaction studies on actinides

    International Nuclear Information System (INIS)

    Belier, Gilbert; Aupiais, Jean; Varignon, Cyril; Vayre, Sylvain

    2012-01-01

    This article presents the development of a new kind of active actinide target, based on organic liquid scintillators containing the dissolved isotope. Amongst many advantages one can mention the very high detection efficiency, the Pulse Shape Discrimination capability, the fast response allowing high count rates and good time resolution and the ease of fabrication. The response of this target to fission fragments has been studied. The discrimination of alpha, fission and proton recoil events is demonstrated. The alpha decay and fission detection efficiencies are simulated and compared to measurements. Finally the use of such a target in the context of fast neutron induced reactions is discussed.

  6. A novel dipicolinamide-dicarbollide synergistic solvent system for actinide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Ajay Bhagwan [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Pune Univ. (India). Garware Research Centre; Pathak, Priyanath; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Shinde, Vaishali Sanjay [Pune Univ. (India). Garware Research Centre; Alyapyshev, M.Yu.; Babain, Vasiliy A. [Federal Agency for Atomic Energy, St. Petersburg (Russian Federation). V.G. Khlopin Radium Institute

    2014-09-01

    Solvent extraction studies of several actinide ions such as Am(III), U(VI), Np(IV), Np(VI), Pu(IV) were carried out from nitric acid medium using a synergistic mixture of N,N'-diethyl-N,N'-di(para)fluorophenyl-2,6-dipicolinamide, (DEtD(p)FPhDPA, DPA), and hydrogen dicarbollylcobaltate (H{sup +}CCD{sup -}) dissolved in phenyltrifluoromethylsulphone (PTMS). The effects of different parameters such as aqueous phase acidity (0.01-3 M HNO{sub 3}), oxidation states of metal ions, ligand concentration, nature of diluent and temperature on the extraction behavior of metal ions were studied. The extracted Am(III) species was determined as H{sup +}[Am(DPA){sub 2}(CCD){sub 4}]{sup -} With increasing aqueous phase acidities, the extractability of both Am(III) and Eu(III) was found to decrease. The synergistic mixture showed better extraction in mM concentrations as compared to previously studied dipicolinamides. The thermodynamic studies were performed to calculate heat of extraction reaction and the extraction constants. The proposed synergistic mixture showed good extraction for all the metal ions, though lanthanide actinide separation results are not encouraging. (orig.)

  7. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    Energy Technology Data Exchange (ETDEWEB)

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  8. Strategies for minority actinides transmutation in fast reactors

    International Nuclear Information System (INIS)

    Perez-Martin, S.; Martin-Fuertes, F.; Alvarez-Velarde, F.

    2010-01-01

    Presentation of the strategies that can be followed in fast reactors designed for the fourth generation to reduce the inventory of minority actinides generated in current light water reactors, as the actinides generation in fast reactor.

  9. Actinide-handling experience for training and education of future expert under J-ACTINET

    International Nuclear Information System (INIS)

    Osaka, Masahiko; Sato, Isamu; Miwa, Shuhei; Konashi, Kenji; Li, Dexin; Homma, Yoshiya; Yamamura, Tomoo; Hayashi, Hirokazu; Minato, Kazuo; Sekimoto, Syun; Kubota, Takumi; Fukutani, Satoshi; Hori, Junichi; Okumura, Ryo; Uehara, Akihiro; Fujii, Toshiyuki; Yamana, Hajimu; Kurosaki, Ken; Muta, Hiroaki; Ohishi, Yuji; Yamanaka, Shinsuke; Uno, Masayoshi; Yaita, Tsuyoshi

    2011-01-01

    Summer schools for future experts have successfully been completed under Japan Actinide Network (J-ACTINET) for the purpose of development of human resources who are expected to be engaged in every areas of actinide-research/engineering. The first summer school was held in Ibaraki-area in August 2009, followed by the second one in Kansai-area in August 2010. Two summer schools have focused on actual experiences of actinides in actinide-research fields for university students and young researchers/engineers as an introductory course of actinide-researches. Many efforts were made to awaken interests into actinide-researches inside the participants during short periods of schools, 3 to 4 days. As actinides must be handled inside special apparatuses such as an air-tight globe-box with well-trained and qualified technicians, programs were optimized for effective experiences of actinides-handling. Several quasi actinide-handling experiences at the actinide-research fields have attracted attentions of participants at the first school in Ibaraki-area. The actual experiments using actinides-containing solutions have been carried out at the second school in Kansai-area. Future summer schools will be held every year for the sustainable human resource development in various actinide-research fields, together with other training and education programs conducted by the J-ACTINET. (author)

  10. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  11. Actinide separation chemistry in nuclear waste streams and materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  12. Radioactivity and decay heat generation in precambrian magmatic rocks (with the South Pamirs as an example)

    International Nuclear Information System (INIS)

    Batyrmurzaev, A.S.; Alibekov, G.I.; Bekieva, A.A.

    2003-01-01

    The evaluation of the heat generation share in the results of the long-living radioactive elements (RAE) decay in the Earth surface layers is accomplished on the basis of the data on the uranium and thorium concentration in the precambrian magmatic rocks of the South Pamirs. It was supposed by the calculations, that the value of the heat flux, generated by the rocks, is determined mainly by the RAE content in the Earth upper layer crust itself of 10-15 km. It is shown that the radioheat generation share is within the range of 5-10% from the measured values of the geothermal flows [ru

  13. Proceedings of the symposium Actinides 2006 - Basic Science, Applications and Technology

    International Nuclear Information System (INIS)

    Blobaum, Kerri J.M.; Chandler, Elaine A.; Havela, Ladislav; Maple, M. Brian; Neu, Mary P.

    2007-01-01

    These proceedings from the September 2006 symposium includes papers presented on experimental and modeling work with the intention of broadening understanding of the field of actinide research. Actinides have gained attention recently because of their roles in the threat of nuclear terrorism (e.g., 'dirty bombs') and the use of nuclear power to offset fossil fuel consumption. Actinide science is the study of the elements with atomic numbers in the range of 90 to 103, which includes uranium and plutonium. Beyond the well-known nuclear reactions of these heavy radioactive metals, the large electron clouds with 5f electrons in the outer shell yield fascinating and complex chemistries, crystal structures, and physical properties. Traditionally, actinide research has been divided among three scientific disciplines: chemistry (nuclear chemistry and radiochemistry); physics (condensed matter physics and electronic structure); and materials science (metallurgy). Modern actinide research, however, has become an interdisciplinary blend of these traditional fields, and it also incorporates developing fields such as environmental chemistry and superconductivity. Improved scientific understanding of actinides is needed for development of materials for actinide detection and nuclear fuels, and for safer management of nuclear waste. Recently, there has been a resurgence of actinide science at national laboratories and universities. The current multidisciplinary approach to actinide science lays the groundwork for understanding the connection between the 5f electronic structure and observed chemical reactions and physical properties such as structural phase transformations and novel ground states. This work provides many opportunities for new researchers in actinide science. These proceedings gather 25 selected papers among the 53 presentations given at this symposium

  14. Casting of metallic fuel containing minor actinide additions

    International Nuclear Information System (INIS)

    Trybus, C.L.; Henslee, S.P.; Sanecki, J.E.

    1992-01-01

    A significant attribute of the Integral Fast Reactor (IFR) concept is the transmutation of long-lived minor actinide fission products. These isotopes require isolation for thousands of years, and if they could be removed from the waste, disposal problems would be reduced. The IFR utilizes pyroprocessing of metallic fuel to separate auranium, plutonium, and the minor actinides from nonfissionable constituents. These materials are reintroduced into the fuel and reirradiated. Spent IFR fuel is expected to contain low levels of americium, neptunium, and curium because the hard neutron spectrum should transmute these isotopes as they are produced. This opens the possibility of using an IFR to trnasmute minor actinide waste from conventional light water reactors (LWRs). A standard IFR fuel is based on the alloy U-20% Pu-10% Zr (in weight percent). A metallic fuel system eases the requirements for reprocessing methods and enables the minor actinide metals to be incorporated into the fuel with simple modifications to the basic fuel casting process. In this paper, the authors report the initial casting experience with minor actinide element addition to an IFR U-Pu-Zr metallic fuel

  15. Calculated Atomic Volumes of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, H.; Andersen, O. K.; Johansson, B.

    1979-01-01

    The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....

  16. Citrate based ''TALSPEAK'' lanthanide-actinide separation process

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Bond, W.D.; Toth, L.M.; Davis, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The potential hazard posed to future generations by long-lived radionuclides such as the transuranic elements (TRU) is perceived as a major problem associated with the use of nuclear power. TRU wastes have to remain isolated from the environment for ''geological'' periods of time. The costs of building, maintaining, and operating a ''geological TRU repository'' can be very high. Therefore, there are significant economical advantages in segregating the relatively low volume of TRU wastes from other nuclear wastes. The chemical behavior of lanthanides and actinides, 4f and 5f elements respectively, is rather similar. As a consequence, the separation of these two groups is difficult. The ''TALSPEAK'' process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. The method is based on the preferential complexation of the trivalent actinides by an aminopolyacetic acid. Cold experiments showed that by using citric acid the deleterious effects produced by impurities such as zirconium are greatly reduced

  17. Research on Actinides in Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Park, Yong Joon; Cho, Young Hwan

    2010-04-01

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  18. Research on Actinides in Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyu Seok; Park, Yong Joon; Cho, Young Hwan

    2010-04-15

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  19. Proposal for experiments with actinide elements

    International Nuclear Information System (INIS)

    Sanchez, R.G.

    1994-01-01

    An analytical study was conducted in which critical masses for some actinide isotopes were calculated with the Monte Carlo Neutron Photon (MCNP) Transport computer code. Different spherical computer models were used for even- and odd-neutron nuclides. Critical masses obtained are tabulated for Np-237, Pu-242, Am-241, Am-243, Pu-241, and Am-242m, together with indirect experimental data. Experimental data are needed for actinides with odd number of neutrons

  20. Actinide science with soft x-ray synchrotron radiation

    International Nuclear Information System (INIS)

    Shuh, D.

    2002-01-01

    Several workshops, some dating back more than fifteen years, recognised both the potential scientific impact and opportunities that would be made available by the capability to investigate actinide materials in the vacuum ultraviolet (VUV)/soft X-ray region of the synchrotron radiation (SR) spectrum. This spectral region revolutionized the approach to surface materials chemistry and physics nearly two decades ego. The actinide science community was unable to capitalize on these SR methodologies for the study of actinide materials until recently because of radiological safety concerns. ,The Advanced Light Source (ALS) at LBNL is a third-generation light source providing state-of-the-art performance in the VUV/soft X-ray region. Along with corresponding improvements in detector and vacuum technology, the ALS has rendered experiments with small amounts of actinide materials possible. In particular, it has been the emergence and development of micro-spectroscopic techniques that have enabled investigations of actinide materials at the ALS. The primary methods for the experimental investigation of actinide materials in the VUV/soft X-ray region are the complementary photoelectron spectroscopies, near-edge X-ray absorption fine structure (NEXAFS) and X-ray emission spectroscopy (XES) techniques. Resonant photo-emission is capable of resolving the 5f electron contributions to actinide bonding and can be used to characterise the electronic structure of actinide materials. This technique is clearly a most important methodology afforded by the tunable SR source. Core level and valence band photoelectron spectroscopies are valuable for the characterisation of the electronic properties of actinide materials, as well as for general analytical purposes. High-resolution core-level photo-emission and resonant photo-emission measurements from the a (monoclinic) and δ (FCC) allotropic phases of plutonium metal have been collected on beam line 7.0 at the ALS and the spectra show

  1. J-ACTINET activities of training and education for actinide science research

    International Nuclear Information System (INIS)

    Miato, Kazuo; Konashi, Kenji; Yamana, Hajimu; Yamanaka, Shinsuke; Nagasaki, Shinya; Ikeda, Yasuhisa; Sato, Seichi; Arita, Yuji; Idemitsu, Kazuya; Koyama, Tadafumi

    2011-01-01

    Actinide science research is indispensable to maintain sustainable development of innovative nuclear technology, especially advanced fuels, partitioning/reprocessing, and waste management. For actinide science research, special facilities with containment and radiation shields are needed to handle actinide materials since actinide elements are γ-, α- and neutron-emitters. The number of facilities for actinide science research has been decreased, especially in universities, due to the high maintenance cost. J-ACTINET was established in 2008 to promote and facilitate actinide science research in close cooperation with the facilities and to foster many of young scientists and engineers to be actively engaged in the fields of actinide science. The research program was carried out, through which young researchers were expected to learn how to make experiments with advanced experimental tools and to broaden their horizons. The summer schools and computational science school were held to provide students, graduate students, and young researchers with the opportunities to come into contact with actinide science research. In these schools, not only the lectures, but also the practical exercises were made as essential part. The overseas dispatch program was also carried out, where graduate students and young researchers were sent to the international summer schools and conferences. (author)

  2. Protactinium and the intersection of actinide and transition metal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Richard E.; De Sio, Stephanie; Vallet, Valérie

    2018-02-12

    The role of the 5f and 6d orbitals in the chemistry of the actinide elements has been of considerable interest since their discovery and synthesis. Relativistic effects cause the energetics of the 5f and 6d orbitals to change as the actinide series is traversed left to right imparting a rich and complex chemistry. The 5f and 6d atomic states cross in energy at protactinium (Pa), making it a potential intersection between transition metal and actinide chemistries. Herein, we report the synthesis of a Pa-peroxo cluster, A(6)(Pa4O(O-2)(6)F-12) [A = Rb, Cs, (CH3)(4)N], formed in pursuit of an actinide polyoxometalate. Quantum chemical calculations at the density functional theory level demonstrate equal 5f and 6d orbital participation in the chemistry of Pa and increasing 5f orbital participation for the heavier actinides. Periodic changes in orbital character to the bonding in the early actinides highlights the influence of the 5f orbitals in their reactivity and chemical structure.

  3. Actinide removal from molten salts by chemical oxidation and salt distillation

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, J.A.; Garcia, E.; Dole, V.R. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed.

  4. Actinide removal from molten salts by chemical oxidation and salt distillation

    International Nuclear Information System (INIS)

    McNeese, James A.; Garcia, Eduardo; Dole, Vonda R.; Griego, Walter J.

    1995-01-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed

  5. Use of fast reactors for actinide transmutation

    International Nuclear Information System (INIS)

    1993-03-01

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  6. The chemistry of the actinide elements. Volume I

    International Nuclear Information System (INIS)

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1986-01-01

    The Chemistry of the Actinide Elements is a comprehensive, contemporary and authoritative exposition of the chemistry and related properties of the 5f series of elements: actinium, thorium, protactinium, uranium and the first eleven. This second edition has been completely restructured and rewritten to incorporate current research in all areas of actinide chemistry and chemical physics. The descriptions of each element include accounts of their history, separation, metallurgy, solid-state chemistry, solution chemistry, thermo-dynamics and kinetics. Additionally, separate chapters on spectroscopy, magnetochemistry, thermodynamics, solids, the metallic state, complex ions and organometallic compounds emphasize the comparative chemistry and unique properties of the actinide series of elements. Comprehensive lists of properties of all actinide compounds and ions in solution are given, and there are special sections on such topics as biochemistry, superconductivity, radioisotope safety, and waste management, as well as discussion of the transactinides and future elements

  7. Electron heating caused by the ion-acoustic decay instability in a finite-length system

    International Nuclear Information System (INIS)

    Rambo, P.W.; Woo, W.; DeGroot, J.S.; Mizuno, K.

    1984-01-01

    The ion-acoustic decay instability is investigated for a finite-length plasma with density somewhat below the cutoff density of the electromagnetic driver (napprox.0.7n/sub c/). For this regime, the heating in a very long system can overpopulate the electron tail and cause linear saturation of the low phase velocity electron plasma waves. For a short system, the instability is nonlinearly saturated at larger amplitude by ion trapping. Absorption can be significantly increased by the large-amplitude ion waves. These results compare favorably with microwave experiments

  8. Modelling of decay heat removal using large water pools

    International Nuclear Information System (INIS)

    Munther, R.; Raussi, P.; Kalli, H.

    1992-01-01

    The main task for investigating of passive safety systems typical for ALWRs (Advanced Light Water Reactors) has been reviewing decay heat removal systems. The reference system for calculations has been represented in Hitachi's SBWR-concept. The calculations for energy transfer to the suppression pool were made using two different fluid mechanics codes, namely FIDAP and PHOENICS. FIDAP is based on finite element methodology and PHOENICS uses finite differences. The reason choosing these codes has been to compare their modelling and calculating abilities. The thermal stratification behaviour and the natural circulation was modelled with several turbulent flow models. Also, energy transport to the suppression pool was calculated for laminar flow conditions. These calculations required a large amount of computer resources and so the CRAY-supercomputer of the state computing centre was used. The results of the calculations indicated that the capabilities of these codes for modelling the turbulent flow regime are limited. Output from these codes should be considered carefully, and whenever possible, experimentally determined parameters should be used as input to enhance the code reliability. (orig.). (31 refs., 21 figs., 3 tabs.)

  9. Lattice effects in the light actinides

    International Nuclear Information System (INIS)

    Lawson, A.C.; Cort, B.; Roberts, J.A.; Bennett, B.I.; Brun, T.O.; Dreele, R.B. von; Richardson, J.W. Jr.

    1998-01-01

    The light actinides show a variety of lattice effects that do not normally appear in other regions of the periodic table. The article will cover the crystal structures of the light actinides, their atomic volumes, their thermal expansion behavior, and their elastic behavior as reflected in recent thermal vibration measurements made by neutron diffraction. A discussion of the melting points will be given in terms of the thermal vibration measurements. Pressure effects will be only briefly indicated

  10. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Epiney, A.S.

    2010-01-01

    Gas cooling in nuclear power plants (NPPs) has a long history, the corresponding reactor types developed in France, the UK and the US having been thermal neutron spectrum systems using graphite as the moderator. The majority of NPPs worldwide, however, are currently light water reactors, using ordinary water as both coolant and moderator. These NPPs - of the so-called second generation - will soon need replacement, and a third generation is now being made available, offering increased safety while still based on light water technology. For the longer-term future, viz. beyond the year 2030, R and D is currently ongoing on Generation IV NPPs, aimed at achieving closure of the nuclear fuel cycle, and hence both drastically improved utilization of fuel resources and minimization of long-lived radioactive wastes. Like the SFR, the GFR is an efficient breeder, also able to work as iso-breeder using simply natural uranium as feed and producing waste which is predominantly in the form of fission products. The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For de-pressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure

  11. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Epiney, A. S.

    2010-09-01

    The majority of NPPs worldwide are currently light water reactors, using ordinary water as both coolant and moderator. (...) For the longer-term future, viz. beyond the year 2030, Research and Development is currently ongoing on Generation IV NPPs, aimed at achieving closure of the nuclear fuel cycle, and hence both drastically improved utilization of fuel resources and minimization of long-lived radioactive wastes. Since the very beginning of the international cooperation on Generation IV, viz. the year 2000, the main research interest in Europe as regards the advanced fast-spectrum systems needed for achieving complete fuel cycle closure, has been for the Sodium-cooled Fast Reactor (SFR). However, the Gas-cooled Fast Reactor (GFR) is currently considered as the main back-up solution. Like the SFR, the GFR is an efficient breeder, also able to work as iso-breeder using simply natural uranium as feed and producing waste which is predominantly in the form of fission products. The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For depressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure conditions, need to be

  12. Non-compound nucleus fission in actinide and pre-actinide regions

    Indian Academy of Sciences (India)

    Data on the evaporation residue cross-sections, in addition to those on mass and angular distributions, are necessary for better understanding of the contribution from non-compound nucleus fission in the pre-actinide region. Measurement of mass-resolved angular distribution of fission products in 20Ne+232Th reaction ...

  13. Special actinide nuclides: Fuel or waste?

    International Nuclear Information System (INIS)

    Srinivasan, M.; Rao, K.S.; Dingankar, M.V.

    1989-01-01

    The special actinide nuclides such as Np, Cm, etc. which are produced as byproducts during the operation of fission reactors are presently looked upon as 'nuclear waste' and are proposed to be disposed of as part of high level waste in deep geological repositories. The potential hazard posed to future generations over periods of thousands of years by these long lived nuclides has been a persistent source of concern to critics of nuclear power. However, the authors have recently shown that each and every one of the special actinide nuclides is a better nuclear fuel than the isotopes of plutonium. This finding suggests that one does not have to resort to exotic neutron sources for transmuting/incinerating them as proposed by some researchers. Recovery of the special actinide elements from the waste stream and recycling them back into conventional fission reactors would eliminate one of the stigmas attached to nuclear energy

  14. Neutron scattering studies of the actinides

    International Nuclear Information System (INIS)

    Lander, G.H.

    1979-01-01

    The electronic structure of actinide materials presents a unique example of the interplay between localized and band electrons. Together with a variety of other techniques, especially magnetization and the Mossbauer effect, neutron studies have helped us to understand the systematics of many actinide compounds that order magnetically. A direct consequence of the localization of 5f electrons is the spin-orbit coupling and subsequent spin-lattice interaction that often leads to strongly anisotropic behavior. The unusual phase transition in UO 2 , for example, arises from interactions between quadrupole moments. On the other hand, in the monopnictides and monochalcogenides, the anisotropy is more difficult to understand, but probably involves an interaction between actinide and anion wave functions. A variety of neutron experiments, including form-factor studies, critical scattering and measurements of the elementary excitations have now been performed, and the conceptual picture emerging from these studies will be discussed

  15. Successive change regularity of actinide properties with atomic number

    International Nuclear Information System (INIS)

    Yang Xuexian

    1990-08-01

    The development and achievements on chemistry of actinide elements are summarised. The relations of properties of actinides to their electronic configurations of valence electronic shells are discussed. Some anomalies of solid properties, the radius contraction, the stable state effect of f 7n -orbits (n = 0, 1, 2) and the tetrad effect of oxidation states, etc., with atomic number (Z) are described. 31 figures appended show directly the successive change regularity of actinide properties with Z

  16. A Summary of Actinide Enrichment Technologies and Capability Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Bradley D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robinson, Sharon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The evaluation performed in this study indicates that a new program is needed to efficiently provide a national actinide radioisotope enrichment capability to produce milligram-to-gram quantities of unique materials for user communities. This program should leverage past actinide enrichment, the recent advances in stable isotope enrichment, and assessments of the future requirements to cost effectively develop this capability while establishing an experience base for a new generation of researchers in this vital area. Preliminary evaluations indicate that an electromagnetic isotope separation (EMIS) device would have the capability to meet the future needs of the user community for enriched actinides. The EMIS technology could be potentially coupled with other enrichment technologies, such as irradiation, as pre-enrichment and/or post-enrichment systems to increase the throughput, reduce losses of material, and/or reduce operational costs of the base EMIS system. Past actinide enrichment experience and advances in the EMIS technology applied in stable isotope separations should be leveraged with this new evaluation information to assist in the establishment of a domestic actinide radioisotope enrichment capability.

  17. Nuclear fuel cycle-oriented actinides separation in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; He, Xihong; Wang, Jianchen [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    In the last decades, the separation of actinides was widely and continuously studied in China. A few kinds of salt-free reductants to adjust Pu and Np valences have been investigated. N,N-dimethylhydroxylamine is a good reductant with high reduction rate constants for the co-reduction of Pu(IV) and Np(VI), and monomethylhydrazine is a simple compound for the individual reduction of Np(VI). Advanced PUREX based on Organic Reductants (APOR) was proposed. Trialkylphosphine oxide (TRPO) with a single functional group was found to possess strong affinity to tri-, tetra- and hexa-valent actinides. TRPO process has been first explored in China for actinides partitioning from high level waste and the good partitioning performance was demonstrated by the hot test. High extraction selectivity for trivalent actinides over lanthanides by dialkyldithiophosphinic acids was originally found in China. A separation process based on purified Cyanex 301 for the separation of Am from lanthanides was presented and successfully tested in a battery of miniature centrifugal contactors. (orig.)

  18. Internal dose evaluation from actinide intakes during nuclear power reactor spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pawar, S.K.; Kumar, Ranjeet; Gamre, Rupali; Purohit, R.G.

    2011-01-01

    Full text: Indian PHWR reactors are using natural uranium as fuel. After use they are discharged from the core and send for fuel reprocessing to extract the unused uranium and plutonium. Plutonium and other actinides are formed by activation of 238 U with neutrons and subsequent decay. During reprocessing of the spent fuel, major long lived actinides (Pu, Am and U) may become radiological safety hazard. Actinides intakes are more probable during declading and chopping of spent fuel. During routine plant operation in reprocessing, exposure to Pu is a major concern along with Am and U in working environment due to its higher radiological hazard and occupational workers are likely to get exposed to plutonium, Americium and Uranium mostly through inhalation. Internally deposited Pu-isotopes, Am-isotope and U-isotopes are estimated using techniques such as lung counting (in-vivo) and urine and faecal bioassay (in-vitro). Evaluation of internal dose of actinides is dependent upon urinary excreted activity. To estimate the internally deposited Pu, U and Am at an intake level of about one ALI (ICRP-78, 1997) of occupational workers, urine bioassay is the preferred technique due to high detection sensitivity, ease of sample handling and economical method. A small and measurable fraction of internally deposited Pu, Am and U are excreted through urine whose content is dependent on time of inhalation, quantity and type of chemical form of inhaled material (S and M class). A standardized radiochemical analysis method for separation and estimation of Pu, Am and U is used to evaluate the urinary excreted activity and internal dose. Several measurements techniques are employed for the estimation of plutonium, Americium and Uranium for example, Alpha Spectrometry, Gamma Spectrometry, Neutron Activation Analysis, Mass Spectrometry and Fission Track Analysis. The radiochemical separation followed by alpha counting and/or spectrometry is chosen due to its ease of handling and

  19. MSFR TRU-burning potential and comparison with an SFR

    Energy Technology Data Exchange (ETDEWEB)

    Fiorina, C.; Cammi, A. [Politecnico di Milano: Via La Masa 34, 20136 Milan (Italy); Franceschini, F. [Westinghouse Electric Company LL: 1000 Westinghouse Dr., Cranberry Township, PA 16066 (United States); Krepel, J. [Paul Scherrer Institut - PSI WEST, 5234 Villigen (Switzerland)

    2013-07-01

    The objective of this work is to evaluate the Molten Salt Fast Reactor (MSFR) potential benefits in terms of transuranics (TRU) burning through a comparative analysis with a sodium-cooled FR. The comparison is based on TRU- and MA-burning rates, as well as on the in-core evolution of radiotoxicity and decay heat. Solubility issues limit the TRU-burning rate to 1/3 that achievable in traditional low-CR FRs (low-Conversion-Ratio Fast Reactors). The softer spectrum also determines notable radiotoxicity and decay heat of the equilibrium actinide inventory. On the other hand, the liquid fuel suggests the possibility of using a Pu-free feed composed only of Th and MA (Minor Actinides), thus maximizing the MA burning rate. This is generally not possible in traditional low-CR FRs due to safety deterioration and decay heat of reprocessed fuel. In addition, the high specific power and the lack of out-of-core cooling times foster a quick transition toward equilibrium, which improves the MSFR capability to burn an initial fissile loading, and makes the MSFR a promising system for a quick (i.e., in a reactor lifetime) transition from the current U-based fuel cycle to a novel closed Th cycle. (authors)

  20. Actinides in irradiated graphite of RBMK-1500 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Plukienė, R., E-mail: rita@ar.fi.lt; Plukis, A.; Barkauskas, V.; Gudelis, A.; Gvozdaitė, R.; Duškesas, G.; Remeikis, V.

    2014-10-01

    Highlights: • Activation of actinides in the graphite of the RBMK-1500 reactor was analyzed. • Numerical modeling using SCALE 6.1 and MCNPX was used for actinide calculation. • Measurements of the irradiated graphite sample were used for model validation. • Results are important for further decommissioning process of the RBMK type reactors. - Abstract: The activation of graphite in the nuclear power plants is the problem of high importance related with later graphite reprocessing or disposal. The activation of actinide impurities in graphite due to their toxicity determines a particular long term risk to waste management. In this work the activation of actinides in the graphite constructions of the RBMK-1500 reactor is determined by nuclear spectrometry measurements of the irradiated graphite sample from the Ignalina NPP Unit I and by means of numerical modeling using two independent codes SCALE 6.1 (using TRITON-VI sequence) and MCNPX (v2.7 with CINDER). Both models take into account the 3D RBMK-1500 reactor core fragment with explicit graphite construction including a stack and a sleeve but with a different simplification level concerning surrounding graphite and construction of control roads. The verification of the model has been performed by comparing calculated and measured isotope ratios of actinides. Also good prediction capabilities of the actinide activation in the irradiated graphite have been found for both calculation approaches. The initial U impurity concentration in the graphite model has been adjusted taking into account the experimental results. The specific activities of actinides in the irradiated RBMK-1500 graphite constructions have been obtained and differences between numerical simulation results, different structural parts (sleeve and stack) as well as comparison with previous results (Ancius et al., 2005) have been discussed. The obtained results are important for further decommissioning process of the Ignalina NPP and other RBMK

  1. Solubility of actinides and surrogates in nuclear glasses; Solubilite des actinides et de leurs simulants dans les verres nucleaires. Limites d'incorporation et comprehension des mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Ch

    2003-07-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO{sub 2} at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  2. Self-interaction corrected local spin density calculations of actinides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z

    2010-01-01

    We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration...... of the actinide ions in these compounds from first principles. Here we review a number of applications, ranging from electronic structure calculations of actinide metals, nitrides and carbides to the behaviour under pressure of intermetallics, and O vacancies in PuO2....

  3. Separation and preconcentration of actinides from acidic media by extraction chromatography

    International Nuclear Information System (INIS)

    Horwitz, E. Philip; Chiarizia, Renato; Dietz, Mark L.; Diamond, Herbert; Nelson, Donald M.

    1993-01-01

    A systematic examination of the effect of nitric and hydrochloric acid concentrations and of macro levels of selected elements on the sorption of actinide ions by a novel extraction chromatographic resin comprised of a solution of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide in tri-n-butyl phosphate supported on an inert polymeric substrate is described. Actinide sorption is demonstrated to be most efficient at high (>1 M) nitric acid concentrations, although tetra- and hexavalent actinides are strongly retained even from dilute (e.g., 0.05 M) nitric acid solutions. Macro concentrations of several common anions (e.g., PO 4 3- and SO 4 2- ) or complexing agents (e.g., oxalic acid) are shown not to adversely affect the sorption of trivalent actinides, while reducing the sorption of tetravalents. Such effects, together with oxidation state adjustments, are shown to provide a basis for the sequential elution of individual actinides and for actinide isolation from environmental and biological matrices

  4. The electronic structure of the lanthanides and actinides, a comparison

    International Nuclear Information System (INIS)

    Edelstein, N.M.

    1998-01-01

    Full text: Optical spectra of the two f-element series (the lanthanides and actinides) are comparable in many respects. For the trivalent ions isolated in single crystals, both series exhibit rich, narrow line spectra. These data can be analysed in terms of a parametric model based on a free-ion Hamiltonian plus the addition of a crystal field Hamiltonian. For most systems the agreement between the calculated and experimental energy levels is quite good. In the actinide series there appears to be a correlation between the magnitude of the crystal field and the inadequacy of the fits. The early actinides exhibit multiple oxidation states for which there is no precedent in the lanthanide series. The parametric model mentioned earlier has been utilized for some tetravalent actinide systems with reasonably good results. A selective survey of results describing the similarities and differences of various lanthanide and actinide systems will be given

  5. Current status of nuclear decay data and report on the IAEA Coordinated Research Programme on the measurement and evaluation of transactinium isotope nuclear decay data

    International Nuclear Information System (INIS)

    Reich, C.W.; Vaninbroukx, R.

    1984-01-01

    In 1977, the IAEA organized a Coordinated Research Programme to address the needs for highly accurate actinide-nuclide decay data identified at the first Advisory Group Meeting on Transactinium Isotope Nuclear Data, held in Karlsruhe in 1975. During the years of its existence, this CRP has made significant strides towards achieving the goals outlined at Karlsruhe and subsequently refined at a second Advisory Group Meeting, held in Cadarache in 1979. In this paper, the make-up of the CRP and its work in the areas of decay-data measurement and evaluation are presented and its significant accomplishments summarized. We also discuss the contents and philosophy of the final report, containing the results of the measurements and evaluations carried out by the CRP participants, to be published following the planned termination of this Programme in November, 1984. 82 references

  6. Actinide distribution in the human skeleton

    International Nuclear Information System (INIS)

    Kathren, R.L.; McInroy, J.F.; Swint, M.J.

    1985-05-01

    Radiochemical analysis of two half skeletons donated to the United States Transuranium Registry, one from an individual with an occupationally incurred deposition of 241 Am and the other with a deposition of 239 Pu, revealed an inverse linear relationship between the concentration of actinide in the bone ash and the fraction of ash. Two distinct relationships were noted, one for the cranium and the other for the remainder of the skeleton. The results suggest that the actinide content of the skeleton as a whole, Q, can be obtained with an uncertainty of +-50% from analysis of a single sample of any bone (except the cranium) by Q = [(830 C/sub sample/)/(0.61 - f/sub sample/)], in which C/sub sample/ refers to the actinide content per g of ash and f/sub sample/ the fraction of ash (i.e., ratio of dry to wet weight) in the sample. 5 figs., 3 tabs

  7. Mixer-settler performance evaluation in actinide extraction

    International Nuclear Information System (INIS)

    Camilo, R.L.; Goncalves, M.A.; Carvalho, E.I.; Nakazone, A.K.; Araujo, B.F. de; Araujo, J.A.

    1988-07-01

    This paper deals with four conceptions of mixer-settlers used for actinide purification and recovery. By means of the uranium concentration profiles in the organic and aqueous phases, the evaluation of each mixer-settler was made. The main purpose of this work is the data acquisition, for adapting the different contactor types to actinide recovery by liquid-liquid extraction, in the nuclear fuel cycle. (autor) [pt

  8. Synergistic extraction of actinides : Part I. Hexa-and pentavalent actinides

    International Nuclear Information System (INIS)

    Patil, S.K.; Ramakrishna, V.V.

    1980-01-01

    A detailed discussion on the reported literature on the synergistic extraction of hexa- and pentavalent actinide ions, by different combinations of extractants and from different aqueous media, is presented. Structural aspects of the various complexes involved in synergism also are reviewed. A short account of the applications based on synergistic extraction is also given. (author)

  9. ACTINET: a European Network for Actinide Sciences

    International Nuclear Information System (INIS)

    Bernard Boullis; Pascal Chaix

    2006-01-01

    Full text of publication follows: The research in Actinide sciences appear as a strategic issue for the future of nuclear systems. Sustainability issues are clearly in connection with the way actinide elements are managed (either addressing saving natural resource, or decreasing the radiotoxicity of the waste). The recent developments in the field of minor actinide P and T offer convincing indications of what could be possible options, possible future processes for the selective recovery of minor actinides. But they point out, too, some lacks in the basic understanding of key-issues (such as for instance the control An versus Ln selectivity, or solvation phenomena in organic phases). Such lacks could be real obstacles for an optimization of future processes, with new fuel compounds and facing new recycling strategies. This is why a large and sustainable work appears necessary, here in the field of basic actinide separative chemistry. And similar examples could be taken from other aspects of An science, for various applications (nuclear fuel or transmutation targets design, or migration issues,): future developments need a strong, enlarged, scientific basis. The Network ACTINET, established with the support of the European Commission, has the following objectives: - significantly improve the accessibility of the major actinide facilities to the European scientific community, and form a set of pooled facilities, as the corner-stone of a progressive integration process, - improve mobility between the member organisations, in particular between Academic Institutions and National Laboratories holding the pooled facilities, - merge part of the research programs conducted by the member institutions, and optimise the research programs and infrastructure policy via joint management procedures, - strengthen European excellence through a selection process of joint proposals, and reduce the fragmentation of the community by putting critical mass of resources and expertise on

  10. On the safety of conceptual fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.; Badham, V.; Caspi, S.; Chan, C.K.; Ferrell, W.J.; Frederking, T.H.K.; Grzesik, J.; Lee, J.Y.; McKone, T.E.; Pomraning, G.C.; Ullman, A.Z.; Ting, T.D.; Kim, Y.I.

    1979-01-01

    A preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors is presented in this paper. The study and subsequent analysis was largely based upon one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The major potential hazards were found to be: (a) fission products, (b) actinide elements, (c) induced radioactivity, and (d) tritium. As a result of these studies, it appears that highly reliable and even redundent decay heat removal must be provided. Loss of the ability to remove decay heat results in melting of fuel, with ultimate release of fission products and actinides to the containment. In addition, the studies indicate that blankets can be designed which will remain subcritical under extensive changes in both composition and geometry. Magnet safety and the effects of magnetic fields on thermal parameters were also considered. (Auth.)

  11. Adventures in Actinide Chemistry: A Year of Exploring Uranium and Thorium in Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-08

    The first part of this collection of slides is concerned with considerations when working with actinides. The topics discussed in the document as a whole are the following: Actinide chemistry vs. transition metal chemistry--tools we can use; New synthetic methods to obtain actinide hydrides; Actinide metallacycles: synthesis, structure, and properties; and Reactivity of actinide metallacycles.

  12. Preliminary considerations concerning actinide solubilities

    International Nuclear Information System (INIS)

    Newton, T.W.; Bayhurst, B.P.; Daniels, W.R.; Erdal, B.R.; Ogard, A.E.

    1980-01-01

    Work at the Los Alamos Scientific Laboratory on the fundamental solution chemistry of the actinides has thus far been confined to preliminary considerations of the problems involved in developing an understanding of the precipitation and dissolution behavior of actinide compounds under environmental conditions. Attempts have been made to calculate solubility as a function of Eh and pH using the appropriate thermodynamic data; results have been presented in terms of contour maps showing lines of constant solubility as a function of Eh and pH. Possible methods of control of the redox potential of rock-groundwater systems by the use of Eh buffers (redox couples) is presented

  13. Orbital effects in actinide systems

    International Nuclear Information System (INIS)

    Lander, G.H.

    1983-01-01

    Actinide magnetism presents a number of important challenges; in particular, the proximity of 5f band to the Fermi energy gives rise to strong interaction with both d and s like conduction electrons, and the extended nature of the 5f electrons means that they can interact with electron orbitals from neighboring atoms. Theory has recently addressed these problems. Often neglected, however, is the overwhelming evidence for large orbital contributions to the magnetic properties of actinides. Some experimental evidence for these effects are presented briefly in this paper. They point, clearly incorrectly, to a very localized picture for the 5f electrons. This dichotomy only enhances the nature of the challenge

  14. Formation of actinides in irradiated HTGR fuel elements

    International Nuclear Information System (INIS)

    Santos, A.M. dos.

    1976-03-01

    Actinide nuclide concentrations of 11 spent AVR fuel elements were determined experimentally. The burnup of the spheres varied in the range between 10% and 100% fifa, the Th : U ratio was 5 : 1. The separation procedures for actinide isolation were tested with highly irradiated ThO 2 . Separation and decontamination factors are presented. Actinide nuclide formation can be described by exponential functions of the type ln msub(nuclide) = A + B x % fifa. The empirical factors A and B were calculated performing a least squares analysis. Build-up of 232 U was discussed. According to the experimental results, 232 U is mainly produced from 230 Th, a certain amount (e.g. about 20% at a 10 5 MWd/t burnup) originated from a (n,2n) reaction of 233 U; a formation from 233 Th by a (n,2n) followed by a (n,γ) reaction was not observed. The AVR breeding rate was ascertained to be 0.5. The hazard potential of high activity waste was calculated. After a 1,000 years' storage time, the elements Pa, Am and Cm will no longer influence the total hazard index. Actinide recovery factors were proposed in order to reduce the hazard potential of the waste by an actinide removal in consideration of the reprocessing technology which is available presently. (orig.) [de

  15. Dynamic simulation of the air-cooled decay heat removal system of the German KNK-II experimental breeder reactor

    International Nuclear Information System (INIS)

    Schubert, B.K.

    1984-07-01

    A Dump Heat Exchanger and associated feedback control system models for decay heat removal in the German KNK-II experimental fast breeder reactor are presented. The purpose of the controller is to minimize temperature variations in the circuits and, hence, to prevent thermal shocks in the structures. The basic models for the DHX include the sodium-air thermodynamics and hydraulics, as well as a control system. Valve control models for the primary and intermediate sodium flow regulation during post shutdown conditions are also presented. These models have been interfaced with the SSC-L code. Typical results of sample transients are discussed

  16. Technical requirements for the actinide source-term waste test program

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Molecke, M.A.

    1993-10-01

    This document defines the technical requirements for a test program designed to measure time-dependent concentrations of actinide elements from contact-handled transuranic (CH TRU) waste immersed in brines similar to those found in the underground workings of the Waste Isolation Pilot Plant (WIPP). This test program wig determine the influences of TRU waste constituents on the concentrations of dissolved and suspended actinides relevant to the performance of the WIPP. These influences (which include pH, Eh, complexing agents, sorbent phases, and colloidal particles) can affect solubilities and colloidal mobilization of actinides. The test concept involves fully inundating several TRU waste types with simulated WIPP brines in sealed containers and monitoring the concentrations of actinide species in the leachate as a function of time. The results from this program will be used to test numeric models of actinide concentrations derived from laboratory studies. The model is required for WIPP performance assessment with respect to the Environmental Protection Agency`s 40 CFR Part 191B.

  17. Technical requirements for the actinide source-term waste test program

    International Nuclear Information System (INIS)

    Phillips, M.L.F.; Molecke, M.A.

    1993-10-01

    This document defines the technical requirements for a test program designed to measure time-dependent concentrations of actinide elements from contact-handled transuranic (CH TRU) waste immersed in brines similar to those found in the underground workings of the Waste Isolation Pilot Plant (WIPP). This test program wig determine the influences of TRU waste constituents on the concentrations of dissolved and suspended actinides relevant to the performance of the WIPP. These influences (which include pH, Eh, complexing agents, sorbent phases, and colloidal particles) can affect solubilities and colloidal mobilization of actinides. The test concept involves fully inundating several TRU waste types with simulated WIPP brines in sealed containers and monitoring the concentrations of actinide species in the leachate as a function of time. The results from this program will be used to test numeric models of actinide concentrations derived from laboratory studies. The model is required for WIPP performance assessment with respect to the Environmental Protection Agency's 40 CFR Part 191B

  18. Positron annihilation method for {alpha} self radiation effect studies in doped actinide UO{sub 2} samples

    Energy Technology Data Exchange (ETDEWEB)

    Roudil, D.; Vella, F.; Bonnal, M.; Broudic, V. [CEA centre de Marcoule. BP 17171 30207 Bagnols sur ceze cedex (France); Barthe, M.F.; Gentils, A.; Moineau, V. [CNRS- CEMHTI 3A rue de la Ferollerie 45071 Orleans Cedex (France); Jolly, L. [CEA centre de Valduc 21120 Is-Sur Tille (France)

    2008-07-01

    Towards disposal problematic, fine understanding of the {alpha} aging of UO{sub 2} and (U, Pu)O{sub 2} remains a fundamental challenge for the prediction of the potential increase of the radionuclide source terms with presence of water. The intrinsic evolution of the matrix is closely related to the behavior of radiogenic helium produced by actinide decay. Interactions between helium atoms and vacancy defects are involved in these mechanisms. Positron Annihilation Spectroscopy is also an appropriated method owing to its sensitivity to the vacancy type defects in solid materials. It is a non destructive technique with a remote acquiring data possibility. Because positron implanted in the material is sensitive to the electronic density, the positron lifetime method allows the characterization of the vacancy defects, namely size and concentration. Such equipment has been implemented in the L30 laboratory of the DHA facility in Atalante and will be applied on doped actinides samples, simulating {alpha} aging. This article presents, the analytical protocols and validation results on depleted UO{sub 2} samples and highlights the perspectives on (U, Pu)O{sub 2} for the investigation of different stages of self irradiation matrices and helium behavior. (authors)

  19. Actinide production in 136Xe bombardments of 249Cf

    International Nuclear Information System (INIS)

    Gregorich, K.E.

    1985-08-01

    The production cross sections for the actinide products from 136 Xe bombardments of 249 Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these 136 Xe + 249 Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the 136 Xe + 248 Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs

  20. Preparation, properties, and some recent studies of the actinide metals

    International Nuclear Information System (INIS)

    Haire, R.G.

    1985-01-01

    The actinide elements form a unique series of metals. The variation in their physial properties combined with the varying availability of the different elements offers a challenge to the preparative scientist. This article provides a brief review of selected methods used for preparing μg to kg amounts of the actinide metals and the properties of these metals. In addition, some recent studies on selected actinide metals are discussed. 62 refs